
The Static and Dynamic Characterization
of the MC68HCllA8's Analog to Digital Converter/

by

Jeffrey Charles Daniels

B.S, Kansas State University , 1984

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

Approved by:

J^aiJd^M^JeX—
Major Professor



Ill

vii

Table of Contents

List of Figures
LD

List of Tables ,
2
r*. ....
'^£cb Aiisiogsiabb

Acknowledgments . '"'.. viii
IT68

1.0 Introduction P$L 1

2.0 The Testing System 3

3.0 Theory of Operation of the HCll's A/D 9

Single Channel Operation 12

Multiple Channel Operation 13

Scan Control 13

Using the A/D 13

4.0 Static Testing of the HCll's A/D 15

Testing Procedure 15
Method 1 17

Method 2 18
Method 3 18

5.0 Static Testing Results 20

Method 1 20

Method 2 24
Method 3 25

Conclusion 47

6.0 Dynamic Testing of the HCll's A/D 48

Testing Procedure 50

Method 1 51

Method 2 53

7.0 Dynamic Testing Results of the HCll's A/D ... 57

Method 1 58
Method 2 67

Conclusion 73

8.0 Summary and Recommendations 7 4

Appendix A ..... A-l

Appendix B B-l

Appendix C C-l

References R~l



List of Figures

Figure 2-1. Static and Dynamic Testing Configuration . 4

Figure 2-2. Interface Board Configuration 6

Figure 2-3. Precision Voltage Reference Circuit ... 8

Figure 3-1. A/D Control/Status Register 11

Figure 4-1. Static Testing System 16

Figure 5-1. Transfer Functions of A/D in four
conversion, single input, input channel
1. Checking state of CCF bit 21

Figure 5-2. Transfer Functions of A/D in four
conversion, single input, input channel
1. Checking state of CCF bit 22

Figure 5-3. Transfer Functions of four HClls
in four conversion, single input,
input channel 1. Checking state of CCF . 23

Figure 5-4. Transfer Functions of A/D in four
conversion, single input, input channel
1. Executing long delay 26

Figure 5-5. Transfer Functions of A/D in four
conversion, single input, input channel
1. Executing long delay 27

Figure 5-6. Total errors of the A/D using the
four conversion, single input, input
channel 1 mode 29

Figure 5-7. Total errors of the A/D using the
four conversion, multiple input mode ... 30

Figure 5-8. Total errors of the A/D using the
continuous conversion, single input,
input channel 1 mode 31

Figure 5-9. Total errors of the A/D using the
continuous conversion, multiple mode ... 32

Figure 5-10. Differential non-linearity errors
of the A/D using the four conversion,
single input, input channel 1 mode .... 34

iii



Figure 5-11. Differential non-linearity errors
of the A/D using the four conversion,
multiple input mode 3 5

Figure 5-12. Differential non-linearity errors
of the A/D using the continuous
conversion, single input, input
channel 1 mode 36

Figure 5-13. Differential non-linearity errors
of the A/D using the continuous
conversion, multiple mode 37

Figure 5-14. Histogram integral non-linearity errors
of the A/D using the four conversion,
single input, input channel 1 mode .... 38

Figure 5-15. Histogram integral non-linearity errors
of the A/D using the four conversion,
multiple input mode 39

Figure 5-16. Histogram integral non-linearity errors
of the A/D using the continuous
conversion, single input, input
channel 1 mode 40

Figure 5-17. Histogram integral non-linearity errors
of the A/D using the continuous
conversion, multiple mode 41

Figure 5-18. End Point integral non-linearity errors
of the A/D using the four conversion,
single input, input channel 1 mode .... 43

Figure 5-19. End Point integral non-linearity errors
of the A/D using the four conversion,
multiple input mode 44

Figure 5-20. End Point integral non-linearity errors
of the A/D using the continuous
conversion, single input, input
channel 1 mode 45

Figure 5-21. End Point integral non-linearity errors
of the A/D using the continuous
conversion, multiple mode 46

Figure 6-1. Dynamic Testing System 49

Figure 6-2. Harmonics of the DFT Window
1406.25 Hz sine wave sampled at 4000 Hz . 55

iv



Figure 6-3. Spectrum for an ideal 8-bit A/D
1406.25 Hz sine wave sampled at 4000 Hz . 57

Figure 7-1. Histogram data and Differential
non-linearity errors for A/D. Four
conversion, single input, input channel 1.

RC timer disabled 59

Figure 7-2. Histogram data and Differential
non-linearity errors for A/D. Four
conversion, single input, input channel 1.

RC timer enabled 60

Figure 7-3. Histogram data and Differential
non-linearity errors for A/D. Four
conversion, multiple input.
RC timer disabled 61

Figure 7-4. Histogram data and Differential
non-linearity errors for A/D. Four
conversion, multiple input.
RC timer enabled 62

Figure 7-5. Histogram data and Differential
non-linearity errors for A/D.
Continuous-conversion, single input,
input channel 1. RC timer disabled ... 63

Figure 7-6. Histogram data and Differential
non-linearity errors for A/D.
Continuous-conversion, single input,
input channel 1. RC timer enabled ... 64

Figure 7-7. Histogram data and Differential
non-linearity errors for A/D.
Continuous-conversion, multiple input.

RC timer disabled 65

Figure 7-8. Histogram data and Differential
non-linearity errors for A/D.
Continuous-conversion, multiple input.

RC timer enabled 66

Figure 7-9. Fourier Transform Results of A/D.
Four-conversion, single input,
input channel 1 68

Figure 7-10. Fourier Transform Results of A/D.
Four-conversion, multiple input 69



Figure 7-11. Fourier Transform Results of A/D.
Continuous-conversion, single input,
input channel 1 70

Figure 7-12. Fourier Transform Results of A/D.
Continuous-conversion, multiple input . . 71

Figure C-l. Transfer function of an ideal 3-bit A/D C-l

vi



List of Tables

Table 3-1. Analog to Digital Channel Assignments ... 12

Table 6-1. Location of Harmonics in the
Frequency window 54

vii



Acknow ledgment s

My gratitude goes to Motorola Semiconductor Group for

funding this project and to the Department of Electrical and

Computer Engineering for their patience and understanding to

help the completion of this project come to an end. Special

thanks goes to Dr. Lenhert for his guidance and prodding to

get the spoken words down on paper in an understandable

form. Most of all, I would like to thank my parents for

their teachings which gave me the will to make it though

graduate school, my wife who gave me the reason why, and

finally my son whose learning mind gave hope and promise for

all good things to come.

viii



Automated test equipment for integrated circuit (IC)

manufacturing in mass production applications is expensive

to purchase and to maintain. This expense contributes to

the proportionality between the cost of an IC and its

testing time. As ICs become more complex, as with the

case of microprocessors, it soon becomes cost prohibitive

to test all combinations of inputs, outputs, and functions

available.

Motorola has developed a fast, low power microcompu-

ter, the MC68HC11A8 (HC11) , which has an elaborate timer

system, two serial communications interfaces, parallel

input/output (I/O) configurations, and a unique feature of

a onboard 8 bit, successive approximation analog to digi-

tal converter (A/D) with sample and hold. 1 The HC11 has

endless possibilities for control applications using its

timer system, serial communication interfaces, I/O confi-

gurations, and its eight bit A/D. One control application

and a more in-depth description of the HC11 is outlined in

Draving4 where the HC11 is used as a controller for low

power, precision A/D converters.

For an A/D used in a critical application, extensive

testing is necessary to ensure conversion results to be

within the manufacturer's specifications. As stated by

Doerfler 2
, testing of even low resolution A/Ds can take



several hours to complete. This presents a problem for

Motorola. To keep the HC11 at a competitive price,

testing time must be kept to a minimum thus eliminating

the possibility of extensive testing its A/D. The purpose

of this thesis is to statically and dynamically character-

ize the HCll's A/D and to present the testing procedures

used in this characterization.



2jfl The Testing System

In order to test the HCll's A/D, a test system was

developed consisting of a H68HC11EVB evaluation board

(EVB) , an interface board, a Hewlett Packard (HP) 9845B

computer with a parallel interface, an IBM PCXT equipped

with a modified (pull up resistors on inputs and outputs)

24 bit Parallel Digital I/O Interface Model PI012 Metra-

byte board, an HP 3878A digital voltage meter (DVM) , an HP

3325A function generator, and an eighteen bit digital to

analog converter (DAC) as shown in figure 2-1.

The EVB is a small, compact, low cost tool for devel-

opment of HC11 based target system equipment. This board

provides host computer down loading capabilities which

allows the use of a cross assembler running on an IBM

PCXT, eight kilobytes (8k) of user RAM, 8k of EPROM, and a

monitor/debugging program called BUFFALO ( Bit Users Fast

Friendly Aid to Logical Operations ). The EVB provides

access to all 52 pins of its HC11 via a 60 conductor flat

ribbon cable.

The EVB is well suited for the testing system in

figure 2-1 except for the lack of a bypass capacitor on

the HCll's power and ground pins. This problem was cor-

rected by the installation of a lOuF, tantalum capacitor

across the HCll's VDD and Vss pins on the underside of the

EVB board.



'1

m
in

oo
en

J
a.x

*

_i>

>

2g

82
£ a.

c z omot
cm — c
r> i- a.o o u

fell

_*Z
.<-»

Uih

\

Q
<r
om

o
cr
u.
a:
u

/

Ai

z: xm o

Eg!

) i

E

S

h
a
£
(X
om
CD «—

*

> CJ

o
_J
CE
2
»—

|

z:
a:
u

U X

§

B
O
U

c

5

I

3
CI



The interface board of the test system, shown in

figure 2-2, provides buffering for the HCll's inputs and

outputs, data latches, handshaking logic to the HP 9845B,

a stable voltage reference for the VRH input, and a cir-

cuit to provide an external source for the HCll's EXTAL

and XTAL pins to allow the user to lower the standard

operating frequency of the EVB.

The buffers are used to protect the HC11 from being

overdriven thus causing possible damage. 74HC373 uni-

directional 8 bit data latches were chosen for the buffers

and also the data latches on the interface board. Used as

buffers, the 74HC373s were operated in transparent mode to

allow the outputs to follow the inputs with no need for a

clock input. The 74HC373S used as data latches on the

interface board used a pulse output from a pin (PA4) on

the HCll's PORTA to set and hold the data to be read by

the HP 9845B or IBM PCXT. Figure 2-2 shows high and low

byte data latches although the only use for the high byte

is to establish O's on the top eight data lines on the

GPIO interface.

The handshaking logic between the HC11 and HP 9845B

is a 7474 D flip flop with preset and clear inputs. The

HC11 waits until the flip flop is set before sending data

to the HP 9845B by latching the data into the data latches

with a pulse on PA4 and clearing the D flip flop with a

pulse on PA6. When a conversion result is latched into



OldO dlA 8S*86dH 01

/ *
,

i t

aaooa siasuisu
ix od uai 01

6



the latches, PA4 also pulses the HP 9845B to indicate

valid data. When the HP 9845B wants data, it sets the flip

flop and then waits for a pulse on its PFLG pin to accept

the available data.

The handshaking method used with the IBM PCXT and the

HC11 is simpler than that used with the HP 9845B. When

the HC11 has data available, the conversion result is

latched with a pulse being sent, via PA4, to the IBM PCXT.

For the IBM PCXT to receive data, it waits for a pulse

from the HC11, takes the data and then waits for another

pulse.

The HP 3878A DVM is controlled by the HP 9845B via an

HPIB interface and is used to measure voltages and return

the results to the HP 9 845B for the analysis of testing

results. The HP 3325A function generator is controlled

manually by the user to provide a precision sine wave used

as one of the analog inputs to the HCll's A/D. Also, an

18 bit DAC, built and tested to 16 bit linearity by

Holdeman6
, provides a ramp input to the HCll's A/D. A

precision voltage reference shown in figure 2-3, provides

a stable voltage of +5 volts to be used as the input of

Vjyj pin on the HC11. Finally, the clock frequency of the

EVB can be changed by changing a jumper on the EVB and

placing a suitable crystal on the interface board.



CO

o
x> _l Q
a. CK z
>[f> > CD

5

8
B
01

M
01

I
0>

o>

o

§

o

7
<N

01

In

3



3_,0 Theory of Operation of the H£11L§ AZB
1

The A/D provides ten inputs to the user, of which,

eight are analog inputs (ANO - AN7) with two being dedi-

cated for use as reference voltages (Vj^ and V^) . The

voltage range for V RL and VRH is zero and five volts

respectively. Motorola documentation states that the A/D

is ratiometric. This implies that an analog input equal

to VRH converts to $FF (full scale) and an input equal to

VRL converts to $00, with no over or under flow indica-

tion.

The A/D is clocked by one of two sources, the HCll's

E clock or an internal RC oscillator. With the E clock

rate greater than 1 MHz, each A/D conversion is

accomplished in thirty two E clock cycles. For E clock

rates less than 1 MHz, the A/D is designed to be clocked

by the internal RC oscillator enabled by setting a bit

(CSEL) in the OPTION register. The RC timer, when

enabled, operates at about 1.5 MHz.

In a small period of time, 128 E clock cycles, the

A/D can perform four conversions on user specified analog

inputs, either ANO - AN3 or AN4 - AN7 . The four conver-

sion results are placed in four A/D Result Registers, ADR1

through ADR4 . The first conversion is placed in ADR1 , the

second in ADR2 and so on. The A/D conversion process is

initiated by a write to the A/D Control/Status Register

(ADCTL) with valid results in ADR1 in 32 E clock cycles,



ADR2 in 64, ADR3 in 96, and ADR4 in 128. Each time a

conversion is initiated, the A/D system performs four

conversions and then stops or continues depending upon its

configuration.

Control of the inputs to the A/D is determined by the

configuration of the A/D Control/Status Register (ADCTL)

.

Figure 3-1 displays the ADCTL and its description.

10



B7 B6 B5 B4 B3 B2 Bl BO

CCF - SCAN HOLT CD CC CB CA

Bit 7, CCF Conversion Complete Flag - This bit is a read
only status indicator that becomes set when
all Result Registers contain valid results.
When a conversion is initiated, by a write to
ADCTL, this bit is cleared automatically and
then becomes set when valid results are found
in the Result Registers.

Bit 6, Not implemented. Reads as zero.

Bit 5, SCAN Continuous Scan Control - With this bit
cleared, the A/D performs four conversions
and places the results in the Result
Registers. When this bit is set, the A/D
performs conversions in a round robin fashion
with the Result Registers being updated as
data becomes available.

Bit 4, MULT Multiple Channel/Single Channel Control When
this bit is cleared, the A/D is configured to
perform four consecutive conversions on a

single input channel as specified by the four
channel bits in the ADCTL, CA through CD
(bits 0-3). When this bit is set, the A/D is
configured to perform a conversion on each of
four channels with each Result Register cor-
responding to one channel.

Bit 3, CD Channel Select D

Bit 2,CC Channel Select C

Bit 1,CB Channel Select B

Bit 0,CA Channel Select A - These four bits select one
of sixteen possible analog inputs to the A/D.
Of these sixteen, only eight are available to
the user for external inputs. When the mul-
tiple input mode is selected, Bit 4, MULT is
set, the two least significant bits, CB and
CA have no meaning because a group of four
channels are each converted once with their
results placed in the Result Registers.
Table 3-1 summarizes the input channels
selected by the channel select bits.

Figure 3-1. A/D Control/Status Register (ADCTL)

11



Result in ADRx
CD cc CB CA Channel Signal if MULT = 1

n ANO ADR1
n 1 AN1 ADR2
n 1 AN2 ADR3

1 1 AN3 ADR4

1 AN4 ADR1
i 1 AN5 ADR2
l 1 AN6 ADR3
l 1 1 AN7 ADR4

1 Reserved ADR1
1 1 Reserved ADR2
1 1 Reserved ADR3
1 1 1 Reserved ADR4

1 1 VRH pin ADR1
1 1 1 VRL pin ADR2
1 1 1 VRH / 2 ADR3
1 1 1 1 Reserved ADR4

Table 3-1. Analog to Digital Channel Assignments

By analyzing Table 3-1, it appears that the A/D

system has sixteen inputs with four control lines.

Actually, the A/D does have sixteen analog inputs of which

only eight are user inputs. The last four shown in Table

3-1 are internal reference points with the prior four

being reserved for future use.

Single Channel Operation

Single channel operation is accomplished by clearing

bit 4 of the ADCTL. This configuration causes the A/D to

perform four conversions of a single input channel

selected by the four Channel Select bits (CD - CA) and

place the results in the four Results Registers.

12



Multiple Channel Operation

Multiple channel operation is accomplished by setting

bit 4 of the ADCTL. This configuration causes the A/D to

perform four conversions of the group of four input

channels selected by the Channel Select bits CD and CC.

in this configuration the Channel Select bits CB and CA

have no meaning.

Scan Control

The Scan configuration refers to how many A/D conver-

sions are performed after a write to the ADCTL. By

clearing bit 5 of the ADCTL, the A/D is configured to

perform four conversions and then stop all activity. With

bit 5 set, the A/D performs conversions continually with

new conversion results being placed in the Result

Registers as they become available.

Using the A/D

To use the A/D converter, it must be supplied power.

This power up procedure is accomplished by setting bit 7

of the OPTION Register. To set up a mode of operation for

the A/D and to initiate a conversion, a write to the ADCTL

is necessary. After a period of time, two methods are

possible to ensure that valid results are found in the

Result Registers. If E clock frequencies are greater than

1 MHz and the RC oscillator is not enabled, the user can

just execute a delay loop until 128 E clock cycles have

passed. This, according to Motorola specifications, is

13



the time required for all Result Registers to contain

valid results. Also, once the conversion is initiated, a

loop that checks th.e CCF bit and exits on its high state

will ensure valid conversion results exist. If the A/D is

clocked by the RC oscillator, regardless of E clock fre-

quency, the method for checking for valid results is the

bit test of the CCF or with a very long delay loop ( > 128

microseconds )

.

14



J_.p_ Static Testing Qt tfeg HC1H§ A/D

The system configuration used to test the HCll's A/D

with static inputs is shown in figure 4-1. The basic

procedure for most static testing methods has the HP9845B

tell the 18 bit DAC to setup a constant output voltage to

the interface board, have the DVM measure the voltage and

return the result, and finally tell the HC11 to perform an

A/D conversion and return the result. This loop continues

until the amount of data desired is collected. Finally,

the calculation of errors is performed on the HP9845B and

then plotted if desired. The software for all three static

testing methods for the HP9845B and HC11 are shown in

Appendix A.

Testing Procedure

Three preliminary testing methods for static analog

input conditions were developed and used in obtaining data

presented in this thesis. These procedures were repeated

in different operational modes of the HCll's A/D and at

different E clock frequencies.

A mode of operation is defined as the byte, in Hex,

which is written to the ADCTL to initiate an A/D conver-

sion. Four mode combinations were used in collecting data

for this thesis. The modes are:

four-conversion, single input, input channel 1 (01),
four-conversion, multiple input (10)

,

continuous-conversion, single input, input channel 1 (21),
continuous-conversion, multiple input (31)

.

For example, a four-conversion, single input, input

15



h-
cn
u Q
t— C£

C£ cr
L.I o
Q CDZ
Z)

CD
a >
a u
<r

a: C£
CO LJ

00
0")

1—
1—

O
o_ _J
i Q_

CO

c

u
a
v
6h

3

16



channel 1 (01) mode, configures the A/D system to convert

the analog signal found at AN1 four times and place the

results in the Result Registers (ADR1 - ADR4) . With four-

conversion, multiple input (10), as the mode, the A/D

system converts the analog signal at ANO with the result

being placed in ADR1, the conversion of AN1 in ADR2, AN2

in ADR3 , and AN3 in ADR4 . The two other modes used in

testing, continuous-conversion, single input, input

channel 1 (21) and continuous-conversion, multiple input

(31), are similar to the 01 and 10 modes except that the

A/D is configured to perform continuous conversions. Note

that when multiple inputs are configured, the input

channel is not specified in the description. These

different modes are each used in the three methods used in

static testing the A/D.

Method 1

This method uses a user specified mode for the HCll's

A/D. The HC11 receives a signal from the HP, starts a

conversion, waits until the CCF bit is set and then

outputs the four Result Registers through the interface

board to the HP for display purposes. The input signal

used for this test was VRH , +5 volts. The HP reads the

DVM, signals the HC11, and then reads in four conversion

results which are then displayed on the screen along with

the DVM reading. This test continues until the user

aborts it.

17



Method 2

This method is very similar to Method 1, except for

the testing of the CCF. This method executes a long delay

loop after a conversion is initiated. When the delay loop

is completed, the HC11 transfers the contents of the

Result Registers to the HP for screen display.

Method 3

This method consists of using a static histogram

testing procedure developed by Doerfler. 2 This method

uses the HP9845B to control an 18 bit Digital to Analog

Converter (DAC), a precision digital voltage meter (DVM)

along with receiving data from the HC11. The basic theory

of this method is to increment the 18 bit DAC by one

fourth of an HC11 least significant bit (LSB) . Which is:

LSB = ( Vpg - Vj^ ) / 2**Resolution

where: Vdj, is the high reference voltage
V^ is the low reference voltage
Resolution is the number of bits of
the A/D converter.

For testing methods used in collecting data, an LSB for

the HC11 equals 19.53 mV.

