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ABSTRACT    Predator parasitism can modify predator–prey interactions through long-term 

(numerical) and short-term (functional response) impacts.  However, mutual interference is 

another density-dependent factor that may affect predator foraging efficiency in the presence or 

absence of parasitism. This study examined the effects of parasitism of the invader Nephus 

includens (Kirsch) (Coleoptera: Coccinellidae) by Homalotylus flaminius Dalman 

(Hymenoptera: Encyrtidae), predator density, and prey density on the searching efficiency (a 

measure of area of discovery) using the cotton aphid, Aphis gossypii Glover (Hemiptera: 

Aphididae) as prey. Mutual interference reduced foraging efficiency by 47% in parasitized 

fourth-instar larvae compared to 44% in those unparasitized. Increasing predator density 

decreased searching efficiency more markedly in parasitized than in unparasitized larvae. The 

combined effects of parasitism and mutual interference reduced searching efficiency by 91%. 

Conversely, prey consumption by parasitized fourth-instar larvae increased with increasing prey 

density. Interference values declined from 0.98 to 0.82 with increasing prey density, indicating 

that the negative effect of parasitism on predator foraging diminished with increasing prey 

availability. Thus, these results support the inference of the ‘enemy release’ hypothesis, that 

invading predators may be more successful and have higher impacts on prey when they escape 

from parasitism. In the context of augmentation of N. includens against A. gossypii on guava in 

Egypt, releases of predator life stages immune to parasitism by H. flaminius (e.g., pupae or 

adults) in a suitable predator-prey ratio should minimize the negative effects of parasitism and 

intraspecific interference, and thus maximize efficiency of the predator against the pest.   

KEY WORDS   area of discovery, functional response, Homalotylus flaminius, intraspecific 

competition, predation, searching efficiency  

1. Introduction 
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 Invasive species can have profound impacts on invaded communities because they generate 

new trophic relationships, sometimes at the expense of autochthonous species. However, 

parasitism of the invasive species has the potential to attenuate these impacts Dunn, 2009). 

Parasitism can drive changes in trophic interactions between other species and has the potential 

to alter broader community processes through long-term effects on densities of predators or their 

prey (Wilmers et al., 2006). There is also growing interest in short-term, ‘trait-mediated indirect 

effects’ of parasitism on predator-prey interactions (Hatcher et al., 2008). For example, 

parasitoid behavioral manipulation of hosts can lead to their increased vulnerability to predation 

(Lafferty, 1992; Shi et al., 2002; Dick et al., 2010).  

 The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), is a cosmopolitan plant 

pest of tropical, subtropical and warm temperate regions. It attacks hundreds of plant species and 

vectors at least 76 plant viruses (Chan et al., 1991). In Egypt, pesticides have been widely used 

for cotton aphid control in fruit and vegetable crops, especially guava, Psidium guajava L. (Abd 

El-Gawad and El-Zoghbey, 2009). However, the evolution of insecticide resistance and growing 

concerns of the environmental hazards of frequent insecticide applications have prompted more 

emphasis on biological control of aphids (van Emden and Harrington, 2007), especially the use 

of predators (Sarmento et al., 2007). For example, the predatory gall midge, Aphidoletes 

aphidomyza Rondani has been employed successfully for aphid control in cucumber culture 

(Bennison and Corless, 1993).  

Coccinellid beetles are an important group of predatory insects with considerable biocontrol 

potential against aphids and other pest species (Hodek and Honek, 1996; Michaud, 2012). They 

feed on a wide range of prey, tend to be very voracious, and can exhibit rapid numerical 

responses (Hodek and Honĕk, 1996; Bayoumy, 2011b). However, they do not always maintain 
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prey populations in check (Northfield et al., 2010; Michaud, 2012). Thus, evaluations of 

particular aphidophagous species in specific agronomic situations are needed to assess their 

biological control potential.  The lady beetle Nephus includens (Kirsch) (Coleoptera: 

