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Abstract 

Agriculture is highly dependent on and sensitive to weather. Warming effects result from 

greenhouse gas emissions and aerosols from a small number of countries but its impact will be felt 

on a global scale. So far, agricultural productivity growth has sustained the continuous global 

supply of food, but will this continue into the foreseeable future with the incidence of climate 

change? The effects of climate change on crop yields have been the focus of several studies. 

However, the sensitivity of agricultural productivity (measured as Total Factor Productivity-TFP) 

to climate change is not well understood.   

The first essay examines how historical changes in temperature and precipitation have 

affected the evolution of agricultural total factor productivity (TFP) while accounting for the 

short- and long-term impact. A fixed effect regression model for 128 countries for a period of 

1961 to 2014 was employed to exploit yearly changes in temperature and precipitation as the 

identification strategy. Results show that precipitation has a significant effect on TFP growth in 

Sub-Saharan Africa, tropical and low-income countries. Global short term temperature effect is 

offset in the long run showing that farmers adapt to reduce the effects of temperature in their 

behavioral decisions. 

Irrespective of the impact of climate change, there have been calls for an increase in 

agricultural productivity due to uncertainty and a global decline in Research and Development 

(R&D) expenditures. Previous literature accounts for the effect of global TFP growth on global 

food security and the environment. My second essay estimates the impact of TFP growth in 

different regions on global food security and the environment using a partial equilibrium model. 

To construct comparable TFP shocks across regions, I consider three TFP shock scenarios: (i) 

a uniform 100 percent increase in TFP growth in each region, (ii) TFP growth in each region 



  

that gives the same decrease in global commodity price, and (iii) TFP growth in each region 

resulting from the same increase in R&D expenditure. Results show that a 100% increase in TFP 

in the US & Canada increases agricultural carbon emission within the US & Canada by 16.9% but 

with a net global decrease in agricultural carbon emissions by 4.27%. In addition, a 100% increase 

in TFP in the US & Canada decreases global food security (malnutrition) by 13.09%. These results 

provide justification to support increasing R&D expenditures in developed regions. Overall, TFP 

growth is most effective in Sub-Saharan Africa as it gives the largest reductions in malnutrition 

and carbon emissions.  
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Abstract 

Agriculture is highly dependent on and sensitive to weather. Warming effects result from 

greenhouse gas emissions and aerosols from a small number of countries but its impact will be felt 

on a global scale. So far, agricultural productivity growth has sustained the continuous global 

supply of food, but will this continue into the foreseeable future with the incidence of climate 

change? The effects of climate change on crop yields have been the focus of several studies. 

However, the sensitivity of agricultural productivity (measured as Total Factor Productivity-TFP) 

to climate change is not well understood.   

The first essay examines how historical changes in temperature and precipitation have 

affected the evolution of agricultural total factor productivity (TFP) while accounting for the 

short- and long-term impact. A fixed effect regression model for 128 countries for a period of 

1961 to 2014 was employed to exploit yearly changes in temperature and precipitation as the 

identification strategy. Results show that precipitation has a significant effect on TFP growth in 

Sub-Saharan Africa, tropical and low-income countries. Global short term temperature effect is 

offset in the long run showing that farmers adapt to reduce the effects of temperature in their 

behavioral decisions. 

Irrespective of the impact of climate change, there have been calls for an increase in 

agricultural productivity due to uncertainty and a global decline in Research and Development 

(R&D) expenditures. Previous literature accounts for the effect of global TFP growth on global 

food security and the environment. My second essay estimates the impact of TFP growth in 

different regions on global food security and the environment using a partial equilibrium model. 

To construct comparable TFP shocks across regions, I consider three TFP shock scenarios: (i) 

a uniform 100 percent increase in TFP growth in each region, (ii) TFP growth in each region 



that gives the same decrease in global commodity price, and (iii) TFP growth in each region 

resulting from the same increase in R&D expenditure. Results show that a 100% increase in TFP 

in the US & Canada increases agricultural carbon emission within the US & Canada by 16.9% but 

with a net global decrease in agricultural carbon emissions by 4.27%. In addition, a 100% increase 

in TFP in the US & Canada decreases global food security (malnutrition) by 13.09%. These results 

provide justification to support increasing R&D expenditures in developed regions. Overall, TFP 

growth is most effective in Sub-Saharan Africa as it gives the largest reductions in malnutrition 

and carbon emissions.  
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Chapter 1 

Introduction 

Agricultural productivity is a key outcome in the process of economic development in the 

society. Besides providing food security, increase in agricultural productivity provides 

income generation, source of employment that directly reduce poverty and important for 

international trade. However, global trends such as population growth expected to increase 

to 10 billion by 2050 and income growth with countries transitioning from low to middle-

income class economies (FAO, 2017) puts enormous stress on economic sustainability. In 

addition, climate change such as increased warming and increase in greenhouse emission 

from human and agricultural activities poses a threat to food availability and security.  

As these issues becomes prevalent, agriculture-driven growth, poverty reduction, 

and food security are at risk with the main concern centered on whether global agricultural 

productivity growth will continue into the foreseeable future (FAO, 2017). A global 

collective effort is needed to combat and mitigate the effect of climate change and 

encourage environmental sustainability. Furthermore, as uncertainty abounds, global calls 

for an increase are based on the current decline in agricultural research and development 

(R&D) investment. With an increase in productivity comes the concern on the environment 

(will it be land saving or not) in the form of deforestation, land degradation, increased 

carbon emission, etc. For the world to continue feeding itself, the future growth of 

agricultural productivity growth will be dependent on investments in food and 

agricultural R&D. 
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The first essay examines how historical changes in temperature and precipitation 

have affected the evolution of agricultural total factor productivity (TFP) in the short 

and long run. I use agricultural productivity measured as total factor productivity as the 

outcome variable instead of a partial productivity measure like crop yields used in most 

previous literature. I focused on answering the following research questions. First, what 

is be the effect of weather changes on agricultural productivity? Second, do these effects 

vary from one region to another in the short or long run? Third, are farmers able to adapt 

or mitigate the effect of climate change in their production decisions? To answer these 

questions, I begin by estimating how historical global agricultural productivity (TFP) 

responds to climate change using a fixed-effects regression model. The identification 

strategy employs year-to-year changes in temperature and precipitation to estimate their 

effect on agricultural productivity at a regional and national level. Primary results show a 

nonlinear TFP response to changes in both temperature and precipitation exist. An increase 

in monthly precipitation has a positive and significant effect on TFP but temperature effect 

is insignificant. As precipitation increases over a threshold (600mm for tropical countries 

and 500mm for low-income countries), TFP declines rapidly. Adaptation practices that 

reduce the effects of extreme temperature by farmers are evident in the long term. 

The second essay seeks to estimate the impact of TFP growth on food security and 

the environment. To do this, I address three specific questions. First, what is the impact of 

TFP growth in specific regions on global food security and the environment? Second, how 

do TFP shocks in specific regions affect food security and the environment in other regions 

(i.e., measuring where spillover effects occur)? Third, where is TFP growth most effective 

at reducing malnutrition and carbon emissions? I address these questions using a partial 
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equilibrium model to simulate the impact of TFP growth on the malnutrition index and 

carbon emissions in each region of the world. To do this, I focus on TFP shocks in four 

major production regions: US & Canada, Sub Saharan Africa, South America, and China 

& Mongolia. However, I faced a challenge in comparison of TFP impacts since the regions 

vary in size and factor endowment; thus, the need for deriving comparable TFP shocks for 

each region. To estimate the comparable TFP shocks, three different scenarios of 

comparable TFP growth shocks in each region were evaluated. These scenarios are 1) a 

uniform 100% increase in TFP in each region, 2) TFP growth in each region that would 

lead to a 17.21 percent decrease in global price and 3) TFP growth resulting from an 

increase in R&D expenditures by $6.15 billion in each region.  

Results show that TFP growth contributes a significant impact in reducing global 

food security and carbon emission. TFP growth in the US & Canada is beneficial in 

reducing global malnutrition and carbon emission. Other regions like Middle East and 

South East Asia for malnutrition reduction, Australia & New Zealand and South Africa for 

carbon emission were affected positively by TFP growth in Canada & US. Also, TFP 

growth in SSA had the greatest impact on global malnutrition making the region the most 

effective at improving food security and sustainable environment. In contrast, TFP growth 

in South America results in an increase in its own region’s carbon emission in all three 

scenarios, although the net global effect is a reduction in carbon emissions. From a policy 

point of view, this result is critical for policymakers in the US, who are making decisions 

about R&D funding and for making decisions on where to target R&D efforts regionally 

to effectively reduce global malnutrition and carbon emission.  
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Chapter 2 

Climate change impacts on agriculture: evidence 

from global agricultural productivity 

2.1 Introduction 

Agriculture is highly dependent on and sensitive to the weather. Climate change is evident 

through observed increases in temperature (air and ocean), rising sea levels, and melting 

glaciers in the Arctic and Antarctic ecosystems (IPCC, 2007). These changes are signs of 

warming that could affect agriculture (crop production and international trade), human and 

animal health (spread and outbreak of infectious disease), and human activities such as 

access to water, physical and natural resources (IPCC, 2007). Most of these warming 

effects are the result of increasing greenhouse gas emissions and aerosols from a small 

number of countries like the Russian Federation, the United States of America, the 

European Union, China, and India (IEA, 2019), but the impact will be felt on a global scale. 

Projected greenhouse gas (GHG) emissions are expected to continually grow by 50 percent 

by 2050, driven by a 70 percent growth in carbon emission from energy use unless new 

policies are implemented (OECD, 2012). On the other hand, the possibility of feeding the 

world with a growing population and changing dietary preferences has been a subject of 

interest and concern. 
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To reflect the wide range of agricultural activities, the measure of agricultural 

productivity used in this essay is total factor productivity (TFP), defined as “a broad 

measure encompassing the average productivity of all inputs with market value (land, 

labor, capital, and materials) employed in the production of all crops and livestock 

commodities” (Fuglie et al., 2012). Agricultural productivity plays an important role in 

food availability and stabilizing food prices such that sustained growth will be critical for 

global food security and poverty reduction.  However, as the impact of climate change 

becomes more evident, agriculture-driven growth, poverty reduction and food security are 

at risk with the main concern centered on whether global agricultural productivity growth 

will continue into the foreseeable future (FAO, 2017). 

 The objective of this study is to examine how historical changes in temperature 

and precipitation have affected the evolution of agricultural TFP while accounting for 

its impact in the short and long run. What is the effect of weather changes on agricultural 

productivity? Did these effects vary from one region to another in the short to long run? 

Did farmers adapt or mitigate the effect of climate change in their production decisions in 

the long run? I address these questions using a fixed effect regression model employing 

yearly changes in temperature and precipitation. 

The effects of climate change on crop yields have been the focus of several studies 

in the literature as some focus on a single crop (Tack et al., 2012; Lobell and Field, 2007; 

Jones and Thornton, 2003; Matthews et al., 1995) or on multiple crops (Lobell et al., 2011; 

Tebaldi and Lobell, 2008; Lizumi and Ramankutty, 2016; Adhikari et al., 2015.). Other 

studies focus on various econometric models that use panel data estimation of weather 

variables on economic variable like Gross Domestic Product (GDP) with a linear (Dell et 
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al., 2012) or nonlinear specification for temperature (Hsiang, 2010; Deryugina and Hsiang, 

2014; Dell et al., 2014; Schlenker et al., 2009). In addition, other studies focus on cross-

sectional data estimation of the impacts of climate change (Mendelsohn et al., 1994; Gallup 

et al., 1999; Masters and McMillan, 2001; Sachs, 2003; Nordhaus, 2006; Hendricks, 2018; 

and Ortiz-Bobea, 2020). Furthermore, other outcome variables such as civil conflict (Burke 

et al., 2009), violence (Theisen, 2012), automobile production (Cachon et al., 2012), time 

allocation (Graff and Neidell, 2014), mortality rate, and migration (Deschênes and Moretti, 

2009), household electricity (Auffhammer and Aroonruengsawat, 2011) and food 

consumption (Bhattacharya et al., 2003) on weather variables were also used to estimate 

the impacts of climate change. Finally, adaptation and mitigation are other important areas 

in climate change studies. With studies on adaption studying the adoption of agro-

ecological strategies (Altieri and Nicholls, 2017), transitions in livestock systems 

(Weindl et al., 2015), inefficient institutions (Anderson and Hill, 2004), evolving patterns 

of international trade (Baldos and Hertel, 2015), and adaptation to climate change in US 

agriculture (Burke and Emerick, 2016; Deschênes et al., 2011). While research on 

mitigation is based on reducing greenhouse gas emission (Murray et al., 2005) and land-

based mitigation policy (Hussein et al., 2013). 

The sensitivity of TFP to climate change is not well understood. The few studies 

available examine the impact of climate change on TFP in the United States (Liang et al., 

2017; Ortiz –Bobea et al., 2018) and global TFP (Henseler and Schumacher, 2019; Letta 

and Tol, 2019; and Ortiz–Bobea et al., 2020). This essay makes two contributions to the 

literature. First, by contributing to the growing literature on climate impacts, especially on 

climate change and TFP. Second, by quantifying on a macro basis (regional) the 
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relationship between climate change and TFP on a short to long-term basis. The essay is 

organized as follows. The next section reviews the methodology that highlights the 

theoretical and empirical framework and includes the model specification for assessing the 

impact of climate change on agricultural productivity. 

Section 3 discusses the data while section 4 presents results, and section 5 discusses 

limitation of the study. Section 6 concludes on the impact of climate change on TFP. 

2.2 Methodology  

Here I discuss the theoretical and empirical framework as well as the model 

specifications. 

2.2.1 Theoretical Framework 

To understand the impact of climate change on agricultural productivity the functional 

relationship proposed by Dell et al. (2014) is used: 

𝑦𝑦 = 𝑓𝑓(𝐶𝐶,𝑋𝑋)  (1) 

where 𝑦𝑦 refers to the outcome variable,  𝐶𝐶 refers to weather variables such as temperature 

and precipitation and 𝑋𝑋 refers to any other characteristics that may affect the outcome 

variable.  This relationship can be estimated using cross-sectional or panel data. Each 

method examines the impacts of climate variables on any economic outcome. A 

disadvantage of the cross-sectional analysis is that it is susceptible to suffer from omitted 

variable bias. 

I use panel data estimation that accounts for unobservable differences, thus 

reducing omitted variable bias (Hsiang, 2016). Panel data estimators shed light on the 

impact of year-to-year fluctuations in weather. Using annual data does not account for the 

possibility of medium to long-term impact such as technology improvement, research, and 

development, labor productivity, etc. (Chen and Gong, 2021). To estimate longer term 
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impact of climate change, I make use of long time period (5-year and 10-year averages) to 

exploit variations in longer term changes and compare results between these two time 

periods to show the effect of farmers’ adjustments to short- and long-term weather effects. 