At each step of the 18 bit DAC, ten A/D conversions

are performed with the conversion results used to

construct a histogram. From this histogram, differential

and integral non-linearity errors are estimated. Along

with the histogram data, DVM readings are taken at each

step to be used to calculate total errors. Offset and

gain errors are calculated by a method that uses end point

18



transitions. 3 These transitions are used to calculate the

slope of the transfer function of the A/D. Also, this

slope is used to adjust the DVM readings to remove gain

and offset errors. Using the adjusted DVM readings, inte-

gral non-linearity errors are then calculated at the

transition points of the A/D. Further explanation of this

end point transition method is provided in Appendix C.

Finally, a search of the data files is performed to find

missing codes and non-monotonic behavior.

Of the two possible methods for checking for valid

data in the Results Registers, checking the CCF bit and

executing a sufficiently long delay, the data produced for

this thesis for method 3 uses the check of the CCF bit to

indicate when a conversion is complete.

19



£*fl Static Testing Results

Exhaustive static testing of all the HClls acquired

has not been completed at this time, but several HClls

from different lots, from the mask B96D, have undergone

the tests previously described. In the analysis that

follows, errors of the HCll's A/D will usually be

described in terms of an LSB.

Method 1

This method has the HC11 initiate an A/D conversion,

checks for the high state of the CCF bit, and then outputs

the contents of the Result Registers to the HP for

display. The E clock frequency for this method was 2 MHz

and the input voltage was V RH , +5 volts. Four HClls,

provided by Motorola, were tested, and each produced simi-

lar results.

With the RC timer disabled, using the two, four-

conversion modes (01 and 10), Result Register three showed

errors in the range of 20 to 60 LSBs with the other Result

Registers having the expected result of 255. The transfer

functions of the A/D reading from the four Result

Registers of the four-conversion, single input, input

channel 1 (01) mode are shown in Figure 5-1 for a 2 MHz E

clock and Figure 5-2 for a 500 kHz E clock. Readings from

Result Register 3 from four other HClls are shown in

Figure 5-3. These figures clearly show the error in

Result Register 3 in the form of a D.C. offset in the

20



X
U

I
a.

a e

o
1H 41

O J3
(J

U
B
O .

•H _|
4J
O i-l

e u
a c
Du e

4) O

J a 4J
;C a

«j a

i

in

3

21



z
E

at
u

z
e

22



u
Q

;, >

.. 1

.. I

<r

23



input channel when the analog input is sampled for the

conversion for Result Register 3 which varies for

different HClls. Also, as seen from comparing Figures 5-1

and 5-2, the D.C. offset becomes slightly smaller for

lower E clock frequencies.

Continuous-conversion modes (21 and 31), had a solid

255 for Result Registers 1 and 3 but 2 and 4 displayed an

erratic nature between 255 and a result ranging from 33 to

55 LSBs lower depending on which chip was tested. Also,

there appeared to be no correlation in the errors between

2 and 4.

With the RC timer enabled, every mode tested

displayed at least 1 or 2 LSBs of noise on all Result

Registers. Large noise spikes were present but occurred

only every few seconds. The Result Registers with the

large noise spikes varied with different HClls.

Method 2

This method, similar to method 1, executes a long

delay after a conversion is started and then outputs four

conversion results to the HP. The length used for the

delay was 450 clock cycles. This length, according to

specifications is over 3.5 times the length needed for

Result Registers to contain valid results. For this

method the E clock frequency was 2 MHz and 500 kHz with

testing performed on several HClls.

24



When the RC timer is disabled, the two, four-

conversion modes (01 and 10), produced errors in Result

Register 2 ranging from 12 to 72 LSBs depending on which

chip was tested with the other Result Registers having the

desired result of 255. The transfer functions of the A/D

reading from the four Result Registers of the four-

conversion, single input, input channel 1 (01) mode are

shown in Figure 5-4 for a 2 MHz E clock and a 500 kHz E

clock in Figure 5-5. These figures clearly show the error

in Result Register 2 in the form of a D.C. offset that

decreases slightly with E clock rates in the input channel

when the analog input is sampled for the conversion for

Result Register 2. In continuous-conversion modes (21 and

31), Result Registers 2 and 4 displayed a toggling action

between 255 and a value between 183 and 236 with each HC11

being a different value.

With the RC timer enabled, noise was apparent on all

outputs of at least 1 LSB with large noise spikes of up to

80 LSBs occurring occasionally in all modes with each HC11

having different characteristics.

Method 3

This method determines total errors using a ramp

input, differential and integral non-linearity errors

using a histogram procedure2
, integral non-linearity

errors, gain, and offset errors using an end point

procedure3 and also the number of missing codes and occur-

25



• 8

i

26



tndno oau

1

3

A H:. 5

u *>
28

•: ;l »*
j

IX St
li i5;J5 !

B
•H 0>

c
Q-H

>3
U

u-i 41

O M
H

eg

c
o .

»»1 III

27



rences of non-monotonic behavior. This method was tested

on one HC11 with an E clock frequency of 2 MHz and 500 kHz

with the RC timer enabled and disabled. Four A/D mode

combinations used to test the A/D and produce the plots in

Figures 5-6 through 5-21 were:

four-conversion, single input, input channel 1 (01)

,

four-conversion, multiple input (10)

,

continuous-conversion, single input, input channel 1 (21),

and continuous-conversion, multiple input (31) .

Each figure contains plots of a single A/D mode configur-

ation with the left plots corresponding to 2 MHz E clock

rates and the right a frequency of 500 kHz. The only

difference in the A/D configuration for top and bottom

plots in each figure, is the RC timer is enabled in bottom

plots and disabled in top plots.

Total errors for the output of the A/D are shown in

figures 5-6, 5-7, 5-8, and 5-9. The top plots (RC timer

disabled) in these figures are all very similar in showing

an offset of approximately -1 LSBs. The bottom plots (RC

timer enabled) show an extreme presence of conversion

result errors caused by the RC timer. These errors have

magnitudes in excess of + or - 4 LSBs in some instances.

The left plots, an E clock rate of 2 MHz, display larger

total errors than the right plots, an E clock rate of 500

kHz. These factors imply that the magnitude of total

errors has a strong correlation with increasing E clock

rates and also whether the RC timer is enabled.

28



is

I- h\ '*'
\

-I .;";; :

l! lint i

«asn 'aoaa3 "tuioi

i-

«asi 'sown iuioi •asn 'soaa3 naioi

29



IM

5

u
-*

t-

• i 3

•as~l 'aoatn "iu 10

1

nvmu luioi >asn noum luioi

30



"i ?

I W i

3

>SS1 'aOM«3 1UL0J.

"I ?

ii

.1 j:ii: !

cr

o

•asi 'aoMa3 -hi oi

a
u
41

>
c

00

3
o

- 3

u
£0
i u •

41

41 hjA o
*i B

<a 4i

3 C
c

a <s

§1

If
a

a jj
u 3
o a
u e

.*> c
O -HH a

in

3

•asi
,

aoaa3 -iuioi •asn 'aomii -mieu

31



5 5

it

i

fe

S

1 :

Ml: :

«asT 'nouns tbioi

•asi ' soaa3 luiOi. •asn 'aoa»3 ibioi

32



The number of occurrences of non-monotonic behavior

was found by searching the total error data files. With

the RC timer disabled (top plots), the number of

occurrences of non-monotonic behavior was less than three

in 1024 points using a ramp input between between and 5

volts. With the RC timer enabled (bottom plots), non-

monotonic behavior was apparent well over 300 times in

1024 points between and 5 volts. This increase in non-

monotonic behavior with the RC timer enabled over when the

RC timer is disabled indicates the RC timer causes errors

to occur in conversion results.

Histogram differential and integral non-linearity

errors are shown in Figures 5-10 through 5-17. The top

plots (RC timer disabled) , the bottom plots (RC timer

enabled), the left plots (2 MHz E clock), and the right

plots (500 kHz E clock) show errors that fall well within

Motorola specifications with only a slight increase in

errors with the RC timer enabled and with higher E clock

frequencies. However, it should be noted that the

histogram procedure uses many data points in differential

and integral non-linearity error calculations. Using many

data points causes the noise to be averaged out, thus

allowing the test to be of the actual A/D transition

points. These eight figures (5-10 through 5-17) , show

that the A/D has transition points within specifications

33



5S

;! iliii

i

ii
as

:

- :

-"

:

ii

'.i

,

.

01

Jjl . 0)

J3

c 2
2 to

3h

>I
„ 4> 10

5j= J3

o O 3
Q Q,**e
U -H

s o
w .

M 4J

V 3
0.

•8ST 'W3JMI3 TNQ

-f

1 f

.

.

; -

*
r

•

i. !

T i

'.st

II

«asn 'noun! irta

H Mil i

-I ifii- 1
a. licit •

? 3

M 01

e e

s
c oH
h a
n u
H 01

u >
c e
01 o
u o
01

m u
*< 3
•2 °

: a <u

It

3

•SSI 'aoaa3 imq «asn 'sosa3 inq

34



:
I 1 !

•Ml :

•is., z
I 't *

laiti :

! <:;,-3 :

id

=1
:

? 8

<u

cH
ID

3

«
\4

•est 'aoaa3 ino

5S
- U.

•9S"l 'aoa«3 lNd

cu 0>

.1
h
O JJ
u 9
U Q,
41 C

* •

is

*:
:

-L
_:

IF
;,

V:

J i
, , . i

:

; i

— 3
^ a

k .
c

e o
•H

ph n
10 u
•n 0)

J-> >
e e

28
01

_HJ u
;>W S
1-H

5
OW

•8ST 'SOWO INa «ssn 'aoaaa inq

I

in

35



=1 t
M Z•

|
IS S

u
a
S

£

is

u

P
in

?i ill!! i

>as~i 'aoatt3 ino

1. j:;;j ;

s

Ul

•8ST '«>!i!13 1NO •asT 'aoa« ™<J

36



:

I s

E-

;
! .;*;; :

*l III!! Ii! ism i

a

Si

3|

»asT 'waaa ^Na

i! Hi

1 1

:
J:
!:

;

;;

:

-

1

Ml

i

- - —

_

»asn ' aoaaj inQ

SB
ii

3| }:Ii!

if ijl;;

2

e
~<
a
3

a
>

U 0-0
x O
a a
M
O 41

u -I
u a
41 -H

4J 3* B
U
19 »
41 C
e oH -H
-h a
I
^

e 4i

§ C
o

r-t U
19

•h a
*J 3
C O
41 3
u c
41 -H
W 41
*j B
•H O

: a u

i H

3
171

•as~i «0«a3 hnq •asi 'sosm ina

37



c

id

ii

5s

"I *i ••

!i itfa

as- 'aoa«3 in: isih

1 55 .
z

Ii 1

i. litis t

Q

I
Ifl

5

I

• ft

Si II," •

as- , »oaaj "INI ISIH

] LUi
„ 'is-- :

. Hilt I

• • 3'

e ivH 73
a o
3 S

4) C
£ e

;<M B
- o

I a 3
,

k* a
: O C

jj a
•h a
h -h
a
41 41

C r-<

•H 01
h e

c a
o
B *

e
h o
a -h
u a

41 41

CC
-8

u 3
Ci O
O <w
4J
n 4i

:«2 A

I

3
!7>

8S1 'sown HNI tSIH as- ,

a0>ia3 INI ISIH

38



IS

z
I-
ui

;

T !

£

>as~i
, »o»a3 -iNi isiM

:?

is

ig

I Lih 1

tins i

3

i

IT

P-
u

fa

01

1

. I

J! till! ;

-J lilt} :

J;

H
O
3

a
I
aa

go »

5 •
1 -HO

50 6

U 4J

41 3
a

fcfl

>asi 'ao»»3 ini isih

s|

IS

33 IJIj

-i til**
». tins

t h -a

U 41

10 -l
41 J.
C -H

I 9

o"
e «.

e
3 °
<a -<
u a
zr> u
41 41

4J >
c e
o
o

53 u

01 O
O <U

2 a 4i

i

3

•IS-I 'K0WI3 INI ISIM •SSI 'dOUI3 INI ISIH

39



ii

ji

(1

B
i-

! 5

h illy, i

i! lull s

id

J!
is

*: fill: .

II j|*" =

>i kill i

i

> 3

8

»asT aoaM hni isih

|] i.iJT !

.1' =

I. 1" QU i

i-

U)

i

> i

?

j r

!=
«

.

'SSI ' a0a»3 INI 1SIM

11

u
is

?! MS

!

if jjhs i

0)

"0

0>r-l
eH H
eg 4)

s e
e

§5< o

41 JJ

.C 3
- -w a
5 c

s° .
y a 4J
9 1-31 o a

k> c
U -H
4)

«
fc"H4J 01H C
U -H
10 ED

e »
•h e^ o

b a
o u
C 41

*E
IB O
H U
o>
41 a
4J 3
c o

CM
- CO ai

I

3

5

•IS1 'aoaa3 INI isih •9S1 'aoaal INI ISIH

40



h

1 1:. I

U jlll! :

l! ttlll i

I

IS

Ul

T J

5 £

•isn '«oaa3 "iNi isih

ii
i

- 1.

is

,3 ii I

*

*

c
Ifl

|
• i

ll

j| i -. ;

'

r

1

s

o •

5 9
I o "0
B u
SOfl
u

a u «
- 41 rt

a
>1-H

U 9

«l

e »
~i c

o
•SSI '30a»3 INI ISIH

U
I-

•SSI '«0«Ui3 INI ISIH •8SH '!10««l3 INI ISIH

41



but these tests show no presence of errors found in other

static tests.

No missing codes, checked by searching the histogram

data for a bin count of zero, were found in any A/D

configuration modes regardless of whether the RC timer was

enabled or disabled.

The end point integral non-linearity errors are shown

in Figures 5-18 through 5-21. With the RC timer disabled

(top plots) , these errors fell well within specifications

but it must be noted that gain and offset errors had been

removed prior to error calculation. Again, a slight

decrease in errors is seen with a decrease in frequency.

Due to reasons discussed in Appendix C, Data for end point

integral non-linearity with the RC timer enabled was not

taken at this time.

42



1

1

! 3

•asi ao«a3 INI d '3

"i g

»2 f:Ii!

is

01

0> •

C 41

•H T3
(0 O
= s

%:
41

41 C
A C
u «J

<M O
O

JJ
O 3
u a.
o c

u
41 »

41

•w aH C
U -H

41 41

C r-t

-n c

e
rt o
a -H
u CO

O1 l-l

41 41

u >
C BH O

•D
C u
•H 3
o o
Cm *J

£5
" « 3

3

>asn aoaa3 ~ini a '3

43



<r

in

;.i
i:

li- E

C

| I *. I

:; ten i

• 3

Ml aC<M3 TNI '* '3

ii i, i!
•

T i

4>

£
9
w
o •

41

a tj
u

e
u
U 4J
41 3
a

>iC
4J »H
•**

li 41

<BiH
41 a.
C -rt

•H -i
pH -H

1 3
c s
a
B h

C
rt
a
u a
0> u
« 41

4J >
c c
•H

8
•U
c u
•^ 3

O
04 <H

•O 4)CO
M 4J

! 5

i

in

3

Mtl»3 "MI '•) '3

44



ii

11

is

X" tat1

»: if it.- :

i! tint i

I

JE-

n
S!

It

c
p-

w

I

? i

u
SS,
- c
>- —
• _

•IS1 aoa<i3 "MI -d 3

! I
ii I*

g
> s

h e
w —

i*
-< eH O

•1

l!
B

_ -
T4 B

£8

7
in

•ISl HOMO INt '4 '3

11

45



ua
tr

3

in
ui

•asi mam iNt 'd 3

S8

is

H life

m f;i«!
I. litis

T !

c

a
9

«

O •

•
a t:
u o
o s
M
u 4)

u 9

V.
•h e
-H o
i

•*
c a

gs
h£
a o
u o
o<
41 09

J-> 9
c 2— 9

e
- —

si

H ^

E-
I

in

•isn «om] ini

g.

46



Method 1, checking the CCF bit for the end of conver-

sion, led to the discovery of large offset error in the

results obtained from Result Register 3. Method 2, execu-

ting a large delay loop to allow the A/D conversions to be

completed, displayed a large offset in Result Register 2.

The magnitude of the offset in Methods 1 and 2 was

different in each HC11 tested and decreased as the

frequency was decreased. This pattern sensitivity can be

verified by using two programs that are provided in

Appendix A. These programs perform a quick check of con-

version results with a logic probe or logic analyzer.

They were written to eliminate the need for an elaborate

testing setup for quick testing of the A/D. Using Method

3, total error calculations indicated the constant

presence of small offsets, -1 LSB, and extreme conversion

result errors when the RC timer was enabled. Also, Method

3's histogram procedure, which averages out noise, yielded

results showing that the transition point errors of the

A/D were well within Motorola specifications.

47



6_.fl Dynamic Testing s£ ibs BC1113 AZB

Testing an A/D with varying, dynamic, inputs is an

excellent way to help characterize an A/D's actual perfor-

mance in real world situations. The system configuration

used to test the HCll's A/D with dynamic inputs is shown

in figure 6-1. The basic testing procedure for most

dynamic testing methods is to have the HC11 perform

equally spaced A/D conversions on a precision sine wave.

A conversion is performed, the result written to PORTB of

the HC11, a pulse is sent to the IBM PCXT and then the

loop is repeated. The IBM PCXT waits for a pulse, reads

the data and then waits for another pulse. The IBM

continues to receive data until the desired number of

results is acquired. Finally, missing code existence and

errors in the form of integral and differential non-

linearity are calculated and then plotted. The software

for IBM PCXT and the HC11 are shown in Appendix B.

The precision sine wave used in dynamic testing is

generated from an HP3325A function generator. With a

signal to noise ratio in excess of 60 dB, the HP3325A

provides waveforms with adequate spectral purity when

considering the eight bit resolution of the HCll's A/D.

The sampling frequency used in dynamic testing

methods was desired to be as fast as the HC11 could

perform A/D conversions. The HC11 can theoretically

48



h-
if)

u n
I— CK

rr
L£ n
Ld mU !

Z m
_J >

iiiu
Q
CC

1—

51 X a

CD o a
i—

i

Q_ (S

^1

i

s

41

-

49



perform conversions in excess of 62 kilohertz (kHz).

However, due to the architecture of the IBM PCXT and its

compatibles, the maximum sampling rate without missing

results was determined through trial and error to be

slightly larger than 4 kHz. Therefore, a sampling rate of

4 kHz was chosen.

The frequency for the sine wave to be sampled was

chosen to 1406 Hz because the FFT procedure works best

when an integral number of periods of the input signal are

present in the number of samples taken.

Testing procedure

Two testing methods were used to evaluate the dynamic

performance of the HCll's A/D. These methods, developed

by Doerfler^, use a histogram procedure to find missing

codes and to estimate differential non-linearity errors

and a fast fourier transform (FFT) procedure to estimate

integral non-linearity errors and to give an indication of

overall system noise. These methods were tested on

several HClls at different E clock frequencies and with

the A/D in four different modes of operation. These modes

are:

four-conversion, single input, input channel 1 (01)

four-conversion, multiple input (10)
continuous-conversion, single input, input channel 1 (21)

and
continuous-conversion, multiple input (31) .

Also, each mode of operation and E clock frequency was

tested with the RC timer enabled and disabled.

50



Method 1

Method 1 consists of using a histogram procedure

developed by Doerfler . Briefly, this procedure uses a

large number of data points to produce an estimate of

differential non-linearity errors and to find missing

codes. The data points are used to construct a histogram

from which a cumulative histogram procedure is used to

estimate the A/D' s transition points. The transition

point estimates now can be used to calculate differential

non-linearity errors. Finally, a search of the histogram

data files for bins with a count of zero determines where,

if any, the missing codes occur.

For this method to produce meaningful estimates of

differential non-linearity errors, enough data points must

be collected to ensure that a proper distribution is

obtained in the histogram. The minimum number of data

points, npts, needed for B bit precision and lOO(l-a)

o
percent confidence is given by

7 2 _i ,N-1
z a/2 P 1 2

npts =

B2

where Z a/ 2
is found in a standard normal distribution

table, and N is the resolution of the A/D converter. For

example, for an 8-bit A/D, the number of data points

required to estimate the differential non-linearity error

51



to within 0.1 bit with a 99% confidence requires 265600

samples.

Missing codes, found by searching the histogram data

files for bins with a count of zero, are determined with

the same accuracy and confidence level as differential

non-linearity errors.

To properly produce the distribution of a sine wave

in the histogram data, a sufficient number of points must

be collected and also the sine wave must have the proper

amplitude and offset. For the HCll's 8-bit A/D with and

+5 volt reference voltages, the input sine wave must have

a 2.5 volt d.c. offset and a peak to peak amplitude of

slightly larger than the reference voltage (i.e. 5.05

volts). This voltage ensures that all A/D codes have a

chance to be exercised including the end bins. Ideally

this method can be used to calculate the size of an offset

if it is present. This becomes a problem because it

requires that the input sine wave be exactly centered

about the offset of 2.5 volts used in testing the HCll's

A/D. Therefore the exact calculation of the offset

present will not be performed but the differences in the

offset between different operational modes and E clock

frequencies can be observed because all of the data was

collected in one period of time.

An important characteristic to keep in mind about

this method is that the formation of a histogram causes

52



noise to be averaged out and become non-detectable. With

the noise averaged out, the test results of the transition

points are free from the influence of noise in the system.

