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INTRODUCTION

Wiener introduced a fresh approach to the study of infor-

mation transmission in the presence of perturbing noise in 19L(.2.

His pioneering work showed that the two problems, prediction of

random signals, and separation of random signals from random

noise, lead to the Wiener-Hopf integral equation. He also pre-

sented the solution for the special case of stationary statis-

tics and rational spectra. Many extensions and generalizations

of Wiener's work followed. Most of the work has been done in

the frequency domain using transform methods to obtain the spec-

ifications of a linear dynamical system which accomplishes the

prediction and filtering of the random signals. These ideas

form the so-called "Classical Filtering Theory". During the

past seven years, many new techniques and concepts have been

introduced in this area of study because of the advances in

digital computer technology and the challenge of aerospace tech-

nology. Most of this work has been done in the time domain using

the concepts of state and matrix theory. These ideas form what

is called "Modern Filtering Theory". There is no doubt that

Kalman's work is the most notable. In i960, Kalman presented a

new approach to the standard filtering and prediction problems.

His work combined two well known ideas. One is that a dynamical

system is described by the "state-transition" method. The other

is that linear filtering is regarded as an orthogonal projection

in Hilbert space. (Hilbert space is a Banach space whose norm

has the parallelogram property, Ref. 18.)



He also assumed that the required statistical data is given in

such a form that determination of the optimal filter is highly

simplified, with a single equation covering all cases. This

single equation is called the variance equation; it is a non-

linear differential (difference) equation of the Riccati type.

Hence the variance equation is closely related to the Hamiltonian

differential equations of the calculus of variations. An exact

formula for the solution of the variance equation is available.

The actual solution consists of the specification of the differ-

ential equation governing the optimal filter.

Wiener described the random process by its power spectral

density or correlation function. Kalman assumes the random pro-

cess to be Markovian. In other words, Kalman describes the

linear dynamic system by a set of first-order differential (or

difference) equations and the Wiener problem is approached from

the point of view of conditional distributions. All statistical

calculations and results are based on means and covariances. No

other statistical data are needed.

FUNDAMENTALS OP KALMAN FILTERING

Notation

Vectors will be denoted by small underlined letters:

u, v, . . . , x, y_, z with coordinates u^, v-j_, . . ., x-j_, y^, z^.

Matrices will be denoted by underlined Roman and Greek capitals:

F, G, . . . , (5, P with elements fji, gji* • • •> Pij- Tiie unit



matrix is I; the prime denotes the transposed matrix. Constants

will be denoted by small Greek letters. Time will be denoted by

t, tg, t-p or i. These may be arbitrary real numbers (contin-

uous time case) or arbitrary integers (discrete time case). The

inner product of x and y_ is denoted by x'y . The norm ||x|| i- s

l/2 l/2
(x'x) or (x, x) • The quadratic form x'Ax ^ s denoted by

11 n 2
|x

J

A, if A is a symmetric nonnegative definite matrix. Numer-

ical quantities will always be real numbers. The symbol e(1

denotes the expectation operator. Covariance matrices are de-

noted by cov |x, x and covfx, y_~|, where

cov [x, xj = Ef(.x - E fx))(x - E (x}) '!

= Efx, x'} if e[x| = 0.

cov [*> z] = e{(x - Ejxj)(y_ - E[ZJ)')

= E[xv_'| if Efxl = and eM = 0.

Preliminaries

A linear dynamical system governed by a difference equation

(discrete time case) can always be described in the standard

form.

x(t + 1) =|(t + 1, t)x(t) +A(t + 1, t)u(t) (1)

The output equation is

£(t) = H(t)x(t)
# (2)



The observed signal is

z(t) = j(t) + v(t) = H(t)x(t) + v(t)
#

(3)

A linear dynamical system governed by an ordinary differ-

ential equation (continuous time case) can always be described

in the standard form.

dx— = F(t)x + G(t)u(t) (k)
dt

The output equation is

y_(t) = H(t)x(t)
§ (5)

The observed signal is

z(t) = y(t) + v(t) =H(t)x(t) +v(t)
<

(6)

In both cases, x is an n-vector, called the state. The co-

ordinates x
±

of x are called state variables. u(t) is an m-

vector, called the control function. It is the input of the

system. v(t) is a p-vector. It is an additional input. It

reflects the fact that physical measurement of observables can

never be made with infinite precision. It is the measurement

noise. v_(t) is the output of the system. It is also a p-vector

whose components are linear combinations of the state variables.

_z(t) is the observed value of the output of the system. It is

a p-vector too. P(t) is an n x n matrix. The structure of this

matrix decides the nature of the state transition matrix; thus

the nature of all solutions, whether forced or unforced, depend

upon this matrix. G(t) is an n x m matrix. It is a coupling



matrix, as the structure of this matrix determines how the input

is coupled to the various state variables. H(t) is a p x n

matrix. It is also a coupling matrix, coupling the state vari-

ables to the output. (j)(t) is a transition matrix. Its proper-

ties will be discussed later. Mt) is an n x m matrix. If u(t)

is piecewise constant, then

,t+l
A(t + 1, t) = f $(t + 1, i:)G(T)dT: . (7)

't

If Q> H> Z
1 8re constant, then the system is said to be

stationary; if u(t) = 0, then the system is free.

The general solution of equation (1^.) has the form

rt
x(t) = $(t, t )x(t ) +

J
f(t, T)G('r)u('u)dT , (8)

t

where the transition matrix is characterized by the properties

(Ref. 10)

d— <jj(t, t ) = F(t)$(t, t ) , (9)
dt

~

|(t , t ) = I for all t
, (10)

inverse rule

|"
<

= |(t , tx ) for all t , t
x , (11)

product rule

|(t 2 , t ) = |(t 2 , t 1 )|(t 1 , t ) . (12)

The last property of <j) justifies its being called a

transition matrix. Because of the manner in which (£ is defined,

this matrix can never be singular.



If F is a constant matrix, .then

|(t, t ) = exp P(t - t ) = 'Z
(F(t - to)]

1— (13)
i=0 i J

There is no simple way to compute <j) explicitly when P is

not constant.

The first term of equation (8) represents the initial con-

dition response of the system state variables. The second term

represents the forced response.

If the u(t) is piecewise constant, then any linear differ-

ential equation may be converted into a linear difference equa-

tion in such a way that at integer values of time the solutions

of the differential equation agree with the solution of the

difference equation.

Statement of the Problem

The statistical correlation between random signals observed

over some interval of time is explained by the presence of a

dynamic (linear or nonlinear) system between the primary random

source and the observer. Hence random processes may be thought

of as the output of a dynamic system (linear or nonlinear) ex-

cited by an independent gaussian random process. If the ob-

served random signal z(t) is also gaussian, one may assume that

the dynamic system which is between the observer and the pri-

mary source u(t) is linear.

Consider a linear dynamical system subjected to random dis-

turbances and measurement noise. Assume that the state x(t) of



the system cannot be observed directly but only through the out-

put y_(t), which can be measured only in the presence of additive

gaussian white noise v(t). In addition, the system is subjected

to a random input disturbance in the form of gaussian white

noise u(t). Assume that physical relationships between the state

x(t) and the driving noise u(t) and between the observed values

_z(t) and the state x(t) and the measurement noise v(t) are given.

The statistical characteristics of the driving noise u(t) and

measurement noise v(t) are also assumed. Then, from the actually

observed values, z(i) , over some interval of time, t ^ t ~ t,

one wants to find the optimal (in some sense) estimate x^-,) of

x(t,) at time t-, . In the case where t-, .
< t, the problem is re-

ferred to as a data-smoothing (interpolation) problem; if

t-, = t, it is called the filtering problem; and if t-, > t, it

is called the prediction (extrapolation) problem. Collectively,

these cases are referred to as the estimation problem.

Kalman made three key assumptions, which are: (A-,) The

original message x(t) is assumed to be a random process gener-

ated by a mathematical model of the type described by either

equation (1) or equation (ij.) . (A 2 ) The observed signal _z(t) is

an additive combination of the output signal and a white noise

described either by equations (3) or (6). (Ao) The measurement

of _z(t) starts at some fixed instant tQ (which may be - °^ , at

which time cov x(tQ ) , x^q) i -

s known.

