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Abstract

This report is an exploration into the basics of the uniform distribution of sequences and

a proof of Weyl’s Criterion. After describing what it means for a sequence to be uniformly

distributed, we develop the tools to prove Weyl’s Criterion. In order to do this, we split

Weyl’s Criterion into two theorems and prove each of them. Finally, we will show an example

which applies Weyl’s Criterion to prove that a certain sequence of irrational numbers is

uniformly distributed.
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Chapter 1

Uniform Distribution

The concept of uniform distribution generally can be described as a constant probability

that exists within a set. Each element of the set possesses an equal share of the distribution

where, if one were to be chosen at random, then all elements would have equal probability

of being chosen. In addition, because each element is equal within the distribution, this

conveys the idea that a uniform distribution creates an ideal situation.

Suppose that (si)i∈N is a sequence of real numbers in the interval I = [0, 1). For every

natural number n and any subset E of I, we write

Z(E, n) =
n∑
i=1

χE(si),

where χE is the characteristic function for the set E. Z(E, n) counts the number of terms

among s1, s2, ..., sn that lie in the set E.

Definition 1. The sequence of real numbers (si)i∈N in I is said to be uniformly distributed

in I if for every α, β ∈ R satisfying 0 ≤ α < β ≤ 1, we have

lim
n→∞

Z([α, β), n)

n
= β − α. (1.1)

In order for a sequence to be uniformly distributed, the number of terms falling in a
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subinterval must be proportional to the length of that interval.

Suppose that the real sequence (si)i∈N in I is uniformly distributed in I. Let f : [0, 1]→ R

be a continuous function. Suppose that the natural number n is large. Then one can expect

that the discrete average

1

n

n∑
i=1

f(si)

of the function f over the first n terms of the sequence (si)i∈N may not differ significantly

from the continuous average

∫ 1

0

f(x)dx

of the function f over the interval [0, 1].

For a real number x, bxc denotes the largest integer less than or equal to x and {x} =

x − bxc is the fractional part of x. A sequence of real numbers (xn) is called uniformly

distributed mod 1 provided that ({xn}) is uniformly distributed in I = [0, 1].

Let χ[α,β) be the characteristic function of the interval [α, β) ⊆ I. Then the definition of

uniformly distributed mod 1 can be written in the form

lim
N→∞

1

N

N∑
n=1

χ[α,β)({xn}) =

∫ 1

0

χ[α,β)(x)dx. (1.2)

This observation, along with an approximation technique, gives us the following theorem.2

Theorem 1.1. The sequence (xn), with n = 1, 2, . . . , of real numbers is uniformly distributed

mod 1 if and only if for every real-valued continuous function f defined on the closed unit

interval I = [0, 1] we have

lim
N→∞

1

N

N∑
n=1

f({xn}) =

∫ 1

0

f(x)dx. (1.3)
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Proof. Let (xn) be uniformly distributed mod 1, and let f(x) =
k−1∑
i=0

diχ[αi,αi+1)(x) be a step

function on I, where 0 = α0 < α1 < . . . < αk = 1 and di ∈ R. Since (xn) is uniformly

distributed mod 1, then we know (1.2) holds for the characteristic function of an interval in

I. Therefore we have

lim
N→∞

1

N

N∑
n=1

f({xn}) = lim
N→∞

1

N

N∑
n=1

k−1∑
i=0

diχ[αi,αi+1)({xn})

=
k−1∑
i=0

di lim
N→∞

1

N

N∑
n=1

χ[αi,αi+1)({xn}) =
k−1∑
i=0

di

∫ 1

0

χ[αi,αi+1)(x)dx

=

∫ 1

0

k−1∑
i=0

diχ[αi,αi+1)(x)dx =

∫ 1

0

f(x)dx.

Thus for every such f , equation (1.3) holds.

Now assume that f is a real-valued continuous function defined on I. Given any ε > 0,

there exist, by the definition of the Riemann integral, two step functions, say f1 and f2, such

that f1(x) ≤ f(x) ≤ f2(x) for all x ∈ I and
∫ 1

0
(f2(x) − f1(x))dx ≤ ε. We are sandwiching

our function f in between these two step functions, f1 and f2, which have a very small area

between them. Then we have the following:

∫ 1

0

f(x)dx− ε ≤
∫ 1

0

f1(x)dx = lim
N→∞

1

N

N∑
n=1

f1({xn}).