Method 2

Method 2, also developed by Doerfler , uses a fast

fourier transform (FFT) procedure to estimate integral

non-linearity errors and also give an indication to

overall system noise. Briefly, this method uses a power

of 2, equally spaced data points (4096) of a spectrally

pure sine wave. The data points are windowed with a Von

Hann window to help eliminate spectral leakage and then an

FFT is performed with the resulting spectrum being

plotted. Integral non-linearity errors appear as harmonics

of the fundamental frequency, the frequency of the input

sine wave. These harmonics are aliased into the frequency

window which is one half the sampling frequency. Further

considerations for this method include an overall indica-

tion of overall system noise by raising the noise floor in

the FFT output spectrum.

The harmonics of the fundamental frequency are folded

back into the frequency window due to aliasing. In order

to show exactly where they appear, a software simulation

was performed. A 1406.25 Hz sine wave and its first eight

harmonics were sampled at 4000 Hz with the amplitude of

each harmonic being reduced by 20 dB to make it possible

to detect the respective harmonic in frequency window.

53



The fractional input frequency was chosen for simulation

purposes to ensure that the samples produced contained an

integral number of periods in the number of points taken.

Also, care must be taken in choosing the sampling

frequency and the frequency of the input sine wave so that

the harmonics are not aliased into the peak of the funda-

mental frequency, thus becoming undetectable. The results

of this simulation are shown in figure 6-2 with the exact

frequencies tabulated in table 6-1.

Harmonic Frequency (in Hertz)

1406.25
1 1187.5
2 218.75
3 1625.0
4 968.75
5 437.5
6 1843.75
7 750.0
8 656.25

Table 6-1. Location of Harmonics in
the Frequency window

The dynamic range of an N-bit converter is known to be2

dynamic range = 201og 10 (2
N

) = 6.02N dB.

This equation implies that if the amplitude of the highest

harmonic is less than 6.02N, then the integral non-

linearity is less than 1 LSB. Also, the number of bits of

integral linearity can be calculated by dividing the

amplitude of the highest harmonic by 6.02.

54



2
o

c

H

QJ

n
4-1

4-

O

u

c
o
E
(L

(D

X

N
I
O
o
o
XT

10
O
^r

!Z
LT
<

o
c
(11

3
8"

c
3

,.0o

I
i i i i i i i

I
i i i i i i TTTrrrm

08- 091- 0*2- OBE-

(sgp) apn^tuBew Bo -
]

N
O JJ
•° c

i

N
a

u

> 0)

-I
o a
•h in

* a

E >O 18

.*
A 41u c

•H
<w a

N
to D
•h mCN

•

S>o
u o
id *Oh

I

9

55



To determine the noise floor of a perfect 8-bit A/D

sampling a 1406.25 sine wave at 4000 Hz, another software

simulation was performed. The spectrum produced is shown

in figure 6-3 and will be used in the analysis of this

method's results obtained from the HCll's A/D.

The amplitude of the input sine wave for testing

using Method 2 was a peak to peak voltage of 4.8 volts

with a offset of 2.5 volts. The 4.8 volt input was used

to eliminate the possibility of clipping which causes

frequencies to appear in the output spectrum that actually

do not exist.

56



o
.0

O 4J

^*
0

4J 41

•^ »H
-~ .a aN I S
+j eg

t_ ^
ni ir •H
vi cu a
I 41 >
c; ^ AH *

> C 41

Zfai
UJ
Z)

1"^
u
CD

UJ 3m

8.5
caw

m
1

1 m
V
u
9
en

(sgp) apn^tuOew B°l

57



7.0 Dynamic Testing Results of ifce ICills AZP

Due to time limitations, the dynamic testing of all

HClls acquired has not been completed at this time but one

HC11 with the number 1-3 has been tested with the two

methods described in chapter 6 in all possible modes and E

clock frequencies both with, and without the RC timer.

Method 1

Method 1, consisting of constructing a histogram

using many data points to find missing codes and to

produce a cumulative histogram to calculate differential

non-linearity errors at the A/D 1 s transition points was

performed on one HC11 at four A/D operational modes and at

two E clock frequencies. The plots for these tests are

shown in figures 7-1 to 7-8 with the top plots from data

with a 2 MHz E clock and the bottom plots from a 500kHz E

clock.

For all different operational modes of the HCll's A/D

the Histogram Data plots with the RC timer disabled with a

2 MHz E clock frequency indicates the presence of a small

offset because the number of data points in the last bin

in the histogram is very small in comparison to other

plots with the RC timer enabled at a 2 MHz E clock (top

plots) and at an E clock frequency of 500 kHz (bottom

plots)

.

Differential non-linearity errors are well within

Motorola specifications in most combinations of

58



8

CJ -3

<U3
01

1

-CD

u m i
I i

_ " -
.

O N -j

I
1

"

•UO .

in O - I
aj o X1- <T

-

e m
(0 ll

10 •
-t

ouwZ
ui m

1-Q 1- »
I J

t-

:

:

^ ....... .

a n
x

*j o
in o
aj o
I- T

CTO
ou
•u z
m aj
-a
I

jojja injiiuu-uau IIUuiJlHIQ

o

O H
u (I

u e
« e

MS0-

2 U 4J

O 3
c a
e

aH v

c C>
4) C
U -H

U3
01

10

E I
ro o
L O
CTO
O 1

in 03

I"
o
U
i

j*

i

1,01) H3u<jnjDQ ,0 j»q«nN

8

J
Q
ID
Ol
CD

E X
rc o
c o
OlO
O T

mai

u
z
i

a oH
"0 03 •

c u t;
IB • 41

> rt
a e au ifl

l« O CO

u T3

Sou
. u E «l

.j S O -Hr- „ jJ • 4J>«o
s
=a < *

l

1,01) taauajnaso »o jsqvnN

3
01

59



i

St
°8

* 3

8

M'l WO 00 006 0-

j
!

a
01

o

1,011 laausjnsao 40 jvqwnN

-* S

8

»i

it

1 >
-

? u
-!

- - H
:E

ir (0

1 u

i
. is

.

t i*~
_L S

-4JH
6 -rt 4)

;[

n e
9 id c

41 id

L

•s
c 3
•H O
-4

1 4J
- =

- C 9

!

a
c cH

•t oec-o o'o MC'O-
Id -
•H JJ

jojja A^tJtauf x-uou 4J 9
c a
4) C
b-H
41

<M 41

>M .H
•rt 01
Q e

" •H
T3 10

.5 id fc'O

,

c 41

Id O H
-U -H 13

I
id to id

a u c
41 41

!S£u
" " U 4)

a -*4

5 4J U it
5 00 S
o-H CJ
= sol,«

s

(N

s r-

41

M
9

M It tji

1,0,1 •3UBJH330 JO J«q«nN

60



O N
I

4J O
in o
oj o
l- -7

ECO
rTJ Li.CO
o u
•uZ
in m
•C
I

* o

"i

uDO
< ID

01
-co

u m
i i

O M
I

*J o
in o
m o

Eru
to u_
i_o

ou
xJ 2
inru-Q
I

* >
o

u •

4)

: uh
" « a
3 M

. 3 -WO
8 ° *

S 1 41

* S3H ±1

jojjt nijitui[-uou i»nu»j»jiia jOJJf ^ijmjtl-uou [inuiJSHlP
s
a
c

01

ID

EI
o

<_oa
a «
*j

in CD
-U.IO

!•

1

E X
to o
t. o
CTIO
O v
*J

in cm

(.on

" jr 5 r
•Ku«jn390 to JaqanN

Q rH
3

O B
c

c
id o

id a

„ u O
z 0*
SO
' B 3
°S£

M
I

•» r»

3
Ol

^01) ••3u«jn3oc to J«g«nN

61



j(Mja A\\ jMutt-uou i«t3u»j»^;io

u r

<3
-

r

x?
'r

°N

a
-'—
. i

ii
•

:

X
. .

.

1 . . .

1 §
o

o <0

; an
S « a

:««
U U

jj 10 41

s oi a

I u
c M
O
c

oa-i eoc-o 00 OOSO-
(0 9
•h a
W C
B -H
41

41 tH

"<=

J"

8 »

J
ST

m

u
s

3B j
B
ID -

B
IB O
is a

.8 "O u
^ 41

. >
S 3 B

.s 3 u o**
„ o> o
3 °
2 4J u

1,01] •ausjnsso ,o

•S 3
to s
•H O= Eh

3

(,01) •3u«jn33Q jo jogtinN

62



3 «

•s a

ab-i oofc i

u r

QQ
< ID

0)
-

um 1
I 1

O N s
I

^ o
w o
0) o ~1- T

•:
E C\J

r

tD Ll.

cnaj
-3

OU .

:

^Z
rnOJ .~Q -sX I

.

t

§

DOC 00 0060-

OH
uOH
w 41

u C
01 c
S

4J UH
b jj

«J 3
« a
c c

I »
C 4J
O 9
c a.
cH -H

ID

•H 0>

4J H
C Dl
i> C

-J
m

E I
ro o
CO
CTO
o »

Z
n
Z

(,01) OO3UOJH330 tO J»Q0»nn

J
i

"

[,(H) ••3u»Jft330 40 j»a«nN

•H C
a o

to .

U T3
01 01

> rH
C jQ
O IS

u a
i -h
10 T3
a
O u
3 01

.j IB

I o>c
2 O -H-H

00 c
•h OU
DO y 06

IT)

3

63



jojot *it jnuu-uou [tnu»j«jito

U

Mm

S3
•a

o

u
H

u V
Ul c
4> C

3

S-rt

-S i H 4J
ig a
41 o.
e c

» *
l

JOJJI A3t-J»»ul [-'.JOI

e u
3

c a
e

a
-i a
4J H
c 0<
4i e

V a

a
ID
en

a
in
01

m

u
I

u 0>

S =2

41 TJ
> 41

C i-i

a
U n)

1 c
a 4i

3
O u
3 41

c a

•W 4J
e
o u
u as

I

3

[,011 suajnsao *o .laqanN 1,01) ••3u*jn33Q *o jaqwnN

64



i

u
a — -s

< CO
01

•^ CD

-

u m
-:

-1

X i

*-<

a n - u |I
4JO z

<fl o
0) o
1- T -S

£CD
ID U_

aim
: r-

-s

ou -
4J2
in m

3
X

1

L

00-1 OOC'Q ' « a om o-

JddJ* <Hj|»uti-uou ;tnu»jl(itQ

01

CD

6 I
fl OCO
aio
^

•J) CD
•* u.

1 -

f

I

u

I

1,01) laauajnaso *o jaqanN

a i

Q
< ID

01

ou
4J z
in oj«Q
X

£XDO
CO
aio
o T
-u
Ult\J

-u.

u

a
rl

U 4)

r
'_ rH-
;; 4-1 J3

-
a to

U 'H

i tl
u

"

J
I 41 41

3
; J

i

;

i u jj
- 'H

~ o b y
s

u " «
a fli

- C
•

\

S
•H •

H 4J

1 9
> c a.

o es C-H

H 01

i
«J ~4

'1 QW'O 00 306 0- •H Oi
-U *<H

J0JJ8 *JU«iut[-uou t»!iuJJ3(j:c

J
*

C 4J
41 H
u a
4i eH
4H k
-< C
a oH
iq eg

C u
"1 10 41

>
10 C

10 u

1
•a i

10

s 3o
o u 3

1

LitPlit

C

stog
ntin

S O-H
"
u B U

S
•

I

s
41

3

(,01) ••3u»on330 40 -J*q*nN

65



jdjj« Ajuiiuji-uou HUuuiji'.a

™s

S3
Ho
X

r« §
.2 O 0)

u T3
41

a
a a
u e

0>

y
u u
01 01

e
>1"H

y (0 Ph

91
• 2 J

I 3
C 0.

. OB
* C-rt

-H 01

•rt Cm

jojjj Ait jbsui [ -uou [»nuajai;ia C u
0IM
u a
oi e

1
a o

c
LD
0)

m

1,01) ••ouojnooo «e j«qsnN

8

e u
1 « 01

>
a It) c
uj •U
01 ID
m
m
1X3 1

I
•

a i

to

<t)

"I

•8 »
m 3
oi c
o -.

a u v

W s
3
o
a eH

2
D U

5«
1m 00

u 1

I
;

0)

u
3

£~ M it oi • ~*

1.011 ooouojnooo *o joaoinN Dm

66



operational modes, E clock frequencies, and with the RC

timer enabled and disabled except for continuous conver-

sion modes at an E clock frequency of 2 Mhz (top plots)

with the RC timer enabled. This exception is shown in

figures 7-6 and 7-8. In all cases, the differential non-

linearity errors increase in magnitude with an increase in

frequency.

No missing codes were found in the histogram data

files for any combination of A/D operational mode and E

clock frequency with or without the RC timer enabled or

disabled.

Method 2

Integral non-linearity errors, calculated to within

one LSB from the harmonics in output FFT spectrum are

shown in figures 7-9 to 7-12 with the RC timer enabled in

the bottom plots and the 2 MHz E clock results on the

left. Also, an indication of system noise can be observed

as well.

Integral non-linearity errors seem to be within

Motorola specifications in all combinations of A/D opera-

tional modes, E clock frequencies, and with the RC timer

enabled and disabled except for the continuous-conversion,

multiple input mode at a 2 MHz E clock frequency with the

RC timer enabled, figure 7-12.

67



- Q
U ID

I 01
m

e o
c. o
O T

(tgp) icniluBiN 00-|

- Q
U ID

I 01

B

O V

z
L n

•DlliuOlH Don

sr-
IfflP) •pn?iufl«H Bon

68



8
<

-a
u m
I 01

B

E O
c o
O T

in C\J

c li-

en O
L **

I- U
Z

>

i

at- ok-

(QPI aDnuuB«H BP1

- a
u 10

r oi

a

in m
(O o

(•API •pfUiuo«H 901 («gp) aoniiufltM Bo-1

69



E O
t_ O
O ^

(«BP). apn)iuB«H Bon

t«gp) •pn*tua«w floi (gp) •pnnu0«H 601

70



y §

E O
L O
O *?

I I

S ST
(SgP) iP^HuBW 601

z

tDn-4 ;ufltM B01 (>eoi «Dn)tuo«H son

71



Overall system noise, indicated by the raising of the

noise floor in comparison of an ideal 8-bit A/D, figure 6-

3 is not apparent except in results obtained with the RC

timer enabled at a 2 MHz E clock frequency.

72



Conclusion

Although no missing codes were found in any histogram

test performed, small offsets were apparent in histogram

plots with E clock frequencies of 2 MHz with the RC timer

disabled. Differential non-linearity errors, with noise

averaged out, are very small and within specifications

except in the case of continuous-conversion modes with an

E clock frequency of 2 MHz with the RC timer enabled.

Integral non-linearity errors are within specifications

except for results with the RC timer enabled at 2 MHz E

clock frequencies. Overall system noise is apparent in

all configurations at 2 MHz E clock rates with the RC

timer enabled.

73



&,fl Summary and Recommendations

Static and dynamic testing of the BClls for this

thesis indicates the possibility of the HCll's A/D opera-

ting within specifications in future mask releases if the

problems found during testing are corrected. In all cases

of static testing, when noise and offsets are removed from

the conversion results, the A/D falls within specifica-

tions for differential and integral non-linearity errors.

In dynamic testing, all errors discovered had been

previously found using static tests indicating the HCll's

A/D has no large scale dynamic sensitivities. This indi-

cates that dynamic testing need not be included in produc-

tion floor testing of the HCll's A/D for this mask. If

mask changes occur in the future, a dynamic characteriza-

tion should be performed with several HClls to ensure that

dynamic sensitivities are not introduced with the mask

change. Again, if dynamic sensitivities are not found in

the newer mask, then dynamic testing need not be performed

on the production floor.

The most informative test presented in this thesis

was the total error determination in Method 3 of the

static testing procedure. This test consists of using

1024 step, ramp input between and +5 volts. Using a

precision digital voltage meter, each step voltage was

measured and then compared with the HCll's A/D conversion

to yield the total errors in conversion results. This

74



test gave indications of no missing codes, non-monotonic

behavior, constant offsets, and the presence of RC timer

induced errors.

Two programs that give indications of noise and pat-

tern sensitivities are provided in Appendix A. These

programs eliminate the need of an elaborate testing setup

and require only a logic probe or logic analyzer.

Further testing recommendations for the HCll's A/D

are to isolate the pattern sensitivity between Method 1

and Method 2 of the Static Testing Procedure, find the

source of the constant offset found in Method 3 of the

Static Procedure, and determine the cause of RC timer

induced errors found in most testing methods used in this

thesis. Due to the lack of wafer level testing facilities

at this university, Motorola should probe the HC11 at the

wafer level to find the source of the pattern sensitivi-

ties, the constant offsets, and the RC timer induced

errors found in testing methods used in this thesis.

75



Appendix A



**************************************************
*

* SOURCE FILE: qkccfck.src
*

* DESCRIPTION: This program provides a quick
* check of the HCll's A/D
* conversion process using a check
* of the CCF bit to ensure valid
* results are in the Result
* Registers. The user needs to
* provide the following inputs
* prior to execution.
*

* Location in
* RAM
*

* 00 Hex the configuration of
* the A/D that is
* written to the ADCTL.
*

* 01-02 Bex the address of the
* Result Register to be
* checked.
*

* VRH a precision 5 volt
* reference.
*

* VPL tied to ground.
*

* - Also, the user must supply an
* analog input to be converted if
* the A/D is configured to convert
* an external input.
* The result of the conversion is
* written to PORTB and can be
* checked using a logic probe.
*

* The RC timer can be enabled to
* clock the A/D system by changing
* the instruction
* oraa *S80
* to
* oraa #$c0.
*

* This program continually
* executes until the user aborts
* it.
*

* ADTHOR: Jeffrey C. Daniels 9-3-87
* Kansas State University
*

a*************************************************

A-l



PORTB equ S1004 PORTB address

org $c000

ldaa $1039 Power up A/D system,
oraa #$80 RC timer off.
staa $103 9

ldx $01 Have index register point to
* the Result Register of choice.

CONVRT ldaa $00 Initiate conversion,
staa $1030

CHECK ldab $1030 Check to see if conversion in
bpl CHECK done.

ldaa 0,X Load result.
staa PORTB Store result to PORTB.

bra CONVRT Do another conversion.

A-2



•

**************************************************
* - - -

* SOURCE PILE: qkdlyck.src
*

* DESCRIPTION: This program provides a quick
* check of the HCll's A/D
* conversion process using the

execution of a long delay loop
* to ensure valid results are in
* the Result Registers. The user
* needs to provide the following
* inputs prior to execution.
*

* Location in
* RAM
*

* 00 Hex the configuration of
* the A/D that is
* written to the ADCTL.
*

* 01-02 Hex the address of the
* Result Register to be
* checked.
*

* VRH a precision 5 volt
* reference.

VRL tied to ground.

Also, the user must supply an
analog input to be converted if
the A/D is configured to convert
an external input.

* The result of the conversion is
* written to PORTB and can be
* checked using a logic probe.

*

*
The RC timer can be enabled to
clock the A/D system by changing

* the instruction
* oraa #$80
* to
* oraa #$c0.

* This program continually
* executes until the user aborts
* it.
*

* AUTHOR: Jeffrey C. Daniels 9-3-87
* Kansas State University
*

a*************************************************

A-3



PORTB equ $1004
DELAY equ 76

org $c000

PORTB address

ldaa $1039
oraa t$80
staa $1039

ldy $01

CONVRT ldaa $00
staa $1030

Power up A/D system.
RC timer off.

Have Index register point to
the Result Register of choice.

Initiate conversion.

LOOP
ldx «DELAY
dex
bne LOOP

Wait 450 clock cycles.

ldaa 0,Y
staa PORTB

Load result.
Store result to PORTB.

bra CONVRT Do another conversion.

A-4



*********************************************
*

* Source file: ckccf4.src
*

* This program was written to statically
* test the HC11 microprocessor.
*

* RC oscillator is disabled.
* Place ADC conversion mode in location 00
* before running the program.
*

* 8-11-87
*

* Jeffrey C. Daniels
*

* Revisions: 8-11-87 Created from stget4.src.
*

*************************************************

ADRO EQU $1031
PORTB EQU $1004
RESPTR EQU $0001

ORG $C000

LDY #$1000

BCLR 0,Y $40
BSET 0,Y $40

CLR $1004
BSET 0,Y $20
BCLR 0,Y $20

LDX fADRO
STX RESPTR

LDAA $1039
ORAA #$80
STAA $1039

LDAB $00
STAB $1030

* Start of main loop

NTREDY LDAA 0,Y
ANDA t$04
BEQ NTREDY

LDX RESPTR
CPX #ADR0

Point to port A.

Clear flip flop.

Clear PORT B
Latch PORT B into
High Byte of Data Latch

Initialize pointer to
result register.

Enable ADC - -

Power up ADC
RC timer off.

Initiate conversion.

Check to if HP has sent
a pulse to start
conversion.

Check to see if conversion
has already been done.

A-5



BNE NXTOUT If 80, jump to NXTOUT.

CHECK

LDAB $00
STAB $1030
LDAB $103
BPL CHECK

Initiate conversion.
Check if conversion
is done.