2.2.2 Empirical model 

Fixed-effect regression analysis leverages spatial and temporal variations in TFP, 

temperature, and precipitation for 128 countries, ranging from 1961 to 2014 to estimate the 

effects of temperature and precipitation impacts. The preferred model specification is: 

   𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇)𝑖𝑖𝑖𝑖 =  𝛼𝛼𝑖𝑖  +  𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖2 +  𝛽𝛽3𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 
2 + ℎ𝑖𝑖 𝑡𝑡 +

         𝜃𝜃𝑖𝑖 𝑡𝑡2 + 𝜖𝜖𝑖𝑖𝑖𝑖                                                                 (2) 

where log (𝑇𝑇𝑇𝑇𝑇𝑇) represents the log of total factor productivity for each country 𝑖𝑖, 𝛼𝛼𝑖𝑖  are 

country fixed effects that capture time-invariant heterogeneity between countries,  

ℎ𝑖𝑖 𝑡𝑡 and 𝜃𝜃𝑖𝑖 𝑡𝑡2 are country-specific linear and quadratic trends that allow for weather 

variables and TFP growth to evolve flexibly at the country level, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 refers to 

temperature measured in degrees Celsius and 𝑃𝑃𝑃𝑃𝑃𝑃 refers to precipitation measured in 

millimeters.  

2.3 Data 

2.3.1 Total Factor Productivity (TFP) 

TFP can be referred to as the “efficiency with which agricultural inputs are combined to 

produce output by using improved technology and practices” (Fuglie et.al., 2020).  TFP is 

defined as: 

TFP =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

.  (3) 

The total output consists of data on production of crops and livestock aggregated into a 

production index while total inputs consist of data on agricultural cropland (for annual and 
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perennial crops further subdivided into rain-fed and irrigated cropland), farm labor (active 

population of male and female workers in agriculture), animal stock, inorganic fertilizer 

usage, and farm machinery (number of riding tractors in use). TFP is denoted as an index 

with the base year of 2005, such that the value of TFP for each country is set to 100 in 2005 

(percent change in TFP is relative to 2005), if TFP is above (below) 100 it will be 

interpreted as increasing (decreasing) productivity (Fuglie, 2018). The explanation above 

is specific to the ERS dataset, as there are other ways of measuring TFP not discussed here. 

There was little growth during the Green revolution (1960’s to 1980s) an era that witnessed 

large investment in research and development coupled with policy support (Figure 2.1). 

However, the benefit of this investment did not manifest until the 1990’s when TFP 

witnessed a steady increase afterwards. Presently, developed countries are experiencing a 

flat growth in TFP while most of the growth arises from developing countries. Data can be 

accessed on the USDA – ERS website for International Agricultural Productivity (USDA, 

2020). 

2.3.2 Weather Variables 

Historical temperature and precipitation data are from the Climatic Research Unit (CRU) 

monthly time-series Version 3.23 (Mitchell and Jones, 2005; Harris et al., 2014).  CRU 

produces a global gridded weather dataset providing monthly weather measures on a 0.5 X 

0.5 latitude / longitudinal degree scale. Minimum and maximum temperature are measured 

in Celsius while precipitation is measured in millimeters. Agricultural seasons vary widely 

across countries; therefore, weather variables are average monthly temperature and 

precipitation recorded over the growing season for corn determined by using the global 

gridded crop calendars in Sacks et al. (2010). One of the major problems encountered when 

using weather datasets is issues of missing station data or measurement error; however, 
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gridded datasets such as CRU, PRISM or terrestrial air temperature helps to adjust for these 

bias (Dell et al., 2014). 

To show the variations in temperature, mean temperature for each region was 

obtained and subtracted from the monthly growing season temperature as shown in Figure 

2.2 to show the temperature deviation from the long-run average. For all the regions, the 

series is trending upward and becoming increasingly volatile. This is in line with the 

observation that countries are becoming warmer with earlier predictions by Hansen et al. 

(2006) that temperature increased 0.2 °C every decade with warming more prevalent in the 

eastern equatorial Pacific than the eastern equatorial Pacific. Although not in our dataset, 

the last six years (2014 - 2020) have been the warmest so far (Morice et al., 2021). Global 

mean precipitation shows an upward volatile trend with swings i.e. periods of heavy rain 

and lows - dry periods characterized by droughts (Figure A.3 in Appendix). However, 

Figure 2.3 represents the regional mean precipitation with mild fluctuations (East Asia & 

Pacific) and little fluctuations for developed regions like Europe & Central Asia). 

2.3.3 Descriptive Statistics 

Regional decomposition gives a clearer picture for weather fluctuations (Table 2.1). On 

average, precipitation is highest in Latin America and the Caribbean region (184.6 mm) 

with the lowest experienced in the Middle East and North Africa region (13.5). The average 

precipitation by country is 123.07 millimeters with a minimum of 0 millimeters in Jordan 

(2012) and a maximum of 710.97 millimeters in Jamaica (2008). Temperature in the 

temperate regions like Europe & Central Asia and North America with 17.2ᵒC, respectively 

recorded the lowest temperature on average while Sub-Saharan Africa recorded the highest 

temperature of 24.3ᵒC. There is an increase in temperature as we move from Kyrgyzstan 
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in Central Asia with a minimum temperature of 10.77 °C in 1992 to Iraq in the Middle East 

& North Africa region with a maximum temperature of 34.91 in 2010. Histograms were 

also created to show the frequency (temperature and precipitation data) and give more 

insight for estimating predictive log of total factor productivity (Figure 2.4 & 2.5). TFP 

will be interpreted in terms of growth rate; developed regions like North America and 

European Union region had an average growth rate of 1.2 percent (1960’s to 1989) to 1.8 

percent (1990’s to 2014) and 1 percent (1960’s to 1989) to 1.2 percent (1990’s to 2014) 

respectively. While developing regions like Sub- Saharan Africa grew at a slow rate from 

0.3 percent to 0.8 percent and Latin America & Caribbean with an average growth rate of 

1 percent to 1.7 percent from the 1960’s-1989 and 1991-2014 respectively. Agricultural 

output and productivity growth have plateaued in developed regions which has been offset 

by increasing growth in other regions netting a positive net global growth (Fuglie, 2018). 

2.4 Results and Discussion 

My primary analysis focuses on the effect of changes in climate on agricultural productivity 

(TFP) and, results are divided into three sections. In the first section, I discuss the estimates 

for TFP response to weather effects for global and regional estimates. The data are divided 

into seven regions; however, only four regions (Sub-Saharan Africa, South Asia, East 

Africa & Pacific and Latin America & Caribbean) will be reported as these regions 

represent the most populous and producers of over 50 percent of the world’s crop 

production (UN, 2019; FAO, 2020). Furthermore, data shows that TFP in SSA is increasing 

but at a very slow pace, TFP in Latin America & Caribbean and South Asia regions are 

increasing rapidly and are two of the regions contributing to the global increase in TFP 

growth and East Asia & Pacific region experienced rapid TFP growth but presently slowing 
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down. Results in this essay will give us an insight into how climate change could affect 

TFP.  In the second section, I showcase the effects of adaptations by farmers by examining 

their adjustments on a long-run basis using 5-year and 10-year averages.  Finally, I report 

and discuss results for other alternative specifications: including geographical and income 

decomposition. 

2.4.1 Precipitation effects on TFP is significant while temperature effect is   
insignificant. 
 
The results from our main specifications for TFP are given in Table 2.2 and shown 

graphically in Figure 2.6 & 2.7. Changes in temperature have an insignificant effect on 

TFP (Column 1-5 of Table 2.2) but the monthly precipitation effect is significant for the 

global analysis (Column 1 of Table 2.2). On further investigation, the data was divided into 

regional decomposition to determine region(s) driving the significant precipitation result. 

In column 2, Sub Saharan Africa region is significant for precipitation but insignificant for 

other regions. The coefficients indicate that a nonlinear TFP responses to changes in both 

monthly temperature and precipitation exists; exposure to temperature up to a threshold 

increases agricultural TFP, but above a certain threshold leads to a decline in TFP.   

Predicted values of the Log of TFP are calculated along the temperature gradient 

as shown in Figure 2.6, holding precipitation at a constant mean level. This helps predict 

the value of Log of TFP for each observation as well as indicating the threshold at which 

temperature increase begin to harm agricultural TFP. Predictive margins give evidence that 

TFP growth is negatively impacted by higher temperature levels (above the threshold), 

resulting in a reduction of TFP from its maximum level.  The graph shows how a 1°C 

increase in temperature affects TFP, and how these effects differ by the initial temperature. 

When temperature is 15°C, a 1°C increase causes TFP to increase by 1.61 percent for the 
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global analysis, 5.4 percent for Sub-Saharan Africa (SSA), and 2.5 percent for Latin 

America & Caribbean (LAC). When temperature is 24 °C for global and SSA and 23 °C 

for LAC, then a 1-degree increases causes roughly no change in TFP for global, SSA and 

LAC. However, additional increase beyond 23°C causes a large decrease in TFP in these 

regions.  

Finally, holding temperature at a constant mean level, predicted values of Log of 

TFP are calculated along the precipitation gradient as shown in Figure 2.7. When monthly 

precipitation is at 50mm, an increase in precipitation causes TFP to increase; however, as 

changes in precipitation increases until it gets to 400mm (global and LAC) and 300mm 

(SSA), a gradual decline in TFP takes place. Fluctuations in precipitation in SSA can have 

a negative economic implication as agriculture generates 23 percent of the continent’s 

Gross Domestic Product (GDP). Thus, showing the importance of this result, that rainfall 

plays a vital role in SSA regions where 97 percent of the staple crop production relies on 

rain fed agriculture.  

2.4.2 Temperature increase has a varying effect on TFP for 5 and 10- year average. 
  
A focus on climate impacts in the short term cannot showcase the effect of adaptation by 

farmers thus, I examined adjustments in the long run using 5-year and 10-year average 

analogous to the long difference methodology. The results for these are given in Table 2.3 

and Table 2.4 and shown graphically in Figure 2.8. The global 5-year result (Column 1 of 

Table 2.3) shows that an increase in monthly temperature or precipitation has an 

insignificant effect on TFP. The opposite is the case for global 10- year where temperature 

has a concave and significant effect on TFP; log TFP is expected to increase up to a 

temperature threshold and then decrease above that threshold. 
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Furthermore, Figure 2.8 helps to explain the effect of adaptation, at 15°C, additional 

increases in temperature increases TFP until it reaches 24°C where TFP starts to decrease. 

However, as the effect of temperature increases above the threshold, TFP decrease become 

less severe with 5-year average and 10-year average data. This shows that the short-term 

temperature effect is offset in the long run as evidenced by the flat function for the 10-year 

average graph as compared to annual. Several adaptation techniques adopted by farmers 

can be planting improved seeds/varieties, optimizing the growing season (early or late 

planting), crop diversification, soil conversation practices (tillage method), and irrigation 

efficiency.  

2.4.3 Alternative Panel Estimation and Explanations  

The analysis up to this point is focused on global and regional analysis, this subsection will 

compute alternative panel fixed effects estimation based on the following alternative 

classifications: 1) climate classification divided into tropical and temperate and 2) income 

decomposition based on World Bank classification divided into high income, middle upper 

income, middle lower income, and low income. The classification is based on the Gross 

National Income (GNI) per capita in U.S dollars converted from the country’s local 

currency (World Bank, 2021). According to World Bank, a country’s income classification 

can be reassigned if its income falls below the threshold, however in my models the income 

classification of countries remains the same over time.  

The results for the alternative specification are specified in Table 2.5 and Table 2.6 

and shown graphically in Figure 2.9, 2.10, 2.11, and 2.12 (shows results that are statistically 

significant). The result for the climate and income classification are in line with the main 

specification where an increase in temperature has an insignificant effect on TFP (column 
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1and 2 of Table 2.5 and column 1-4 of Table 2.6) but precipitation effect is significant for 

tropical climate, high income, and low income.  An additional increase in monthly 

precipitation (temperature) for tropical climate increases TFP until it reaches precipitation 

(temperature) thresholds of 350mm (24°C), further increases above these thresholds result 

in sharp declines in TFP (Figure 2.9 and 2.10). High- and Low-income economies are 

highly sensitive to increased fluctuation in precipitation. An additional precipitation above 

300mm will decrease TFP gradually (Figure 2.11). While the opposite is the case for high 

income countries; TFP decreases as it reaches 150mm of precipitation after which an 

additional increase in precipitation increases TFP significantly (Figure 2.12). In summary, 

high income and low-income groups are more sensitive to extreme monthly precipitation 

as compared to middle upper income and middle lower income groups. Interestingly, some 

countries in the tropical climate, also classified as a low-income nation are sensitive to 

precipitation (Table 2.5, Column 1; Table 2.6, Column 4) such as if exposed to either 

extreme flooding or drought.  

2.5 Robustness and limitations 

This section reports various robustness checks and controls for model specifications as well 

as limitations in this study. 

2.5.1 Warming impacts are robust to the inclusion of more controls in the panel    

          specification.     

To test the robustness of the TFP results, I show in this subsection that our results are 

relatively insensitive to the choice of controls (Table 2.7). The reported results include 

country fixed effects and country-specific linear and quadratic trends and specifications 

with additional controls (see Appendix). The result shows further evidence that irrespective 

of the inclusion of additional controls, results are insensitive. In addition, the regression 
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estimates are consistent across the range of alternative panel specifications and in line with 

climate impacts literature with similar signs and magnitude to the original model.  

2.5.2 Limitations 
 
Not surprisingly, there are limitations in this paper. Firstly, weather variables such as 

precipitation could suffer from possible measurement errors due to substantially fewer 

weather stations or incomplete coverage for middle-income and developing countries (Dell 

et al., 2014). Secondly, the potential issue of aggregation bias (which relates to overstating 

or understating parameter estimates caused by presence of country level heterogeneity) 

might arise due to the data aggregation. Thirdly, omitted variable bias due to the omission 

of additional time-varying variables such as CO2 fertilization, humidity, or solar duration. 

However, this limitation ought not to dampen the result of our analysis due to the 

robustness check of results to various alternatives model specification.  