From these three assumptions, there are two cases to be dis-

cussed. These are the case where the message is a Gauss-Markov Se-

quence and the case where the message is a Gauss-Markov Process.
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The message is a Gauss-Markov Sequence generated by the

recursive relation

x(t + 1) = <jj(t + 1, t)x(t) + A(t + 1, t)u(t)
t

(1)

The observed signal (which is message plus noise) is

z(t) = y_(t) + v(t) = H(t)x(t) + v(t)
m

(3)

u(t) is a gaussian white noise sequence; u(t) evaluated at

different times is independent. Hence

cov u(t
1 ), u(t 2 )]

= if tx / t
2 . (11;)

u(t) has zero mean, that is,

E [u(t)j =

Then the covariance matrix is

for all t (15)

cov u(t), u(t) Q(t) for all t. (16)

x(t) is a gaussian random sequence with zero mean and arbi-

trary covariance, independent of u(t). x(t) satisfies the Mar-

kov property, that is, the conditional probability distribution

of x(t) , given x(i) , t^ ^ i <t, is identical with the proba-

bility distribution of x(t) given the last observation x(t - 1)

(Ref. 6).

Pr fx(t) < Z^
(
x(t - 2) . . . x(t

Q )j

= Pr (x(t) < Z
1
|x(t - 1)) (17)

Hence x(t) is a Gauss-Markov sequence.



"

if t]_ j- t 2 (18)

for all t (19)

(20)

for all t (21)

• _z(t) is also a gaussian random sequence, because gaussian

random signals remain gaussian after passing through a linear

system.

v(t) is also a gaussian white noise with zero mean and co-

variance R(t), independent of u(t).

covpvU-j^) , v( t
2 )J

=

E {v(t)| =

cov[v(t), v(t)] = R(t)

cov|~u(t) , v(t)
J

=

Thus a random sequence may be thought of as the output of

a dynamical system excited by two independent gaussian random

sequences.

A Gauss-Markov Process is the limiting case of Gauss-Markov

sequence when the interval between successive values of time

tends to zero. Then equations (l) and (3) convert to the con-

tinuous time case as follows:

dx— = F(t)x(t) + G(t)u(t) (M
dt

~ ^'

z(t) = y_(t) + v(t) = H(t)x(t) + v(t) (6)

The random processes u and v are defined in such a way that at

integer values of time the random processes x and z generated by

equations (i|) and (6) agree with those generated by equations

(1) end (2). Hence the sample functions are assumed to be piece-

wise constant over intervals of length 1.
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u(T) = u(T + t)

v(T) = v(T + t)

where T is an Integer and

£ T « 1.

It is assumed that

E {u(t)J =

E (v(t)} =

E (u(t), u(t)) = Q(t)6(t - t)

ov[v(t), v(t)] = R(t)6(t - t)

and

oov v(t), u(t) = for all t, i

(22)

(23)

6(t) is the Dirac-delta function, which has the following

characteristic properties (Ref . 3)

:

a
r 1

6(t - t ) = — l(t - t )

dt L -'

where l(t) is a unit step function, and

J
6(t - t )dt = 6(t - tQ )dt

= 1/2

'-o© 'tQ

(2k)

(25)

and

CO

( f(t)6(t - t )dt =

f(t)6(t - t )dt =

f(t)6(t

1

" f(t )

2

t)dt = f(t) (26)

(27)

if t-j_ = tQ , or tg = tQ
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The values of the sample functions of u and v are to be

regarded as Dirac-delta functions of vanishing small areas.

Mathematically speaking, this definition of course is not rigor-

ous, since 6(t) is not a well defined function.

The block diagram of this system is shown in Fig. 2.

The estimation problem is formulated as follows. Given the

actually observed value of a random process _z(t) over some in-

terval of time, tQ
^ t ^ t, find the optimal estimate, x(t^),

of another related random process x(t, ) such that the estimate

x(t-i) minimizes the expected losses

E |e (L(x(t
1

) - $(t
1
))|z(T), t

Q
£ T « tjj (28)

or equivalently

E|L(x(t
1 )

- x(t
1
))|z(T), t

Q
<: t < t ) . (29)

The loss function L(£) is a scalar valued, positive, non-

decreasing function of the estimation error

5 = 2( t
i ) ' ^ (t

l } '

The loss function L(£) must satisfy

L(0) =

L(£
1 ) ^ L(§

2 ) ^

where £, ^
II §2 1^ ° •

Let x be an n-dimensional random vector with mean 5 an<^ distri-

bution function F( 5 ) . Suppose F( 3 ) has the following proper-

ties. F is symmetrical about its mean % .



-p

N

13

w

-^

4J

CO

CO

o
O
O

a
>
o
X
(h

CO

i

co

GO

CO

o
<H
o

C
o
•H
-P
a
+3

c
(D
CO

o

a.
CD

K

•p

"Si

CM

•H

P
1*1



±k

F(J - 3) = 1 - P(l - I)

convex for 5. ^ ^.

P(\ Jn + (1 - X)5
12) * XP( J n ) + (1 - \)P( 5 i2 )

for all ^ lx , ? i2
<^ 3 1

and ^ \ ^ 1 .

Then the estimate x(t-i) which minimizes the expected loss

is the conditional expectation

x(t
1 ) = x(t

1 |t) = E f x(t x )| z(t), t ^ t £ t? (30)

If the loss function is defined by the mean squared error,

i.e.,

L(£) = (i, €) = ([x -
|], [x - x]) = r ( Xi - Xi )

2

then the optimal estimate is also the conditional expectation,

x(tx ) = x(ta |t) = Efx(t 1 ) z(t) t <^ t ^ t)

without imposing the restrictions that the distribution function

F( 5 ) be both symmetric and convex (Ref . 8)

.

The conditional mean, which supplies the minimum expected

loss for many loss functions, plays an important role in the

filtering problem. Of course, if the conditional distribution

is known, the optimal estimate x(t) can be computed for any

loss function.

A g8ussian distribution is both convex and symmetric about

the mean. It is obvious that the optimal estimate is always the

conditional expectation £(1^ t) . The conditional probability
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distribution of a gaussian process is completely described by

its mean and covariance. If in addition the process is also

Markovian, then it suffices to know the mean and covariance at

one instant of time. The calculation of the optimal estimate

involves only the means and covariance matrices of the gaussian

process. Thus x(t^)= xCt^lt) is clearly the optimal estimate

for the class of all of the random processes with the same means

and covariance matrices as the gaussian process.

In the gaussian process, the optimal estimate x(t,)- of

x( t, ) is

x(tx ) = iUilt) = EJx(t 1 )| z(t), t £ T < t) (31)

where x(t-ift) is an unbiased estimate of x(t]_). That is,

EfxU-Llt)} = Efx(t
]
_)J

= 0.

Define

x(t
1
|t) = x(t

1 )
- x(ta t) (32)

where x(t-, t) is the error between the actual value x( t-,) an^

its conditional expectation. The conditional expectation of

gaussian random process x(t)is identical with the orthogonal

projection of x( t-, ) upon the sample space _z(T),t ^ t ^ t

(Ref. 8). Hence the optimal estimate x(t-,[t) of x(t-j) I s ^he

orthogonal projection x(t-i) on a linear manifold or vector space,

generated by z (t) , tQ
•£ t 5 t. x(t, t) will minimize the ex-

pected loss,

E-[L(x(t) -x(t|t))| =e["Z [x
±
(t) - x

i
(t|t)]

2

j
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That will be discussed in more detail in the continuous case.

By gaussianness, x(t]_|t) and xtt^Jt) are independent random

variables. The covariance matrix of x(t-j_|t) is defined by

PU-Jt) = cov[x(t 1 |t), xCt^t)] (33)

The quantities v(t|t), v(tjt), u(tjt) . . . z(t|t) are

defined similarly.

Solution of the Problem

In a Gauss-Markov sequence the message is a random sequence

generated by the equation

x(t + 1) = |(t + 1, t)x(t) + A(t + 1, t)u(t) .