NXTOUT

CONT

LDX RESPTR
LDAA 0,X
STAA PORTB

BSET 0,Y $10
BCLR 0,Y $10

BCLR C,Y $40
BSET 0,Y $40

INC RESPTR+1
LDX RESPTR
CPX tADR0+4
BNE CONT

LDX #ADR0
STX RESPTR

BRA NTREDY

Load result

Store result in Low
Byte of data latch.

Clear flip flop.

Increment pointer to next
Result register and then
check if four results have
been outputted to PORTB.

If 4 results have been
sent then update result
pointer.

A-6



*********************************************
*

* Source file: ckdly4.src
*

* This program was written to statically
* test the HC11 microprocessor.
*

* RC oscillator is disabled.
* Place ADC conversion mode in location 00
* before running the program.

8-11-87

Jeffrey C. Daniels

Revisions: 8-11-87 Created from sttest4.src.
*
*************************************************

ADRO EQU $1031
PORTB EQD $1004
RESPTR EQD $0001
LOOPNO EQD 76

ORG SCO 80

LDY *$1000 Point to port A.

BCLR 0,Y $40 Clear flip flop.
BSET 0,Y $40

CLR $1004 Clear PORT B
BSET 0,Y $20 Latch PORT B into
BCLR 0,Y $20 High Byte of Data Latch

LDX SADR0 Initialize pointer to
STX RESPTR result register.

LDAA $1039 Enable ADC
ORAA #$80 Power up ADC
STAA $1039 RC timer off.

LDAB $00
STAB $1030 Initiate conversion.

* Start of main loop *

NTREDY LDAA 0,Y Check to if HP has sent
ANDA #$04 a pulse to start
BEQ NTREDY conversion.

A-7



DELAY

NXTOUT

CONT

LDX RESPTR
CPX #ADR0
BNE NXTOUT

LDAB $00

STAB $1030

LDX *LOOPNO
DEX
BNE DELAY

LDX RESPTR
LDAA 0,X
STAA PORTB

BSET 0,Y $10
BCLR 0,Y $10

BCLR 0,Y $40
BSET 0,Y $40

INC RESPTR+1
LDX RESPTR
CPX #ADR0+4
BNE CONT

LDX #ADR0
STX RESPTR

BRA NTREDY

Check to see if conversion
has already been done.
If so, jump to NXTOOT.

Initiate conversion.

Wait 450 clock cycles.

Load result

Store result in Low
Byte of data latch.

Clear flip flop.

Increment pointer to next
Result register and then
check if four results have
been outputted to PORTB.

If 4 results have been
sent then update result
pointer.

A-

8



*********************************************
*

* Source file: stnrc2.src
*

* This program was written to statically
* test the HC11 microprocessor
* utilizing the HP test system that
* Steve Draving developed.

RC oscillator is disabled.
Place ADC conversion mode in location 00
before running the program.
Place which result register to read in
location 01 and 02 which will be read into
the X register.
Continous conversions.

* 12Mar87
*

* Jeffrey C. Daniels
*

*

*

*

*

*

*
*************************************************

Revisions: 6-25-87 This program created from
jdst5. src.

6-29-87 Created from stnrc.src to
take out interupt structure.

NTREDY

ORG $C200

LDY #$1000

BO.R 0,Y $40
BSET 0,Y $40

CLR $1004
BSET 0,Y $20
BCLR 0,Y $20

LDAA $1039
ORAA *$80
STAA $1039

LDAB $00
STAB $1030

LDAA 0,Y
ANDA t$04
BEQ NTREDY

Point to port A.

Clear flip flop.

Clear PORT B
Latch PORT B into
High Byte of Data Latch

Enable ADC - -

Power up ADC
RC timer off.

Initiate conversion.

Check to if HP has sent
a pulse to start
conversion.

A-

9



CHECK

LDAB $00
STAB $1030
LDAB $1030
BPL CHECK

LDX $01
LDAA 0,X
STAA $1004

BSET 0,Y $10
BCLR 0,Y $10

BCLR 0,Y $40
BSET 0,7 $40

BRA NTREDY

Initiate conversion.
Check if conversion
is done.

Load result

Store result in Low
Byte of data latch.

Clear flip flop.

A-10



*********************************************
* ......

Source file: strc2.src

This program was written to statically
test the HC11 microprocessor
utilizing the HP test system that
Steve Draving developed.

RC oscillator is Enabled.
Place ADC conversion mode in location 00
before running the program.
Place which result register to read in
location 01 and 02 which will be read into
the X register.
Continous conversions.

17 Jun 87

Jeffrey C. Daniels

Revisions: 6-25-87 This program created from
jdst6. src.

6-29-30 Created from strc.src to
take out interupt structure.

*********************************************

NTREDY

ORG SC3 00

LDY #$1000

BCLR 0,Y $40
BSET 0,Y $40

CLR $1004
BSET 0,Y $20
BCLR 0,Y $20

LDAA $1039
ORAA #$c0
STAA $1039

LDAB $00
STAB $1030

LDAA 0,Y
ANDA #$04
BEQ NTREDY

Point to port A.

Clear flip flop.

Clear PORT B
Latch PORT B into
High Byte of Data Latch

Enable ADC
Power up ADC
RC timer on.

Initiate conversion.

Check to see if HP has
sent a pulse to start
conversion.

A-ll



CHECK

LDAB $00
STAB $103
LDAB $103
BPL CHECK

Initiate conversion.
Check if conversion
is done.

LDX $01
LDAA 0,X
STAA $1004

BSET 0,Y $10
BCLR 0,Y $10

BCLR 0,Y $40
BSET 0,Y $40

BRA NTREDY

Load result

Store result in Low
Byte of data latch.

Clear flip flop.

A-12



la

23

3B

40

53

SB

7a

3B

ga

130

I 10

121

130

MB
isa

160

173

isa

190

:aa
:ib

220

230
248

2S3
260
2^0

ROFOUR

This program reads the four Result Registers of the

G8HC1l's onboard ADC and displays then to the screen. The

OUM readings are also displayed on the screen. None of the

information is stared in arrays or stored in files. This

program provides a quick check to verify that the 4 Result

Registers are functioning properly.

Jeff's STGET4.0BJ program is used to drive the S8HC11

.

MICHAEL PANKRATZ 94 AU6UST 1987

PRINTER IS IS

PRINT PASE
PRINT TA8(38)| - ADC DATA AQUISITION'
PRINT TAB(2S) i 'Testing the 4 Result Registers"
PRINT LIN<3>

Initialize: !

OUTPUT 7B9rFIRANST2Zf
RESET 3

RESET 2

! Initialize DUN

! Initialize SPIO for ADC

I Initialize GPIO for precision OAC

2 9a

300
310

323
330
34B

35B
360

37B

39B

290

400

410
420

430

440

453

460
470

480

490

530

S10
520

533
548

553
568
573

583
59B

SEEP
DI5P 'Press any key to begin data acqulaion."
ON KBO SOTO Set.data ,ALL

Uait: GOTO Wait
I

Set data: !

PRINT "Press any key to abort."
ON K8D SOTO Exit ,ALL

I

Loop_here: t

TRISSER 739

Rd: STATUS 7B9iStat
IF BIT<Stat ,8><>1 THEN Rd
ENTER 7B9i0vm

Quit if any key is pressed

! Start the OUM

! Wait till ready
! Read OUM

Chanl-READBIN<3) ! Read result register I

DISP QvmiTAB(2BhChanl |TAB< 38 >iChan2iTAB< 48 ) iChan3;TA8< SB ) ;Chan4

Chan2-READBIN<3> ! Read result register 2

DISP DvmiTAB(28)!Chan1 tTABI 38 >iChan2iTAB< 48 )iChan3iTAB< SB ) iChan4
Chan3-REA0BIN(3> I Read result register 3

DISP 0vmiTA8(2B)iChanl |TAB(3B )iChan2iTAB( 4B >iChan3i TAB( SB )iChan4
Chan4-READBIN<3) I Read result register 4

DISP Dvm i TAB( 28 ) i Chan I i TA8( 38 ) ;Chan2 i TAB( 48 ) ; Chan3: TAB( 5B ) i Chan4
I

SOTO Loop_here

Exit: 1

DISP "Program terminated."
BEEP
END A-13



33
40

50

SB

73

80

90

100

1 10

128

130

140

150

160

170

180

190

230
:43

353
2B0
270

380

390
330
310

320

330
340
350

360
3~0

380

390
400

410

423

433

440

450
460

470
480
490

S00
510
520
530
540

550
560
570

530
590

GETDAT vir 5.3

This program collects data fron the AOC under test
(the 68HCll's onboard ADC) and uritas it to a file.
Tha file can be read by PLOT and PRTOAT but only the first
array (the raw data) will be read. The bin count array and
other data will be ignored.

The file format is as follows. The first element in

the file is the raw data array size. It is followed by the
array of data itself. Next is the size of the bin count
array, followed by the arra^ itself. Then the reference
voltage, Vref , and the AOC resolution, Res, are stored.
Finally, 4 transtion points are stored for gain and offset
error calculations. They ara —>1, 6— >7 & 7— >8 (arbitrary
for step width), and 254— >25S.

The program calls Vtrans( Pre_tog , Res, Vref
)

, a function
to find the transtion point voltages.

Version 2.0 change the ONL error method from the
theoretical method (using transition points) to the
histogram method. Now only 4 transtion points ara taken
to figure offset and gain errors. Instead, the ADC under
test is read 10 times and the results are placed into bins.

Versions 3.0 and 3.5 were modifications made to the
toggle function. These improvements are outlined in the
header for the function (see below).

Version 4.0 was a modification made in conjunction with
a change made in the HCII program. The delay to allow the
DAC to set up was taken out of the HC1 1 program and put in
this program. That simply involved changing two existing
delay loops from 5ms to 100ms.

Version 5.0 first determines the minimum and maximum
ADC output values and uses these in the TOGFN instead of
sending 0->l and 2S4->2S5. This will allow testing of
converters which do not operate over their full range. i

Also, transition points 6->7 and 7->8 are not taken since
they are no longer used by ERROR. The two variables are '

are now used to store the minimum and maximum ADC count <

values that were sent into the toggle function. ^

MICHAEL PANKRATZ 05 AUSUST 1987

OIM Input!
1
,1024)

DIM Bin( I ,256)
DIM Vtr(3>

Constants

:

Vref -5
Res-9

A-14

Data array
Bin count array
Transition voltage array

AOC reference voltage
AOC resolution (in bits)



630
Sit
g:b

S30

5 40

550

550
573

630
590
700

710
^20

730
740

750
750
770

780
7 90

Samples-1024
Vmin"0
Vmax-Vref

Number of samples taken
Valid values: to Vref

Valid values: to Vref > Vmin

PRINTER IS IS

PRINT PAGE
PRINT TAB<33>l"ADC DATA AQUISITON"
PRINT TAB<20>s"Oata for Offset, Gain,
PRINT LINO)

INL, and ONL errors"

Initialize: !

OUTPUT 709|"F1RANST2Z1"
RESET 3

RESET 2

FOR 1-8 TO 2-Rea-t

Bin(0,I(-I
Bin< I ,1 )-e

NEXT I

1 Initialize Q'JH

! Initialize GPIO for ADC

I Initialize GPIO for precision OAC
1 Initialize bin count array

810 I

828 Open_flle: I

338 REDIM Input! 1 .Samples-
8«8 REOIN Bln<

I
,2"Res-t

>

850 !

Ml
370

380

990

900

310

920

930
940

950

950

970

988

398 Uait

1088 I

1010 1

1020 Settrans

BEEP
! Datfile*- - 60IF2"
EDIT "Enter filename for the date:
ASSIGN tl TO Datfllet.Stat
IF Stat-0 THEN PURSE Oatfllet
Recorde-INT( < Samplea+2"Res )/1S)+l

CREATE Datfilel, Records
ASSIGN tl TO Oatfile*
I

.Datfile*

Delete if file already exits
Calculate number of records
Creete the data file

Open the file

BEEP
DISP "Press any key to beQin data acquision."
ON KBD SOTO Get_trens ,ALL

SOTO Uait

I

1030
1040
I0S0

10S0
1078

1888

1090
I 100

1 110

1120

1130
1148
1 150

use
I 170

1180
1 190

DISP
PRINT "Finding transitions:"
Ova 1-0

30SUB Set_dae
Vtr< 1 >-REA0BIN<31
Cmin-Vtr< I

)

Vtr( )-FNUtrans( Cmin .Res ,Vref

)

I

Ovel-262143
SOSUB Set_dac
Vtr(2)-REA0BIN<3>
Cmax-Vtr(2J-l
Vtr< 3 >-FNVtrans( Cmax ,Res ,Vref

)

BEEP

Determine min ADC output value

Voltage of 1st transition point

Determine max ADC output value

Voltage of last transition point

0mtn-INT(Vmin»2"l8/Vref

)

A-15



1200
1210

1220
1230
1240

I2S0
I2S0

1270
1230

1290
1300

1310

1320
1330

1340

13S0
1360

1370
1390

1390
1400

1410

1420
1430

1440

14S0
I 460
1470

1490

1490
1500

1S10

1520
1530

1540

1550
1560
1S70

1530
1590
1600

1610

1620
1630
1640

1650

1660
1S70
1630

1690
1700

1710

1720
1730
1740
1750
1760
1770
1790
1790

0max-INT<Vmax»2-18/Vref >

Ustep-IVnax-Umnl/fSamples-l >

Ostep-INT(Ustsp'>2"18/v'ref ) Step sue to incr. the DAC

PRINT
PRINT "Sampling" j Samples* "points betyean" {Umint "and" {Umax; "volts.

PRINT "Press any key to abort."

ON KBD SOTO Exit .ALL

FOR 1-0 TO Samples-I
DISP "Conversion i";I
Dval-I*0step+0min
SOSUB Sat.dac
I

TRIS6ER 709
Rd: STATUS 709 i Stat

IF BIT(Stat ,0)<>l THEN Rd

ENTER 709iInput(0,I )

InputU ,I)-REA0BIN<3>
Index-Input( 1 ,1

)

Bln< 1 .Index >-8ln<
1
.Index > + 1

I

FOR J- 1 TO 9

Index-REA0BIN<3>
Bln< I .Index )>Bln( 1

.Index )!
NEXT J

NEXT I

DISABLE
I

Wnte.flle: '

PRINT »1 iSamples, Input! •>

PRINT II i2"Re»,Bln<«)
PRINT *! lUref ,Res,Utr(»)

Qui t if any key is pressed

I Digital value for this sample

I Set the OAC uith value in Oval

Start tha OWN

I Uait till ready
! Read OUM

1 Reed ADC under test

Update the bins

Turns off key-abort function

Store data

Exit: ASSIGN tl TO •
! Close the file

OISP "Program terminated."
BEEP
UAIT 750
ENABLE
60T0 Constants
END

Set_dac: 1 Value is passed in through Oval to set the DAC
High-INTI Oval/65536 ) I High byte for the OAC
Plid-INT(Dval/2S6)-2S6«Hlgh 1 Middle byte for DAC
Lou-0val-6S536»Hlgh-256»Mld ! Lou byte for the OAC

WRITE BIN 2iHigh,Hlgh+l024,High
WRITE BIN ZiMld.Hld+SIZ.nid
WRITE BIN 2iLou.Lou-t-256,LoM,0

I \

Send uord to the DAC

UAIT 100

RETURN
! 100ns delay

A-16



is 0a

1813

1829

1830

1848

1850

1860
1870

i see
1890

1900

1 91 B

1920

1930

1940
I9S0
I960

1970

1980

1990

2000
2010
2020

2030
2040

2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310

2320
2330
2340
2350
2360
2370
2380
2390

(TOSSUB ver 4.3)

This function determines the input voltage just before
and after a toggle point of the ADC under test (in this
case, the 68HCll's on-board converter). The full 18 bits
resolution of the precision DAC are used to obtain as
accurate results as possible. The results are averaged
and returned in the function name. The formet is:

FNVtransi Togpt , Res, Vref >

where:

Togpt - the desired ADC output value BEFORE
the transition. < m Togpt < (2*Res)-2

Res - the resolution of the ADC under test
(in bits!

Uref - the AOC reference voltage

Note: The Ovn and SPIO busses must be initialized before
this function is called.

Version 2.0 added a lower resolution binary pre-search
which dramatically reduced the search tine for a toggle
point.

Version 3.0 nade a few changes to give the function
the capability to catch missing code. The function then
then gives the users the option to enter a new toggie point
tor the some one to check for repeatability) or to terminate
the program. Returns a 999 to indicate missing code error.

Version 4.0 made a couple more changes to help fight
missing code errors by checking the AOC output after coming
out of the binary search and kicking it back up there if the
AOC value was below the entered toggle point value.

MICHAEL PANKRATZ 24 JUN 1987

DEF FNVtrans< Togpt ,Res,Vref)

Init: !

PRINT Togpti"—>"iTogpt + l

Cvolt-0
Cadc-0
Pvolt-0
Padc-0

Vmin-Togpt»(Vref/2-Res )

Dmin-INT(Vmin»2'l8/Vref )

Vstep-Uref/2"(Res+l

)

0step-INT(Vstep»2-18/Vref

)

Current DAC output voltage
Current ADC output value
Previous DAC output voltage
Previous ADC output value

Starting input voltage to ADC
Start value for DAC
1/2 LSB of the ADC under test
Step size of OAC

Dac-Omin A-17



2488 Bin_res-2"( 18-13)
! Set mm step size to 13 bit res.

2418 Bin: I Binary search for ADC toggle point (to 13 bit resolution)
2428 IF Dstep<Bin_res THEN Seq ! Take the OAC to 13 bit resolution
2430 Oac-Oac+Ostep ! DAC input value
2448 IF 0ac>2B2l43 THEN Dac-262143 ! Prevent over-ranging, the DAC
24S8 Lp2:30SUB Set_dac ! Set the OAC
2468 Cadc-REA0BIN<3> ! Set current AOC value
2478 DISP OAC input : sDac , "ADC output !" iCadc
2488 IF Cadc<»Togpt THEN Bin ! Did toggle occur?
2498 Dac-Oac-Ostep 1 Set DAC to before toggle point
2588 IF 0ac<8 THEN Dac-8 ! Prevent under-ranging the DAC
2518 IF Oatep>-Bin_res THEN Dstep-INT( Dstep/2 ) ! Divide step size by 2
2528 SOTO Lp2
2538 !

2548 !

2SS8 Seg:
! Sequential search of toggle point (18 bit resolution)

2SB8 Ostep-I
! Set DAC step size to I

2578 IF Cadc-Togpt THEN Lp3
I Make sure AOC value is good

2588 Dstep-Bln_res
! Set DAC step size to win value

2598 SOTO Bin
| Try again

2S88 !

2618 Lp3:0ac-0ac+0step
2628 60SUB Set_dec

! Set the OAC
2638 Padc-Cadc

! Store previous value of AOC
2648 Cadc-READBIN<3)

I Set current ADC value
2658 DISP "DAC input :

" lOac , 'AOC output :" iCadc
2668 IF Cadc>Padc THEN Exit ! Old toggle occur?
2S7B SOTO Lp3
2698 !

2638 !

2788 Exit: I

2718 SOSUB Read_dvn
| Current OAC output

2728 Cvolt-Woltage
2738 Dac"0ac-0step
2748 SOSUB Set_dac
2758 SOSUB Read_dvm

I Previous OAC output
2768 Pvolt-Woltage
2778 Ave-(Cvolt+Pvolt>/2

I Average to find transition voltage
2788 !

2788 !

2888 IF (Cadc-Padc+I > AND ( Cadc-Togpt + 1 ) THEN Ok ! No missing codes
2818 PRINTER IS IS

| Output device is the screen
2828 FOR X-l TO 3

2838 BEEP
2348 WAIT 258
2858 NEXT X

2868 PRINT "Hissing Code!

"

2878 PRINT "Actual results: " iPadci "— >" iCadc
2888 PRINT "Desired results: " iTogpt i

"~>" iTogpt + l

2838 Err»-"N"
2988 EDIT "Enter a Neu toggle point or Terminate (N/T)'" Err*
2318 IF UPCXErrStl ,1])-"T" THEN Tern
2928 Inp: INPUT "Enter desired AOC output BEFORE the toggle" Togpt
2338 IF (Togpt<8) OR (Togpt>2"Res-2 ) THEN Inp
2348 SOTO Inlt
2358 Term: Ave-333
2S68 Ok: RETURN Ave
2378 FNEND
2383 ! A_18
2338 l



3000

3818
3828
3838
3848
3858
3868
3878
3888
3898
3188
3118
3128
3138
3148
3158
3160
3178
3188
3198
3288

Calculates OAC Input word and sands it to the DftC

! Digital value for this sampls

High byte fop the DnC

Middle byte for the OAC

Lou byte for the DAC

Set.dac
Dval-Oac
High-INT(Dval/SS53B)
flld-INT(0val/2SS >-2S6«High

Lou-0val-6SS3S»Hlgh-2SB»Mid
WRITE BIN 2iHigh,High+l8Z4,High
WRITE BIN 2il11d,Mtd+512,nid

WRITE BIN 2iLou,Lou+256,Lou,8
WAIT 188

RETURN

Read_dvn: I Takes one DWH reading

f It returns the value in 'Uoltage'

TRISSER 789 I

Uait: STATUS 789l0vnstat

IF BITIOvmstat ,8K>1 THEN Uait I

ENTER 789 1 Volt age !

