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I. INTRODUCTION

Most computers being built are based on the concept

presented by Von Neumann in the 1950's. This concept or

architecture uses a single memory to store both data and the

program instructions.

Typical machines today are also based on a register

architecture. That is, there is some small number of high-

speed general-purpose storage locations that can be used often

for different functions. But the limited number means that

many of the values in the registers must be shuffled back and

forth from memory.

Programming languages, on the other hand, usually do not

consider the program to be a part of the data. There are some

exceptions to this. LISP, for example, is happy to rewrite the

program thinking that it is modifying a list of some sort. The

Block-structured languages (those derived from ALGOL

especially) model a computer as a Harvard machine, i.e., a

machine that has two independent memories - one for the data

and one for the instructions. Thus the program can never

modify the program.

Block-structured programming languages do not usually

support the concept of a register. They define variables and

constants when a block is entered, then use these for the

storage of data. Further, the variables and the constants

defined in the block disappear or are deactivated when the



block finishes. Some of the variables of other blocks can be

referenced by the executing block. Others cannot. The scope

of the variables is that part of the program in which they can

be referenced. The rules defining when a variable can be

referenced and when it cannot are clearly defined. By using a

stack the scope of the variables can be maintained as the

program executes.

The differences between the model of the computer seen by

the programming language and the actual machine architecture is

usually bridged by the compiler. The compiler is responsible

for maintaining the variable scope in the register machine.

The scope must be maintained as blocks are declared and dropped

and as procedures are called and returned from. All this

requires complex manipulations of pointers and lists.

This paper presents the design of a computer which

closely supports block-structured languages. The machine has

separate instruction and data memories, uses a stack to

maintain the scope of variables during execution, and has an

instruction set which resembles the instruction set of the

block-structured languages.



II. OBJECTIVES

The primary objective of this paper is to present the

architecture and a possible implementation of a computer that

closely supports high-level, block-structured programming

languages.

The three features that have been given precedence are;

1. Support for high-level constructs

2. Ease of use

3. Simplicity of design

Other features such as speed and hardware efficiency have been

given secondary consideration.

The discussion and presentation of the design assume that

the reader is familiar with digital design procedures. The

features of the various processors used are not discussed, but

are widely available in the literature (1),(2). The design is

given in enough detail that it can be constructed.

No attempt has been made to incorporate some of the

features that might be necessary to make this a "useful"

machine. For example, characters are supported only in that

the Input/Output can be made to treat the data it is reading or

writing as a character. Characters can be handled without any

special hardship, but they are inefficient in terms of the

memory used.



III. ARCHITECTURE OVERVIEW

Most of the block-structured programming languages are

implemented using a stack. The computer described in this

paper supports the stack concept directly. Its stack can be

modelled as three separate stacks, each with a distinct

function, and it implements these stacks as the major part of

its architecture.

The first and simplest of the three stacks is the operand

stack. An operand stack is used to hold the operands and

results of operations. An operation, such as ADD, that

requires two operands, uses the top two elements of the stack.

The result of the operation is put back onto the top of the

stack. Figure 1 shows the stack during an ADD operation. The

level of the stack is reduced by one because the two operands

are removed then the result put on.

I
<— TOP

I I

I I

I B + A I
<-

I . I

TOP

Before After

Figure 1. Operand Stack for an Add Operation

By using an operand stack, the instruction that performs

an operation does not need to specify where the operands come



from, nor where the result goes. These are always the same

place: the top of the stack. A more complex example of the

operand stack is shown in Figure 2. This example uses an

operand stack to evaluate the expression A+(B-C/D)*(E+F).

1 1

1 1

1 1
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1 A 1
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1 1 1 1
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! 1 1 1

1 C/D 1 <-TOP 1

1 B 1 B-C/D K-TOP

1 A 1 A 1

Divide Subtract

1 F K-TOP

1 E 1 E + F 1 <-TOP

1 B-C/D 1 B-C/D 1

1 A 1 A 1

Enter F Add



Ill I

I (B-C/D)*(E+F) K-TOP I I

I A I I A+(B-C/D)*(E+F) K-TOP

Multiply Add

Figure 2. Operand Stack used in Evaluating an Expression

The second kind of stack used in high-level languages is a

control stack. This stack is used to store linkage information

when a procedure or subroutine is called. A procedure call

causes a branch out of the instruction stream of the calling

routine to that of the called routine. When the procedure has

finished executing f it must cause a branch back into the

calling routine. This return address could be stored in a

dedicated memory location or in a register. However, if either

of these were used the information would be lost if the called

routine in turn called another routine. The return address

could also be stored in a dedicated location local to the

called routine. This breaks down if the routine ever recurses,

(i.e. directly or indirectly calls itself) because the second

return address is stored over top of the first. The other

solution is to use a stack to hold the return addresses. When

the subroutine is called, the return address is pushed onto the

control stack. Then if more routines are called, their return

address are also pushed onto the stack. When the routines

finish and return to the routine that called them, the return

addresses are popped off the stack.



Consider a main routine A which calls a subroutine B. B,

somewhere in the course of its execution, calls another

subroutine, C. Suppose that C calls subroutine B if some

condition is met. If the condition is met on the first

instance of C, then C calls B and B has recursed. Figure 3

shows the control stack for the case where the condition is met

the first time but fails after that.

I I

I I

I RETURN A I

I I

I RETURN B I

I RETURN A I

In A A calls B B calls C

RETURN C

RETURN B

RETURN A

1 RETURN B 1

1 RETURN C 1

1 RETURN B 1

1 RETURN A 1

RETURN C

RETURN B

RETURN A

C calls B B calls C C returns



I II II I

I II II I

I RETURN B I I I I I

I RETURN A I I RETURN A I I I

B returns C returns B returns

Figure 3. The Control Stack.

When a routine finshes executing it returns to the calling

routine by removing the return address at the top of the stack

and branching to that location. The correct order is

maintained by the nature of the Last-In-First-Out stack. The

correct return address is always the one at the top of the

stack when the routine finishes execution, although; many

subroutines may have been called in between.

The third and most complex stack used in high-level

languages is a variable stack. A variable stack is used to

hold variables. The complexity arises from the necessity to

maintain the scope of the variables. The scope of a variable

is simply that part of the program in which that variable is

known. The usual definition of scope is that a variable is

known to all blocks declared within the same block as the

variable, unless a new variable of the same name is declared.

In most ALGOL-derived languages a block may be in-line. That

is, it may appear in the code as a section, set off by BEGIN

and END statements, that may have variable names local to



itself. Example 1 on the following page demonstrates the scope

of variables.

In the example, variables i, j, and m are declared in

procedure A. Therefore they are known to all procedures

declared within A unless those procedures declare a new

variable with the same name. In the example, procedure B does

declare a new variable named i. Thus the i declared in A is

inaccessible in B. The same scope rules apply to the new

instance of i. It is known to all routines declared within

procedure B unless they declare a new variable i. Procedure C

does not declare any variable named i, so the one in B is known

in C. The variable k, declared in procedure B, is also known

to both procedures B and C.

The procedure named D is outside of both procedures B and

C. So the variables of B and C are unknown in D, and those of

D are unknown in B and C. An application of the scope rules to

the variables of D shows that i and m from procedure A and j

and 1 from procedure D are known to procedure D. Procedure E

redeclares the variable i, so it is a different version from

the one in A and D. All this is shown in Table 1. All

variables known to a procedure are given and the procedure in

which that instance of the variable was declared is given in

parentheses.



PROGRAM A;
VAR i,j,m : INTEGER;

PROCEDURE B;
VAR i,k : REAL;

PROCEDURE C;
VAR j:REAL;
BEGIN

END; (*End of procedure C*)

BEGIN

END; (*End of procedure B*)

PROCEDURE D;
VAR j,l:REAL;

PROCEDURE E;
VAR i: INTEGER;
BEGIN

END; (*End of procedure E*)

BEGIN

END; (*End of procedure D*)

BEGIN

END; (*End of main routine A*)

Example 1. A Program to Demonstrate Scope
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These scope rules can be applied to more than just

variable names. Procedure names, constants, functions, etc.

all have scope within a program.

I Procedure I variables I

1 1 i(A) 1

1 A 1 j(A) 1

1 1 m(A) 1

1 1 KB) 1

1 B 1 j(A) 1

1 1 k(B) 1

1 1 m(A) 1

1 1 i(B) 1

1 C 1 j(C) 1

1 1 k(B) 1

1 1 m(A) 1

1 1 i(A) 1

1 D 1 j(D) 1

1 1 1(D) 1

1 1 m(A) 1

1 1 i(E) 1

1 E 1 j(D) 1

1 1 1(D) 1

1 1 m(A) 1

Table 1. The Variables Known to theProcedures

when a block is entered during execution, space is set

aside on the variable stack for the variables local to the

block. The location of the variables in the stack will depend

on the run time behavior of the program, but the variables will

always be a fixed distance from the first location reserved on

the stack for the block. A pointer to the first location is

saved. A block is able to access all variables declared

outside of it if those variables are included in the scope of

11



the block. Therefore a pointer to each of the variable spaces

of the outer blocks roust also be kept. These pointers can be

kept in registers called display registers.

The pointers that must be available are dependent on the

static hierarchical structure of the block declarations and not

on the run time behavior. The hierarchy of declarations for

Example 1 is shown in Figure 4. Each level of declarations is

called a lexical level. A block has access to the variables of

only one block at each lexical level that is lower than or

equal to its own. A block may not access any variables in a

block whose lexical level is higher than its own. Thus there

is one display register for each lexical level. The lower

level display registers need to be set to the blocks with lower

lexical levels than the curent block. Table 2 shows how the

display registers are set for each procedure in Example 1.

LL(lx) indicates the display register for lexical level lx.

LLTOP indicates the current lexical level, and points to the

highest valid display register. Figure 5 shows how these

pointers all work together to define parts of the variable

stack for each block.

o A Lexical level
/ \

/ \

Bo o D Lexical level 1

/ \
/ \

Co o E Lexical level 2

Figure 4. The Lexical Levels of the Procedures.
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1 Procedure 1 Display Registers 1

1 A 1 LL(0) to A 1

1 B 1 LL(0) to A 1

1 1 LL(1) to B 1

1 1 LL(0) to A 1

1 C 1 LL(1) to B 1

1 1 LL(2) to C 1

1 D 1 LL(0) to A 1

1 1 LL(1) to D 1

1 1 LL(0) to A 1

1 E 1 LLU) to D 1

1 1 LL(2) to E 1

Table 2. The Display Register Settings

Once the display is set for a given block, the variables

can be accessed by the double lx,n, where lx selects the

display register corresponding to lexical level lx, and n is

the index into that variable space to the desired variable.

The location of a variable in the stack may not be known at run

time, but it can always be referenced by the two-part address

lx,n. This address is known at compile time. Table 3 repeats

Table 2 with the addition of the address double for each

variable.

13



T>te Sr/\cr/ict DISPiAY CukkENT

Levei.

Figure 5- T*e Display
14-



I Procedure I Variables I Address

1 i(A) 1 LL(0),0 1

1 A 1 j(A) 1 LL(0),1 1

1 m(A) 1 LL(0) ,2 1

1 i(B) 1 LL(1),0 1

1 B 1 j(A) 1 LL(0),1 1

1 k(B) 1 LL(1),1 1

1 m(A) 1 LL(0) ,2 1

1 i(B) 1 LL(1),0 1

1 C 1 j(C) 1 LL(2),0 1

1 k(B) 1 LL(1),1 1

1 m(A) 1 LL(0) ,2 1

1 i(A) 1 LL(0>,0 1

1 D 1 j(D) 1 LL(1),0 1

1 1(D) 1 LL(1),1 1

1 m(A) 1 LL(0) ,2 1

1 i(E) 1 LL(2),0 1

1 E 1 j(D) 1 LL(1),0 1

1 1(D) 1 LL(1),1 1

1 m(A> 1 LL(0) ,2 1

Table 3. The Variable Addresses

The scope rules can be applied to procedure names as well

as variable names. Thus for Example 1, procedure E could have

called procedure B. Procedure E is at lexical level 2, while

procedure B is at lexical level 1. The display registers which

define the scope of procedure E must be changed during such an

"up-level" call to set the proper scope for procedure B. The

display registers before the call to B, are shown in Figure 6A.

The display registers, as they should be set after the call to

procedure B are shown in Figure 6B.

15



I

l<—

i(E) K--

1(D) I

j(D) l<—

j(A) I

1(A) l<—

TOP

<

—

-
1

1

1

1 LL(2)

1 LL(1>

1 LL(0) LLTOP I

Figure 6A. The Display Before the Call to Procedure B

1 k(B) 1

1 i(B) 1

1 i(E) 1

1 1(D) 1

1 j(D) 1

1 j(A) 1

1 i(A) 1

TOP

LL(1)

LL(0)

<-

I

1 LLTOP I

Figure 6B. The Display After the Call to Procedure B

The call mechanism needs to set the display pointers so

the scope of the destination is correct. It must also save

enough information to allow the scope of the calling routine to

be restored once the called procedure finishes.

16



It is simple to set the display registers so that the

scope of the destination is correct. The call needs to look as

if it came from the block in which the called procedure was

declared. This will ensure that the scope is correct. The

current lexical level is set to be that of the outside block.

The called procedure perforins a block entry which increments

the current lexical level, then sets the display register for

that level. The lexical level of the block in which a

procedure is declared is known at compile time and can be

included as part of the procedure entry instruction.

The values that must be saved in order to restore the

scope of the calling routine are the lexical level, and the

value of the display register for the calling routine. However,

these are insufficient to completely restore the scope if the

called routine is one or more levels higher than the calling

block. For example, if a procedure at level 4 calls a

procedure at level 2, all display registers from 2 to 4 must be

restored to ensure that the scope of the calling routine is

correct after the called procedure has finished. This requires

that the display register be copied into the stack before a new

block is entered. For the procedure call from level 4 to level

2 the variable stack with the linkages might be as shown in

Figure 7.

17



Variables
for level

4

DR saved
on block
entry

Variables
for level

3

DR saved
on block
entry

Variables
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2
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entry
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DR saved
on Block

entry

Variables
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-TOP

<—1 LLC 4)

1 LL(3)

1 LLC 2)

1 LL(l)
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Figure 7A. The Variable Stack Linkages Before the Call
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Figure 7B. The Variable Stack Linkages Just Before the Return
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To completely restore the scope of the calling routine,

the lexical level and the display register for the calling

block are restored from the stack. Then the next lower display

register is restored by loading it with the value just below

where the newly restored display register points. The next

lower level pointer is restored in the same way. The

relationship between the just-restored display register and the

next lower display register can be written as

LL(lx-l) <— S(LL(lx)-l)

The entire sequence for the restoration of the scope of the

calling routine is;

LL(4) <— S(TOP) Popped off the stack by Procedure Exit
LL(3) <— S(LLU)-l)
LL(2> <— S(LL(3)-1)

This can be written as a procedure.

i = lx;
WHILE ( i>0 ) DO;

LL(i-l) = S(LL(i)-l) ;

i = 1-1

»

END WHILE;

The three kinds of stacks can be combined into a single

physical stack. The display linkage information and the return

address are stored together during a procedure call. This

triple of values is called a Transfer Point. The operand stack

sits on top of the variable stack. For the combined stack, a

procedure entry requires the following steps:

20



1. Save the current display register.
2. Save the current lexical level.
3. Save the return address.
4. Set the lexical level to that in which the procedure

was declared.
5. Do a block entry.

The steps necessary when entering a block are:

1. Save the current display register.
2. Increment the lexical level.
3. Set the new display register.
4. Reserve the variable storage on the stack.

The class of languages derived from ALGOL allows a

procedure or block to declare variables which retain their

values from one invocation to the next. Pascal does not have

this feature. To implement a random number generator in

Pascal, the seed has to be passed back and forth to the

procedure as a parameter, because it can not be retained in the

procedure from one call to the next. In PL/I, the seed can be

declared as an "OWN" variable. It can then be set by a call to

the random number generator, and it will retain that value on

the next call to the procedure. The calling program need not

carry the variable SEED, which means nothing to it.

OWN variables can not be implemented with a stack. A

HEAP is used to store variables which must not disappear

between invocations of the procedure in which they are

declared. The HEAP is also used for PL/I's "BASED" variables,

which are normally used to implement list and tree structures.

The HEAP tends to become cluttered with areas which were

in use at one time, but have since been discarded. PL/I uses

21



the functions ALLOCATE and FREE to claim and release blocks of

memory. For operations of any extent which use the heap,

garbage collection is necessary. There are many algorithms

available for garbage collection (3).

22



IV. INSTRUCTION SET

There are two data types in this implementation. The

numeric data type is used to represent integer numbers. (There

are no floating point numbers in this implementation.) The

other data type is logic. A value of the logic data type can

have only two values; TRUE and FALSE.