Repeated use of the above equation yields

x(t +2) = |(t + 2, t + l)x(t +1) + A(t + 2, t + l)u(t + 1),

x(t + 3) - |(t + 3, t + 2)x(t + 2) + Mt + 3, t + 2)u(t + 2)

= |(t + 3, t + l)x(t + 1)

+ |(t + 3, t + 2)A(t + 2, t + l)u(t + 1)

+ |(t + 3, t + 3)A(t + 3, t + 2)u(t + 2)
,

x(t + k) = |(t + k, t + 3)x(t + 3) + 4(t + l+, t + 3)u(t + 3)

= |(t + i;, t + l)x(t + 1)

+ Mt + k, t + 2)a(t + 2, t + l)u(t + 1)



17

+ |(t + k, t + 3)A(t + 3, t + 2)u(t + 2)

+ |(t + k, t + i|.)A(t + I4., t + 3)u(t + 3)

1 (t+l^-l
= $(t + 1^, t + l)x(t + 1) + T~

TT=t+l

|(t + I4., ^ + 1)A(t 1 + 1, t 1 )u(t 1 ) .

Hence by induction

x(tx ) = |(t x , t + l)x(t + 1)

T-]_=t+l

for t-j_ ^ t + 2

tJS1 T
II $(t!, T

1 + 1)4(T
1

+ 1, T
1 )u(T1 )

(3k)

Taking conditional expectation of both sides with respect to

z(t), tQ < t <r t
, yields

E|x(t 1 ) |z(t), t <: t ^ t
J

= E^t-^ t + l)x(t + 1)

t l" 1 "~ %
+ Z l(tl, ^1 + D^(T 1 + l,T 1 ) U (T

1 ) Z (T), tQ <T,<tT 1=t+1
~ "~ U

)

since u(t) is independent of z(t) , t
Q
« t <• t, and eTuCt-,)] = 0.

x(tx |t) = |(t x , t + l)x(t + 1 t) for tx > t + 1 . . . (vd ).

Hence

This equation applies to the optimal prediction (extrapo-

lation) problem.. So far, no similarly simple formula is known

for data smoothing (interpolation) case, for t-, <^ t.

Supposing x(t[t - 1) is known. x(t + l|t) can be computed

by induction.

Consider the linear manifold M(t) generated by the



18

observation z(t ), . . . , z(t). This manifold can be decomposed

into two parts. One part is the space M(t - 1) generated by

z(t ), z(t + 1) . . . z(t - 1), while the second part is the

space N(t) generated by ^(t|t - 1), the component of z(t) that

is orthogonal to M(t - 1).

z(t|t - 1) = z(t) - H(t)x(t|t - 1) = H(t)x(t|t - 1) + v(t)
z

Two linear manifolds M(t - "l) and N(t) are said to be

orthogonal, if every vector in one manifold is orthogonal to

every vector in the other manifold. The two sets of gaussian

random variables are independent; hence the conditional expecta-

tions may be computed separately.

E(x(t + l)JM(t)] = Efx(t + 1) |M(t -
1)J

+ Efx(t + l)|N(t)}

Ejx(t + 1)1 z(t), t ^ -u ^ t = E^xU + 1)| z(t), t < T £ t - lj

+ EJxU + 1) z(tft - 1)\

Then

$(t + l|t) = $(t + 1, t)x(t|t - 1)

+ A(t + 1, t)Efu(t)|M(t - 1)}

+ E/x(t + 1)| jz(t|t - 1) j
.

Since E(u(t)[M(t - 1)| = ,

x(t + l|t) = $(t + 1, t)x(t|t - 1) + E^x(t + l)|z(t[t - 1)} .

(35)

By gaussianness and knowing that (Ref. 9)
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E^x(t + l)|l(t|t - 1)} = EJx(t + 1)}

+ cov[x(t + 1), 1s(t|t - l)~|covFz(t|t - 1), f(t|t -
1)J

r

• rz(t|t - D - Efz(t|t - 1)1

-l

one can write

Efx(t + l)||(t|t - 1)1 = covjx(t + 1), ^(t|t - 1)1

r ~i-i
cov rz(t t - 1) , 'zU t - 1) I

• riuit - d]

'j

(36)

since

EJx(t + 1)

and

Efz(t[t - 1)] = E"/H(t)x(t[t - 1) + v(t)? = .

The first factor on the right-hand side of equation (3&) can

be written

cov jx(t + l), ^z(t|t - 1)1 = cov["$(t + 1, t)x(t)

+ A(t + 1, t)u(t), H(t)x(t|t - 1) + v(t)J

("$(t + 1, t)x(t), H(t)x(tlt - 1)= cov
L^

Ti+ cov (j)(t + 1, t)x(t), v(t)

+ cov|£(t + 1, t)u(t), H(t)x(t|t - 1)

+ cov|/>(t + 1, t)u(t), v(t)

which reduces to
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cov[~x(t + 1), zH|t -
1)J

= cov [|(t + 1, t)x(t), H(t)x(t|t - 1)]

= E (|(t +-1, t)x(t)x'(t|t - l)H»(t)j

= |(t + 1, t)E/x(t)x'(t|t - l))H'(t)

since

covjx(t), v(t)J = covf"u(t), x(t[t - 1)] = cov[u(t), v(tf[ =

and since

EJx(t)\ = E/x(t|t - 1)1 =0.

Furthermore, in view of the fact that

x(t) = x(t|t - 1) + x(t|t - 1)

and the fact that

Efx(t|t - l)x»(t|t - 1)] = ,

the first factor of the equation can be written

covfx(t + 1), z(t[t - 1)1

= |(t + 1, t)EJf(tjt - l)x'(t|t - l)JH'(t)

= $(t + 1, t)P(t|t - l)H'(t) . (37)

The second factor on the right-hand side of equation (36) can

be reduced in a similar manner to



21

cov [V(t|t - i), |(t|t - d]

= cov[*H(t)x(tJt - 1), H(t)x(t|t -
1)J

+ cov H(t)x(t|t - 1) , v(t)J

•cov v(t), H(t)x(t[t -
1)J + cov v(t), v(t)j

= H(t)cov[x(t[t - 1), x(t|t - l)lH'(t) + covj^(t), v(t)

= H(t)P(t|t - l)H'(t) + R(t) . (38)

Substituting equations (37) and (38) into equation (36) yields

EJxU + l)fz(t|t - l)j

= [|(t + 1, t)P(t|t - l)H'(t)]

•[H(t)P(tft - l)H'(t) + R(t)]~

.[z(t) - H(t)x(t|t - 1)] (39)

Combining equations (35) and (39) yields

x(t + l|t) = J(t + 1, t)x(t t - 1)

|(t + 1, t)P(t|t - l)H'(t)|

H(t)P(t|t - l)H'(t) + R(t)
I" 1

z(t) - H(t)x(t|t - 1)1

= *£{t + 1, t)x(t|t - 1) + K(t)z(t) (Id)

where

V(t + 1, t) = |(t + 1, t) - K(t)H(t)
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and

K(t) = [*$(t + 1, t)P(t|t - l)H'(t)]
L— ~ J

H(t)P(t|t - l)H'(t) + R(t)]"
1

From equation (32) one can obtain the equation

x(t + 1 t) = x(t + 1) - x(t + lit) .

(II Id)

(U-0)

Substituting equations (1) and (Id) into equation (1+0) yields

x(t + l|t) = .|(t + 1, t)x(t) + A(t + 1), t)u(t)

- y(t + 1, t)x(t|t - 1) - K(t)z(t)

= V(t + 1, t)x(t|t - 1)

+ Mt + 1, t)u(t)" - K(t)v(t) . (lid)

The solution of the filtering problem can be computed by

deriving a recursion relation for the conditional covariance

matrix P(tjt - 1), which is the only remaining unknown in equa-

tions (Id) and (Hid) .