2.6 Summary and Conclusion 

The purpose of this essay was to explore how agricultural productivity (TFP) is 

responsive to climate change from regional decomposition to the world while 

accounting for its impact in the short and long run. By answering these three questions: 

1) What is the effect of weather changes on agricultural productivity? 2) Will these effects 

vary from one region to another in the long or short run? and 3) Did farmers adapt or 

mitigate the effect of climate change in their production decisions on the long run? To 

answer these questions, I begin by estimating how historical global agricultural TFP 

responds to climate change using a fixed-effects regression model. The identification 

strategy employs yearly changes in temperature and precipitation to estimate their effect 

on agricultural productivity at a regional level.  
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Primary results show that an increase in precipitation has a significant effect on 

TFP, but the temperature effect is insignificant. As monthly precipitation exceeds 400mm 

for global and LAC and above 300mm for SSA, the marginal impact of precipitation 

decreases such that TFP decreases. In addition, the short-term temperature effect is offset 

in the long run showing that farmers adapt to reduce the effects of temperature in their 

behavioral decisions. Furthermore, tropical countries are more sensitive to extreme 

precipitation than temperate countries. Low-income groups are also sensitive to fluctuation 

in precipitation as compared to other income group. In summary, precipitation effects are 

more prominent than temperature effects and prevalent in tropical and low-income 

countries that rely mainly on rain fed agriculture. Thus, technology advances, adaptation 

to climate change, and investment in Research and Development should be accelerated to 

overcome future TFP losses.  
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Figure 2.1: Regional average TFP from 1961 to 2014 

Source: USDA ERS 
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Figure 2.2: Volatility of regional temperature from 1961 to 2014 
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Figure 2.3: Regional mean monthly precipitation from 1961 to 2014 

Source: USDA ERS 
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Table 2.1: Summary statistics of regression variables from 1961 to 2014 

Variable 
(mean) 

All East 
Asia 

& 
Pacific 

Sub-
Saharan 
Africa 

Europe 
& 

Central 
Asia 

Latin 
America 

 & 
Caribbean 

South 
Asia 

Middle 
East & 
North 
Africa 

North 
America 

Precipitation 
(mm) 

123.07 184.1 143.6 55.1 184.6 166.2 13.5 88.6 

Temperature 
(ᵒC) 

22.15 23.9 24.3 17.2 23.1 23.7 23.2 17.2 

TFP (Index) 85.57 82.5 90.5 83.5 89.7 85.7 70.6 74.2 
Source: USDA ERS 
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Figure 2.4: Histogram for Global Temperature Data  

 
 

 

Figure 2.5: Histogram for Global Precipitation Data  
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Table 2.2: Global and Regional Results of Weather Effects on Log of TFP 

 Global 
(annual) 

(1) 

Sub-Sahara 
Africa 

(2) 

East Asia & 
Pacific 

(3) 

Latin America 
& Caribbean 

(4) 

South Asia 
 

(5) 
   logTFP logTFP logTFP logTFP logTFP 
Temperature 0.0161                

(1.34) 
0.0540 
(1.10) 

0.0554 
(1.10) 

0.0256 
(0.69) 

-0.102 
(-1.73) 

Temperature2 -0.000612 
(-1.94) 

-0.00114 
(-1.10) 

-0.00146 
(-1.47) 

-0.00117 
(1.33) 

0.00204 
(1.87) 

Precipitation 0.000325* 
(2.12) 

0.00129** 
(2.96) 

-0.00000127 
(-0.00) 

0.000108 
(0.77) 

-0.0000242 
(-0.04) 

Precipitation2 -0.000000432 
(-1.73) 

-0.00000202 
(-1.99) 

2.18e-08 
(-0.30) 

-0.000000111 
(-0.57) 

4.52e-08 
(0.04) 

N 6912 2106 648 1350 432 
FE Country Country Country Country Country 
Country  
Time trend 

Linear, 
Quadratic 

Linear, 
Quadratic 

Linear, 
Quadratic 

Linear, 
Quadratic 

Linear, 
Quadratic 

Notes: Data are for cross countries, 1961–2014. Specifications 1 are estimated with global annual data 
while 2-5 are regional cross-country panel data. Different fixed effects were shown at the bottom; t 
statistics in parentheses. 
* p<0.05, ** p<0.01, *** p<0.001 
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Figure 2.6: Predicted Log of TFP as a function of temperature  

Global      East Asia & Pacific 

   

 

 Sub-Saharan Africa    Latin America & Caribbean 

   

 
 

 

 

 

 

 

 

4.
3

4.
35

4.
4

4.
45

4.
5

Li
ne

ar
 P

re
di

ct
io

n

15 20 25 30
Temperature

Global

3.
5

4
4.

5
5

Li
ne

ar
 P

re
di

ct
io

n

15 20 25 30 35
Temperature

East Asia & Pacific

4.
2

4.
3

4.
4

4.
5

4.
6

Li
ne

ar
 P

re
di

ct
io

n

15 20 25 30
Temperature

Sub-Saharan Africa

4.
1

4.
2

4.
3

4.
4

4.
5

4.
6

Li
ne

ar
 P

re
di

ct
io

n

15 20 25 30
Temperature

Latin America & Caribbean



25 

Figure 2.7: Predicted Log of TFP as a function of precipitation 
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Table 2.3: Global and Regional Results of Climate Impacts for 5-year average. 

5-year average (cross country) 
 Global 

 
(1) 

Sub- Saharan 
Africa 

(2) 

East Asia & 
Pacific 

(3) 

Latin America 
& Caribbean 

(4) 
   logTFP logTFP logTFP logTFP 
Temperature 0.0541 

(1.50) 
0.0930 
(0.82) 

0.100* 
(1.55) 

0.115 
(0.83) 

Temperature2 -0.00161 
(-1.76) 

-0.00210* 
(-0.93) 

-0.00285* 
(-2.27) 

0.00371 
(-1.17) 

Precipitation 0.000340 
(0.43) 

0.00169 
(1.36) 

0.000542 
(0.36) 

0.000234 
(0.23) 

Precipitation2 -0.000000118 
(-1.17) 

-0.00000341 
(-1.17) 

-0.0000015 
(-0.57) 

-0.00000299 
(-0.15) 

N 1280 390 120 250 
FE Country Country Country Country 
Country  
Time trend 

Linear, 
Quadratic 

Linear, 
Quadratic 

Linear, 
Quadratic 

Linear, 
Quadratic 

Different fixed effects were shown at the bottom; t statistics in parentheses. 
* p<0.05, ** p<0.01, *** p<0.001 
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Table 2.4: Global and Regional Results of Climate Impacts for 10-year average. 

10-year average (cross country) 
 Global 

 
(1) 

Sub- Saharan 
Africa 

(2) 

East Asia & 
Pacific 

(3) 

Latin America 
& Caribbean 

(4) 
   logTFP logTFP logTFP logTFP 
Temperature 0.164* 

(2.26) 
0.0198 
(0.10) 

0.00868 
(0.03) 

0.284 
(0.89) 

Temperature2 -0.00400* 
(-2.47) 

-0.000895 
(-0.24) 

-0.000794 
(-0.15) 

-0.00734 
(-1.1) 

Precipitation 0.000814 
(0.41) 

0.00464 
(1.89) 

-0.00738 
(-0.97) 

0.00291 
(0.23) 

Precipitation2 -0.00000238 
(-0.50) 

-0.00000915 
(-2.02) 

-0.0000158 
(0.86) 

-0.00000731 
(1.00) 

N 640 195 80 120 
FE Country Country Country Country 
Country  
Time trend 

Linear, 
Quadratic 

Linear, 
Quadratic 

Linear, 
Quadratic 

Linear, 
Quadratic 

Different fixed effects are shown at the bottom; t statistics in parentheses. 
* p<0.05, ** p<0.01, *** p<0.001 
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Figure 2.8: Predicted Log of TFP as a function of temperature for 5 and 10- 
  year average.   
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Table 2.5: Regression Result for Tropical and Temperate countries.  

 Tropical 
countries 

Temperate 
countries 

   logTFP logTFP 
Temperature 0.00816                

(0.25) 
-0.00244 
(-0.20) 

Temperature2 -0.000541 
(-0.76) 

-0.000095 
(-0.26) 

Precipitation 0.000516** 
(2.99) 

0.000277 
(-0.76) 

Precipitation2 -0.0000007 
(-2.50) 

-0.0000005 
(-0.70) 

N 3996 2916 
FE 
Country  
Time trend 

Country 
Linear, 

Quadratic 

Country 
Linear, 

Quadratic 
Notes: Data are for cross countries, 1961–2014. Different fixed effects are shown at the bottom; t 
statistics in parentheses. 
* p<0.05, ** p<0.01, *** p<0.001 
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Figure 2.9: Predicted Log of TFP as a function of temperature for tropical climate 
        Tropical climate     

  
 

Figure 2.10: Predicted Log of TFP as a function of precipitation for tropical climate 
                      Tropical climate             
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Table 2.6: Result for Income Decomposition of Weather Effects on Log of TFP.  

 High  
Income 

Middle Upper  
Income 

Middle lower 
Income 

Low 
Income 

   logTFP logTFP logTFP logTFP 
Temperature 0.0371 

(1.62) 
-0.0323 
(-1.43) 

-0.0181 
(-0.97) 

0.0980 
(1.08) 

Temperature2 -0.00119 
(-1.68) 

0.000499 
(1.01) 

0.000222 
(0.46) 

-0.00247 
(-1.17) 

Precipitation -0.000550* 
(0.41) 

0.000123 
(0.57) 

0.0000449 
(0.13) 

0.00154*** 
(3.89) 

Precipitation2 -0.00000146 
(1.92) 

0.00000015 
(-0.48) 

2.19e-08 
(0.04) 

-0.00000264** 
(-3.38) 

N 1350 1944 2214 1404 
FE Country Country Country Country 
Country  
Time trend 

Linear, 
Quadratic 

Linear, 
Quadratic 

Linear, 
Quadratic 

Linear, 
Quadratic 

Notes: Data are for cross countries, 1961–2014. Different fixed effects are shown at the bottom; t 
statistics in parentheses. 
* p<0.05, ** p<0.01, *** p<0.001 
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Figure 2.11: Predicted Log of TFP as a function of precipitation for low-income     
           countries 
 
           Low Income 

 

Figure 2.12: Predicted Log of TFP as a function of precipitation for high income  
           countries 
 
           High Income 
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Table 2.7: Additional controls for robustness checks 

 Fixed Effects (FE) Country Specific  
Time Trend 

Time Trends 

Models Country  Year  Linear Quadratic Linear Quadratic 
A Yes    Yes Yes 
Original  Yes  Yes Yes   
B Yes Yes     
C Yes Yes Yes    
D Yes Yes Yes Yes   
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Chapter 3 

 

Economic modeling of the long-run impact of 

agricultural productivity (TFP) growth on food 

security and the environment 

 

3.1 Introduction 
 
Agricultural productivity plays an important role in providing food security and food 

availability for the present population of 7.9 billion people in the world (UN, 2021). Its 

role remains significant as 821 million people as of 2017 are affected by global 

undernourishment largely due to conflict and climate change (Fuglie et al., 2020). 

Furthermore, climate change is expected to have a devastating effect on the agricultural 

sector with estimated warming of 1.5°C above pre-industrial levels (IPCC, 2018). 

Therefore, implementing policies to stimulate productivity growth across regions is key to 

maintaining the global supply of food. Especially at a time where global population is 

expected to increase by 2 billion between 2019 – 2050 (UN, 2019), of which 1.05 billion 

in Sub -Saharan Africa region. The global middle class is expected to increase by 3.1 billion 

people from 2009 – 2030 with the bulk of the growth from Asia (OECD, 2012). 

The overall objective of this study is to understand the impact of Total Factor 

Productivity (TFP) growth on food security and the environment. To do this, I address three 

specific questions. First, what is the impact of TFP growth in specific regions on global 
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food security and the environment? For example, estimating how TFP growth in U.S. & 

Canada impacts global food security and the environment on those regions. Second, how 

do TFP shocks in specific regions affect food security and the environment in other regions 

(i.e., measuring where spillover effects occur)? Third, where is TFP growth most effective 

at reducing malnutrition and carbon emissions? I address these questions using a partial 

equilibrium model to simulate the impact of TFP growth on the malnutrition index and 

carbon emissions in each region of the world. I simulate various scenarios of TFP growth 

to ascertain desirable regions for TFP growth and the spillover effects of such growth on 

other regions. 

The effect of global agricultural productivity growth on global food security has 

been extensively studied (Baldos and Hertel, 2014; Alston, Martin, and Pardey, 2014; Rada 

et al., 2013; Janvry and Sadoulet, 2010; Timmer, 2002). There are also case studies 

highlighting the effects of agricultural productivity growth on food security in specific 

nations like China (Anderson and Strutt, 2014), Brazil (Costa et al., 2013), and Nepal 

(Morioka and Kondo, 2017). However, few studies focus on regional impacts of TFP 

growth on food security. And exception is Muzari (2016) on the Sub-Saharan Africa 

region. Aside from this study, few studies have estimated how TFP growth in North 

America impacts malnutrition or how TFP growth in different regions impacts global 

malnutrition. This information is critical for policymakers in the United States, who are 

making decisions about Research and Development (R&D) funding and for making 

decisions on where to target R&D efforts regionally to effectively reduce global 

malnutrition.  
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The effect of TFP growth on cropland areas is ambiguous because TFP growth 

gives an incentive for land expansion and land saving. First, holding prices constant, TFP 

growth makes the land more productive and could incentivize cropland expansion (and 

thus increase carbon emissions). For example, several studies found that introducing 

improved varieties increases profitability which incentivizes agricultural land use 

expansion (Schmitz et al., 2014; Phelps et al., 2013; Angelsen et al., 2001; Gibbs et al., 

2010). Others proposed that in order to increase food production to satisfy the global 

demand, land conversion is inevitable through land clearing and intensification and forest 

encroachment (Tilman et al., 2011; Godfray et al., 2010) Secondly, TFP growth decreases 

global prices which creates an incentive to decrease cropland area. This is consistent with 

several other studies that suggest agricultural productivity growth has significantly reduced 

negative environmental externalities, in line with Borlaug’s hypothesis that says increased 

yield through technology adoption leads to a reduction in global cropland area (Borlaug, 

2007; Stevenson et al., 2013; Byerlee et al., 2014; Villoria et al., 2014; Burney et al., 2010).  

Considering the existing literature, my paper makes two contributions. First, it 

extends the work done by Hertel and Baldos (2014) by providing insights on the impact of 

regional agricultural productivity growth on global malnutrition and carbon emission using 

comparable TFP growth shocks in different regions. Secondly, it examines how TFP 

growth in a specific region affects the malnutrition and carbon emission in another region 

(i.e., the spillover impact of TFP growth in the region (A) on food security and the 

environment in the region B). From a policy point of view, these contributions will help 

determine the region in which TFP growth will be most effective at improving food 

security and reducing carbon emission. 

https://www.sciencedirect.com/science/article/pii/S0959378016304046#bib0270
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This essay is organized as follows. The next section reviews the methodology 

(conceptual framework and empirical model) that includes a description of the data and 

model equations. Section 3 describes the scenario simulation to estimate regional TFP 

growth. Section 4 will present the global and region-specific results and Section 5 and 6 

will continue by discussing the results and the limitations of the study and conclusions, 

respectively. 

3.2 Methodology 

The model simulation has two basic steps. First, I define three scenarios of regional TFP 

growth by 2050. Second, I use the TFP growth scenarios as exogenous shocks in the partial 

equilibrium model to quantify the long-run impact on food security and the environment. 

The partial equilibrium model used in this study is SIMPLE (Simplified International 

Model of Agricultural Prices, Land Use, and the Environment); an agricultural trade model 

that specializes in one sector incorporating connections between crop production and 

environmental variables (Baldos and Hertel, 2013). The remaining discussion in this 

section is divided into two sections – conceptual and empirical framework. The conceptual 

framework illustrates the intuition driving the results of the economic modeling of the long-

run impact on food security and the environment while the empirical framework discusses 

the data, parameters, and equations that are used for the model simulations.  

3.2.1 Conceptual Framework 

The conceptual framework focuses on a single global economy while the numerical 

simulation is expanded into a multi-region model. The model revolves around six key 

determinants of long-run supply and demand for agricultural land. These are three 

exogenous drivers of change in the global system whilst being moderated by three 
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elasticities referred to as margins of response to scarcity. The first exogenous driver is the 

percentage growth in demand (D) for agricultural output (A) denoted by Δ𝐴𝐴𝐷𝐷 indicating the 

increasing global demand for food consumption driven by changes in population, income, 

energy prices, and biofuel use policy (Baldos et al, 2014). Second, percentage growth in 

productivity of land (L) that affects demand (D) for land (does not affect demand for 

agricultural output) denoted by Δ𝐿𝐿𝐷𝐷. Finally, the percentage change in the supply (S) of land 

to agricultural activities denoted by Δ𝐿𝐿𝑆𝑆, affected by the availability of land for farming, 

conversion to urban lands, or for use in other productive services. 

