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1.0 MODELING OF PULVERIZED COAL SUSPENSIONS

1.1 Introduction

At the elevated temperatures normally encountered in combustion

. chambers, thermal radiation is the dominant mode of energy transfer.l’2
Therefore, a successful prediction of combustor performance, which
requires knowledge of the temperature and heat flux distributioms,
must be based on a realistic model of radiant energy transfer in the
system. The radiation transport in systems fired with pulverized coal
has recehtly received considerable a.tt:ex:u:ion}"5 because of the expected
increase in the importance of ccal to meet world energy needs.

A pulverized coal flame is a non-uniform, multi-component,
gas—particie cloud which generates heat by chemical reaction. _The
presence of coal and char particles (whose sizes are greater than or
comparable to the wavelengths of thermal radiation) causes the reacting
suspension to scatter, as well as absorb and emit radiant energy.
Unfortunately, the majority of flame radiation studies have been

7=9

restricted to non-scattering gaseous flames , or to flames containing

very small carbon particles (soot) for which scattering is negligible

L Simple computational methods

relative to emission and absorptionm.
which are used to determine the radiant energy transfer in non-
- s 1 12 1 13
scattering media (e.g., Bouguer's law, Hottel's zone method ™)
are generally not applicable to media in which scattering is significant.

A number of additional factors contribute to the difficulty

of the radiative transfer problem in pulverized coal combustion.



These factors include the complexity of coal composition and its
associated reactions,l4 the non-uniformity of the reacting system,l5
aﬁd the serious lack of knowledge of many system properties16 (e.g.,
optical properties of coal particles at combustion temperatures and
thermal radiation wavelengths). Furthermore, the equations which
describe the radiative interchange are coupled with equations
governing the conservation of energy, mass, and momentum for each
component in the gas-particle mixture. Consequently, a large number
of unknowns is required to describe completély the system. This
description of a coal suspension yields a formidable set of coupled
differential equations whose solution has never been attempted for
the most general case.4

A number of simpler computational models have been developed to
determine the composition, velocity, temperature, and radiant flux

Si5d5417 518 These models

distributions in propagating coal dust flames.
are based on a wide range of simplifications of the general conservation
laws, with the overall treatment ranging from very simple to very
complex. The treatment of radiative heat transfer is highly approxi-
mate and often unrealistic. The scattering of radiation is commonly

- neglected despite its significance in media which contain dispersed
particles of sizes greater than, or comparable to, the wavelengths of
the radiation.l2 Models which do allow for scattering general}y are

based on approximate forms of the radiative transfer equation (e.g.,

flux methods and the diffusion approximation). For these approximate



radiative transfer models, thg emission of thermal energy is often
neglected for added simplicity, even though it is of major importance

at combustion temperatures. Finally, most existing radiation models

for which solutions have been obtained neglect radiative heat losses

at the combustor walls by assuming that radiant energy is transferred
only aldng the propagation direction of the coal dust cloud, and there- -
fore, transverse radiation leakage from the system is neglected.

In this work, a more sophisticated treatment of radiant heat ex-
change in chemically reacting coal suspensions is presented. The
radiative transfer equation is solved for the detailed variation of

_the radiation field in an absorbing, emitting, and multiply-scattering
medium. The effects of scaftering, anisotropic scattering, and con-
ditions at the combustor boundaries on'computed temperature and heat

fluﬁ distributions are examined. A detailed description of the radiative
transfer equation and its solution in pulverized coal systems is pre-
sented in the following chapters. The remainder of this chapter is
de&oted to the presentation of the general form and common simplifi-
cations of the conservation laws appropriate to pulverized coal media.

In addition, a number of solution models and their treatment of the

radiant energy exchange are reviewed.

1.2 General Conservation Equations

Generalized mass, momentum, and energy conservation equations
for gas-particle mixtures are given in references 4, 19-22. Specific

forms applicable to coal dust clouds undergoing chemical reactions are



presented here. The equations are written separately for the gas
phase (which is a mixture 6f various gaseous species) and for the
solid phase (which is composed of particles with a distribution of
sizes). The mass, momentum, and energy conservation equations for

the two-phase mixture can be obtained by addition of the corresponding
equations for the two separate phases.