P(t + ljt) = cov[x(t + l|t), x(t + l|t)j

= cov £(t + 1, t)x(t|t - 1)

+ Mt + 1, t)u(t) - K(t)v(t)
,

£(t + 1, t)x(t|t - 1) + A(t + 1, t)u(t)

- K(t)v(t)

covmt + 1, t)x(t |t - 1)

,

f(t + 1, t)x(t|t - 1)]
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+ cov[k(t)v(t), K(t)v(t)J

+ cov[^(t + 1, t)u(t), A(t + 1, t)u(t)]

= £(t + 1, t)P(t t - l)V'(t + 1, t)

+ K(t)R(t)K'(t) + Mt + 1, t)Q(t)A'(t + 1, t) (1+1)

The first two terms of equation (1+1) are

V(t + 1, t)P(t|t - l)Y'(t + 1, t) + K(t)R(t)K'(t)

= [|(t + 1, t) - K(t)H(t)]p(t|t - 1)

[j>'(t + 1, t) - H'(t)K'(t)J+ K(t)R(t)K'(t)

= |(t + 1, t)P(t|t - l)|'(t + 1, t)

-K(t)H(t)P(t|t + l)|'(t + 1, t)

- |(t + 1, t)P(t|t - l)H'(t)K'(t)

+ K(t)H(t)P(t|t + l)H'(t)K'(t) + K(t)R(t)K'(t)

= |(t + 1, t)P(t|t - l)|'(t + 1, t)

- K(t)H(t)P(t[t - l)|'(t + 1, t)

- |(t + 1, t)P(t|t - l)H'(t)K'(t)

+ K(t)[H(t)P(t|t - l)H'(t) + R(t)JK'(t) (1+2)

Substituting equation (Hid) into the last two terms of

equation (1+2)

,

K(t)[H(t)P(t|t - l)H'(t) + R(t)]K'(t)

- |(t + 1, t)P(t|t - l)H'(t)K'(t)

= [|(t + 1, t)P(t|t - l)H»(t)][H(t)P(t|t - l)H'(t) + R(t)]"
1

[H(t)P(t|t - l)H'(t) + R(tj|K'(t)

- l(t + 1, t)P(t|t - l)H'(t)K'(t)

= .
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Then the first two terms of equation (lj.1) are
t

iit + 1, t)P(t|t - l)Y'(t + 1, t) + K(t)R(t)K'(t)

= §(t + 1, t)P(t|t + l)|'(t + 1, t)

- K(t)H(t)P(t|t - l)ijj'(t + 1, t)

= $(t + 1, t)/p(t|t - 1)

- [P(t|t - l)H'(t)] [H(t)P(t[t - l)H'(t) + R(t)

• H(t)P(t|t - 1)] • J'(t + 1, t)

Hence equation (I4.I) becomes

P(t + ljt)

= |(t + 1, t)fp(t|t - 1) - [P(t|t - l)H'(t)]

. [H(t)P(t|t - l)H'(t) + R(t)]
-1

H(t)P(t|t - 1)\

• f'(t + 1, t) + A(t + 1, t)£(t)A'(t + 1, t)

--1

(k3)

(IVd)

Equations (Id) to (Vd) are the solutions for a Gauss-

Markov sequence. They will be discussed later.

In a Gauss-Markov process the message is a random process

generated by the equation

dx— = F(t)x + G(t)u(t)
dt " ~ " ~

and the observed value is

z(t) = y_(t) + v(t) = H(t)x(t) + v(t)
<

The solution of this problem can be directly derived from

the Wiener-Hopf equation. Pugachev pointed out that the Wiener-

Hopf equation is nothing more than a special case of the
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orthogonal-projection theorem (Ref. 20).

The orthogonal-projection lemma can be stated as follows

A necessary and sufficient condition for

is that

X - W ^ X - Wq

(* " ™0> —^ ~ °

for all w in W

for all w in W .
v

(kh)

ik-S)

Moreover, if there is another vector w-, satisfying

then

(x - w-j_, w) =

[Wq - W ||=

where x is an element of abstract space %
W is a subspace of *]£-

w is an element of W.

Proof:

2S " ™[j' =
2E " HqII

+ z ^ x2 " ™o> -0 " H) +
|| 2£ ~ ^

||

2
(^

Since

and

(* " ™o> Ho " — ^

= ^

w - w^

it follows that

5

5 - £ £ x - w.

Substituting w = w^ into equation (I4.6)
,

2 " £1 * ~ Holl

! + —1 " — (U-7)
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Since w, satisfies condition (\\$)

2x - w,
2 l| I

+ 2(x - w
n , W-, - wn ) +

X - w, +

£ zLl> SL2. " —0'

W/-\ - W-.

So " S:

(1+8)

Combining equations (lj_7) and (lj.8) yields

x - w,
2 -I!= X - Wr Si " SO + so - Si

hence

Sq " Si '

= ° •

Consider a vector Wp such that

(x - wn , w ? ) = ^ ^ .

Then

x - w
Q

- Pw
2

=
I

x " Sq - 2-<(3 + j3' S2

where -< is given, but the value could vary with (3. For suitable

choice of [3, the last two terms could be negative; then

.2 . , „2x - w PS- 2 ~ Sol! '

This inequality contradicts the optimality of wQ .

The optimal estimation problem for the multidimensional

situation is one in which the values of z{i) , tQ ^ T^t are

given, and one wishes to find an estimate x(t-|_ t) of x(t-,) hav-

ing the form

vt

X(t x |t) =
J

A(t x , T)z(t)dT W)

which minimizes the expected squared error sum,
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s (i kit) -^ ( t)]
2

J.

A(t^, t) is an n x p matrix whose elements are continuously

differentiable in both arguments. x(ti t) is an unbiased min-

imum variance linear estimate of x( t-, ) . That is,

x,E \ x(t.)/ =E $(t_^ u l t) =

A necessary and sufficient condition that x(t, t) be a min-

imum variance estimator for x(t-.) is that the matrix function

A(t
1 , t) satisfy the matrix form- of the Wiener-Hopf equation

(Ref. 17).

X
cov [x(t

x ), z(cr)J -
J

A(t
x , t)cov[z(t), z((T)dT =

^0
J

(50)

for tQ s? <T < t .

Since

cov hit]), z(cr)] = cov["$(t
1 |t) + x(t-L

]
t), z(cr)]

= cov[x(t
1

|t), z(<r)J + covjfCt-L
|

t), z(cr)]

t

j J
A(tx , T)z(T)z»(cr)dT:j + cov^^

|
t) , z(cr)J

I tn '
.

= E

and assuming that the interchange of expectation and integration

is a valid operation, yields

covfxUjJ , z{(T)\

Ait,, t) E f z(t)z'(<7-)'] &i
t l ;

[x(t 2 |t), z(<r)]+ cov
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= j A(tx , t)covrz(T) , z(<r)J dTT

+ cov x(t
1

I t) , z(cr)J

Hence the matrix form of the Wiener-Hopf equation reduces to

cov^t-L |
t), z((T)J =0 for t ^CT < t (£l)

This is equivalent to saying

,t

x(t
1 |

t) =
j £(*!* T:)z(T)dTJ

^0

will be optimal estimator for x(t-j_) if and only if A(t-,, t)

satisfies {SD •

Proof:

Let *£ denote the space generated by the random vectors

x(t-,). The subspace W is generated by

t

w(tx )
=

J
B(tx , t)z

Jt

(T)dT (52)

where B(t, t) is an m x p matrix whose elements are continuously

differentiable in both arguments. Let

wQ = x(t-j_
j
t)

The orthogonal-projection lemma implies that

(x - Wq, w) =

(X - Wq, w) = Ei

= E

r^s - so

I
[x(t 2 ) - x(t x Itjjw'd^)]
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= E jj ^(t1 [
t)z'(<r)B'(t, cr)d'cr)

=
J

E/x(t
1 |

t)z'(<r)j B'(t
1
,cr)dcr

t

^0

cov x(t
x

t), z(<r) B' (t lf a-)dcr

= o

Then cov^x(t
1

t) , z(<r)J =0 establishes the sufficiency of

the condition, because B is an arbitrarily selected matrix sub-

ject only to the differentiability conditions. Let

B(t
1 , er) = covfxU-L

|

t), zfcr)] ,

then the matrix B B' is nonnegative definite. Then the in-

tegral is zero only if B(t,<T) vanishes identically for all

t() ~ °~ < t • Therefore the necessity condition is verified.

A canonical form for the optimal filter can be derived from

the Wiener-Hopf equation. Let t
±

= t, then the Wiener-Hopf

equation becomes

cov fx(t), z(cr)l = f Ait, t) covfzCT), z(<r)ldTJ h L- - J (S3)

Differentiating both sides with respect to t and interchanging

the order of operations of differentiation and expectation,

then the left-hand side is

2 r -] r 3 r- cov x(t), z(<T) = E
2t L- -J

[ d

— covfx(t), z((T)l = e( —. rx (t)z'(<T)l
dt L J

I 5t L~ ~ J

= Ej [P(t)x(t) + G(t)u(t) «n
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= F(t)E/x(t) .z«(<r)] + G(t)E/u(t)z'(cr)}

By assumption, u(t) is independent of v(er) and x(o~) when

<T <t. Hence

E {u(t)z'(<0} = 0_ .