Since f1(x) ≤ f(x) ≤ f2(x) and the area between f1 and f2 is at most ε, then
∫ 1

0
f(x)dx− ε

must be smaller than
∫ 1

0
f1(x)dx. The equality above comes from the fact that (1.3) holds

for step functions, which we can apply because we are assuming (xn) is uniformly distributed

mod 1. Because f1(x) ≤ f(x) ≤ f2(x) on [0, 1),
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lim
N→∞

1

N

N∑
n=1

f1({xn}) ≤ lim inf
N→∞

1

N

N∑
n=1

f({xn}) ≤ lim sup
N→∞

1

N

N∑
n=1

f({xn}) ≤ lim
N→∞

1

N

N∑
n=1

f2({xn}).

We use the lim inf and lim sup here, because we do not know for sure if the limit exists for

this function f . Whether lim
N→∞

1

N

N∑
n=1

f({xn}) exists or not, this chain of inequalities still

holds. Also,

lim
N→∞

1

N

N∑
n=1

f2({xn}) =

∫ 1

0

f2(x)dx ≤
∫ 1

0

f(x)dx+ ε.

Once again, the equality above comes from the fact that (1.3) holds for step functions; and

since f1(x) ≤ f(x) ≤ f2(x) and the area between f1 and f2 is at most ε, then adding ε to∫ 1

0
f(x)dx must give us a quantity that is greater than

∫ 1

0
f2(x)dx.

Looking at the big picture of the chain of inequalities above, we get the result that

lim inf
N→∞

1

N

N∑
n=1

f({xn}) and lim sup
N→∞

1

N

N∑
n=1

f({xn}) are at most 2ε apart. If we shrink ε small

enough, then these limits become equivalent and our chain of inequalities becomes a chain

of equalities. Thus in the case of a continuous function f , the relation

lim
N→∞

1

N

N∑
n=1

f({xn}) =

∫ 1

0

f(x)dx

holds, and we have completed the first half of our proof.

Conversely, let a sequence (xn) be given, and suppose that (1.3) holds for every real-

valued continuous function f on I. Let [α, β) be an arbitrary subinterval of I. Given any

ε > 0, there exist two continuous functions, say g1 and g2, such that g1(x) ≤ χ[α,β)(x) ≤ g2(x)

for x ∈ I and at the same time
∫ 1

0
(g2(x)− g1(x))dx ≤ ε. Then we have

β − α− ε ≤
∫ 1

0

g2(x)dx− ε ≤
∫ 1

0

g1(x)dx = lim
N→∞

1

N

N∑
n=1

g1({xn}).
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The function g2(x) = 1 on [α, β). Since [α, β) has a length of β−α, then β − α ≤
∫ 1

0

g2(x)dx.

Since g1(x) ≤ g2(x) and the area between g1 and g2 is at most ε, then subtracting ε from∫ 1

0
g2(x)dx must result in a quantity smaller than

∫ 1

0
g1(x)dx. The equality above comes from

our assumption that (1.3) holds for continuous functions. Because g1(x) ≤ χ[α,β)(x) ≤ g2(x)

on [0, 1) and

Z([α, β), N)

N
=

1

N

N∑
n=1

χ[α,β)({xn}),

then we get

β − α− ε ≤ lim
N→∞

1

N

N∑
n=1

g1({xn}) ≤ lim inf
N→∞

1

N

N∑
n=1

χ[α,β)({xn}) = lim inf
N→∞

Z([α, β), N)

N

≤ lim sup
N→∞

Z([α, β), N)

N
= lim sup

N→∞

1

N

N∑
n=1

χ[α,β)({xn}) ≤ lim
N→∞

1

N

N∑
n=1

g2({xn})

=

∫ 1

0

g2(x)dx ≤
∫ 1

0

g1(x)dx+ ε ≤ β − α + ε.

The last few steps in the chain of inequalities follow by similar arguments to those made

earlier. As we make ε arbitrarily small, the above lim inf and lim sup become equivalent and

the chain of inequalities turns into a chain of equalities. Thus we have that (1.2) holds, and

the sequence is uniformly distributed mod 1. Therefore, our proof is complete.