The basic conservation laws for any medium property can be derived
with the aid of the Reynolds Transport Theorem, which relates the
Lagrangian and Eulerian descriptions of the motion of a fluid. For
an arbitrary control volume cv surrounded By the control surface cs,

3
the Reynolds Transport Theorem may be expressed asa’z‘

%E' (mg) = %7:- { pBdV + J oBv-dA. (1.1)
cv - cs

In this equation, B is an igtensive property (property per unit mass)
of the fluid elemeﬁt that occupies the control volume at time t, dx
is the differential area vector in the direction of the outward normal
to the control surface, and m, p, and v are, respectively, the mass,
the mass density, and the velocity of the fluid element. The theorem
states that the instantaneous rate of change of any extensive property
of the fluid element, mg, is equal to its rate of change within the
~control volume plus its net efflux across the control surface at the
instant the fluid element occupies the control volume. It should be
noted that the derivative appearing in the left side of equation (1.1)
is a substantial derivative, since both leccal and convective changes
contribute to the time rate of change of the extensive property mg of

the fluid element.



1.2,1 Gas-Phase Continuity

The Reynolds Transport Theorem is applied with B=1 and with
p=pg, where pg is the mass of gas per unit volume of the gas-particle

mixture (i.e., the bulk density). The resulting equation is

dm . 3 J J PR
-— = — p dv + p v +dA, (1.2)
dt ot oy g - gg

The rate of increase of gaseous mass %% can be related to the volumetric

rate of solid particle consumption rP by

dm _
o J rPdV. (1.3)
cv

Substitution of Eq. (1.3) into Eq. (1.2) and use of the divergence theorem?%

to convert the surface integral to a volume integral yields

op
B i o 5w
5t + v (pgvg) rp

s (1.4)
where the volume integrals have been dropped because the volume of
integration is arbitrary.

If the gas phase is composed of a mixture of gaseous species,

the gas velocity 38 and bulk demsity pg are expressed in terms of the

individual gas velocities and densities by4

- 1 -
v S m— z p Vo, (105)
g p, j slgl

p

.6

i
where pgi and Ggi are the bulk density and the velocity of gas i,

respectively.



1.2.2 Solid-Phase Continuity

Application of Eq. (l.1l) to the conservation of mass of the

_particulate phase in the pulverized coal cloud yieldslg’zo
ap N
5T + V-(ppvp) = -rp, (1L.7)

where Dp’ ﬁp, and rp are the particle bulk density, the particle
velocity, and the rate of consumption of the coal particles per

unit volume of the mixture, respectively. For a cloud with a distri=-
bution of particle sizes, these quantities are related to those

of particles in each size class k by the Falsetons”

-+ -
v == J oo .v (1.8)
BBy p PERK
- 1.
B E Pok (1.9)
= A . 1.10
rp E pk ( )

1.2.3 Gas-Phase Momentum

Setting the quantity 8 in Eq. (1.1) equal to the gas momentum per

.
unit mass (i.e., the gas velocity vg) yields

d > P -> > > >
— = — + . N
it (mvg) ¥y va p v dv JCS pgvgvg dA, (1.11)

in which the left side is simply the rate of change of momentum of the
gaseous species in the fluid element. This rate of change is given

by Newton's second law as the sum of the forces acting on the gas
(i.e., pressure forces, viscous forces, gravitational forces, etc.).

Substitution for these forces in the left side of Eq. (1.11), and



use of the divergence theorem yields the gas-phase momentum equation.

This equation may be written4’19

lm

-+ > > -
v ) + Ve v ) = =Vp + Ve(l=-8)T + VeB1 - £
(b F) + 7o 3T ) = -V + Ve(l-8)x_ + Voot - F

Qr

t

+p §+Z

g L (1.12)

-
rpk Vpk,

where P is the pressure, T

4 is the shear stress at the gas-particle
interface, t is the shear stress tensor attributed to the gas viscosity
(and includes the stress due to gaseous species interdiffusion), ?P is
the aerodynamic force on the particles per unit volume of the gas-
particle mixture, and E is the gravitational acceleration, The
quantity 6 is the void fraction defined as the volume occupied by

the gas per unit volume of the mixture.