RETURN

Set the DnC

Pause for IS

Begin reading OUM

Is it finished?
Read the velue from the DUM

A-19



30

40

50

60
?0

90

90

130

110

1S0

150

170

130

190

:00
210

::0
230
240

250

250
270

290
290

300
310

320

330
340

3S0

360
370

380
390
400

410

420
430
440

450

460
470

490
490

500
510

520
530
540
550
560
570

580
590

The Transmitter

This program was written to run on an HP 9845B. It

reads In a raw data file created by GETOAT and sends it over

the HP-IB bus to a HP 923B computer. There ara several

things which must be noted:

1. The 9845B must be configured as the controller (it is

normoily in this mode), and the 923S must be in the

non-controller mode. This requires changing a jumper

on the motherboard of the 9236 (jumper should connect

the left two prongs). Be sure to put the jumper back

to its original position when the transfer is completed.

2. The 923B must heve its version of DMAIL (the receiver)

running first, before this program Is started, or it

will miss some of the data.

3. The DMAILer only sends over raw data files. If it

is desired to send a BASIC program, use EMAIL.

Written by HEULETT-PACKARO
modified by Michoel Pankratz 28 July 1987

DIM OataKI ,1824) ,0ata2< 1 ,2SB),Vtr(3) ' The data arrays

Size-81 ! The size of a raw data file

PRINTER IS 16

PRINT PA6E
PRINT TAB<35>l"HP DATA MAILER"
PRINT TAB(22)l"0ata transfer from a 9845B to a 9236"

PRINT LIN(3)
I

I

Input: BEEP
0ataftla«-"A81F8" ! Input file name

EDIT "Enter name of file to transfer (must be ASCII ):" ,Datafile»

ASSIGN tl TO Oataf lleS .Stat

IF StatOI THEN Cont ! Does file exist?
PRINT "File " lOataf ileti " does not exist."
PRINT
BEEP
WAIT 288

SOTO Input

Cont: !

OUTPUT 728i0ataf lleS .Size I Send over the file name & size

Read.fi le: !

DISP "Reading data from file..."
READ t! gSlzel
REDIM DataK 1 .Sizel-1 )

READ tl :0atal< •

>

Read in first array

A-20



S00 READ Ji iSize2
BIB REQIM Data2<

I
,Size2-1 )

620 READ *li0ata2<»> ! Read in second array
630 READ *l ;Uref ,Res ,Utr( •) i Read in reamaining data
540 !

SS0 I

BBS Send.data: !

670 OISP "Sending data over HPIB...'
580 OUTPUT 720iSizel ! Send si:e of 1st array
690 FOR 1-0 TO I

700 FOR J-0 TO Sizel-I
710 OUTPUT 720iOatal(I,J) ! Send 1st array
720 NEXT J

730 NEXT I

740 OUTPUT 720iSize2 ! Size of 2nd array
750 FOR 1-0 TO I

7B0 FOR J-0 TO SlzeZ-t
770 OUTPUT 720iData2(I ,J> ! Send 2nd array
780 NEXT J

790 NEXT I

800 OUTPUT 720iUref ! Send remaining values
810 OUTPUT 720|Res '

820 FOR 1-0 TO 3
830 OUTPUT 720iVtr(I)
840 NEXT I

8S0 Eoj: !

8B0 ASSIGN *l TO •
| Close input file

878 DISP 'Data transfer completed."
880 BEEP
890 END

A-2I



It

a
30
40

sa

sa
70

aa

90
100

1 10

121

130

140

150

160

170

180

190

200
210

220

238
248

250

250

270
280

290
380

318

328

330
340

3S0

360
370
380

390
400

410

420
430

440
458
468
470
480
490

500
510
520
530
540

550

560
570
580
590

for the 9236 OATAMAIl The Receiver

This program was written to run on the HP 9236 computer.

It receives data files creeted by SETDAT over the HPIB

bus and stores it on disk. The first item transfered over

the HPIB bus is the file name and size so this program does

not need to prompt the user for any information. There are

several things which must be observed for the Data Mailer to

operate properly:

1. The 984SB must be configured as the controller (it is

normally in this node), and the 9236 must be in the

non-controller mode. This requires changing a jumper

on the motherboard of the 9236 (jumper should connect

the left two prongs). Be sure to put the jumper back

to its original position when the transfer is completed.

2. The 9236 must have its version of OATAMAIL (the Receiver)

running first, before the Transmitter program on the

9845B Is started or some of the data will get lost.

3. The EMAILer can only send ASCII formated files. If it

is desired to send a BASIC program, this program ulll

not work. Use EMAIL2 to send programs.

written by HEULETT-PACKARO
Modified by Michael Pankratz 20 July 1987

IM Oatal ( 1 ,
1024)

,
Oat a2' I ,256 ) ,'ltr!])

OUTPUT 2iCHR*(2SS)tiCHR$(7S>l I Clear the screen

PRINT TABXY(33,2)|CHRt<136>rHP DATA MAILER-

PRINT TAB<22)lCHR»< 138>l"0ata transfer from a 984SB to a 9236*

PRINT
PRINT
PRINT

ASSI6N 9Ifile TO 7

OISP "Welting for data."
ENTER SIflleiOutflleSlFsize
DISP "Receiving filename."
BEEP

0pen_file: I

ON ERROR SOSUB File_exists
CREATE BOAT Out f lleS .Fslze

ASSISN SOflle TO Outflle*
OFF ERROR

! Set up HPIB like an input file

1 Reed filename 1 size off the HPIB

! Open output file on disk

Reed_deta:
BEEP A-22



600

Big
s:a
530
S40

6SB
see
670

G8a
698
700

710
77.0

730
740

750
7E0
770

788
798 !

800 !

310 Urlte_deta:

OISP "Receiving data..."

ENTER 8IfileiSize1
REDIM Hatal (

I
,Sizal-l >

FOR 1-8 TO I

FOR J«8 TO Sisal -1

ENTER 9IflleiDatal(I,JI
NEXT J

NEXT I

ENTER 9IfllosSije2
REDIPt 0ata2(

I
,Size2-1

)

FOR I -« TO I

FOR J-8 TO Size2-I

ENTER 8IfileiOata2<I ,J

)

NEXT J

NEXT I

ENTER 8If tleiUref iRea

FOR 1-8 TO 3

ENTER SlflleiUtrd)
NEXT I

Read In size of 1st array

Read in first array

Size of 2nd array

Read in second array

Read in remaining data

320

930
840

350

860 !

870 1

888 Eof

39a

OISP "Writing data to a file..

OUTPUT SOflleiSizel iDatal<»>

OUTPUT •0flleiSize2i0ata2(»>
OUTPUT 80flleiUref iReaiUtr(»)

910

920

930

940

950

96a
97a File_exists:

ASSISN 90file TO •
! Cloae the files

ASSIGN 91 file TO •

OISP "Oata transfer complete."
PRINT CHR*( U8),"Data is stored in " tCHRSI 136 >iOut f lleJ

GOTO Exit

Purges the file if it already exits

980

998
ieee

1818
1828
1838
1848
1841

1342

tese

1868 !

1878 I

1888 ExltiBEEP
1898 PRINT CHR*< 139'

1188 END

IF ERRN-S4 THEN
PUR6E Outfilel
RETURN

ELSE
PRINT CHR»<137)|CHR*< 133)

PRINT "TerBlnol Error!"
PRINT "Error code'iERRN
PRINT CHR$< 128)1 CHR$< 139)1

STOP
END IF

A-23



10

2a

38
40

58

68

73

88

38

108

I 18

128

138

140

1S8

1S8

170

180

138

208
210
228

230
218

2S0

260
270

280
230
300

310

320

330
340

350

360
370

380

330
400
410

420
430
440

4S0

460
470
480

430

S00
510

S20
530
540

550

560
570
580
530

for the 9236 ver 5.236

! ••

I ••

I
••

«•

This program takes the data file created by GETOAT and »
calculates the offset error, gain error, integral nonlin- **

earity, differential nonlineari ty , and absolute errors. The **

nonlinearity and absolute errors are written to files which •*

may be read by PLOT if desired. ••

»»

INL error is calculated using the method outlined in **

ANALOG-DIGITAL CONVERSION HANDBOOK, 3rd ED (Analog Devices), •'

pp 317-330. •
*«

DNL error is calculated using the histogram method *•

outlined in D. Ooerfler's thesis, p 34. ••

»•

ABS error is the difference between the ADC output and •*

the ideal straight line. »«

• »

Offset and Gain errors are also calculated using the »•

methods obtained from the A-0 CONVERSIONS HANDBOOK, pp 317-330. •
»•

Version 4.0 added a loop to check for non-monotonlcitiea •*

and missing code. Counters keep track of the number of *
occurrences and the last element is also stored. The number •*

of occurences and the value of the last occurences are then •«

printed out. #•

Version 5.0 added Alpha & 8eta, correction factors, to «*

help eliminate offset and gain errors from the data. It now *
calculates INL using 2 methods: endpoint (with Alpha & Beta) *«

and the histogram method from Doerfler's thesis. Also fixed ••

program to check for true missing code by detecting any *
empty bins read in from the raw data file. And added a few *•

bells and whistles to make I/O a little more friendly. •*

Also using middle 2 Vtrans variables to store ADC values for »*

the first and last transitions. *

MICHAEL PANKRATZ 11 August 1987

DIM Data! I , 1024) ,Abs( I ,1024}
DIM Bind ,2SS),0nl< 1 ,2SS )

DIM InKI ,2S6),Hinl( I ,2SB )

DIM Vtrans( 3 ) ,Non mono( I ) ,Code( I )

Old-0

Must make these arrays larger if

testing an AOC with more than
8 bits.

! An error flag

PRINTER IS 1

PRINT CHR»( 12 )|CHR»( 140)1
PRINT TAB< 20 >i "OFFSET, GAIN, INL, ONL , & ABSOLUTE ERRORS-
PRINT CHR»( 136)
PRINT
PRINT - _.
i

A-24



600 ON ERROR SOTO No_flla

SIB CAT
BZ3 Inpl: BEEP

630 Infilei-"A0IF2"
Si8 OUTPUT 2ilnflle*l

650 INPUT "Enter input f ilename: " ,Inf Ull
660 ASSIGN aifile TO InfUat I Open Input file

670 OFF ERROR

680 SOTO Inp2

690 I

700 No.flle: !

710 IF ERRN-S6 THEN

720 PRINT CHR»(137)rFile "ilnfileli" does not exist."

730 PRINT CHR$(136>
740 BEEP
750 UAIT .75

760 SOTO Inpl

770 ELSE
780 PRINT CHR*< I37)|CHRS( 130)

790 PRINT "Error" iERRNi "occured uhile opening "ilnflleS

300 PRINT CHR»<128)|CHRS< 139)

810 STOP

820 ENO IF

830 !

840 I

850 Inp2: !

860 Pos-LEN< Inf lie* )-3 I Compute output filenames

870 NaneS-Inf iieSIPosJ

880 OutfllelS-"EINL_"&NameS ! End point INL

890 OutfiIa2»-"HINL_"iNania« I Histogram INL

900 0utflle3t-"0NL_"&Neme» I Histogram DNL

910 0utflle4»-"ABS_"&NameS ! Total Error

920 OUTPUT 2i0utfilel»i
930 INPUT "Enter filename for end point INL error: " .Out filel

»

940 OUTPUT 2i0utfile2*l
950 INPUT "Enter flnlename for histogram INL error :" ,0utfile29

960 OUTPUT 2l0utflle3Si
970 INPUT "Enter filename for histogram ONL error :" .Out file3»

980 OUTPUT 2l0utflle4»l
990 INPUT "Enter filename for absolute error :" .Out file4i

1000 !

1010 I

1020 ENTER SIfileiSamplee ' Read in data

1030 REDIM Data) 1 .Samples-I > ,Abs< I .Samples- I )

1040 ENTER 0IfUeiOata(O
1050 !

1060 ENTER SIfileiOsamples
1070 REDIM Bin)

1
,Oeamples-l I.Onl)

I
.Osamplee-I )

1080 REDIM In!) I .Dsemples-I J.Hinl) I ,Dsamples-l )

1090 ENTER eifileiBinCi
1100 ENTER SIfileiUref iResiVtrans) .)

1110 !

1120 !

I 130 Constants: !

1140 Umin-0
1150 Umax-Uref
1160 Lab-Uref/2"Res
1170 Uf-Utrans<0) I Uoltage to cause first transition
1180 Ul-Utrans(3) ! Uoltage to cause last tansition
1190 Cf-Utrans) 1 )+l A-25 ' Count after first transition



1200 Cl-UtransCZ)
I Count after last transition

1210 !

1220 IF (CfOINT(Cf) AND ClOINT(Cl)) OR <Cf-0 AND Cl-0) THEN
1230 Cf-I

! If processing an old data file,
1240 C1-2S5 ! assign default values to
1250 01d-l

I Cf I CI and set a flag
12E0 END IF

1270

1290

1290

1300 PRINT
1310 PRINT "Calculating offset and gain errors."
1320 i Offset error
1330 Uoffset-Wf+(Vf-Vl)/(CI-Cf )+Lsb/2
1340 Coffset-Voffset/Lsb
1350 i

I3E0 !

1370 I Sain error
1380 Ugain-Uref-2»Lsb+Vf-Wl
1390 Cgam-Ugain/Lsb
1400

1410
1420

1430 PRINT "Calculating absolute error."
1 440 Amax—65536
1450 Amin-65536
1460 FOR X-0 TO Samples-!

! Absolute error
1470 Abs(0,x >-Datac0,X )

1480 Abs<
1 ,X)-0ata< 1

,X >-<Oata<0 ,X >-Umin >»2"Rea/< Unax-Umin

>

1490 IF Aba< 1 ,X )>Amax THEN
1580 Amax-Aba<

I
,X

)

1510 P1ax2-Abs(0.X>
1520 END IF

1530 IF Abs< 1 ,X XAmin THEN
1540 Anin-Abs<

1 ,X

)

1550 (1in2-Abs(0,X>
1560 ENO IF

1570 NEXT X

1580 !

1590 I

1600 i

1610 PRINT "Correcting ran data."
1620 Alpha-Lsbo<Cl-Cf>/<Ul-Vf ) I Data correction constants to
1630 Beta-i.sb«((VUCf-yfCl)/(UI-yf)-l/2)

! eliminate offset 1 gain errs
1640 !

1650 FOR 1-0 TO Samples-I
! Correct rau voltage data

1S60 Data! 0,1 )-Alpha»Oata<0,I)+Beta
1870 NEXT I

1680 i

1690 FOR 1-0 TO 3
! Correct the transition voltages

1 700 Utrans< I )-Alpha»Vtrans< I )+Beta
1710 NEXT I

1720 I

1730 !

1740 I

1750 PRINT "Calculating and point integral nonlinearity error "

17B0 Slope-2S4/(Utrans(3)-Utrans<0))
1770 Imax—65536
1780 Imin-65536
1790 Previ} A-26



i see i-i

IStB FOR X»0 TO 5amples-l I Integral Nonllnearity Error

1820 IF Data! 1 ,X »Prev THEN

1330 Inl'.a.I )-0atal 1 ,<>

1840 Inl( 1 ,1 )-0ata(
1
,X >-51ope«< Data! ,X >-Lsb/Z >-l

I 850 IF Inl( I ,1 »Inax THEN

I860 Imx-InKI.I)
1870 Maxl-Inlia.I >

189a ENO IF

1890 IF InKt .IKInln THEN

1900 Inin"Inl(1 ,1)

1910 Mlnl-InK0,I >

1 920 ENO IF

1 930 Prev-0ata< 1 ,X )

1940 I-I+1

1950 END IF

I960 NEXT X

1970
1980

1990

2000 PRINT "Calculating histogram integral nonlinearity error."

2010 Eno-0
2020 FOR X-l TO Oaanplei-2
2030 Eno-Eno+Stn<

I
,X )

2040 NEXT X

2050 Eno-Eno/ ( Oaanp les-2 '

2060 !

2070 Slope-0
2880 FOR X-l TO Dsanples-2
2090 Slope-Slope+Bln( 1 ,X )

2100 NEXT X

21 10 Slope-Slope/(Eno«<0sanples-2 )

)

2120 !

2130 Hnex—S5536
2140 Hnin-SS53S
2150 FOR X-0 TO Oaanp lea-

1

2160 HlnK0,X)"X
2170 HlnKI ,X)-0
2180 FOR V-0 TO X-l

2190 HlnKI ,X1-Hlnl(1 .X)+Bln<1 ,Y>

2200 NEXT Y

2210 HlnKI ,X>-(Hlnl( I ,X)-Bin< I ,0 ) >/Eno+< 1-X >«Slope
2220 IF HlnKI .X)>Hnax THEN
2230 Hnax-HinK 1 ,< )

2240 Nax3-Hinl(0,X

>

2250 ENO IF

2260 IF HlnKI ,X XHmin THEN
2270 Hnln-HlnK ! ,X )

2280 Mln3-Hlnl(0,X

I

2290 ENO IF

2300 NEXT X

2310 I

2320 1

2330 i

2340 PRINT "Calculating histogram differential nonltneertty error."
2350 Omax—65536
2360 Onin-65536
2370 Eno-I0»2"l8/Osanples I DAC resolution is 2"I8
2388 ! AOC resolution Is 2"8
2390 Eno0-Eno/Z A-27 '

EN0 ,or flr,t bln ' '
/2 tha nornal '



2400
:4ta

2420
2430
2440

2450
24G0
2470
2460
2490
2500
2SI0
2S20
2530
2540
2SS0

2550
2570
2S80
2S90
2S00
2510
2E20
2530
2540
2650
2660
2670
2660
2590
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2920
2930
2840
2850
2850
2870
2380
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990

I ENO for last bin 13/2 the normal)
1 Differential Nonlineenty Error

Eno1"3/2»Eno
FOR X-0 TO Dsamples-1

Onl(0,X)-X
Dnld ,X)-Bln< t ,XI/Eno-l

IF X-0 THEN Onl( I ,X >-Bin< 1 ,X )/Eno0-l

IF X-Osamples-I THEN Onl<
I
,X )-Bin( 1 ,X )/Enol -I

IF Dnl(
I
,X)>Dmax THEN

Dnax-0nl( t ,X )

8max-Onl(0,X>
END IF

IF Onl( I .XKOmln THEN

Dmin-Onld ,X

)

Bmln-Onl<0,X>
ENO IF

NEXT X

PRINT "Searching for non-monotonic values and missing code."

Calculate first bin

Calculate last bin

Non_monotonic-0
Misslng_code-0
Prev«0
FOR X-0 TO Samples-

I

IF Oatat 1 ,X KPrev THEN
Non_monotonlc-Non—monotonlc+t
Non_mano<0)-Oata(0,X )

Non_mono<1 )-0ata< 1 ,X)

END IF

PrevOata< I ,X >

NEXT X

I

FOR X-0 TO Osanples-I

IF 8in< 1 ,X )-0 THEN
Mlssing_code-Missing_code+1
Code(0)-Oata(0,4»X)
Code( I )-8in(0,X)

END IF

NEXT X

I

|

t

Pnntj-eaults: BEEP
OutS-"PRINTER"
OUTPUT 2 i Out*

l

INPUT 'List device (SCREEN/PRINTER >:" ,0uti
IF UPCSCOutSC I ,11>-"P" THEN PRINTER IS 701

Non-monotonic error counter

Missing code counter

! Check for non-monotonicit ies

! Stores the last occurrence

Check for missing code

Stores the last occurrence

Max form:
Minform:

IMA6E
IMAGE

Maximum: "
, 3D. 3D,

Minimum: " , 30.30,
LSBs at bit ' , 30

LSBs at bit "
, 3D

PRINT TAB<20h"ERROR CALCULATIONS"
IF UPC»<0ut»CI ,1 ]>-"P" THEN

PRINT
ELSE

PRINT CHRSI 138)
ENO IF

PRINT
PRINT "Input Filename: "ilnfile*
PRINT
PRINT A-28



3880 Cgain-PR0UN0<Cgaln,-3> I Round data (3 places)

3810 Coffset-PROUNDICof fset ,-3>

3020 Alpha-PR0UN0<Alpha,-5)

3830 Beta-PROUND(Beta.-S)

3848 PRINT "Sain Error: iCgalm "LSBs" iTABI 48 )

I "Alpha: "iAlpha

3050 PRINT •Offset Error: " iCof f set
i "LSBs" i TAB! 48 > TBeta: "iBeta

3868 PRINT
3878 PRINT "End point Integral Nonllnearlty Error Pile: "lOutfilelS

3888 PRINT USIN6 Maxformi Imax ,Nax1

3838 PRINT USINS Mlnformi Imin , Mini

3188 PRINT
3118 PRINT "Histogram Integral Nonllnearlty Error File: "lOutfile^*

3128 PRINT USINS MaxformiHnax ,Max3

3138 PRINT USINS MinformiHmln ,Mln3

3148 PRINT

315B PRINT "Histogram Differential Nonllnearlty Error — File: "lOutfilejS

3168 PRINT USINS MaxformiOmax .Bmax

3178 PRINT USIN6 MlnformiDmln ,Bmtn

3188 PRINT

3198 PRINT "Total Error FH« : " lOutf ile*»

3208 Amax-PR0UN0< Amax ,-3

)

I Round data

3218 Amin-PROUND<Amln,-3>
3228 Max2-PROUNO< Max2 ,-* >

3238 Mln2-PR0UN0(Mln2.-4)
3248 PRINT " Maximum: " lAmaxi "LSBs at"iMax2i"v"

32S8 PRINT " Minimum: "iAmim"1-S8a afiMln2l"v"

32B8 PRINT
3278 IF Old THEN PRINT 'Old data file, default and count values used:"

3288 Vf-PROUNO<Uf ,-4)

3290 U1-PR0UN0CU1 .-4)

3380 PRINT Cf 1
"->" iCf +1 1*1 " iVf

I

"v" |TA8( 40 ) |C1-I
l

"->" iCl
I
" I "iVli'v"

3310 !