To predict changes in global land use, three margins of economic response to 

scarcity are also incorporated into the model. These are the price elasticity of demand for 

agricultural output (A) denoted by ղ𝐴𝐴𝐷𝐷. When prices are high, consumer demand falls 

leading to lower food purchases with implications for food security. Secondly, the intensive 

margin of supply response (yield response to higher commodity prices) is referred to as the 

price elasticity of supply with respect to commodity prices denoted by ղ𝐴𝐴𝑆𝑆.𝐼𝐼. Showing that 

when the prices of crop A is high, farmers will intensify production in that crop to benefit 

from the high price. Finally, the extensive margin of crop supply denoted by ղ𝐴𝐴𝑆𝑆.𝐸𝐸 (area 

response to commodity prices) relating to the expansion of crop production which directly 

increases land area cultivated.  

Next, I describe the analytical framework for the six factors from Hertel and Baldos 

(2016, p.165 -168).  Aggregate demand for agricultural output (q𝐴𝐴𝐷𝐷) is governed by the 

aggregate price elasticity of demand (ղ𝐴𝐴𝐷𝐷 > 0) that captures the responsiveness of demand 

to changes to commodity price (𝑝𝑝𝐴𝐴  ).  Subject to changes due to exogenous growth in 
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population, per capita income, and other factors Δ𝐴𝐴𝐷𝐷, thus the percentage change long-run 

demand is given by: 

q𝐴𝐴𝐷𝐷  = -ղ𝐴𝐴𝐷𝐷 𝑝𝑝𝐴𝐴  +  Δ𝐴𝐴𝐷𝐷 .                                                                                                              (1) 

Next, assume a global production function that combines land and variable inputs (labor, 

capital, etc.) under constant returns to scale/ zero profits, the percentage change in 

agricultural price (𝑝𝑝𝐴𝐴 ) is expressed as: 

  𝑝𝑝𝐴𝐴 =  ∑ (𝜃𝜃𝑗𝑗  𝑝𝑝𝑗𝑗 + 𝜃𝜃𝐿𝐿 𝑃𝑃𝐿𝐿  ).                            (2)  

where 𝑃𝑃𝑗𝑗 refers to the percentage change in the price of variable input j, 𝜃𝜃𝑗𝑗  is the cost share 

of input j in the total cost of agricultural production, 𝑃𝑃𝐿𝐿 refers to the percentage change in 

the price of land input L and 𝜃𝜃𝐿𝐿  is the cost share of land input L in the total cost of 

agricultural production.  

The sum of the cost shares of the land and variable inputs equals one, such that if the price 

of an input (land) changes by more than the cost share-weighted change of the input bundle, 

there is substitution away from that input (land). (I am not sure why this is here) 

The long-run percentage change in global derived demand for land (q𝐿𝐿 
𝐷𝐷) is: 

q𝐿𝐿𝐷𝐷  =  q𝐴𝐴𝑆𝑆 − 𝜎𝜎�𝑝𝑝𝐿𝐿  − 𝑝𝑝𝐴𝐴 � −  Δ𝐿𝐿𝐷𝐷.                                                                                          (3) 

where 𝑃𝑃𝐿𝐿   refers to land rent, q𝐴𝐴𝑆𝑆  the supply of agricultural output and 𝜎𝜎 is the elasticity of 

substitution in production.  

Land rents can also be written as: 

𝑃𝑃𝐿𝐿   =  𝜃𝜃𝐿𝐿−1 𝑝𝑝𝐴𝐴 .                                                                                                                         (4) 

Finally describing the long-run supply of land to agriculture ( q𝐿𝐿𝑆𝑆) is: 

q𝐿𝐿𝑆𝑆  =   𝑣𝑣𝐿𝐿𝑆𝑆 𝑝𝑝𝐿𝐿  +  Δ𝐿𝐿𝑆𝑆 .                                                                                                                (5) 
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where 𝑣𝑣𝐿𝐿𝑆𝑆  captures elasticity of land supply and Δ𝐿𝐿𝑆𝑆 representing a shift in land supply to 

other uses. Plugging equation 4 into land supply (equation 5) to obtain land supply in 

terms of commodity price thus: 

q𝐿𝐿𝑆𝑆  =   𝑣𝑣𝐿𝐿𝑆𝑆 𝜃𝜃𝐿𝐿−1 𝑝𝑝𝐴𝐴 −  Δ𝐿𝐿𝑆𝑆 = ղ𝐴𝐴𝑆𝑆.𝐸𝐸  𝑝𝑝𝐴𝐴  −  Δ𝐿𝐿𝑆𝑆 .                                                                        (6) 

where 𝑣𝑣𝐿𝐿𝑆𝑆 𝜃𝜃𝐿𝐿−1 can be referred to as the extensive margin of supply response (ղ𝐴𝐴𝑆𝑆.𝐸𝐸). 

Rewriting Equation 3 so that commodity supply is on the left, the agricultural commodity 

supply equation becomes: 

  q𝐴𝐴𝑆𝑆 =   q𝐿𝐿𝐷𝐷 + 𝜎𝜎�𝑝𝑝𝐿𝐿  − 𝑝𝑝𝐴𝐴 � +  Δ𝐿𝐿𝐷𝐷,                                                                                       (7) 

Substituting equation 4 and equation 6 into equation 7 yields: 

q𝐴𝐴𝑆𝑆  =    𝑣𝑣𝐿𝐿𝑆𝑆 𝜃𝜃𝐿𝐿−1 𝑝𝑝𝐴𝐴 − Δ𝐿𝐿𝑆𝑆 +  𝜎𝜎(𝜃𝜃𝐿𝐿−1 𝑝𝑝𝐴𝐴 − 𝑝𝑝𝐴𝐴 ) +  Δ𝐿𝐿𝐷𝐷,                                                       (8) 

Rearranged as: 

 q𝐴𝐴𝑆𝑆 = [ v𝐿𝐿𝑆𝑆𝜃𝜃𝐿𝐿−1 + 𝜎𝜎(𝜃𝜃𝐿𝐿−1 − 1)] 𝑝𝑝𝐴𝐴 − Δ𝐿𝐿𝑆𝑆  +  Δ𝐿𝐿𝐷𝐷,                                                              (9) 

The terms in bracket [ .] refers to the extensive margin ղ𝐴𝐴𝑆𝑆.𝐸𝐸 = 𝑣𝑣𝐿𝐿𝑆𝑆  𝜃𝜃𝐿𝐿−1 plus the intensive 

margin ղ𝐴𝐴𝑆𝑆.𝐼𝐼 = 𝜎𝜎(𝜃𝜃𝐿𝐿−1 − 1) supply responses. 

Therefore, the total supply response of agriculture measured in terms of responsiveness 

of output-to-output price as: 

q𝐴𝐴
𝑆𝑆

𝑝𝑝𝐴𝐴 
  =ղ𝐴𝐴𝑆𝑆  = ղ𝐴𝐴𝑆𝑆.𝐼𝐼 +  ղ𝐴𝐴𝑆𝑆.𝐸𝐸 ,                                                              (10)  

Equating commodity supply (E𝑞𝑞𝑛𝑛 9) to demand (𝐸𝐸𝑞𝑞𝑞𝑞 1) gives: 

(ղ𝐴𝐴𝑆𝑆.𝐼𝐼 +  ղ𝐴𝐴𝑆𝑆.𝐸𝐸)𝑝𝑝𝐴𝐴 − Δ𝐿𝐿𝑆𝑆  +  Δ𝐿𝐿𝐷𝐷 =  −ղ𝐴𝐴𝐷𝐷 𝑝𝑝𝐴𝐴  +  Δ𝐴𝐴𝐷𝐷 ,                                                              (11)  

Equation 11 is then solved for the long-run equilibrium percentage changes in price 𝑝𝑝𝐴𝐴 
∗ as 

a function of the exogenous shocks: 

𝑝𝑝𝐴𝐴 
∗ =

(Δ𝐴𝐴𝐷𝐷 + Δ𝐿𝐿𝑆𝑆 −  Δ𝐿𝐿𝐷𝐷)
(ղ𝐴𝐴𝑆𝑆.𝐼𝐼 + ղ𝐴𝐴𝑆𝑆.𝐸𝐸 + ղ𝐴𝐴 

𝐷𝐷 )
=
Δ
ղ

.                                                                                            (12)  
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Equation 12 relates the commodity price impacts on exogenous shocks to commodity 

demand to yields. ղ refers to the aggregate economic response to scarcity, so if demand 

and supply are inelastic, a large price change is expected due to exogenous shocks. To 

solve for the long-run equilibrium percentage changes in global land use in agriculture 

substitute 𝐸𝐸𝐸𝐸𝐸𝐸 12  into 𝐸𝐸𝐸𝐸𝐸𝐸 9: 

q𝐿𝐿∗ = [(Δ𝐴𝐴𝐷𝐷 + Δ𝐿𝐿𝑆𝑆 −  Δ𝐿𝐿𝐷𝐷)/(1 + ղ𝐴𝐴𝑆𝑆.𝐼𝐼 / ղ𝐴𝐴𝑆𝑆.𝐸𝐸 +  ղ𝐴𝐴 
𝐷𝐷  / ղ𝐴𝐴𝑆𝑆.𝐸𝐸)] - Δ𝐿𝐿𝑆𝑆 .                                       (13) 

The major objective of this essay is to model the impact of regional TFP growth on 

global food security and the environment. Equation 13 indicates that if ղ𝐴𝐴𝑆𝑆.𝐼𝐼 (that captures 

the potential for increasing yield as price increases) and ղ𝐴𝐴 
𝐷𝐷  are zero and if Δ𝐿𝐿𝑆𝑆  is zero (does 

not depend on ղ), then the sign of q𝐿𝐿∗  boils down to a footrace between consumer demand 

and land productivity/ trend yields (Δ𝐴𝐴𝐷𝐷 −  Δ𝐿𝐿𝐷𝐷). So, if Δ𝐴𝐴𝐷𝐷 −  Δ𝐿𝐿𝐷𝐷 > 0 then q𝐿𝐿∗  > 0 that is if 

consumer demand grows faster than trend yields land use will rise. Furthermore, changes 

in global land use can also be explained by the responsiveness of the producers and 

consumers to scarcity in the food system as captured by the aggregate economic response 

to scarcity (ղ).  

Most importantly, if producers respond to higher prices by intensifying the use of 

variable inputs ղ𝐴𝐴𝑆𝑆.𝐼𝐼 >0, land use will reduce. Similarly, if consumers respond to higher 

prices by reducing consumption, then −ղ𝐴𝐴 
𝐷𝐷  < 0, land expansion is moderated. The impact 

of producers and consumers also depends on the relative size of extensive supply elasticity  

ղ𝐴𝐴𝑆𝑆.𝐸𝐸 > 0. If  ղ𝐴𝐴𝑆𝑆.𝐸𝐸  is high (high availability of land) then there is a greater chance of 

conversion of natural land to agricultural land use. Thus, giving us an understanding on the 

impact of an increase in land productivity as consumer demand shifts. 
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 In summary, as TFP growth occurs in a region, yield also increases (i.e., more 

agricultural output. Does land expansion or contraction take place? The answer hinges on 

the relative sizes of the extensive margin of supply response (ղ𝐴𝐴𝑆𝑆.𝐸𝐸) and intensive margin of 

supply response (ղ𝐴𝐴𝑆𝑆.𝐼𝐼). In addition, the demand for crop (Δ𝐴𝐴 
𝐷𝐷 )  be price elastic for expansion. 

Such that as the extensive margin of supply response increases, the larger the quantity of 

land use (q𝐿𝐿 
∗ ) or land being converted for agricultural use as TFP increases. 

3.2.2 Empirical Model 

The SIMPLE numerical model was created by Baldos and Hertel (2012) and I use their 

executable code and parameters programmed in the GEMPACK program (Pearson, Hertel, 

and Horridge, 2000). I obtained the updated model programs that incorporate both 

integrated and segmented markets from personal communication with Hertel and Baldos. 

Using the updated version of the SIMPLE model, I run my simulations using different 

regional TFP growth scenarios. In this section, I provide an overview of SIMPLE to better 

understand what drives the model simulation results. The empirical framework will be 

discussed in four sections following Baldos and Hertel (2013): sets, parameters, database, 

and equations. The model is designed to analyze long-run drivers of supply and demand 

for global agricultural land use and crop price. It is a multi-commodity, multi-country, and 

multi-regional partial equilibrium model with a single global market clearing.  

3.2.3 Sets 

The key elements of SIMPLE are shown in Figure 3.1 where the economy is divided into 

global supply and global demand. Global supply is divided into 15 regional productions 

where g = 15: Eastern Europe, North Africa, Sub-Saharan Africa (SSA), South America, 

Australia & New Zealand, European Union (EU), South Asia, Central America & 

Caribbean, South Africa, South East Asia, North America, China & Mongolia, Middle 
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East, Japan & Korea, and Central Asia. Each regional sector combines land and non-land 

inputs to produce commodities i = crops, livestock, processed food, and non-processed 

food.  

These commodities are in turn used to satisfy global demand through direct 

consumption, indirect consumption (feedstuff and raw materials), and feedstock use 

(biofuel production). Demand is divided into income regions y = Upper High, Lower High, 

Upper Middle, Lower Middle, and Low. Households in regions with low per capita income 

are assumed to be more responsive to price fluctuations. 

3.2.4 Equations 
 
The model revolves around three types of equations - consumer demand, crop supply/ 

agricultural production, and commodity market clearing.  

a) Consumer demand 

Consumer demands are a simple log-linear relationship that follows Engel’s law where 

own price and income elasticities vary as per capita income changes: 

𝜀𝜀𝑝𝑝(𝑖𝑖,𝑦𝑦) = 𝛼𝛼𝑝𝑝(𝑖𝑖) + 𝛽𝛽𝑝𝑝(𝑖𝑖)ln [𝑌𝑌𝑝𝑝𝑝𝑝(𝑦𝑦)].                                                                                  (14)            

𝜀𝜀𝑦𝑦(𝑖𝑖,𝑦𝑦) = 𝛼𝛼𝑌𝑌(𝑖𝑖) + 𝛽𝛽𝑌𝑌(𝑖𝑖)ln [𝑌𝑌𝑝𝑝𝑝𝑝(𝑦𝑦)].                                                      (15)           

where 𝜀𝜀𝑝𝑝(𝑖𝑖,𝑦𝑦) is the price elasticity of demand, 𝜀𝜀𝑦𝑦(𝑖𝑖,𝑦𝑦) is income elasticity of demand, 

𝛼𝛼𝑝𝑝(𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼𝑌𝑌(𝑖𝑖) are intercept of price and income elasticity regression with the log of per 

capita income respectively, 𝛽𝛽𝑝𝑝(𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽𝑌𝑌(𝑖𝑖) are the slope of price and income elasticity 

regression with the log of per capita income respectively, and 𝑌𝑌𝑝𝑝𝑝𝑝 is per capita income. 

The consumer demand equation is 

𝑄𝑄𝑃𝑃𝑃𝑃(𝑖𝑖,𝑦𝑦) = 𝛼𝛼𝑃𝑃𝑃𝑃(𝑖𝑖,𝑦𝑦)𝑃𝑃(𝑖𝑖,𝑦𝑦)
𝜀𝜀𝑝𝑝(𝑖𝑖,𝑦𝑦)𝑌𝑌𝑃𝑃𝑃𝑃(𝑦𝑦)

𝜀𝜀𝑦𝑦(𝑖𝑖,𝑦𝑦)                                                 (16)           

where 𝑄𝑄𝑃𝑃𝑃𝑃(𝑖𝑖,𝑦𝑦) is per capita commodity demand, and 𝑃𝑃(𝑖𝑖,𝑦𝑦) is the price of the commodity. 
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b) Crop supply/ agricultural production  

The crop production equation is a Constant Elasticity of Substitution (CES) function 

resulting from producers maximizing profit subject to technology, prices, policies, and 

resource constraint to produce crop output (Eqn 17).   

𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔)  [ 𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔)

𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔)−1

𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔)   + 𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔)

𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔)−1

𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔)  ] ^
𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔)

𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔)−1   (17) 

where 𝑋𝑋𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅(𝑔𝑔) is the quantity of crops produced, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔) is input-neutral productivity 

change in the crop sector which can be swapped with 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔), 𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔)cropland area 

and 𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔) is non-land input quantity. 

The supply of cropland is a function of cropland availability and competing uses of land 

and cropland returns in each region: 

𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔) = 𝛼𝛼𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔) 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔)
𝜀𝜀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔)                   (18) 

 
where 𝛼𝛼𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔) is the intercept of land supply equation, 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔) is cropland rent and 

𝜀𝜀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔) is cropland supply response to cropland rent. 

The supply of non-land inputs is price elastic and reflects the supply of inputs to the crop 
sector: 
 
𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐷𝐷(𝑔𝑔) = 𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔) 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔)

𝜀𝜀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔)                (19) 
 
where 𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔) is the intercept of non-land supply equation, 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔) is non-land price 

and 𝜀𝜀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔) is non-land supply response to non-land prices.  

Besides, there are also production equations for livestock production and processed food 

but not stated here, as they are not the focus of this essay. 

c) Market clearing conditions 

The market-clearing condition for crops at a global scale is:  
 
∑ 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔) 15
𝑔𝑔=1 =  ∑ [15

𝑦𝑦=1 𝑄𝑄("𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶",𝑦𝑦) +  𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦) +  𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦) ] +  𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   (20) 
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where 𝑄𝑄("𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶",𝑦𝑦)  is the quantity of crops produced for direct consumption, 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦) is 

crop feed used in the livestock sector, 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦)  is crops inputs used in the processed 

food sector and 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is crop feedstock used in the global biofuel sector.  

To complete the model, there are zero profit conditions for crops, livestock, and processed 

food sectors but only the equation for crops is stated below: 

𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔) = 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔)𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔) + 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔)𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔)               (21) 
 
where 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 refers to global crop price and  𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔) is the quantity of crops produced. 
 
3.2.5 Parameters 

The model allows for the potential of increasing yield either through the intensive margin 

(use of more non-land inputs), governed by the elasticity of substitution between land and 

non-land inputs (𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑔𝑔)), or through the extensive margin (use of more land), governed 

by the elasticities of supply of land with respect to land rents (𝜀𝜀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔)); reflecting the 

scarcity of cropland across regions such that regions like SSA and South America will have 

higher elasticity values than developed regions. As well as price elasticity of non-land 

inputs with respect to non-land prices (𝜀𝜀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔)) that shows that land is finite in its supply 

whereas non- land inputs are easily available. Demand for food is a function of population 

growth, per capita income, and commodity price governed by income (𝜀𝜀𝑌𝑌(𝑖𝑖.𝑦𝑦)) and price 

(𝜀𝜀𝑝𝑝(𝑖𝑖.𝑦𝑦)) elasticities of demand (Table 3.1).  

3.2.6 Database 

To implement the model, a global database for the year 2001 is constructed for 119 

countries (Appendix). Data used are from external sources such as income, population, 

consumption expenditure, crop production, land cover, and GDP (Table 3.2). The data 

sources are as follows: GDP from World development indicators (2011), population data 
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obtained from World population prospects, consumption expenditure from GTAP v.6 

database (2006), cropland cover, production, the value of crop production, and crop prices 

from FAOSTAT (2011). The model is multi-commodity, but global crop quantities were 

converted into corn-equivalent quantities using weights constructed from world crop prices 

and the world price of corn. Also, the data above is combined with other information of 

industry cost and sales shares to construct the rest of the database. 

3.2.7 Food Security Module 
 
One of the objectives of this essay is to model the economic long-run impact of food 

security as TFP grows. To extract nutritional outcomes information, I make use of the food 

security model (an add-on) introduced in SIMPLE by Baldos and Hertel (2014) to estimate 

how future drivers of TFP affect nutritional outcomes such as malnutrition index (measure 

for food security in this essay). The module has three purposes: i) characterize the 

Distribution of Energy Consumption (DEC) regionally to calculate malnutrition index, 

headcount, and gap ii) relates changes in DEC to shifts in its distribution and iii) link food 

caloric content to per capita income capturing changes in diets. Here, our emphasis will 

only be on the malnutrition index defined by FAO (2012) as the fraction of the population 

whose daily dietary energy intake is below the minimum requirement. The distribution of 

caloric consumption among the population is assumed to be log-normal, given the 

Minimum Dietary Energy Requirement is similar to minimum caloric requirement 

measured as Kcal/day (MDER shown by the red line in Figure 3.2), the malnutrition index 

represents the proportion of the population below MDER that is illustrated as the gray 

shaded area. The Standard Deviation of the log-normal distribution of per capita caloric 

consumption (SDEV_CAL) elasticity helps to capture observed differences in caloric 
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consumption (Table 3.3). As changes occur in average consumption regionally owing to 

increased income or reduced prices, it either decreases the proportion of the population 

below the MDER line and malnutrition index decreases. If TFP growth occurs in the SSA 

region, we expect that commodity prices will fall and an increase in caloric consumption. 

Such that the percentage of the population below the MDER line will reduce.  

3.2.8 Segmented Markets 
 
Initially, SIMPLE revolved around the integrated market assumption where the law of one 

price exists (prices in all regions are the same). Now the model has incorporated the 

segmented market model where prices differ across regions due to the introduction of 

demand for differentiated products – domestic and imported goods (Armington, 1969). 

Based on this assumption, countries that consume or produce a larger proportion 

domestically are less integrated with the world market so the domestic price will respond 

less to changes in the international prices in these regions. Therefore, changes in 

consumption or production in regions with a larger domestic proportion will have a smaller 

impact on global markets. The extent of market segmentation is determined by parameters 

that govern this concept which is the elasticity of substitution for consumption and 

elasticity of transformation for production between domestic and imported products. 

However, for this essay, the focus is the elasticity of substitution which describes a region’s 

willingness to shift consumption of a domestic product to imported product when the price 

of domestic (imported) rises. The segmented model in SIMPLE assumes an elasticity of 

substitution value of 3 for all regions-meaning that a 1 percent decrease in the price of 

domestic relative to imported goods will lead to a 3 percent increase in the ratio of the 

domestic relative to the imported quantity.  
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Furthermore, percent shares of international goods (Table 3.4) affect market 

segmentation. Such that when market access is limited, such a region has little or no effect 

on the world price. For example, a change in world price is likely to affect prices in the US 

& Canada more than Sub- Saharan Africa region (SSA) insulated from the world market. 

Likewise, if a region has zero shares in international goods, then the prices of domestic and 

international prices will not interlink. Finally, the segmented market introduces new 

variables into SIMPLE such as local prices, world price, regional supply to the local 

market, supply to the global market, regional demand from the local market, and demand 

from the global market.  

3.2.9 Carbon Emissions 
 
I use carbon emissions from the expansion (change) of crop land use as the key indicator 

for the environmental impacts. Agriculture and forestry contribute roughly 24 percent of 

the total global greenhouse emission (EPA, 2018). SIMPLE estimates the carbon emission 

in each region by multiplying the quantity of land cover change by carbon emission factors 

per hectare (estimated using yield and carbon loss estimates from West et al. 2010).  

3.3 Scenarios 
 
The goal of this essay is to compare the impact of TFP shocks in different regions on food 

and environmental security. To do this, I focus on TFP shocks in four major production 

regions: US & Canada, Sub Saharan Africa, South America, and China & Mongolia. 

However, I faced a challenge in comparison of TFP impacts since the regions vary in size 

and factor endowment; thus, the need for deriving comparable TFP shocks for each region. 

To estimate the comparable TFP shocks, I create three different scenarios of comparable 
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TFP growth shocks in each region. To simulate the impacts of TFP growth in each region, 

the shock is applied separately in each region rather than simultaneously in all regions. 

Scenario 1 (Uniform): A uniform 100% increase in TFP in each region. 
 
The first set of scenarios explore the impacts of food security and carbon emission, if each 

region increases its TFP growth by 100 percent. A uniform growth implies that a region 

producing at a particular capacity will increase its production by 100 percent. This scenario 

does not give a fair comparison but is useful as a counterfactual scenario for uniform 

growth in all regions. In addition, scenario 1 does not consider that richer developed 

countries will on average increase production more than developing countries. Neither does 

it consider differences in rates of growth of factor endowment nor differences in 

productivity and technology. For instance, the rate of TFP growth in SSA is increasing at 

a slower pace due to lack of investment in R&D, weak institutions, civil unrest, so a 100 

percent increase in TFP growth will be less likely increase crop production up to the level 

of other regions. 

Scenario 2 (Price Impact): Each region has TFP growth that would lead to a 17.21    

  percent decrease in global price in the integrated SIMPLE model. 

The second set of scenarios explore the impact of TFP growth in each region such that the 

TFP shock would have the same impact on global price if there were no trade frictions (i.e., 

in the integrated market model). I choose a 17.21 percent decrease in price in the integrated 

model because this corresponds with a 100 percent increase in TFP in the US & Canada. I 

then find the TFP shock in every other region that corresponds with the same decrease in 

global price. Intuitively, this scenario allows us to compare TFP shocks in each region that 

are comparable roughly in terms of creating the same increase in global production. TFP 

shocks in this scenario are larger in smaller production regions like SSA. 
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Scenario 3 (R&D Expenditure): Each region has TFP growth resulting from an 

  increase in R&D expenditures by $6.15 billion.   
The final method that I use to construct comparable TFP shocks is to assume the same 

increase in R&D expenditures in every region. The assumption of $6.15 billion of 

additional R&D expenditures reflects the predicted change in US & Canada R&D 

expenditures from 2010 to 2050 obtained by multiplying the percent change in R&D ($) 

by the R&D expenditure in 2010. 

To calculate the projected TFP growth that corresponds with this increase in R&D 

expenditures, I calculate the R&D expenditure scenario by increasing baseline (2010) 

expenditure by $6.15 billion in all regions (see Table 3.5). I then calculate the percent 

change in R&D expenditures in other regions as follows:  

% 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑅𝑅&𝐷𝐷 ($) = R&D scenario− R&D in 2010 
R&D in 2010

.                                  (22)        

Then I calculate the percent change in TFP in each region for the simulations as 

% change in TFP = % 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑅𝑅&𝐷𝐷 ($) × 𝑅𝑅&𝐷𝐷 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒            (23) 

where R&D elasticity measures the percentage change in TFP given a one percent change 

in R&D capital stock (Baldos et al. 2020).  

3.3.1.  TFP growth for all scenarios. 

Table 6 shows the TFP growth for each region in the three different scenarios. Scenario 1 

assumes that TFP growth will increase uniformly by 100 percent. The second column in 

Table 6 reports the projected TFP growth for scenario 2. The results indicate that Sub-

Saharan Africa (134.63) needs a higher TFP growth to achieve the predetermined 

commodity price decrease. China & Mongolia require the lowest TFP growth to decrease 

global prices by 17.21 percent (35.48). The third column in Table 3.6 reports the projected 

TFP growth for scenario 3. This scenario has the largest change in TFP growth in South 
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America and Sub-Saharan Africa (63.2) because the R&D expenditure scenario gives the 

largest percent increase in expenditures in these regions.  

3.4 Results  
 

In this section, I report results for the long-run effects of TFP growth on food security and 

the environment outcomes. Although the economy is divided into fifteen regions in 

SIMPLE, only results for four regions (US & Canada, Sub-Saharan Africa, South America, 

and China & Mongolia) will be discussed. US & Canada will be the benchmark region for 

comparison such that outcomes can be said to be better or worse off. Furthermore, South 

America and China & Mongolia regions are of interest due to their competitiveness with 

the US & Canada region. Finally, SSA plays a critical role as it is prevalent for chronic 

malnutrition.  

3.4.1 Global Impacts for Scenario 1 
 

The second column in Table 3.7 reports the simulated results for the food security outcome 

while the third column reports the environmental outcome. Results indicate that a uniform 

increase in TFP growth translates into varying levels of outcome impacts. For example, as 

TFP growth increases by 100 percent in the US & Canada and the Sub-Saharan Africa 

region, global malnutrition decreases by 13 percent and 20 percent, respectively. A 100 

percent increase in TFP in US & Canada and SSA reduces global carbon emissions by 4.27 

percent and 3.7 percent, respectively. Developing regions like South America known for 

their extensification in production (i.e., might use more land to increase output), when 

exposed to a TFP shock increase land use directly increasing total production, however 

increasing carbon emissions within their own region. Implying that a decrease in carbon 

emissions globally exist, but the increase in emissions in their own region means that the net 

effect of the global decrease in emissions is less. Similarly, SSA increases its crop production 
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by cultivating more land translating into a positive reduction in food security, but with a 

little reduction in carbon emissions. Furthermore, the change in cropland use will also 

depend on the elasticity of the supply of land (𝜀𝜀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔)). The larger the response, the more 

the increase in land use, although China & Mongolia and US & Canada have the same 

elasticity (0.280), but they differ as regards their cropland availability. As China & 

Mongolia region have fewer permanent croplands (143,308 ha) compared to US & Canada 

(236,046 ha) thus, China & Mongolia region have the highest percent reduction in carbon 

emission with 6.47.  

3.4.2 Global Impacts for Scenario 2 

The second column in Table 3.8 reports the simulated results for the food security outcomes 

while the third column reports the environmental outcome for scenario 2. Results indicate 

that TFP growth in the US & Canada and SSA due to a price impact decreases global 

malnutrition by 13.09 percent and 22.85 percent, respectively. Likewise, a TFP increase in 

the US & Canada and SSA decrease global carbon emission by 4.27 percent and 4.76 

percent, respectively. The result for China & Mongolia region is so much smaller in this 

scenario than scenario 1 due to the smaller TFP shock. I assume that this is because China 

is a much larger producer than the US & Canada so the 100% TFP shock in scenario 1 

gives a large impact, but when it gets to the same international price impact the TFP shock 

in China is much smaller. Also, shares of international goods matter, for example, China 

is the region most insulated from international prices of agricultural products (I’s assume), 

and TFP growth in China has such a small impact on malnutrition. Also, TFP growth in 

the US & Canada is more effective at reducing malnutrition than South America and China 
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& Mongolia region. TFP growth in SSA is much more effective at reducing malnutrition 

than US & Canada but similar impacts on carbon emissions. 

3.4.3 Global Impacts for Scenario 3 

The second column in Table 3.9 reports the simulated results for scenario 3. Six billion 

dollars spent on R&D expenditure in the US & Canada and SSA decreases global 

malnutrition by 4.31 percent and 26.73 percent, respectively. Carbon emission also 

decreases on average by 2 percent globally, for example, an increase in TFP growth in 

South America has a decrease of 15.08 percent in global malnutrition, but a much lower 

reduction in global carbon emission (2.31 percent) as compared to SSA; showing a tradeoff 

between the outcomes of interest. On further analysis, the US & Canada and China & 

Mongolia region have similar initial R&D expenditures with similar result for both 

outcomes.  