Corollary 1. The sequence (xn) is uniformly distributed mod 1 if and only if for every

complex-valued continuous function f on R with period 1 we have

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x)dx. (1.4)
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Proof. Assume the sequence (xn) is uniformly distributed mod 1, and assume f(x) is a

complex-valued function with period 1. Then we can split it up into the sum of its real and

imaginary parts. Say f(x) = fr(x) + ifi(x) where fr(x) is the real part of f(x) and fi(x) is

the imaginary part, then we have

∫ 1

0

f(x)dx =

∫ 1

0

fr(x) + ifi(x)dx =

∫ 1

0

fr(x)dx+ i

∫ 1

0

fi(x)dx.

Then we can apply Theorem 1.1 to the real and imaginary parts of f , since both fr and fi

are real-valued continuous functions.

∫ 1

0

fr(x)dx+ i

∫ 1

0

fi(x)dx = lim
N→∞

1

N

N∑
n=1

fr({xn}) + i lim
N→∞

1

N

N∑
n=1

fi({xn})

= lim
N→∞

1

N

N∑
n=1

(fr({xn}) + ifi({xn})) = lim
N→∞

1

N

N∑
n=1

f({xn}).

The periodicity condition implies that f({xn}) = f(xn). Therefore,

lim
N→∞

1

N

N∑
n=1

f({xn}) = lim
N→∞

1

N

N∑
n=1

f(xn).

Thus we obtain (1.4).

Conversely, we can note that in the second part of the proof of Theorem 1.1, the real-

valued continuous functions g1 and g2 can be chosen in such a way that they satisfy the

additional requirements g1(0) = g1(1) and g2(0) = g2(1), so that (1.4) can be applied to the

periodic extensions of g1 and g2 to R. For i ∈ {1, 2}, the periodicity condition implies that

gi({xn}) = gi(xn), so we get

lim
N→∞

1

N

N∑
n=1

gi({xn}) = lim
N→∞

1

N

N∑
n=1

gi(xn) =

∫ 1

0

gi(x)dx.

Then, following the argument in the second half of the proof of Theorem 1.1,
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lim
N→∞

Z([α, β), N)

N
= β − α,

and the sequence (xn) is uniformly distributed mod 1.
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Chapter 2

Weyl’s Criterion

Hermann Weyl was a German mathematician and physicist, active in the early 1900’s. He

has made many contributions to multiple fields in both mathematics and physics, such as

the distribution of eigenvalues, geometric foundations of manifolds, topological groups, Lie

groups, representation theory, and quantum mechanics. The theorem of his that is the focus

of this paper, Weyl’s Criterion, was a fundamental step in analytic number theory. His

original publication [in German] of this theory is cited here3. In this chapter, we will prove

Weyl’s Criterion using the tools we have developed in Chapter 1 and see an application of

the criterion.

Theorem 2.1 (Weyl’s Criterion). A real sequence (si)i∈N in the interval I = [0, 1] is uni-

formly distributed in I if and only if for every non-zero integer h, we have

lim
n→∞

1

n

n∑
i=1

e(hsi) = 0.

Note that e(x) denotes e2πix = cos(2πx) + isin(2πx). We will prove Weyl’s Criterion

loosely following Chen’s 2012 lecture notes4 and L. Kuipers and H. Niederreiter2 by dividing

the criterion into two parts, Corollary 1 and Theorem 2.3. As pointed out by Kuipers and

Niederreiter, the necessity in Weyl’s Criterion follows directly from Corollary 1 (which we

will justify below), and so the remaining challenge is to prove the other direction.
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For the necessity direction, the collection of exponential functions we are considering is

a sub-collection of all continuous functions f : [0, 1] → C satisfying f(0) = f(1), so we are

able to apply Corollary 1. Note that for every non-zero integer h, we have

∫ 1

0

e(hx)dx = 0. (2.1)

We will quickly justify this fact by using the Fundamental Theorem of Calculus:

∫ 1

0

e(hx)dx =

∫ 1

0

e2πihxdx =
e2πihx

2πih

∣∣∣∣∣
1

0

=
e2πih(1)

2πih
− e2πih(0)

2πih
=

1

2πih
(e2πih − 1).