The instruction set for this computer is aimed at the

ALGOL-like languages. It allows complete implementation of the

ALGOL instruction set. The instruction set is presented in

"Compiler Construction: Theory and Practice" by Barrett and

Couch (4). Pascal is mainly a subset of ALGOL, so it, too,

should be completely supported. The instructions can be

divided into 8 catagories. These are:

1. Arithmetic instructions
2. Comparison instructions
3. Logic instructions
4. Data movement instructions
5. Stack and Heap maintenance instructions
6. Block maintenance instructions
7. Jump instructions
8. Input/Output instructions

An arithmetic instruction is one which causes some

arithmetic operation to be performed. Any operand is always

taken from the top of the stack and the result is always put

onto the top of the stack. The operands and result must be of

the numeric data type. The arithmetic instructions are:

ADD - Pop the top two stack elements, add them,
and put the result onto the stack.

23



SUBTRACT - Pop the top two stack elements, subtract
thetop stack elementfrom the second
element, and put the result ontothe stack.

MULTIPLY - Pop the top two stack elements, multiply
them together, and put the product onto
the stack.

DIVIDE - Pop the top two stack elements, divide the
second by the first, and put the quotient
and remainder back onto the stack.

NEGATE - Pop the top stack element. Negate it,
and push the result back onto the stack.

The comparison instructions pop two numeric operands

from the stack and push a logic result whose value depends on

the result of the compare. The comparsion instructions are:

EQUAL - Pop the top two numeric operands.
Compare them. Push a TRUE result if
and only if both operands are the same.
Otherwise push a FALSE result.

GREATER THAN - Pop the top two numeric operands.
Compare them. Push a TRUE result if
and only if the second operand is
larger than the top operand. Otherwise
push a FALSE result.

LESS THAN - Pop the top two numeric operands.
Compare them. Push a TRUE result if
and only if the second operand is
less than the top operand. Otherwise
push a FALSE result.

The logic instructions require operands of the logic data

type and produce a result of the logic data type. The operands

are popped off the stack and the result is pushed onto it. The

logical instructions are:

NOT - Pop the top operand. Complement it and push the
result back onto the stack.

AND - Pop the top two operands off the stack. Logically
AND them. Push the result back onto the stack.

24



OR - Pop the top two operands off the stack.
Logically OR them. Push the result onto the stack.

The data movement instructions move data onto or off of

the stack or heap. Some instructions require an operand. The

operand can be of either data type or it can be an address.

The data movement instructions are:

LOAD - Pop an address off the top of the stack. Fetch
the value stored in that address and push that
value onto the stack.

LOAD CONSTANT C
- Push the constant c onto the stack.

LOAD ADDRESS lx,j
- Push the absolute address of the variable

specified by the pair lx,j onto the stack.

LOAD LABEL Z
- Load a transfer point onto the stack. (More on

labels later.)

LOAD DATA lx,j
- Push the value found in the variable whose
address is lx,j onto the stack.

LOAD HEAP j
- Push the value found in location j in the heap

onto the stack.

LOAD HEAP ADDRESS j
- Push the address of element j of the heap onto

the top of the stack.

REPLACE
- Pop the top of the stack. Pop an address from the

new top of the stack and push the value pointed
to by that address onto the stack. This
instruction is only used by the Call-by-name
parameter mechanism.

STORE - Pop the top element off the stack. Store it into
the location whose address is at the new top of
the stack. Pop the address off the stack.

STORE DATA lx,j
- Pop the top element off the stack and store that

value into the variable whose address is lx,j.

25



STORE HEAP j
- Pop the top element off the stack. Store that

value into location j in the heap.

The Stack and Heap maintenance instructions change the

value of the stack and heap pointers. They are:

INCREMENT AND SAVE STACK
- Pop the top element off the stack. Add that

value to the top of stack pointer to form a
new top of stack. Save the original value of the
top of stack at the new top of the stack.

INCREMENT STACK n
- Add n to the top of the stack pointer.

DECREMENT FROM STACK
- Pop the top element off the stack. Subtract that
value from the top of stack pointer.

DECREMENT STACK n
- Subtract n from the top of stack pointer.

INCREMENT AND SAVE HEAP
- Pop the top element off the stack. Add that

value to the bottom of the heap pointer. Push
the new heap pointer value onto the top of the
stack.

INCREMENT HEAP n
- Add n to the Heap pointer.

DECREMENT AND SAVE HEAP
- Pop the top element off the stack. Subtract that
value from the bottom of the heap pointer. Push
the result onto the stack.

DECREMENT HEAP n
- Subtract n from the Heap Pointer.

The Block instructions handle the display chain and

variable spaces. They are:

BLOCK ENTRY n
- Save the display register, increment the lexical

level, set the new display register, and reserve
space on the stack for the variables of the
block. (The entire sequence for a block entry
is discussed below in the section on labels.)
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BLOCK EXIT
- Remove all the information saved on the block

enter. (See below.)

PROCEDURE ENTRY lx
- Enter procedure at lexical level lx. (See below)

LABEL ENTRY lx
- Set lexical level and stack pointer for the

label. (See below)

The jump instructions cause a branch in the program flow.

They are:

JUMP z
- Jump to location z in the instruction stream.

CONDITIONAL JUMP z
- Pop the top stack element. Jump to location z

if the value is FALSE, otherwise fall through to
the next instruction.

JUMP INDIRECT lx,j
- Jump to the destination whose address is stored

in a variable whose address is lx,j.

CALL PROCEDURE z
- Jump to the procedure at z and save the return
and display information. (see below)

CALL PROCEDURE INDIRECT lx,j
- Jump to a procedure whose address is in a

variable. Save the return and display information.

RETURN
- Branch to the place from which a procedure was

called and restore all the display information.
(See chapter 3)

The Input and Output instructions cause a single value to

be read or written. All I/O instructions require a device

code. The device code can be at the top of the stack or in the

instruction word immediately following the I/O instruction.

The Input/Output instructions are:

27



READ Q
- Read a numeric value from device Q.and put it on

the stack.

WRITE Q
- Pop the top element off the stack and write its

value to device Q.

READ CHARACTER Q
- Read a character from device Q and push it onto

the stack.

WRITE CHARACTER Q
- Pop the top element off the stack and write it

out to device Q.as a character.

READ STACK
- Pop a device code off the stack, then read a

numeric value from that device and push it onto
the stack.

WRITE STACK
- Pop a numeric value off the stack, then write

it out to a device whose device code is also
popped off the stack.

READ CHARACTER STACK
- Pop a device code off the stack and read a

character from the selected device. Push the
character onto the stack.

WRITE CHARCTER STACK
- Pop a character off the stack. Write it out

to a device whose device code is popped off the
stack.

The LOAD LABEL instruction saves the current lexical

level pointer, the current lexical level, and an instruction

address on the stack. The three values saved by the LOAD LABEL

are the same three values that are saved by the Procedure

mechanism. This triple is called a transfer point. The label

is placed on the stack so that the CALL PROCEDURE INDIRECT

instruction can have a branch target. This indirect call is

used during parameter evaluation.
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Other jump instructions cause a change in program flow

but no return to the calling location is required. A transfer

point does not need to be loaded onto the stack and any

information in the stack above the variable space for the

destination block is no longer needed. The jump mechanism

loads the top of the stack pointer with the location just above

the last variable. This is called the working pointer. The

working pointer (WP) is saved by the Block Entry sequence. The

Block Entry is then modified from that given in Chapter Three.

The final form of the Block Entry sequence for a block having n

variables is :

1. Save the value of the top of stack pointer after
the block entry is completed. (WP = TOP+n+2)

2. Save the current lexical level pointer.
3. Increment the current lexical level.
4. Set the current lexical level pointer to point to the

current top of the stack.
5. Set the top of stack pointer to point to the first

location above the variables. (TOP+n)

Everytime something is pushed onto the top of the stack,

the top of stack pointer is incremented. So the value saved in

step 1 and the value loaded into the Top of stack pointer in

step 5 are the same value. Two values have been pushed onto

the stack in between.

The order is important in many operations. If a jump out

of a block is desired, the jump must be preceded by a LABEL

ENTRY instruction to set the lexical level and the stack

pointer to what they should be for the destination. A LABEL

ENTRY performs the following operations:
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1. Set the current lexical level to that of the
destination.

2. Set the top of stack pointer to the value saved by
the block entry of the destination block.

Any call to a procedure must include a PROCEDURE ENTRY

instruction to set the lexical level to look as if the call

came from the block in which the procedure was declared. This

ensures that the scope is correctly set. The order for a

procedure call then is:

1. CALL PROCEDURE (in the calling block)
2. PROCEDURE ENTRY (in the destination procedure)
3. BLOCK ENTRY (in the destination procedure)

The JUMP INDIRECT instruction is included to support an

archaic ALGOL construct. A label can be passed to a procedure

as a parameter. The procedure can then do a jump to that

label. The return is bypassed and there is no guarantee that

the program flow will ever reach the instruction after the

call. This violates the philosophy of block-structured

languages. The JUMP INDIRECT instruction must set the scope

for the destination in the same manner that the procedure

RETURN sets the scope.

Barrett and Couch give numerous examples of these

instructions and their use in implementing the constructs of

the ALGOL language.

The instruction set has forty-eight instructions. The

instructions, their mnemonics, and their op-codes are given in

Table 4. An instruction is one or two instruction words long.

The first half of the first word is always an op-code. This is
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all that is necessary for some instructions. If nothing more

is required, the last half is ignored. If needed, the second

half is the lexical level. This is used by all the

instructions that reference a variable location and by the

LABEL ENTRY and PROCEDURE ENTRY instructions. The second word

of an instruction, when used, has several meanings depending on

the op-code in the first word.

The instructions are given in the format:

INSTRUCTION (operand) , (operand)

The operands are those that are given in the instruction

stream. All operands require one instruction word except the

lexical level (lx), which is in the second half of the

instruction word containing the op-code.

The abbreviations used in Table 4 are:

lx - lexical level
j

- variable index
c - a data constant
z - a jump destination address
n - a pointer displacement
Q - an Input/Output device code

The op-codes are determined in part by the requirements of

the mapping logic. (See chapter IX.)
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INSTRUCTION MNEMONIC OP-CODE

ADD
SUBTRACT
MULTIPLY
DIVIDE
NEGATE

EQUAL
GREATER THAN
LESS THAN

ADD
SUB
MULT
DIV
NEG

EQU
GREAT
LESS

40
41
42
43
20

44
45

46

NOT
AND
OR

LOAD
LOAD CONSTANT c
LOAD ADDRESS lx, j

LOAD LABEL z

LOAD DATA lx,j
LOAD HEAP j

LOAD HEAP ADDRESS
REPLACE
STORE
STORE DATA lx,j
STORE HEAP j

INCREMENT-
INCREMENT
DECREMENT
DECREMENT
INCREMENT-
INCREMENT
DECREMENT-
DECREMENT

SAVE STACK
STACK n
FROM STACK
STACK n
SAVE HEAP
HEAP n
SAVE HEAP
HEAP n

BLOCK ENTRY n
BLOCK EXIT
PROCEDURE ENTRY lx
LABEL ENTRY lx

JUMP z

CONDITIONAL JUMP z

JUMP INDIRECT lx,j
CALL PROCEDURE z

CALL PROCEDURE INDIRECT z

RETURN

READ Q
WRITE Q
READ CHARACTER Q
WRITE CHARACTER Q

NOT
AND
OR

LOAD
LCONST
LADD
LLAB
LDATA
LHEAP
LHADD
REP
STOR
SDATA
SHEAP

INCS
ISTAK
DECS
DSTAK
INCH
IHEAP
DECH
DHEAP

BLKEN
BLKEX
PROCEN
LAB EN

JUMP
COND
JIND
CALL
CALIN
RET

READ
WRITE
READC
WRITEC

21
47
48

22
80

81
F0
82
83

84
49
4A
24
25

Fl
F2
F3
F4
26
02
27

03

F5
F6
F7
F8

01

23
F9
FA
FB
FC

85

28
86

29
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INSTRUCTION MNEMONIC OP-CODE

READ STACK RSTAK 2A
WRITE STACK WSTAK 4B
READ CHARACTER STACK RSTAKC 2B
WRITE CHARACTER STACK WSTAKC 4C

Table 4. The Instruction Set

33



V. IMPLEMENTATION OVERVIEW

The hardware design of this machine tries to parallel the

architectural model. There are separate memories for the

instructions and the data. Both the stack and heap reside in

the data memory. The stack grows up from the bottom of memory

and the heap grows down from the top of memory. The full

display, as described in chapter three, is implemented. The

display registers occupy the bottom-most 256 data memory

locations, which implies that the blocks cannot be nested more

than 256 levels deep. The memory map of the data memory is

shown in Figure 8. The data words are stored in 32 bit

locations and an instruction word is 16 bits.

There are six functional units in the implementation of

this machine. They are:

1. The Arithmetic and Logic unit
2. The Data Memory
3. The Instruction Processing Unit
4. The Micro-Instruction Processor
5. The Stack Control Unit
6. The Input/Output Processor

All the units are connected via a central bus. A block

diagram of the system is shown in Figure 9. The various blocks

in the diagram are described in the following sections.

The Arithmetic and Logic Unit (ALU) performs all the

numeric and logic calculations. This unit also contains four

registers which will hold the top four elements of the stack.

Having the top elements in registers in the ALU eliminates a

memory fetch cycle for most operand references.
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The Data memory is used to hold both the stack and the

heap. The memory unit includes the memory and the Memory

Address Register. There is a possible address space of 4

Gwords.

The Instruction Processing Unit (IPU) is made up of three

parts; the Instruction Sequencer (ISeq), Instruction Memory

(IM), and the Instruction Register (IR). The Instruction

Sequencer includes the conventional Instruction or program

Counter. It updates the Instruction Counter to point to the

next instruction as the current instruction is being fetched.

It loads a new value into the IC for the jumps. The

Instruction Memory contains the instructions. It can only be

written to by the Console when the machine is halted. The

third part of the IPU is the Instruction Register. This holds

a copy of the currently executing instruction so that the next

instruction can be fetched ahead. Figure 10 shows a block

diagram of the IPO.

The Micro-Instruction Processor (uIP) controls the

execution of the micro-instructions. There is a sequencing

unit (uSeq) that generates the next micro-instruction address.

There is a memory, the Control Store (CS) , that contains the

micro-instructions. And there is a Pipeline Register (PLR) to

hold the current micro-instruction while the next is being

fetched. The Pipeline Register sends the control signals to

the other units. A block diagram of the Micro- Instruction Unit

is shown in Figure 11.
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The Stack Controller maintains the pointers necessary to

implement the stack in memory and the counters needed to

maintain the fast operand stack in the ALU. The pointers

required for the memory stack are: The Top of the Memory Stack

(TMS), The Base of the Display Registers (DISP) , The Current

Display Register Index (LLTOP) , and the Bottom of the Heap

(HBOT). The counters required for the fast stack are: The

Number in the Fast Stack (NFS), the Top of the Fast Stack

(TFS), and the Bottom of the Fast Stack (BFS). The Stack

Controller also performs all the calculations on these

pointers. The Stack Controller shares some hardware with the

ALU.

The Input/Output Processor (IOP) has two major

functions. It handles all I/O for the machine and it provides

the Console interface. The Console is the master controlling

device. It takes control by "HALTING" the processor. While

the processor is in the HALT state, the Console can access any

of the three memories. It can load the program, initial data,

and the micro-code, or read any of them when necessary. The

Console can also force the execution of a single micro-

instruction or set the contents of either instruction register.

When the machine is not halted, the Console is isolated from

the rest of the machine. The IOP is implemented with a micro-

processor to allow the most flexibility. A block diagram of

the IOP is shown in Figure 12.

The system is synchronized by a clock signal (PHI). PHI
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has a fifty-percent duty cycle. A clock cycle is considered to

run from rising edge to rising edge. Figure 13 shows PHI.

The instruction registers latch in their new instructions

on the rising edge of PHI. Both the macro-instructions and the

micro-instructions are pipelined. This allows the next

instruction to be fetched and waiting at the inputs of the

respective instruction register while the current instruction

is being executed. A typical sequence is shown in Figure 14.

For this example, the micro-instruction sequence to perform the

macro-instruction is only one micro-instruction long. Macro-

instruction is abbreviated MI, and micro-instruction is

abbreviated ul.
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VI. THE ARITHMETIC AND LOGIC UNIT

The Arithmetic and Logic Unit (ALU) performs all the

arithmetic and logic calculations. It is built around eight

Advanced Micro Devices' AMD2901 four-bit slices. The eight

slices are cascaded to form a 32 bit word length.

The 2901 contains 16 on-board registers. Four of these

are used for a fast operand stack. If both operands for an

operation are in the fast stack, the operation can be performed

in one clock cycle. When the fast stack is full and a new

operand is to be pushed, the oldest element in the fast stack

is written out to the stack in memory, then the new operand is

written into the just vacated location in the fast stack. The

pointers necessary to implement the fast stack will be

discussed in the chapter on the stack controller.

The ALU can have two sources of operands besides the

internal fast stack. The operand may come from memory, which

is the case if there are not enough operands in the fast stack

for the operation or if a variable is read into the stack. The

operand may also come from the instruction stream. The LOAD

CONSTANT instruction, for instance, causes the next word in the

instruction stream to be loaded onto the top of the stack.

