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Abstract 

This thesis elaborates on the theory and art of the design of two key RF radio hardware 

subsystems: analog Frequency Dividers and Low Noise Amplifiers (LNAs).  Specifically, the 

design and analysis of two Injection Locked Frequency Dividers (ILFDs), one Regenerative 

Frequency Divider (RFD), and two different LNAs are documented.  In addition to deriving 

equations for various performance metrics and topology-specific optimization criterion, 

measurement data and software simulations are presented to quantify several parameters of 

interest.  Also, a study of the design of LNAs is discussed, based on three “regimes:” impedance 

matching, transconductance-boosting, and active noise cancelling (ANC).  For the ILFDs, a 

study of injection-locked synchronization and phase noise reduction is offered, based on 

previous works.  

As the need for low power, high frequency radio devices continues to be driven by the 

mobile phone industry, Frequency Dividers that are used as prescalars in phase locked loop 

frequency synthesizers (PLLs) must too become capable of operation at higher frequencies while 

consuming little power.  Not only should they be low power devices, but a wide “Locking 

Range” (LR) is also desired.  The LR is the bandwidth of signals that a Frequency Divider is 

capable of dividing.  As such, this thesis documents the design and analysis of two ILFDs: a 

Tail-ILFD and a Quench-ILFD.  Both of these ILFDs are implemented on the same oscillator 

circuit, which consumes 2.28 mW, nominally.  Measurements of the Tail and Quench-ILFDs’ 

LRs are plotted, including one representing the Quench-ILFD operating at “very low” power.  

Also, an RFD is detailed in this thesis, which consumes 410 μW.  This thesis documents Locking 

Ranges for the Tail and Quench-ILFDs of 12% and 3.7% of 6.4 GHz respectively, during 

nominal operation.  In “very low” power mode, the Quench-ILFD has a LR of 4.8% while 

consuming 219.6 μW of power.  For the RFD, simulations report a LR of 16.7% while 

consuming 410 μW.   

Recently in 2011, a wideband LNA topology by Nozahi et al., which employs Partial 

Noise Cancelling (PNC) of the thermal noise generated by active devices, was presented and 

claimed to achieve a minimum and maximum NF of 1.4 dB and 1.7 dB (from 100 MHz to 2.3 

GHz), while consuming 18 mW from a 1.8 V supply.  This thesis details the theory, design, and 



  

simulation results of a narrowband version of this PNC LNA.  In order to compare the large-

signal performance of this narrowband LNA to that of a well-known implementation, an LNA 

employing inductive source-degeneration (referred to as a “S-L LNA”) is designed and analyzed 

through simulation.  The PNC LNA operates at a frequency of 2.3 GHz while the S-L LNA 

operates at 2.8 GHz.  Simulations report a NF of 1.76 dB for the PNC LNA and 2.3 dB for the S-

L LNA, at their respective operating frequencies.  Both LNAs consume roughly 15 mW of 

quiescent power from a 1.8 V supply. 

Lastly, a case for the suspected design and layout faults, which caused fabricated versions 

of the RFD and two LNAs documented in this thesis to fail, is presented.  First, measurements of 

the two LNAs are shown, which display the input impedance of the S-L LNA and the s21 

responses for both.  Then, general layout concerns are addressed, followed by topology-specific 

circuit design flaws. 
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Chapter 1 - Introduction 

 1.1 Objective 
 

This thesis focuses on two critical subcircuits needed to implement low power, high 

frequency radio receivers: analog Injection-Locked Divide-by-2 Prescalars and Low Noise 

Amplifiers (LNAs).  Chapter 1 explains the background and motivation that drive the need for 

LNAs and Frequency Dividers in modern radio applications.  In chapter 2, prior art and current 

industry implementations for these two subsystems will be explained in terms of performance 

features and limitations.  Chapter 3 elaborates the theory, analysis, design, simulation, and layout 

of (i) a “Quench” Injection-Locked Frequency Divider (ILFD), (ii) a “Tail” ILFD, and then (iii) 

a Regenerative Frequency Divider (RFD), also known as a “Miller Divider”.  Next, Chapter 4 

reports the theory, analysis, design, simulation, and layout of (i) a Source-Inductor LNA (S-L 

LNA) and (ii) a Partial Noise-Cancelling LNA (PNC-LNA) based on the works of [1].  Finally, 

Chapter 5 concludes the document by summarizing and comparing the performance of the 

researched Frequency Divider and LNA topologies. 

 

 1.2 Background 

 1.2.1 Divide-by-2 Injection-Locked Frequency Dividers 

 

ILFDs are extensively used in Phase-Locked-Loop (PLL) Frequency Synthesizers, or 

simply “PLLs”.  Ideally, a PLL provides a stable output frequency with minimized phase noise.  

PLL’s are used in a variety of RFIC subsystems, for both transmit and receive operations.  Figure 

1.1 shows the architecture of a modern PLL implementation.  A stable reference frequency is 

generated using a temperature-compensated crystal oscillator (TCXO).  This signal is divided by 

some value R.  A Phase-Frequency Detector (PFD) provides a signal proportional to the 

difference in phase (or frequency) between the reference signal and the output signal, after being 
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divided by both P and N, respectively.  This signal drives the Charge Pump that provides the 

tuning voltage to a VCO.  The loop filter (lowpass type) is necessary for stability and to control 

the dynamics and response time of the feedback system. 

 

 
Figure 1.1 Modern PLL Architecture 

 

The output frequency generated by such a PLL can be expressed as: 

     (1.1) 

and the minimum step size is: 

     (1.2) 

As a result, the prescalar block is a determining factor of the range of frequencies that can be 

generated, unless a fractional-N architecture is used [3] [4].  

The reason prescalars need to be used in the first place is because the digital circuitry that 

composes the divide-by-N block in Figure 1.1 is often too slow to process the higher GHz 

frequencies employed in newer wireless receivers.  Using a prescalar subverts this issue, by 

providing the digital circuitry with a lower frequency input that can be properly divided. As a 

result, the development of ILFDs remains a strong subject of interest among RFIC researchers. 

 

 1.2.2 Low Noise Amplifiers 
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Low Noise Amplifiers serve as the first active stage for typical receiver architectures.  

The LNA and the passive circuitry that precedes it compose what is often referred to as the 

“front end” of a radio receiver.  As the first active stage, the LNA determines many performance 

metrics of the entire radio system, such as the receiver sensitivity, out-of-band IIP3, and dynamic 

range.  As mobile consumer technologies continue to support high-data and high-speed 

transmissions, it is paramount that these devices maintain sufficient operation in the context of 

these characterizations, while remaining low power.  Unlike intermediate frequency (IF) 

amplifiers, buffer amplifiers, or chained amplifiers that typically appear in RF receivers, the 

design of LNAs requires input matching, gain boosting, noise cancelling, and frequency selective 

techniques in order to optimize receiver performance metrics, such as Noise Figure.   

 Noise Figure of Cascaded Systems 

 

 A receiver’s Noise Figure (referred to as “F”) is primarily established by the first stage in 

a cascaded network, if the gain of that stage is sufficiently large.  H. T. Friis showed this in [2].  

To illustrate this important point, consider Figure 1.2, which depicts a signal generator of voltage 

Vin with Thevenin impedance Rsource and two cascaded 2-Port Networks (2PNs) with the second 

2PN connected to a load: 

 

 
Figure 1.2 Signal source followed by two cascaded 2PNs and load impedance 

 

 In the context of communication circuits, the above figure represents a receiver front-end 

consisting of an antenna of impedance Rsource, an LNA, followed by perhaps an amplifying, 

mixing, or filtering stage. 2PN1 represents the LNA and 2PN2 represents the next stage.   



4 

 

 

 

 

A voltage source, such as Vin, provides maximum power transfer to a load when the next 

stage’s input impedance is matched to the source impedance, i.e. Rsource = R2PN,in.  When this is 

true, the maximum available signal power can be described by: 

        (1.3) 

where R indicates both the source impedance and the input impedance of 2PN1.  Next, a signal 

source of Thevenin resistance R will produce thermal noise power of magnitude: 

     (1.4) 

delivered to a matched load, where k is Boltzmann’s constant (1.38x10-23 J/ºK), T is the absolute 

temperature of the operating circuitry (typically 290 ºK in room-temperature, low power 

devices), and B is the effective bandwidth of the receiver system.  This bandwidth is typically set 

by the off-chip BPF, the LNA, or both. 

  To illustrate a typical figure of a modern receiver, consider a Bluetooth device operating 

at 2.45 GHz, with a bandwidth of 245 MHz.  For the signal and noise powers given here, the 

SNR can be defined as: 

     (1.5) 

 The noise power produced by the source impedance appears at the input terminals of 

2PN1, which is amplified by the network’s power gain G1. Due to the internal circuitry that 

comprises 2PN1, additional noise will be introduced because of thermal effects from individual 

circuit elements.  Considering this additional noise, the total available noise power at the output 

terminals of 2PN1 is: 

    (1.6) 

where F1 ≥ 1 to account for the excess noise introduced.  Similarly, the noise power that appears 

at the inputs of 2PN2 will also be amplified, this time by the gain of the second network G2.  Now 

the total noise power at the output terminals of 2PN2 can be expressed as: 

    (1.7) 



5 

 

 

 

 

F12 represents the noise figure of the comprehensive system consisting of networks 2PN1 and 

2PN2.  However, as 2PN2 likely also contains thermal noise generating circuitry, it too will also 

have its own individual contribution to total available noise power at its output terminals.  The 

noise power due solely to 2PN2 is: 

     (1.8) 

Whereas the noise contribution due to the circuitry of 2PN1 is: 

    (1.9) 

Note that the (Fi - 1) factor originates from the fact that the initial kTB noise was introduced by 

the signal source, which is subtracted out to obtain the noise contribution of only the 2PN of 

interest.  Another observation from the above expressions is that the noise power of the first 2PN 

is amplified twice before appearing at the load.  The noise power of the second 2PN is only 

amplified once.  To illustrate the consequence of this fact on the total system noise figure, 

consider the expression for total available noise power at the output terminals of 2PN2, due to 

each stage’s own contribution: 

    

         (1.10) 

Equating this to (1.7) shows: 

   (1.11) 

Dividing both sides by the similar terms shows that the noise figure describing the entire system 

of 2PNs results in: 

      (1.12) 

so that for a system of power-amplifying stages, the noise figure is dominated by the first stage, 

if it is of sufficient power gain G1.  Expanding this analysis to a chain of 3 2PNs would reveal: 
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      (1.13) 

 Optimizing Circuit Noise Figure 

 

To understand how to optimize the noise figure of a single stage such as F1, consider the 

expression for the noise figure of a system composed of a signal source, one amplifying stage 

(such as an LNA), and a load impedance: 

    (1.14) 

This suggests that for a low noise figure, the noise contribution from the stage’s circuit should be 

minimized while keeping its power gain large in magnitude.  The expression also implies a 

minimum theoretical noise figure of unity for a noise-less network, where all the noise power 

would have originated at the signal source.  

Many different circuit-level techniques for the development of LNAs that optimize the 

above criterion have been researched and developed since the establishment of noise figure [5] 

[6].  In RF-tuned circuits, reactive components are used to provide matching and associated high-

gain and low-noise paths for received signals.  In wideband applications, where frequency-

selective components are not usable, methods of noise figure improvement have begun to focus 

more on clever CMOS topologies, such as “noise cancellation” [1]. 

Both wideband and narrowband receivers can benefit from noise-cancellation 

architectures.  Many methods of noise cancelling in FET circuits have been developed, using 

active coupling, differential circuits, and/or feedback to mitigate individual FET noise 

contribution [6] [8].  These circuits often employ gm-boosting techniques and impedance 

matching as well.  The study of LNA design techniques in this thesis focuses on adopting 

recently developed wideband noise cancellation circuits to narrowband LNAs to achieve good 

performance in terms of both noise figure and large-signal processing capabilities. 
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Chapter 2 - Background Theory and The State of The Art 

 2.1 Divide-by-2 Injection-Locked Frequency Dividers 
 

The output frequencies needed in modern PLL circuits are well into the GHz range, 

which is too high for programmable digital dividers, thus the need for prescalars.  In the past, a 

common approach has been to use a high-speed Source Coupled Logic (SCL) divide-by-2 circuit 

based on the D flip-flop architecture [7].  Figure 2.1 shows such a circuit: 

 

 
Figure 2.1 SCL Divide-by-2 Circuit 

 

 For the divider in figure 2.1, when VCLK is positive, the first latch is transparent, and a 

differential voltage VQ is established.  FETs M1 and M2 form the “D” input.  When VCLK is 

negative, the cross-coupled pair formed by M3 and M4 latch the state and provides a fixed output 

to the second latch, which is now transparent.  The maximum frequency this circuit can operate 

at is determined by: 

      (2.1) 
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 In current practice, fmax tends to be limited to ~3GHz, due to the parasitic capacitances 

illustrated in Figure 2.1.  The capacitor Cparasitic represents the capacitance formed by the 

differential lines that connect the drains of M3 and M4 to the drains of M1 and M2.  Regardless of 

transistor sizing, Cparasitic remains a result of the metal traces that provide these connections.  In 

addition to this, RL1 and RL2 also introduce some parasitic capacitance at this node.  High-valued 

resistors may be formed by connecting a number of N-well regions in the substrate through metal 

connections, and have a fixed resistance-per-length ratio.   The resistors introduce a parasitic 

capacitance (that increases with increasing resistance), which limits the maximum value of the 

load impedance.  The parasitic capacitance Cparasitic and the limit on RL imply that for a high fmax, 

gm must be maximized.  For this reason, this type of frequency divider is known for its high 

power consumption, which is another reason it is inferior to alternatives such as injection-locked 

architectures. 

  ILFDs work by forcing a free-running resonator to change its oscillation frequency by 

means of injecting signals at frequencies near the fundamental frequency of oscillation, directly 

into the resonator.  Since the circuit is basically an oscillator, an inductor cancels parasitic 

capacitances, allowing the circuit to operate at significantly lower power than the SCL divider of 

Figure 2.1.  Their primary disadvantage is a limited bandwidth of synchronization due to the 

oscillator’s tuned load.  Figure 2.2 can be used to understand the operation of a generic ILFD: 

 

 
Figure 2.2 ILFD Block Diagram 
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 The oscillator in Figure 2.2 has a fundamental frequency ωo.  As can be seen above, an 

ILFD works by mixing the input signal (at twice the desired output frequency), with the output 

of the oscillator, of frequency ω.  The mixing product at 2ωinj - ω survives the filter, and 

reinforces the tank’s oscillations at ωo.   

When the deviation of ωinj from ωo is small (i.e. within the linear region of a tuned load’s 

∂ϕ/∂ω relationship), the change in oscillation frequency from ωo to ωinj can be explained by the 

transient modification of the phase term of the sinusoidal output.  In other words, this summing 

of the two signals in Figure 2.2 results in frequency modulation of the oscillator voltage.  Using a 

phasor diagram to represent the frequencies and phase difference between the frequency-halved 

injection signal (at the output of the mixer in Figure 2.2) and the output oscillation, the locking 

of oscillators is mathematically treated in Chapter 3.  The range of signal frequencies (centered 

around the fundamental frequency of the resonator), referred to as the “locking range,” is 

dependent on the quality factors of the inductor and capacitor that make up the tank circuit.  The 

quality factor (Q) is a metric of how much energy is lost during each cycle of oscillation, which 

also determines how long a resonant circuit will oscillate for a given input energy.  The Q of the 

overall tank circuit is typically set by the on-chip inductor, and is given as: 

           (2.2) 

where Rseries is the lumped resistances of the metal trace that forms the inductor, L is its 

inductance, and QL is its quality factor.  Typically, capacitors implemented on-chip are of such 

high Q that the quality factor of the inductor dominates.  

Two of the most popular ILFDs used as analog prescalars are the “Tail-ILFD” and the 

“Quench-ILFD.”  

 

 

 

 2.1.1 “Tail-ILFDs” 
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Tail-ILFDs are so named because the input signal is applied to the gate of MOSFET that 

provides the tail current for a differential pair-based negative-resistance oscillator. To understand 

how mixing, filtering, and injection-locking processes take place in a Tail-ILFD, observe the 

following figure, which is a generic schematic of a Tail-ILFD implemented using a single-

balanced mixer and a negative-resistance oscillator: 

 

 
Figure 2.3 Generic Tail-ILFD 

 

In Figure 2.3, the input signal is applied through an AC coupling capacitor directly to the 

gate of the current source FET, M3.  Because this FET is in a Common-Source amplifier 

configuration, this signal appears at the drain of M3 at a value of: 

     (2.3) 

where gm1 and gm3 are the transconductances of the M1 and M3, respectively.  The 

transconductance gm1 is a function of time since its gate is tied to the output voltage of the 

oscillator. Next, the input signal at the source of M1 is mixed with the oscillations of the tank, via 



11 

 

 

 

 

the cross-coupling of FETs M1 and M2.  To illustrate how this qualifies as a mixing operation, 

Figure 2.4 depicts a simple switch-based mixer scheme: multiplying a sine wave at a frequency f1 

with a square wave at a frequency f2. 