Since h is a non-zero integer, 2πih will always be a multiple of 2πi, so e2πih will always land

on the point (1, 0) on the unit circle. Thus e2πih = 1, and

1

2πih
(e2πih − 1) =

1

2πih
(1− 1) =

1

2πih
(0) = 0.

When we assume (si) is uniformly distributed in I, Corollary 1 implies

lim
N→∞

1

n

n∑
i=1

e(hsi) =

∫ 1

0

e(hx)dx = 0.

Therefore, we have the first direction of the proof of Weyl’s Criterion.

We will simply state the Weierstrass Approximation Theorem for trigonometric polyno-

mials since it supports our proof below for Theorem 2.3. The full proof can be found in

Chaudhury’s notes5.

Definition 2. A trigonometric polynomial, p(x), is a finite linear combination of func-

tions sin(nx) and cos(nx) with n ∈ N. The function p may be written in the form

p(x) = a0 +
N∑
n=1

an cos(nx) + i
N∑
n=1

bn sin(nx) = a0 +
N∑
n=1

cne(nx).
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Theorem 2.2 (Weierstrass Approximation Theorem). 5 If f is a continuous complex-valued

function in R that is 1-periodic and if any ε > 0 is given, then there exists a trigonometric

polynomial p(x) such that

|f(x)− p(x)| < ε

for all x ∈ R. (I.e. any continuous, 1-periodic function can be uniformly approximated by

trigonometric polynomials to any degree of accuracy.)

In the proof below, we will be approximating a continuous 1-periodic function f : [0, 1)→

C with a series of trigonometric polynomials, namely p(x) = c0 +
k∑
j=1

cje(hjx), to show (1.4)

holds.

Theorem 2.3. Suppose that (si)i∈N is a real sequence in I = [0, 1]. Suppose further that for

every non-zero integer h, we have

lim
n→∞

1

n

n∑
i=1

e(hsi) = 0.

Then for every continuous function f : [0, 1]→ C satisfying f(0) = f(1), we have

lim
n→∞

1

n

n∑
i=1

f(si) =

∫ 1

0

f(x)dx.

Proof. Suppose that f : [0, 1]→ C is continuous and satisfies f(0) = f(1). Let ε > 0. Then

there exists a trigonometric polynomial p : [0, 1]→ C, i.e. a linear combination of functions

of the type e(hx) where h ∈ Z, such that

sup
x∈[0,1]

∣∣∣f(x)− p(x)
∣∣∣ < ε

3
. (2.2)

Note that ∣∣∣∣∣ 1n
n∑
i=1

f(si)−
∫ 1

0

f(x)dx

∣∣∣∣∣ ≤ (2.3)
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∣∣∣∣∣ 1n
n∑
i=1

f(si)−
1

n

n∑
i=1

p(si)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

p(si)−
∫ 1

0

p(x)dx

∣∣∣∣∣+

∣∣∣∣∣
∫ 1

0

p(x)dx−
∫ 1

0

f(x)dx

∣∣∣∣∣.
Since we know (2.2), we see that the first and last terms on the second line of (2.3) are each

less than ε
3
. We just need to show that the second term is also less than ε

3
for all sufficiently

large n:

∣∣∣∣∣ 1n
n∑
i=1

p(si)−
∫ 1

0

p(x)dx

∣∣∣∣∣ < ε

3
.

Let’s suppose that

p(x) = c0 +
k∑
j=1

cje(hjx), (2.4)

where c0 ∈ C, c1, . . . , ck ∈ C\{0} and h1, . . . , hk ∈ Z\{0}. Then we have

1

n

n∑
i=1

p(si)−
∫ 1

0

p(x)dx =
1

n

n∑
i=1

(
c0 +

k∑
j=1

cje(hjsi)
)
−
∫ 1

0

(
c0 +

k∑
j=1

cje(hjx)
)
dx

=
1

n

n∑
i=1

c0 +
1

n

n∑
i=1

k∑
j=1

cje(hjsi)−
∫ 1

0

c0dx−
∫ 1

0

k∑
j=1

cje(hjx)dx

=
1

n

n∑
i=1

k∑
j=1

cje(hjsi)−
∫ 1

0

k∑
j=1

cje(hjx)dx

=
k∑
j=1

cj

(
1

n

n∑
i=1

e(hjsi)−
∫ 1

0

e(hjx)dx

)
.