These two sources are multiplexed onto the D inputs of the 2901

array. The instruction word is only 16 bits wide so the high

16 bits are set to zero. A detailed block diagram of the ALU

is shown in Figure 15.
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The Exclusive-OR of the sign bit and the overflow flag,

as well as the inverter on QO and themul tiplexer on II are all

used to implement Booth's multiplication algoithm (5). This

allows multiplication in 34 clock cycles for a 32 bit operand.

Carry lookahead is provided across the slices by two

74182's, which have a third lookahead unit across them.

Most of the control inputs to the ALU are provided by

the micro-instruction, so the design of this unit is reletively

simple. The signals from the PLR are:

Select the ALU operands (3)

Select the ALU operation (3)

Select the result destination (3)

Determine the carry into the ALU (1)

Select the A register (4)

Select the B register (4)

Select the source of the D inputs (1)

Signal a multiply operation (1)

ALU output enabled onto System Bus (1)

10 - 12

13 - 15

16 - 18

Cn
ASEL
BSEL
DSEL
MULT
ALIIOli*
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VII. MAIN MEMORY

The main memory contains the memory stack and the heap.

Thirty-two address lines are available to give a theoretical

address space of four gigawords. Many implementations of the

memory are possible with variations depending on the type of

memory chips and the decoders used. One of the possible

implementations is presented as an example. The implementation

that is presented uses the HM6116 2K X 8 CMOS static RAM chip,

and 4-to-16 decoders. Four of the memory chips are paralleled

to form a 32 bit word length.

The Memory Address Register (MAR) is 24 bits wide. This

could easily be expanded to 32 bits. The 24 bit address

provides 16M words. All, A12, and A13 are taken as inputs to a

74154 4-to-16 decoder. The '154 has two active low enables.

MEMSEL*, from the PLR, is tied to one of the enables. MEMSEL*

is the active low signal indicating that the memory is to have

control of the bus for the next clock cycle. The other enable

can be used as the select signal from a higher decode level.

Each output from the decoder will select one of sixteen blocks

of four memory chips. Each section of 16 blocks (the amount

decoded by one decoder) is called a bank. If a second level of

decode were provided, then the 0000 output from the second

level would enable the BANKO decoder, which in turn would

select one of sixteen blocks. The lowest level decoder and

associated memory chips would be repeated sixteen times for

each BANK decoder.
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A write operation should occur during the last half of

the clock cycle (while PHI is low). This gives all the units

that might supply the data to the memory time to settle down.

The WRITE ENABLE (WREN*) signal to the memory chips is

generated by ORing the PLR signal WRITE* with the system clock,

PHI.

The block diagram of the memory is shown in Figure 16.

Figure 16 assumes only one level of decoding is provided so the

second enable input is tied low.

The signals required from the PLR are;

MEMSEL* Memory has the bus for the next clock cycle
WRITE* Memory access is a write.
ENMAR* Enable the Memory Address Register.
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VIII. INSTRUCTION PROCESSING UNIT

The Instruction Processing Unit (IPU) handles the

fetching of the macro-instructions. The IPU. has three major

parts. It contains a sequencing unit (ISeq) to handle the

generation of the next address, an instruction memory (IM), and

an Instruction Register (IR). By having a processor and memory

exclusively for the IPU, instruction fetches can be carried out

in parallel with the execution of instructions. The

instruction which is being executed is stored in the

Instruction Register while the next instruction is being

fetched. The synchronization of address generation,

instruction fetching, and loading of the Instruction Register

is controlled by the micro-instruction. Once the micro-

sequencing unit has decoded the macro-instruction, the next

macro-instruction can be loaded into the IR. Thus the micro-

instruction which causes a jump to the routine to implement the

macro-instruction includes the signals to fetch the next macro-

instruction and load it into the IR. The Instruction Memory is

Read/Write Memory, but it appears as ROM during the execution

of a program. The Console is the only device that can write

to the IM. The IPU contains the necessary logic to allow the

Console to access the IM over the system bus. The instructions

words are sixteen bits so the Instruction Memory is sixteen

bits wide.

The Instruction Sequencer generates the address of the

next macro-instruction. The are only two ways that a next
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address can be determined by this machine architecture. The

most common method is sequential addressing, where the next

instruction is the one immediately following the current one.

The other method, used by the jump instructions, fetches the

next instruction from an address that has been loaded from the

system bus. There is no relative branching in this machine.

Signals provided by the micro-instruction to perform these two

types of next address generation are NEXTI and JUMP.

The Instruction Sequencer is implemented with four 2901 bit

slices. Register is used as the Instruction Counter (IC).

In sequential addressing the contents of the IC are routed to

the output of the 2901's to be used as the instruction address.

At the same time, the IC is incremented and on the rising edge

of the system clock the incremented value is stored back into

the IC. When a JUMP is executed, the IC latches the value from

the D inputs of the 2901's. This value is also passed through

the 2901's ALU to the Instruction Memory.

Figure 17 shows the IPU. The two control signals JUMP

and NEXTI from the PLR are mapped to the control inputs (10 -

18 and Cn) of the Instruction Sequencer to provide the

increment and load operations as shown in Table 5. A jump can

be either conditional or unconditional. A conditional jump is

made if the word at the top of the stack is FALSE. FALSE is

defined as all ones and TRUE is defined as all zeros. The F=0

flag from the ALU indicates the top word was TRUE so (F=0)*: is

used to determine if the jump is made. The unconditional jump
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is generated in the same way as the conditional jump except the

condition is forced to pass by the PLR signal FORCE. The

conditional signal is called GOJUMP. The idle state 'DO

NOTHING 1 requires 10 and II be '0' so the signal from the OR is

ANDed with JUMP to ensure that if both JUMP and NEXTI are low

then nothing is done.

Condition Cn 18 17 16 15 14 13 12 11 10 1

Sequential 1 1 1 1

Conditional
Jump (fail)

1

1

1

1

1

1

1 1 1

1

1

Conditional
Jump (pass)

1 1 1

1

1

1

1 1

1

1

1

1

1

1 1

JUMP 1

1

1

1

1 1

1

1

1

1

1

1 1 1

1

1 1 1 1

1

1 1

Do Nothing
1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

Cn = NEXTI
18 =

17 = 1

16 = JUMP
15 =

14 = JUMP
13 = JUMP
12 = 1

II = GOJUMP
10 = GOJUMP

Table 5. The Instruction Processor Unit Control Signals
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A procedure call requires that the return address be

stored on the stack. Three-state gates interface the outputs

of the Instruction Sequencer to the system bus. These gates

are controlled by the signal SAVEIC* from the PLR.

The Instruction Memory (IM) implementation has many

variations as did the Data Memory. Again, a possible

implementation is presented as an example. The same 2K X 8

static RAM's are used in the Instruction Memory example as were

used in the Data Memory. Figure 18 shows the Instruction

Memory block diagram for this implementation. The 4-to-16

decoders each decode 32K words. The decoder chips are 74154's.

Awrite to the IM is allowed only when the Console lowers the

IMSEL* line and the WRITE* signal is given.

The pipelined architecture used in this machine

introduces some complications. If the instruction mapping

logic detects that there are not enough operands in the fast

stack, then instead of executing the instruction, a micro-code

"fix" routine is executed instead. When this routine is

finished, the instruction execution can proceed. However, in

the pipelined architecture, the instruction has already been

over written in the IR. The same kind of problem arises when

the lexical level is stored in the same instruction word as the

op-code. By the time the micro-code routine has figured out

that it needed the second half of that last instruction word,

the word is gone. There are two solutions to this. The first

is to delay fetching the next instruction until the micro-code
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routine has determined that it no longer needs the current

instruction. This means that the next macro-instruction can

not be loaded into the IR until at least one micro-instruction

has executed. If the micro-instruction routine was only one

instruction long, the IR will be loaded at the end of that one

instruction. Then another clock cycle must pass while the

mapping logic decodes the new macro-instruction. No

instruction could take less than two clock cycles. The other

solution is to keep a copy of the IR. This copy is one step

behind the IR. The same control signals cause the copy

register (called IR2) to latch data as cause the IR to latch

data, but its inputs are tied to the outputs of the IR. Then

as the IR (henceforth called IR1) latches the new instruction,

IR2 is latching the old one. The micro-code fix routines can

choose to use the value stored in IR2 as the instruction to

execute. The micro-code routine that evaluates the address

double can get the lexical level from IR2; The output of IR2

is often used as the lexical level in a variable address

evaluation. To simplfy this, a means of masking off the high 8

bits of the IR2 field is provided. This function is enabled by

the signal MASK* from the PLR. The two IR's are multiplexed

together. Which IR will be used for a particular clock cycle

is selected by the IRSEL signal from the PLR. The output of the

IR multiplexer might be needed by any of the functional units.

The IOP, Memory, and IPU get the value from the bus. The ALU

typically needs the value in the IR when it is calculating a

variable address. The ALU can take the variable displacement
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from the D inputs and add it to the display register that it

has already gotten, and pass the result through the system bus

to be loaded into the Memory Address Register all in one clock

cycle. If the ALU had to get the displacement value from the

system bus, then the above operation would require two cycles,

one for the IR to put the displacement on the bus, and the

other for the ALU to put its result on the bus to be latched

into the MAR. For this reason, there is a separate path from

the output of the IR multiplexer to the ALU D input

multiplexer. For similar reasons there is a separate path from

the multiplexer to the mapping logic in the micro-processing

unit. The three-state gates that allow the IR onto the bus,

are activated by the PLR signal IROE*.

The Console is able to read or write to any memory

location in the instruction Memory. It is also able to load a

value into either the IC or the IR, and to read the IC. In

order to access the memory, an Instruction Memory Address

Register must be provided. This IMAR gets its data from the

system bus and is loaded when the signal ENIMAR* from the

Console is TRUE (0) and there is a rising edge on the clock.

The data into or out of the IM also comes from the bus. This

requires bus transceivers between the IM and the bus. The

transceivers are enabled by the signal IMR/W*. The PLR control

signals that load the IC and the IR are controlled by the

Console when the machine is halted. This interface takes place

at the PLR so it does not show up in the IPU circuit. The
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outputs of the 2901's must be disabled when the IMAR is used.

For the Console to read the IC the 2901's must be enabled again

and the IMAR output must be three-stated. The three-state

gates that allow the IC onto the bus must also be opened. The

SAVEIC* signal from the PLR is controlled by the Console but it

is ANDed with HALTED so that the ISeq only has its outputs

enabled when the machine is running or when it is halted and

the IC is being read.

The Instruction Processing Unit requires eight signals

from the PLR. They are:

JUMP - load the IC from the system bus
FORCE - force the jump to be taken
NEXTI - increment the IC
ENIR* - enable the Instruction Register
SAVEIC* - allow the IC onto the system bus
IRSEL - select between IR1 and IR2
MASK* - mask off the high 8 bits of IR2
IROE* - allow the IR onto the system bus
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IX. THE MICRO- PROCESSING UNIT

The micro-processing unit (uPU) controls the fetching of

the micro-instructions. The micro-instruction is 64 bits wide.

It has several fields which provide control signals to the

different units within the machine including the micro-

processing unit. The micro-processing unit is organized much

like the Instruction Processing Unit. It has three major

components consisting of a sequencing unit (uSeq), a memory,

and a register to allow fetch ahead. The sequencer generates

the address of the next micro-instruction. The micro-

instruction is fetched from the Control Store (CS) , and latched

into the Pipeline Register (PLR) on the rising edge of the

system clock.

The micro-sequencer is built around the AM2910 micro-

program controller. A block diagram of the entire micro-

sequencing unit is shown in Figure 19.

The 2910 can use the D inputs as one source of the next

address. It provides three signals for enabling one of three

sources onto the D inputs. One of these sources is the PLR.

The enabling signal is called PL*. Twelve bits of the PLR are

routed to the D inputs to be used for such things as a micro-

instruction branch address or a counter value. Another source,

called MAP, is enabled by the MAP* signal. Typically, MAP

enables some kind of mapping PROM or PLA that maps the macro-

instruction op-code into a micro-code entry point. In the
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machine, some instructions require a certain number of operands

on the fast operand stack in the ALU registers. The mapping

logic includes a test on the number of operands and generates

the address of a "fix" routine if there are not enough or too

many. There are three fix routines. One is used to bring an

operand into the fast stack from the memory stack if there are

an insufficient number of operands to perform the operation.

The second fix routine writes the oldest element in the fast

stack out to the top of the memory stack if there is not enough

space in the fast stack for an new operand to be written. The

third fix routine empties the fast stack. This is used before

changing context such as in a procedure call. Figure 20 shows

a diagram of the mapping logic.

The number of operands needed is given in the first three

bits of the macro-instruction op-code. The three bit field is

translated as:

10 II 12 I Operands needed

1

10
10111

NEED0
NEED1
NEED2
NEED-1 (Need an empty location)
FLUSH (Empty the fast stack)

The number of operands available is known from the NFS counter.

The number needed and the number available are decoded to give

a signal corresponding to each of the possibilities. The

combinations that require an operand be brought into the fast

stack are:
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NEED1 and HAVEO
NEED2 and HAVEO
NEED2 and HAVE1

The combination that requires an operand to be written out to

memory is:

NEED-1 and HAVE4

The combination that requires the stack be emptied is :

FLUSH and NOT HAVEO

The pipeline nature of the machine allows the new

instruction to be decoded while the previous instruction is

being executed. If the previous instruction changes the fast

stack counters, the change does not take effect until the end

of the clock cycle, that is, after the decoding has finished

and when the new instruction's first micro-instruction is being

latched. Thus the mapping logic also needs to detect whether

the NFS will change at the end of the clock cycle. The signals

PLUS1 and MINUS1 indicate what the NFS will do. PLUS1 is TRUE

when the fast stack will increase in depth and MINUS1 indicates

that it will decrease. Combining these signals with the

signals derived from the number needed and number available

yields the following combinations:

Combinations requiring an operand to be read

HAVEO and NEED1 and NOT PLUS1
HAVEO and NEED2
HAVE1 and NEED1 and MINUS1
HAVE1 and NEED2 and NOT PLUS1
HAVE2 and NEED2 and MINUS1

Combinations that require a location to be emptied

HAVE3 and NEED-1 and PLUS1
HAVE4 and NEED-1 and NOT MINUS1
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Combinations that require the fast stack be flushed

NOT EMPTY and FLUSH

where EMPTY is

HAVEO and NOT PLUS1 or HAVE1 and MINUS1

If any of the conditions is detected, the corresponding

input to a priority encoder is pulled to 0. The output of the

encoder then selectes one of four inputs to a multiplexer. If

none of the conditions is TRUE, the selected operation may

proceed. The fourth input to the priority encoder is tied to

zero so that if none of the first three is low, the op-code is

allowed to select the micro-instruction jump address.

The third source for the D inputs is enabled by the

signal called VECT*. VECT* is usually used for jumping to an

interrupt service routine. Interrupts are not supported in

this implementation. Interrupt decode logic could provide some

sophisticated features such as PL/l's "On" conditions, but this

is beyond the scope of this paper.

The 2910 has two conditional inputs. These are used by

many of the 2910's instructions to determine whether a

conditional branch is taken. CC* is one of the conditional

inputs. If it is low, the conditional branch will occur. If

high, the next micro-instruction will be fetched. The other

conditional input is CCEN*. when this is low, testing of CC*

is as described above. When CCEN* is high, CC* is

unconditionally TRUE (0). CCEN* is tied low in this

implementation. A branch can be forced by setting CC* = '1'.
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The CC* input is the output of a 16-to-l multiplexer. A four-

bit field from the PLR selects from one of sixteen inputs

including six conditional signals, the signal EMPTY, indicating

the fast stack is empty, the two I/O handshaking signals, or

the FORCE input. Figure 21 shows the generation of CC*.

The Control Store is the memory that holds the micro-

instructions. Its address inputs are provided by the 2910 and

its data outputs go to the PLR. However the Console must have

access to both the address and the data lines. A Control Store

Address Register (CSAR) and bus transceivers are provided to

interface the CS to the system bus so that the Console can

access the CS. The CSAR is enabled by the ENCSAR* signal from

the Console. The bus transceivers are enabled by the signal

CSR/W*, also from the Console.
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One complication arises in that the micro-word is wider

than the system bus. The Console accesses half of the CS at

one time. Address Al from the CSAR is tied to AO of the CS.

Then AO of the CSAR is used to select between the upper or

lower 32 bits of the micro-word. The control store is shown in

Figure 22. The lower half of the bus transceivers are enabled

by the signal CSR/W*, and the upper half by CSR/W*.