Coccinellidae) is a primarily coccidophagous species of Palearctic origin and an effective 

predator of some agriculturally important mealybugs in Greece (Argyriou et al., 1976). It has 

fortuitously established in Egypt where it has been recently found preying on mealybugs (Abdel-

Salam et al., 2010). Nephus includens has been studied as a predator of the citrus mealybug, 

Planococcus citri (Risso) and its biological performance on that species has been assessed in 

Italy (Tranfaglia and Viggiani, 1972). The life table parameters of N. includens also have been 

studied on other mealybug species (e.g., Canhilal et al., 2001; Al-Khateeb and Asslan, 2007; 

Abdel-Salam et al., 2010). Although alternative prey species have not been thoroughly 

catalogued for N. includens, it has been observed in Egypt feeding on the cotton aphid A. 

gossypii (Bayoumy, 2011b). Thus, relatively little is yet known of this species' biology or 

ecology in Egypt.  

       The thelytoky parasitoid, Homalotylus flaminius Dalman (Hymenoptera: Encyrtidae) is a 

solitary, koinobiont endoparasitoid attacking the second-instar larvae of several species of 

coccinellids, including N. includens (Novin et al., 2000; Ma and Lin, 2001; Abdel-Salam et al., 

2010). The genus Homalotylus comprises the most important parasitoids of Coccinellidae with 

about 50 species worldwide (Noyes, 2005). Homalotylus  sinensis Xe and Hu has been reported 

as a larval parasitoid of Nephus bipunctatus (Kugelann)  from Iran  (Fallahzadeh et al., 2006). 

Up to 90-95% of larvae of the coccinellid Chilocorus bipustulatus L. have been parasitized by H. 

flaminius in North Africa and the Black Sea region (Rubtsov, 1954; Majerus, 1994). The 

foraging behavior and predatory efficiency of coccinellids may be affected by many factors 
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including their developmental stage (Koch et al., 2003), body size (Kajita and Evans, 2010), the 

prey species (Sarmento et al., 2007), prey density (Matter et al., 2011), temperature (Skirvin et 

al., 1997), foraging cues (Hodek and Honěk, 1996; Pasteels, 2007), plant architecture (Grevstad 

and Klepetka, 1992), cannibalism and intraguild predation (Burgio et al., 2002), food deprivation 

(Santos-Cividanes et al., 2011), and entomopathogenic fungi (Poprawski et al., 1998). However, 

few studies have yet examined the potential impact of larval parasitism on coccinellid foraging 

behavior. Bayoumy (2011b) assessed the effect of H. flaminius parasitism of N. includens larvae 

by deriving functional responses for parasitized second- and fourth-instars preying on A. gossypii 

at different prey densities. Although, parasitism did not alter the type of response in early-

parasitized second-instar N. includens, it adversely affected the response of fourth instars, 

ostensibly due to the more advanced age of the parasitoid larva. Unparasitized fourth-instars 

were observed to be the most voracious stage with the highest attack rate and lowest handling 

time, and thus were selected for use in the current study.   

One of the most informative methods for studying the predator-prey interaction involves 

measuring functional response and searching efficiency as these often correlate with biocontrol 

efficacy (Pervez and Omkar, 2005; Fathipour et al., 2006; Bayoumy, 2011b). Various models 

have been proposed to describe the interactions of one prey with one predator, beginning with 

the Lotka–Volterra model (Lotka, 1925; Volterra, 1926). However, models for the interaction of 

more than two species, for example, predator-prey interactions with parasitism as an additional 

factor, have been less studied because more complex phenomena arise (Freedman and Waltman, 

1985).  

In many cases, parasitism modifies the external features of an organism or its behavior to 

render it more vulnerable to predation (e.g., Lafferty, 1992; Shi et al., 2002). Although 
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parasitized animals often exhibit a reduction in food consumption (e.g., Arnott et al., 2000; 

Wright et al., 2006), parasitism may also trigger an increase in consumption (Slansky and 

Scriber, 1985; Dick et al., 2010). Thus, counterintuitively, parasitism might increase the 

competitive ability and/or functional response of invading predators. In the context of previous 

work on the invasive N. includens, (Bayoumy, 2011b), here we compared the searching 

efficiency of parasitized and unparasitized individuals to infer likely consequences of parasitism 

for population and community processes. A secondary objective was to test whether intraspecific 

interference would interact with parasitism via effects on predator consumption rates. 