 

 
Figure 2.4 Switch-Based Single-balanced Mixer Scheme 

 

 It is well known that for a square-wave pulse train the Fourier series is:  

       

     (2.4) 

where Vos is a dc value if the square wave is unipolar as in Figure 2.4. It can be seen from the 

expansion above that a square pulse train in time is composed of the fundamental frequency 

(calculated as the inverse of the period of one square wave) and its odd harmonics.  The 

following figure is a graphic representation of the frequency spectrum of such a signal: 
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Figure 2.5 Frequency Spectrum of Arbitrary Square Wave  

 

 In the context of Figure 2.3, the switch is implemented by M1 in Figure 2.3, one of the 

cross-coupled FETs that compose the negative resistance of the active oscillator.  The square 

wave represents whether or not M1’s channel is open (magnitude of 1) or closed (magnitude of 

0).  An amplified version of the input signal at the Source of M1 appears at M1’s Drain due to its 

Common Source (CS) configuration.  The resultant signal is given by: 

 (2.5) 

 The signal injected into the tank contains not only the product of an ideal mixing 

operation of 2f and f, but also all of the attenuated odd-numbered harmonic components of the 

switch-controlling square wave.  However, due to the LC network at the node of the injecting 

signal, all of the higher-frequency components of the mixing operation are shorted to AC ground.  

Figure 2.6 illustrates the waveform discussed, without the detailed magnitude information. 
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Figure 2.6 The Mixing of Two Signals 

 

 It is clear that the mixed signal, at the bottom of Figure 2.6, contains more than one 

frequency component.  However the LC tank is tuned to the lower frequency component, 

selecting only the half-frequency of the 2f input. 

 Ultimately, a Tail-ILFD operates by mixing a signal of twice the desired locking-

frequency with the fundamental frequency of the oscillatory network, thus injecting a signal into 

the tank.  If the quality factor of this network is such that the impedance of it at the frequency of 

the injected signal is sufficiently high, then phase-locked oscillation at this injected frequency 

can be sustained indefinitely.  The phenomenon that controls the input magnitude required for 

“injection-locking” is explored in detail in Section 3.1, and a condition for locking is given that 

applies for both Tail and Quench-ILFDs. 

 

 2.1.2 “Quench” ILFDs 
 

Quench-ILFDs are based on the same block-diagram level architecture depicted in Figure 

2.1.  The main difference between the two is where the input signal is applied to the circuit.  
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Quench-ILFDs are so named because the mixing operation is done by “quenching” the output 

terminals, i.e. momentarily connecting them via low impedance, as shown in Figure 2.7 

 

 
Figure 2.7 Generic Quench-ILFD 

 

 In a Quench-ILFD, the mixing operation is performed directly at the output terminals of 

the circuit, implemented by connecting a FET between these two terminals and applying the 

input signal to its gate in Figure 2.7.  As the input signal drives the FET between states of triode 

and cutoff, the square-wave mixing signal appears on the Quench FET, MQ.  That is, a low 

voltage on MQ’s gate shorts M1’s drain to M2’s drain, which is a “multiply by zero.”  A high 

input voltage forces MQ into cutoff, which is a “multiply by one.”  Other than this main 

difference, the Quench and Tail-ILFDs operate through essentially the same mechanisms.    

 While the means of synchronization of frequencies due to injection is not obvious upon 

inspection of a Tail-ILFD, seen in Figure 2.2, the placement of the “injection FET” MQ offers 

some insight on how the injected signal, of roughly twice the frequency of the tank’s resonant 

frequency, controls the instantaneous frequency of the oscillator.  It also demonstrates the 

reduction in phase noise observed in all oscillators when they are injection-locked, including the 
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aforementioned Tail-ILFD.  To illustrate this, Figure 2.8 displays the time domain waveforms of 

a Quench-ILFD: 

 
Figure 2.8 Transient Synchronization Mechanism of Quench-ILFD 

 

 The voltages on the gate of Qinj and of the output oscillations are depicted on the right 

(not to scale).  The outputs are shorted together (thus forcing a “zero-crossing” of the oscillation 

waveform) when the voltage on the gate of the pFET Qinj is at its minimum value.  Controlling 

the output’s zero-crossings forces the oscillation frequency to be exactly half of Vin’s frequency 

and significantly reduces the jitter, relative to its free-running case.  The reduction of phase noise 

in injection locked oscillators is elaborated in Chapter 3. 

 

 2.1.3 Regenerative ILFDs 
 

Regenerative Frequency Dividers (RFDs) are similar in concept to the ILFDs discussed 

above, but differ in the fact that they do not have a free running oscillation. The block diagram of 

a Regenerative Frequency Divider is shown below: 
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Figure 2.9 Regenerative Frequency Divider Block Diagram  

 

Typical RFD implementations include the use of double-balanced mixers, followed 

directly by gain and filtering stages.  The lowpass filter (LPF) is needed to provide mixer 

feedback at the desired locking frequency.  It is important that the phase shift around the loop is 

an integer multiple of 2π, in order to satisfy the Barkhausen criterion of sustained oscillations.   

The Gilbert Cell and MOSFET switches are popular topologies used to implement IC 

mixers. The mixing products are then filtered in order to obtain the desired locking frequency, 

which is then amplified and fed back to the mixer.  In Figure 2.9 a lowpass filter is shown, 

although a bandpass LC tank may be considered to operate at higher frequency with less power, 

as is the case with ILFD designs.  In this way, regenerative frequency division can occur, so long 

as there is an input excitation.  Otherwise, free-running oscillations do not exist in an ideal RFD. 

 2.2 Low Noise Amplifiers 
 

The noise figure of a LNA is mainly dependent on its input impedance match with the 

signal source (usually an antenna or crystal-based BPF), its power gain, and the noise generated 

by the LNA circuitry.  As such, most LNA developments have emphasized improvements within 

these three categories.  Specifically, this thesis summarizes LNA prior art in three specific 

regimes: (i) Impedance Matching, ensuring that the source and the LNA input are of the same 

resistive impedance, (ii) gm-Boosting, or ways of increasing overall power gain, and (iii) Active 

Noise Cancelling (ANC) design, which employs the use of various circuit topologies that either 

fully or partially cancel the noise of the LNA itself. 
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 2.2.1 Impedance Matching Techniques 
 

Researched impedance-matching techniques are either wideband designs, which use 

resistive and active components, or narrowband designs, which use reactive components.  Three 

wideband impedance matching designs are presented here: (i) Resistive termination matching, 

(ii) Source termination matching, and (iii) Shunt-Shunt resistive feedback matching.  

 Wideband Designs 

 Resistive termination 

 

Resistive termination is the most straightforward approach to matching the LNA’s input 

to any arbitrary source impedance.  Observe the following figure, which demonstrates how this is 

accomplished: 

 

 
Figure 2.10 Resistive Input Termination 

 

In the figure above, the signal source is shown on the left of the dashed line.  It has 

internal impedance described by Rsource, which is usually 50Ω in standard RF communication 

hardware.  Matching is accomplished by connecting a resistance equal to Rsource between ground 

and gate of M1, through the use of a low-impedance reactance.  Note that this is purely an AC 

connection, as the DC-blocking capacitor prevents the resistive termination from affecting the 
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bias points of the devices.  The input to the LNA is on the right of the dashed line, and “looking” 

into the LNA’s input reveals an impedance of: 

     (2.6) 

Typically, the reactance due to the coupling capacitor in series with the gate and overlap 

capacitances of the amplifying transistor (M1, here) is very high, since minimally sized 

transistors are used for high-frequency operation.  Of course, the coupling capacitor adds very 

little reactance at high frequencies, by design.  So, if: 

        (2.7) 

Then the input impedance of the LNA is approximately: 

     (2.8) 

leading to a matching of the impedances between the signal source and the LNA.  However, this 

approach remains a last approach among RF design engineers, as it has a detrimental effect on 

the noise figure of the system.  Observe the following figure, which is a noise model of a simple 

wideband, single-transistor LNA employing resistive input matching: 

 

 
Figure 2.11 LNA Employing Resistive Input Termination 
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To analyze the noise figure of this topology, it is useful to replace the noisy components 

in the schematic with their appropriate noise models.  Figure 2.12 below represents the models 

used for the thermal (or “Johnson”) noise generated by any resistance R, and the thermal noise 

produced by a FET (of negligible source/drain impedance, high output impedance ro, and 

ignoring flicker noise at high-frequency): 

 

 
Figure 2.12  Simplified Noise Models for Resistance and MOSFET 

 

 As can be seen from Figure 2.12, the dominant noise source in a MOSFET at high 

frequencies is the thermal noise produced by the non-zero channel impedance, determined at the 

quiescent point of the transistor.  This current spectral density is given as: 

     (2.9) 

which is given in units of A2/Hz.  The (2/3) term is due to the pinch-off of the channel in the 

active mode of operation.  The dominant noise source of any given resistance R is Johnson noise, 

and the current spectral density is: 

     (2.10) 



20 

 

 

 

 

 When needed, the voltage spectral density of a resistance may be used.  The voltage 

spectral density, (vn,R)2, is expressed in Figure 2.12, and is equal to 4kTR.  By replacing the 

components in Figure 2.11 with the appropriate models, the effect of each noise source on the 

output SNR can be determined.  Figure 2.13 shows the overall noise model for the LNA: 

 

 
Figure 2.13 Simplified Noise Circuit of Resistive Termination LNA 

 

 To determine the Noise Figure for the circuit of Figure 2.11, the procedure is as follows: 

first, the output voltage (node Vout in the figure) that results from each noise current source is 

calculated.  Next, the corresponding output power of each source’s output voltage contribution is 

found using V2/Rload, where all of the output power terms share the same Rload value.  The total 

output noise power for the LNA is the sum of all these output power terms.  By dividing the total 

output noise power by the output noise power that arises due to the source impedance only (Rs), 

the NF of any LNA can be analyzed.  The noise figure can then be found from: 

    (2.11) 

 Firstly, the output noise power due only to the source is a consequence of the real part of 

the source impedance and is equal to:  

   (2.12) 
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where B is the effective bandwidth and G is the power gain of the LNA.  Next, the noise due to 

the resistive-termination resistor is considered.  Just like the signal source’s internal resistance, 

the noise presented by this resistor is amplified by the LNA and is: 

   (2.13) 

 As mentioned, the main source of noise in a FET device operating at a high frequency is 

due to the thermal noise in the induced channel, and gate noise is typically insignificant [14].  

The noise current power spectral density generated is approximated as: 

      (2.14)  

This energy is dissipated through the load Rload such that the output noise power within a 

bandwidth B due originating solely from the FET is: 

  (2.15) 

This noise appears directly at the output and therefore isn’t multiplied by the power gain of the 

LNA, G.  Lastly, the load resistor presents some noise power at the output node of: 

    (2.16) 

Solving (2.11) by substituting in terms of (2.12) - (2.16) gives an analytical result for the 

theoretical minimum noise figure for such an LNA: 

    (2.17) 

Expression (2.17) shows how a higher LNA power gain has a preferable effect on the noise 

figure, by minimizing the impact of noise due to the circuitry on the output SNR.  This equation 

also demonstrates the negative impact of resistive-termination impedance matching.  Introducing 

a resistive element at the input of the LNA in this fashion results in a minimum theoretical noise 

figure of 2, or 3 dB, since: 

  (2.18) 
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when (2.18) is expressed by its decibel equivalent, the NF becomes: 

    (2.19) 

This degradation of noise performance leaves much to be desired, and as expected more 

sophisticated topologies exist in order to eliminate this effect.  

What follows for the remainder of this chapter are summaries of very similar analyses of 

several different LNA topologies that fall into the regimes outlined in the beginning of section 

2.2 - not only for impedance matching LNAs, but for gm-boosting and ANC LNAs as well.  Note 

that some techniques improve performance in more than one regime.  Also, these analyses are 

first order approximations of circuit behavior, since different IC processes will have different 

strengths and weaknesses in terms of gate oxide capacitance, substrate leakage, FET output 

impedances, electron and hole mobility, among a host of other process-based characteristics.  

Lastly, noise-less capacitors, midband operation, and exclusive use of long-channel device noise 

models are assumed in these analyses. 

 Source Termination 

 

Source termination LNAs use an active device in order to set the input impedance, 

instead of a discrete resistor.  The following figure is a noise model of a simple source 

termination Common-Gate (CG) LNA:  
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Figure 2.14 Simplified Noise Circuit of Source Termination CG LNA 

 

Instead of simply placing a resistor of arbitrary value in shunt with the LNA’s input, 

source termination establishes the input impedance by means of a FET.  In this circuit, M1 is a 

current source, which biases M0, the amplifying transistor.  At midband, the impedance looking 

into the LNA can be expressed as: 

      (2.20) 

To obtain an impedance match, the transconductance of M0 is set to: 

    (2.21) 

in a 50 Ω communication system.  This is a limitation of this circuit – the maximum 

transconductance is set by the value of the source impedance.  Since the input FET is in a CG 

configuration, the midband gain is estimated as: 

     (2.22)  

 For this particular LNA topology, the noise originating from Rs yields an output noise 

power of kTBRsRL(gm,0)2.  Due to the impedance matching condition, Rs = (gm,0)-1, so the output 

noise power from Rs can be simplified as kTBRLgm,0. The output noise power contributions due to 
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the FETs can be estimated as kTB(2/3)RLgm,0 and kTB(2/3)RLgm,1 for M0 and M1, respectively.  The 

purely resistive load impedance contributes 4kTB of output noise power.  The expression for the 

noise figure of this circuit based on these terms is: 

     (2.23) 

 From (2.23), it can be seen that to optimize the noise performance for the LNA depicted 

in Figure 2.14, the transconductance of the tail FET M1 should be kept as low as possible, and 

the load resistor should be chosen such that RL >> (4/gm,0).  In the case where gm,1 approaches 

zero and RL approaches infinity, (2.23) yields a minimum theoretical noise figure of 5/3, or 2.2 

dB, for the simple source termination CG LNA topology. 

 Shunt-Shunt Resistive Feedback  

 

 Shunt-shunt resistive feedback LNAs use a feedback resistor RF to establish an input 

impedance based on the LNA’s closed-loop gain.  The following figure is a noise model for a 

simplified Shunt-Shunt feedback LNA: 

 

 
Figure 2.15 Simplified Noise Circuit of Shunt-Shunt Resistive Feedback LNA 

 



25 

 

 

 

 

 When analyzed using feedback theory (where A is open-loop gain and ß is the feedback 

factor), it can be seen that the input impedance looking info this LNA is estimated to be: 

    (2.24) 

However, for the feedback mechanism to properly work, the load impedance RL must be much 

larger than RF, so that the output current is diverted back to the LNA’s input node.  So, when    

RF << RL, (2.24) becomes: 

      (2.25) 

It can be seen from (2.25) that this LNA also uses the transconductance of the amplifying 

transistor to set the input impedance.  Due to the feedback mechanism, half of M0’s drain noise is 

cancelled, and the noise figure is: 

    (2.26) 

To obtain an optimal noise figure here, the transconductance of M0 should be matched to the 

inverse of the source impedance.  In additon to this, Rs, RF, and RL should be chosen such that: 

     (2.27) 

which, along with the impedance matching identity of Rs = (gm,0)-1, results in the same theoretical 

minimum noise figure as for the source termination CG LNA: 2.2 dB.  In [1], a shunt-shunt 

resistive feedback topology with a reduced NF of 1.7 dB (at 2.3 GHz) is realized through a 

technique of “noise cancellation.”  This topology, along with a cascode configuration (discussed 

later) and a tuned load, forms the basic topology for the PNC LNA studied in this thesis, 

discussed in Chapter 4. 

 

 Narrowband Designs 

 LC Matching Network 
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As many radios are designed for only one main frequency of operation, LC Matching 

Networks are often used to interface an LNA’s typically high impedance to a lower source 

impedance, around a single center frequency.  Ideally, these lossless components transform the 

input impedance to zero, at the resonant frequency of the LC network.  This intends to provide 

full power transfer to the input of the LNA via resonance, and by properly designing the Q of the 

overall network, which includes C, L, and Rs, significant voltage gain can be obtained between 

the signal source and vgs of the input FET, whose gate is in parallel with the capacitor of the 

matching network.  The noise figure of this type of LNA is ideally 1, or 0 dB.  In order to 

achieve such a low NF, the quality of the input RLC network at resonance must be very high, 

which depends on the quality of the inductor and the ratio of the capacitive reactance to Rs.  To 

explain this dependence, observe Figure 2.16, which shows a noise model of a simple LC-

matched common-source LNA. 

 

 
Figure 2.16 Simplified Noise Circuit of LNA employing LC Matching Network 

 

In the circuit of Figure 2.16, an inductor appears in series with the source impedance and 

resonates with a capacitance in parallel with the input FET’s gate, which represents M0’s 

parasitic capacitance and perhaps some explicit capacitance.  While the capacitor is assumed to 

be noiseless, the noise of the inductor is represented as a thermal noise voltage originating from 
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the parasitic resistance of the inductor, Rt.  Rt is the lumped resistance of the metal traces from 

which the inductor is fabricated, and at resonance is given as: 

      (2.28) 

For an inductor of infinite Q, the noise current approaches zero.  However, the resulting noise 

voltage vn,Rt is amplified to the output with the same gain as the noise from Rs.  Ideally, this 

voltage gain is inversely proportional to ωCRs, which is designed to be much less than one at ωo.  