The PLR is 64 bits wide. It is shown in Figure 23 with

each of the bits defined. The 12 bits that are used as the

2910 branch address have three-state outputs, which are enabled

by PL* from the 2910. The bits in the PLR should be zero

whenever possible for the "Do Nothing" case. Several of the

bits are inverted so that they can be used as negative TRUE

signals but can be programmed as positive TRUE signals. The

Console can load the PLR. The data comes from the system bus

in 32 bit pieces. Two signals from the console determine which

half of the PLR will be loaded. They are ENPLRO* to load the

low half and ENPLR1* to load the high half. These are shown in

Figure 22.
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X. STACK CONTROLLER UNIT

The stack controller has two major functions. It

controls the pointers and counters necessary to maintain the

Fast Operand Stack in the ALU registers, and it maintains the

pointers for the stack in memory.

The Fast Stack is treated as a circular stack. When it

becomes full, the next element is written into the location of

the oldest element. The Top of the Fast Stack (TFS) pointer

points to the ALU register which will receive the next element.

The TFS pointer is implemented with a 74191 four-bit up/down

synchronous counter. The two most significant bits are

ignored. This gives the circular addressing. The enable

signal (TFSEN*) and the direction signal (TFSUP*) come from the

PLR.

In order to preserve data when the stack becomes full,

the oldest element must be written out to the stack in memory.

This requires knowledge of the location of the oldest element

or "Bottom of the Fast Stack". The Bottom of the Fast Stack is

also the location into which the value from the memory stack is

copied when there are not enough operands to perform an

operation. The Bottom of the Fast Stack pointer (BFS) is used

to point to this location. It always points to the least

recently entered element. It is also implemented with a 74191

four-bit counter. The BFS counter is enabled by the signal

BFSEN* from the PLR and the direction of count is controlled by
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the signal BFSUP*, also from the PLR.

The PLR references the Fast Stack elements relative to

the TFS or BFS pointers. The Fast Stack control logic maps

these logical addresses to the actual ALU register addresses.

Figure 24 shows how the mapping from the PLR's logical address

to the actual ALU register address is performed. The

subtraction is performed by a 74181 four-bit function

generator. The control inputs of the function generator are

tied such that a subtraction is performed (S3=0 , S2=l , Sl=l ,

S0=0 , M=l , and Cn=0). The unused data inputs are all tied to

'0'. Table 6 shows how all the register select combinations

from the PLR are mapped to the register select inputs of the

ALU.

A third counter keeps track of the number of operands in

the fast stack. This information is used by the uSeq unit to

determine whether enough operands are in the fast stack to

perform an operation. The value in the counter (called NFS)

could be derived from the values in TFS and BFS, but since the

path from the IR through the mapping logic and uSeq and then

the Control Store fetch is potentially the limiting path for

increasing the processor speed, a separate counter is kept.

For the same reason, all components in the critical path should

be Schottky TTL. The control signals for the NFS counter are

not in the critical path so they are derived from the control

signals for the TFS and BFS counters.
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1 Register 1 Register 1

1 select from 1 select to 1

1 PLR 1 ALU 1

1 0000 1 (TFS) -
1

I 0001 1 (TFS) - 1 1

1 0010 1 (TFS) - 2 1

1 0011 i (BFS) 1

1 0100 1 0100 1

1 0101 1 0101 1

1 0110 1 0110 1

1 0111 1 0111 1

1 1000 1 1000 1

1 1001 1 1001 1

1 1010 1 1010 1

1 1011 1 1011 1

1 1100 1 1100 1

1 1101 1 1101 1

1 1110 1 1110 1

1 1111 1 1111 1

Table 6. The Register Mapping Truth Table

The memory stack controller contains the pointers

necessary to implement the full stack described in chapter 3

and the logic necessary to perform operations on these

pointers. The pointers are: the Top of the Memory Stack (TMS),

which points to the first available location in the memory, the

current lexical level (LLTOP), the base of the display
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registers tDISP), the Base of the Heap (HBASE) , and the bottom

of the Heap (HBOT). The memory stack controller shares

hardware with the ALU instead of being implemented as a

separate unit. This adds extra clock cycles for operations

which require both an ALU operation and a stack access, but it

does eliminate the need for another 32 bit processor and

another 20 bits of micro-word. Since the control signals for

the ALU already include the capability of addressing any

register in the ALU, the ability to perform any operation

allowed by the 2901, and the ability to set the carry as

needed, there are no extra signals needed to include the

function of the memory stack controller in the ALU.

The function of the ALU registers is listed in Table 7.

ALU Register Function

0000
0001
0010
0011

0100
0101
0110
0111

1000
1001
1010
1011

1100
1101
1110
1111

Part of the Fast Stack
Fast Stack
Fast Stack
Fast Stack

TRUE (TRUE = $FFFFFFFF)
FALSE (FALSE = $00000000)
TWO (TWO = $00000002)

TEMP2
TEMP
HBOT

HBASE
LLTOP
DISP
TMS

Table 7. The ALU Register Assignments.
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XI. THE INPUT/OUTPUT PROCESSOR

The Input/Output Processor (IOP) has two major functions.

It performs all the input and output for the system, and it

provides the Console interface. The Console is the device

through which the user can control the system. It allows the

user to halt the machine and, while the machine is halted, to

load data into any of the three memories, to load a value into

the pipeline register, the Instruction Register, or the

Instruction Counter, or to single step the micro-instruction

stream. The Input/Output Unit allows input and output to take

place in parallel with the program execution.

The two functions of the IOP are essentially

independent. The Console can only be used while the machine is

halted, and the I/O unit is only necessary while the machine is

running. The two functions both require a processor that is

separate from the rest of the system. The Input/Output Unit

needs to have the capability of executing a separate

instruction stream in order to achieve parallel operation. The

Console must be able to execute its routines while the rest of

the system is halted. The similar nature and independent

functions of the two units allows them to be implemented as a

single micro-processor. The two functions will be refered to

as the input/Output Unit (IOU) and the Console Controller

(Console) in the discussion. The overall unit will be called

the Input/Output Processor.
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The IOP is implemented with the Motorola 6802/6846 chip

set. The 6802 is an eight-bit micro-processor with a 64K byte

address space. The 6846 is a multifunction device, which

contains 2K bytes of ROM, an eight bit parallel I/O port, two

programmable I/O control lines, and a programmable timer. The

ROM "contains" Motorola's MIKBUG monitor. Other parts of the

system are four eight-bit I/O ports that interface the IOP to

the system bus, eight programmable I/O control lines which

serve various functions, RAM which is used to hold the I/O

drivers and the Console interface routines, EPROM which holds

the modifications to the MIKBUG monitor, and two serial I/O

ports for connecting the system to the Console terminal and to

some other serial device. A block diagram of the IOP is shown

in Figure 25.

The I/O for the machine presented in this paper is

defined so that any of 65536 I/O devices might be selected to

perform the I/O operation. Each I/O instruction includes a

sixteen-bit device code, which will be in either the

instruction word immediately following the I/O instruction or

on the top of the stack when the I/O instruction is given.

The Input/Output Unit does not use the system clock so

data transfers must be coordinated by some form of handshaking.

Figure 26 shows the handshake sequence for a write operation

and Figure 27 shows it for a read operation. In both

operations the system checks the status of the IORDY line. If

the IORDY line is true then the IOU is ready and the
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operation can continue. If the IOU is not ready, the system

goes into a wait loop until the IOU is ready. Once the IOU has

signalled that it is ready, the system puts the device code

onto the system bus and signals the IOU by raising the DEVSEL

signal. DEVSEL is the active high signal that indicates that

the data on the bus is a valid device code. The IOU

acknowledges the device code by going "not ready", signifying

that it has latched the device code. The system can remove the

device code once it has seen the IORDY line go low. The DEVSEL

must be lowered before or when the device code goes invalid.

The system then waits until the IOU is ready again before

continuing. Each transition of a signal by either the IOU or

the system must be acknowledged by the other before the

handshaking continues. This allows a large difference in clock

speeds.

When the IOU has gone ready again, the read operations

and write operations become different. For the write

operation, the system puts the output data onto the system bus

and raises the IODATA line and the WRITE line. This

combination of signals indicates that the data on the bus is

valid and commands the IOU to read it and output it to the

selected device. The IOU signals that it has latched the data

by going not ready for a second time. When the system detects

the not ready signal, it can remove the data from the bus and

lower the IODATA signal. At this point the system is done. The

IOU remains not ready until it has finished the Output
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operation. For the read operation, the system raises the

IODATA line while the WRITE line remains low. This signifies

that the system bus belongs to the IOU. The IOH lowers the

IORDY line to signify that the data is available on the bus.

The system lowers IODATA showing that it has latched the data

and that the IOP is free to release the bus. The final step in

the read operation is for the system to wait for the bus to be

released by the IOU which is indicated by the IORDY going ready

again.

Two I/O device codes are reserved. The system needs to

know how much memory is available when it is initializing the

stack and heap pointers. Input device should always place

the bottom-most memory address onto the system bus. Device 1

should always return the top-most memory address.

The IOU must be capable of distinguishing between

character data and numeric data. All I/O will be done using

characters. The IOU must translate between the numeric values

and the character values. In some cases the input or output is

to be left in character format. This is indicated by the

signal CHAR. CHAR is included in Figures 26 and 27.

The console function requires that the IOP be able to

halt the processor. This is done by holding the system clock

(PHI) high. The clock circuit is considered a part of the

Console since the Console is the only device which can control

it. Figure 28 shows the system clock circuit. The clock
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circuit consists of a single JK flip-flop which toggles between

and 1, and three other flip-flops which are used to control

the clock. The HALTED flip-flop determines whether the clock

flip-flop is allowed to toggle. The J input of the clock flip-

flop is tied to the inverted output of the flip-flop. The K

input is tied to HALTED*. The truth table for the clock flip-

flop is:

HALTED* PHI = Q Q* J K NEXT

1 1 1 1 1 1 1 1 1 1 1 1

1 1 ! 1 1 1 1 1 1 I

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

When the machine is running the clock flip-flop toggles

back and forth between 1 and 0. When it is halted, the current

clock cycle is allowed to complete then the clock is held at 1.

The two remaining flip-flops latch the halt request

(HALTRQ*) and single step request (SS*) signals. The HALTRQ.

flip-flop latches the HALTRQ* signal from the Console. This is

latched into HALTRQ on a rising edge on the PHIC line from the

console. The output of the HALTRQ. flip-flop passes through the

AND gate and is latched into the HALTED flip-flop on the next

rising edge of the oscillator. The clock is then halted as

soon as the current clock cycle finishes.

The Console must provide the clock when the system is
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halted. Many of the latches in the machine are triggered on

the rising edge of the system clock. In order for the Console

to load the Instruction Register, for example, it must supply

the clock edge that causes the IR to latch the data at its

inputs. The Console supplies this clock by raising and

lowering the signal PHIC. PHIC replaces PHI when the system is

halted. PHIC is mul tipl exed onto the PHI 1 ine by the OR and

AND gates in Figure 28.

The single-step request flip-flop (SS) is set

asynchronously by the STEP* signal from the Console. This

causes the HALTED flip-flop to be reset by the next rising edge

of the oscillator. The same rising edge also resets the SS

flip-flop so that only one clock cycle is allowed before the

system is halted again.

All the flip-flops in the clock and clock control

circuits are either set or reset by the RESET signal. This

allows the system to start up in the HALTED state, with the

clock in a predictable state.

When the system has been halted, the Console takes over

the function of many of the system control signals. Table 8

shows the sytem signals that are controlled by the console when

the machine is halted. There are also a number of functons

that the Console can perform that are not available when the

machine is running. Table 9 lists the signals that perform

these functions. All the functions in Tables 8 and 9 are

independent. They all put or get their data from the system

81



H
X
li-

^ A *

o Id

2

-

U

o

z
Ui

c
2

"^i

$A A

i-

6

OS

32
*3



Signal Function

MEMSEL* 1 Enable the Data Memory for reading or
1 writing.

ENMAR* 1 Enable the Memory Address Register to be
1 loaded on the next rising edge of PHI.

ENIR* 1 Enable the Instruction Register to be
1 loaded on the next rising edge of PHI.

SAVEIC* 1 Enable the Instruction Counter on to the
1 system bus.

LOADIC* 1 Load a value into the Instruction Counter.
1 (includes JUMP and FORCE from the PLR)

Table 8. Control Signals Taken Over By the Console

Signal 1 Function

ENPLRO* 1 Enable the low half of the PLR to be
1 loaded on the next rising edge of PHI.

ENPLR1* 1 Enable the high half of the PLR to be
1 loaded on the next rising edge of PHI.

ENCSAR* 1 Enable the Control Store Address
1 Register to be loaded on the next
1 rising edge of PHI.

ENIMAR* 1 Enable the Instruction Memory Address
1 Register to be loaded on the next rising
1 edge of PHI.

Table 9. Control Signals Generated By the Console

bus. Only one should be performed at a time. The signals can

come from a decoder. Figure 29 shows the generation of all the

signals IOP signals. The 4-to-16 decoder is enabled by the

HALTED* signal, so if the system is not halted, all of its

signals will be high.

83



The signals in Table 8 must be combined with the signals

from the PLR to generate the system signals. Figure 30 shows

how this is done for each of the signals. All of the PLR

signals are active high and all the Console signals are active

low. The system signals are active low except for the JUMP and

FORCE signals.

The signals in Table 9 can be used directly. There are

no PLR signals for them to interface with. However, the two

ENPLR* signals must be low when the machine is not halted, so

they are ANDed with HALTED.

Both the IR and the PLR have two possible sources of

inputs when they are loaded under control of the console. The

data can come from the system bus or from the respective

instruction store. The bus transceivers need to be enabled if

the data is to come from the system bus. Therefore, the signal

to load the instruction register and the signal to enable the

bus transceiver are not independent and can not both come from

the decoder. The signals IHR/W and the pair CSR/WO and CSR/W1,

which come directly from the control port and not the decoder,

are used to enable the bus transceivers for the respective

instruction memories.

There are two other signals that work in conjunction with

the others. WRITE determines in which direction the bus

transceivers are enabled, and provides the write enable signal

to all the memories. PHIC provides the clock signal as

described earlier.
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The eight-bit parallel port in the 6846 is used as the

control port. Four of the bits are used as inputs to the

decoder. The other four bits are used directly as the IMR/W,

CSR/WO, CSR/W1, and HALTRQ signals. The eight-bit I/O port in

the 6846 and each of the four eight-bit ports used to interface

the IOP to the system bus have two control lines with them.

One these control lines for each port is always input and the

other is programmable to either input or output. These control

lines are used to provide some of the control signals and to

receive the control signals to the IOP.
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XII. THE MICRO INSTRUCTIONS.

The micro instructions for this machine are 64 bits wide.

Instead of giving the bit coding for each instruction, a

language is defined and then the micro-instructions are given

using this language. A translation from the language to the

bit patterns is also given.

Each micro-instruction has the general format:

NNN TITLEn ALU : A= Cn= F= B
B= D= Y= Q

STACK

:

M
BUS
UPU
IPU
IOP

English explanation

Every micro-instruction has a name and an address in the

control store associated with it. NNN is the control store

address. It is a three digit hex number that is unique for

each micro-instruction. TITLEn is the name of the micro-

instruction. TITLE is the same as the mnemonic for the macro-

instruction which is being implemented. n is the number of the

instruction in the sequence. Thus, the second micro-

instruction in the sequence that implements the CALL PROCEDURE

instruction (mnemonic is CALL) is CALL2.

The ALU, STACK, M, uPU, IPU, and IOP fields correspond to

fields in the Pipeline Register. The BUS field only directly

specifies one signal which is best included with the IPU

control signals. For all the fields an X indicates "Do
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Nothing". For many cases, Do Nothing is the same thing as

"Don't Care". However the ALU and the IOP require specific

siganls to "Do Nothing". The signals that should be given for

a Do Nothing state are given in the discussion of the

individual fields.

In the machine that is being microprogrammed, some

operations occur at the end of the clock cycle. Most registers

are latched at this point. Some signals are required for the

entire clock cycle. To distinguish between events and signals,

the notation is that the symbol "<-" is used to indicate that

the operation occurs at the end of the clock cycle, and "=" is

used to indicate that the signal should maintain its level

throughout the clock cycle. For example, the IPU field often

looks like:

IPU: IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)

The IR = IR1 field indicates that during the clock cycle,

anything that references the IRwill see the IR1 version of it.

IC <- IC+1 indicates that the Instruction Counter is to be

incremented at the end of the clock cycle. If the IC contained

198 as the instruction was beginning, the value loaded into the

IR by the IR <- IM(IC) would be the value fetched from location

198, because the IC is not incremented until the end of the

cycle.

The ALU field of the PLR contains the control signals for

both the ALU and Memory Stack Controller, since these two
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functions share hardware. Therefore, the ALU field in the

language used to describe the micro-instructions includes both

the ALU and the Memory stack functions.

The A field is the A operand selection for the 2901's.

There are fourteen possible selections for the A operand. The

selection from the PLR is mapped by the fast stack control

logic so that the fast stack elements can always be selected

relative to either the top or the bottom of the fast stack.

The micro-instruction does not need to know how many words are

in the stack nor where the top or bottom is in the ALU

registers.

The format for the translation has the field from the

descriptive language named on the right and the corresponding

PLR field named on the left. The possible choices are given

below the language field, and the bit pattern is given below

the PLR field name.