The left side of Eq. (1.12) represents the total rate of gain of

' momentum by the gas phase per unit volume. The first three terms on

the right side are, respectively, the pressure force per unit volume,

the rate of momentum gain per unit volume by viscous transfer at the
gas-particle interface, and the rate of momentum increase by viscous
transfer (in the gas phase) per unit volume. The last two terms of

Eq. (1.12) are the gravitational force per unit volume, and the volumetric
rate of momentum addition to the gas phase due to particle combustion.

1.2.4 Solid-Phase Momentum

As with the gas-phase momentum equation, the momentum equation
of a cloud of particles is obtained by application of Eq. (1l.1l) in con-
junction with Newton's second law and the divergence theorem. Neglecting
inter-particle collisions, the particle momentum equation may be

. 4,19,20
written



9 - -+ 5 -> -
—— v + V- v v + Ve §v . 6v =
= (flp p) (pp Vo) E (P SV 8V o)

> ->
Jr.ov, +f + X2 (1.13)

The quantity aﬁék is the diffusion velocity of particles in the

kth size class and is defined by

-+ > >
vak = ok T Vpr (1.14)

The last term on the left side of Eq. (1.13) represents the rate
of momentum addition per unit volume associated with the motion of
the particles about their mass-averagéd velocity gé. This term is
analogous to the stress due to species interdiffusion that is encountered
in the gas—-phase momentum equation. The first term‘on the right side
is_;he rate of momentum gain per unit volume due to particle combustion,
and the last two terms are the aerodynamic and gravitational forces
on the particles per unit volume.

1.2.5 Gas-Phase Energy

The Reynolds Transport Theorem [Eq. (1.1l)] is written with B equal

to the total energy of the gas per unit mass, i.e.,

8 =e +v. 02, (1.15)

where eg is the internal energy of the gas per unit mass, and Vg
is the gas speed. The potential energy contribution to the total
energy of the gas is neglected. Combination of Eq. (1.1) with the

first law of thermodynamics and substitution for the work and heat



transfer terms yields the gas-phase energy ecp.mt:ion:q’19-’20

3 2 . 2,0 > o _
T [pg(eg . J vy /12)] +79 {pg(hg -i-vg /2) vg] =

.
—v.oq + Q= + E L +-£82 4B

- - >
-V+[(1-8) Pvp] + V-[Qz-vg + (l—elgs-vp]

-7V F +pgv +P V. (1.16)
. Pk Pk "g” g s

-
In this equation, q is the net heat transferred by conduction and

species interdiffusion, and Qr and Qcp are the volumetric rates of

g
energy loss by radiation and energy gain by convection (from the
particulate phase), respectively. The quantities hg and hgs are
the gas enthalpy and the average gas enthalpy at the particle surface,

‘respectively. The speed Vés is given by

.

+ 1|, - (1.17)

ke

gs
where Ggs is the gas velocity at the particle surface relative to the

>
particle's center of mass, and r is the surface regression velocity
of the particle. Finally, PS is the average pressure over the particle
surface, and V is the rate of change of total particle volume per unit
volume of the mixture.
The first term on the right side of Eq. (1.16) is the rate of

energy transfer per unit volume by gas phase conduction and species

interdiffusion. The second and third terms represent the energy

gains per unit volume by convection from the dispersed particles



10

and by radiation, respectively. The next three terms are the volumetric
rate of energy addition to the gas phase due to particle consumption,
the rate of work done on the gas per unit volume due to the pressure
forces at the surface of the particles, and the rate of work done on the
gas per unit volume by wviscous forces. The seventh and eighth terms
are the rates of work done on the gas per unit volume by aerodynamic
forces and gravitational forces, respectively. Finally, the last term
is the rate of work done on the gas per unit volume due to the swelling
or shrinking of the dispersed particles.