The resulting NF for this LNA is: 

      (2.29) 

 In the case where ωoCRs approaches zero and Q approaches infinity, (2.29) yields a 

theoretical minimum NF of 0 dB.  In the case where ωoCRs approaches infinity, but Q is low 

enough that Rt is equal to Rs, the minimum theoretical NF becomes that of the resistive 

termination CS LNA: 3 dB.  As the parasitic resistance of the inductor increases, the NF further 

degrades, regardless of the LNA’s gain. 

 

  2.2.2 gm-Boosting Techniques 
 

Some gm-boosting circuits are based on topologies that optimize signal gain, while still 

matching the signal source impedance.  Two main types of gm-boosting exist: (i) device coupling 

designs, and (ii) tuned-circuit designs. 

 

 

 

 

 Device Coupling Designs 
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 Cascode Amplifier 

 

A common cure to the Miller capacitance that plagues Common-Source (CS) amplifiers 

is to use a cascode configuration.  A noise model of a simple cascode amplifier, with an LC input 

matching network, is shown in Figure 2.17.   The Miller capacitance of M0 (the input transistor) 

is now limited to: 

      (2.30) 

where CG,M0 is M0’s gate capacitance, and AV,M0 is the voltage gain from the gate of M0 to its 

drain.  In (2.30), the transconductances of M0 and M1 are assumed to be equal, which results in 

AV,M0 being equal to one.   

 

 
Figure 2.17 Simplified Noise Circuit of Cascode Amplifier 

 

The noise current in,M1 generated by M1 causes a voltage drop at its drain, the output 

terminal, of -in,M1RL.  The noise current is also injected into the source, and develops a source-

gate voltage of in,M1(1/gm,1), when ro,M0 is sufficiently large.  This voltage is amplified to the drain 

as in,M1(1/gm,1)gm,1RL, due to its common-gate (CG) configuration.  This effectively cancels the 

thermal noise current generated by M1.  The resulting noise figure for this LNA is: 
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  (2.31) 

It can be seen that the NF expressed for this LNA in (2.31) is identical to the NF of the 

LC impedance-matched CS LNA, whose NF is expressed in (2.29).  This is because the channel 

noise generated by M1 is cancelled, due to the cascode configuration.  In the case where ωoCRs 

approaches zero and Q approaches infinity, the theoretical NF for this LNA is 0 dB. 

This circuit is an important circuit technique because high-frequency receivers often 

suffer from the Miller effect, and rely upon the cascode configuration to implement amplifying 

stages.  Since the noise due to the cascode transistor M1 is cancelled completely when matched 

to M0, this technique can be used in a wide variety of designs.  

 

 Active Coupling 

 

Figure 2.18 depicts the noise model for a simple LNA employing the use of active coupling gm-

boosting [8]: 

 

 
Figure 2.18 Simplified Noise Circuit of Active Coupled LNA 



30 

 

 

 

 

This LNA matches the input impedance via the source termination mechanism, using M0, 

which is in common-gate (CG) configuration relative to Vs.  MT provides the bias current.  The 

input signal is also fed to the gate of M1, which is in a CS configuration.  It can be seen in the 

figure above an amplified and inverted version of the input signal appears on the gate of M0.  

When viewed from M1’s output, M0 is in a CS configuration as well.  Due to this active 

coupling, the effective transconductance of M0 becomes gm,0(1+gm,1/gm,B), while matching the 

impedances between the LNA and the signal source through M0.  Note that M1’s 

transconductance need not be equal to that of M0. 

The input impedance of this LNA is approximately 1/(2gm,0) when (gm,1/gm,B) is equal to 

one, due to the gm-boosting employed through FETs M1 and MB.  For impedance-matching, the 

transconductance of M0 is set so that 1/(2gm,0) = Rs.  This LNA has a gain of gm,0RL with respect 

to the source Vs.  Assuming gm,0Rs = (1/2) and gm,1 = gm,B, the noise figure for this particular LNA 

is expressed as: 

   (2.32) 

Due to the active coupling, the noise figure contribution due to the input FET M0 is only (1/3), 

whereas in non-gm-boosted applications source-termination results in NF contribution of (2/3).  

However, (2.32) also shows that the NF contributions of all the other noise sources (besides that 

of Rs) are double what they would be without the gm-boosting circuitry.  In the case where 

gm,0RL>>2 and gm,1 = gm,B, the minimum theoretical NF is 4/3, or 1.25 dB.  

 

 Reactive Designs 

 

 Common-Source Amplifier with Tuned Load  

 

A common technique to achieve high gain and high output voltage-swing, while 

decreasing the noise contribution due to the load impedance, is to use a tank circuit as the load in 

a CS amplifier.  As seen above, noise contributions due to capacitors and inductors (of high Q) 
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are negligible when compared to contributions due to resistors and active devices.  Not only this, 

but since the impedance of an ideal inductor is 0Ω at dc, no biasing voltage is dropped over the 

tank circuit.  Because a high quality tank stores its own energy, in the form of electric and 

magnetic field oscillations, the output voltage is actually able to swing higher than the supply 

voltage, without distorting the signal. Also, the tank is lossless, as there is no power lost to heat 

by these reactive devices.  Indeed, using a tuned load is a wise approach to the design of any 

narrowband LNA.  The noise model for a simple CS tuned load LNA is shown below: 

 

 
Figure 2.19 Simplified Noise Circuit of CS Tuned Load LNA\ 

 

In the circuit of Figure 2.19, LM and CM implement the impedance matching.  LT and CT 

compose the tank load.  In the tank load, the noise current is attributed to the parallel equivalent 

resistance of the inductor LT, where: 

      (2.34) 

The noise contribution due to (2.34) is inversely proportional to (QT)2, whereas the noise 

contribution due to a resistive load has an effective Q of one.  The noise figure for this LNA can 

be expressed as: 

       (2.35) 



32 

 

 

 

 

The last term in (2.35) is due to the tuned load circuitry.  As the quality factor of LT increases, 

less noise voltage is generated, which is approximated as √(4kTBωoLT (QT)-1).  The (ωoCMRS + 

1/QM) term in the expression of (2.35) is the inverse of the quality factor of the input RLC 

network, and is designed to be much less than one at ωo.  This, along with assuming an infinite 

quality factors QM and QT, implies a theoretical minimum noise figure for this LNA of 0 dB at an 

input frequency of ωo, regardless of the transconductance of M0.  This is because of the high gain 

associated with this type of reactive matching network, as well as the low-noise load.  However, 

using a large transconductance value for the FETs M0 and M1 can further optimize the noise 

figure of this LNA in the case of finite Q factors. 

 

 Source-Inductor (S-L) Amplifier 

 

 The S-L amplifier is a heavily researched LNA, and is a great choice for narrowband 

receivers.  It uses an inductor to resonate with the capacitance of an input FET, by placing the 

inductor in its source terminal.  And by selecting the proper gm for the FET, a real input 

impedance of arbitrary value can be generated.  To understand this, refer to the following figure: 

 

 
Figure 2.20 Input Impedance of FET with Source Inductance 

 

 For the network illustrated in Figure 2.20, it can be shown that Zin, which is the complex 

impedance between the gate terminal and ground, is: 
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     (2.36) 

Choosing an inductance value that resonates with the gate-source capacitance of the input FET 

sets the imaginary part of (2.36) equal to zero.  Then, Zin becomes: 

            (2.37) 

which is a real value, implying resistive-only impedance at the LNA’s operating frequency.  

Properly biasing the FET allows for matching to any arbitrary source resistance, through the 

control of its transconductance in conjunction with its aspect ratio that sets Cgs, and hence L. 

 The source-inductor technique for impedance matching, along with a tuned load 

impedance, can be used to implement a narrowband LNA with an impressive theoretical-

minimum noise figure.  The S-L LNA is a reliable topology that offers NFs as low as 1.2 dB [9].  

Figure 2.21 shows the noise model for a simple S-L LNA. 

 

 
Figure 2.21 Simplified Noise Circuit of S-L LNA 
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 A brief description of the noise cancelling mechanisms introduced by the source 

inductance is offered here:  the inductor Ls, resonating with the internal gate-source capacitance 

in M0, creates a high-impedance node at M0’s source terminal for signals of high frequency.  

Noise generated by M0’s channel can be modeled as thermal noise current being injected into the 

source terminal, coming out of the drain terminal.  The high impedance at the source node 

established by Ls in parallel with Cgs causes the ac current to be dropped across the capacitance 

Cgs of the FET M0.  This causes a negative ac voltage drop across its gate-source junction, which 

in turn causes a decrease in the ac drain current, gm0vgs0.  In this fashion, noise voltage (due 

exclusively to M0 channel noise) at the drain of M0 is effectively cancelled.  This technique is 

essentially a narrowband implementation of source degeneration. 

 The noise figure for this LNA is: 

  (2.38) 

 Observation of (2.38) implies that the noise figure has a dependence on the inverse 

square of the quality factors of the resonant circuits.  In the case where QS approaches infinity, 

the added NF contribution is proportional to (ωoCgsRs)2, which is the inverse of the quality factor 

of the input RLC network.  However, this NF contribution is also proportional to 2/((gm,0)2Rs), an 

artifact of the fact that the LNA now presents a voltage divider of one half at its input.  The 

choice of gm0 is dependent on the value of Rs, and must be sized appropriately for a proper match 

with the signal source to have the NF of (2.38).  Later, in Chapter 4, the theory of operation and 

NF analysis for this LNA are further detailed.  Also, expressions for voltage gain, Q-based input 

and output impedances, and maximum input power levels are derived. 

 

 2.2.3 Active Noise Cancelling Techniques 
 

Active Noise Cancelling LNAs minimize the noise figure by actively cancelling the noise 

generated by the FETs in the circuit itself.  Often, these noise-cancelling architectures also 

perform impedance matching or gm-boosting.  The two ANC LNAs presented in this document 
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are the (i) Common Gate – Common Source (CG-CS) LNA [6], and the (ii) Cross-Coupled (CC) 

LNA [14]. 

 Common Gate – Common Source (CG-CS) LNA 

 

To understand the operation of a CG-CS LNA, refer to the following figure, which is a 

noise model of a simple CG-CS LNA: 

 

 
Figure 2.22 Simplified Noise Circuit CG-CS LNA 

 

 In the circuit of Figure 2.22, M0 establishes the input impedance as (gm0)-1, due to its 

source termination configuration.  The output impedance of the tail FET MT, as well as the 

reactance due to the gate of M1, appear in parallel with (gm0)-1, but are assumed to be of such 

high value that they are negligible when calculating the LNA’s input impedance.   

 Single-ended to differential conversion is achieved by ac coupling the input signal, which 

is originally fed into the source terminal of M0, to the gate of M1, which is in a CS amplifier 
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configuration.  Conversely, M0 is in a CG configuration.  If gm0 = gm1 and RL0 = RL1, then the 

output (taken differentially between the drains of M0 and M1) voltage due to some Vs is: 

     (2.39) 

And the voltage gain is: 

         (2.40) 

 In addition to single-ended-to-differential signal conversion, M0’s channel noise is fully 

cancelled.  M0’s thermal noise current is injected out of the drain terminal (causing a negative 

voltage drop at the positive output terminal) and into the source terminal.  This current injection 

to the input node of the LNA is amplified to the drain of M0, as a positive voltage.  When 

components are selected properly, the voltage at the drain due to the current injection into its 

source cancels one half of the noise voltage.  The voltage at the positive output terminal due to 

these mechanisms results in: 

  (2.41) 

 The other half of the noise voltage due to M0 is cancelled using M1.  The aforementioned 

source voltage at the LNA’s input due to the channel noise of M0 is also amplified by M1, and 

appears at the negative output terminal.  The voltage at the drain of M1 due to the thermal noise 

of M0 is: 

    (2.42) 

when perfect matching is assumed.  Since the output is taken differentially, the total output noise 

voltage due to the channel noise of M0 becomes: 

   (2.43) 

which implies full noise-cancellation of the thermal noise induced in the channel of M0.  For the 

full amplifier, only partial noise cancellation takes place, since M1 has no similar feedback 

mechanism. 

The noise figure for this LNA is: 
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    (2.44) 

 The factor of ⅔ is due to the non-cancelled noise of M1, which is matched to the FET 

providing the source-termination, M0.  From inspection of (2.44), an approach to minimizing the 

noise figure of this particular LNA would be to minimize the transconductance of the tail FET, 

MT.  The minimum theoretical NF produced by (2.44) is 2.2 dB.   

 Cross-Coupled (CC) LNA 

 

The CC LNA is a fully differential common-gate amplifier that uses cross-coupling 

between a pair of amplifying transistors to fully cancel their thermal noise contributions.  The 

coupling is done between the gate of one FET in the differential pair, and the source of the other.  

Figure 2.23 shows a noise model of a simple CC LNA, adapted from the capacitor cross-coupled 

common-gate LNA of [14]: 

 
Figure 2.23 Simplified Noise Circuit CC LNA 



38 

 

 

 

 

 Similar to the situation for the CG-CS LNA, half of the channel noise due to M0 is 

cancelled due to its source-termination/common-gate configuration.  The other half is cancelled 

by inverting and amplifying the noise voltage at the source of M0, using M1 in a common-source 

configuration, and then taking the output differentially.  This is achieved using the cross-

coupling capacitors C0 and C1, which act as bypass capacitors.  M1’s configuration mirrors that 

of M0, and its contribution to the output noise voltage is cancelled in an identical manner.  Also, 

by providing an ac ground at the gate of the current sourcing FETs MB,0 and MB,1, the thermal 

noise contribution of RB will not appear at the output. In this first-order anlaysis, the only noise 

sources that remain in this circuit are the source impedance Rs, the channel noise of the current 

source FETs, and the load impedances RL0 and RL1.  Assuming ideal matching between 

components, the noise figure for this LNA is expressed as: 

     (2.45) 

 When gm,0RL0 >> 1, the dominant noise sources in this LNA are the current sourcing 

FETs, MB,0 and MB,1.  Therefore, minimizing the ratio of their transconductance to that of the 

amplifying FETs optimizes the NF of (2.45).  In the case where they are equal, the minimum 

theoretical NF is 3.67 dB.  Therefore, the noise performance of this LNA would improve by fully 

or partially cancelling the noise due to these transistors.  One method of decreasing the NF of 

(2.45) is to replace MB,0 and MB,1 with inductors that appear as high-impedance nodes at the 

operating frequencies, which is employed in [14].  Then the noise power contribution of the 

current source inductors becomes inversely proportional to the square of their quality factors, 

which are typically much greater than one.  In [14], a NF of 2.97 dB at 6 GHz is reported. 

 Differential Partial Noise Cancelling LNA 

 

 This thesis documents the analysis, design, and simulation of a narrowband Partial Noise 

Cancelling (PNC) LNA.  Adapted originally from the wideband implementation of [1], this PNC 

LNA uses NFET/PFET composite pairs and multiple-feedback paths in order to largely cancel 
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noise contributions from all the FETs in the circuit.  The schematic for the PNC LNA designed 

and simulated in this thesis is shown in Figure 2.24. 

 

 
Figure 2.24 Schematic of narrowband PNC LNA 

 

 For the PNC LNA of Figure 2.24, the input FETs MN,0 and MN,1 are a differential pair of 

common-source configuration that each employ shunt-shunt feedback using resistors RF,0 and 

RF,1, as well as source-degeneration, via the pFETs MP,0 and MP,1.  When the transconductances 

of all FETs are equal, half of the thermal noise contribution due to each nFET is cancelled 

because of the source-degeneration impedance of (1/gm).  The other half is cancelled by cross-

coupling the gates of the nFETs, which are provided output feedback, to the gates of the pFETs, 

which are in common-drain configurations.  When all transconductances are equal, the voltage 

on the source of each pFET is half of its gate voltage.  Using the corresponding nFET, which 

now appears as a CG amplifier to the signal at the pFET’s source, the other half of the input 
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nFET’s thermal noise is cancelled, since the output is taken differentially.  However, since there 

is feedback back to the half-circuit from which the noise is generated, a small portion of the 

noise remains, hence the “partial” noise cancellation.  The noise is due to the pFETs is partially 

cancelled in a similar manner.  The reactive components compose a bandpass filter at the output 

that provide resonance at the frequency of operation and reject out-of-band signals.  For proper 

operation, the parallel-equivalent impedance of the output filter should be much greater than RF, 

in order for the current feedback mechanism to function.  When the feedback resistance RF is 

much greater than Rs, the minimum theoretical NF for the LNA of Figure 2.24 is .03 dB.  The 

theory of operation, including NF analysis, is detailed in Chapter 4.   For this PNC LNA, 

simulations report a NF of 1.76 dB while consuming 15 mW of dc power from a 1.8V supply. 