The options for the A field are:

A ASEL

TOP 0000
TOP-1 0001
TOP-2 0010
BOTTOM 0011
TRUE 0100
FALSE 0101
TWO 0110
TEMP2 1001
TEMP 1010
HBOT 1011
HBASE 1100
LLTOP 1101
DISP 1110
TMS 1111
X Don't Care (typically 0000)
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The B field specifies the B operand selction for the ALU

2901's. The translation from B to BSEL in the PLR is the same

as the A to ASEL translation.

The Cn field specifies how the carry into the least

significant slice is to be set. It only has an effect on the

add and subtract operations in the 2901's. The Cn translation

is:
Cn Cn

1 1

X Don't Care (typically 0)

The D field selects which of the two possible sources is

routed through the 2-to-l multiplexers to the direct data

inputs (D inputs) of the ALU 2901's.

D DSEL

BUS
IR 1

X Don't Care (typically 0)

The F field selects the operation that is performed by

the 2901's. The 2901 literature defines two separate fields

for the operand selection and the function selection. These

are combined here.

F 15-10 F 15-10

A+B 000001
Q+0 000010
B+0 000011
A+0 000100
D+A 000101
B-A 001001
Q-o 001010
A-0 001100

AVB 011001
QV0 011010
BV0 011011
AV0 011100
DV0 011111
B&A 100001
Q&0 100010
B&0 100011
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A-D 001101
0-B 010011
0-A 010100

A&0 100100
B* 111011
X Don't Care

(typically 000000)

The add and subtract operations also include the carry. They

are actually R+S+Cn and R-S-Cn* or S-R-Cn*.

The Y, Q, and B fields together define the 2901

destination select field and the 2901 output field. The

destination selection field has the capability of shifting

either left or right before loading into either the register

selected by the BSEL field or into the Q register. The Y

outputs of the 2901 can be either the result of the operation

or contents of the register selected by the ASEL field.

However, the latter option is constrained so that there must

also be a load into the register selected by the BSEL field and

there can be no shifts. The translation is:

Y ALUOE

F or A 1 (The output is enabled.)
None (The output is disabled.)

Y B Q 18-16

None or F No Q <- F 000
None or F No No 001
A B <- F No 010
None or F B <- F No 011
None or F B <- F/2 Q <- Q/2 100
None or F B <- 2F No 111

The final field in the ALU field is called MULT. It

enables the external logic that simplifies the multiplication

operation. If MULT appears in the ALU field, then MULT = 1.

Otherwise MULT = 0.
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The Do Nothing state for the ALU is:

ASEL = X
BSEL = X
Cn = X
DSEL = X
12-10 = X
15-13 = X
18-16 = 001
MULT = X
ALUOE =

The stack field defines what operations are performed on

the fast stack pointers. The fast stack is specified by three

registers. The BFS pointer points to the register that

contains the bottom of the fast stack (Oldest element). The

TFS pointer points to the register that will receive the next

element at the Top of the Fast Stack. And the NFS counts the

Number of elements in the Fast Stack. The translation is:

STACK TFSEN TU*/D BFSEN BU*/D NFS

X UP
X DOWN

1 DOWN
1 1 UP

X NONE
Don't Care, typically 0)

The M field specifies the control signals for the memory.

The translation is:

M MEMSEL ENMAR WRITE

TFS <- TFS+1 1

TFS <- TFS-1 1 1

BFS <- BFS+1 X
BFS <- BDS-1 X

X (Do Nothing) X
(X = DO

LOAD MAR 1 X
READ 1

WRITE 1 1

X X

The BUS field, as mentioned earlier, only actually

controls one of the signals specified in it. The rest of the
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signals are just informational. When the BUS field is IR, then

the IROE signal is 1. The meanings of the BUS signals are:

ALU The ALU output is put on the bus.
IR The Instruction Register is enabled onto

the bus.
M The output of the memory is put on the

bus.
IC The output of the instruction sequencer

is put on the bus.
IOP The IOP has put the data on the bus.
X The bus is carrying no data.

The micro-processing unit allows 16 different commands,

of which only ten are used. The Micro-sequencing unit commands

are given using the standard 2910 mnemonics. The mnemonics are

expanded below the translation table. Many of the commands use

an external input as either a branch address or a counter

value. For all the instructions used, except the JMAP

instruction, this external input comes from the Pipeline

register. When the value is to be used as a branch address,

the name of the destination instruction is given instead of the

address. This makes the code a little easier to read. When

the value is to be loaded into the counter, it is given in hex.

In either case the field is given as PL = followed by the

appropriate label or value. The only other field of micro-

processing unit control is the condition code select field.

This field is used to route one of sixteen possible signals to

the CC* input of the 2910. The field is specified by COND =

followed by the condition that is to be tested.
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OPERATION 13-10

CJS
JMAP
CJP
POSH
JRP
RFCT
RPCT
CRTN
LDCT
CONT

0001
0010
0011
0100
0111
1000
1001
1010
1100
1110

CJS = Conditional Jump to Subroutine
JMAP = Jump to an address from the Mapping logic
CJP = Conditional Jump to an address from the PLR
PUSH = PUSH the next address onto the stack and

conditionally load the counter register
JRP = Conditional Jump to an address from the

Register or the PLR.
RFCT = Repeat loop branching to an address from the

File until the counter reaches
RPCT = Repeat loop, branching to an address from the

PLR, intil the counter reaches
CRTN = Conditional Return from subroutine
LDCT = Load Counter
CONT = Continue

COND =

equal
negative
positive
not positive
not negative
not equal
EMPTY*
IORDY
IORDY*
forced
NOT SHOWN

CCSEL
0000
0001
0010
0011
0100
0101
0110
0111
1000
1111
xxxx (typically 0000)

The instruction processor requires several control

signals to perform a simple task. The signal names by

themselves do not give a very clear picture of what is going

on. The language used to describe the operations tries to

indicate the event more than the signals that cause the event.
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Thus, the translation is not as simple as the case of the

condition signals, for example. The two PLR signals NEXT and

JUMP determine whether the next instruction is fetched from the

address following the address of the current instruction or

whether the address of the next instruction is to be loaded

from somewhere. FORCE is a PLR signal that forces the jump to

be taken. The CONDITIONAL BRANCH only takes the jump if the

value on the top of the stack is FALSE. All other jumps are

forced. The IPU operation translations are:

OPERATION NEXTI JUMP FORCE

IC <- IC+1 1

JUMP 1

JUMP forced 1 1

Another field in the IPO section specifies which of the

Instruction Registers is to be used. The field appears as

"IR = IRn". This translates as:

IR IRSEL

IR1
IR2 1

X Don't Care (typically 0)

The low order eight bits of IR2 can be used as the lexical

level of a variable. The upper eight bits are masked off by

raising the PLR signal MASK. This is indicated by

"MASKED (IR2)" in the IPU field.

Other operations are the loading of the Instruction

Register which is indicated by "IR <- IM(IC)" in the IPU field

and results in ENIR = 1 in the microcode, and SAVEIC which is

indicated by "SAVEIC" in the IPU field and causes SAVEIC = 1 in
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the PLR.

The Do Nothing state is:

NEXT I

JUMP
FORCE
SAVEIC
ENIR
IROE
MASK X

IRSEL X

The Input/Output Processor control field handles the

handshaking between the system and the IOP. The WRITE signal

is the same signal as is used by the memories, and is a 1 for

an output operation and a for an input operation. These are

indicated by "WRITE" and "READ" respectively. For the other

signals, if the signal is named in the IOP field then it is to

be a 1 in the PLR. The Do Nothing state is with all signals at

0.

The English explanation is optional. It is included when

there is some new information available. It is omitted if a

certain operation requires more than one step but has been

described in the first.

The micro-code routines follow:

The initialization routine is located at location zero to
simplify the console's task of starting a program. It can be
done by loading the PLR such that 10-13 for the uPU are all
zeros.
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000 INIT1 ALU : X

STACK: X
M : X

BUS : X
uPU : CJP
IPU : X
IOP : X

PL INIT2 COND = forced

Get out of the way while it is convienent
Continued at location 007.

The following routines do not require any operands or any empty
locations in the fast stack.

002

004

006

JUMP1 ALU X
STACK X
M X
BUS IR
UPD CJP ; PL = DLY1 ; COND = forced
IPD IR = IR1 ; JUMP ; IR <- IB(IC)
IOP X

Load IC then wait to allow decode

IHEAP1 ALU A= HBOT Cn= F= D+A B <- F

B= HBOT D= IR Y= None Q No
STACK X
M X
BUS X
UPU CJP ; PL = DLY1 ; COND = forced
IPU IR = IR1 ; IC <- IC+1 ; IR <- IH(IC)
IOP X

Incrementthen wait for n to get outof
the way.

DHEAP1 ALU . A= HBOT Cn= 1 F = A-D B <- F
B= HBOT D= IR Y= None Q No

STACK X
M X
BUS X
UPU CJP ; PL = DLY1 ; COND = forced
IPU IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP X

Decrement and wait for fetch.

The following is the remainder of the initialization routine.
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007 INIT2

008 INIT3

009 INIT4

00A INIT5

OOB INIT6

OOC INIT7

ALU : X
STACK : X
M : X
BUS : X
UPU : CJP ; PL = INIT2 ; COND = IORDY
IPU : X
IOP : X

Get bottom of memory from IOP.

ALU . A= FALSE Cn= F= A&0 B <- F
B= FALSE D= X Y= F Q No

STACK : X
M X
BUS ALU
UPU CJP ; PL = INIT3 ; COND = IORDY
IPU X
IOP DEVSEL

Device always returns bottom of memory

ALU X

STACK X
M X
BUS X
uPU CJP ; PL = INIT4 ; COND = IORDY*
IPU X
IOP X

ALU X

STACK X
M X
BUS IOP
UPU CJP ; PL = INIT5 ; COND = IORDY
IPU X
IOP IODATA ; READ

ALU A= X Cn= X F= DV0 B <- F

B= DISP D= BUS Y= None Q No
STACK X
M : X

BUS IOP
uPU : CONT
IPU X
IOP IODATA ; READ

Read in the bottom of memory.

ALU X

STACK: X
M : X
BUS : IOP
uPU : CJP ; PL = INIT7 ; COND = IORDY*
IPU : X
IOP : X

Wait for the IOP to release the Bus.
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OOD INIT8 ALU A= FALSE Cn= 1 F= A+0 B <- F

B= TWO D= X Y= F Q NO
STACK X
H X

BUS ALU
UPU CJP ; PL = INIT8 ; COND = IORDY
IPU X
IOP DEVSEL

Get the top of memory from device 1.

OOE INIT9 ALU
STACK
M
BUS

X
X

X

X
UPU CJP ; PL = INIT9 ; COND = IORDY*
IPU X
IOP X

OOF INITIO ALU
STACK
M
BUS

X

X
X
IOP

UPU CJP ; PL = INITIO ; COND = IORDY
IPU X
IOP IODATA ; READ

010 INIT11 ALU A= X Cn= X F= DVO B <- F

B= HBASE D= BUS Y= None Q No
STACK X
M X
BUS IOP
UPU CONT
IPU X
IOP IODATA

Read in
; READ
the top of memory.

Oil INIT12 ALU
STACK
M
BUS

X

X
X
IOP

UPU CJP ; PL = INIT12 ; COND = IORDY
IPU X
IOP X

Wait for IOP to release the Bus.

012 INTI13 ALU

STACK
M
BUS
UPU
IPU
IOP

A= TWO
B= TWO
X
X
X
CONT
X
X

Cn= 1 F= A+0 B <- F
D= X Y= None Q No

Load the constant 2 into TWO.
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013 INIT14

014 INT II

5

015 INIT16

016 INIT17

017 INIT18

ALU : A= FALSE Cn= F= 0-A B <- F

B= TRUE D = X Y= None Q No
STACK: X
M : X
BUS : X
uPU : CONT
IPU : X
IOP : X

Load the constant TRUE into TRUE.

ALO : A= FALSE Cn= F= A-0 B <- F
B= LLTOP D= X Y= A Q No

STACK

:

X
H : X
BUS : ALU
uPU : CONT
IPU : JUMP ; Forced
IOP : X

Set the current lexical level to -1.
Set the IC to 0.

ALU : A= TWO Cn= X F= AV0 B <- 2F
B= TEMP D = X Y= None Q No

STACK

:

X
M : X

BUS : X
uPU : PUSH ; PL = 5 ; COND = forced
IPU : X
IOP : X

ALU : A= X Cn= X F= BV0 B <- 2F
B= TEMP D = X Y= None Q No

STACK

:

X
M : X

BUS : X
uPU ! RFCT ; PL = INIT17
IPU : X
IOP : X

Calculate the constant 256 in TEMP.

ALU : A= DISP Cn= F= A+B B <- F

B= TEMP D = X Y= None Q No
STACK: X
H :

BUS :

X
X

uPU : CONT
IPU : X
IOP : X

Calculate the bottom of the stack.
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018 INIT19 ALU : A= TEMP Cn= X F= AVO B <-

B= TMS D= X Y= A Q No
STACK

:

X
M : X
BUS : X
uPU : CONT
IPO : IC <- IC+1 ; IR <- IK(IC)
IOP : X

Initialize the Top of memory stack
pointer to the bottom of the stack.
Load first MI into IR.

019 INIT20 ALU : A= HBASE Cn= X F= AVO
B= HBOT D= X Y= None

STACK: X
M : X
BUS : X
UPU : JMAP
IPO : IR = IR1 ; IC <- IC+1
IOP : X

Go begin executing.

B <- F

Q No

IR <- IM(IC)

The following are the fix routines that maintain the fast stack
so that the microcode routines that perform a macro-instruction
always get the operands in the fast stack that they need or the
empty location that they need. The mapping logic compares the
number of elements in the fast stack to the number of elements
needed for the macro-instruction. If there are not enough or
too many, the mapping logic forces the address of the
appropriate fix routine onto the external inputs of the micro-
sequencer.

FIXIN is the routine that brings in an operand when there are
not enough operands in the fast stack for an operation to
continue.

01A FIXIN1 ALO A= TMS Cn= F= A-0 B <- F
B= TMS D= X Y= F Q No

STACK BFS <- BFS-1
M LOAD MAR
BOS ALO
UPO CONT
IPO X
IOP X

Fetch the top memory stack element.
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01B FIXIN2 ALU : A= X Cn= X F= DVO B <- F
B= BOTTOM D= BUS Y= None Q No

STACK

:

X
M : READ
BUS : M
UPU : JMAP
IPU : IR = IR2
IOP : X

And load it into the bottom of the fast
stack.

FIXOUT is the routine that writes out the bottom element
of the fast stack when there is not a vacant location
to write the next operand into.

01C

01D

FIXOUT1 ALU : A= TMS Cn= 1 F= A+0 B <- F
B= TMS D= X Y= A Q No

STACK: X
M : LOAD MAR
BUS : ALU
UPU : CONT
IPU : X
IOP : X

Write out the bottom element of the
fast stack.

FIXOUT2 ALU : A= BOTTOM Cn= X F= AVO B <- F
B= BOTTOM D= X Y= A Q No

STACK: BFS <- BFS+1
H : WRITE
BUS : ALU
UPU : JMAP
IPU : IR = IR2
IOP : X

FLUSH is the routine that empties the fast stack. It is invoked
by the mapping logic when the macro-instruction is one which
causes a change in context or one that moves the top of stack
pointer. If the Top of stack pointer changes for either
reason, then the values in the fast stack must be written out
to the memory stack before the pointer is changed or they will
end up being written to the wrong location.

01E FLUSH1 ALU : A= TMS Cn= 1 F= A+0 B <- F
B= TMS D = X Y= A Q No

STACK

:

X
M : LOAD MAR
BUS : ALU
UPU : CONT
IPU : X
IOP
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OIF

020

FLUSH2 ALU : A= BOTTOM Cn= X F= AVO B <- F
B= BOTTOM D- X Y= A Q No

STACK

:

BFS <- BFS+1
M : WRITE
BUS : ALU
UPU : CJP ; PL = FLUSH1 ; COND = EMPTY*
IPU : X
IOP : X

Write out the bottom element until the
stack is empty.

FLUSH3 ALU : X
STACK: X

M : X

BUS : X
uPU : JMAP
IPU : IR = IR2
IOP : X

The following are the work subroutines that are called from
various locations in the microcode.

The following routine is used to allow the instruction mapping
logic time to decode the macro-instruction. If the instruction
register is latched at the end of the clock cycle, then another
clock cycle must be allowed before the micro-instruction
routine to perform the macro-instruction can be called.

021 DLY1 ALU : X
STACK: X
M : X
BUS : X
uPU : JMAP
IPU : IR = IR1
IOP : X

IC <- IC+1 IR <- IM(IC)

ADDEV is the routine to evaluate the two part variable address.
The routine requires that the address of the display register
be in the MAR and the variable offset, j, be in IR2. The
routine returns with the address of the variable in the MAR.