3320 PRINT
3338 PRINT "Bin 8:

"

iBln< 1 ,8 > |TA8< 48 1

i "Bin 2S5: " iBin( 1 ,255 )

3348 I

3350 IF Nonmonotonic THEN

3360 PRINT
3370 PRINT "Non-monotonlcity occurred" iNon_monotonici " times

.

"

3380 Non_mono< 8 )-PR0UN0( Non_mono( 8 ) ,-4 )

3390 PRINT "The last occurrence uaa" iNon_mono( 1 1

1 "at " iNon_mono( )
i

"v"

3400 END IF

3410 i

3420 IF Mlssing_code THEN

3430 PRINT
3440 PRINT "Missing code occurred" lMtssing_codei " t imes

.

*

3450 Code(B>-PR0UND<Code<8>.-4>
3460 PRINT "The last occurrence uas" iCode< I )

i

"at about " iCodel 8 )i "v"

3478 ENO IF

3488 I

3498 Eject: IF UPC»(0utl[
I
,1 ) )-"P" THEN PRINT CHRJI12)

3588 PRINTER IS 1

3510 !

3528 I

3538 File: I

3548 ON ERROR SOSUB Flle.exists
3558 !

3560 Outf tle*-Outfllel

J

I Write end point Integral Error

3570 Records-INT(0samplea/t6>+1
3588 CREATE BOAT Out filel $ .Records

3598 ASSISN SOfile TO Outfilell A-29



3603
36 IB

3623
3633
3648
3653
3663
3670
3693
3693
3733

3713
3723
3738
3740
3753
3760
3773
3780
3793
3838
3813
3820
3830
3840

3850
3860
3870
3880
3890
3930
3910

3920
3930
3940

3 950
3950
3973
3988
3998

rlta histogram Integral Error

Write histogram Differential Err

I Write Absolute Error

OUTPUT 80fileiDsamples;Inl<»>
ASSIGN SOflle TO •

j

0utfileS-OutflIe2J
Recorda-INT(0samples/16H!
CREATE BOAT Out file2S .Records

ASSIGN 90flle TO 0utfile2S
OUTPUT SOflleiDsamplesiHlnKO
ASSISN SOflle TO •

0utfileS-0utfile3S
Records-INT< (Osanplea )/16 >-H

CREATE BOAT Outf ile3S .Records

ASSI6N SOflle TO 0utfile3S
OUTPUT SOfileiOaamplaaiOnUO
ASSIGN SOfile TO •

I

Outf ileJ-Outf ile4S

Records- INTl Samples/ I 6 )+l

CREATE BOAT Outf Ue4S .Records

ASSIGN SOfile TO 0utflle4S
OUTPUT 80fll«lSanple«iAba<»>
ASSI6N SOfile TO •

GOTO Exit

File_axists: I Purge file if it already exists

IF ERRN-S4 THEN
PUR6E Out files
RETURN

ELSE
PRINT CHRSU37)|CHRS( 130)

PRINT "Error" tERRNt "occured yhen writing to "lOutfileS
PRINT CHRSI 128) I CHRSI 139)

STOP
END IF

Exit: !

ASSIGN SIfilo TO •
! Close file

4010 BEEP
4020 PRINT CHRSI 139)

4033 OISP "Program terminated."
4848 WAIT .75

4050 'OISP "Loading CRUNCH program.
4863 ILOAO "CRUNCH"
4070 ENO

A-30



18

21
30

sb

EB

91
IBB

1 IB

121

131

141
158

1 SB

173

IM
IM
:bb

211
221
238

;4B
:se

2BB
270

288

2 98

300
310
328

338
348

358
36B

378

388

398
488

ill
428

438

448

458
468

478

48B
498

580
518
528
538
548

558
560
570
580
590

for the 9236 ver 3.236

Thia program takes the data file created by ERROR and

streamlines the data by finding the relative maximums and

minimums and throws the rest of the data away. The output

file 19 1/4 the size of the input file < 2S6 points compared

to 1824). The output file can be read by PLOT if a graph

is desired. Version 3.8 puts X axis in terms of AOC output.

•• MICHAEL PANKRATZ 13 July 1987

OIH InKl ,l8Z4),0ut<l .256)

PRINTER IS I

PRINT CHR*(12)| I Clear screen

PRINT TAB<27)iCHR»<138)i"CRUNCH ABSOLUTE ERROR OATA"

PRINT
PRINT
PRINT

|

Infile*-"ABS_8IF2"
Inpl: !

BEEP
ON ERROR SOTO No_fll«
OUTPUT 2llnfile*i
INPUT "Enter Input INL error f ilename: " .Inf lie*.

ASSIGN llfila TO Inftlei ! Open input file

OFF ERROR
SOTO Inp2

I

No_file: !

IF ERRN-S6 THEN
PRINT CHR»( l37)i"File "ilnflleti" does not exist."

PRINT CHRS( 138)

BEEP
WAIT .75

SOTO Inpl

ELSE
PRINT CHR»(137)iCHR*( 138)

PRINT "Error" iERRNi "occured when opening "jlnfileS

PRINT CHR»<I28)|CHR*(I39)
STOP

END IF

I

|

Inp2: !

Outfile»-"C"&Infllo*
OUTPUT 2 1 Out file* l

INPUT "Enter cruched output f ileneme: ' ,0utf ileS

I

ENTER SIfileiSamples
REOIM Inlt I ,Sanples-l

)

Read input file size

A-31



600
S10
s:b
630
640
650

560
670

530

690
700
710

77.0

Sample=2-INT< Samples/ 4

)

REDIM Out< I
,Samples2-t

'

ENTER OlfllailnKO
ASSISN SIfile TO •

Read in the data

PRINT "Crunching. .

.

"

FOR 1-0 TO Samples2-I

Out< I .1 >-0

FOR J-0 TO 3

IF ABSCInKI ,I«4+J)KABS<Out< I ,1 )) THEN Nxt

Out(
I
,I)-Inl< 1 ,I«4+J)

Out<0,I)»I
730 Nxt: NEXT J

740 NEXT I

7S0 I

760 >

770 Urite.data: I

780 ON ERROR SOSUB Flle_exlsta
Records-INT( (5anples2+l 1/16 1+1

CREATE BOAT Out file* .Records

ASSI6N SOfile TO Outflle*
OUTPUT S0flleiSanples2:0ut(O
SOTO Exit

Put max value in 2nd array
Make X axis the ADC output

790

800
810

820

930
340 I

350 File_exists:

I Create neu file

Write data to file

360
370

880

390

300

910

320

930

340

950 I

360 i

370 Exit: !

380 PRINT CHRt<l39>i
930 ASSIGN SIfile TO «

1000 ASSI6N COfile TO •

1010 BEEP
1020 DISP "Program terminated.
1030 END

IF ERRN-54 THEN
PUR6E Outflle*
RETURN

ELSE
PRINT CHR»(137)|CHR»< 130)

PRINT "Error " tERRNt "occured when writing to

PRINT CHRS<128)|CHR*< 139)

STOP
ENO IF

Close files

lOutf ileS

A-32



Appendix B



**************************************************
*

* SOURCE FILE: dynrcf8.src
*

* FUNCTION: Program.
*

* DESCRIPTION:
*

* This program does A/D conversions in a loop
* that causes the HCll's ADC to have a sampling
* rate of 4.0 kHz. The A/D conversions are
* outputed to PORTB. This result is picked up
* by the IBM PCXT and is stored in a data file
* for later processing.
*

* The A/D configuration is stored in location
* 00. The channel converted is channel one and
* the result is read from from ADR3 which is
* found at memory location $1034.
*

* This program is for use with an 8 MHz crystal
* on the EVB board.
*

* DOCUMENTATION
* FILES: None.
*

* ARGUMENTS: A/D configuration is stored in
* location 00 prior to execution.
*

* RETURN: None.
*

* FUNCTIONS
* CALLED: None.
*

* AUTHOR: Jeffrey C. Daniels
*

* DATE CREATED: 7-28-87
*

* REVISIONS: This program was created from
* dynrc.src.
*

**************************************************

ADR0 equ $1031
ADR1 equ $103 2

ADR2 equ $1033
ADR3 equ $103 4

PORTA equ $1000
PORTB equ $1004
LOOPNO equ 76

B-l



org $c400
ldaa $103 9

oraa #$80
staa $1039

ldy #PORTA
bset 0,y $20

ldaa $00

CONVERT staa $103

ldx #LOOPNO
DELAY dex

bne DELAY

Power up A/D.

Point inx to PORTA

Put A/D configuration
accumulator A.

Initiate conversion.

Wait for conversion to
be completed.

ldab
stab

ADR3
PORTB

bclr
bset

0,y $20
0,y $20

ldx
ldx
nop
nop

#$00
#$00

bra CONVERT

Send pulse to IBM that
data is ready.

Waste 10 clock cycles.

B-2



**************************************************
*

* SOURCE FILE: dyrcf8.src
*

* FUNCTION: Program.
*

* DESCRIPTION:
*

* This program does A/D conversions in a loop
* that causes the HCll's ADC to have a sampling
* rate of 4.0 kHz. The A/D conversions are
* outputed to PORTB. This result is picked up
* by the IBM PCXT and is stored in a data file
* for later processing.
*

* The A/D configuration is stored in location
* 00. The channel converted is channel one and
* the result is read from from ADR4 which is
* found at memory location $1034.
*

* This program is for use with an 8 MHz crystal
* on the EVB board.
*

* DOCUMENTATION
* FILES: None.
*

* ARGUMENTS: A/D configuration is stored in
* location 00 prior to execution.
*

* RETURN: None.
*

* FUNCTIONS
* CALLED: None.
*

* AUTHOR: Jeffrey C. Daniels
*

* DATE CREATED: 7-2 8-87
*

* REVISIONS: This program was created from
* dyrc.src.
*
**************************************************

ADR0 equ $1031
ADR1 equ $103 2

ADR2 equ $1033
ADR3 equ $103 4

PORTA equ $1000
PORTB equ $1004
LOOPNO equ 76

B-3



org $c500
ldaa $103 9

oraa #$c0
staa $1039

ldy #PORTA
bset 0,y $20

ldaa $00

CONVERT staa $1030

DELAY
ldx
dex
bne

tLOOPNO

DELAY

ldab
stab

ADR3
PORTB

bclr 0,y $20
bset 0,y $20

ldx #$00
ldx #$00
nop
nop

bra CONVERT

Power up A/D.

Point inx to PORTA

Put A/D configuration
accumulator A.

Initiate conversion.

Wait for conversion to
be completed.

Send pulse to IBM that
data is ready.

Waste 10 clock cycles.

B-4



**************************************************
*

* SOURCE FILE: dynrcf 2 . src
*

* FUNCTION: Program.
*

* DESCRIPTION:
*

* This program does A/D conversions in a loop
* that causes the HCll's ADC to have a sampling
* rate of 4.0 kHz. The A/D conversions are
* outputed to PORTB. This result is picked up
* by the IBM PCXT and is stored in a data file
* for later processing.
*

* The A/D configuration is stored in location
* 00. The channel converted is channel one and
* the result is read from from ADR2 which is
* found at memory location $1033.
*

* This program is for use with an 2 MHz crystal
* on the EVB board.
*

* DOCUMENTATION
* FILES: None.
*

* ARGUMENTS: A/D configuration is stored in
* location 00 prior to execution.
*

* RETURN: None.
*

* FUNCTIONS
* CALLED: None.
*

* AUTHOR: Jeffrey C. Daniels
*

* DATE CREATED: 7-28-87
*

* REVISIONS: This program was created from
* dynrc.src.
*
**************************************************

ADR0 equ $1031
ADR1 equ $1032
ADR2 equ $1033
ADR3 equ $103 4

PORTA equ $1000
PORTB equ $1004
LOOPNO equ 15

B-5



org $c600
ldaa $1039
oraa #$80
staa $1039

ldy #PORTA
bset 0,y $20

ldx tLOOPNO
stx $01

ldaa $00

Power up A/D.

Point inx to PORTA

Put delay loop length
at locations 01 and 02.

Put A/D configuration
accumulator A.

CONVERT staa $103

DELAY
ldx $01
dex
bne DELAY

ldab ADR2
stab PORTB

bclr 0,y $20
bset 0,y $20

bra CONVERT

Initiate conversion.

Wait for conversion to
be completed.

Send pulse to IBM that
data is ready.

B-6



**************************************************
*

* SOURCE FILE: dyrcf2.src
*

* FUNCTION: Program.
*

* DESCRIPTION:
*

* This program does A/D conversions in a loop
* that causes the HCll's ADC to have a sampling
* rate of 4.0 kHz. The A/D conversions are
* outputed to PORTB. This result is picked up
* by the IBM PCXT and is stored in a data file
* for later processing.
*

* The A/D configuration is stored in location
* 00. The channel converted is channel one and
* the result is read from from ADR2 which is
* found at memory location $1033.
*

* This program is for use with an 2 MHz crystal
* on the EVB board.
*

* DOCUMENTATION
* FILES: None.
*

* ARGUMENTS: A/D configuration is stored in
* location 00 prior to execution.

*
RETURN: None.

* FUNCTIONS
* CALLED: None.
*

* AUTHOR: Jeffrey C. Daniels
*

* DATE CREATED: 7-28-87
*

* REVISIONS: This program was created from
* dyrc.src.
*

**************************************************

ADR0 equ $1031
ADR1 equ $1032
ADR2 equ $1033
ADR3 equ $103 4

PORTA equ $1000
PORTB equ $1004
LOOPNO equ 15

B-7



org $c700
ldaa $1039
oraa t$c0
staa $103 9

ldy tPORTA
bset 0,y $20

ldx tLOOPNO
stz $01

ldaa $00

Power up A/D.

Point inx to PORTA

Put delay length at
locations 01 and 02.

Put A/D configuration
accumulator A.

CONVER1 staa $103

DELAY
ldx
dex
bne

$01

DELAY

ldab
stab

ADR3
PORTB

bclr
bset

0,y $20
0,y $20

Initiate conversion.

Wait for conversion to
be completed.

Send pulse to IBM that
data is ready.

bra CONVERT

B-8



GETDAT.EXE Make File

getdat.obj : getdat. c local.

h

msc getdat;

getdat.exe : getdat.obj
link/stack: 5000 getdat;

dyhis.exe Hake File

dyhis.obj : dyhis.c local.

h

msc dyhis;

dyhis.exe : dyhis.obj
link dyhis;

dyfft.exe Make File

cadd.obj : cadd.c complex.

h

msc/AL cadd;

csub.obj : csub.c complex, h
msc/AL csub;

cmult.obj : cmult.c complex.

h

msc/AL cmult;

cdiv.obj : cdiv.c complex, h
msc/AL cdiv;

cexpon.obj : cexpon. c complex, h
msc/AL cexpon;

cmplx.obj : cmplx.c complex.

h

msc/AL cmplx;

cneg.obj ; cneg.c complex.

h

msc/AL cneg;

cmag.obj : cmag. c complex, h
msc/AL cmag

;

cmagsq.obj : cmagsg.c complex.

h

msc/AL cmagsg

;

B-9



cmath. lib : cmagsq.obj cmag.obj cneg.obj cmplx.obj \
cexpon.obj cdiv.obj cmult.obj csub.obj \
cadd. obj

lib cmath-+cadd;
lib cmath-+csub;
lib cmath-+cmult;
lib cmath-+cdiv;
lib cmath-+cexpon;
lib cmath- +cmplx;
lib cmath-+cneg;
lib cmath-+cmag;
lib cmath-+cmagsq

;

fft. obj : fft.c cmath. h complex. h local.

h

msc/AL fft;

normal. obj : normal. c complex. h local.

h

msc/AL normal;

window. obj : window. c cmath. h complex. h local.

h

msc/AL window;

dyfft.obj : dy fft.c cmath. h complex. h local.

h

msc/AL dyfft;

dyfft.exe : dyfft.obj normal. obj window. obj fft. obj cmath. lib
link dyfft normal window ff t, ,, cmath. lib;

HARMONl.EXE Make File

cadd. obj : cadd.c complex.

h

msc/AL cadd;

csub.obj : csub.c complex.

h

msc/AL csub;

cmult.obj : cmult.c complex.

h

msc/AL cmult;

cdiv.obj : cdiv. c complex.

h

msc/AL cdiv;

cexpon.obj : cexpon. c complex.

h

msc/AL cexpon;

cmplx.obj : cmplx.c complex.

h

msc/AL cmplx;

cneg.obj : cneg.c complex.

h

msc/AL cneg;

B-10



ctnag.obj : cmag.c complex.

h

msc/AL cmag;

cmagsq.obj : cmagsq.c complex.

h

msc/AL cmagsq

;

cmath.lib : cmagsq.obj cmag.obj cneg.obj cmplx.obj \
cexpon.obj cdiv.obj cmult.obj csub.obj \
cadd. obj

lib cmath-+cadd;
lib cmath-+csub;
lib cmath-+cmult;
lib cmath-+cdiv

;

lib aaath-+cexpon;
lib cmath-+cmplx;
lib cmath-+cneg;
lib cmath-+cmag;
lib cmath-+cmagsq;

f ft. obj : fft.c cmath. h complex. h local.

h

msc/AL fft;

window. obj : window. c cmath. h complex. h local.

h

msc/AL window;

harmonl.obj : harmonl.c local. h cmath. h complex.

h

msc/AL harmonl;

harmonl.exe : harmonl.obj fft. obj window. obj cmath.lib
link harmonl fft window, ,, cmath.lib;

QNTZ1.EXE Hake File

cadd. obj : cadd.c complex, h
msc/AL cadd;

csub.obj : csub.c complex.

h

msc/AL csub;

cmult.obj : cmult.c complex.

h

msc/AL cmult;

cdiv.obj : cdiv. c complex.

h

msc/AL cdiv;

cexpon.obj : cexpon.c complex.

h

msc/AL cexpon;

cmplx.obj : cmplx.c complex.

h

msc/AL cmplx;

B-ll



cneg.obj : cneg.c complex.

h

msc/AL cneg;

cmag.obj : cinag.c complex, h

msc/AL cmag;

cmagsq.obj : cmagsq.c complex.

h

msc/AL cmagsq

;

cmath.lib : cmagsq.obj cmag.obj cneg.obj cmplx.obj \
cexpon.obj cdiv.obj cmult.obj csub.obj \
cadd.obj

lib cmath-+cadd;
lib cmath-+csub;
lib cmath-+cmult;
lib cmath-+cdiv;
lib cmath-+cexpon;
lib cmath-+cmplx;
lib cmath-+cneg;
lib cmath-+cmag;
lib anath-+cmagsq

;

fft.obj : fft.c cmath.h complex. h local.

h

msc/AL fft;

window. obj : window. c cmath.h complex. h local.

h

msc/AL window;

qntzl.obj : qntzl.c local. h cmath.h complex.

h

msc/AL qntzl;

qntzl.exe : qntzl.obj fft.obj window. obj cmath.h
link qntzl fft window, ,, cmath.lib;

B-12



/***********************************************************
* ...
* SODRCE PILE: getfft.c

main programFUNCTION

:

DESCRIPTION:

DOCUMENTATION
FILES

:

ARGUMENTS:

RETURN

:

FUNCTIONS
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

This program receives the data for the
fft and histogram tests for dynamic
testing from the ppi in IBM PCXT.
Various information is prompted from
the user and all information is then
stored in a user specified files in
binary format for later processing.

None.

None.

Binary files containing all valid
information.

None.

Jeffrey C. Daniels

8-3-87

8-3-87 This program was created from
getfft.c and gethis.c.

***********************************************************
^,

include <stdio.h>
include <conio.h>
include "local. h"

int configuration,
num_pts = NUM_DFT_ POINTS;

int intdata[NUM_DFT_ POINTS];

char filename [STRING_LEN]

,

mode[MODE_LEN] ,

chip_number[CHIP_NO LEN]

,

date[DATE_LEN],
lot_number [LOT_NO_LEN]

;

float inp_float;

B-13



double samp_freq,
clock_f req,
hist [RESOLUTION];

FILE *out_file;

main()
{

register i,j;
unsigned char data [NnM_DFT_POINTS]

;

/* Set up ppi communications.

OUtp(CONTROL,PPI_CONFIG)

;

/* Enter data information. */
/*******************«****************************/

/* Enter the date. */

printf ("\n\n\n\n\n\n\n\n\n\n\n\n\n\n")

;

puts("Enter the date is this form - - ");
puts ("mm-dd-yy")

;

scanf ("%s", date)

;

printf ("The date is: %s\n\n\n",date)

;

/* Enter chip number. */

putsfEnter the chip number of the hell");
scanf ("%s",chip_number)

;

printf ("The chip number is : %s\n\n\n" f

chip_number)

;

/* Enter lot number of HC11. */

puts ("Enter the lot number of the HC11");
scanf (*%s",lot_number) >

printf("The lot number is : %s\n\n\n",
lot_number)

;

/* Enter the clock frequency.

puts("Enter the clock frequency for the");
puts(" test system in MHz.");
scanf ("%e", Sinp_ float)

;

clock_freq = (double) inp_ float;
printf("The clock frequency is: %f\n\n\n",

clock_f req) ;

B-14



/* Enter the sampling frequency. */

puts ("Enter the sampling frequency of the HC11");
puts("in Hertz.")