 2.3 LNA Large-Signal Performance 
 

While noise figure is one of the most important figures of merit for an LNA, good 

receiver performance is also contingent on proper “large-signal” processing capabilities.  “Large-

signal” refers to received signals of sufficient power to cause the LNA circuitry to approach 

“compression” of the output signal.  “Compression” refers to a decrease in the LNA power gain, 

which can directly lead to amplitude distortion and intermodulation distortion [15].  The metrics 

by which large-signal performance is characterized are based upon (i) the input power level that 

causes compression of the output, (ii) its “1dB Dynamic Range” (1dBDR), and lastly (iii) the 3rd 

Order Input and Output Intercept Points (IIP3 and OIP3).  

 

 2.3.1 Compression of LNAs 
 

Due to real-world limitations set by power consumption and small-signal gain, the power 

gain of a LNA does not stay linear at large input power levels.  As input power increases, the 

gain vs. input power of a LNA “rolls off” and significantly deviates from its ideally constant 

value.  This phenomenon is known as “compression”, and results from non-linear responses of 

the active devices along the signal path.   
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There are two main points where compression is possible.  The first is the LNA’s input 

node, where a strong enough signal can cause amplifying transistors to operate outside of their 

active regions, and at the output node, where the voltage can attempt to exceed the power supply 

voltage, or drop low enough to move the transistor out of the active region and into triode 

behavior.  In both cases, amplitude distortion occurs.  Figure 2.25 illustrates how these 

mechanisms affect LNA signal processing: 

 

 
Figure 2.25 Input-Referred and Output-Referred Compression 

 

Figure 2.25 above illustrates the ways compression can occur, at either the input or the 

output of the LNA.  The peak voltage of the signal at the gate of the FET can’t be greater than 

the overdrive voltage, or the device will enter cutoff.  Therefore, for distortionless amplification, 

the input signal voltage is limited to:    

      (2.46) 

At input voltage levels above (2.46), compression at the input of the LNA occurs. 
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At the output, the signal voltage is limited by the supply voltage.  For the LNA of Figure 

2.25, the maximum distortionless output voltage is approximately: 

     (2.47) 

So that the maximum output power without causing the LNA to compress is: 

      (2.48) 

 The power levels at which compression causes the LNA gain to fall by 1 dB is referred to 

as Pc,i and Pc,o:  the input and output 1 dB compression point, respectively.  Pc,o is typically some 

fraction of the dc power consumption, between 0.01 and 0.5.   

Compression due to these mechanisms can also occur because of out-of-band signals.  In-

band signals are of the same frequency as the operating frequency of a LNA, and out-of-band 

signals are of frequencies that are not within the passband of a narrowband LNA.  For a 

wideband LNA, out-of-band signals refer to signals outside of the receiver’s operating channel 

bandwidth.  Proper LNA design requires that out-of-band compression point be insignificant 

when compared to the input compression point, which is attainable through proper filtering 

throughout the receiver frontend. 

 

 2.3.2 One-dB Dynamic Range 
 

The 1dBDR of an LNA is the range of input signal power levels that experience less than 

1 dB of compression while remaining above the sensitivity level, or noise floor.  Mathematically, 

it is the difference between the “Sensitivity” power level and the input-referred 1 dB 

compression point, Pc,i.  The sensitivity of a radio receiver refers to the lowest possible input 

power level that can be demodulated by the receiver in a reasonably error-free manner.  In dBm, 

the sensitivity of a receiver system in a room temperature environment can be written 

mathematically as: 

   (2.49) 
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where B is the bandwidth of the received signal, NF is the noise figure of the receiver system in 

dB, C/Nmin is the minimum signal-to-noise ratio required by the demodulator, and -174 dBm 

represents the noise floor that exists at standard operating temperature, 290 ºK.  The expression 

in (2.46) represents the “input-referred noise floor” of the overall receiver system, which is 

useful in determining the 1dBDR.  The 1dBDR is: 

    (2.50) 

 2.3.3 Third Order Input and Output Intercept Points 
 

The IIP3 and OIP3 describe the input and output signal power levels where the distortion caused 

by spurious intermodulator emissions, a.k.a. IM products, are equal to the power level of the 

originally desired signal.  This causes significant distortion that is a problem in places with very 

active spectrum environments, such as suburban locations.  Typically, the IIP3 and OIP3 are 10 

to 15 dB above the Pc,i and Pc,o, respectively. 
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Chapter 3 -  Frequency Dividers 

 3.1 Detailed Theory of Operation 

 3.1.1 Injection Locked Frequency Dividers 
 

As explained in Chapter 2, ILFDs operate by synchronizing an oscillator to half the 

frequency of an injected signal.  “Halving” the frequency of the injected signal is accomplished 

by mixing it with the output of the oscillator, and is described in detail in Section 2.1.  This 

section details the conditions for locking and summarizes the reduction in oscillator phase noise 

relative to the free-running oscillator’s noise spectrum. 

 Injection Locking 

 

Injection locking works by changing the oscillation frequency of an already free-running 

oscillator by injecting signal energy directly into the resonator.  The “free-running frequency” of 

the oscillator is denoted as ωo, and for a tank circuit is given as: 

      (3.1) 

Under certain conditions, the output of the oscillator can become synchronized, in 

frequency and phase, to the injected signal.  When this happens, “locking” between the injected 

signal and the oscillator’s output signal is said to have occurred.  In order to explain this 

phenomenon, the derivation of the condition required for synchronization will be summarized, as 

adapted from the 1946 publication “A Study of Locking Phenomena in Oscillators” by Robert 

Adler [11]. 

An oscillator with a tuned load can be modeled as a tank circuit (composed of an 

inductor, capacitor, and an equivalent parallel resistance based on the quality factor of the 

inductor) in parallel with a negative admittance.  Figure 3.1 shows a generic schematic of such a 

model.  The effective quality factor Q of the full circuit is infinite, since any loss in power due to 

Rp is added back into the tank by the negative admittance, thus sustaining resonance indefinitely. 
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Figure 3.1 Model of Active Oscillator (after Adler) 

 

 If a current signal of frequency ωinj is injected into the tank circuit, the voltage that 

develops due to the injection is the instantaneous output signal (of frequency ω) frequency-

modulated with the arising beat note, Δω, as long as the following condition holds true: 

          (3.2) 

 where QL is the quality factor of the inductor in its passive state.  The beat notes Δω and Δωo are 

defined as: 

         (3.3) 

         (3.4) 

The condition of (3.2) implies that the injected signal should be close to the free-running 

oscillation frequency, and that a smaller value of QL corresponds to a wider locking range.  

Expressions (3.3) and (3.4) represent the frequencies of the beat notes that arise when an 

oscillator undergoing injecting is not yet locked.  Expression (3.4) represents the situation where 

the instantaneous frequency of oscillation is the free-running frequency.  According to [11], the 

spectrum of a non-synchronized oscillator undergoing injections contains ωo and ωinj, which 

produce the beat frequency of (3.4).  Adler also reports that in reality, a lower average beat note 

is observed, such that the frequency of oscillation over one cycle shifts toward ωinj.  Lastly, 

Adler writes “we may think of ω as of a signal which is frequency modulated with the beat note 

Δω…” and also gives a phasor diagram used to represent phase and frequency of the 
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instantaneous beat note of (3.3) relative to the instantaneous output oscillation of frequency ω, 

and the injection signal of frequency ωinj, which is shown in Figure 3.2.  Any vector at rest 

represents a signal of frequency ωinj.  Relative to ωinj, any rotating vector represents the angular 

beat frequency of (3.3). 

 

 
Figure 3.2 Phasor Diagram of Output Signal and Injection Signal (after Adler) 

 

For the case where: 

      (3.5) 

the phase difference at any given time between the injection signal and the oscillator’s output 

may be approximated as: 

     (3.6) 

In [11], Adler explains that the oscillation voltage Vout, which is fed back into the mixer 

of Figure 2.2, is out of phase with the injection signal Vinj, and concludes that the instantaneous 

oscillation frequency exceeds ωo “by an amount which will produce a lag equal to ϕ” relative to 

ωo.  Therefore, for a synchronized oscillator, the steady-state oscillation frequency is out of 

phase with the injection signal by a constant value that is dependent on the phase versus 

frequency relationship of a given resonator.  Based on the phase versus frequency characteristic 
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of an LC tank circuit, Figure 3.3 is a plot of the phase difference between the injection signal and 

the steady-state oscillations versus the frequency of the injection signal.  Using the linear portion 

of this curve, Adler derives the conditions necessary for injection locking. 

 

 
Figure 3.3 Phase between Input and Output Signals vs Injection Frequency (after Adler) 

 

The curve in the plot of Figure 3.3 is centered on the fundamental frequency of the tank 

circuit, ωo.  For frequencies that are in the linear region of the above curve, the following term is 

defined [11]: 

     (3.7) 

so that: 

      (3.8) 

which is equivalent to: 

      (3.9) 

Setting the expressions (3.6) and (3.9) equal to one another, and replacing Δω with ∂α/∂t, 

yields: 
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    (3.10) 

which is then rearranged for: 

     (3.11) 

where B, defined by [11] as the speed of the pull-in process, is: 

B = (Vinj / Vout)A-1………(3.12) 

 Using Figure 3.2 as a reference, it can be seen that locking between the oscillator’s output 

and the injected signal will occur when the phase angle between their two corresponding vectors 

is a constant.  Or, locking is contingent upon: 

      (3.13) 

Setting (3.12) equal to (3.13), and substituting A with ∂ϕ/Δωo (where ∂ϕ ≈ 2Q(Δωo/ωo) 

for a tank circuit and small values of ϕ), reveals: 

     (3.14) 

and since sin(α) only assumes values between -1 and +1, the condition for locking is limited to: 

         (3.15) 

which, solved for the ratio of the injected signal to the oscillation voltage, becomes: 

      (3.16) 

The expression of (3.16) gives the locking condition, in terms of injection voltage to output 

oscillation voltage, for an oscillator with an LC tuned load.   

Reduction of Phase Noise 

 

The phase noise of an oscillator is mitigated when under the conditions of injection 

locking to a low-noise source.  Based on the works of [12], the effects on phase noise due to 

injection locking are summarized here. 
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  The following model is used to analyze the phase noise of oscillator, under the 

conditions of an injected current at a “near-resonance”:  

 
Figure 3.4 Model for Oscillator Phase Noise under Injection Locking (after Razavi) 

 

In Figure 3.4, Iinj is the magnitude of the injected current, and In is the instantaneous 

thermal noise current of both the active device providing the negative admittance, and the noise 

generated in the tank circuit.  Therefore, In represents the total amount of thermal noise current at 

the output of the oscillator. 

As stated in the preceding section, the net Q of the oscillator is effectively infinite at its 

resonant frequency.  This is because the power losses in Rp are cancelled out by the power 

generated by the negative resistance circuitry.  According to [12], when no injection current is 

applied to the oscillator, the impedance of the tank circuit becomes the following function of 

frequency: 

     (3.17)

(3.17) dictates the noise-shape of the oscillator when no injection signal is applied, and reveals 

that the output voltage due to the broadband noise current reaches a maximum at ωo, the resonant 

frequency of the tank circuit. 

 When a signal is injected at a frequency of ωo and of peak current Iinj, [12] reports that 

the magnitude of the negative admittance’s transconductance can be expressed as: 

     (3.18) 
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where Venv, equal to Iout,pkRp, represents the “envelope” of the output oscillations that arise due to 

the mixing process explained in the preceding section.  Rearranging (3.18) reveals that the 

effective transconductance of the tank circuit is now: 

    (3.19) 

which is the inverse of the impedance of the tank under the condition of an applied injection 

signal: 

     (3.20) 

Replacing Venv of expression (3.20) with Iout,pkRp gives the following expression of the tank’s 

impedance exclusively for signals within the locking bandwidth: 

     (3.21) 

 For frequencies that are within the locking range of an oscillator, the noise shape is no 

longer represented by the expression of (3.17), which reaches a maximum at the resonant 

frequency ωo, but instead is established by the effective tank impedance, expressed in (3.20) and 

(3.21).  If ωinj falls outside of the locking bandwidth, the oscillator enters free-run operation, and 

the noise profile is dominated by (3.17).  The following figure compares the phase noise when 

operating in the free-run mode and in injection-locked mode for a generic oscillator.  Note the 

influence of a noisy injection source, representing a practical ILFD. 

 

 
Figure 3.5 Oscillator Phase Noise in Free-Run and Injection-Locked Mode (after Razavi) 
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 3.1.2 Regenerative Frequency Dividers 
 

Regenerative frequency dividers are overviewed in Chapter 2.  Figure 2.11 displays the 

block diagram of an ideal RFD consisting of a mixer, low pass filter (LPF), and an amplifier.  A 

signal is injected into one terminal of the mixer, while a feedback loop consisting of an amplifier 

followed by a LPF drive the other input.  The LPF provides the frequency selectivity and must 

not attenuate at frequencies that are roughly half of the frequency of the injected signal.  In 

addition to satisfying the Barkhausen criterion for oscillation, the filter’s phase must be such that 

feedback is in-phase.  This positive feedback to the amplifier causes it to oscillate when an 

injected signal is applied, but only frequencies within the passband of the filter are sustained.  As 

noted in Chapter 2, a bandpass filter (that introduces no phase shift) can also be used, especially 

at higher frequencies to save power.  Since the filter’s passband is “centered” around half the 

injected frequency, only these spectral elements can appear at the filter’s output, which is then 

mixed with the injected signal.  Because an ideal mixer provides an output signal whose 

frequency is the sum and different of the two input signals, its output will consists of the 

following frequencies: 

      (3.17) 

And due to the LPF (or BPF), only ω - ω/2 survives.  In this manner, an RFD is able to lock and 

halve the frequency of any arbitrary injection signal. 

 3.2  CMOS Frequency Divider Implementations 

 3.2.1 Injection Locked Frequency Dividers 
 

In order to directly compare the performance of a Tail-ILFD to a Quench-ILFD, a single 

oscillator circuit was used to implement both.  The oscillator consisted of a cross-coupled 

negative-resistance oscillator with a tank circuit load.  A schematic representing both 

implementations, using the same core oscillator circuitry, is shown in Figure 3.6. Applying the 

input signal to one injection FET and not the other enables one to compare their performance 



52 

 

 

 

 

under the same bias conditions and load.  When testing with Vin,T, Vin,Q is held high to keep MQ 

in cutoff. 

 
Figure 3.6 Schematic of Tail and Quench-ILFDs using Cadence ICFB 

 Tail Injection Mode Operation 

 

To implement the Tail-ILFD of Figure 3.6, the injected signal is applied to the gate of MT 

through a coupling capacitor, and appears via MT’s transconductance at the source nodes of M2 

and M3 as a current of: 

          (3.22) 

Note that v indicates the instantaneous value of a sinusoidal term.  Here, vin,T is the 

injected signal at roughly twice the tank’s fundamental frequency, as explained in section 2.1.1.  

FETs M2, M3, and MT operate as a single-balanced mixer while L1, L2, and the net tank 

capacitance, suppressing the pre-divided injected signal at the mixer’s output.  The mixer’s 

output terminals are the drains of M2 and M3, where the signal here results from superposition of 

the tank’s fundamental oscillations and the voltage drop occurring from the injected current of 
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(3.22) into the tuned load.  For injected current frequencies that satisfy (3.2), the half-circuit 

impedance of the load can be expressed as: 

    (3.23) 

which results in: 

           (3.24) 

Vinj is the instantaneous voltage that is injected into the resonant circuit, as described in Figure 

2.2.  The frequency finj (in Hz) is the frequency of the input signal. When the conditions for 

locking set by (3.16) are met, the tank oscillates at exactly half the frequency of the injected 

signal source.   

 Quench Injection Locked Operation 

 

The Quench FET MQ of Figure 3.6 is placed in between the output terminals, and its gate 

is driven by the injection signal.  In Quench operation, the injected signal is mixed directly with 

the drains of M2 and M3, by switching the impedance of MQ between ~0Ω and ~ ∞Ω at a 

frequency that 2ωo, where ωo is the fundamental frequency of the tuned load.  When on, MQ 

operates in the triode region, and has a transient impedance of:  

    (3.25) 

 For this type of Quench ILFD, [16] reports the locking range as: 

      (3.26) 

where C is the total tank capacitance, and is re-expressed in terms of the quality factor of the 

tank circuit [16]: 

      (3.27) 

where Idc is the dc current consumption.  Lastly, [16] reports the following lock-in condition: 

     (3.28) 
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where L is the tank inductance and a2 is the second-order coefficient of a third-order nonlinear 

function describing the frequency response of the filter.   

 In the Quench mode of operation, (3.28) expresses the minimum injection signal voltage 

that will result in synchronization of the oscillator, for frequencies within the locking.  Again, 

when the conditions for locking set by (3.16) are met, the tank oscillates at exactly half the 

frequency of the injected signal source.   

 

Figure 3.7 shows the full circuit that was fabricated and measured. 

 

 
Figure 3.7 Schematic of Tail and Quench-ILFDs 

 

 The differential outputs connect to buffers, and only one buffer’s output is available.  