022 ADDEV1 ALU : A= X Cn= X F= DVO B <- F
B= TEMP D= BUS Y= None Q No

STACK: X
M : READ
BUS : M
UPU : CONT
IPU : X
IOP : X

Read the contents of the display
register.
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023 ADDEV2 ALU : A= TEMP Cn= F= D+A B No
B= X D= IR Y= F Q No

STACK

:

X
M : LOAD MAR
BUS : ALU
uPO : CRTN ; COND = forced
IPU : IR = IR2
IOP : X

Add the variable displacement to the
display register contents and store the
result into the MAR.

The following routine will set the display registers according
to the static display chain, given the address of a transfer
point in the Q register.

024 SCOPE1 ALU : A= X Cn= F= Q-0 B NO
B= X D« X y= f Q <- F

STACK

:

X
M : LOAD MAR
BUS : ALU
UPU : CONT
IPU : X
IOP : X

Fetch the return address.

025 SCOPE2

026 SCOPE3

ALU : X

STACK: X
M : READ
BUS : M
uPU : CONT
IPU : LOAD ; forced
IOP : X

Load the return address into the IC.

ALU : A= X Cn= F= Q-0 B NO
B= X D= X Y= F Q <- F

STACK

:

X
M : LOAD MAR
BUS : ALU
UPU
IPU
IOP

CONT
IC <- IC+1 IR <- IM(IC)

Fetch the lexical level. Fetch the
instruction at the return address.
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027 SCOPE4

028 SCOPE

5

029 SCOPE6

02A SCOPE7

ALU : A= X Cn= X F= DVO B <- F

B= LLTOP D= BUS Y= None Q No
STACK

:

X
M : READ
BUS : M
UPU : CONT
IPU : X
IOP : X

Load the lexical level from the stack
into the current lexical level register

ALU : A= X Cn= F= Q-0 B NO
B= X D= X Y= F Q <- F

STACK

:

X
M :

BUS :

LOAD
ALU

MAR

uPU : CONT
IPU : X
IOP : X

Fetch i the value that is to be restored
into the current display register.

ALU : A= X Cn= X F= DVO B <- F
B= TEMP2 D= BUS Y= None Q No

STACK: X
H : READ
BUS : H
uPU : CONT
IPU : X
IOP : X

Save the display register value in a
temporary location that makes the
loop more efficient.

ALU : A= DISP Cn= F= A+B B NO
B= LLTOP D= X Y= F Q <- F

STACK: X
H : LOAD MAR
BUS : ALU
uPU : CONT
IPU : X
IOP : X

No longer need stack pointer for this
routine. Use the Q register as another
temporary that contains a pointer to the
display register that is being restored.
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02B

02C

02D

SC0PE8 ALU A= TEMP2 Cn= X F= AVO B <- F
B= TEMP2 D= X Y= A Q No

STACK X
M WRITE
BOS ALU
UPU CONT
IPU : X
IOP X

Restore the display register value into
the display register.

SC0PE9 ALU A= LLTOP Cn= X F= AVO B <- F
B= TEMP D= X Y= None Q No

STACK X
M X

BUS X
UPU CJP ; PL = SCOPE14 ; COND = equal
IPU X
IOP X

Set up the WHILE (TEMP NOT= 0) loop.

SCOPE10 ALU A= X Cn= F= B-0 B <- F

B= TEMP2 D= X Y= F Q No
STACK X
M LOAD MAR
BUS ALU
UPU CONT
IPU X
IOP X

The value to be restored into the next
lower display register is stored one
stack location below where the current
or just restored display register points.

2E SCOPE11 ALU

STACK

:

M
BUS
UPU
IPU
IOP

A= X Cn= X F= DVO
B= TEMP2 D= BUS Y= None
X
READ
M
CONT
X
X

Get the value to be restored.

B <-
Q No

02F SCOPE12 ALU

STACK

:

M ;

BUS I

UPU
IPU
IOP :

A= X Cn= F= Q-0 B NO
B= X D= X Y= F Q <- F
X
LOAD MAR
ALU
CONT
X
X
Put the address of the next lower disr.

register into the MAR and back into Q.
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030 SCOPE13 ALD A= TEHP2 Cn= X F= AVO B <- F

031

B= TEMP2 D= X Y= A Q No
STACK

:

X
M : WRITE
BUS : ALU
UPU : CONT
IPU : X
IOP : X

Restore the value saved a little bit ago
into the display register.

SCOPE1

4

ALU : A= X Cn= F= B-0 B <- F
B= TEMP D= X Y= None Q No

STACK

:

X
H : X

BUS : X

UPU : CJP ; PL = SCOPE10 ; COND = not equal
IPU : X
IOP : X

TEMP is the loop index. Decrement it
and see if the display register
corresponding to lexical level has
been reached.

032 SCOPE15 ALU :

STACK:
M :

BUS :

uPU :

IPU :

IOP :

X

X
X
X
JMAP
IR = IR1
X

IC <- IC+1 IR <- IM(IC)

The following routines all require that at least one operand be
in the fast stack.

040 NEG1 ALU : A= X Cn= 1 F= 0-B B <- F
B= TOP-1 D= X Y= NONE Q No

STACK

:

X
M : X

BUS : X
uPU : JMAP
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(
IOP : X
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042 NOT1 ALU : A= X Cn= F= (0XORB)* B <- F
B= TOP-1 D= X Y= NONE Q No

STACK

:

X
M : X

BUS : X
uPU : JMAP
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

044 LOAD1 ALU : A= TOP-1 Cn= X F= AV0 B <- F
B= TOP-1 D= X Y= A Q No

STACK

:

X
M : LOAD MAR
BUS : ALU
uPU : CONT
IPU : X
IOP : X

045 LOAD2 ALU : A= X Cn= X F= DV0 B <- F
B= TOP-1 D= BUS Y= NONE Q No

STACK

:

X
M : READ
BUS : M
uPU : JMAP
IPU : IR = IR1 ; IC <- IC+1 ; IR <-IM(IC)
IOP : X

046 CONDI ALU : A= TOP-1 Cn= X F= AV0 B NO
B= X D= X Y= NONE Q No

STACK: TFS <- TFS-1
H : X
BUS : X
uPU : CJP ; PL = DLY1 ; COND = < forced
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

048 SDATA1 ALU : A= DISP Cn= F= D+A B NO
B= X D= IR Y= F Q NO

STACK

:

X
M : LOAD MAR
BUS : ALU
uPU : CJS ; PL = ADDEV] . ; COND = forced
IPU : IR = MASKED (IR2) ; IC <- IC+1 ;

IR <- IM(IC)
IOP
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049

4A

4B

050

051

052

SDATA2 ALU : A= TOP-1 Cn= X F= AV0 B <- F

B= TOP-1 D = X Y= None Q No
STACK

:

TFS <- TFS-1
M : WRITE
BUS : ALU
uPU : JMAP
IPU : IR = IR1 / IC <- IC+1 ; IR <- IM(IC)
IOP : X

SHEAP1 ALU : A= HBASE Cn= 1 1 F= A-D B NO
B= X D= IR Y= F Q No

STACK

:

X
M : LOAD MAR
BUS : ALU
uPU : CONT
IPU : IR = IR1 / IC <- IC+1 ; IR <- IM(IC)
IOP : X

SHEAP2 ALU : A= TOP-1 Cn= X F= AV0 B <- F
B= TOP-1 D = X Y= Aone Q No

STACK: TFS <- TFS-1
M : WRITE
BUS : ALU
uPU : JMAP
IPU : IR = IR1 / IC <- IC+1 ; IR <- IM(IC)
IOP : X

WRITE1 ALU : A= X Cn= X F= DV0 B <- F

B= TEMP D= IR Y= None Q No
STACK: TFS <- TFS-1
H : X
BUS : X
uPU : CJS ; PL = WRT1 ; COND i= forced
IPU : IR = IR1 / IC <- IC+1 ; IR <- IM(IC)
IOP : X

WRITE2 ALU :

STACK:
M :

BUS :

X
X

X
X

uPU : JMAP
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

WRITEC1 ALU : A= X Cn= X F= DV0 B <- F
B= TEMP D= IR Y= None Q No

STACK: TFS <- TFS-1
M : X
BUS : X
uPU : CJS ; PL = WRTC1 ; COND = forced
IPU : IR = IR1 i IC <- IC+1 ; IR <- IM(IC)
IOP : X
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53

054

056

WRITEC2 ALU :

STACK

:

H :

BUS :

uPU :

X
X
X
X
JMAP

IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM
IOP : X

RSTAK1 ALU : A= TOP-1 Cn= X F= AVO B <- F
B= TEMP D= X Y= None Q No

STACK

:

X
M : X

BUS : X
uPU : CJP ; PL = RD1 : i COND = forced
IPU : X
IOP : X

RSTAKC1 ALU : A= TOP-1 Cn= X F= AVO B <- F

B= TEMP D= X Y= None Q No
STACK: X
M : X
BUS : X
uPU : CJP ; PL = RDC1 ; COND = = forced
IPU : X
IOP : X

The following routines perforin the handshaking with the
Input/Output processor, to read in or write out one word. They
both expect the device code to be in the TEMP register.

The routine to perform output to the device whose device code
is TEMP.

58 WRT1 ALU : X
STACK: X
M : X
BUS : X
uPU : CJP ; PL = WRT1 ; COND = IORDY*
IPU : X
IOP : X

Wait for the IOP to be "ready"
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059 WRT2 ALU : A= TEMP Cn= X F= AVO B <- F
B= TEMP D= X Y= A Q No

STACK

:

X
M :

BUS :

X
ALU

uPU : CJP ; PL = WRT2 ; COND > IORDY
IPD : X
IOP : DEVSEL

Put the device code on the bus and raise
the handshake signal DEVSEL. Wait for
IOP to acknowledge by going "not ready".

05A WRT3 ALU : X
STACK: X
M : X

BUS : X
uPU : CJP ; PL = WRT3 ; COND = IORDY*
IPU : X
IOP : X

Remove the device code from the bus.
Wait for the IOP to be "ready" again.

05B WRT4 ALU : A= TOP Cn= X F= AVO B <- F
B= TOP D= X Y= A Q No

STACK

:

X
M : X
BUS : ALU
uPU : CJP ; PL = WRT4 ; COND = IORDY
IPU : X
IOP : IODATA ; WRITE

Put data on bus. Raise I/O signals.
Wait for acknowledge by "not ready".

05C WRT5 ALU : X
STACK

:

X
M : X

BUS : X
uPU : CRTN ; COND = forced
IPU : X
IOP : X

Do not need to wait for IOP to release
the bus on a write operation.

5D WRTC1 ALU : X

STACK: X
M : X
BUS : X
uPU : CJP ; PL = WRT1 ; COND = IORDY*
IPU : X
IOP : X

Wait for the IOP to be ready.
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05E WRTC2 ALU : A= TEMP Cn= X F= AVO B <- F

B= TEMP D= X Y= A Q No
STACK

:

X
M : X
BUS : ALU
UPU : CJP ; PL = WRTC2 ; COND = IORDY
IPU : X
IOP : DEVSEL

Put the device code on the bus.

05F WRTC3 ALU :

STACK:
M :

BUS :

X

X
X
X

UPU : CJP ; PL = WRTC3 ; COND = IORDY*
IPU : X
IOP : X

Wait for IOP to respond by going "re

060 WRTC4 ALU : A= TOP Cn= X F= AVO B <- F
B= TOP D= X Y= A Q No

STACK

:

X
M : X
BUS : ALU
UPU : CJP ; PL = WRT4 ; COND = IORDY
IPU : X
IOP : IODATA ; WRITE ; CHAR

061 WRTC5 ALU : X

STACK: X

M : X

BUS : X
UPU : CRTN
IPU : X
IOP : X

062 RD1 ALU : X

STACK: X
M : X
BUS : X
uPU : CJP
IPU : X
IOP : X

Put the data on the buss and wait for
IOP to signal its acceptance by going
"not ready".

COND = forced

PL RD1 COND IORDY*

Wait for IOP to be "ready"
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063 RD2

064 RD3

065 RD4

ALO : A= TEMP Cn= X
B= TEMP D= X

STACK

:

X
M : X
BUS : ALO
uPO : CJP ; PL = RD2 ;

IPO : X
IOP : DEVSEL

Put the device code
for the IOP to ackn
"not ready".

ALO : X
STACK: X
H : X

BOS : X
uPO : CJP ; PL = RD3 ;

IPO : X
IOP : X

Remove device code.
go "ready" again.

ALO : X

STACK: X
M : X
BOS : IOP
uPO : CJP ; PL = RD4 ;

IPO : X
IOP : IODATA ; READ

AVO
A

COND

B <- F

Q NO

IORDY

wait

066 RD5

067 RD6

COND IORDY*

Wait for IOP to

COND IORDY

Give IOP the system bus. Wait for
"not ready" to indicate valid data.

ALO : A= X Cn= X F= DV0 B <- F
B= TOP-1 D= BOS Y= None Q No

STACK: X
M : X
BOS : IOP
uPO : CONT
IPO : IR = IR1 ; IC <- IC+1 ; IR <- IM
IOP : IODATA ; READ

Read in the data.

ALO : X
STACK:
M :

X
X

BOS : IOP
uPO : CJP ; PL = RD6 ; COND = IORDY*
IPO : X
IOP : X

Wait for IOP to release the bus.
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068 RD7 ALU
STACK
M
BUS
UPU
IPO
IOP

X
X
X
X
JHAP
IR = IR1
X

IC <- IC+1 IR <- IM(IC)

069 RDCI

06A RDC2

06B RDC3

06C RDC4

ALU :

STACK:
H :

BUS :

UPU :

IPU :

IOP :

ALU ;

STACK

:

M :

BUS !

UPC :

IPU
IOP i

ALU :

STACK:
M :

BOS :

UPU :

IPU :

IOP :

ALU
STACK
H
BUS
UPU
IPU
IOP

X

X
X
X
CJP ; PL = RD1 ; COND =

X
X
Wait for IOP to be "ready".

IORDY*

Cn= X
D= X

AVO
A

PL RD2 COND

B <-

Q No

IORDY

A= TEMP
B= TEMP
X
X
ALU
CJP ;

X
DEVSEL
Put the device code on the bus.
for the IOP to acknowledge by going
"not ready".

X
X

X

X
CJP
X
X
Remove device code.
go "ready" again.

Wait

PL = RD3 COND IORDY*

Wait for IOP to

X

X

X
IOP
CJP ; PL = RD4 ; COND = IORDY
X
IODATA ; READ ; CHAR
Give IOP the system bus. Wait for
"not ready" to indicate valid data.
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06D RDC5 ALU : A= X Cn= X F= DVO B <- F
B= TOP-1 D= BUS Y= None Q No

STACK

:

X
M : X
BUS : IOP
uPU : CONT
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM
IOP : IODATA ; READ ; CHAR

Read in the data.

06E RDC6 ALU :

STACK:
M :

BUS :

X

X
X
IOP

uPU : CJP ; PL = RD6 ; COND = IORDY*
IPU : X
IOP : X

Wait for IOP to rel ease the bus.

06F RDC7 ALU :

STACK

:

M :

BUS :

uPU :

X
X
X

X
JMAP

IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM
IOP : X

The following routines all require at least two operands in the
fast stack.

80 ADD1

82 SUB1

ALU : A= TOP-1 Cn= F= A+B B <- F
B= TOP-2 D= X Y= None Q ,

No
STACK

:

TFS <- TFS-1
N : X
BUS : X
uPU : JMAP
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

Pop and add the top two values. Push the
sum.

ALU : A= TOP-1 Cn= 1 F= B-A B <- F
B= TOP-2 D= X Y= None Q No

STACK: TFS <- TFS-1
M : X
BUS : X
uPU : JMAP
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

Pop and subtract the top value from the
second value. Push the difference.

116



084 MULT1 ALU A= TOP-1 Cn= AVO B NO

085 HDLT2

86 DIV1

87 DIV2

B= X D= X Y= None Q <- F
STACK: X
M : X

BUS : X
uPO : LDCT ; PL = $1F
IPU : X
IOP : X

Copy the multiplier into a temporary
Load the counter for the number of
iterations.

ALU : A= X Cn= X F= B&0 B <- F
B= TEMP D= X Y= None Q No

STACK

:

X
M : X
BOS : X
uPO : CJP ; PL = MOLT3 ; COND = forced
IPO : X
IOP : X

ALO

STACK

:

M
BOS :

uPO :

IPO
IOP :

ALO

STACK

:

H 1

BOS I

UPO i

IPO
IOP :

Clear the temporary that receives the
most significant word of the product.
Continued at location 9A.

A= X
B= X
X
X

X
LDCT
X
X
Clear
the r

Cn= X F= Q&0 B NO
D= X Y= None Q <- F

PL = DIV 3A

quotient. Load a jump address into
egister.

A= TOP-1 Cn= X F= AVO B NO
B= X D= X Y= None Q No
X
X

X
JRP ; PL = DIV3B
X
X
Test the sign of the divisor.
Jump to the address in R if positive,
and the address in PL if negative.
Continued at location 09D.