Specifically, this work aimed to investigate (1) the impact of parasitism by H. flaminius on the 

searching efficiency of fourth-instar N. includens and its interaction with predator density (i.e., 

mutual interference) and (2) the effect of various predator-prey density combinations on 

searching efficiency and mutual interference values for parasitized fourth-instar N. includens.   

 

2. Materials and methods 

 

2.1. Insect cultures and general experimental conditions                                                                                    

    A colony of N. includens was established from pupae collected on guava trees, Psidium 

guajava L. at the experimental Farm, Faculty of Agriculture, Mansoura University at Mansoura 

district, Egypt during 2010-spring season. These trees were infested with Icerya seychellarum 

Westwood, Planococcus citri Risso and A. gossypii. Pupae (n = 96) were placed in Petri dishes 

(6.0 cm diameter × 2.0 cm height, n = 6 / dish) lined with filter paper and transported to the 

laboratory. Pupae were maintained at 25 ± 1ºC and a photoperiod of 16:8 h (L:D) in a climate-

controlled incubator until emergence of adults (n = 58). Adults were sexed based on the color of 
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the ventral abdominal surface, which is darker in females. Predator pairs (n = 26) were isolated 

in Petri-dishes (9.0 cm diameter × 1.6 cm height) containing guava leaves with ad libitum prey 

(A. gossypii) under the same physical conditions to permit mating. Leaves were examined daily 

for eggs and the male was removed at first oviposition. Each female was allowed to oviposit for 

24 h on aphid-infested leaves in the Petri-dish and was then transferred to a new dish. Eggs laid 

on the leaves were maintained under the same physical conditions (as above) for 2-3 days until 

eclosion. The petiole of each leaf was encased in a water-saturated cotton ball to maintain its 

condition. Eclosing larvae were reared individually and supplied daily with ad libitum aphids 

until they reached stages required for use in the experiments. Observations were made at 24 h 

intervals to select the desired instars. 

A colony of H. flaminius was established from the parasitized fourth instar N. includens 

collected from aphid-infested guava trees at the above-mentioned Experimental Farm. Each 

parasitized larva was isolated in a 5 ml Eppendorf tube (Eppendorf Gerätebau Netheler & Hinz 

GmbH, Oldenburg, Germany). Tube caps were perforated with a pin to provide ventilation and 

each was supplied daily with aphids (≈ 40 nymphs) on a small piece of guava leaves until larvae 

mummified. Upon emergence of adult parasitoids, 30 females (48-96 h old) of the thelytokous 

wasp were released in Petri-dishes (9.0 cm diameter × 1.6 cm height) containing second-instar N. 

includens larvae (3 females/10 larvae/dish) for five hours. A diluted honey solution was provided 

on a cotton wick. Host larvae were parasitized in this manner in one-day intervals to obtain a 

staggered emergence of adult parasitoids for the following generation. Exposed larvae were 

reared individually in Eppendorf tubes under the afore-mentioned physical conditions until 

emergence of adults. The adults were maintained in Eppendorf tubes and supplied with diluted 

honey until used in the experiments.   
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2.2. Preparation of parasitized larvae 

    To study the effect of parasitism on the searching efficiency of fourth instars, a series of 

second instars [the preferred instar for parasitism by H. flaminius (Majerus, 1994)] were 

parasitized. Second-instar larvae were placed in 9.0 cm Petri-dishes (4 dishes, 10 larvae/dish) 

containing a surplus of aphids on guava leaves. Three to five H. flaminius females (48-96 h old) 

were released into each of three dishes for a period of five hours with food provided as described 

above; larvae in the fourth dish were held without parasitoids to serve as controls. Larvae in each 

dish were reared with an ad libitum supply of aphid prey until they molted to the fourth instar. 