This is sufficient in measuring the tank’s output oscillation frequency while a high-frequency 

injection signal is applied to either MT or MQ.  The layout is shown in Figure 3.8, annotated to 

show where probes make contact in order to carry out measurements.  The three horizontal 

contacts that are labeled “Tail Site” and “Quench Site” are Ground-Signal-Ground (GSG) pads 
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and are used to apply ac signals to the gates of MT and MQ, respectively.  The contact labeled 

“Bias Voltage Input” enables the control of overall power consumption of the core oscillator 

circuitry by changing the dc current through MT, which also serves at the current supply for the 

oscillator core.  This control mechanism is seen in Figure 3.7 – the bias voltage is applied to the 

current mirror that biases MT’s drain current.  At nominal operation (i.e. Bias Voltage Input pin 

floating), the consumed dc power is 2.28 mW.  The supply voltage VDD is 1.8 V and the 

oscillator core bias current Idc is 1.27mA. 

 

 
Figure 3.8 Tail and Quench-ILFD CMOS Layout Implementations 
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 3.2.2 Regenerative Frequency Divider 
 

To implement a low-power RFD, a Gilbert Cell mixer with a tuned load was chosen.  

Figure 3.9 is a simplified schematic representation of the implemented RFD. 

 

 
Figure 3.9 Implemented RFD Schematic 

 

The circuit implements the block diagram of an RFD described in Figure 2.11.  In the 

circuit of Figure 3.9, M6 provides the dc current that drives the Gilbert Cell mixer implemented 

by FETs M0 through M5.  FETs M4 and M5 are driven by a voltage source of twice the desired 

output frequency, which is mixed with the output tank oscillations.  FETs M0 through M3 

implement the other input of the mixer represented in Figure 2.11, and are provided feedback by 

connecting the gates of M1,2 and M0,3 to the negative output terminal and positive output 

terminal, respectively.  Essentially, FETs M0 through M3 cause the transient gain seen by the Vin 
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input terminals to switch between ±Av, at a frequency dictated by the instantaneous output 

voltage of the oscillator.  The magnitude of Av is dependent on the frequency of the input signal 

fin, and is equal to: 

 

     (3.28) 

 

A visualization of Av through time provides a more intuitive understanding of the mixing and 

amplification within the Gilbert Cell mixer architecture.  Observe Figure 3.10: 

 

 
Figure 3.10 Transient Switching of Gain in Gilbert Cell Mixer  

 

Lastly, the tuned load (consisting of L0, L1, and Cp) implements the filter of Figure 2.11.  

No explicit tank capacitance is used.  Instead the inherent capacitances of the devices are 

employed to provide the needed tank capacitor.  Cp is twice the parasitic capacitance at each 

output terminal Cp,out(+) and Cp,out(-), and for this schematic can be estimated as: 

  (3.29) 

Using standard estimations for the terms in (3.29) yields: 
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  (3.30) 

Where Nfingers and (W*L) is the same for all of the FETs represented in (3.30).  Substituting the 

terms in (3.29) with the device geometries results in: 

    3.31) 

Figures 3.11 and 3.12 show the schematic view and layout view of the RFD as 

implemented in the CMOS process, respectively.  The GSG pads that drive M4 and M5 appear at 

the right and left sides of Figure 3.11, and are both aligned vertically. 

 
Figure 3.11 Schematic of RFD Implemented in ICFB 

 

 In order to measure the frequency of oscillation, a direction coupler was connected 

between the power supply and the node labeled “VDD” in Figure 3.11, and the output signal was 

viewed using a spectrum analyzer.  Using a signal generator to feed the input with an arbitrary 

input power level and varying the frequency, the locking range is directly observed.  When 
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synchronized, the output spectrum consists of half the injected signal only.  When under 

injection but not synchronized, the output spectrum resembles a bandpass-filtered FM spectrum, 

as reported in [11].  

 

 
Figure 3.12 Layout of Implemented RFD 

 

 3.3 Performance of Frequency Dividers 
 

For the implemented ILFD circuits, measurements of the dc power consumption and the 

locking range vs. input power are documented below.  In addition, a measure of the phase noise 

of an ILFD is discussed, representing both Tail and Quench modes of operation.  For the RFD, 

dc power consumption and the locking range are provided, as documented by simulations in 

Cadence Virtuoso. 
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 3.3.1 Injection Locked Frequency Dividers 
 

The following figure represents the measured oscillator current as a function of the 

voltage VBIAS applied to the “Bias Voltage Input” in Figure 3.8.  With no source applied to this 

node, i.e. the pin is left floating, the voltage at this pin is 1.18 V, and the nominal oscillator 

current is 1.27 mA. 

 

 
Figure 3.13 Oscillator Current as a Function of Applied VBIAS 

 

By varying the dc current that powers the oscillator, the locking performance at different 

levels of power consumption can be directly measured.  However, because the Tail FET MT is 

also the current source for the oscillator, its locking range was only measured at nominal power 

consumption.  Otherwise, as the injection signal is superimposed on MT’s gate, the average bias 

current becomes a function of the applied input amplitude. 

To quantify the “Locking Range” of an ILFD, a plot of the “Lock-in Power” versus 

frequency is generated, where the lock-in power is the power that is applied to the injection site 
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of the ILFD, in terms of dBm.  We note that this power level may be mapped to a voltage 

amplitude level to understand the expected behavior when the ILFD is used within an application 

specific IC.  For this, a 0 dBm “power” corresponds to an unloaded peak sinewave voltage of 

0.63V.   

The locking range refers to the range of frequencies of the injection signal that 

successfully result in injection-locked frequency division.  The locking range varies depending 

on the value of the lock-in power, and tends to decrease as lock-in power decreases.  For such a 

graph, the locking range is defined for any arbitrary lock-in power as the difference in frequency 

between the upper and lower intersects of the curve and the horizontal line defined by the given 

lock-in power. In this thesis, the lock-in power that establishes the locking range of interest is 0 

dBm.  In the literature, the lock-in range is typically presented as a percentage of the operating 

frequency, i.e. exactly double the free-running frequency.  When the lock-in power is too low to 

synchronize the oscillator, the output spectrum is observed to contain the free-running oscillation 

and sideband behavior resembling bandpass-filtered frequency modulation, as expected [11]. 

Tail-ILFD Locking Range Measurements 

 

Figure 3.14 shows a plot of the lock-in power versus frequency for the Tail-ILFD: 

  

 
Figure 3.14 Lock-in Power vs. Input Frequency of Tail-ILFD at 2.28 mW dc 
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As seen in Figure 3.14, for a lock-in power of 0 dBm (630 mVpk), the locking range of the 

Tail-ILFD was measured as 770 MHz, with a free-running frequency of 6.4 GHz referred to the 

input.  As a percentage, the locking range was 12%, while consuming a dc power of 2.28 mW. 

By observing Figure 3.14, it can be seen that the lock-in range is mostly symmetrical 

about the free-running frequency for lock-in powers below -10 dBm, corresponding to a 200 

mVpk input level.  As the lock-in power increases to 0 dBm, the curve deviates further in the 

direction of lower frequencies.  This is believed to be due to the influence of parasitic 

capacitances present in the oscillator circuitry.  In general, parasitic capacitances degrade the 

performance of active devices, and thus also the signal integrity, as the frequency of operation 

increases.  Therefore, for large deviations from the free-running frequency, the parasitics 

introduced by the cross-coupled FETs and the output buffer are less pronounced at lower 

frequencies.  

 Quench-ILFD Locking Range Measurements 

 

Two lock-in power versus frequency plots for the Quench-ILFD were generated, 

representing performance at both nominal power consumption and low power consumption.  The 

first plot (Figure 3.15) represents locking range vs frequency of the Quench-ILFD at 2.28 mW 

(1.27 mA dc current), and the second (Figure 3.16) at 219.6 μW (122 μA dc current). 
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Figure 3.15 Lock-in Power vs. Input Frequency of Quench-ILFD at 2.28 mW dc 

 

As seen in Figure 3.15, for a lock-in power of 0 dBm, the locking range of the nominal-

power Quench-ILFD was measured as 235 MHz, with a free-running input-referred frequency of 

6.4 GHz.  As a percentage, the locking range was 3.7%, while consuming a dc power of 2.28 

mW.   

As seen in Figure 3.16, for a lock-in power of 0 dBm, the locking range of the low-power 

Quench-ILFD was measured as 307 MHz, with a free-running frequency of 6.4 GHz.  As a 

percentage, the locking range was 4.8%, while consuming a dc power of 219.6 μW. 

The results of Figures 3.15 and 3.16 suggest that the locking range of a Quench-ILFD is 

less than half that of a Tail-ILFD, for a given lock-in power.  Also, Quench-ILFDs have an 

improved locking range when the oscillator circuitry is running at lower dc currents.  And as 

lock-in power increases above -10 dBm, the upper-bound of the lock-in power versus frequency 

curve deviates further from the operating frequency than the lower-bound.  This asymmetry is 

contrary to the trend of the curve of Figure 3.14, where the locking range extends further for 

decreasing input frequencies for a Tail-ILFD. 
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Figure 3.16 Lock-in Power vs. Input Frequency of Quench-ILFD at 219.6 μW DC 

 

These observations can be understood by considering the operation of each injection 

FET, MT and MQ.  MT is biased in the active region, and the injection signal appears at the input 

of the mixer (as depicted in Figure 2.2) via the transconductance of MT.  Thus, the Tail-ILFD 

architecture has an inherent amplifying element, which effectively increases Vinj.  This feature is 

lacking in the Quench-ILFD, since MQ operates in the triode region.  In Quench mode, Vinj does 

not see the same transconductance, and thus may have a smaller effective value for a given lock-

in power, when compared the Tail-ILFD.  Lastly, the impedance of the channel that connects the 

output terminals in Quench mode is dependent on the instantaneous value of the injection signal 

and the (W/L) ratio of MQ, and thus limits high-frequency operation for a fixed lock-in power 

since a greater (W/L) ratio introduces greater parasitic capacitance directly at the output 

terminals. 

The asymmetries of the locking ranges of both the Tail and Quench-ILFDs can also be 

explained in terms their effective values of Vinj.  In Tail mode, Vinj is described by (3.24), and is 
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dependent on the value of gm,T.  As the frequency of operation increases, the effective value of 

gm,T decreases due to parasitics within MT.  As the frequency of operation decreases, gm,T 

becomes more “ideal.”  Thus, the curve of Figure 3.14 shifts further to the left for larger 

deviations from the operating frequency, defined by twice the free-running frequency.  In 

Quench mode, the output oscillations degrade as the frequency of operation increases, due to 

parasitics within the circuitry.  Therefore, the ratio of Vinj to the oscillator’s voltage increases 

with frequency, and thus results in a higher modulation index for a given lock-in power.  This 

need to overcome oscillation energy may also explain why the locking range of the Quench-

ILFD is improved at lower power consumptions.  If the ability to synchronize an oscillator’s 

output is based on MQ’s ability to dissipate the energy between the terminals in its channel, then 

the locking range for a Quench-ILFD should increase as oscillator power decreases. 

 Phase Noise Measurements 

 

Figure 3.17 is a photo of the spectrum analyzer as it was used to measure the phase noise 

of the ILFDs.  Figure 3.17 shows the output spectrum and phase noise when locked to an input 

near its free-running frequency (i.e. finj = 2ffree). 

 

 
Figure 3.17 Output Spectrum and Phase Noise of locked ILFD 
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It should be noted that the phase noise of the ILFD is within the resolution of the 

spectrum analyzer.  This gives the shape of the curve its smooth appearance, as it traces the 

passband of the resolution bandwidth (RBW) filter.  With the RBW set to 1 kHz, the phase noise 

at 10 kHz offset can be calculated from Figure 3.16 as: 

   (3.32) 

The phase noise of the oscillator in injection-locked operation is no more than -95 dBc at 

a mere 10kHz offset from the fundamental frequency.  

 3.3.2 Regenerative Frequency Divider 
 

Results for the RFD presented here are results of simulations in Cadence Virtuoso.  This 

is because measurements of the RFD implemented in CMOS could not be carried out.  This is 

currently believed to be due to issues with phase-shifters used in testing and hence an inability to 

drive the circuit with a satisfactory differential signal.  Also, since the quality factor of the tank 

establishes its impedance for ac signals, the overall quality factor was degraded due to Cp, the 

tank capacitance for the RFD, being implemented using the parasitics of the feedback FETs.  

This is because of the assumption that the Q of the tank is equal to the quality factor of the 

inductor is based on capacitors of effectively infinite Q.  When Metal-Insulator-Metal (MIM) 

caps are constructed, this is the case.  However, this may not be true when using parasitic 

capacitances of active devices which are not well modeled.  

The following figure shows the “testbench” setup used to simulate the behavior of the 

designed RFD: 
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Figure 3.18 Testbench Setup used to Simulate RFD in Cadence ICFB 

 

The simulated RFD of Figure 3.18 consumes 228 μA of dc current, at 410 μW.  To 

simulate an input voltage equivalent to a real-world RF signal generator outputting 0 dBm of 

power, the RFD is driven with a differential voltage of 630 mV with a source impedance of 50Ω.  

The locking range is determined using this model, and Figures 3.19 and 3.20 show the 

simulations used to determine the range of frequencies that can be synchronized to exactly half 

the frequency of the input signal. 
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Figure 3.19 Simulation of Lower-Bound of Divisible Frequencies  

 
Figure 3.20 Simulation of Upper-Bound of Divisible Frequencies 
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From the frequencies observed in Figures 3.19 and 3.20, the range of divisible 

frequencies for the simulated RFD is equal to: 

 (3.33) 

Using the simulator to analyze the ac response of the RFD of Figure 3.9 reveals its 

resonant frequency, which can be used to estimate the free-running frequency for this divider.  

Note that the values on the vertical scale in Figure 3.21 do not indicate the magnitude of the 

output oscillation voltage, but rather give a description of the bandpass of the filter implemented 

in the RFD. 

 

 
Figure 3.21 AC Response Simulation of RFD used to Determine Operating Frequency 
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Using 7.8 GHz as the frequency of operation for the RFD, its dividing range can be 

expressed as a percentage of 16.7%.  Compared to the results obtained from Figure 3.13, it can 

be seen that simulations report that the range of the RFD is wider than that of the Tail-ILFD, 

while consuming much less power.   

Chapter 4 - Low Noise Amplifiers 

This thesis documents an LNA that is a modification of the Partial Noise Cancelling LNA 

presented in [1].  A simplified representation of the LNA presented in [1] is shown in Figure 4.1.  

A gain of 21 dB (over the range 2 to 2300 MHz), an IIP3 of -1.5 dBm at 100 MHz, and a 

minimum and maximum noise figure (NF) of 1.4 and 1.7 dB (over the range 100 MHz to 2.3 

GHz) are reported.  The LNA consumes 18 mW of dc power, at a supply voltage of 1.8V and a 

dc current of 10 mA.  Large-value coupling capacitors that connect the gates of MN,1 and MP,0, as 

well as the gates of MN,0 and MP,1 are not shown in Figure 4.1.  

 

 
Figure 4.1 Simplified Schematic of LNA Presented in [1] 
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By replacing the resistors RL,0 and RL,1 of Figure 4.1 with a tuned load, a narrowband 

version of the above PNC LNA can be designed with the goal of improving the performance, 

especially relative to large out-of-band signals.  Since the thermal noise contribution of a tuned 

load is inversely proportional to (QL)2, whereas the quality factor of a resistive load is one, using 

a bandpass filter at the output should result in an improved NF.  For all other conditions held 

equal, a high Q enhances the gain of the LNA, which (1.14) shows improves the NF.  In addition 

to this, a tuned load allows the output voltage to swing beyond the supply voltage, due to the 

energy storing nature of the reactive elements.  Increasing the swing of the output voltage should 

also improve the output-referred 1dB compression point (Pc,o) by decreasing the non-linearity at 

this node.  Also, since the expressions for voltage (4.1) and power (4.2) of the IM products are: 

     (4.1) 

     (4.2) 

where cIM is a constant based on the non-linearity of the output signal (and CIM its decibel 

equivalent) , then increasing the swing of the output voltage should also result in increased IIP3 

and OIP3 values, if the bias overdrive voltage of the input FET is sufficiently large.  Lastly, 

because the tuned load also acts as a BPF, it should improve the out-of-band compression point, 

by attenuating such signals at the output.  Simulation results for the designed narrowband PNC 

LNA are included in section 4.3, and are generated using Cadence Virtuoso.  In this thesis we 

focus on the large signal handling issue. 

In order to compare the performance of the narrowband PNC LNA, in terms of small and 

large signal processing, a cascode S-L (source-inductor) LNA was also designed, and simulation 

results are included in section 4.3. 

 



72 

 

 

 

 

 4.1 Theory of Operation 

 4.1.1 Cascode Source-Inductor Low Noise Amplifier  
 

Source-Inductor LNAs, discussed at the end of section 2.2.2, are essentially impedance-

matched narrowband versions of a common-source (CS) amplifier employing source 

degeneration feedback as a means of cancelling the FET’s channel noise.  The inductor in the 

source terminal of the device is also made to resonate with the FET’s parasitic, which results in 

an ideally real impedance between the FET’s gate terminal and ground.  The magnitude of the 

resistive input impedance is dependent on the transconductance of the FET and the inductance 

and capacitance values used.  This mechanism thus enables impedance matching to any arbitrary 

source.  Using a cascode configuration as well will mitigate Miller capacitance and increase the 

output impedance of the cascode FET, while having no effect on the midband NF.  A generic 

schematic for the S-L LNA documented in this thesis is shown in Figure 4.2. 