The matrix form of the Wiener-Hopf equation yields

t

%
Hence

l[x(t)z'(<r)J = f A(t, t)cov[z(t), z (<r)] dT .

cov
dt

x(t), z((T)

t

"I

=
J

F(t)A(t, t)covz(t), z(<r)]dT
t

(5k)

The derivative of the right side of equation (53) becomes

f
t

r
-,—

I A(t, t)cov z(t), z(ar)

at k l-
dT

since

cov

= / — A(t, t)covJz(t), z(CT) dT

+ A(t, t)cov[z(t) ; z(<r)J

[z(t), z(cr)]

= cov[H(t)x(t) + v(t), z(o-)]

= H(t)covj~x(t), z(<r)] + cov[v(t), zfcT)]

= f H(t)A(t, t)cov[z(t), z(<T)] dT .

(55)

(56)

Combining equations (55) and (5°), the derivative of the right

side of equation {53) is
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- [ A(t, tOcovFzCt;) , z(C~)1 dt
t /to

L

3 /t

3 / Uq

t p^
A(t, t) + A(t, t)H(t)A(t, t)

tn U?t

cov z(t), z((T) dT (57)

Combining the results of equation (%i\) and equation (57) yields

A r d
F(t)A(t, t) A(t, t)

>t L dt

- A(t, t)H(t)A(t, t)"J covTzCt), z((T)]dT =

for tQ ^r <r < t (58)

If the optimal matrix A is a solution of the differential

equation,

d
F(t)A(t, t) A(t, t) - A(t, t)H(t)A(t, t) = _0

dt

for t < t ^ t (59)

then equation (58) is certainly satisfied.

If R(t) is positive definite in the interval tQ <£ T ^ t,

then the covariance matrix cov[__z(t), .z^JJ is also positive

definite in this interval tQ & t < t . Then the condition

(59) is necessary.

The optimal filter is generated by differentiating

A,
x(t

]
t) =

j A(t, T)z(T)dT
/t

with respect to t and combining the result with equation (59)

.

Thus
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dx(t|t) d ft
= — A(t, t)z(t)c3t

dt dt 't

t 2

to dt

<t r-

A(t, T)z(T)dT + A(t, t)z(t)

=
J

[p(t)A(t, t) - A(t, t)H(t)A(t, Tr)1z(T)dT

+ A(t, t)z(t) .

Let A(t, t) = K(t), then

dx(tlt)

dt

,t
f

=
/ |Z(t)A(t, T) - K(t)H(t)A(t, T) z(T)]dT

+ K(t)z(t)

= fp(t) - K(t)H(t)l f A(t, T)z(T)dT + K(t)z(t)

= P(t) - K(t)H(t)]^(t
|
t) + K(t)z(t)

= F(t)£(t
|

t) + K(t)[z(t) - H(t)x(t
|
t)] (Ic)

Substituting x(t
|
t) = x(t) - x(t

|
t) into equation (Ic)

d— Tx(t) - f(t
| t)J = [P(t) - K(t)H(t)] [x(t)

- x(t
|

t)] + K(t)z(t)

dx(t) dx(t
|
t)— = Z(t) - K(t)H(t)| x(t) - x(t ! t)|

dx dx L ~ J L~ ~ ' -1

+ K(t)[H(t)x(t) + v(t)J

Then
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dx(t!t)

dt
= [fU) - K(t)H(t)~]x(t

|
t) + G(t)u(t) - K(t)v(t) (He)

The next step is to derive an explicit form of the optimal

gain (or optimal weighting matrix) K(t). It is obtained from

the Wiener-Hopf equation

Tx(t), z(CT)
I

-
)

A(t, t)cov
/t

'

-t

to

covl z(t) , z(CT) dT =)1

r[x(t), z(cr)J -
j

A(t, T)covrz(t)-, z(cr)[ dT

= covFx(t), jicr) + v(cT)J -
J

A(t, t)cov|j(t) + v(t),

^O "1

V_(CT) + v(<T)J dT

= cov[x(t), y_(cr)J - y A(t, t) Jcov[v_(t), Z (<T)].

+ R(t)6(t - 0~)) dT

_ 4-

= covhc(t), £(CT)J -
J

Mt, t)covRt(t), y_(crf|dT

- A(t,<r)R(CT)

=

t ^ <r < t

Hence

cov [x(t), Z ((T)] - j A(t, t)cov[j(t), l((T)]dT

= A(t, o-)r(o-) (6o)

Both sides of equation (60) are continuous functions of ^ .

Therefore that equality holds also at <T = t . Hence
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A(t, t)R(t) = cov[x(t
|
t) + x(t ft), V_(tf]

-
y A(t, t)oovJj(t), V_(t)]dT

/to

~x(t [t), y_(t)] + cov[x(t
|

t), y_(t)J

- f A(t, -u)covfi(T), yJtfjdT
'tn

= cov

since

COvfx(t|t), y_(t)J = E
{/ A(t, T)z(T) Z '(t)dT

= ( A(t, tJeJzKJe'U)] dT

=
f"

A(t, t)cov[j(t), y_(tfJdT
/tn

Therefore

K(t)R(t) = A(t, t)R(t) = covfot
|

t), y_(t)

since

covPx(t
|
t), y_(t)]

= cov[x(t
|
t), H(t)(x(t |

t) + x(t
|
t))|

= cov[x(t
|
t) , x(t

|
t)]H' (t) + cov|"x(t

|
t) , x(t

|
t)

= P(t)H'(t) .

(61)

H'(t)

-1,
And R(t) is assumed positive definite, so that R (t)

exists. Multiplying both sides of equation (6l) by R" (t), yields

K(t) = P(t)H' (t)R
-1

(t) (Hid)

The general solution of equation (He) is
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tit ! t) =tc (t, t )g(
j

b
1
|t )

+ f 1 (T, t) [g(t)u(t) - K(T)v(T)ldT (62)
yt

c L ~ J

where t (t, i) is the common transition matrix of (Ic) and

(lie). Then one can derive the variance equation

P(t) = cov[x(t
|
t), x(t

| t)J

Since x(

t

Q |

t
Q ) is independent of u(t) and v(t) as tQ

^ t ^ t,

this becomes

P(t) =r
c
(t, t )cov[x(t |t ), x(t |t )] ĉ

'(t, t )

+ E {/ ¥ (*, t)[o(«c)u(t) - K(-r)v(T)]dT
J

X -
• f ru'(T:')G'(T;») - v»(T')K'(T')]y »(t, T ) dT '}

% L J °
)

Hence

p(t) - V (t, t )p(t )V <(t, t )

= f L(t, t)[" f' G(T)Efu(T)u'(T')}G'(n:') c
f
/

'(t, t < ) dx
/t

C L 7t ~ I" - J
- -c

+ f K(t)e(v(t)v'(t')]k'('u)^ '(t, T')dT'ldT
/t <• j C J

= f l!l
(t, t)| f G(t)Q(t)6(t - t«)G»(t')Y <(t, T')dT'

;to
L/

t

/ K(t)R(t)6(t - t')K'(t') • V r(t, T')dT»ldT
/t c J

+
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=
/ !L (t

'
T) k(^)Q(^)G'(^) + K(t)R(t)K'(t) V"(t, T)dT

/
t()

C L - J-C

(63)

Differentiating with respect to t, the left side of equation

(63) is

d

dt
5-[z(t) -r

c
u, t )p(t )V .(t, t

o)]

dp d r

dt dt I-

This equation becomes

d

dt

dp

dt

lc
(t, t )p(t )r

c
«(t, t

)]

5-[z(t) -r
c

( t , t
o)

P(t
o)
r
c
.(t, t

o)]

-^-[p(t) - K(t)H(t)]y
c
(t, t )p(t )y.(t, t )

*,(t, t )P(t )^'(t, t )[p-(t) -H'(t)K'(t)] (61;)

since

d

dt

d

d-

The derivative of the right side of equation (63) is

d A,

%

£c (t ' t
Q ) = [p(t) - K(t)H(t)]^

c
(t, t

Q )

~-c' (t
'

t0) s
!4

f (t* tyfe'dO -H'U)K'(t)]

= — f L(t, t)[g(t;)£(t)G'(t)
dt 't„ L- ~ _'0

-t <?