Only fourth instar larvae which showed evidence of parasitism were selected for the experiment. 

Parasitized larvae are recognizable in the fourth instar by the presence of darkened abdomenal 

coloration, partial absence of wax filaments that normally extend from dorsal epidermis, and 

elongation of the abdominal segments.  

2.3. Effect of parasitism, mutual interference, and prey density on area of discovery 

Newly molted fourth-instar larvae (< 24 h old, both parasitized and unparasitized) were 

starved for 6 h before each experiment to standardize hunger levels. To measure the differences 

in consumption rates due to the influence of parasitism and mutual interference on searched 

larvae of the predator, the larvae of both parasitized and unparasitized were grouped in 

treatments of one, two, three, four, or five individuals per Petri-dish, each containing a guava leaf 

on which 85 A. gossypii nymphs (2nd and 3rd instars) were feeding. Nephus includens larvae and 

A. gossypii nymphs were held together for 24 h. After 24 h., the larvae were removed and the 

aphids remaining in the dish were counted to determine the number consumed. The experiment 

was replicated 7-10 times simultaneously.  
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To assess the area of discovery of parasitized fourth instar N. includens as a function of prey-

predator density, three prey densities (70, 85, and 100 2nd- 3rd instar aphids/patch) were tested 

with five densities of parasitized fourth-instar predators (1, 2, 3, 4, and 5 /patch) under the same 

conditions as described above. The experiments were replicated 6-7 times simultaneously. To 

estimate the rate of natural prey mortality in the absence of predation, control arenas were 

established that contained the same aphid-infested leaves without predators. Prey mortality in 

treatment arenas was adjusted downward by the mean prey mortality observed in control arenas. 

In order to estimate the area of discovery of the predator we used Hassell (1978) as follows: 

 

                                                     at = 1/P  loge N/ N-Na                                                 (1)            

 

where a is the area of discovery, t the time of exposure (1 day), N the prey density, Na the 

number of prey consumed, and P the predator density.  

The above model (1) was used to correlate the area of discovery to prey density, but was 

inappropriate for correlation with predator density, as it assumes each parasitized host gives rise 

to a new parasitoid, which is not true in a predator-prey system. Moreover, given that the area of 

discovery is not constant and there is mutual interference among predators, the model of Hassell 

and Varley (1969) was used as follows: 

 

                                                            at = QP-m                                                           (2) 
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where a is the area of discovery, Q the quest constant (area of discovery with one predator 

searching), m the mutual interference constant (slope of regression of log at on log P), and P the 

predator density; the equation becomes linear as follows: 

 

                                                             log at = log Q-m log P                                          (3) 

2.4. Data analysis 

The effect of predator density and parasitism status on number of prey consumed by the 

unparasitized and parasitized fourth-instar predators was subjected to a two-way ANOVA with 

predator density and parasitism as fixed factors. In the event of a significant interaction, a 

separate one-way ANOVA was conducted to test the effect of predator density on the number of 

prey consumed. Means were separated by Tukey’s test when data were normally distributed and 

variances were homogeneous (Barltett's test for equal variances). The number of prey consumed 

by N. includens larvae at each predator density was analyzed using an independent sample t test.  

Prey consumption by parasitized fourth-instar larvae was subjected to a two-way ANOVA 

with prey density and predator density as fixed factors. In the event of a significant interaction, 

separate one-way ANOVAs were conducted for each prey density to test the effect of predator 

density on the number of prey consumed by parasitized larvae. Similarly, one-way ANOVAs 

were conducted at each predator density to test the effect of prey density on the number of prey 

consumed. Means were separated by Tukey’s test. Statistics were performed with Graph Pad 

Prism three (GraphPad, 1999). 

The relationships between predator density and area of discovery for both parasitized and 

unparasitized fourth instar larvae, and between the area of discovery for parasitized larvae and 
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predator density at various prey densities, were analyzed by linear regression by using Graph Pad 

Prism three (GraphPad, 1999).  