 

 
Figure 4.2 Generic Cascode S-L LNA Schematic 
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 Small Signal Parameters 

 

In the LNA of Figure 4.2, the parasitic capacitance of Cgs,0 resonates with the inductance 

Ls.  The inductor LS has some parasitic resistance at ωo, described by its Q-factor QS.  The small-

signal model of Figure 4.3 is used to obtain the input impedance of the S-L LNA at resonance.  

In the figure, Rt represents the parasitic resistance of the traces that form Ls. 

 

 
Figure 4.3 Small-Signal Model used to obtain Input Impedance and Voltage Gain 

 

In Figure 4.3, a current ix is applied to the gate of M0 of the schematic in Figure 4.2.  By 

determining the ratio of the resulting voltage vx to ix, the input impedance as a function of 

frequency is obtained.  Solving the KVL expression for the loop that follows the input current ix 

leads to: 

   (4.3) 

where Rt = ωLS/QS.  The voltage that develops due to ix flowing through Cgs results in a vgs of: 

     (4.4) 

Substituting vgs,0 in (4.3) with that of (4.4) and rearranging terms gives: 

     (4.5) 
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The expression of (4.5) is used to obtain the input impedance as vx/ix at ωo: 

    (4.6) 

As QS approaches infinity, the second and third terms of (4.6) approach zero.  In this way, the 

transconductance gm,0 can be used to theoretically match any arbitrary impedance.   

 The output impedance of the S-L LNA in Figure 4.2 can be approximated as: 

      (4.7) 

 Figure 4.3 can also be used to obtain an expression for the voltage gain of this S-L LNA.  

When Zin of expression (4.6) is matched to Rs, vx is equal to half of the signal source voltage, and 

the input current iin in terms of Rs can be written as: 

    (4.8) 

The resulting vgs,0 that develops across Cgs,0 is: 

   (4.9) 

Using (4.9) and the common approximation for the output voltage at resonance, the voltage gain 

with respect to the signal source is obtained as: 

  (4.10) 

 The magnitude of the power gain of this LNA, as a product of the gain of (4.10) squared 

and the input impedance of (4.6) divided by the output impedance of (4.7), is: 

   (4.11) 

When QS approaches infinity, the power gain of (4.11) at resonance tends towards:  
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     (4.12) 

Correspondingly, the voltage AVs of (4.10) tends towards: 

      (4.13) 

The term of (RsωoCgs,0)-1 in expression (4.13) is the quality factor of the input RLC 

network composed of Rs, Cgs,0, and LS.  At ωo, the term (RsωoCgs,0)-1 should much greater than 

one, which is accomplished if Cgs,0 is sufficiently small that the reactance XCgs,0 is much greater 

than the source resistance Rs. 

 

 

 Noise Figure 

 

 Figure 4.4 shows the equivalent noise model for the S-L LNA and is used to obtain a 

first-order approximation of the noise figure.  The noise power due to Rs is amplified to the 

output by the power gain described by (4.11), and can be written as: 

 

   (4.14) 

 Half of the thermal noise contribution due to the amplifying transistor M0 is cancelled 

due to the inductive source degeneration and the matching identity of: 

      (4.15) 
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Figure 4.4 Thermal Noise Model of S-L LNA 

 

When M0’s noise current in,M0 is injected out of the drain of M0, it causes a negative output 

voltage of: 

      (4.16) 

This same noise current is injected into the source terminal of M0.  It causes the following 

voltage vx to develop: 

     (4.17) 

where ZLsCgs is the parallel-equivalent impedance of the LC network, which behaves as a tank 

circuit for signals at the source of M0.  At resonance, ZLsCgs can be expressed as: 

      (4.18) 

where Q’ is the composite quality factor of the RLC network.  Q’ is obtained as: 
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      (4.19) 

which is simplified for: 

     (4.20) 

Now, ZLsCgs of (4.18) can be expressed as: 

      (4.21) 

Assuming a high-quality LS such that (QS)-1 << RsωoCgs,0, the impedance of the resonant circuit 

described by (4.21) becomes: 

      (4.22) 

Given the matching condition of (4.15), ZLsCgs can be written as: 

       (4.23) 

The impedance of (4.23) appears in parallel to the impedance looking into the source of 

M0, which to a first-order is 1/gm,0.  The resulting voltage at this terminal, according to (4.17), is 

now: 

       (4.24) 

Because of the series resonance of Cgs and LS, the gate terminal of M0 is at ac ground at ωo.  

Therefore, the voltage vx of (4.24) is amplified to the output of the LNA via the common-gate 

mechanism of M0.  The output voltage due to summation of (4.16) and (4.24) is: 

    (4.25) 

Expressed as a noise power, the thermal noise contribution to the output of this S-L LNA is: 

    (4.26) 

 The inductor LS introduces a noise current inversely proportional to the root of the 

parallel-equivalent impedance of Ls, and is expressed as: 
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      (4.27) 

This current causes a voltage vx at the source terminal of M0 to develop of: 

       (4.28) 

The voltage of (4.28) appears at the output terminal of the LNA in the same manner as the noise 

voltage of (4.24) - through the common-gate configuration of M0 relative to signals at its source 

terminal.  Therefore, the output noise voltage due to LS is: 

    (4.29) 

and the corresponding output noise power contribution is: 

     (4.30) 

 The last significant noise source is the parasitic resistance of the tank circuit load, which 

contributes the following noise power to the output: 

      (4.31) 

 Summing all of the noise power contributions of (4.14), (4.26), (4.30), and (4.31) gives 

the total output noise power of the S-L LNA of Figure 4.2.  Then dividing the sum by (4.14), 

which is the noise power contribution due to Rs, and simplifying results in the following NF for 

this LNA: 

    (4.32) 

In the case where: 

     (4.33) 

the NF of (4.32) becomes: 

   (4.34) 
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It can be seen from (4.34) that the NF contribution of the circuitry composing the S-L LNA is 

inversely proportional to the quality factor of the input RLC network, given as: 

     (4.35) 

As the quality factor of (4.35) increases, the theoretical minimum NF of this S-L LNA tends 

towards 0 dB.   

 

Large Signal Parameters 

 

At the input, compression occurs when -vin,pk is large enough to drive M0 to cutoff when 

superimposed on its dc gate voltage, causing the instantaneous voltage vGS,M0 to fall beneath the 

threshold voltage for the device, Vth.  The dc voltage VGS,M0 - Vth is defined as the overdrive 

voltage, vov.   When |-vin,pk| ≥ |vov|, compression occurs, and the corresponding maximum input 

power that results in distortionless signal processing is: 

    (4.36)  

At the output, compression occurs when the voltage attempts to exceed twice that of the 

supply, VDD.  The maximum output voltage before compression occurs can therefore be written 

as: 

     (4.37)  

This implies that the maximum input voltage that will result in distortionless signal processing, 

relative to output compression, is: 

   (4.38) 

Assuming high-quality inductors, the maximum input power corresponding to (4.38) is: 

    (4.39) 
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In practice, the minimum between (107) and (110) sets Pin,max.  Note that these powers are 

approximated with respect to the input terminal of the S-L LNA of Figure 4.2, not with respect to 

the source voltage Vs.  When impedance matching applies, the maximum source voltage Vs,max 

before compression is twice that of (109), since half is dropped across Rs. 

 

 4.1.2 Partial Noise Cancelling Low Noise Amplifier 
 

The PNC LNA documented in this thesis is a narrowband version of the LNA presented 

in [1], and its generic schematic is shown in Figure 4.5.  The pFET Mbias establishes the dc 

current, and its gate is connected to a current mirror.  Due to the differential nature of this LNA, 

the noise of Mbias is cancelled because it appears at virtual ground.  The tuned load is 

implemented by inductors L0 and L1, and they resonate with the parasitic capacitances of MN,0 

and MN,1, and any loading present.  In the CMOS implementation elaborated in the next section, 

some of this capacitance is also due to the buffers that follow the LNA.  Resistors RF,0 and RF,1 

provide shunt-feedback to MN,0 and MN,1, respectively, and are designed so that the differential 

input impedance is equal to (1/gm,0 + 1/gm,1).  Capacitors C0 and C1 cross-couple the pFETs and 

nFETs, which leads to partial noise cancelling of the all the active devices of Figure 4.3 through 

multiple feedback paths, explained later.  Lastly, resistors Rb0 and Rb1 bias the pFETs MP,0 and 

MP,1.  
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Figure 4.5 Generic Narrowband PNC LNA  

 Small Signal Parameters 

 

The midband input impedance Zin is obtained by analyzing the schematic in Figure 4.6, 

which represents the current-draw for the half-circuit model of the PNC LNA in Figure 4.5, 

assuming the capacitances of MP,0 and MP,1 are negligible (therefore not drawing current at 

midband frequencies).  Analyzing Figure 4.6 results in the correct approximation for Zin and its 

differential complement Zin,diff.  Note that the drain-source impedance ro of the FETs are assumed 

to be large enough to have negligible effect on circuit behavior.   
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Figure 4.6 Half-Circuit Model of PNC LNA used to Determine Input Impedance 

 

In Figure 4.6 , Vx is a test source applied to the half-circuit, which draws ix current.  Rp 

represents the equivalent impedance of the tuned load at resonance.  RF is the feedback resistor 

that appears on both input FETs.  Cgs, represents the gate-source capacitance of the input FET, 

and is assumed to be negligible in this midband analysis.  As mentioned previously, the 

capacitances of the cross-coupled pFETs are also considered negligible at midband.  The 

impedance of 1/gm,p represents the source-degeneration behavior due to the pFET that appears in 

series with the source terminal of the input nFET, as seen in Figure 4.6.  Solving the KCL 

equation at the node labeled Vo reveals: 

     (4.40) 

Assuming Vo/Rp << gm,nvgs and rearranging (4.40) shows: 

      (4.41) 

Since Vx appears between the gate terminal and ground, the gate voltage VG is equal to Vx.  Upon 

inspection of Figure 4.6, the source terminal’s voltage VS is equal to the product (gm,nvgs)(1/gm,p).  

Thus, vgs can be written as: 

    (4.42) 
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By setting the transconductances of all FETs equal, and rearranging (4.42), the following 

expression is used to replace the vgs term in (4.41): 

      (4.43) 

Now, (4.41) becomes: 

      (4.44) 

which is manipulated to reveal the half-circuit input impedance at midband for this PNC LNA: 

     (4.45) 

Doubling this value reveals the differential input impedance at midband, Zin,diff: 

     (4.46) 

The expression of (4.45) discloses an inherent feature of the source-degeneration due to 

the series pFET.  Setting Zin, to 50Ω implies that the transconductance of each FET must be: 

    (4.47) 

which is double what it would otherwise be in a topology not employing such source-

degeneration. Since the power of the signal at the output is dependent on (gm)2, whereas the 

channel noise power of the FET is dependent on (2/3)gm (as shown in Figure 2.11), increasing gm 

should imply a better noise figure.  

The differential voltage gain for the LNA of Figure 4.5 is obtained by summing the 

differential voltage gain due to each individual input terminal.  In classic differential topologies, 

this is not the case, since each output terminal is linearly dependent on only one input terminal.  

But due to the cross-coupling of the n and p FETs seen in Figure 4.5, the signal at each input 

terminal appears at the output terminal of the same polarity.  Each pFET acts as a common-drain 

(CD) amplifier, also known as a source-follower.  The source-follower operation imposes a 

fraction of the half-circuit input voltage on the source terminal of the other half-circuit nFET, 

whose gate is the input terminal of opposite polarity.  Superposition allows the assumption that 

this input terminal is at ac ground, so that the nFET processes the signal at its source as a CG 
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amplifier.  Therefore, each input terminal affects both output terminals, in such a way that the 

signal voltages sum at the output of the LNA.  This process is outlined in Figure 4.7.  

The half-circuit differential voltage gain (arbitrarily choosing vin,(-) as the input 

reference), can be expressed as: 

     (4.48) 

which is split into: 

    (4.49) 

The first term of (4.49) is determined by analyzing the half-circuit of Figure 4.4 to obtain (Vo/Vx).  

Resolving the KCL equation for node Vo, but substituting ix with ((Vx-Vo)/RF) shows: 

     (4.50) 

 
Figure 4.7 Differential Signals Paths for Half-Circuit PNC LNA 
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Manipulation of (4.50), using (4.43) for vgs, and the condition that all transconductances are 

equal gives: 

     (4.51) 

Assuming Rp >> RF simplifies (4.51) to:  

     (4.52) 

Assuming (gm,nRF / 2) >> 1, the first term of (4.49) can be approximated as: 

    (4.53) 

Determining the second term of (4.49) is done by analyzing the following small signal model to 

obtain vo,(-)/vin,(-), shown in Figure 4.8. 

 

 
Figure 4.8 Small Signal Model to Obtain vo,(-) / vin,(-) of PNC LNA 

 

Assuming Rp >> RF,0, the output voltage Vo,(-) in the above figure can be expressed as: 

     (4.54) 
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The voltage vgs,n1 is the result of the current gm,p0vgs,p0 flowing through the equivalent impedance 

of (1/gm,p0 // 1/gm,n0).  Since vgs,p0 is vin,(-) and gm,p0 = gm,n0, (4.54) becomes: 

    (4.55) 

which leads to: 

     (4.56) 

Expressing (4.49) as the difference of (4.53) and (4.56) and assuming perfect matching among 

the active devices gives the half-circuit differential voltage gain, Av,1/2diff as:  

 (4.57) 

Due to symmetry, the fully differential voltage gain Av,diff for this LNA can be expressed as: 

    (4.58) 

When connected to a matched source, the gain of (4.58) halves to: 

     (4.59) 

The differential output impedance Zo,diff of this PNC LNA is twice the output impedance of the 

half-circuit of Figure 4.6 and designing such that RF << Rp approximates Zo,diff as: 

    (4.60) 

Expressions (4.46), (4.59), and (4.60) express the approximate midband power gain of this PNC 

LNA with respect to Vs: 

    (4.61)  

 Noise Figure 

 

Figure 4.9 is the midband thermal noise model for the PNC LNA, and assumes a 

noiseless reactive load.  Also, the noise originating from the resistors Rb,0 and Rb,1 have been 

omitted, since these noise current appear at virtual ground. 
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Figure 4.9 Midband Thermal Noise Model of PNC LNA 

 

The transfer function of the noise voltage of the source impedance vn,Rs is identical to that 

of the source voltage Vs.  So, the differential output noise voltage due to the Rs is: 

     (4.62) 

which is dropped over the load described in (4.60).  The corresponding output spectral noise 

power contribution is: 

    (4.63) 

 The noise power contributions due to the nFETs MN,0 and MN,1 are identical, due to 

symmetry.  To obtain these expressions, a similar approach to (4.49) is used: the differential 
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output noise voltage due to each nFET is determined, first by computing the noise voltage at the 

output terminal of opposite polarity, and then by computing the noise voltage at the output 

terminal of the same polarity.  Figure 4.10 is useful in performing the former.  A similar 

approach is used to determine the noise contributions due to the pFETs. 

 

 
Figure 4.10 Half-Circuit Small Signal Model used to Obtain nFET Noise Contributions 

 

 Solving the KCL equation at the node labeled Vo results in: 

    (4.64) 

Next, solving and rearranging the KCL equations for the gate and source nodes in Figure 4.8 

gives the following two expressions ((4.65) and (4.66), respectively): 

      (4.65) 

     (4.66) 

which allows for vgs of (4.64) to be expressed as: 

      (4.67) 

Now, assuming Vo/Rp is negligible and all FET transconductances equal, (4.64) can be 

rearranged as: 
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  (4.68) 

Designing such that RF >> Rs allows: 

   (4.69) 

which reveals: 

     (4.70) 

Due to the impedance matching condition of 2/gm = Rs, it is trivial to show (1/2)gmRs = 1.  Now, 

(4.70) becomes: 

     (4.71) 

Where in,Mn is the thermal channel noise current of the nFET under consideration.  In this 

analysis, (4.71) expresses both the noise voltage at the positive output terminal due to MN,1’s 

thermal noise and the noise voltage at the negative output terminal due to MN,0’s thermal noise, 

due to symmetry. 

Figure 4.11 is used to determine the output noise voltage of the nFETs that occurs due to 

the cross-coupling capacitors C0 and C1.  In the figure, these capacitors are assumed to be short 

circuits, and the tuned load impedance Rp is considered to be an open circuit at midband 

operation.  The node labeled vN represents the source terminal of the cross-coupled pFET 

introducing the noise from the input nFET of the other half-circuit.  This node is shared with the 

source terminal of the other input nFET.  The voltage at this node is one-half of the voltage that 

is fed back from the other half-circuit’s feedback resistor, RF.  The midband transfer function 

between the gate of MN,0 (or MN,1) to the source terminal of Mp,1 (or Mp,0), i.e. node vN of Figure 

4.9, is equivalent to a pFET CD amplifier with a load impedance of 1/gm,n and is written as: 

   (4.72) 
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Figure 4.11 Second Half-Circuit Model used to Obtain nFET Noise Contributions 

 

The voltage vG,N0 is a portion of the output noise that appears at vo,(-) in  Figure 4.7.  Due 

to the presence of Rs, the gate terminal of each input resistor sees some impedance to ac ground.  