+ K(T)R(T)K«(T) V^ <(t, T)dT

= f — tj*> ^)Tg(t:)S(^)G'(^)
/t <?t

c L~

+ K(T)R(T)K'(-0] V/U, T)dT
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+ ^c
(t, t)[G(t)Q(t)G'(t) + K(t)R(t)K»(t)]g «(t, t)

= [p(t) - K(t)H(t)] f JJc
(t, t)[g(t)Q(t)G'(t)

+K(t)H(t)K'(T)lf i(t, T)dT

.t

+ / £c
(t, ^)[g(t)£(t)G'(t) + K(t)R(t)K'(t)]

V '(t, T)d-r[p'(t) - H'(t)K'U)]

+ [G(t)£(t)G'(t) + K(t)R(t)K'(t)]

= [p(t) - K(t)H(t)][p(t) - ^(t, t )P(t )^c
'(t, tQ )]

+ [p(t) - V
c

( t , t
Q
)P(t )^

c
'(t, t )j- [P'(t) - H'(t)K'(t)]

1+ [G(t)Q(t)G'(t) + K(t)R(t)K'(t)j (65)

Combining equations (61;) and (65) and solving the result for

dp/dt yields

d

dt
P(t) = [p(t) - K(t)H(t)]p(t) + [p(t)]-[p»(t) - H'(t)K*(t)l

+ [G(t)Q(t)G'(t) + K(t)R(t)K'(t)j

Substituting K(t) = P(t)H'(t)R X
(t) into the above equation

yields

dP(t)

dt
= F(t)P(t) +P(t)F'(t) - P(t)H'(t)R _1 (t)H(t)P(t)

+ G(t)g(t)G'(t) (IVc)

Now one can evaluate the following covariance matrix.

covjjx(t ft), u(t)J = covf^
c
(t, t )xU |t )
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/ ^ (t, T)[g(t)u(t) - K(T)v(T)]dT, U(T)1
h c L J

^/
However, since x(t |t ) is independent of u(t) and v(t) is also

independent of u(t), hence this equation can be reduced.

[$c(t
|
t), u(t)]

= cov f V
Q
(t, T)G(T)u(T:)dT, u(t) 1

L tQ

=
f Sc (t, T)G(T)E[u(T:)u,(t)jdT

f
Y (t, t)G(t)£(t)6(t - t)dT

>tn
C

= - G(t)§(t)
2

cov 5c(t
I
t), z(t)l

= cov I x( t
I

t) , H( t) f£( t
|

t) + x( t
|
t)) + v( t)

The above equation can be reduced

covtx( t
[
t) , z(

t)

J

= covj~x(t
I

t) , x(t
I

t) H' (t) + cov x(t
I

t) , v(t)]

= P(t)H'(t) - ( '

^ (t, T)K(T)E/v('r)v'(t))d'i:
-t

'to

ft

P(t)H'(t) - ( ^ (t, t)K(t)R(t:)6(t - t)dt

= P(t)H'(t) - 1/2 K(t)R(t)

since

cov[x(t
I

t) , x(t
I
t) J =
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Substituting P(t)H'(t) =K(t)R(t) into the above equation

yields

:

^ -, 1
cov[x(t ft), z(t)J = - K(t)R(t)J

2

To derive the formula for prediction, it is noted that if t, ~> t,

then

xH-jJ -I(tlf t)x(t) + f I(t x , T)G(x)u(t)dT
,t

/tQ

Since u(t) for t < t £ t
]_

is independent of x(t) in the interval

,t

t «£ t ^ t, the term f i(t-,, t) G(t)u(t) dT vanishes in
/t

Efx(tx *)} » therefore

x(t
x [

t) = |(t
x , t)x(t | t) for tx 5- t (Vc)

If t-j_ < t, one does not know whether xK) and u(t) would be

independent in the required interval. Hence the same conclusion

cannot be drawn for the interpolation case.

These five equations are discussed in the following

paragraphs.

The differential (difference) equation for optimal filter

is

x(t + ljt) = |(t + 1, t)x(t|t - 1) + K(t)

•[z(t) - H(t)x(t|t - 1)] (Id)

dx(tjt)
= F(t)x(t

|
t) + K(t)fz(t) - H(t)x(t

[
t) ! (Ic)

dt - L- - - ' J

It governs the optimal filter, which is excited by the observed

signals and generates the best linear estimate of the message.
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The initial state x(t
|

tQ ) = 0, since initially there are no

observations and the mean of x(tQ ) is zero. It is noted here

that the first term of the equation is the estimate of x based

on the observation before t. The quantity in the brackets is

then the difference between the observation and the estimated

value of the x(t), The weighting matrix K(t) weights the error

signal to produce an increment to be added to the estimate; the

value of x(t + l|t) is known immediately after time t, but it

is not needed to compute the next estimate until time t + 1;

this delay makes it possible to compute K(t) by digital com-

puter. The general block diagram of the optimal filter is

shown in Figs. 3 and 1±. It is a feedback system. The input is

the actual observation from which the latest estimate of the

observable vector is subtracted. The difference is then multi-

plied by the weighting matrix K(t) to decrease the error of the

new estimate x.

The prediction formula for Gauss-Markov sequence or pro-

cess is:

x(t
x
|t) = |(t

x , t)x(tlt - 1) for t
x > t + 1 (Vd)

x(t.jjt) =|(t
1 , t)x(t|t) for t x £ t (Vc)

These are the formulas for prediction only and are also shown

in Pigs. 3 and Ij..

The differential (difference) equation for optimal esti-

mation error is
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X_(t + l|t) = |(t + 1, t)x(t + l|t) + 4(t + 1, t)u(t)

rH(t)x(t|t - 1) + v(t)j

dx(t| t)

dt

: F(t)x(t|t) + G(t)u(t) - K(t)

H(t)x(t|t) + v(t)]

- K(t)

(lid)

(He)

It governs the optimal estimation, error. General block diagram

of the optimal estimation error is shown in Figs. 5 and 6.

Optimal gain formulas are:

K(t) = [|(t + 1, t)P(t]t - l)H'(t)J

[H(t)P(t jt - l)H'(t) + R(t)
-1

-1,
K(t) = P(t)H'(t)R ±

(t)

(Hid)

(IIIc)

They are gains of the optimal filter expressed in terms of the

error covariance matrix P(t). The magnitude of the elements of

K(t) are indicative of the amount of information contained in

the signal z(t) at time t. In Figs.' 3 and k, it is shown that

the optimal properties of the filter depend upon the proper

selection of the weighting matrix K(t).

Variance equations are:

P(t + l|t) = |(t + 1, t)jP(t|t - 1) - [P(t|t - l)H'(t)J

H(t)P(t|t - l)H'(t) + R(t)]" 1

H(t)P(t|t -
1)] |'(t + 1, t)

+ £(t + 1, t)Q(t)A'(t + 1, t) (IVd)

dP(t) n— = F(t)P(t) +P(t)F'(t) - P(t)H'(t)R" 1 (t)H(t)P(t)

dt ,„. >

+ G(t)Q(t)G'('t) (IVc)
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They are nonlinear differential or difference equations which

govern the variance matrix of the errors of the optimal linear

estimate. No _z(t) terms are involved in the variance equations.

This means the conditional covariance matrix does not depend on

the values of conditional variables. Hence the variance equa-

tion is independent of the observations z(t). This is a special

property of the Kalman filter. Since the gains of the optimal

filter are governed by the variance equation, this means the

structure of the optimal filter can be determined independently

of the random data z(t). Given z(t), tQ < t ^ t, one can com-

pletely determine the conditional distribution of the random

variable x(t) for all t]_ $ t from equations (I), (III), (IV),

and (V) . This is due to the gaussian and markovian assumptions.