COND = negative
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088 EQU1 ALU : A= TOP-1 Cn= 1 F= B-A B NO
B= TOP-2 D= X Y= None Q No

STACK

:

X
M : X
BUS : X
uPU : CJP ; PL = LOADT1 ; COND = equi

IPO : X
IOP : X

Compare the top two stack elements,
a TRUE if the values are equal.
Otherwise load a FALSE.

Load

089 LOADF1 ALU I

STACK

:

M !

BOS :

UPO !

IPO
IOP

A= FALSE Cn= X F= AVO B <- F
B= TOP-2 D= X Y= None Q No
TFS <- TFS-1
X
X
JMAP
IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
X
Load a FALSE logic value onto the stack.

08A GREAT1 ALO : A= TOP-1 Cn= 1 F= B-A B NO
B= TOP-2 D= X Y= None Q No

STACK: X
M : X
BOS : X
uPO : CJP ; PL = LOADF1
IPO : X
IOP : X

Compare the top two stack elements,
a logic TROE value if the second
element is larger than the first.
Otherwise load a FALSE.

COND = not equal

Load

8B

08C

LOADT1 ALU : A= TRUE Cn= X F= AVO B <- F
B= TOP-2 D= X Y= None Q.No

STACK: TFS <- TFS-1
M ! X
BOS : X
uPO : JMAP
IPO : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

Load a TRUE value onto the stack.

LESS1 ALO : A= TOP-1 Cn= 1 F= B-A B NO
B= TOP-2 D= X Y= None Q No

STACK: X
M : X
BOS : X
uPO : CJP ; PL = LOADT1 ; COND = positive
IPU : X
IOP : X

Compare the top two stack elements. Load
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a TRUE value onto the stack if the second
value is less than the top value.
Otherwise load a FALSE value.

08D LESS2 ALU

STACK
M
BUS
uPU
IPU
IOP

Cn= X
X

A= FALSE
B= TOP-2 D =

TFS <- TFS-1
X
X
JMAP
IR = IR1 ;

X
Load the FALSE value

F= AVO
Y= None

IC <- IC+1

<-
NO

IR <- IM(IC)

08E AND1 ALU :

STACK

:

M :

BUS I

UPU :

IPU
IOP ;

A= TOP-1 Cn= X F= B&A B <- F
B= TOP-2 D= X Y= None Q No
TFS <- TFS-1
X
X
JMAP
IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
X
AND the top two stack elements.

090 OR1

092 REP1

ALU i

STACK

:

H :

BUS :

uPU :

IPU
IOP :

ALU

STACK

:

M ;

BUS
UPU
IPU
IOP !

A= TOP-1 Cn= X F= AVB
B= TOP-2 D= X Y= None
TFS <- TFS-1
X
X
JMAP
IR = IR1 ; IC <- IC+1 ;

X
OR the top two stack elements.

<-

No

IR <- IM(IC)

<-

No
A= TOP-2 Cn= X F= AVO B
B= TOP-2 D= X Y= Aone Q
TFS <- TFS-1
LOAD MAR
ALU
CONT
X
X
Load the address one down from the
of the stack onto the MAR.

top

093 REP2 ALU

STACK

:

M :

BUS
UPU !

IPU
IOP :

A= X Cn= X F= DVO B <- F
B= TOP-1 D= BUS Y= None Q No
X
READ
M
JMAP
IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
X
Fetch the value stored at that address.
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Save it at the location that the address
came from. Remove the element that was
at the top.

094 STOR1 ALU : A= TOP-2 Cn= X F= AVO B <- F
B= TOP-2 D= X Y= A Q No

STACK: TFS <- TFS-1
M : LOAD MAR
BOS : ALU
UPU : CONT
IPO : X
IOP : X

Load the address from the top of the
stack into the MAR.

95 STOR2 ALU I

STACK;
M 1

BOS i

UPO i

IPO
IOP :

A= TOP Cn= X F- AVO
B= TOP D= X Y= A
TFS <- TFS-1
WRITE
ALO
JMAP
IR = IR1 ; IC <- IC+1 ;

X
Then write out the data at the new top of
the stack.

B <-
Q. No

IR <- IM(IC)

096 WSTAK1 ALO

STACK
M
BOS
UPO
IPO
IOP

A= TOP-2
B= TEMP

Cn=
D =

F= AVO
Y= None

TFS-1

B <-
Q.No

PL WRT1 COND forced

TFS
X
X
CJS
X
X
Get the device code out from one down
from the top of the stack. Put it where
the write routine can find it.

97 WSTAK2 ALO : A= X
STACK: TFS <- TFS-1
M : X
BOS : X
UPU : JMAP
IPO : IR = IR1 ; IC <-
IOP : X

Do the bookkeeping.

IC+1 IR <- IM(IC)
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098

099

WSTAKC1 ALU : A= TOP-2 Cn= X F= AVO B <- F
B= TEMP D= X Y= None Q No

STACK

:

TFS <- TFS-1
M : X
BUS : X
uPU : CJS ; PL = WRT1 ; COND = forced
IPU : X
IOP : X

Sane as WSTAK1 exceipt calls WRTC1.

WSTAKC2 ALU : X
STACK: TFS <- TFS-1
M : X
BUS : X
uPU : JMAP
IPU : IF. = IR1 ; IC <- IC+1 ; IR <- IM
IOP

The following routines are continuations of routines that
require two operands.

9A MULT3 ALU : A= TOP-2 Cn= F= A+B B <- F/2
B= TEMP D= X Y= None Q <- Q/2
MULT

STACK

:

X

M : X
BUS : X
uPU : RPCT ; PL = MULT3
IPU : X
IOP : X

Repeat this step for each bit in the
multiplicand. Conditional shift and
add.

09B MULT4 ALU : A= TOP-2 Cn= 1 F= B-A B <- F/2
B= TEMP D= X Y= None Q <- Q/2
MULT

STACK

:

X
M : X
BUS : X
uPU : CONT
IPU : X
IOP : X

Conditional shift and subtract for the
MSB. This is what makes it two's
complement.
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09C MULT5 ALU

STACK
H
BUS
UPU
IPU
IOP

A= X Cn= F = QVO
B= TOP-2 D= X Y = None
TFS <- TFS-1
X
X
JMAP
IR = IR1 ; IC <- IC+1 ;

X
Use the LSW of the result.
the top of the stack.

B <-

Q No

IR <- IM(IC)

Move it into

9D DIV3A

09E DIV4A

ALU i

STACK

:

M :

BUS :

UPU i

IPU :

IOP !

ALU

STACK

:

K :

BUS
UPU :

IPU !

IOP

Cn= X
D= X

F= AVO
Y= NONE

A= TOP-2
B= X
X
X

X
CJP
X
X
Test the sign of the dividend.

B NO
Q No

PL = DIV4C COND = negative

1 F= Q+0 B NO
X Y= NONE Q <- F

A= X Cn=
B= X D =

X
X

X
CONT
X
X
Count the number of subtractions.

9F DIV5A ALU : A= TOP-1 Cn= 1

B= TOP-2 D= X
STACK: X
M : X
BUS : X
UPU : CJP ; PL = DIV4A
IPU : X
IOP : X

Subtract until the result is negative.

F= B-A
Y= NONE

COND

B <- F

Q No

not negative

0A0 DIV6A ALU : A= X Cn= F= Q-0 B NO
B= X D= X Y= NONE Q <- F

STACK: X
M : X
BUS : X
UPU : CONT
IPU : X
IOP : X

Add 1 back in 'cause went one too far.
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0A1 DIV7A

0A2 DIV4C

0A3 DIV5C

0A4 DIV6C

0A5 DIV7C

ALU ; A= TOP-1 Cn= F= B+A B <- F
B= TOP-2 D= X Y= NONE Q No

STACK X
H X
BOS X
UPU CJP ; PL = DIV8 ; COND = forced
IPU X
IOP X

Hove the quotient onto the stack.

ALU A= X Cn= F= Q-0 B NO
B= X D= X Y= NONE Q <- F

STACK X
M X
BUS X
UPU CONT
IPU X
IOP X

Count the number of subtracts (backwards)

ALU A= TOP-1 Cn= F= B+A B <- F
B= TOP-2 D= X Y= NONE Q No

STACK X
M X

BUS X
UPU CJP ; PL = DIV4C ; COND = not positive
IPU X
IOP X

Subtract the divisor (really add because
of the signs.)

ALU A= X Cn= 1 F= Q+0 B NO
B= X D= X Y= NONE Q <- F

STACK X
M : X

BUS X
UPU . CONT
IPU : X
IOP X

Change quotient because went one too far.

ALU A= TOP-1 Cn= F= B-A B <- F
B= TOP-2 D= X Y= NONE Q. No

STACK X
H : X
BUS ' X
uPU I CJP ; PL = DIV8 ; COND = forced
IPU : X
IOP : X

Add it back in to get proper result.
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0A6 DIV3B ALU : A= TOP-1 Cn= F= AVO B NO
B= X D= X Y= NONE Q No

STACK: X
H : X
BUS : X
uPC : CJP ; PL = DIV4D
IPU : X
IOP : X

Check the sign of the dividend.

COND = negative

0A7 DIV4B ALU

STACK:
H I

BUS :

UPU :

IPU :

IOP

A= X
B= X
X
X

X
CONT
X
X

Cn=
D= X

F= Q-0 B NO
Y= NONE Q <- F

0A8 DIV5B ALU

STACK

:

M :

BUS I

UPU :

IPU i

IOP :

A= TOP-1
B= TOP-2
X
X

X
CJP
X
X

Cn=
D =

PL DIV4B

F= B+A
Y= NONE

COND

B <- F
Q No

not negative

0A9 DIV6B ALU !

STACK

:

M :

BUS :

UPU :

IPU :

IOP :

A= X
B= X
X
X

X
CONT
X
X

Cn=
D=

F= Q+0
Y= NONE

B NO
Q <- F

OAA DIV7B ALU i

STACK

:

M :

BUS
UPU 1

IPU i

IOP I

A= TOP-1
B= TOP-2
X
X

X
CJP
X

X

Cn=
D =

PL = DIV8

F= B-A B <- F
Y= NONE Q No

COND forced
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OAB DIV4D ALU

STACK i

M !

BUS :

UPU :

IPU :

IOP !

A= X
B= X
X
X
X
CONT
X
X

Cn= 1

D= X
F= Q+0
Y= NONE

B NO
Q. <- F

OAC DIV5D ALU :

STACK

:

M :

BUS :

uPU :

IPU :

IOP :

A= TOP-1
B= TOP-2
X
X
X
CJP
X
X

Cn=
D= X

F= B-A
Y= NONE

B <- F
Q No

PL = DIV4D ; COND = positive

OAD DIV6D ALU :

STACK

:

M :

BUS I

uPU :

IPU :

IOP :

A= X
B= X
X
X
X
CONT
X
X

Cn=
D= X

F= Q-0
Y= NONE

B NO
Q <- F

OAE DIV7D ALU

STACK I

M :

BUS :

uPU :

IPU :

IOP

A= TOP-1
B= TOP-2
X
X
X
CJP
X
X

Cn=
D= X

PL DIV8

F= B+A B <- F
Y= NONE Q NO

COND = forced

OAF DIV8 ALU

STACK

:

H
BUS
UPU ;

IPU :

IOP

A= X
B= TOP-1
X
X
X
JMAP
IR = IE1
X

Cn=
D =

F= QVO
Y= NONE

B <- F
Q No

IC <- IC+1 IR <-IM(IC)

The following routines all require that the fast stack have
at least one empty location before they start.
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100 LCONST1 ALU

101 LADD3

102 LADD1

ALU : A= X Cn= X F= DVO B <- F
B= TOP D= IR Y= None Q No

STACK

:

TFS <- TFS+1
M : X
BUS : X
uPU : CJP ; PL = DLY1 ; COND = forced
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

ALU : A= TEMP Cn= F= D+A B <- F
B= TOP D= IR Y= None Q No

STACK:
H :

BUS :

TFS <- TFS+1
READ
H

uPU : JMAP
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

Calculate the address as (LL(ll) ) + j

ALU : A= DISP Cn= F= D+A B NO
B= X D = IR Y= F Q No

STACK: X
M : LOAD MAR
BUS : ALU
uPU : CONT
IPU : IR = MASKED (IR2) ; IC <- IC+1 ;

IR <- IM(IC)
IOP : X

Fetch the contents of the display
register.

103 LADD2

104 LDATA1

ALU : A= X Cn= X F= DVO B <- F
B= TEMP D= IR Y= None Q No

STACK

:

X
M : X
BUS : X
uPU : CJP ; PL = LADD3 ; COND == forced
IPU : IR = IR2
IOP : X

ALU : A= DISP Cn= F= D+A B NO
B= X D= IR Y= F Q No

STACK

:

X
M : LOAD MAR
BUS : ALU
uPU : CJS ; PL = ADDEV1 ; COND = forced
IPU : IR = MASKED (IR2) ; IC <- IC+1 ;

IR <- IM(IC)
IOP : X

Calculate the address of the display
register and load it into the MAR.
Call ADDEV to evaluate the variable
address.
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105 LDATA2 ALU

STACK

:

M :

BUS
uPO
IPU
IOP

106

107

A= X Cn= X F= DVO B <- F
B= TOP D= BUS Y= None Q No
TFS <- TFS+1
READ
H
JMAP
IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
X
Fetch the value from the address. Store
it onto the top of the stack.

LHEAP1 ALU : A= HBASE Cn= 1 F= A-D B NO
B= X D= IR Y= F Q.No

STACK

:

X
M : LOAD MAR
BUS : ALU
uPU : CONT
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

Calculate the address in the heap. Load
it into the MAR.

LHEAP2 ALU : A= X Cn= X F= DVO B <- F
B= TOP D= BUS Y= None Q.No

STACK

:

TFS <- TFS+1
M : READ
BUS : M
uPU : JMAP
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

Fetch the value from that address and
load it onto the stack.

108 LHADD1

10A READ1

ALU I

STACK:
M :

BUS :

uPU :

IPU
IOP :

ALU

STACK

:

M :

BUS
UPU :

IPU
IOP :

F= A-D B <- F
Y= None Q No

A= HBASE Cn= 1

B= TOP D= IR
TFS <- TFS+1
X
X
CJP ; PL = DLY1 ; COND = forced
IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
X
Calculate the address of a variable
in the heap. Load the address onto the
top of the stack.

F= DVO B <- F
Y= None Q No

A= X Cn= X
B= TEMP D= IR
TFS <- TFS+1
X
X
CJP ; PL = RD1 ; COND = forced
IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
X
Read the device code from the instruction
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stream. Put it where the read routine
can find it. Do the stack maintenance.

IOC ALU : A= X Cn= X F= DVO B <- F
B= TEMP D= IR Y= None Q . No

STACK: TFS <- TFS+1
H : X
BUS : X
uPU : CJP ; PL = RDC1 ; COND = forced
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

The following routines all require that the fast stack be empty
before they begin execution.

ICO LLAB1 ALU :

STACK

:

M :

BUS :

uPU :

A= DISP
B= LLTOP
X
LOAD MAR
ALU
CONT

Cn= 1 F= A+B B NO
D= X Y= F Q. No

IPU : IR = X ; IC <- IC+1 ; IR <- IM(I
IOP : X

Get the icurrent display register.

1C1 LLAB2 ALU :

STACK

:

M :

BUS :

A= X
B= TEMP
X
READ
M

Cn= X F= DVO B <- F
D= BUS Y= None Q . No

uPU : CJP ; ]?L = LLAB3 ; COND = forced
IPU : X
IOP : X

1C2 INCS1 ALU : A= TMS
B= TOP

Cn= F= A-0 B <- F
D= X Y= F Q No

STACK

:

TFS <- TFS+1
M : LOAD MAR
BUS : ALU
uPU : CONT
IPU : X
IOP : X

Need to save the old top of the stack
at the new top of the stack. Need the
actual value of the top of the stack, so
use TMS-1. A trick here. The Fast stack
is loaded with the value of the old top
of the stack. Whatever happens next will
write out the value.
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1C3 INCS2 ALU : A= TMS Cn= F= A+D B <- F
B= TMS D= BUS Y= None Q No

STACK: X
M : READ
BUS : M
UPU : JMAP
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

Fetch the value to add to the stack and
add it to TMS.

1C4 ISTAK1 ALU : A= TMS Cn= F= A+D B <- F
B= TMS D= IR Y= None Q No

STACK

:

X
M : X

BUS : X
UPU : CJP ; PL = DLY1 ; COND = forced
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

Add the next instruction word to the
top of stack pointe r.

1C6 DECS1 ALU : A= TMS Cn= F= A-0 B NO
B= X D= X Y= F Q NO

STACK

:

X
M : LOAD MAR
BUS : ALU
UPU : CONT
IPU : X
IOP : X

Same as INCS except subtract.