By (2.1), we know
∫ 1

0
e(hjx)dx = 0 for every j = 1, . . . , k. Then using the triangle
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inequality, we get

∣∣∣∣∣ 1n
n∑
i=1

p(si)−
∫ 1

0

p(x)dx

∣∣∣∣∣ ≤
k∑
j=1

|cj|

∣∣∣∣∣ 1n
n∑
i=1

e(hjsi)

∣∣∣∣∣. (2.5)

For every j = 1, . . . , k, it follows from the hypotheses that there exists nj ∈ N such that for

every n > nj, we have ∣∣∣∣∣ 1n
n∑
i=1

e(hjsi)

∣∣∣∣∣ < ε

3k|cj|
. (2.6)

Let n0 = max{n1, . . . , nk}. Then for every n > n0, taking (2.5) and (2.6) into considera-

tion, we have

∣∣∣∣∣ 1n
n∑
i=1

p(si)−
∫ 1

0

p(x)dx

∣∣∣∣∣ ≤
k∑
j=1

|cj|

∣∣∣∣∣ 1n
n∑
i=1

e(hjsi)

∣∣∣∣∣ <
k∑
j=1

|cj|
ε

3k|cj|
=

k∑
j=1

ε

3k
=
ε

3

which is what we wanted. Therefore,

∣∣∣∣∣ 1n
n∑
i=1

f(si)−
∫ 1

0

f(x)dx

∣∣∣∣∣ ≤

∣∣∣∣∣ 1n
n∑
i=1

f(si)−
1

n

n∑
i=1

p(si)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

p(si)−
∫ 1

0

p(x)dx

∣∣∣∣∣+

∣∣∣∣∣
∫ 1

0

p(x)dx−
∫ 1

0

f(x)dx

∣∣∣∣∣

<
ε

3
+
ε

3
+
ε

3
= ε,

implying that

lim
n→∞

1

n

n∑
i=1

f(si) =

∫ 1

0

f(x)dx.
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Combining our conclusions from Theorem 2.3 and Corollary 1, we get that if (si)i∈N is a

sequence of real numbers in I satisfying

lim
n→∞

1

n

n∑
i=1

e(hsi) = 0

∀h ∈ Z \ {0}, then (si)i∈N is uniformly distributed in I. This completes our proof of Weyl’s

Criterion.

2.4 Application of Weyl’s Criterion

The following describes an example of a certain irrational number sequence which is uniformly

distributed:

Theorem 2.5. Let θ be a fixed real number. Then the sequence ({iθ})i∈N is uniformly

distributed in the interval [0, 1) if θ is irrational.

Proof. To show this, we can use Weyl’s Criterion. For every non-zero integer h, we have

∣∣∣∣∣ 1n
n∑
i=1

e(h{iθ})

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

e(hiθ)

∣∣∣∣∣ =

∣∣∣∣∣ 1n e(h(n+ 1)θ)− e(hθ)
1− e(hθ)

∣∣∣∣∣ ≤ 2

n|1− e(hθ)|
=

1

n| sin(πhθ)|
.

The last rational expression in the above equation clearly approaches zero as n approaches

infinity, since sin(πhθ) cannot equal zero with θ being an irrational number and h a non-zero

integer. Thus

1

n

n∑
i=1

e(h{iθ})→ 0

as n→∞. Then by Weyl’s Criterion, the sequence ({iθ})i∈N is uniformly distributed in the

interval [0, 1) with the condition of θ being irrational.
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This theorem tells us that concrete examples like

({n ·
√

2})∞n=1 = ({
√

2}, {2
√

2}, {3
√

2}, {4
√

2}, . . . )

are uniformly distributed in [0, 1). We can pictorially show what this distribution looks like.

The following graphs plot the first ten points in the sequence ({n ·
√

2})∞n=1, then the first

hundred points. Note that the horizontal axis is the value of n, starting at n = 1, and the

vertical axis shows the value of the point in the sequence which corresponds to that n.

First ten points:

First hundred points:
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