In this scenario, the TFP growth in South America is much more effective than in 

the US & Canada. This is due to the assumptions of R&D elasticity and initial levels of 

R&D expenditures. South America has low levels of initial R&D and a similar R&D 

elasticity as the US & Canada, so this gives an assumption of a large TFP shock in the 

South America region, translating into a higher global impact on food security. SSA also 

has low levels of initial R&D expenditure, but they have a much smaller R&D elasticity, 

so the results are not as different between scenarios 2 and 3. 

3.4.4 Region-specific impacts on malnutrition 

In this section, I highlight which regions are impacted and present the results in terms of 

the number of people lifted out of malnutrition. To aid with interpretation, the legend in 

figures 3-8 relates to the region experiencing the TFP growth (regions shocked in SIMPLE 
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with estimated TFP growth). The x-axis label refers to the regional outcome in terms of the 

decrease in malnutrition. For example, the first blue bar in the figures refer to the region 

that was shocked with its corresponding outcome in the SSA region (i.e., TFP growth in 

the US & Canada causes a decrease in malnutrition for the SSA region). Finally, ROW 

refers to the rest of the world, a combination of other regions like Eastern Europe, central 

Asia, Japan & Korea, European Union, and North Africa with a little significant reduction 

in malnutrition outcome.  

Figure 3.3 displays the impact of TFP growth on regional malnutrition for scenario 

1. TFP growth in SSA is most effective at reducing malnutrition in SSA (Figure 3, 4, and 

5). TFP growth in the US & Canada region reduces malnutrition in SSA by 5.8 million 

people, by 2 million people in the Central Asia region, and by 1.7 million people in the 

Middle East. TFP growth in China & Mongolia reduces malnutrition in SSA, Central Asia, 

and the Middle East by 6.7 million, 2.4 million, and 2 million people respectively. 

Figure 3.4 shows the impact of TFP growth on regional malnutrition in scenario 2. 

TFP growth in South America region reduces malnutrition in SSA by 5.2 million, in the 

Central Asia region by 1.8 million, and in the Middle East by 1.5 million people. A TFP 

increase in SSA reduces malnutrition in its own region, in Central Asia, and in the Middle 

East by 17.2 million, 1.1 million, and 1.3 million people, respectively. Results also 

highlight the effect of TFP growth on regions such as the Middle East hindered with 

insufficient access to food and its availability, lack of food utility, and stability. Often 

attributed to various factors such as food shortage caused by reduction in domestic 

production or access to imports, political turmoil, war, etc. (FAO, 2017). Finally, estimated 

malnutrition reduction in South America is small when TFP increase for a leading food 
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exporter (corn, soybeans). Figure 3.5 shows the impact of TFP growth on regional 

malnutrition for scenario 3, TFP growth in the US & Canada region reduces malnutrition 

in SSA by 1.9 million, Central Asia region by 0.63 million, and South East Asia by 0.47 

million people.  Scenario 3 gives smaller impacts for TFP shocks in the US & Canada is 

because the assumed TFP shock are much smaller in scenario 3 than scenarios 1 and 2. 

3.4.5 Region-specific impacts on Carbon Emission 
 
Next, we focus on regional carbon emission reduction. Across all scenarios, an increase in 

TFP growth in South America increases carbon emission in their own region by from 777 

metric tons of carbon - MT C (highest) to 534 MT C (lowest). US & Canada regions show 

an increase in carbon emissions in all the scenarios by 72 MT C (highest) and 54 MT C 

(lowest) in its own region (Figure 3.6, 3.7 and 3.8). Figure 3.6 shows how TFP growth 

impacts regional carbon emission in scenario 1. TFP growth in the US & Canada region 

reduces carbon emission in South America by 452 MT C, South East Asia by 346 MT C, 

and Central America by 233 MT C. Also, a TFP increase in China & Mongolia region 

reduces carbon emission in South America region by 521 MT C, SSA, and South East Asia 

by 409 MT C, and 402 MT C, respectively. 

Figure 3.7 shows regional results for scenario 2. TFP growth in the SSA region 

decreases carbon emission in its own region by 412 MT C, South America region by 316 

MT C and South East Asia by 237 MT C. TFP growth in South America region reduces 

carbon emission in SSA region by 308 MT C, South East Asia, and Central America by 

311 MT C and 208 MT C, respectively. Furthermore, results also show the effect of TFP 

growth on regions such as Australia & New Zealand and South Africa. Showing that the 

impact of TFP growth has varying effects on regions. Figure 3.8 shows regional results for 
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scenario 3 where TFP growth in the US & Canada region reduces carbon emission by 158 

MT C in South America, 117 MT C in South East Asia region, and 110 MT C in SSA.  

Again, this is because the TFP shock is the smallest for the US & Canada in scenario 3 

thereby translating into a lower reduction in carbon emission in other regions. 

3.5 Discussion and Limitations 
 

The focus of this essay is the impact of TFP growth on global food security and the 

environment. I find that TFP growth of 100 percent in the US & Canada decreases global 

malnutrition by 13 percent (scenario 1 and 2). In other words, for each 1 percent increase 

in TFP in the US and Canada, global malnutrition decreases by 0.13 percent and carbon 

emissions by 0.04 percent. In terms of R&D expenditures, I find that an increase of 

expenditure of six billion in the US & Canada decreases global malnutrition by 4.31 percent 

and carbon emissions by 1.31 percent (scenario 3). Therefore, for every $1 billion of R&D 

expenditure in the U.S, global malnutrition decreases by 0.71 percent and carbon emissions 

by 0.22 percent. There is a large literature that finds a large economic rate of return to 

public R&D expenditures (e.g., Pardey et al., 2018). My results highlight the additional 

benefits of R&D expenditures in terms of reduced malnutrition and carbon emissions.  

Secondly, the essay examines the impacts of TFP growth in specific regions on 

food security and the environment in other regions. Our estimates suggest that 

technological progress in SSA and China & Mongolia would reduce malnutrition and 

carbon emission levels within its own region as well as in other regions. TFP growth in the 

US & Canada will influence other regions like the Middle East and Central Asia for a 

reduction in malnutrition while it affects regions like Australia & New Zealand and South 

Africa for carbon emission (inclusive of other regions of the world). In contrast, TFP 
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growth in South America and US & Canada will likely increase the region’s carbon 

emission, although the net global effect is the reduction of global carbon emission.  

Thirdly, an increase in TFP growth in SSA had the most promising effect on the 

reduction of global malnutrition (scenario 1 (20 percent), scenario 2 (22.8 percent), and 

scenario 3(26.7 percent) and global reduction in carbon emission. Likewise, TFP growth 

in SSA had the highest reduction in malnutrition on average by 14.8 million people in its 

own region. This answers our last research question that SSA is the most effective region 

at improving global food security and reducing carbon emission. However, increasing 

R&D expenditures in SSA may be unlikely from a political perspective. Among the other 

region, South America region is more effective at improving global malnutrition than 

China and Mongolia region (in scenarios 2 & 3) due to the higher TFP growth shock that 

will translate into a higher impact. However, in its own region, an increase in TFP growth 

causes an increase in carbon emission for South America region. 

Not surprisingly, there are significant limitations evident in this essay. The first is the 

simplicity of our partial equilibrium model. SIMPLE is a parsimonious model i.e. tractable 

but does not capture all the complexity present in the global agricultural economy; it’s 

simple enough to captures regional disparities.  The analysis is done on an aggregated 

composite crop, with a pre-determined number of economic variables and assumed 

behavioral elasticities. The model also neglects the inter-sectoral input and output linkages 

as well as constraints of factors of production movement across sectors. Secondly, the 

model incorporates a simplified form of international trade where the extent of market 

segmentation depends on market access and shares of international goods as a proxy for 

current levels of trade barriers. Many of the developing countries still have limited 
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infrastructure and prohibitive tariffs that segregate them from the international market 

which is not fully accounted for in the model. Irrespective of these limitations the model 

was validated and calibrated to test its reliability for future projections (Baldos and Hertel, 

2013). Therefore, our results offer an insight into the economic long-run impacts of TFP 

growth on food security and the environment; with our results in line with the economic 

literature thereby boosting our confidence in projections obtained. 

3.6 Summary and Conclusion 

The purpose of this article was to explore three questions. (i) What are the economic 

impacts of TFP growth on global food security and the environment? (ii) Is there any 

spillover effect of TFP shocks in specific regions affecting food security and the 

environment in other regions? (iii) Where is TFP growth most effective at improving food 

security and reducing carbon emission? To answer these questions, we begin by creating 

three TFP growth scenarios: (1) uniform growth, (2) same commodity price impact, and 

(3) same investment in R&D. Estimated TFP shocks were then used for modeling the long-

run impacts of TFP growth on food security and the environment using a partial 

equilibrium model. 

TFP growth in the US & Canada had a reduction in global malnutrition and carbon 

emission. So does TFP growth in the other three regions (SSA, South America, and China 

& Mongolia) regions of interest with varying magnitude; however, TFP growth in SSA had 

the greatest impact on global malnutrition followed by the South America region. In contrast, 

TFP growth in South America and the US & Canada results in an increase in its own 

region’s carbon emission in all three scenarios, although the net global effect is a reduction 

in carbon emission. SSA is the most effective region at improving food security and the 

sustainable environment if TFP growth occurs in the region. 
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From a policy point of view, this result is critical for policymakers in the US and 

globally, who are making decisions about R&D funding and for making decisions on where 

to target R&D efforts regionally to effectively reduce global malnutrition and carbon 

emission. It also suggests that intentional investment in agricultural productivity in Sub-

Saharan Africa will have positive payoffs, for improvement in food security, and for 

ensuring a sustainable environmental (Villoria 2019). In addition, other options could be 

considered such as importing technologies and importing food; with food importation 

evaluated as being the best option due to the constraints facing the region (Hertel et al., 

2020).  

The issue of malnutrition or undernutrition caused by food insecurity, lack of food 

access or availability, and population growth remains one of the focal points of this essay 

and the paper by Hertel et al. (2020). The latter paper focuses mainly on the SSA region 

considering various channels of alleviating food insecurity through an increase in R&D 

investment (TFP route), technology importation, and virtual technology trade (food 

importation) while this essay focuses on the long-term regional impact of TFP growth and 

its effect on food security and the environment. The results are similar in the sense that 

either TFP growth (through a decrease in commodity price due to international trade or 

R&D investment) or technology import or food importation approach, all options are 

expected to have positive impact on food security and the environment in SSA as well as 

other regions of the world. Although one can attribute more success to one option over the 

others due to the unique constraints facing the SSA region. 

Finally, a tradeoff exists between reduction in malnutrition index and carbon 

emission on a regional level, as some of my results show that a decrease in malnutrition 
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index can be accompanied by a corresponding increase in carbon emission and vice versa. 

But this is not the same on a global scale. When considering TFP growth in the United 

States, a consideration of not only the impacts on carbon emissions within the United States 

is needed but also the global impacts. When looking at a global perspective, TFP growth 

in the United States decreases malnutrition and carbon emissions; providing another reason 

to support increasing United States R&D expenditures 
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Figure 3.1: Key elements of SIMPLE 

 

 
 
Source: Baldos and Hertel, 2013 
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Table 3.1: Regional values of parameters in SIMPLE  

Regions Elasticities 
 𝜀𝜀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔) 𝜀𝜀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔) 𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔) 𝜀𝜀𝑝𝑝(𝑖𝑖,𝑦𝑦) 𝜀𝜀𝑌𝑌(𝑖𝑖,𝑦𝑦) 
US & Canada 
Sub Saharan 
Africa 
South America 
China & Mongolia                     

0.280 
0.560 
0.560 
0.280 

1.34 
1.34 
1.34 
1.34 

3.0 
3.0 
3.0 
3.0 

-0.670 
-0.670 
-0.670 
-0.670 

0.782 
0.782 
0.782 
0.782 

Source: SIMPLE 

 

Table 3.2: Global values of selected variables in SIMPLE for the base year 2001 

Crop Production Variable    
Crop output (in M Mt)         20,289 
       as biofuel feedstock               77 
       as livestock feed           2,279  
       as processed food           8,267 
Consumption expenditure (M USD) 180,067,584 
Value of commodity consumed (M USD) 175,772,745 
Crop land (1000 Ha)     1,547,465 
Value of crop production (M USD)     2,244,413 
Per capita income (USD)       362,549 
Population (M)           8,928 

Source: SIMPLE 
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Figure 3.2: Minimum Daily Energy Requirement   

 

 

 

 

 

 

 

 

 

 
Source: Hertel and Baldos Hertel and Baldos (2016). 

 

Table 3.3: Regional values of selected variables in Food Security  
Regions MIN_CAL SDEV_CAL MAL_INDEX 
US & Canada 
Sub-Saharan Africa 
South America 
China & Mongolia          

1977 
1746 
1843 
1910 

0.232 
0.227 
0.294 
0.306 

0.400 
1.15 
0.751 
0.689 

Source: SIMPLE 
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Table 3.4: Percent Shares of international goods in the regional demand and supply 
of crops in 2006 
Regions Shares (%) 

Crop Demand 
US & Canada 
Sub-Saharan Africa 
South America 
China & Mongolia 

21 
7 
7 
6 

Crop Supply 
US & Canada 
Sub-Saharan Africa 
South America 
China & Mongolia 

30 
5 
28 
2 

Source: Hertel and Baldos (2016) 
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Table 3.5: R&D expenditures for 2010 and 2050 

Region R&D Expenditure 2010 
Billion ($)a 

R&D Expenditure 2050 
Scenario Billion ($) 

Average R&D 
Elasticityb 

US & Canada 5.086 11.2328 0.30 
South America 2.236 8.3828 0.23 
China & Mongolia 5.273 11.4198 0.21 
Sub-Saharan Africa 1.306 7.4328 0.13 

*Projected R&D expenditure in Canada/US region in 2050 - $6.1468 billion 
a,b Source of R&D expenditure 2010 and average R&D elasticity estimates is Fuglie 

(2018).  

 

 

Table 3.6: Projected TFP growth (%) for all Scenarios 

Region Scenario 1 Scenario 2 Scenario 3 
Canada & USA 100 100 36.26 
South America 100 86.68 63.2 
China & Mongolia 100 35.48 24.4 
Sub-Saharan Africa 100 134.63 63.2 

Source: Author’s calculations 
 

 

 
 

  

https://onlinelibrary.wiley.com/doi/full/10.1111/agec.12550#agec12550-bib-0017
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Table 3.7: Global Food Security and Environment outcomes under Segmented 
Markets  
    (Scenario 1) 
Region with TFP 
shock 

% Change in global 
Malnutrition   

% Change in global Ag  
Carbon Emission  

TFP growth 
shocks (%) 

US & Canada -13.09 -4.27 100 
South America -14.81 -1.29 100 
China & Mongolia -18.96 -6.47 100 
Sub-Saharan Africa -20.04 -3.7 100 

 

 

Table 3.8: Global Food Security and Environment outcomes under Segmented 
Markets 
     (Scenario 2) 
Region with TFP 
shock 

% Change in 
global Malnutrition   

% Change in global Ag  
Carbon Emission  

TFP growth 
shocks (%) 

US & Canada  -13.09 -4.27 100 
South America -12.73 -0.96 86.68 
China & Mongolia -6.57 -2.05 35.48 
Sub-Saharan Africa -22.85 -4.76 134.63 

 

 

Table 3.9: Global Food Security and Environment outcomes under Segmented 
Markets 
    (Scenario 3) 
Region with TFP  
shock 

% Change in global 
Malnutrition   

% Change in global Ag  
Carbon Emission  

TFP growth 
shocks (%) 

US & Canada  -4.31 -1.33 36.26 
South America -15.08 -2.31 63.2 
China & Mongolia -4.31 -1.33 24.4 
Sub-Saharan Africa -26.73 -2.26 63.2 
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Figure 3.3: Regional changes in malnutrition (millions) for Scenario 1  

 
where SSA = Sub Saharan Africa, S_Amer = South America, C_Asia = Central Asia, 
CC_Amer = Central America, SE_Asia = South East Asia, CHN_MNG = China & 
Mongolia, M_East= Middle East, CAN_US= Canada & US, ROW= Rest of the world. 
 