The variance equation is just another form of the Wiener-Hopf

equation. Its solution yields the covariance matrix of the min-

imum filtering error which contains all the necessary informa-

tion for the design of the optimal filter. The variance equa-

tion is also closely related to the calculus of variations as

will be discussed later. The initial state of P is given as

part of the problem statement. Then the solution of the vari-

ance equation is determined. If P_o(t) is nonnegative definite,

then P(t) is also nonnegative definite for all t <? tQ . In the

stationary case, |(t +1, t) , A(t + 1, t), H(t), R(t), Q(t) are

constants. Hence the covariance matrix is independent of time

and can be calculated readily. The chief task in filtering

theory is the study of the variance equation. This is difficult

because the variance equation is nonlinear. But it is a very
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special one in that it is a matrix Riccati equation. A gener-

alized matrix Riccati equation has the form

— + - -3- + - $k ~ -1- " -2
= - *

where G^, G
2 , G^, and Gr are n-j_ x n-^, u^^ x n

2 , n
2 x n-j_, and

n
2 x n

2 matrices, respectively. It is a classical (or scalar)

Riccati equation when n-j_ = n 2
= 1. It has the same form as the

variance equation, with n^ = n 2 = n; (Ref. 19), which is well

known from the calculus of variations. An exact formula for

the solution of the variance equation will be derived from the

quadratic Hamiltonian function. Consider the Hamiltonian func-

tion ft as defined by (Ref. 2).

ft = - - ||G'(t)x||
2
Q(t) - s F< (t)x + - ||H(t)s||

2

2 2

The canonical differential equations of Hamilton are:

dx 2]{ ,— = grad
s
/L = -£- = - F'(t)x + H'(t)R_1 (t)H(t)s

dt 2s
~

ds ,, -2ji— = grad ft = = G(t)Q(t)G'(t)x + P(t)s
dt x $x ~ ~ ~ ~ ~ ~

(66)

(67)

Let S(t), X(t) be the matrix solutions of the system (67) which

satisfy the initial conditions.

X( ) = I

(68)
s(t ) = p(t ) = p

Assume

S(t) = P(t)X(t) (69)

Substituting equation (69) into equation (67), one obtains
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d-U) = [_ pi( t ) + H'(t)R- 1 (t)H(t)P(t)]x(t) (70)

dt

ds(t) dP(t)
x(t) + P(t)

dt dt

dx(t)

dt

= [G(t)Q(t)G'(t) + F(t)P(t)]x(t)

Combining equations (70) and (71), one gets

(7D

dP(t)

dt

=P(t)F'(t) + F(t)P(t) - P(t)H'(t)R" 1 (t)H(t)P(t)

+ G(t)Q(t)G'(t) (72)

It is identical with equation (IVc), hence the identity S(t) -

P(t)X(t) is valid. Let T be the matrix of coefficients of the

system (67)

.

\- F'(t) C(t)

T =
D(t) P(t)

L — — *J

where
-1,

C(t) = H'(t)R"
x
(t)H(t)

D(t) = G(t)Q(t)G'(t)

Hence the system becomes

1

dx

dt

d_s

dt

r
-F'(t) C(t)

D(t) F(t)

x(t)

(73)

s(t)
-> u

J

Let e(t, t ) be 2n x 2n transition matrix of the system (73).

e(t, t ) be partitioned into four n x n submatrices as follows



e(t, t )
=

©]_-[_( t, tQ) ©12^' *"())

© 91 (t, t(\) 6rjo(t, tn)-21 -22 J0'

where

d9— = T .

dt

Thus

x(t)

H(t)

ill^* *o) ©12 (t
> to)

€>2]_(t, tQ) ©22 ^t, tQ)

1 x(t )

s(t )

k9

(7k)

Substituting the initial condition (68) into the above equa-

tion, one has

x(t) = e
xl

(t, t ) + e12 (t, t )P

s(t) = e 21 (t, t ) + e 22 (t, t )P

(75)

Combining equations (75) and (69), one gets an exact solution

of variance equation (IVc).

p(t) = [e
21 (t, t ) + e 22 (t, t )P

J

[£1]L
(t, t ) + e

12
(t, t )PQ (76)

EXAMPLE OF KALMAN FILTERING

Suppose a particle leaves the origin at time t = and

moves thereafter with a constant but unknown velocity of zero

mean and known variance. The position of the particle is

measured, the data being contaminated by the addition of white
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noise. What is the optimal estimate of the position and

velocity of the particle at the time of the last measurement?

Let x-j_(t) be the position and Xp(t) the velocity of the

particle. Then the problem is represented by the model

X]_(t + 1) = x-^t) + x2 (t)

x2 (t + 1) = x2 (t)

Z-jjt) = Xl(t) + v(t) .

That is,

x(t + 1) = |(t + 1, t)x(t) + A(t + 1, t)u(t)

and

z(t) = H(t)x(t) + v(t)

where

|(t

The additional conditions are

*1 = t, tQ =

fl ll r 1
+ i, t) = , A(t) = o , H(t) = |i, ol

lo- lj J

E^Xl (0)j = EJx1
2
(0)| = e/x

2 (0)] =

E^x
2
2
(0)j = a

2

and

E/v 2 (t)| = R(t) = b 2 , for all t.

First, one wants to predict the position and velocity of the

particle one step ahead.
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P(0) =

= E
~x

n

2
(0)

P(l) =

cov|x(0), x(l)J

x
]
_(0)x

2 (0)

|

x
2
(0)x

1
(0) 2S2

2(0)
.

(j)jP(O) - P(0)H' [hp(o)h' + r"]"
1

hp(o)]

a
2

J

2 2
a*

1 a

2 2a^ a^

Then from equation (iVd), the covariance matrix is

P(t + 1) = |jP(t) - P(t)H'(t) [H(t)P(t)H'(t) + R(t)]
_1
H(t)P(t)]5

b 2 Sp11 (t)+2p12 (t)+p22 (t) + P 1i(t)p22 (t)-p12 (t)"| ,

b 2
rp12 (t)+p22 (t)] + rp

i:L
(t)p22 (t)-p

2

2 (t)J

P
i:L

(t)+v
b 2

rP22 (t )
+Pi2 (t

ll
+

Lpll
(t)p22 (t) " p12 (t)1 '

b2 p22
(t) + rp11 (t)p22 (t)-p12 (t)"|

(77)J

By simple substitutions of t = 0, t = 1, t = 2, . . ., into

equation (77), it can be shown that

2
p11 (t)p22 (t) = p12 (t)

Then

pxi (t) = t p22 (t) .

P 12 (t) = P21 (t) = tp
22 (t)

Substituting these equations into equation (77), the covariance

matrix is:
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P(t+1) =

.2/4.2

t
2
p 22 (t)+b

2

b^p22 (t)

t 2 p22 (t) + b<

b*(t* + 2t + l)p22 (t)

b 2 (t + l)p
22 (t)

(t + ir (t + 1)

(t + 1) 1

b
2
(t+Dp22 (t)

|

b^P22 (t)

for t ^

where

p22 (t + 1) =
b 2 p22 (t)

t
2
p22

(t) + b2
for t 5? .

A s sume

c(t) = t
2 +

p22 (t)

and

c(t+l) = (t+1)
2 +

= (t+ir +

P22 (t+1)

t
2 +

= (t+lp +

p22 (t)

b 2 P22 (t)

t 2 P22
(t)+b 2

= (t+lp + c(t)

where

b 2

c(0) = — .

Hence

P(t+1)
>

2 |(t + D 2
(t + i)|

c(t) I (t + 1)
for t ^ 0.

Hence
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S3

P(t) =

c(t - 1; t

t

i

for t > 1

where

c(0)

c(t) = c(t - 1) + t'

Then K(t) is found from equation (Hid).

|HP(t)H r + R(t)|K(t) =
|. P(t)H'

1

t l + c(t - 1)

t(t + 1)

t

x(t
|
t) = \ x(t|t - 1) + KdOpzU) - H(t)x(t|t - 1)J

where

$(t ) x(0) = .

If t»l, then

c(t) = c(t - 1) + t
d

= c(t - 2) + t
2 + (t - l)

2

= c(0) + t 2 + (t - l)
2

+ . . . + 1

= c(0) +
t(t + 1) (2t + 1)

= c(0) +
t3

3

b
2

t3

I2
*"
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Hence

P(t) =
b 2 t

2

t

t

1

b 2 t?~2+ 7
and

K(t) £

t 2 +

1

a b

b 2 +
,

2 t3

b 2 t3

t(t + i)l

t

t
2

t

t i

b 2 +
*
2 t3

3

for t»l .

A

It is obvious that k-^—}0 and k
2
—^ for t»l. This means

that as the number of observations becomes large, the estimates

^(t + 1
|

t + 1) and x
2
(t + 1

|
t + 1) will depend on the pre-

vious estimate. It will be shown later that for t>>l, the

discrete observation case is essentially the same as prediction

based on continuous observations. Shinbrot (11), who treated

this problem on the continuous d'ata case using a completely dif-

ferent method, obtained the same results as here. (See

Appendix A
.