 

3. Results 

 

There were significant effects of predator density (F = 4.33; df = 4,73; P < 0.001) and 

parasitism (F = 226.6; df = 1,73; P < 0.0001) on the number of prey consumed, and the 

interaction between these main effects was significant (F = 4.88; df = 4,73; P < 0.001). Aphid 

consumption by both parasitized and unparasitized fourth-instar larvae increased as predator 

density increased (F = 5.62; df = 4,36; P < 0.001 and F = 10.67; df = 4,36; P < 0.0001, 

respectively). However, prey consumption per predator decreased significantly as predator 

density increased (parasitized: F = 464.18; df = 4,36; P < 0.0001; unparasitized: F = 123.42; df = 

4,36; P < 0.0001; Table 1).  There were significant differences in the number of prey consumed 

by parasitized and unparasitized larvae at each predator density (one predator: t = 5.16, P < 

0.0001; two predators: t = 6.53, P < 0.0001; three predators: t = 9.2, P < 0.0001; four predators: t 

= 15.29, P < 0.0001; and five predators: t = 14.31; P < 0.0001). Similarly, there were significant 

differences between parasitized and unparasitized larvae in the number of prey consumed per 

individual at each predator density (Table 1).  

Both prey density and predator density had significant effects on consumption by parasitized 

N. includens larvae (F = 159.8; df = 2,94; P < 0.0001 and F = 24.54; df = 4,94; P < 0.0001, 

respectively). There was also a significant prey density*predator density interaction on total prey 

consumption (F = 2.23; df = 8, 94; P < 0.05) and significant differences in consumption at each 

predator density (one predator: F = 16.49; df = 2,18; P < 0.0001; two predators: F = 19.86; df = 
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2,16; P < 0.0001; three predators: F = 67.87; df = 2,16; P < 0.0001; four predators: F = 35.36; df 

= 2,16; P < 0.0001; and five predators: F = 45.68; df = 2,16; P < 0.0001). Similarity, there were 

significant differences in prey consumption by parasitized larvae at each prey density (70 

nymphs/patch: F = 3.36; df = 4,25; P < 0.01; 85 nymphs/patch: F = 5.62; df = 4,32; P < 0.001; 

and 100 nymphs/patch: F = 18.71; df = 4, 25; P < 0.0001; Table 2). 

At a constant prey density, the area of discovery for parasitized larvae decreased more 

steeply as predator density increased when compared to that of unparasitized larvae. The 

decrease in the area of discovery was curvilinear in relation to predator density for both 

parasitized and unparasitized larvae, with the highest values (0.35 ± 0.02 and 0.63 ± 0.22, 

respectively) observed with one predator foraging and the lowest (0.081±0.009 and 0.31±0.09, 

respectively) with five predators foraging (Fig. 1). Mutual interference values estimated by 

equation 5 were higher for parasitized larvae (m = -0.92) than for unparasitized (m = -0.44). In 

contrast, the quest constants (i.e., level of efficiency) were higher for unparasitized (Q = 0.45) 

than for parasitized larvae (Q = 0.23; Fig. 2).  There was also a curvilinear decrease in the area of 

discovery across prey densities with increasing predator density when predators foraged for 70, 

85, and 100 prey/patch, the highest values (0.39 ± 0.04, 0.35 ± 0.02 and 0.31 ± 0.02, 

respectively) being obtained when a single predator foraged and the lowest (0.08 ± 0.03, 0.081 ± 

0.009 and 0.084 ± 0.005, respectively) when five predators foraged (Fig. 3). Thus, mutual 

interference values for parasitized larvae decreased with increasing prey density, while their 

level of efficiency (Q) increased (Fig. 4).  

 

4. Discussion 
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 The present study illustrates that parasitism of a predator can modify predator-prey interactions 

via short-term density-dependent effects on predator foraging behavior, i.e. the functional 

response and searching efficiency. Prey consumption by unparasitized larvae increased with their 

density, implying that high release rates of predators would increase rates of prey consumption. 