  

-16.00

-14.00

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

SSA S_Amer C_Asia CC_Amer SE_Asia CHN_MNG M_East ROW

M
AL

N
U

TR
IT

IO
N

 (M
IL

LI
O

N
S)

REGIONAL OUTCOME

TFP shock
CAN_US

SSA

S_Amer

CHN_MNG



74 

Figure 3.4: Regional changes in malnutrition (millions) for Scenario 2 
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Figure 3.5: Regional changes in malnutrition (millions) for Scenario 3 

. 

where SSA = Sub Saharan Africa, S_Amer = South America, C_Asia = Central Asia, 
CC_Amer = Central America, SE_Asia = South East Asia, CHN_MNG = China & 
Mongolia, M_East= Middle East, CAN_US= Canada & US, ROW= Rest of the world. 
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Figure 3.6: Regional changes in Carbon Emission (MT C) for Scenario 1 

where SSA = Sub Saharan Africa, S_Amer = South America, C_Asia = Central Asia, 
CC_Amer = Central America, SE_Asia = South East Asia, CHN_MNG = China & 
Mongolia, S_Afr= South Africa, CAN_US= Canada & US, ROW= Rest of the world, 
AUS_NZ = Australia & New Zealand 
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Figure 3.7: Regional changes in Carbon Emission (MT C) for Scenario 2 
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Figure 3.8: Regional changes in Carbon Emission (MT C) for Scenario 3 by 2050

where SSA = Sub Saharan Africa, S_Amer = South America, C_Asia = Central Asia, 
CC_Amer = Central America, SE_Asia = South East Asia, CHN_MNG = China & 
Mongolia, S_Afr= South Africa, CAN_US= Canada & US, ROW= Rest of the world, 
AUS_NZ = Australia & New Zealand 
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Chapter 4 

Summary and Conclusions 

 

 
A relationship exists between climate change, agricultural productivity, and the 

environment. Attempts to increase agricultural productivity will either have a negative or 

positive effect on the environment, with a positive impact on food availability and security. 

But climate change is a phenomenon which its effects cannot be stopped but can be 

mitigated to increase agricultural productivity. The general objective of this dissertation is 

to examine the historical impacts of climate change on TFP in the short and long term and 

model the impact of TFP growth on food security and the environment in the future.  

In the first essay, I show that weather variations had an effect on agricultural 

productivity. The results show that fluctuation in the precipitation effect is predominant 

especially in Sub-Saharan Africa and among the low-income countries. As precipitation 

increases, TFP also increases. Additional increase in monthly precipitation above 300mm 

for SSA and low-income countries makes TFP decrease rapidly. Adaptation practices that 

reduce the effects of extreme temperature by farmers are evident in the long term. Future 

research will examine the impact of future weather variations on agricultural TFP. 

In the second essay, I estimate the long run impact of TFP growth on food security 

and the environment. My results show that a 1 percent increase in TFP in the US and 

Canada, decreases global malnutrition by 0.13 percent and carbon emissions by 0.04 

percent. Results obtained for TFP growth induced by R&D expenditure shows that for 
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every $1 billion of R&D expenditure in the U.S, global malnutrition decreases by 0.71 

percent and carbon emissions by 0.22 percent. Finally, an increase in TFP growth in SSA 

is the most effective region at improving global food security and reducing malnutrition by 

14.8 million people in its own region. In summary, this result has important policy 

implications for policymakers and policy analyst with interest in SSA region to be mindful 

of the effect that precipitation has on the economic development of this region. Also, 

investment in agricultural R&D is another crucial factor that is essential to improve 

agricultural productivity. As shown in this research, SSA is susceptible to climate change 

impacts through fluctuations. However, an increase in agricultural productivity will help 

mitigate climate change impacts as well as alleviate malnutrition and ensure food security 

both within the region and the world at large. Finally, policymakers in US and Canada also 

have an opportunity to allocate more funding to agricultural R&D to reduce the incidence 

of global malnutrition in the world. 
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Appendix 

Figure A.1: Global mean TFP from 1961 to 2014 

Figure A.2: Global mean Temperature from 1961 to 2014 
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Figure A.3: Global mean Precipitation from 1961 to 2014 

Figure A.4: Regional Temperature from 1961 to 2014 
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A.1: Summary statistics of regression variables

Variable Observation Mean Standard 
deviation 

Minimum Maximum 

Precipitation (mm) 6,912 123.07 89.37 0 710.97 

Temperature (ᵒC) 6,912 22.15 4.47 10.77 34.91 

TFP (Index) 6,912 85.57 22.19 17.13 191.32 

A.2: Alternative global regression model specification for robustness check

logTFP   logTFP   logTFP  logTFP   logTFP   logTFP   
Temperature 0.0924               

(1.80)   
0.0161              
(1.34)   

0.0933              
(1.79)   

0.0220               
(1.47)   

0.0128 
 (1.06) 

Temperature2 -0.00199
 (-1.57)  

-0.000612
(-1.94)

-0.00193
(-1.48)

-0.000726
(-1.86)

-0.000498
(-1.54)

Precipitation 0.000461*   
(2.06)   

0.000325*
(2.12)

0.000493*
(2.16)

0.000334
(1.82)

0.00326*
(2.13)

Precipitation2 -0.000000501
(-1.46)   

-0.000000432
(-1.73)

-0.000000573
(-1.67)

-0.000000511
(-1.63)

-0.000000478
(-1.93)

N 6912 6912 6912 6912 6912 
FE Country Country Country 

Year 
Country 
Year 

Country 
Year 

Time trend Linear 
Quadratic 

Country 
Time trend 

Linear, 
Quadratic 

Linear Linear 
Quadratic 
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A.3: Alternative 5- year average model specification for robustness check

logTFP   logTFP   logTFP  logTFP   logTFP   logTFP   
Temperature 0.192*              

(2.11)   
0.0541 
(1.50)   

0.198* 
(2.18)   

0.0596 
(1.51)   

0.0539 
(1.47) 

Temperature2 -0.00343
(-1.50)  

-0.00161
(-1.76)

-0.00343
(-1.50)

-0.00169
(-1.75)

-0.00158
(-1.72)

Precipitation 0.00151 
(1.37)   

0.000340
(0.43)

0.00149
(1.35)

0.000753
(0.93)

0.000349
(0.43)

Precipitation2 -0.00000175
(-0.80)   

-0.000000118
(-0.07)   

-0.00000173
(-0.79)   

-0.000000937
(-0.56)   

-0.000000232
(-0.13) 

N 1280 1280 1280 1280 1280 
FE Country Country Country 

Year 
Country 
Year 

Country 
Year 

Time trend Linear 
Quadratic 

Country Time 
trend 

Linear, 
Quadratic 

Linear Linear 
Quadratic 

A.4: Alternative 10- year average model specification for robustness check

logTFP   logTFP   logTFP  logTFP   logTFP   logTFP   
Temperature 0.234* 

(2.23)   
 0.164* 
 (2.26)   

0.245* 
(2.35)   

0.0883 
(1.31)   

0.173* 
(2.22) 

Temperature2 -0.00391
(-1.48)  

-0.00400*
(-2.47)

-0.00393
(-1.50)

-0.00269
(-1.74)

-0.00394*
(-2.35)

Precipitation 0.00285 
(1.44)   

0.000814
(0.41)

0.00268
(1.36)

0.000950
(0.58)

0.000762
(0.38)

Precipitation2 -0.00000418
(-1.13)   

-0.00000238
(-0.50)   

-0.00000382
(-1.05)   

-0.00000198
(-0.63)   

-0.00000259
(-0.55) 

N 640 640 640 640 640 
FE Country Country Country 

Year 
Country 
Year 

Country 
Year 

Time trend Linear 
Quadratic 

Country Time 
trend 

Linear, 
Quadratic 

Linear Linear 
Quadratic 
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A.5: Alternative region decomposition model specification for robustness check
East Asia & Pacific 

logTFP   logTFP   logTFP  logTFP   logTFP   logTFP   
Temperature 0.187 

(0.84)   
 0.0554 
 (1.10)   

0.180 
(0.69)   

-0.0147
(-0.23)

0.0488 
(0.96) 

Temperature2 -0.00335
(-0.69)  

-0.00146
(-1.47)

-0.00289
(-0.49)

0.000509
(0.32)

-0.00127
(-1.25)

Precipitation -0.00156
(-0.78)   

-0.00000127
(-0.00)   

-0.00157
(-0.70)   

-0.000107
(-0.16)   

0.0000461
(-0.13)

Precipitation2 0.00000361 
(0.90)   

2.18e-08 
(-0.30)   

0.00000353 
(-0.79)   

-6.51e-08
(-0.05)

-0.000000233
(-0.39)

N 648 648 648 648 648 
FE Country Country Country 

Year 
Country 
Year 

Country 
Year 

Time trend Linear 
Quadratic 

Country 
Time trend 

Linear, 
Quadratic 

Linear Linear 
Quadratic 

A.6: Alternative region decomposition model specification for robustness check
Sub-Sahara Africa 

logTFP   logTFP   logTFP  logTFP   logTFP   logTFP   
Temperature 0.163 

(1.16)   
 0.0540 
 (1.10)   

0.160 
(1.04)   

0.00679 
(0.10)   

0.0440 
(0.83) 

Temperature2 -0.00349
(-1.19)  

-0.00114
(-1.10)

-0.00350
(-1.10)

-0.000276
(0.20)

-0.000948
(-0.84)

Precipitation 0.00110* 
(2.10)   

0.00129**
(2.96)

0.00102
(1.95)

0.00119*
(2.62)

0.00125**
(3.19)

Precipitation2 -0.00000183
(-1.57)   

-0.00000202
(-1.99)   

-0.00000186
(-1.63)   

-0.00000187
(-1.66)   

-0.00000215*
(-2.28) 

N 2106 2106 2106 2106 2106 
FE Country Country Country 

Year 
Country 
Year 

Country 
Year 

Time trend Linear 
Quadratic 

Country Time 
trend 

Linear, 
Quadratic 

Linear Linear 
Quadratic 
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A.7: Alternative region decomposition model specification for robustness check
Europe & Central Asia 

logTFP   logTFP   logTFP  logTFP   logTFP   logTFP   
Temperature 0.124* 

(2.73)   
-0.00955
(-0.42)

0.126* 
(2.54)   

-0.0464*
(-2.06)

-0.0272
(1.59)

Temperature2 -0.00366**
(-2.89)  

0.0000790
(0.11)

-0.00357*
(-2.62)

0.00110
(1.57)

0.000618
(1.13)

Precipitation 0.000524 
(0.58)   

0.00100
(1.24)

0.000634
(0.73)

0.000459
(0.53)

0.00106
(1.43)

Precipitation2 -0.00000776
(-1.17)   

-0.0000103
(-1.77)   

-0.00000722
(-1.14)   

-0.00000733
(-1.22)   

-0.00000955
(-1.75) 

N 1620 1620 1620 1620 1620 
FE Country Country Country 

Year 
Country 
Year 

Country 
Year 

Time trend Linear 
Quadratic 

Country Time 
trend 

Linear, 
Quadratic 

Linear Linear 
Quadratic 

A.8: Alternative region decomposition model specification for robustness check
Latin America & Caribbean 

logTFP   logTFP   logTFP  logTFP   logTFP   logTFP   
Temperature 0.178 

(0.67)   
 0.0256 
 (0.69)   

0.189 
(0.69)   

0.0112 
(0.16)   

0.0176 
(0.37) 

Temperature2 -0.00420
(-0.70)  

-0.00117
(1.33)

-0.00409
(-0.65)

-0.000913
(-0.55)

-0.000653
(-0.60)

Precipitation 0.000313 
(1.06)   

0.000108
(0.77)

0.000368
(1.12)

0.0000781
(0.41)

0.000102
(0.77)

Precipitation2 -0.000000370
(-0.92)   

-0.000000111
(-0.57)   

-0.000000459
(-1.02)   

-8.32e-08
(-0.30)   

-0.000000127
(-0.70) 

N 1350 1350 1350 1350 1350 
FE Country Country Country 

Year 
Country 
Year 

Country 
Year 

Time trend Linear 
Quadratic 

Country 

Time trend 

Linear, 

Quadratic 

Linear Linear 

Quadratic 
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A.9: Alternative region decomposition model specification for robustness check
South Asia 

logTFP   logTFP   logTFP  logTFP   logTFP   logTFP   
Temperature -0.0568

(-0.28)   
-0.102
(-1.73)

-0.0656
(0.31)

-0.150
(1.58)

-0.128*
(2.70)

Temperature2 0.000215 
(0.05)  

0.00204
(1.87)

0.0000394
(0.01)

0.00274
(1.31)

0.00255
(2.32)

Precipitation -0.0000724
(-0.08)   

-0.0000242
(-0.04)   

-0.000437
(-0.50)    

-0.000208
 (-0.51)   

-0.000281
(-0.50) 

Precipitation2 -3.23e-08
(-0.02)   

4.52e-08 
(0.04)   

0.000000240 
(0.15)    

-0.000000165
(-0.20)   

0.000000301 
(0.28) 

N 432 432 432 432 432 
FE Country Country Country 

Year 
Country 
Year 

Country 
Year 

Time trend Linear 
Quadratic 

Country 
Time trend 

Linear, 
Quadratic 

Linear Linear 
Quadratic 

A.10: Alternative region decomposition model specification for robustness check
Middle East & North Africa 

logTFP   logTFP   logTFP  logTFP   logTFP   logTFP   
Temperature 0.103 

(1.37)   
 0.0285 
 (0.59)   

0.0838 
(0.94)   

-0.00838
(-0.17)

0.00497 
(0.08) 

Temperature2 -0.00254
(-1.60)  

-0.000585
(-0.60)

-0.00236
(-1.32)

-0.000165
(-0.17)  

-0.0000666
(-0.06)

Precipitation -0.00306
(-0.69)   

0.00144
(0.55)

-0.00409
(-0.82)   

-0.000373
(-0.09)   

0.00105
(0.38)

Precipitation2 0.000103 
(1.25)   

0.00000454
(0.10)

0.000124 
(1.36)   

0.0000370 
(0.60)   

0.0000130
(0.27)

N 648 648 648 648 648 
FE Country Country Country 

Year 
Country 
Year 

Country 
Year 

Time trend Linear 
Quadratic 

Country 
Time trend 

Linear, 
Quadratic 

Linear Linear 
Quadratic 
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A.11: Alternative 5-year average region decomposition model specification for 
robustness check 

    logTFP    logTFP    logTFP    logTFP    logTFP    logTFP 
Temperature 0.100  

(1.55)    
 0.0554 
 (1.10)    

0.000675 (0.01)    0.115  
(0.83)    

-0.800 
 (-2.05) 

0.2206338  
(1.06)    

Temperature2 -0.00285*  
(-2.27)   

-0.00146  
(-1.47)   

0.000120  
(0.06)   

-0.00371  
(-1.17)   

0.0156  
(2.12) 

-0.0041372  
(-0.93)   