)

If the position of the particle is continually observed in

the presence of additive white noise, the problem is repre-

sented by the model,

d*l

dt

dx
2

dt

*
2

=

dx— = F(t)x(t) + G(t)u(t)
dt

~

Z_ = X-i + V
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where

F(t) =

r
o 1]

, G(t) = £, and H = [l, o] .

_0 0_.

The initial state of covariance matrix is

P(0) = covT^Uq), Xq^oL

dP(t)

a
2

-1,

dt
= PP + PF' - PH'IT^HP + GQG '

1
!

j~pll P12

_o oj
L
p21 p22^

_p21 p22 |

[oj [yj

Pn P12

P21 P22.

1

2P
12 P22

22

dp
i;L

dp12

1

b 2

fl,

'11

fo

U oj

Pll P12

P21 P22

p11 p12

J

dt dt

dp
2

-, dp22

dt

Hence

dt

P11 P21 P12 p21
t

1

2p12 " ~2 PH p22 " "2 pll p12

P2 i " ~2 P11P21
b T? P12 p21

b*
1

56

dp
11

dt
= 2p12

b 2

dp
12

dt

dp
21 PllP21

= P22 —
dt b 2
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dp
22

dt

Pl2'

1,2

Using Adam's method (5), one can solve these nonlinear differ-

ential equations by digital computer. (See Appendix B.)

One can get an exact solution of the variance equation from

the canonical differential equations of Hamilton.

dx

dt 2s

ds -dH— = = G(t)Qjt)G'(t)x + P(t)s
dt 2 2S

In this case

dx f*0 0"1 *1
+ ^

i- J

- ~i

«
=

-[i OJ 22
|

s
2

ds -B'H To 1
1

!

£1"
*

dt dx [_ D
Lr2 .

Then the matrix of coefficients of the Hamiltonian equa-

tions is:

—
D 2

-10
I =

1

and the corresponding transition matrix is



$Q

6(t, t ) = exp T(t - t ) = L-
i=0

[T(t - to)]
1

= T° + Tt +. T 2
t
2/2 + T 3 t3/6 + . . as tg =

where

,0 _
I =

10
10
10

1

—
b2

T =

T ^ =

1

. o

• 1

o o_

1
•

—
b2

-1—
b2

T3 =

-1—
b2

T^4- = t^ = T = . . =

Hence
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1

t t2

b2 2b2

-t2 -t3

9(t) = " 2b2 6b 2

1 1

1

The four submatrices of 6 are as follows:

eu (t) -

9
21

(t) =

[o

e 12 (t) =

e 22 (t) =

;/b 2

-t2/2b2

1
t/2b2

t

-t3/6b2J

1 1

1

Prom equation (76), one gets

P(t) = re21 (t) + e 22 (t)p ] re 11 (t) + e12 (t)P l -l

= a
2

t

1

a 2 t 2

2b2

6b2 - a
2 t3

-t
6b2

-1

a
2b 2

2*3

b2 +
s^t

3

i
t t

t 1

K(t) = P(t)H'(t)R- 1
(t)

-1/
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a
2b 2

b^ +
»2 t3

3

b 2 +
3
2 t3

3

t
2

tl

t l

1
i

"I

! b2

JL°J

This is the same result as before.

CONCLUSION

A Kalman filter is constructed using matrix theory and the

state and state transition approach to linear system theory to

solve the Wiener problem. Kalman' s derivations are not affected

by the nonstationarity of the process or the finiteness of avail-

able data. Hence Kalman filtering can be applied to both the

stationary and the nonstationary cases. An important feature

of the Kalman filter is that the structure of the filter can be

determined independent of the random data inputs. It provides

the error analysis independent of any data inputs. Further, it

performs this error analysis in a very efficient way. The high-

speed digital computer plays an important role in this error

analysis. Theoretically speaking, Kalman filtering enlarges

the realm of Wiener filtering and clarifies the fundamental

assumptions and their consequences. Practically speaking,

Kalman filtering is well adapted to digital computer usage,

while Wiener filtering is not.
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A Kalman filter can be applied to estimate the position,

velocity, and altitude of a terrestrial or space navigator.

For example (Ref . 13) , Kalman filter estimates of the position

and velocity of a space vehicle can be used for the purpose of

midcourse guidance. The source of information is the sequence

of measurements of three space angles. The measurements cannot

be determined exactly because of the presence of additive white

noise. The equation of motion is nonlinear, but it can be lin-

earized by Taylor's expansion. The Kalman filter solves the

estimation problem using a computation scheme which weights the

incoming measurements in an optimal sense to produce an up-to-

date optimal estimate of position and velocity. This computa-

tion scheme is readily implemented by a digital computer. The

restrictions on the speed of the digital computer are that the

time required to complete the computation cycle must be less

than the time interval between successive, observations. Hence

it is clear that a Kalman filter is heavily dependent upon

digital computer technology.
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APPENDIX A
'

Sinbrot solved example 1 in his paper "Optimization of

Time-varying Linear Systems with Nonstationary Inputs" with

correlation functions as follows.

The input to the system is

f
±
(t, p, OJ = fm (t, p) + -f

n
(t, QJ

where f and f are message and noise, respectively.

fm (t, p) = Pt

P is the unknown velocity of the particle. The mean square value

p
of P is a . The hoise is white and is independent of the mes-

sage. Hence

fe^ T
)
= ^W^ T

) = ^di^ T
>

= t^» T
>

= s2tT

^nn (t, T) = b 26(t - T)

tf±1 (t, t) = ^mm (t, t) + #nn (t, t) = a
2
tT + b

2
6(t - T)

The cross correlation of input and desired output is

#di (t,T) = ^dm (t,T) =
|

h(t, (r)^
rnrn

(T,cr)d<r+ b 2h(t,t)

for < T < t .

Hence

'0

and multiplying by T on both sides and integrating with respect

to i from zero to t yields

a
2 tT = a

2t / cr h(t, cr )d<r+ b
2
h(t, t)
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/ a
2 tt 2 dT = f a

2i 2
f <T h( t ,<r) &<T dT + / b

2h(t,T)dt
'0 'o

Ly J
'o

Let

j(t) = o-h(t,<r)ao-

.

Hence

t3 . t3

3

a 2 t — = a 2 — j(t) + b 2 j(t)

2t^
j(t) =

a
£
t

a
2 t3 + 3b 2

Shinbrot pointed out that the optimal system response is

h(t,T) = a^x
ft - j(t) 3a 2 tT

i

2 t3 + 3b 2
t £ T

and the mean souare error is

€
2 = b2h(t, t)

3 a
2b2 t

2

i

2 t3 + 3b 2

a
2b 2 t 2

a2 t 3

3

+ b<
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Kalman approached the Wiener problem from the "state" point

of view and thought of linear filtering as orthogonal projection

in Hilbert space. The physical relationship among the state

x(t), the white noises u, v, and the observation _z(t) is de-

scribed by a linear system which is specified by a system of

first-order linear differential (difference) equations. The

statistical description of the white noises u, v is given as

part of the problem statement. The problem is that one observes

_z(t) over some interval of time, tQ ^ t ^ t, and one wants to

find the optimal estimate x(t-i) °^ 2S^l) given these observa-

tions. This optimal estimate x(t^) of x/,t]_) will minimize the

expected loss

E {L(x(t
]
_)

- xU-jj)} = e[£ [^(t-L) - x^t^] 2
} .

In the case where t-, -^ t, this is called the data-smoothing

(interpolation) problem: where t-, = t, this is called the fil-

tering problem; where t-j_ > t, this is called the prediction

(extrapolation) problem. Using the conditional distributions

and expectations, Kalman transformed the Wiener-Hopf integral

equation into a nonlinear differential equation of the Riccati

type which is closely related to the Hamiltonian differential

equations of the calculus of variations. The solution of this

nonlinear differential equation yields the covariance matrix of

the minimum filtering error which will determine the structure

of the optimal filter independent of the input data. Kalman ' s

approach is not affected by nonstationarity of the process x(t)

to be estimated, or the finiteness of available data. Hence a



.

Kalman filter can be applied to both cases, stationary and non-

stationary. Practically the main contribution of the Kalman

filter is that it provides numerical procedures well adapted

to digital computer usage.