However, increasing the number of predators in the patch did not result in a proportional increase 

in the number of prey consumed, due to the negative effects of mutual interference. The 

observed decrease in the searching efficiency (area of discovery) as a function of increasing 

predator density suggests that mutual interference among predators increased steeply at higher 

predator densities. This is likely due, at least in part, to confinement in the experimental arena 

that generated high conspecific encounter rates. Clearly, empirical data obtained under 

laboratory conditions cannot be directly extrapolated to field conditions, but the data suggest that 

predator aggregation in a specific prey patch will increase negative conspecific interactions. As 

the density of conspecifics increases, each predator spends less time searching for prey and more 

time interacting with conspecifics (Hassell, 1971), and this explains why searching efficiency 

declined as predator density increased. On the other hand, prey consumption by unparasitized 

and parasitized larvae was unequally affected at various predator densities, owing to the negative 

effects of both parasitism and mutual interference. Although both factors reduced predation 

efficiency, they also interacted. The combined effect of both factors contributed to a 91% 

reduction in the area of discovery at the highest predator density; parasitism alone reduced 

searching efficiency by 47% (i.e., m parasitized- m unparasitized = 0.91-0.44), whereas high 

predator density further reduced efficiency by 44%. Therefore, parasitism increased the negative 

effect of intraspecific competition on foraging efficiency, and thus has the potential to diminish 

predator functional response under field conditions, in addition to the obvious longer-term 
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impact on predator numerical response. There are few studies of parasitism impact on predator 

foraging behavior. For example, Dick et al. (2010) demonstrated that parasitism of a predatory 

amphipod, Gammarus pulex (L.), enhanced its predation rate on the crustacean, Asellus 

aquaticus (L.). However, this is not an analogous situation because the acanthocephalan parasite 

in this case, Echinorhynchus truttae, has only modest impact on the fitness of its host, whereas 

insect parasitoids are ultimately lethal. 

    Although parasitized fourth-instar predators consumed more prey as prey density increased, 

the highest area of discovery was observed at the lowest prey density (i.e., 70 prey/patch). The 

apparent anomaly of the highest area of discovery (greatest searching efficiency) occurring at the 

lowest prey density (which also generated the greatest mutual interference) explains the 

significant interaction between prey and predator densities. However, the quest constant Q (i.e., 

the level of efficiency) increased with prey density and the corresponding reduction in mutual 

interference (Fig. 4). Thus, increased food availability may reduce the effect of intraspecific 

competition and increase the consumption rate of parasitized larvae. It is also possible that the 

predator spends more time handling each prey item when they are at low density, and handling 

time is greater for parasitized larvae (Bayoumy, 2011b). Whereas a positive association between 

feeding rate and oviposition rate will enhance aggregation, mutual interference between 

predators will reduce foraging efficiency as aggregation increases (Eveleigh and Chant, 1982), 

resulting in a trade-off between the costs and benefits of aggregating (van der Meer and Ens, 

1997). In the present study, parasitism had more impact on the searching efficiency at high 

predator densities and low prey densities. Thus, as prey density increases, the effect of 

interference is diminished along with the disadvantage of parasitism. This may explain why both 



 

 15

area of discovery and intraspecific interference for parasitized individuals level off at high prey 

densities. 

Data on predation rates under pressure of parasitism and in relation to crowding and prey 

availability are useful for forecasting the role of N. includens as a biological control agent. 

Although laboratory data require corroboration with field studies, these results demonstrate that 

predation by N. includens larvae can be dramatically influenced by parasitism and mutual 

interference. In particular, the effect of predator-prey ratios on predation rates warrant careful 

evaluation in other studies, since food availability and size of the experimental arena are 

expected to strongly influence mutual interference. In the context of augmentation biological 

control, carefully timed releases of N. includens life stages that are immune to parasitism (e.g., 

pupae or adults) in a suitable predator-prey ratio could aid in minimizing the detrimental effects 

of parasitism and intraspecific interference on foraging behavior, thus enhancing predator 

efficacy.  
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Table 1. 