Precipitation 0.000542    
(-0.36)    

-0.00000127  
(-0.00)    

0.00432   
(1.39)    

0.000234  
(0.23)    

-0.00334  
(-1.77) 

-.0074582  
(-0.56)    

Precipitation2 -0.00000150  
(-0.57)    

2.18e-08  
(-0.30)    

-0.0000339  
(-1.43)    

0.000000299 
(0.15)    

0.00000747  
(1.67) 

.0001816  
(0.61)    

N 120 390 300 250 80 120 
FE Country Country Country Country Country Country 
Country 
Time trend 
Region 

Linear, 
Quadratic 
East Asia & 
Pacific 

Linear, 
Quadratic 
SSA 

Linear, 
Quadratic 
Europe & 
central Asia 

Linear, 
Quadratic 
Latin America 
& Caribbean 

Linear,  
Quadratic 
South Asia 
 

Linear,  
Quadratic 
Middle East & 
North Africa 

 

 

 

A.12: Alternative 10-year average region decomposition model specification for 
robustness check 

    logTFP    logTFP    logTFP    logTFP    logTFP    logTFP    
Temperature 0.00868  

(0.03)    
 0.0198 
 (0.10)    

0.0390  
(0.42)    

0.284  
(0.89)    

-1.335* 
 (-2.49) 

0.672  
(1.05)    

Temperature2 -0.000794  
(-0.15)   

-0.000895  
(-0.24)   

0.000719 
(0.24)   

-0.00734  
(-1.12)   

0.0270*  
(2.79) 

-0.0151  
(-1.04)   

Precipitation -0.00738  
(-0.97)    

0.00464  
(1.89)    

0.00843 
(0.88)    

0.00291 
(0.98)    

-0.00545  
(-1.16) 

-0.0199  
(-0.68)    

Precipitation2 0.0000158  
(0.86)    

-0.00000915  
(-2.02)    

-0.0000745  
(-0.97)    

-0.00000738 
(-1.00)    

0.0000135  
(1.30) 

0.000373  
(0.46)    

N 60 195 150 125 40 60 
FE Country Country Country Country Country Country 
Country Time 
trend 
Region 

Linear, 
Quadratic 
East Asia & 
Pacific 

Linear, 
Quadratic 
SSA 

Linear, 
Quadratic 
Europe & 
central Asia 

Linear, 
Quadratic 
Latin America 
& Caribbean 

Linear,  
Quadratic 
South Asia 
 

Linear,  
Quadratic 
Middle  
East & 
North 
Africa 
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A.13: Alternative Income decomposition regression model specification for 
robustness check. 
High Income Countries 

logTFP   logTFP  logTFP  logTFP  logTFP  logTFP  
Temperature -0.0283  

(-0.17)    
0.0371  
(1.62)    

-0.0377  
(-0.20)    

0.0451  
(1.21)    

0.0185  
(0.61) 

Temperature2 0.00120  
(0.24) 

-0.00119  
(-1.68)   

0.00152  
(0.28)   

-0.00147  
(-1.26)   

-0.000704  
(-0.75) 

Precipitation -0.00102  
(-1.99)    

-0.000550*  
(-2.36)    

-0.000993  
(-1.79)    

-0.000477  
(-1.38)    

-0.000523*  
(-2.34) 

Precipitation2 0.00000360 
(1.63)    

0.00000146  
(1.92)    

0.00000367 
(1.54)    

0.000000798  
(0.88)    

0.00000142  
(1.85) 

N 1350 1350 1350 1350 1350 
FE Country Country Country 

Year 
Country 
Year 

Country 
Year 

Time trend Linear 
Quadratic 

    

Country Time 
trend 

 Linear, 
Quadratic 

 Linear Linear 
Quadratic 

 
A.14: Alternative Income decomposition regression model specification for 
robustness check 
Middle Upper Income Countries 

logTFP   logTFP  logTFP  logTFP  logTFP  logTFP  
Temperature -0.0496  

(-0.58)    
-0.0323  
(-1.43)    

-0.0423  
(-0.47)    

0.0238 
(0.78)    

-0.0281  
(-1.17) 

Temperature2 0.00145  
(0.74) 

0.000499  
(1.01)   

0.00145  
(0.69)   

-0.000546  
(-0.83)   

0.000490 
(0.72) 

Precipitation 0.00000737  
(0.02)    

0.000123  
(0.57)    

0.00000757  
(0.02)    

0.000156  
(0.51)    

0.0000768  
(0.35) 

Precipitation2 8.95e-08 
(0.19)    

-0.000000152 
(-0.48)    

6.62e-08 
(0.13)    

-0.000000219  
(-0.48)    

-0.000000119  
(-0.43) 

N 1944 1944 1944 1944 1944 
FE Country Country Country 

Year 
Country 
Year 

Country 
Year 

Time trend Linear 
Quadratic 

    

Country Time 
trend 

 Linear, 
Quadratic 

 Linear Linear 
Quadratic 
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A.15: Alternative Income decomposition regression model specification for
robustness check
Middle lower Income Countries 

logTFP  logTFP logTFP logTFP logTFP logTFP 
Temperature 0.0483 

(0.69)   
-0.0181
(-0.97)

0.0460 
(0.63)   

-0.0127
(-0.39)

-0.0256
(-1.30)

Temperature2 -0.00115
(-0.75)

0.000222
(0.46)

-0.00103
(-0.63)

0.000171
(0.21)

0.000481
(0.93)

Precipitation -0.00000798
(-0.01)

0.0000449
(0.13)

-0.000131
(-0.23)

0.00000233
(0.01)

-0.0000875
(-0.27)

Precipitation2 2.01e-09
(0.00)

2.19e-08
(0.04)

0.000000173
(0.18)

-5.35e-08
(-0.08)

0.000000210
(0.04)

N 2214 2214 2214 2214 2214 
FE Country Country Country 

Year 
Country 
Year 

Country 
Year 

Time trend Linear 
Quadratic 

Country Time 
trend 

Linear, 
Quadratic 

Linear Linear 
Quadratic 

A.16: Alternative Income decomposition regression model specification for
robustness check
Low Income Countries 

logTFP  logTFP logTFP logTFP logTFP logTFP 
Temperature 0.0444 

(0.23)   
0.0980 
(1.08)   

0.0534 
(0.26)   

0.0535 
(0.53)   

0.101   
(1.06) 

Temperature2 -0.00174
(-0.43) 

-0.00247
(-1.31)

-0.00224
(-0.50)

-0.00179
(-0.85)

-0.00273
(-1.36)

Precipitation 0.00126* 
(2.58)   

0.00154***
(3.89)

0.00120*
(2.61)

0.00164***
(4.45)

0.00153***
(4.47)

Precipitation2 -0.00000229*
(-2.21)   

-0.00000264**
(-3.38)   

-0.00000232*
(-2.32)   

-0.0000028**
(-3.15)   

-.00000277***
(-3.83)

N 1404 1404 1404 1404 1404 
FE Country Country Country 

Year 
Country 
Year 

Country 
Year 

Time trend Linear 
Quadratic 

Country 
Time trend 

Linear, 
Quadratic 

Linear Linear 
Quadratic 
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A.5: Histograms for Temperature dataset 

Sub-Saharan Africa    Latin America & Caribbean 

 
 

 East Asia & Pacific    South Asia  
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A.6: Histograms for Precipitation dataset 

Sub-Saharan Africa   Latin America & Caribbean 
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A.17: List of countries 

Country Region Climatic region Income 
Afghanistan South Asia  Tropical Low 
Albania Europe & Central Asia Temperate Middle-Upper 
Algeria Middle East & North 

Africa 
Temperate Middle-Upper 

Angola Sub-Saharan Africa Tropical Middle-Low 
Argentina Latin America & 

Caribbean 
Tropical Middle-Upper 

Armenia Europe & Central Asia Temperate Middle-Low 
Australia East Asia & Pacific Tropical High 
Austria Europe & Central Asia Temperate High 
Azerbaijan Europe & Central Asia Temperate Middle-Upper 
Bangladesh South Asia  Tropical Middle-Low 
Belarus Europe & Central Asia Temperate Middle-Upper 
Belgium Europe & Central Asia Temperate High 
Belize Latin America & 

Caribbean 
Tropical Middle-Upper 

Benin Sub-Saharan Africa Tropical Low 
Bhutan South Asia  Tropical Middle-Low 
Bolivia Latin America & 

Caribbean 
Tropical Middle-Low 

Botswana Sub-Saharan Africa Tropical Middle-Upper 
Brazil Latin America & 

Caribbean 
Tropical Middle-Upper 

Bulgaria Europe & Central Asia Temperate Middle-Upper 
Burkina Faso Sub-Saharan Africa Tropical Low 
Burundi Sub-Saharan Africa Tropical Low 
Cambodia East Asia & Pacific Temperate Middle-Low 
Cameroon Sub-Saharan Africa Tropical Middle-Low 
Canada North America Temperate High 
Central African 
Republic 

Sub-Saharan Africa Tropical Low 

Chad Sub-Saharan Africa Tropical Low 
Chile Latin America & 

Caribbean 
Temperate High 

China East Asia & Pacific Temperate Middle-Upper 
Colombia Latin America & 

Caribbean 
Tropical Middle-Upper 

Congo, DR Sub-Saharan Africa Tropical Low 
Congo, Republic Sub-Saharan Africa Tropical Middle-Low 
Costa Rica Latin America & 

Caribbean 
Tropical Middle-Upper 

Côte d'Ivoire Sub-Saharan Africa Tropical Middle-Low 
 
Cuba 

Latin America & 
Caribbean 

Tropical 
Tropical 

Middle-Upper 
Middle-Upper 
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Country Region Climatic region Income 
Dominican Republic Latin America & 

Caribbean 
Tropical Middle-Upper 

Ecuador Latin America & 
Caribbean 

Tropical Middle-Upper 

Egypt Middle East & North 
Africa 

Temperate Middle-Low 

El Salvador Latin America & 
Caribbean 

Tropical Middle-Low 

Ethiopia, former Sub-Saharan Africa Tropical Low 
France Europe & Central Asia Temperate High 
Gabon Sub-Saharan Africa Tropical Middle-Upper 
Gambia Sub-Saharan Africa Tropical Low 
Georgia Europe & Central Asia Temperate Middle-Low 
Germany Europe & Central Asia Temperate High 
Ghana Sub-Saharan Africa Tropical Middle-Low 
Greece Europe & Central Asia Temperate High 
Guatemala Latin America & 

Caribbean 
Tropical Middle-Low 

Guinea Sub-Saharan Africa Tropical Low 
Guinea-Bissau Sub-Saharan Africa Tropical Low 
Guyana Latin America & 

Caribbean 
Tropical Middle-Upper 

Haiti Latin America & 
Caribbean 

Tropical Low 

Honduras Latin America & 
Caribbean 

Tropical Middle-Low 

Hungary Europe & Central Asia Temperate High 
India South Asia  Tropical Middle-Low 
Indonesia East Asia & Pacific Temperate Middle-Low 
Iran Middle East & North 

Africa 
Temperate Middle-Upper 

Iraq Middle East & North 
Africa 

Temperate Middle-Upper 

Israel Middle East & North 
Africa 

Temperate High 

Italy Europe & Central Asia Temperate High 
Jamaica Latin America & 

Caribbean 
Tropical Middle-Upper 

Jordan Middle East & North 
Africa 

Temperate Middle-Low 

Kazakhstan Europe & Central Asia Temperate Middle-Upper 
Kenya Sub-Saharan Africa Tropical Middle-Low 
Korea, Republic East Asia & Pacific Temperate High 
Kyrgyzstan Europe & Central Asia Temperate Middle-Low 
Laos East Asia & Pacific Temperate Middle-Low 
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Country Region Climatic region Income 
Lesotho Sub-Saharan Africa Tropical Middle-Low 
Libya Middle East & North 

Africa 
Temperate Middle-Upper 

Lithuania Europe & Central Asia Temperate High 
Madagascar Sub-Saharan Africa Tropical Low 
Malawi Sub-Saharan Africa Tropical Low 
Malaysia East Asia & Pacific Temperate Middle-Upper 
Mali Sub-Saharan Africa Tropical Low 
Mauritania Sub-Saharan Africa Tropical Middle-Low 
Mexico Latin America & 

Caribbean 
Tropical Middle-Upper 

Moldova Europe & Central Asia Temperate Middle-Low 
Morocco Middle East & North 

Africa 
Temperate Middle-Low 

Mozambique Sub-Saharan Africa Tropical Low 
Myanmar South Asia  Tropical Middle-Low 
Namibia Sub-Saharan Africa Tropical Middle-Upper 
Nepal South Asia  Tropical Low 
Netherlands Europe & Central Asia Temperate High 
New Zealand East Asia & Pacific Temperate High 
Nicaragua Latin America & 

Caribbean 
Tropical Middle-Low 

Niger Sub-Saharan Africa Tropical Low 
Nigeria Sub-Saharan Africa Tropical Middle-Low 
Pakistan South Asia  Tropical Middle-Low 
Panama Latin America & 

Caribbean 
Tropical Middle-Upper 

Paraguay Latin America & 
Caribbean 

Tropical Middle-Upper 

Peru Latin America & 
Caribbean 

Tropical Middle-Upper 

Philippines East Asia & Pacific Temperate Middle-Low 
Poland Europe & Central Asia Temperate High 
Portugal Europe & Central Asia Temperate High 
Puerto Rico (USA) Latin America & 

Caribbean 
Tropical High 

Romania Europe & Central Asia Temperate Middle-Upper 
Russian Federation Europe & Central Asia Temperate Middle-Upper 
Rwanda Sub-Saharan Africa Tropical Low 
Saudi Arabia Middle East & North 

Africa 
Tropical High 

Senegal Sub-Saharan Africa Tropical Low 
Sierra Leone Sub-Saharan Africa Tropical Low 
Somalia Sub-Saharan Africa Tropical Low 
South Africa Sub-Saharan Africa Tropical Middle-Upper 
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Country Region Climatic region Income 
Sri Lanka South Asia  Tropical Middle-Low 
Sudan, former Sub-Saharan Africa Tropical Middle-Low 
Swaziland Sub-Saharan Africa Tropical Middle-Low 
Switzerland Europe & Central Asia Temperate High 
Syria Middle East & North 

Africa 
Tropical Middle-Low 

Tajikistan Europe & Central Asia Temperate Middle-Low 
Tanzania Sub-Saharan Africa Tropical Low 
Thailand East Asia & Pacific Temperate Middle-Upper 
Timor-Leste East Asia & Pacific Temperate Middle-Low 
Togo Sub-Saharan Africa Tropical Low 
Trinidad and Tobago Latin America & 

Caribbean 
Tropical High 

Turkey Europe & Central Asia Temperate Middle-Upper 
Turkmenistan Europe & Central Asia Temperate Middle-Upper 
Uganda Sub-Saharan Africa Tropical Low 
Ukraine Europe & Central Asia Temperate Middle-Low 
United States North America Temperate High 
Uruguay Latin America & 

Caribbean 
Temperate High 

Uzbekistan Europe & Central Asia Temperate Middle-Low 
Venezuela Latin America & 

Caribbean 
Tropical Middle-Upper 

Viet Nam East Asia & Pacific Temperate Middle-Low 
Yemen Middle East & North 

Africa 
Tropical Middle-Low 

Zambia Sub-Saharan Africa Tropical Middle-Low 
Zimbabwe Sub-Saharan Africa Tropical Low 
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A.18: List of countries in SIMPLE
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