In the case where Rp >> (RF + Rs), the voltage vG,N0 is the result of a voltage divider consisting 

of RF and Rs: 

     (4.73) 

Therefore, the voltage labeled vN of the generic half-circuit in Figure 4.9 can be expressed as: 

      (4.74) 

Where vG,N0, a fraction of vo,(-) as described in (4.71), is: 

    (4.75) 

Solving the KCL equation at the gate terminal in the generic half-circuit of Figure 4.9 resolves: 

       (4.76) 

Next, solving the KCL equation at the node labeled Vo gives: 

     (4.77) 
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vgs can be expressed as the difference between the gate voltage of (4.76) and the voltage at the 

source terminal, noted in (4.74).  This results in: 

     (4.78) 

Expressing (4.77) in terms of (4.74), (4.76), and (4.78) gives the noise voltage of the output 

terminal (Vo node of Figure 4.9) due to noise originating from the channel of the input nFET of 

the same polarity, and is shown in (4.79): 

   (4.79) 

Where in,Mn is the same as in expression (4.71).  Since vN = (1/2)vG,N, the half-circuit transfer 

function between noise that appears at node vN and the voltage Vo of Figure 4.9 can be written as: 

      (4.80) 

 Since the gate of the nFET is not at ac ground, but instead is fed back some portion of Vo 

of (4.79), its corresponding cross-coupling capacitor will transfer this fed back signal to the gate 

of the pFET of the half-circuit from which the noise voltage source in Figure 4.9 originates.  A 

transfer function between Vo and the output terminal of opposite polarity can be obtained by 

solving the following: 

    (4.81) 

Where Vo,opp is the output terminal not represented in Figure 4.9.  Solving for (4.81) results in: 

   (4.82) 

Since (1/2)gmRs reduces to unity, (4.82) is simplified as: 

     (4.83) 

 Superimposing Vo,opp onto the voltage established in (4.71) for the half-circuit of Figure 

4.7 gives the total noise voltage at the negative (or positive) output terminal due to the input FET 

M0 (or M1) as: 
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   (4.84) 

Simplifying the difference between (4.84) and (4.79) gives the differential output noise voltage 

due to either input nFET:  

     (4.85) 

The noise due to the pFETs that appear in series with the input FETs is analyzed next.  Similar to 

the process above, first Figure 4.11 will be used to determine the noise voltage that appears on 

the output terminal of the same half-circuit as the offending pFET.  Next, the noise that appears 

on the opposite output terminal due to the feedback resistors RF and the cross-coupling 

capacitors is calculated.  Then, the portion of this voltage that appears back on the original output 

terminal of interest is determined and superimposed.  Then, the differential output noise voltage 

due to each pFET can be known, due to symmetry.   

Figure 4.11 can be used to obtain the output noise voltage vo,(-) (or vo,(+)) due to Mp,0 (or 

Mp,1) by using a different noise term for vN.  The voltage that appears on this node is due to the 

pFET’s channel noise current flowing through the equivalent impedance established by the 

source resistances of nFET/pFET pair combining in parallel.  Assuming all FETs have matched 

transconductances, vN is: 

     (4.86) 

Due to the matching condition, (4.80) can be resolved to: 

      (4.87) 

Which implies the half-circuit output noise voltage Vo is: 

   (4.88) 

Using the approximation of (4.83) gives the noise voltage that appears on the output terminal of 

opposite polarity, due the feedback and cross-coupling of the noise of (4.88): 

   (4.89) 
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Since the voltage established in (4.89) is processed symmetrically as that of (4.88), a portion of it 

will also appear on the opposite output terminal, and will be superimposed on (4.88).  This 

portion can be expressed using Figure 4.9, establishing the voltage for vN: 

      (4.90) 

Now, the total voltage of node Vo (due to (4.88) summed with noise originating in (4.90)) of 

Figure 4.9, can be written as Vo’, using the transfer function of (4.87), as: 

   (4.91) 

Subtracting (4.89) from (4.91) results in the differential output noise voltage due to each 

individual pFET: 

   (4.92) 

Applying the matching condition where (gm/2) = (1/Rs), assuming RF/Rs >> 1, and considering 

(1/18) of negligible consequence allows: 

    (4.93) 

 The noise due to the feedback resistors RF,0 and RF,1 can be determined by analyzing the 

small-signal half-circuit in Figure 4.12.  Within, the noise current due to RF is shown, as well as 

the corresponding output terminal.  First, the voltage Vo is found.  Then, the voltage of the 

opposite output terminal Vo,opp and the portion of this superimposed onto Vo are expressed.  Then, 

the total differential output voltage due to the noise current of each individual feedback resistor 

is approximated. 
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Figure 4.12 Small-Signal Model used to Determine Noise of Feedback Resistors 

 

 Solving KCL equations for the node labeled Vo, the gate terminal, and the source terminal 

result in the following three equations, respectively: 

    (4.94) 

     (4.95) 

      (4.96) 

Expressing (4.94) in terms of (4.95) and (4.96) and assuming Rs/RF << 1 results in: 

      (4.97) 

The output voltage of the opposite output terminal due to (4.97) is found by first finding the 

noise voltage vN that appears at the source terminal of the input nFET of corresponding polarity.  

This voltage vN is: 

     (4.98) 

Using (4.87) and (gmRs) = 2 approximates the opposite output terminal’s noise voltage due to 

(4.98) as: 
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    (4.99) 

Which causes an imposition (defined by (4.83)) onto Vo resulting in Vo’: 

   (4.100) 

The difference between (4.100) and (4.99) give the total differential output noise voltage due to 

each individual feedback resistor, described by RF, as: 

     (4.101) 

 The noise figure may now be found in terms of the individual noise contributions from all 

noisy components of Figure 4.7.  The total output noise due to both nFETs is: 

    (4.102) 

The total output noise due to both pFETs is: 

    (4.103) 

The total output noise due to the feedback resistors is: 

    (4.104) 

Lastly, the total output noise due to the source expressed in (4.63), can be simplified as: 

    (4.105) 

The total output noise current due to all the noisy elements, written as the sum of (4.102) through 

(4.105), is: 

kTB[[[[[[[[[[[[[[[[[[[[[[[ ] (4.106) 

The noise figure is calculated by dividing the total output noise power in (4.106) by the output 

noise power due only to the source in (4.105), and is expressed as: 

    (4.107) 
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The NF expressed in (4.107) becomes: 

   (4.108) 

 Applying the matching identity of 2/gm = Rs and simplifying results in: 

    (4.109) 

The expression of (4.109) represents the minimum theoretical midband noise figure for the PNC 

LNA of Figure 4.5.  When gmRF is much greater than one, the minimum NF is .03 dB. Note that 

the NF of (4.109) relies requires RF >> Rs, and has ignored many second order effects in the 

FET models such as gate-source capacitance and series gate resistance so that higher NF values 

can be expected at high frequency. 

 Large Signal Parameters 

 

As with the S-L LNA described in the previous section, the input FETs will begin to 

compress when they no longer operate in active mode.  This happens when the instantaneous 

voltage on their gates, which are the sums of their respective dc bias voltages and ac input 

voltages, drops below the threshold voltage of the device, Vth.  Due to the differential topology, 

only half of the LNA’s input voltage vin,diff (not to be confused with Vs) is superimposed on each 

nFET’s gate.  Therefore, the maximum input voltage corresponds to when its peak value is equal 

to twice the overdrive voltage, which is identical on each nFET.  This implies that the maximum 

input power before compression is: 

   (4.110) 

As with the S-L LNA of the previous section, compression will occur at the output when 

the output voltage attempts to exceed twice that of the supply, which is an improvement over the 

original design in [1].   Again, this is because of the energy storing mechanisms of a reactive 

load.   When this is the case, the maximum input power to this LNA can be estimated as: 
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    (4.111) 

In practice, the minimum between (4.110) and (4.111) sets the maximum input power before 

compression, and thus distortion of the output signal.  Again, these powers are considered at the 

input terminals of the PNC LNA, not from the terminals between source voltage Vs and ground.   

 4.2  2.4-GHz CMOS Low Noise Amplifier Implementations  

 4.2.1 Source-Inductor Low Noise Amplifier 
 

Figure 4.13 shows a simplified schematic of the S-L LNA that was implemented in the 

.180μ CMOS process.  The tuned load consists of CT, LT, and the parasitic capacitances of the 

drain of M1 and the buffers of the following stage (not shown) and resonates at ~2.4 GHz.  Cbyp 

provides on-chip bypass capacitance for the power supply, and Cbyp2 implements the ac ground 

node for the cascode transistor.  Ls is the source inductor that resonates with the capacitance of 

the input FET M0’s gate-source capacitance. 

 
Figure 4.13 Simplified Schematic of Implemented S-L LNA 
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 A schematic and layout of this S-L LNA, as implemented in Cadence Virtuoso ICFB, 

follow in Figures 4.14 and 4.15. 

 

 
Figure 4.14 Schematic of Implemented S-L LNA using Cadence Virtuoso ICFB 

 

 Not shown in Figure 4.14 or 4.15 is the schematic/layout of the buffer stages that follow.  

These buffers were implemented in order to measure the output signals of both LNAs directly 

using a spectrum analyzer.  In order to keep their input capacitance low, an exponential buffer 

chain was used, consisting of three stages.  Simulation results included later in this thesis for 

both the S-L and PNC LNAs include the effect of loading from these buffers, which drive 50Ω 

load impedances.  With a supply voltage VDD of 1.8V and a nominal dc current of 8mA, the S-L 
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LNA of Figure 4.12 consumes 14.4 mW of dc power.  The schematic and layout of these buffers 

can be found in Appendix A. 

 

 
Figure 4.15 Annotated Layout of Implemented S-L LNA using Cadence Virtuoso ICFB 

 

 4.2.2 Partial Noise Cancelling Low Noise Amplifier 
 

Figure 4.16 below shows a simplified schematic of the PNC LNA implemented in 

CMOS.  The tuned load’s inductance consists of L0 and L1, which are 15.3 nH each with a 

quality factor of 7.0, consistent with the S-L LNA implementations.  These components resonate 

at ~2.4 GHz with the parasitic capacitances introduced by the nFETs MN,0 and MN,1, as well as 

the gate capacitance of the FETs acting as inputs to the buffers, which are not shown in Figure 

4.16.  The feedback resistors RF,0 and RF,1 are 4 kΩ each and provide the feedback that allows the 

input to modify its input impedance.  The cross-coupling capacitors C0 and C1 are 9.8 pF each, 

and are intended to be low-impedance paths at ~2.4 GHz.  The series pFETs MP,0 and MP,1 have 
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much wider than their nFET counterparts, since the ratio of the process transconductances is 

approximately 4 in the process used.  These pFETs are biased into the active region using the 10 

kΩ resistors Rb,0 and Rb,1. 

 

 
Figure 4.16 Simplified Schematic of Implemented PNC LNA 

 

 A detailed schematic and layout of this PNC LNA, as implemented in Cadence Virtuoso, 

follow in Figures 4.17 and 4.18. 

As with the S-L LNA, not shown in Figure 4.17 or 4.18 is the schematic/layout of the 

buffer stages that follow.  With a supply voltage VDD of 1.8V and a nominal dc current of 

8.4mA, the PNC LNA of Figure 4.18 consumes 15.1 mW of dc power.  The schematic and 

layout of the buffers can be found in Appendix A. 
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Figure 4.17 Schematic of Implemented PNC LNA using Cadence Virtuoso ICFB 
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Figure 4.18 Annotated Layout of Implemented PNC LNA using Cadence Virtuoso ICFB 

 

 4.3 Performance of Low Noise Amplifiers  
 

Cadence Virtuoso was used to simulate the dc node voltages and currents, ac voltage 

gain, ac input impedance, and output noise voltage of both the S-L and PNC LNAs.  Simulation 

results in the form of plots and annotated schematics are reported for both LNA types.  In 

addition to this, “testbench” schematics are included, used to replicate a “true” RF receiver 

frontend environment.   
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The testbench environment is intended to provide the following signal environment: 

 

 
Figure 4.19 Simulated LNA “Testbench” Environment 

 

 For an LNA in the environment described by Figure 4.19, the following expression may 

be used to deduce the noise figure in dB: 

    (4.112) 

Where vn,out is the noise voltage at the output of the LNA, vn,s is the noise voltage at the input of 

the LNA due to the source resistance Rs, (1/2)√(4kTBRs), and Av,l is the “loaded” voltage gain of 

the LNA.  The expression of (4.112) is useful when taking direct measurements of vn,out and Av,l 

from an LNA in a laboratory setting. 

 4.3.1 Source-Inductor Low Noise Amplifier 
 

Figure 4.20 below shows the ICFB schematic of the S-L LNA, along with annotated dc 

voltages and currents.  Note that the symbol named “K0” represents magnetic coupling between 

the two inductors, with a coupling coefficient of k = -0.2. 

Figure 4.20 reports the drain current of M1, which provides the dc biasing current in 

addition to acting as the input FET, as 8.2 mA.  With a voltage supply of 1.8 V, this implies a 

power consumption of 14.8 mW.  
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Figure 4.20 Annotated Layout of Implemented S-L LNA using Cadence Virtuoso ICFB 

 

 To simulate the voltage gain, the following testbench environment was used: 

 

 
Figure 4.21 Testbench Schematic of S-L LNA using Cadence Virtuoso  

 

From Figure 4.21 it can be seen that the total dc current consumption is roughly 18 mA.  

This is because the buffer circuitry, symbolized by the rectangle whose output is terminated in 

50Ω, consumes 10 mA of current while the LNA preceding consumes 8.2 mA.   
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The voltage gain, in v/v and dB, is shown in the plot below of Figure 4.22.  This plot 

shows that the resonant frequency of the tuned load is closer to 2.81 GHz, including the parasitic 

capacitance introduced by the input FET of the buffer.  The voltage gain of this S-L LNA at 2.81 

GHz is 19.3 v/v, or 25.7 dB. 

 

 
Figure 4.22 Simulated Voltage gain of S-L LNA 

 

 The input impedance of this S-L LNA was designed to be a purely real value 50Ω.  In 

order to simulate this parameter using Cadence Virtuoso, the voltage across and current entering 

the positive input node (labeled “in” on the LNA symbol in Figure 4.15), was plotted.  The real 

and imaginary parts of these values are shown in Figure 4.23.  From the figure, it can be seen 

that the input impedance to this LNA can be written as: 
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     (4.113) 

Solving (4.113) results in: 

    (4.114) 

 

 
Figure 4.23 Simulated Input Impedance of S-L LNA 
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The Return Loss (RL), is defined as -20log[Γ], where Γ is the reflection coefficient 

defined by: 

       (4.115) 

The reflection coefficient and RL for this S-L LNA are:  

     (4.116) 

    (4.117) 

 The poor RL of (4.117) indicates an issue with the impedance matching mechanism of 

this LNA.  The final simulation of interest is for the noise figure (NF).  Figure 4.24 below shows 

a plot of the NF (in dB) versus frequency for this S-L LNA. 

 

 
Figure 4.24 Simulation of Noise Figure of S-L LNA 
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From the above plot, the NF at ~2.82 GHz for the LNA of Figure 4.15 is: 

      (4.118) 

From the definition expressed in (2.49), the minimum theoretical Sensitivity of this S-L LNA is: 

 (4.119) 

From the parameters simulated above, the maximum input power before compression can be 

obtained for a generic LNA using the two following expressions: 

     (4.120) 

     (4.121) 

Where VOV is the overdrive voltage of the input FET, Rs is source impedance value, VDD is the 

voltage of the power supply, and Av is the voltage gain of the LNA.  Solving (4.120) and (4.121) 

results in the input-referred and output-referred maximum input powers before compression (not 

to be confused with IIP3 and OIP3), respectively:  

     (4.122) 

     (4.123) 

The minimum between (4.122) and (4.123) is 2.36 mW, yielding the maximum input power to 

the S-L LNA before compression, and thus distortion of the output signal, occurs: 

   (4.124) 

 4.3.2 Partial Noise Cancelling Low Noise Amplifier 
 

Figure 4.25 is the schematic of the PNC LNA with dc biasing conditions imposed upon 

it.  Within, the FET labeled “M0” represents the current-supply FET of Figure 4.14 Mb and is 

seen to have a dc current of 8.4 mA.  This is the dc operating current of the PNC LNA.   
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Figure 4.25 Annotated Layout of Implemented PNC LNA using Cadence Virtuoso  

 

 To simulate the voltage gain and other performance metrics, as well as the dc current of 

Figure 4.25, the testbench environment of Figure 4.26 was used.  It is annotated with the dc 

voltages and currents that appear on the block-diagram level of the simulation environment.  The 

source current of 26.8 mA consists of the 8.4 mA activating the PNC LNA, the bias current for 

each buffer, the biasing resistors, and current mirror.  
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Figure 4.26 Testbench Schematic of PNC LNA using Cadence Virtuoso  

 

 In Figure 2.26, the differential output is applied to a voltage-controlled voltage source 

(VCVS) in order to obtain it at one node with respect to ground.  This is also done for the output 

of the buffers.  In the simulations that follow, the signal at the node labeled “out”, which is the 

output of the annotated VCVS, is measured.  The simulated frequency response of this LNA 

follows, in terms of voltage gain versus frequency.  It has no effect on the noise simulation or 

any other simulation of interest in this thesis. 