1C7 DECS2 ALU : A= TMS Cn= 1 F= A-D B <- F
B= TOP D= BUS Y= None Q No

STACK

:

TFS <- TFS+1
M : READ
BUS : M
UPU : JMAP
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

1C8 DSTAK1 ALU : A= TMS Cn= 1 F= A-D B <- F
B= TMS D= IR Y= None Q , No

STACK

:

X
H : X
BUS : X
uPU
IPU
IOP

CJP
IR i

PL DLY1 COND
IR1 IC <- IC+1

= forced
IR <- IM(IC)

129



1CA

1CB

ICC

1CD

ICE

BLKEN1 ALU : A= TMS Cn= 1 F= A+0 B <- F

B= TMS D= X Y= A Q No
STACK

:

X
M : LOAD MAR
BUS : ALU
uPU : CONT
IPU : X
IOP : X

Save what will be the stack
;

pointer when
this instruction finishes.

BLKEN2 ALU : A= TMS Cn= 1 F= A+D B <- F

B= TEMP D= IR Y= F Q.No
STACK

:

X
M WRITE
BUS : ALU
uPU : CJP ; PL = BLKEN3 ; COND = forced
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

BLKEX1 ALU : A= DISP Cn= F= A+B B NO
B= LLTOP D= X Y= F Q.No

STACK

:

X
H : LOAD MAR
BUS : ALU
uPU : CONT
IPU : X
IOP : X

Restore the stack pointer to what it was
before the block was entered (i.e. two
below where the current display register
points)

BLKEX2 ALU : A= TWO Cn= 1 F= D-A B <- F
B= TMS D= BUS Y= None Q No

STACK

:

X
H : READ
BUS : M
uPU : CJP ; PL = BLKEX3 ; COND = forced
IPU : X
IOP : X

PR0CEN1 ALU : A= X Cn= X F= DVO B <- F

B= LLTOP D= IR Y= None Q No
STACK

:

X
H : X
BUS : X
uPU : JMAP
IPU : IR = MASKED (IR2) ; IC <- IC+1 ;

IR <- IM(IC)
IOP : X

Set the lexical level to that in
which the procedure was declared.

130



1CF LABEN3 ALD : A= TWO Cn= 1 F= D-A
B= TMS D= BUS Y= None

B <- F

Q No
STACK

:

X
M : READ
BUS : M
UPU : JMAP
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(IC)
IOP : X

1D0 LABEN1 ALU :

STACK

:

M :

BUS :

UPU :

IPU :

IOP :

A= X Cn= X F= DVO
B= LLTOP D= IR Y= None
X
X

X
CONT
IR = MASKED (IR2)
X

B <- F
Q No

Set the current lexical level to that of
the destination.

1D1 LABEN2 ALU :

STACK

:

M :

BUS :

A= DISP Cn= F= A+B
B= LLTOP D= X Y= None
X
LOAD MAR
ALU

B NO
Q No

UPU : CJP ; PL = LABEN3 ; COND = forced
IPU : X
IOP : X

Set the top of stack pointer from the
value saved by the destinations block
entry.

1D2 JIND1 ALU :

STACK

:

M :

BUS :

A= DISP Cn= F= A+D
B= X D= IR Y= F
X
LOAD MAR
ALU

B NO
Q.No

UPU : CJS ; PL = ADDEV1 ; COND = forced
IPU : IR = MASKED (IR2) ; IC <-

IR <- IM(IC)
IC+1 ;

IOP : X
Let the subroutine evaluate
of the variable which points
transfer point.

the address
to the

1D3 JIND2 ALU :

STACK

:

M :

BUS :

A= X Cn= X F= DVO
B= X D= BUS Y= None
X
READ
M

B NO
Q <- F

UPU : CJP ; PL = SCOPE1 ; COND = forced
IPU : X
IOP : X

Put the address of the transfer point
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ID 4

into the Q. register where the routine
which sets up the scope of the
destination by tracing the display
chain expects it.

1D5

1D6

CALL1 ALU : A= DISP Cn= F = A+B B NO
B= LLTOP D= X Y= F Q. No

STACK

:

X
M : LOAD MAR
BOS : ALU
uPU : CONT
IPU : X
IOP : X

Store a transfer point on the stack.

CALL2 ALU : A= X Cn= X F = DVO B <- F

B= TEMP D= BUS Y= None Q No
STACK

:

X
H : READ
BUS : M
uPU : CJP ; PL = CALL3 / COND = forced
IPU : X
IOP : X

CALIN1 ALU : A= DISP Cn= F = A+B B NO
B= LLTOP D= X Y = F Q.No

STACK

:

X
H : LOAD MAR
BUS : ALU
uPU : CONT
IPU : X
IOP : X

Save a transfer point.

1D7 CALIN2 ALU : A= X Cn= X F = DVO B <- F

B= TEMP D= BUS Y = None Q. No
STACK

:

X
H : READ
BUS : M
uPU : CJP ; PL = CALIN3 t COND = force*
IPU : X
IOP : X

1D8 RET1 ALU : A= TMS Cn= X F = AVO B NO
B= X D= X Y= None Q <- F

STACK

:

X
M : X
BUS : X
uPU : CONT
IPU : X
IOP : X

Copy the top of stack pointer into Q,
The Scope setting routine requires the
address of the transfer point in Q,
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1D9 RET2

IDA RET3

1DB BLKEX3

IDC LLAB3

ALU :

STACK

:

M :

BUS I

UPU :

IPO
IOP

ALU

STACK I

M :

BUS
upu
IPU :

IOP

ALU :

STACK

:

M :

BUS
UPU :

IPU
IOP

ALU

STACK
H
BUS
UPU
IPU
IOP

A=
B=
X
X
X
CJP
X
X
Rem
by
by

WO
TMS

Cn=
D=

F= B-A
Y= None

B <- F

Q No

PL RTN3 COND = forced

ove the transfer point from the stack
decrementing the top of stack pointer
two.

A= X Cn= 1

B= TMS D= IR
X
X

X
CJP ; PL = SC0PE1
IR = IR1
X

F = B-D B <- F
Y= None Q No

COND forced

A= LLTOP Cn= F= A-0
B= LLTOP D= BUS Y= None
X
X
X
JHAP
IR = IR1 ; IC <- IC+1
X
Decrement the current lexical level

B <- F
Q No

IR <- IM(IC)

A= TMS
B= TMS
X
LOAD MAR
ALU
CONT
X
X

Cn= 1

D= X

F= A+0
Y= A

B <- F

Q No

1DD LLAB4

IDE LLAB5

ALU

STACK I

M !

BUS
UPU i

IPU :

IOP

ALU :

STACK i

M 1

BUS 1

A= TEMP
B= TEMP
X
WRITE
ALU
CONT
X
X

A= TMS
B= TMS
X
LOAD MAR
ALU

Cn=
D =

Cn= 1

D= X

F= AVO
Y= A

F= A+0
Y= A

B <- F
Q.No

B <-

Q No
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uPO
IPO
IOP

CONT
X
X

IDF LLAB6 ALU

STACK I

M I

BUS
UPC ;

IPU
IOP :

A= LLTOP
B= LLTOP
X
WRITE
ALU
CONT
X
X

Cn=
D =

F= AVO
y= a

B <- F
Q No

1E0 LLAB7 ALU :

STACK

:

H !

BUS I

UPU :

IPU
IOP :

A= TMS
B= TMS
X
LOAD MAR
ALU
CONT
X
X

Cn= 1

D= X
F= A+0
Y= A

B <- F
Q No

1E1 LLAB8

1E2 LLAB9

ALU :

STACK:
H :

BUS :

UPU :

IPU :

IOP :

ALU
STACK
M
BUS
UPU
IPU
IOP

X

X
WRITE
IR
CONT
IR = IR2
X

X
X
X

X
JMAP
IR =

X
IR1 IC <- IC+1 IR <- IM(IC)

1E3 BLKEN3 ALU : LLTOP Cn= F= A+B B NO
B= DISP D= X Y= F Q No

STACK: X
M : LOAD MAR
BUS : ALU
uPD : CONT
IPU : X
IOP : X

Get the current display register.
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1E4

1E5

1E6

1E7

1E8

BLKEN4 ALU : A= X Cn= X F= DVO B <- F

B= TEMP2 D = BUS Y= None Q No
STACK

:

X
H : READ
BUS : M
uPO : CONT
IPU : X
IOP : X

Save it f or a little bit.

BLKEN5 ALU : A= TMS Cn= 1 F= A+0 B <- F

B= TMS D = X Y= A Q No
STACK: X
M : LOAD MAR
BUS : ALU
UPU : CONT
IPU : X
IOP : X

BLKEN6 ALU : A= TEMP2 Cn= X F= AVO B <- F

B= TEMP2 D = X Y= A Q No
STACK

:

X
M : WRITE
BUS : ALU
UPU : CONT
IPU : X
IOP : X

Put it on the stack.
BLKEN7 ALU : A= X Cn= 1 F= B+0 B <- F

B= LLTOP D = X Y= None Q NO
STACK

:

X
M : X

BUS : X
uPU : CONT
IPU : X
IOP : X

Increment the current lexical level.

BLKEN8 ALU : A= DISP Cn= F= A+B B NO
B= LLTOP D = X Y= F Q No

STACK

:

X
M : LOAD MAR
BUS : ALU
uPU : CONT
IPU : X
IOP : X
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1E9

1EA

ALU : A= TMS Cn= X F= AVO B <- F

B= TMS D= X Y= A Q No
STACK

:

X
M : WRITE
BUS : ALU
uPU : CONT
IPU : X
IOP : X

Load the new display registe r with the
stack top pointer.

ALU : A= TEHP2 Cn= X F= AVO B <- F

B= TMS D= X Y= None Q No
STACK

:

X
H : X
BUS : X
uPU : JMAP
IPU : IR = IR1 ; IC <- IC+1 ; IR <- IM(I
IOP : X

Load the top of stack pointer with the
working pointer value calculated earlier.
This allocates the variables for the
block.

1EB CALL3 ALU A= TMS Cn= 1 F= A+0 B <- F
B= TMS D= X Y= A Q No

STACK X
H LOAD MAR
BUS ALU
UPU CONT
IPU X
IOP X

1EC CALL4 ALU A= TEMP Cn= X F= AVO B <- F

B= TEMP D= X Y= A Q No
STACK X
H WRITE
BUS ALU
uPU CONT
IPU X
IOP X

Save the current display regi ster on
the stack •

1ED CALL5 ALU A= TMS Cn= 1 F= A+0 B <- F
B= TMS D= X Y= A Q.No

STACK X
M LOAD MAR
BUS ALU
UPU CONT
IPU X
IOP X
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1EE CALL6 ALU :

STACK

:

M :

BUS :

uPU :

IPU :

IOP :

A= LLTOP
B= LLTOP
X
WRITE
ALU
CONT
X
X
Save the
block.

Cn= X F= AVO B <- F
D= X Y= A Q No

lexical level of the calling

1EF CALL7 ALU :

STACK

:

M :

BUS :

UPU :

IPU :

IOP :

A= TMS
B= TMS
X
LOAD MAR
ALU
CONT
X
X

Cn= 1 F= A+0 B <- F

D= X Y= A Q No

IPO CALL8 ALU :

STACK:
M :

BUS :

uPU :

IPU :

IOP :

X

X
WRITE
IC
CONT
SAVEIC
X
Save the return address.

1F1 CALL9 ALU :

STACK:
M :

BUS :

X
X
X
IR

uPU : CJP ; PL = DLY1 ; COND = forced
IPU : IR = IR1 ; JUMP ; forced
IOP : X

Load the address of the procedure into
the Instruction Counter/ then give the
mapping logic time to decode it
destination instruction.

1F2 CALIN3 ALU : A= TMS Cn= 1 F= A+0 B <- F
B= TMS D = X Y= A Q No

STACK

:

X
M : LOAD MAR
BUS : ALU
uPU : CONT
IPU : X
IOP : X
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IF 3 CALIN4 ALU I

STACK:
M :

BUS
UPU I

IPU
IOP

1F4 CALIN5 ALU

STACK

:

M i

BUS :

UPU
IPU
IOP

1F5 CALIN6 ALU :

STACK I

M :

BUS
UPU :

IPU
IOP :

A= X
B= TEMP
X
WRITE
ALU
CONT
X
X

A= TMS
B= TMS
X
LOAD MAR
ALU
CONT
X
X

A= X
B= LLTOP
X
WRITE
ALU
CONT
X
X

Cn= X
D= X

Cn= 1

D= X

Cn=
D =

F= BVO
Y= F

F= A+0
Y= A

BVO
F

B NO
Q No

B <- F
Q No

B NO
Q No

1F6 CALIN7 ALU

STACK

;

M
BUS
UPU
IPU
IOP

1F7 CALIN8

IF 8 CALIN9

ALU :

STACK:
M :

BUS :

UPU :

IPU :

IOP :

ALU :

STACK

:

M :

BUS :

UPU :

IPU :

IOP :

A= TMS Cn= 1

B= TMS D= X
X
LOAD MAR
ALU
CONT
X
X

X
X
WRITE
IR
CONT
SAVEIC
X

A= DISP Cn=
B= X D= IR
X
LOAD MAR
ALU
CJS ; PL = ADDEV1
IR = MASKED* I R2) ;

IR <- IM(IC)
X

F= A+0
Y= A

F= A+D
Y= F

B <- F
Q No

B NO
Q NO

; COND = forced
IC <- IC+1 ;
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Get the address of the variable that
contains the address of the transfer
point.

1FA CALIN10 ALU :

STACK

:

M :

A= X
B= X
X
READ

Cn= X F= DVO
D= BUS Y= None

B NO
Q <- F

BUS :

UPU :

H
CJS ; PL = SCOPE1 ; COND = force

IPU :

IOP :

X
X
Jump to the subroutine that establishes
the scope of the destination given the
address of a transfer point in the Q.

register.
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XIII. CONCLUSIONS

This paper presented the design of a computer that could

be built. There are some features that need to be added to the

design before the machine could be considered complete.

Interrupt capabilities and the ability to manipulate characters

as single byte values are the two features that are most

notably absent.

There is room in each data word for four character

values. If the characters were packed four to a word, the

memory requirements for a character string would be reduced by

three-fourths. Implementation of this character packing would

require changes to the memory, the fast stack control logic,

and the ALU. Each reference to the top stack element would

require knowledge of the type of operand. This could be done

with additional instructions, e.g. EQUAL CHAR to compare the

top two stack bytes for equality. The stack would have to grow

or shrink by either four bytes or one byte. The design would

have to handle the case of a partial word used for characters

being followed by a numeric value. The numeric value would

have to be stored such that part of it filled the remaining

portion of the partial word, or the hardware would have to

detect the "hole" in the stack.

Interrupts should also be added to make this machine

complete. One simple way of doing this would be to decode the

control signals to the micro-sequencer (the I's). When the

code for a JUMP VIA MAP instruction is detected, the code for a
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CONDITIONAL JUMP VIA VECTOR could be injected if there were an

interrupt waiting. The address that is passed to the micro-

sequencer could always be the same address (the micro-code

routine would have to figure out the interrupting device), or

the interrupting device cause the interrupt service routine's

address to be put on the VECT input lines.

Other additions that would make the machine more useful

include a micro-code garbage collection routine. The routine

could be triggered by an interrupt signalling that the heap had

become full.

This design has not been built or simulated, nor has the

micro-code given been tested or simulated.
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ABSTRACT

This paper presents the architecture and design of a

computer supporting the high level, block structured

programming languages. The design is aimed at the reader who

has some background in digital design procedures. It includes

such features as micro-programmed control, separate instruction

and data memories, a built in stack and heap mechanism, full

variable scoping, a high level machine instruction set, and

bit-slice implementation. These features should make the

machine useful as an educational tool.

The Arithmetic and logic unit is built around the AMD2901

4 bit slice. Four of the on-board registers in the 2901 are

used as a fast stack. The remaining registers are used as

temporaries, constants, and to define the stack in memory.

The Memory allows upto 4 Gwords of 32 bits each. There

is no byte or half word addressing.

The instruction processing unit controls the fetching of

the macro instructions. The instructions are stored in the

Instruction Memory. The instruction fetches are pipelined, so

the next instruction is waiting at the inputs to the

Instruction Register when the current instruction finishes.

The micro-processing unit controls the fetching of the

micro-instructions. The macro-instruction opcode is mapped

into a micro-code entry address. If the fast stack contains



too many or too few operands for the desired operation, the

mapping logic forces a fix address instead of the mapped

opcode. The micro-instructions are stored in the Control

Store. They are latched into the Pipeline register which

supplies the control signals for the machine.

The stack controller maintains the pointers and counters

that define the fast stack in the ALU registers. The memory

stack is defined by pointers that are kept in the ALU.

The input/output processor handles the 10 and provides

the console interface. The console is the master controlling

device. It can halt the rest of the system and load a value

into any of the three memories, load a value into either of the

pipelne registers, load a value into the macro-instruction

counter, or force the execution of a single micro-instruction.

The 10 processor allows the input or output to take place in

parallel with the program execution.

Features that make this machine useful, especially in an

educational aspect are the architecture based on the stack

concept, the support for variable scope at the machine level

and the high level machine instruction set.