Prey consumption of parasitized and unparasitized fourth-instar N. includens at various predator 

densities during a 24 h period of foraging for 85 2nd and 3rd instar A. gossypii on a guava leaf in a 

9.0 cm Petri dish. 

Predator 
density 

Number of prey consumed† Prey consumption per predator† 

unparasitized*** parasitized** t-test‡ P unparasitized*** parasitized*** t-test‡ P 
1 63.00±8.45b 46.11±3.14b 5.17 <.0001 63.00±8.45a 46.11±3.14a 5. 17 <.0001
2 68.75±7.04b 49.00±2.07ab 6.53 <.0001 34.29±3.52b 24.50±1.04b 6. 53 <.0001
3 76.57±7.09a 49.43±1.39ab 9.2 <.0001 25.52±2.36c 16.48±0.47c 9.17 <.0001
4 81.70±4.19a 51.57±3.02a 15.29 <.0001 20.43±1.05d 12.89±0.75d 10.6 <.0001
5 80.83±3.98a 51.86±2.70a 14.31 <.0001 16.17±0.79d 10.37±0.54e 14.31 <.0001

***P<0.0001 
  **P<0.001 

†
Means ± SE followed by the same upper case letters are not significantly different according to Tukey's test.

 ‡
 The levels of 

probability of significance (P) across rows are indicted according to the t-test. 
  

 

 

 

Table 2. 

Prey consumption of parasitized fourth instar N. includens larvae at various densities of predator 

and prey (2nd and 3rd instar A. gossypii on a guava leaf) during a 24 h period of foraging in a 9.0 

cm Petri dish. 

 
Predator 
density 

Number of prey consumed  
70 nymphs/patch* 85 nymphs/patch** 100 nymphs/patch*** 

1*** 41.67±1.69C
b 46.11±3.14B

b 50.50±1.89A
c 

2*** 46.50±1.71C
a 49.00±2.07B

a 55.50±3.09A
b 

3*** 46.67±1.79C
a 49.43±1.39B

a 58.67±1.97A
a 

4*** 47.00±2.31C
a 51.57±3.02B

a 60.33±2.21A
a 

5*** 46.17±2.91C
a 51.86±2.70B

a 61.83±2.27A
a 

***P<0.0001 
**P<0.001 

*P<0.01 
 

   

Means ± SE within each row (i.e., between prey densities) followed by the different capital letters (upper case) and within each 
column followed by the different small letters (lower case) are significantly different according to Tukey's Test. 
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Figure 1  
 
Fig. 1. Relationship between area of discovery and predator density of (a) unparasitized and (b) 

parasitized fourth instar larvae of N. includens during a 24 h period of foraging for aphids (85 2nd 

and 3rd instar A. gossypii on a guava leaf) in a 9.0 cm Petri dish. 
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Figure 2 

Fig. 2. Interference derived from the relationship between logarithm of predator density (P) and 

area of discovery (at) of the unparasitized (□) and parasitized (♦)fourth instars of N. includens 

during a 24 h period of foraging for aphids (85 2nd and 3rd instar A. gossypii on a guava leaf) in a 

9.0 cm Petri dish (logat= -0.45-0.92 logP, r2=0.99, P<0.001 and logat= -0.23-0.44 logP, r2=0.92, 

P<0.001, respectively). 
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Figure3 
 

Fig. 3. Relationship between area of discovery and predator density for parasitized fourth instar 

N. includens during a 24 h period foraging for various densities of prey (2nd and 3rd instar A. 

gossypii on a guava leaf) in a 9.0 cm Petri dish. 



 

 26

 

 

Figure 4 
 

Fig. 4. Interference derived from the relationship between the logarithm of predator density (P) 

and the area of discovery (at) for parasitized fourth instar N. includens larvae during a 24 h 

period of foraging at various densities of prey (2nd and 3rd instar A. gossypii on a guava leaf) in a 

9.0 cm Petri dish. 
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