;

scanf ("%e", &inp_float)

;

samp_freq = (double) inp_ float;
printf ("The sampling freq. is: %f\n\n\n",

samp_freq)

;

FOREVER
{

/* Enter the mode of the HC11. */

puts ("Enter the mode of the HC11.");
puts ("An example - - 00");
scanf ("%s", mode)

;

printf ("The mode is: %s\n\n\n",mode)

;

/* Take data. */

puts ("Set up fft input sine wave and hit ");
puts ("RETURN to start data accquisition.\n")

;

getch() ;

/* Throw out 10 samples. */

for ( i - 0; i < 10; i++ )

inp(PORTB) ;

/* Take valid data. */

fort i » -1; i++ < NOM_DFT POINTS;)
{

while! ! (0x01 & (int) inp (PORTA) ))

;

data[i] - inp(PORTB);

puts ("Some data");
for ( i - 0; i < 20; i++ )

printf ("%i\n", (int)data[i]) ;

printf ("\n\n\n\n");

B-15



/* Enter output filename. */

puts ("Enter the fft output data filename.");
puts("An example is: INRC01F8.OOT")

;

scanf("%s", filename)

;

printf("The output filename is: %s\n\n\n",
filename)

;

/* Convert data from character to integer. */

for ( i « 0; i < NOH_DFT_ POINTS; i++ )

intdata[i] » (int)data [i]

;

/* Write out data and information to output */
/* file in binary format. */

out_file « fopen (filename, "w+b")

;

fwrite (date, sizeof (char), DATE_LEN,out_file)

;

fw rite(chip_ number, sizeof ( char) ,CHIP_NO_LEN,
out_f ile)

;

fwrite (lot_number, sizeof (char) ,LOT NO LEN,
out_file);

fwrite (mode, sizeof (char) ,MODE_LEN,out_f ile)

;

fwrite ((char *) iclock_f req, sizeof (double) ,1,
out_file);

fwrite ( (char *) &samp_f req, sizeof (double) ,1,
out_file);

fwritef (char *) &num_pts, sizeof (int) ,1,
out.file);

fwrite ( (char *) intdata, sizeof (int)

,

NUM_ DFT_ PO INTS , OUt_ fil e ) ;

f close (out_f ile);

/ft**********************************************/
/* Take histogram data. */
/A*********************************************

/

puts ("Set up histogram input sine wave and hit");
puts ("RETURN to start data acquisition. \n\n\n") ;

getch();

B-16



/* Zero out histogram array */

for( i - 0; i < RESOLUTION; i++ )

hist[i] = 0.0;

/* Throw out 10 samples. */

for ( i = 0; i < 10; i++ )

inp(PORTB)

;

/* Take valid data. */

for( j - 0; j < ( NUM_HIS_POINTS / LOOP SIZE )

;

printfC %i",j);
for( i - -1; i++ < LOOP_SIZE;)

{

while ( I (0x01 & (int) inp (PORTA) ))

data[i] « inp(PORTB)

;

}

fort i - 0; i < LOOP_SIZE; i++ )

{

hist [(int) data [i]] = hist [ (int)data[i] ] +1;

}

putsfsome data");
for ( i » 0; i < RESOLUTION; i++ )

printf("%i %f\n\ i,hist [i] )

;

/* Enter output filename. */

puts("Enter the histogram output data filename.");
puts("An example is: hnrc01f8.out")

;

scanf ("%s", filename)

;

printf("The output filename is: %s\n\n\n", filename)

;

/* Write out data and information to output */
/* file in binary format. */

out_file fopen (filename, "w+b")

;

fwrite(date,sizeof (char) ,DATE_LEN,out_file)

;

fwrite (chip_number, sizeof (char) , CHIP_NO_LEN,
outlfile)

;

B-17



fwrite(lot_ number, sizeof (char) ,LOT_NO_LEN,
out_f ile)

;

fwrite (mode, sizeof (char) , MODE_LEN,out_f ile) ;

fwrite( (char *)&clock_f req, sizeof (double) ,1,
out_f ile)

;

fwrite ( (char *)&samp_freq, sizeof (double) ,1,
out. file);

fwrite( (char *)&num_pts, sizeof (int) ,1,
out_file)

;

fwrite ( (char *)hist, sizeof (double)

,

RESOLUTION, OUt_f ile) ;

fclose (out_f ile)

;

}

exit(O) i

}

B-18



*

* SODRCE FILE: dyhis.c
*

mainOFUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES

:

ARGUMENTS:

RETURN

:

FUNCTIONS
CALLED

:

AUTHOR:

DATE CREATED:

REVISIONS:

This program reads in the data and
information taken in a dynamic histogram
test of the hell ADC. The data
manipulated with methods described by
Doerfler.

None.

None.

ascii file containing data and
information

none.

Jeffrey C. Daniels

6-30-87

None.

tit*********************************************************.

include <stdio.h>
(include <conio.h>
(include <math.n>
(include "local. h"

char in_filename[STRING_LEN]

,

out_ filename [STRING LEN]

,

mode [MODE_LENJ ,

chip_number [CHIP_NO_LEN]

,

date (DATE_LEN]

,

lot_number [LOT_NO_LEN]

;

double samp_freq,
fund_f req,
clock_freq,
max_mag;

B-19



double hist [RESOLUTION],
voltage [RESOLUTION] ,

diff [RESOLUTION],
cum_his,
lsb;

int num_pts;

FILE *in file,
*out_file;

mainO
{

register i;

puts("\n\nEnter the input filename.");
scanf ("%s",in_f ilename)

;

/* Open file to read in data, stop program if */
/* file cannot be opened. */

if(( in_file « fopen (in_ filename, "r+b") ) NULL )

printf("\n\n %s could not be opened or doesn't",
" exist. \n\n", in filename);

exit(l);
}

/* Read in data and information. */

fread (date, sizeof (char) ,DATE_LEN, in_f ile)

;

printf ("date = %s\n\n",date)

;

fread (chip_number, sizeof (char) , CHIP NO LEN,
"iiCfile);

printf("The chip number is %s\n\n",chip_number)

;

fread (lot_number, sizeof (char) ,LOT_NO_LEN, in file)

;

printf("The lot number is %s\n\n",lot_number)

;

freadfmode, sizeof (char) ,MODE_LEN, in_file)

;

printf("The mode is %s\n\n",mode)

;

fread((char *) &clock_freq, sizeof (double) ,l,in_file);
printf ("clock_freq is %f\n\n",clock_f req)

;

fread ( (char *) &samp_freq, sizeof (double) ,1 , in_file)

;

printf ("samp_f req %f\n\n",samp_freq)

;

fread ((char *)snum_pts, sizeof ( int) ,l,in_file)

;

printf ("num_pts %i\n\n",num_pts)

;

B-20



fread((char *)hist,sizeof (double) ,num_pts, in_flie)

;

/* For this algorithm the amplitude of the input */
/* waveform is normalized to fall between -1 and */
/* 1 volts. */

lsb = 2.0 / pow( (double) 2, (double) NUM_BITS);

cum_his = hist [0J

;

voltage[0] - -cos(PI * cum_his / NUH_HIS_ POINTS) ;

for ( i 1; i < RESOLUTION; i++ )

{

cum_his « cum_his + hist[l];
voltage [i] = -cos ( PI * cum_his

/ NUM_HIS_ POINTS ) ;

diff[i-l] - ( voltage [ij - voltage [i-1] )

/lsb - 1;

/* Write information and data to output file. */

printf ("\n\nThe input filename was: %s\n\n",
in_filename) ;

puts("\n\n\nEnter the filename for the ");
puts ("histogram data.");
puts("\nAn example a:hnr01f8. \n\n");
scanf (*%s",out_filename);

out_file = fopen(out_f ilename, "w")

;

fprintf (out_file, "%s %iHz %s %s\n",
out_f ilename, (int) (samp_freq),

chip_number, lot_number)

;

for ( i - 0; i < RESOLUTION; i++ )

fprintf (out_file,"%i %f \n", i,hist [i])

;

fclose(in_f ile);
fclose (out_file)

;

puts("\n\n\nEnter the filename for the );
puts ("output data.");
puts("\nAn example - - a:dnr01f8. \n\n");
scanf ("%s",out_f ilename)

;

out_file » fopen(out_f ilename, "w") ;

fprintf (out_file,"%s %iHz %s %s\n",
out_filename, (int) (samp_freq) ,

chip_number,lot_number)

;

B-21



for ( i » 0; i < RESOLUTION; i++ )

fprintf (out_file,"%i %f \n", i,dif f [i] )

;

fclose(irufile)

;

fclose (out_f ile)

;

exit(0) ;

}

B-22



/******************************************************,**,*
*

* SODRCE FILE: dyfft.c
*

* FDNCTION: mainO

* DESCRIPTION:
*

*

*

*

*

*

*

*

*

*
*

*

*

DOCUMENTATION
FILES:

ARGUMENTS:

RETURN

:

FUNCTIONS
CALLED:

This program reads in the data and
information taken in a dynamic test of
the hell ADC. The data is first
normalized to a range between and 1,
windowed with a Von Honn window, taken
through a fast fourier transform, and
then the log magnitude is taken. This
final result is then placed into an
output file to be plotted.

None.

None.

ascii file containing data and
information

normal iz e_ data ( ) ;

window data ()

;

fftOi

AUTHOR: Jeffrey C. Daniels
•m

* DATE CREATED: 6-9-87

None.

a****************************************/

* REVISIONS:
*

******************

include <stdio.h>
include <conio.h>
include <math.h>
include "cmath.h"
include "complex. h"

include "local. h"

DCOMPLEX input_ data [NUM_DFT_ POINTS] ,

trans_data [NUfCDFT~POINTS] ,

z[NUM_DFT_ POINTS];" /*

int data [NDM_DFT_ POINTS];

COMPLEX work array */

B-23



char in_filename [STRING. LEN]

,

out_f ilename [STRING_LEN]

,

mode [MODE_LEN]

,

chip_number[CHIP_NO_LEN]

,

date[DATE_LEN],
lot_number [LOT_NO_LEN]

;

double freqs[NDM_DFT_ POINTS];

double samp_freq,
fund_freq,
clock_f req,
max_mag;

int num_pts,
act_len;

FILE *in_file,
*out_file;

mainO
{

register 1;

puts("\n\nEnter the input filename.");
scanf ("%s",in_f ilename)

;

/* Open file to read in data, stop program if */
/* file cannot be opened. */

if(( in_file = fopen(in_filename, "r+b") ) « NULL )

printf("%s could not be opened or doesn't",
" exist. \n\n",in_f ilename)

;

exit(l);
}

/* Read in data and information. */

fread (date, sizeof (char) , DATE LEN,in file);
printfCdate - %s\n\n",date)

;

f read (chip_number, sizeof (char), CHIP NO LEN,
in_file);

printf("The chip number is %s\n\n",chip_number)

;

f read (lot_ number, sizeof (char) , LOT_NO_ LEN, in_ file)

;

printf("The lot number is *s\n\n",lot_number)

;

fread (mode, sizeof (char) ,MODE_LEN, in_file)

;

printffThe mode is %s\n\n",mode)

;

B-24



£iead( (char *)&clock_f req, sizeof (double) ,l,in_file)

;

printf ("clock_f req is %f\n\n",clock_f req)

;

f read ( (char *)&samp_freq, sizeof (double) ,1, in_file)

;

printf ("samp_f req = %f\n\n",samp_freq)

;

f read( (char *) in um_pts r sizeof ( int) ,l,in_file)

;

printf ("num_pts = %i\n\n",num_pts)

;

f read ( (char *)data, sizeof (int) ,num_pts, in_file)

;

puts ("some data');
for( i - 0; i < 20; i++)
printf ("%i\n", data[i]);

/* Transform data from integer to */
/* complex array. */

for ( i » 0; i < num_pts; i++ )

input_data[i] = cmplxf (double) data [i] ,0 .0)

;

/* Normalize data between to an lsb. */

puts ("Normalizing data.");
normalize_data ( input_data, trans_data,num_pts );

/* Window the input data. */

puts ("Windowing data");
window_data ( trans_data, num_pts )

;

/* Perform fast fourier transform. */

puts ("Performing fft");
act_len = fft( trans_data, trans.data,

num_pts, DFT_N)

;

/* Find the log magnitude of frequency data. */

puts ("Finding magnitude of data.");
max_mag = 0.0;

/* Take out dc offset. */

trans_dataI0] .re = le-4;
trans_data[l] .re = le-4;
trans_data[2] .re = le-4;

trans_data [0] .im = 0.0;
trans_data[l] . im » 0.0;
trans_data[2] .im =0.0;

for ( i = 3; i < act_len / 2; i++ )

B-25



{

trans_data[i] .re = cmag( trans_data [i] )

;

trans_data[i].im = 0.0;

if ( trans_data[i].re < le-5 )

trans_data [i] .re = le-5;

if ( trans_data[i] .re > max_mag )

max_mag trans_data [i] .re;
printf ("max_mag %f at pt. %i\n",max_mag, i)

;

}

/* Convert results to dBs and produce */
/* frequency arrary. */

fund_freq = samp_freq / act_len;

puts ("Finding dBs.");
for ( i 0; i < act.len / 2; i++ )

{

trans_data [i] .re « 20.0
* loglO(trans_data[i] .re / max mag);

freqs[i] « (double) i * fund_freq;

/* Write information and data to output file. */

printf ("\n\nThe input filename was: %s\n\n",
in_ filename)

;

puts("\n\n\nEnter the filename for the ");
puts ("output data.");
puts("\nAn example - - a:data.out \n\n");
scanf ("%s",out_filename)

;

out_file » fopen(out_filename, "w")

;

fprintf (out_file, "%s %iHz %s %s\n",
out_f ilename, (int) (samp_f req)

,

chip_number, lot_number)

;

for ( i - 0; i < act_len / 2; i++ )

fprintf (out_file, "%f %f %i\n", f reqs[i]

,

trans_data [i] .re, i)

;

fclose(in_file);
fclose(out_file);

exit(0);
}

B-26



* . . . . .

* SOURCE FILE: normal.

c

*

* FUNCTION: VOID normal ize_ data (x,y, num_pts)
*

* DESCRIPTION: This function normalizes data from an
* ADC to the range between and 1.
*

* DOCUMENTATION
* FILES: None.

*
ARGUMENTS: x - DCOMPLEX * - pointer to complex array

* y - DCOMPLEX * - pointer to complex array
*

* num_pts - int - number of points in
the arrays*

*

* RETURN: None.
*

* FUNCTIONS
* CALLED: None.
*

* AUTHOR: Jeffrey C. Daniels
*

* DATE CREATED: 6-9-87

* REVISIONS: None.
*

•it********************************************************/

tinclude <math.h>
tinclude "complex. h"

tinclude "local. h"

VOID normalize. data (x,y,num_pts)
DCOMPLEX *x,

int num_pts;
{

register i;
double lsb;
lsb - (VHIGH - VLOW) / pow( (double) 2, (double) NUM_BITS) ;

for ( i - 0; i < num_pts; i++ )

y[i].re = x[i].re * lsb;
ylij.im = 0.0;

}

return;
I

B-27



/***********************************************************

SOURCE FILE:

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

RETURN:

FUNCTIONS
CALLED

:

AUTHOR:

DATE CREATED:

REVISIONS:

window.

c

VOID window.data ( x, num_pts )

This function windows data in the array
x with a Von Hann window.

None.

x - DCOMPLEX * - pointer to complex array

num_pts - int - number of points in the
window

None.

None.

Jeffrey C. Daniels

6-9-87

None.

include <math.h>
(include "cmath.h"
include "complex. h"

(include "local. h"

extern DCOMPLEX z [NUM_DFT_ POINTS]

;

VOID window_ data ( x, num_pts )

DCOMPLEX *x;
int num_pts;

{

register i;
double multiplier;

/* Create a von Hann window. */

for( i « 0; i < num_pts; i++ )

multiplier = 0.5 * ( 1.0 -

cos (2.0 * PI * i / num.pts ));
z[i].re = multiplier;

B-28



z[i].im multiplier;
)

/* Now multiply data by the window.

for ( i = 0; i < num_pts; i++ )

x[i] - cmult(x[i],zti]);

return;
}

B-29



*

* SOURCE FILE: fft.C
*

* FUNCTION:
*

int fft(x,y,n, inverse)
DCOMPLEX *x,

*y;
* int n, inverse;

* DESCRIPTION: This function performs the decimation in
* frequency fast fourier transform.
*

* DOCUMENTATION
* FILES: None.
*

ARGUMENTS:

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

RETURN:

x - - pointer to DCOMPLEX input array
y - - pointer to DCOMPLEX output array
n - - the desired length of the DFT

( or inverse DFT ) to be performed,
inverse - - a flag to indicate whether

a forward DFT or an inverse DFT
is to be performed

equal to: DFT : forward DFT ( with
multiplier of 1 )

DFT_N : forward DFT ( with
multiplier of 1/n )

IDFT : inverse DFT ( with
multiplier of 1 )

IDFT_N : inverse IDFT ( with
multiplier of 1/n )

actual length of the DFT ( IDFT ) performed
If the desired length, n, is an integer
power of 2, then the actual length is
equal to n. Otherwise, the actual length
is the largest integer power of 2 which is
less than n.

FUNCTIONS
CALLED: DCOMPLEX cexponO ;

AUTHOR: Jeffrey C. Daniels

DATE CREATED: 6-3-87

REVISIONS: None.

B-30



#include <math.h>
include "cmath.h
tinclude "complex. h"

include "local. h"

extern DCOMPLEX z [NUM_DFT_ POINTS ]

;

int fft(x f y,n, inverse)
DCOMPLEX *X,

*y;
int n, inverse;

{

int dft_length,i,iter_num,
j,k,l, length,
m,num_ blocks,
offset, sign;

double mult_fac, theta;

DCOMPLEX tempc;

/* Find actual length of the DPT of IDFT to be performed. */

length » 2;
while ( length < n )

length » length * 2;

if ( length ! n )

length = length / 2;

/* Determine whether DFT or IDFT and also the */

/* multiplication factor. */

switch ( inverse )

r
l

case DFT_N:
sign = 1;
mult_fac
break;

1.0 / (double) length;

case IDFT:
sign » -1;
mult_fac •

break;
1.0;

case DFT:

default:

}

sign 1;
mult_fac
break;

sign -1;
mult_fac »

1.0;

1.0 / (double) length;

B-31



/* Copy input array into output array if the pointers */
/* are not to the same array. */

If I x ! j )

for ( i 0; i < length ; i++ )

y[i] - x[i],

/* Initialize variables */

offset = 0;
iter_num 0;
dft_length length;

/* Now perform the DFT or IDFT */

while ( length >» 2 )

{

num_ blocks - (int)pow( (double) 2.0, (double) iter_num );
iter_num « iter_num + 1;
length = length / 2;
offset = 0;

for ( i »1; i <» num blocks; i++ )

{

for ( j 0; j < length; j++ )

m = j + offset;
z[m] * cadd( y[m], y[m+length] );
8[m + length] cmult( csub( y[m], y[m + length] ),

cexpon( -(double) sign * PI
* (double)

j

/ (double) length ));

offset « length * 2 + offset;

for ( i - 0; i < dft_ length; i++ )

y[i] - z[i];
}

/* Now unscramble the DFT ( or IDFT ) coefficients */

j = 0;
for ( i = 0; i <» dft_ length - 2; i++ )

if ( i < j )

tempc « y[j];
y[j] - ylil;
y[i] = tempc;

k = dft_ length / 2 ;

B-3 2



while ( k <= j )

{

J - J - k;
k = k / 2;

}

j - J + k;

}

/* Now multiply by the multiplication factor

for ( i - 0; i <= dft_length - 1; i++ )

y[i] - cntult( y[i] r cmplx(mult_fac,0.0) );

return (df t_length)

;

J

B-33



*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ft***************************************************

SODRCE FILE: cadd.C

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES

:

ARGUMENTS:

RETURN

:

FUNCTIONS
CALLED

:

DCOMPLEX cadd(x,y)
DCOMPLEX x,y;

This function performs the addition of
the two DCOMPLEX numbers x and y.

None.

x - DCOMPLEX number
y - DCOMPLEX number

result of the DCOMPLEX addition
of x and y

AUTHOR:

DATE CREATED:

REVISIONS:

None.

Jeffrey C. Daniels

6-2-87

None,

ft**********************************************************/

#include "complex. h"

DCOMPLEX cadd(x,y)
DCOMPLEX x,y;

{

DCOMPLEX z;

z.re
z.im

x.re + y.re;
x.im + y. im;

return(z)

;

}

B-3 4



ft**********************************************************
* • -

* SOURCE FILE: csub.c
*

* FUNCTION: DCOMPLEX CSUb(X,y)
* DCOMPLEX x,y;

* DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

RETURN:

FUNCTIONS
CALLED

:

This function performs the substraction
of the two DCOMPLEX numbers x and y.

None.

x - DCOMPLEX number
y - DCOMPLEX number

result of the DCOMPLEX subtraction of
x and y

None.