 It can be seen from Figure 4.27 that the frequency of operation for this PNC LNA is 2.31 

GHz.  At this frequency, the voltage gain is 8.67 v/v (18.8 dB).   
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Figure 4.27 Simulated Voltage gain of PNC LNA 

 

 The input impedance at the operating frequency (2.31 GHz) is calculated using the plots 

of Figure 4.28.  Within, the voltage of the wire labeled “in” on the input VCVS is measured as 

well as the current entering the terminal labeled “in+” on the LNA.  From these values, Zin is 

approximated as: 

     (4.125) 

which is solved for: 

     (4.126) 
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Figure 4.28 Simulated Input Impedance of PNC LNA 

 

The corresponding Γ and RL for this LNA are: 

     (4.127) 

    (4.128) 

 The simulated RL for this PNC LNA is 0 dB.  This, along with the fact that the input 

impedance has an angle of roughly -90º, implies that the input appears as an “open-circuit.”  

Therefore, the feedback mechanism, which works by providing a current through RF, is non-

operational.  Otherwise the input impedance would appear as 1/gm at 2.4 GHz, implying a much 

better RL.  Instead, the input terminals of this LNA terminate in the capacitance provided by the 

input FETs, Cgs,n.  The reason the current feedback is no longer supplied is because the condition 
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of RF << RL has been breached, due to the low quality factors of the tank inductors, causing all 

of the output current to flow through the tuned LC load.  A good rule-of-thumb in RF design is a 

minimum RL of 12 dB, which neither simulated LNA achieves. 

 

 The NF for this LNA can be seen in the following plot of Figure 4.29, which shows the 

simulated NF in dB versus frequency for the PNC LNA of Figure 4.25. 

 

 
Figure 4.29 Simulated Output Noise Voltage of PNC LNA 

 

From the figure above, it can be seen that the NF at 2.31 GHz is: 

      (4.129) 

which corresponds to a minimum Sensitivity of .54 dB less than that of the S-L LNA 

documented in the previous section, whose Sensitivity is expressed in (4.119).  
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Expressions (4.110) and (4.111) give the input-referred and output-referred maximum 

input powers before compression of the output signal occurs.  Again, these power levels are not 

to be confused with the IIP3 and OIP3.  Using the gain from Figure 4.27, the maximum input 

power before compression occurs is the minimum between the following two values: 

    (4.130) 

    (4.131) 

The value of (4.131) sets the maximum input power before compression, and in dBm is equal to: 

    (4.132) 

It should be noted that the value for Pin,max for the S-L LNA given in (4.124) was 3.7 dBm.  This 

suggests that the PNC LNA should have higher values for IIP3 and OIP3, as well as a wider 

dynamic range (DR).  However, the dynamic range will also be mitigated due to the poor NF of 

the PNC LNA given in (4.129). 

 4.4 Design and Suspected Device Layout Faults 
 

This section briefly describes all of the known suspected design and device fabrication 

faults, at the time of writing this document.  The following subsections discuss the design issues 

of the specific LNA implementation (S-L or PNC), while the layout faults common to both 

circuits are described here.  The dc voltages and currents for both LNAs were found to be 

nominal with respect to dc currents reported in the testbench simulations of the preceding 

section.  Figures 4.30 and 4.31 show the frequency responses for the measured S-L and PNC 

LNAs, recorded with a HP Network Analyzer and an Agilent Spectrum Analyzer, respectively. 
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Figure 4.30 Measured s21 of Implemented S-L LNA in CMOS 

 
Figure 4.31 Measured s21 of Implemented PNC LNA in .180μ CMOS 
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Note that only one of two differential output nodes was measured in Figure 4.31. The wide 

bandwidths evident in Figures 4.30 and 4.31 indicate that the tank circuits used as loads in these 

two LNAs have very low effective Q factors.  This also explains the high attenuation across the 

center frequency of the “bandpass” since Rp is dependent on Q for both circuits.  The high 

attenuation may also be due to (i) various Q-degradation mechanisms, (ii) excess loss through 

the buffer, and/or (iii) circuit-specific design flaws, explained in the following subsections. 

Metal vias that connect different metal layers in a given IC process often have some non-

zero series resistance.  For example, the vias implemented in the circuits of this thesis are 

estimated to have a series resistance as high as 20 Ω each.  To eliminate the effects of via series 

impedances, vias are often arrayed so that all of their resistances combine in parallel fashion.  

However, in situations where only one via is used or where vias fail, the series impedance can 

become significant.  Another way Q can be degraded is when the quality factor of the tank 

circuit’s capacitance is non-infinite.  Q values, like resistances, combine in parallel, and low-Q 

reactive components lose too much signal energy to implement a high-impedance node.  This 

could be the case when no explicit tank capacitor is used, and instead the load inductors resonate 

with the parasitic capacitances of the active devices, whose characteristics change 

instantaneously.  In addition to this, the resistors that appear at the output node (that bias the 

buffer FETs into the active region) appear in parallel and affect the output impedance of the 

LNA.  The following figure is an image of the layout of the tank circuit load of the S-L LNA, 

indicating how these issues may be at hand. 
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Figure 4.32 Layout Close-up of S-L LNA Tuned Load 

 

Another source of the attenuation could have been through parasitics in the buffer chain.  Figures 

4.33 and 4.34 compare the simulated frequency responses of the buffered and non-buffered 

outputs of both LNAs. 

 



118 

 

 

 

 

 
Figure 4.33 Buffered and Non-Buffered S-L LNA Voltage Gain 

 

Figures 4.33 and 4.34 show the attenuation due to the buffers.  This can have a significant 

effect on the NF, as per the Friis equation.  Also, these simulations were not “extracted”, i.e. did 

not include the parasitic capacitances and resistances of the metal traces or the devices at high 

frequency.  The combined parasitics of the LNA circuitry and the buffers are likely causing this 

large deviation from simulation behavior.   
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Figure 4.34 Buffered and Non-Buffered PNC LNA Voltage Gain 

 

 4.4.1 Source-Inductor Low Noise Amplifier 
 

The design of the impedance matching circuitry for the S-L LNA resulted in an almost 

completely imaginary matched impedance of ~50Ω at 70º.  The RL of (4.117) is based on the 

complex value of Γ, and perfect matching requires a real input impedance.  Otherwise the 

magnitude of Γ may increase and diminish the RL. 

In reality, the input impedance of the S-L LNA at 2.4 GHz was measured to be 44Ω - 

j72.7Ω, as seen in Figure 4.35.  This corresponds to a reflection coefficient of .61 with an angle 

of -56º.  The RL of this measured S-L LNA is 4.24 dB.  This extra negative reactance is likely 
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due to the input capacitances that went unsimulated - such as non-Cgs FET capacitance, GSG 

capacitance, and trace capacitances. 

 

 
Figure 4.35 Measured Input Impedance of S-L LNA 

 

 In addition to impedance mis-match at the input, the FET M1 in the S-L LNA has only 

haf the gm of the input FET, M0.  This causes signal attenuation and noise generation at the 

output that serves to decrease the SNR at the output.  This is likely a significant reason that the 

NF of the simulated LNA in the previous section was as high as 2.3 dB, since perfect gm-

matching is assumed in the NF analysis of the cascoded S-L LNA. 
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 4.4.2 Partial Noise Cancelling Low Noise Amplifier 
 

At the time of writing this thesis, the most significant design flaw was the choice in 

feedback resistance RF,0 and RF,1.  Throughout the analysis of the PNC LNA, found in section 

4.1.1, the assumption that RF << Rp was made, since the gain and signal-feedback mechanism 

were contingent on this being the case.  However, simulations suggest that the Q of the load 

inductors is only ~7 which, for an a frequency of 2.31 GHz and inductor of 15.3 nH, would result 

in the following Rp: 

     (4.133) 

In the schematic of Figure 4.16, it can be seen that RF,0 = RF,1 = 4kΩ.  Therefore, the 

assumptions and analysis undertaken in section 4.1.2 are not valid for the PNC LNA documented 

here.  Instead, a value of RF should be chosen such that: 

      (4.134) 

 Also, the reason for the very poor RL of ~0dB for this LNA is because the current-

feedback mechanism, wherein output current flows through RF and back to the gate of the input 

FET, was non-operational.  When properly designed, the input impedance of this LNA appears 

as 1/gm, due to this feedback.  But, since the reactance of the output tank circuit is much lower 

than the value of RF, the majority of output current flows through the tuned load, and not through 

RF. 
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Chapter 5 - Conclusion and Future Works 

 5.1 Conclusions 

 5.1.1 Frequency Dividers 

 Injection Locked Frequency Dividers 

 

For the ILFDs measured and documented in this thesis, it was shown that a Tail-ILFD 

has a wider locking range (LR) than a Quench-ILFD, all other circuit conditions held equal.  

Specifically, the LR of the Tail-ILFD was 12%, and the LR of the Quench-ILFD was 3.7%, of an 

operating frequency of 6.4 GHz.  Both implementations consumed 2.28 mW of dc power in 

nominal operation.  When locked, the phase noise of the oscillator reduces to at most -95 dBc at a 

10 kHz offset.  This measurement of phase noise was limited by the Spectrum Analyzer used in 

the laboratory, so it could be below this figure.  

Another observation was that the Quench-ILFD was capable of operating while 

consuming as low as 219.6 μW of dc power.  In addition to this, the LR of the Quench-ILFD 

increased from 3.7% of the operating frequency to 4.8%.  This suggests that Quench-ILFDs are a 

better option when low power consumption is required, and a low LR can be tolerated. 

Lastly, it should be noted that for a VCO employing a tuned load, the LR is inversely 

proportion to the net Q, and is in general dependent on the relationship ∂ϕ/∂ω of the frequency 

selective network.  Therefore, a frequency divider with a wide LR can be implemented by 

lowering the Q value of the output RLC network, but lowering Q is also associated with higher 

oscillator power consumption. 

 Regenerative Frequency Dividers 

 

For the RFD that was reported in Chapter 3, simulations in Cadence Virtuoso reported a 

LR of 16.7% at an operating frequency of 7.8 GHz, while consuming 228 μA of dc current.  This 
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implies only 410 μW of dc power, which is over 5 times less than the dc power consumption of 

the Tail-ILFD, whose LR was limited to 12% of its operating frequency while consuming 2.28 

mW.  These simulations imply potential as a low-power divider with a wide LR for this 

particular topology, but further research is needed. 

 

 5.1.2 Low Noise Amplifiers 
 

Considering the LNAs documented in this thesis, simulations reported that the S-L LNA 

achieved higher gain than the PNC LNA, but had a higher NF at its frequency of operation.  

Simulations reported the NF of the S-L LNA as 2.3 dB at 2.8 GHz, while the NF of the PNC 

LNA was 1.76 dB at 2.31 GHz.   

Because of the single-ended topology of the S-L LNA, compression of the output signal 

due to the input FET occurs at a lower power, when compared to the PNC LNA.  And because of 

the high gain, the S-L LNA will also compress at the output at a lower power than the PNC 

LNA.  Because of the differential nature of the PNC LNA, a higher input power before 

compression can be tolerated, since this input voltage is split evenly between two input FETS.  

Also, because the PNC LNA documented in this thesis has a lower voltage gain that the 

corresponding S-L LNA, its output-referred maximum input power before compression is also of 

higher magnitude.  However, because empirical measurements were not possible, this was not 

proven in a laboratory setting. 

A design flaw of not matching the transconductances of the S-L LNA’s nFETs most 

likely resulted in the high NF of the simulated S-L LNA.  This can be understood by considering 

the approximation for its NF, in Chapter 2.  The assumption of matched transconductances 

revealed full cancellation of the thermal noise induced in the cascode FET.  When this is not the 

case, this noise appears at the output of the LNA and contributes to an increased NF.  The source 

inductor serves to match the impedance of the S-L LNA’s input to any real arbitrary impedance, 

though this was not achieved in the S-L LNA implementation documented here. 
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Small-signal expressions derived for the input impedance, gain, output impedance, and 

noise figure of the PNC LNA reveal the following conditions for the optimization of its 

performance: 

 

 

1.  Impedance Matching: (2/gm) = Rs 

2.  Minimize Noise Figure: Rs << RF << Rp 

3.  Matched gm among all FETs 

 

Note that Rp is the equivalent parallel resistance calculated from the series resistance of the metal 

traces that make up the load inductance, and is proportional to the inductor’s quality factor Q.  

The resistors represented by RF provide the feedback to the input nFETs of the PNC LNA, and 

this mechanism must be enabled for impedance matching to be achieved.  Lastly, the third 

condition states that all the transconductances of all FETs, both n and p, should be the same 

value for the PNC LNA to operate as described in section 4.1.2. 

 As reported in section 4.3.2, simulations show that the PNC LNA is capable of a NF as 

low as 1.76 dB.  Along with a potentially high input compression point and high dynamic range 

(DR), this motivates further optimization of the schematic and layout of the PNC LNA 

documented in this thesis. 

 5.2 Future Works 

 5.2.1 Frequency Dividers 
 

A different topology for an RFD should be designed and implemented in order to 

properly study its performance and compare it to an ILFD.  The RFD documented in this thesis 

had built in negative-resistance mechanisms that implied free-running oscillations and injection-

locked behavior.  Essentially, the RFD designed and simulated in section 3.3.2 was a differential 

configuration of two Tail-ILFDs. 
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Despite the mis-design of the RFD of Chapter 3, simulations reported a LR for this RFD 

that was wider than that of the Tail-ILFD, while consuming over 5 times less dc current.  This 

motivates the redesign of this topology on the basis of a low-power differential Tail-ILFD.    

 5.2.2 Low Noise Amplifiers  
 

The impedance matching components of the S-L LNA need to be redesigned in order to 

achieve a match to 50Ω.  More detailed approximations of input/parasitic capacitance should be 

used while calculating reactive values, and some portion of this should be implemented using a 

high quality explicit capacitor.  Metal-Insulator-Metal (MIM) capacitors are typically the highest 

quality capacitor option in CMOS processes.  When designing the impedance matching circuitry, 

one should consider the relationship between the FET parasitic capacitance CG and gm, since both 

are based on the device width, W.  High overdrive of the FET achieves a higher transconductance 

for a fixed width, and also allows the input FET more input power before device compression.  

The danger of making gm too large is compression of the LNA output signal at low input powers. 

Due to the inherent power-handling capabilities of a differential amplifier technology, a 

S-L LNA with differential inputs and outputs should be capable of a low NF, as well as low 

sensitivity.  And by using reactive feedback, the gain of the S-L LNA could be limited, thus 

improving the compression of its output due to the level of input power. 

The PNC LNA performance optimization criterion derived in this thesis require that Rs 

<< RF << Rp for the minimum NF.  For the implementation of Chapter 4, RF was 4kΩ, while Rp 

was only 1.55 kΩ.  A new design of this LNA, assuming an Rs of 50Ω and the same Rp value, 

should improve the performance by changing RF to 500Ω.  However, an entire re-design based 

on the expressions derived in this thesis is suggested so that an optimized PNC LNA can be 

measured in the laboratory. 

 

 Changes to Layout 
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The layouts of the LNAs, as shown in this thesis, should be redone to minimize parasitic 

series resistances due to low-numbered via arrays.  Also, more explicit capacitance should be 

used in the resonant circuits, such as in matching networks and tuned loads.  It is currently 

believed that a major source of degradation originates from low-Q capacitive loading from the 

buffer transistors.  

Instead of buffering the LNAs’ output with an exponential chain of source-followers, a 

high-gain amplifier (followed by a low output-impedance buffer stage) should be used.  By 

following the method described in [Friis, 1944], the NF of network composed of an LNA 

followed by a high gain stage can be easily determined using standard RF laboratory equipment.  

First, a method to measure the noise figure of the composite two-stage network, as well as the 

noise figure of the second stage, is described.  Then, a method of determining the gain of the first 

stage is explained.  Lastly, Friis gives the equation for the noise figure of the first stage (e.g. an 

LNA), shown in (1.12).  Using this process, the NF of an LNA followed by any arbitrary high-

gain stage can be empirically measured. 

 This however will not cure the issue of the low-Q capacitive loading due to the output 

buffer circuitry.  In order to mitigate these effects, an explicit MIM capacitor should be 

implemented across the output inductors.  This requires either less tank inductance, more power 

consumption, or both.  
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Appendix A - 2.4-GHz Buffer Schematic and Layout 

 
Figure A. 1 2.4-GHz Buffer Schematic 

 

 
Figure A. 2 2.4-GHz Buffer Layout 

 