Jeffrey C. Daniels* AUTHOR:

* DATE CREATED: 6-2-87

* REVISIONS: None.
*

ft**********************************************************/

include "complex. h"

DCOMPLEX csub(x,y)
DCOMPLEX x,y;

{

DCOMPLEX z;

z.re = x.re - y.re;
z. im = x. im - y. im;

return (z)

;

}

B-3 5



/A**********************************************************
* -

cdiv.c
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

SOURCE FILE:

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES

:

ARGUMENTS:

RETURN:

FUNCTIONS
CALLED

:

AUTHOR:

DCOMPLEX cdiv(x,y)
DCOMPLEX x,y;

This function performs the division of
the two DCOMPLEX numbers x and y.

None.

x - DCOMPLEX number
y - DCOMPLEX number

result of the DCOMPLEX division of
x and y

None.

Jeffrey C. Daniels

DATE CREATED: 6-2-87

REVISIONS: None.

it******************************************************,**/

tinclude "complex. h"

DCOMPLEX cdiv(x,y)
DCOMPLEX x,y;

{

DCOMPLEX z;

z.re = ( x. re * y.re + x.im * y.im )

/ ( y.re * y. re + y.im * y.im )

;

z.im ( x.im * y.re - x. re * y.im )

/ ( y.re * y.re + y.im * y.im )

;

return(z)

;

}

B-36



* -..-...
* SOURCE FILE:
*

* FUNCTION:

cexpon.

c

DCOMPLEX cexpon (theta)
double theta;

* DESCRIPTION: This function performs the operation of
* exp(j * theta).

DOCUMENTATION
FILES

:

ARGUMENTS:

RETURN:

FUNCTIONS
CALLED

:

AUTHOR:

DATE CREATED:

REVISIONS:

None.

theta - double

the DCOMPLEX number exp( j * theta)

None.

Jeffrey C. Daniels

6-2-87

None.

it********************************************************/

{include <math.h>
tinclude "complex. h"

DCOMPLEX cexpon (theta)
double theta;

{

DCOMPLEX z;

z.re = cos (theta)

;

z.im = sin (theta);

return(z)

;

}

B-37



/It********************************************************
*

* SODRCE FILE: cmplx. c

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES

:

ARGUMENTS

:

RETURN

:

FUNCTIONS
CALLED

:

DCOMPLEX cmplx (x,y)
double x,y;

This function makes a DCOMPLEX number
from the two double numbers x and y.

None.

x - double number
y - double number

the DCOMPLEX number x + jy

AUTHOR:

DATE CREATED:

REVISIONS:

None.

Jeffrey C. Daniels

6-2-87

None.
*

it*********************************************************/

include "complex. h"

DCOMPLEX cmplx(x,y)
double x,y;

{

DCOMPLEX z;

z.re = x;
z.im « y;

return(z)

;

}

B-3 8



*

* SOURCE FILE: cneg.c

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES

:

ARGUMENTS:

RETURN:

FUNCTIONS
CALLED

:

DCOMPLEX cneg(x)
DCOMPLEX X;

This function performs the negation of
the DCOMPLEX number x.

None.

x - DCOMPLEX number

result of the negation of x

AUTHOR:

DATE CREATED:

REVISIONS:

None.

Jeffrey C. Daniels

6-2-87

None.

********************************************************** */

include "complex. h"

DCOMPLEX cneg(x)
DCOMPLEX x;

I

DCOMPLEX z;

z.re
z. im

- x.re;
- x.im;

return (z)

;

}

B-3 9



*

SODRCE PILE:

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES

:

ARGUMENTS:

RETURN:

FUNCTIONS
CALLED

:

AUTHOR:

cmag.c

double cmag(x)
DCOMPLEX x;

This function finds the magnitude of the
DCOMPLEX number x.

None.

x - DCOMPLEX number

double - the magnitude of x

None.

Jeffrey C. Daniels

DATE CREATED: 6-2-87

REVISIONS: None.

it**********************************************************/

tinclude <math.h>
include "complex. h"

double cmag(x)
DCOMPLEX x;

{

double z;

z sqrt( x.re * x. re + x.im * x.im );

return(z)

;

}

B-40



/It**********************************************************
*

SOURCE FILE:

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

RETURN

:

FUNCTIONS
CALLED

:

cmagsq. c

double cmagsq (x)

DCOMPLEX x;

This function finds the magnitude squared
of the DCOMPLEX number x.

None.

x - DCOMPLEX number

double - the magnitude squared of x

AUTHOR:

DATE CREATED:

REVISIONS:

None.

Jeffrey C. Daniels

6-2-87

None.
*

a*********************************************************/

include "complex. h"

double cmagsq (x)

DCOMPLEX xj

{

double z;

z = x.re * x.re + x.im * x.im;

return (z)

;

}

B-41



/it*********************************************************
*

cmult.cSOURCE FILE:

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES

:

ARGUMENTS:

DCOMPLEX cmult(x,y)
DCOMPLEX x,y;

This function performs the multiplication
of the two DCOMPLEX numbers x and y.

None.

DCOMPLEX number
DCOMPLEX number

RETURN:

FUNCTIONS
CALLED

:

result of the DCOMPLEX multiplication of
z and y

AUTHOR:

None.

Jeffrey C. Daniels

DATE CREATED: 6-2-87

REVISIONS: None.

****************************************************** *****/

tinclude "complex, h"

DCOMPLEX cmult(x,y)
DCOMPLEX x,y;

{

DCOMPLEX z;

z. re » z. re * y. re - x. im * y.im;
z.im = x.im * y.re + x.re * y.im;

return (z)

;

}

B-42



/***********************************************************
*

harmonl.cSOURCE FILE:

FUNCTION:

DESCRIPTION:

mainO

This program is used to find the
location of harmonics in the DFT window.

DOCUMENTATION
FILES

:

ARGUMENTS:

RETURN:

FUNCTIONS
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

None.

None.

ascii file containing 20 * loglO of the
frequency data.

f ft(x,y,n, inverse)
DCOMPLEX *x,*y;
int n, inverse

Jeffrey C. Daniels

6-15-87

6-23-87 Threw out Doerfler's algorithm
and used my own.

A**********************************************************.

#include <stdio.h>
(include <conio.h>
(include <math.h>
(include "cmath.h"
(include "complex. h"

(include "local. h"

DCOMPLEX x[NUM_DFT POINTS];
DCOMPLEX y[NUM_DFT_POINTS];
DCOMPLEX z [NUM_DFT_POINTS j

;

double freqs [NUM_DFT_ POINTS];

main ()

{

char out_filename[STRlNG_LEN + 1];

int inverse=DFT_N;
int n;
int act_len;
int i,j;

B-43



float inp_ float;

double ampli,
delta,
frequency,
fund_f req,
max_mag,
samp_f req,
w;

FILE *out_file;

puts("Enter the frequency of sine wave desired.");
scanf ("%f",&inp_float);
frequency = (double) inp_ float;
printf ("frequency %f\n\n", frequency)

;

puts("Enter the sampling frequency.");
scanf ("%f",sinp_ float);
samp_freq = (double) inp_float;
printf ("samp_f req = %f\n\n", samp_freq)

;

puts ("Enter the number of points desired.");
scanf ("%i",sn);
printf (" n = %i\n\n",n);

w « TWOPI * frequency / samp_freq;

for ( j - 1; j < 10; j++ )

{

printf ("%i ",j);
ampli - pow( (double) 10.0 , (double) (1-j) );
for ( i - 0; i < n; i++ )

t

x[i].re = x[i].re + ampli
* sin( j * w * i );

x[i].im - 0.0;
}

}

/* Window data. V
puts(" ");
puts ("Windowing data.");
window_data(y,act_len)

;

/* Perform Fast Fourier Transform. */

puts ("Performing FFT");

act_len = f ft (x,y, n, inverse) ;

B-44



printf ("Actual length %i\n",act_len)

;

puts ("Finding magnitude");
max_mag =0.0;

/* Find the magnitude of frequency data. */

for ( i « 0; i < act_len; i++ )

{

y[i].re = cmag ( y[i] )

;

if( y[i].re < le-300 )

y[i].re - le-15;

if ( y[i].re >» max_mag )

max_mag y[i].re;

y[i] ,im « 0.0;
}

/* Convert results to dBs. '

puts ("Finding dBs.\n");

fund_freq = samp_freq / act_len;

for ( i = 0; i < act_len; i++ )

{

y[i].re = 20.0 * logl0(y[i] .re / max_mag);
freqs[i] •= fund_freq * i;

}

/* Write out information to a data file. *,

puts ("Enter the output data filename.");
scanf ("%s",out_ filename)

;

out_file = fopen (out_f ilename, "w")

;

fprintf (out_file, "%8 %iHz \n",out_f ilename,
(int)samp_freq)

;

for( i « 0; i < act len/2; i++ )

fprintf (out_file, "%f %f\n",f reqs[i] ,y[i] .re)

;

f close (out_f ile)

;

exit (0)i
}

B-45



/it*********************************************************
*

* SOURCE PILE: qntzl.c
*

main()FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES

:

ARGUMENTS:

RETURN:

FUNCTIONS
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

This program is used to find the spectrum
of an ideal ADC.

None.

None.

ascii file containing 20 * loglO of the
frequency data.

fft(x,y,n, inverse)
DCOMPLEX *x,*y;
int n, inverse

window ( x,n )

DCOMPLEX *X;
int n;

Jeffrey C. Daniels

7-15-87

Created from datgen.c.

************************************************* **********/

finclude <stdio.h>
include <conio.h>
tin elude <math.h>
include "cmath.h"
include "complex. h"

include "local. h"

DCOMPLEX X[NUM_DFT_ POINTS],
y[NUM_DFT_ POINTS] ,

z[NUM_DFT_ POINTS] ;

double f reqs[NUM_DFT_ POINTS ];

B-46



main()
{

char out_filename[STRING_LEN + 1];

int inverse=DFT_N;
int n;
int act_len;
int i,num_bits;
float inp_ float;

double ampli,
frequency,
fund_freq,
lsb,
max_mag,
samp_f req,
vhigh,vlow,
w;

FILE *out_file;

putsf -);
puts("Enter the number of bits of the ADC);
scanf ("%i", &num_bits)

;

printf ("Number of bits %i\n\n",num_bits)

;

puts ("Enter the high reference voltage");
scanf ("%f",Sinp_ float)

;

vhigh « (double) inp_ float;
printf ("High reference voltage = % f\n\n", vhigh)

;

puts ("Enter the low reference voltage");
scanf ("%f",iinp_ float)

;

vlow «= (double) inp_ float;
printf ("Low reference voltage » %f\n\n", vlow)

;

puts ("Enter the frequency of sine wave desired.");
scanf ("%f", &inp_float)

;

frequency « (double) inp_float;
printf ("frequency » %f\n\n", frequency) ;

puts ("Enter the sampling frequency.");
scanf ("%f",&inp_float)

;

samp_freq = (double) inp_ float;
printf ("samp_freq « %f\n\n",samp_freq) ;

puts ("Enter the number of points desired.");
scanf ("%i",Sn);
printf (" n = %i\n\n",n);

ampli » ( vhigh - vlow ) / 2.0;
w « TOOPI * frequency / samp_freq;

B-47



lsb » ( vhigh - vlow )

/ pow( (double) 2.0 , (double) num_bi ts) ;

for ( i = 0; i < n; i++ )

{

x[i].re = arapli * sin( w * i );
x[i].im » 0.0;

t

/* Quantize data to NDH.BITS. */

puts ("Quantizing data");
for ( i « 0; i < n; i++ )

y[i].re = lsb * floor ( x[i].re / lsb );

/* Window data. */

puts ("Windowing data");
window_data ( y,n );

/* Perform Fast Fourier Transform. */

puts ("Performing FFT");

act_len fft(y,y,n, inverse)

;

printf ("Actual length %i\n",act_len)

;

puts("Finding magnitude");

max_mag 0.0;

/* Find the magnitude of frequency data. */

for ( i » 0; i < act_len / 2; i++ )

{

ytij.re » cmag ( y[ij );

if( y[i].re < le-7 )

y[i] .re le-7;

if ( y[i].re > max_mag )

max_mag y[i].re;

y[i] .im = 0.0;
}

/* Convert results to dBs. */

puts ("Finding dBs.\n");

fund_freq samp_freq / act_len;

B-4 8



for ( i - 0; i < act len / 2; i++ )

{

ytij.re » 20.0 * logl0(y[i] . re / max_mag);
freqs[i] = fund_freq * i;

}

/* Write out information to a data file. */

puts ("Enter the output data filename.");
scanf ("%s",out_ filename)

;

out_file = fopen (out_f ilename, "w")

;

fprintf (out_file,"%s %iHz %i bits\n",
out_f ilename, (int)samp_f req,num_bits)

;

for( i « 0; i < act_len / 2; i++ )

fprintf (out_file,"%f %f %i\n",
freqs[i],y[i].re r i) f

f close (out_f ile)

;

exit(0);
}

B-49



/A**********************************************************
*

local.

h

SODRCE FILE:

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES

:

ARGUMENTS:

RETURN:

FUNCTIONS
CALLED

:

AUTHOR:

include file

This file is an include file containing
various definitions used in many
functions.

None.

None.

None.

None.

Jeffrey C. Daniels

* DATE CREATED: 6-3-87

REVISIONS: None.

tifndef _local
define _ local

define FALSE
define TRUE 1

define NO
define YES 1

define VOID void
define FOREVER for(;;)

define PI 3.141592653589793
define TWOPI 6.2 831853 0717 9586
define RADDEG 0.017453292519943
define DEGRAD 57.29577951308232

define DFT
define DFT_N 1

define IDFT 2
define IDFT N 3

/* Forward DFT with multiplier of 1.0 */
/* Forward DFT with multiplier of 1.0/N */
/* Inverse DFT with multiplier of 1.0 */
/* Inverse DFT with multiplier of 1.0/N */

define NUM_DFT_ POINTS 40 96
define NUM_HIS_ POINTS 327680

B-50



define LOOP. SIZE 4096

tdefine STRING_LEN 80
•define CHIP_NO_LEN 20
•define DATE.LEN 8

tdef ine MODE_LEN 2

•define LOT_NO_LEN 3

tdef ine PORTA 0x380
tdef ine PORTB 0x3 81
tdef ine PORTC 0x382
tdefine CONTROL 0x3 83
tdef ine PPI CONFIG 0xb6

/* Ports on IBM PCXT Metrabyte */
/* Board */

tdefine VHIGH 5
tdefine VLOW
tdefine NDM_BITS 8

tdefine RESOLUTION 256

/* Funtion definitions.
VOID window. data()

;

VOID normalize. data()

;

int fft{)|

tendif

B-51



/A*********************************************************
*

cmath.

h

SOURCE FILE:

FUNCTION

:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

RETURN:

FUNCTIONS
CALLED

:

AUTHOR:

DATE CREATED:

REVISIONS:

include file

This file is an include file containing
the definitions for the functions
involving COMPLEX numbers.

None.

None.

None.

None.

Jeffrey C. Daniels

6-2-87

None.

***********************************************************

/

tifndef _ cmath
define _cmath

tinclude "complex. h"

DCOMPLEX caddO ;

DCOMPLEX csub (

)

;

DCOMPLEX cmult();
DCOMPLEX cdiv() ;

DCOMPLEX cmplxO ;

DCOMPLEX cexpon ( )

;

DCOMPLEX cneg();

double cmag();
double cmagsq () ;

double cphase ( ) ,-

double cphasedf);

endif

B-52



/it*********************************************************

SOURCE FILE:

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES

:

ARGUMENTS:

RETURN

:

FUNCTIONS
CALLED

:

AUTHOR:

DATE CREATED:

REVISIONS:

complex, h

include file

This file is an include file containing
the definitions for the DCOMPLEX data
structure. A DCOMPLEX number is just
a double precision complex.

None.

None.

None.

None.

Jeffrey C. Daniels

6-2-87

None.

a******************************************************.

tifndef _dcomplex
#def ine _dcomplex

typedef struct dcomplex
{

double re,
im;

} DCOMPLEX;

#endif

B-53



Appendix C



End Point Transition Procedure3 ' 7

This procedure is an alternative to the histogram

procedure for calculating integral non-linearity errors

from a line that passes through the first and last

transitions for the actual transfer function for an analog

to digital (A/D) converter.

The following transfer function for an ideal, three

bit, unipolar A/D is:

in

in .

DIGITAL ill .

OUTPUT

CODE
til

in

•If .

Ill

crs

¥—

ci

—i
1 1 1 1

1 i —i—
VREF VREF 3VREF VREF SVREF 3VREF 7VREF VREF

8 4 8 2 8 4 8

INPUT VOLTAGE V

Figure C-l. Transfer function for an ideal 3-bit A/D.

where:

VLSB = vref/ 2 "'

C-l



and two measurable points with the coordinates are:

C± - first A/D transition

= (001,V ref/16) or (001,V ref/2
n+1

)

Cps
- last A/D transition

= (lll,13V ref/16) or (2
n - l,V ref - 3Vref/2

n+1
)

Transition voltages occur at

vtran = (Vref/2
n+1

) (2i - 1 ) for i = 1,2, •••,2n_1

The equation of the line through Cy and CFS for an ideal

A/D with some point (C,V) on the transfer function is:

_c_-_cpS _y_:_^s

CFS " Cl VFS " V
l

or

C - 2
n + 1 V - Vref + (3/2 n+1 ) V ref

"In""— ~ v"
r
;f""(3/2n+irv ref

- Vref/ 2n+l

manipulating, if true endpoints, we can obtain:

C - 2
n + 1 V - 2 n+1 - Vref 2

n+1 + 3Vref

2(2 n
"1 - 1) V ref 2

n+1 - 3V ref - Vref

>n+l/v . _ ->n+l + 3V2 nTVvref - 2'

2
n+l _ 4

C - 2
n + 1 V2 n+1/Vref - 2

n+1 + 3

2(2 n_1 - 1) 4(2n_1 -1)

C - 2
n + 1 = V2n+1/2Vref - 2

n+1/2 + 3/2

C-2



This must equal the non-ideal equation. Therefore,

a C Fg
- Cp CpS - Cp

--> a = VLSB
VLSB vFS - vF

and

B 1 vFSCp
- VpCpg

VLSB 2 VFS - Vp

yields:

B =
VFS CF " VF^FS_ 1

vFS - vF 2

VFS

Thus, all voltages obtained in taking ramp data must be

multiplied by a and have B added to them. This adjustment

of the voltage removes gain and offset errors to from the

data to then be used to calculate integral non-linearity

errors at the transition points by the following equation:

V
t
(i) - [ Vt (l) + (i-1) (LSB)]

IN(i) = LSB
LSB

where:

i = 0,l,2,-",2 n_1

and LSB = Vref/2
n

The voltages corresponding to the transition points are

found by searching the A/D conversion results for a

transition and then integral non-linearity errors are

calculated. These voltages cannot be found if the A/D

conversion results have areas of non-monotonic behavior.

The simple search for a transition will not yield a true

transition point because of the non-monotonic behavior.

C-4



1. Motorola Technical Data Myancp Information.! MC6,<|H£11A8

HCMOS SinaJerChiP MiSI3 c ompu te_r , (Phoenix, AZ : Motorola
Literature Distribution, 1985).

2. Douglas W. Doerfler, "Techniques for Testing a 15-Bit
Data Acquisition System," ( MS Thesis, Department of

Computer and Electrical Engineering, Kansas State
University, 1985)

.

3. Analog Devices, AflJj.SflrJ3ij3J.fc8i Con.yej:sipn Handbook,
(Englewood Cliffs, NJ : Prentice-Hall, Inc., 1986).

4. Steven Douglas Draving, "An Evaluation of the HC68HC11A8
Single-Chip Microcomputer as a Controller for Low-Power,
Precision A/D Converters," ( MS Thesis, Department of
Computer and Electrical Engineering, Kansas State
University, 1987) .

5 Motorola, "M68HC11EVB Evaluation Board User's Manual",
(First Edition, Copyright 1986 by Motorola, Inc.).

6. Dave Holdeman, "Precision Voltage Reference," ( Research
Report, Kansas State University, Department of Computer
and Electrical Engineering, Project No. 2845, December
14, 1984)

.

7. Dr. Donald H. Lenhert, "Personal Research Notes for
Motorola Project", ( Nov. 7,1987, pp. 13-16 ).

R-l



The Static and Dynamic Characterization
of the MC68HCllA8's Analog to Digital Converter

by

Jeffrey Charles Daniels

B.S. , Kansas State University, 1984

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988



Abstract

The Motorola MC68HC11A8 (HC11) is a high speed, low

power microcomputer with an onboard eight channel, multi-

plexed input, successive approximation analog to digital

converter (A/D) with sample and hold. This A/D system is

clocked by the HCll's E clock or by an internal RC timer.

This thesis presents three static and two dynamic testing

methods used to test the A/D in different configurations

with the RC timer enabled and disabled and at different E

clock frequencies.

Several different lots of HClls from the mask of B96D

were tested and three problems were discovered. These

problems include isolated cases of errors induced by

pattern sensitivity, consistent constant offsets when the

A/D is operated in various operational modes, and the

problem of large errors being induced when the A/D is

clocked by its internal RC timer. All of the error

discovered in dynamic tests had been previously found

using static tests indicating that no large scale dynamic

sensitivities exist for this mask.

s