For a mixture of gaseous species, overall properties are defined

in terms of the properties of the ith species by4

1
e ==—)p . e . (1.18)
g pgi g1 g1

h =%~—*ZDihi (1.19)
g 0,7 8 8
2 1 2

voo= =7 p . v, (1.20)
g pg i gi gi

(1.21)

1.2.6 Solid-Phase Energy

Combining the Reynolds Transport Theorem (with g equal to the

solid phase energy per unit mass) and the first law of thermodynamics

4
yields the solid phase energy equation »19



3 2 2 2
T [pp(ep + v, /2)1 + 9 [ppvP (eP + Vo /2)]1 +

v2 v2 V,Z
- > “BEyy o P, _8s
v {é pPkstk (epk * 2 )] é rpk hgs + 2 + 2
k
+ TV . +ETov PV
. PE pk T 8 X ppkvpk Qcp Qrp- s’
where
e =1 T, e
2
P Py ok Pk
and

The quantities epk and vpk

11

(1.22)

(1.23)

(1.24)

are the internal energy (including surface

energy) and the speed of particles in the kth size class, respectively,

and Qrp is the volumetric rate of energy loss by radiation.

The last term on the left side of Eq. (1.22) is the rate of energy

transfer per unit volume associated with the motion of the particles

about their mass-averaged velocity. The first term on the right side

is the volumetric rate of energy gain due to particle consumption,

while the second and third terms are the rates of work done per unit

volume by aerodynamic forces and gravitational forces, respectively.

The last three terms represent the volumetric rates of heat transfer

by convection from the gas phase, of energy gain by radiation, and

of work done on the particles by pressure forces due to particle

swelling or shrinking.

1.3 Simplified Forms of the Comservation Laws

The general equations presented in the preceding section are
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extremely complex and contain a large number of independent and

dependent variables. No solution of these general three—dimensional,
time-dependent equations has been attempted to date. Several simplifying
assumptions are invariably introduced to reduce the dimensionality of

the equations and eliminate a number of the unknowns. Furthermore, a
number of auxiliary equations are needed to obtain a closed system

of equations.

1.3.1 Common Simplifications'

The continuity, momentum, and energy equations can be simplified
somewhat by setting the void fraction of coal dust cloud, 8, equal to
ﬁﬁity. This approximation is well justified because the volume occupied
by the particulate matter in the two-phase mixture is typically less
than Q.01%7 of the total volume.4 In addition, the complexity of the

equations is reduced greatly if it is assumed that the particles

-
in all size classes move at the same local velocity (i.e., gpk = vp,
and Ggpk = Q). With these simplifications, the conservation equations
become

Ei& s ( )
+ Ve(pv) =71 (gas continuity) 1.25
5t ( 2 . g y
9p
EER + V-(ppvp = -rp {particle continuity) {1.26)
v N
o —& 4 p v *Vyv_ = =VP + V1 -?
g dt g 8 g - P
- > >
+ + (v -v )r (gas momentum) €1..27)
P8 ( 1 g) o (8
-
v

Py T . =T + (solid momentum) (1.28)
B Po¥p " T % "pg
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2 2
3 Ve, > h 5P >
— (h_ + + .y By & = 2T g -
By e ( w F g ) Pty (t?g ) 3¢~ Vtat QcP Qrg
-+ - - . .
Erpk [, + 5=+ 57 (hg+2)] Ve(zv)
voF 402V +PV
o5 pgg vg s gas energy) (1.29)
Ty ot e a2 o e
—— <+ + -v = -
P ot (8p + 3 F R v Te, + 50 E Tk 8y = (g + 5]
+v oF + o eV - Q - Q -PV (particle ene ) (1.30)
TV T PR T Rep T Rpp TR TP nereyl. '
The momentum and energy equations [Egs. (1.25)-(1.28)] have been
written with the aid of the relations:
P 98 - -+
Lo =p —24 «78 - Ve :
ne (Bgog) By 50 B MR, o RV, + BT, (1.31)
and
a 3B > >
— {a = —P 4 5 ¥V VB - ¥ - . 1.32
T ppp) S TR Bp ppspvp Bprp (1.32)

in which Sg and Bp are arbitrary intensive properties of the
and solid phases, respectively. Equations (1.31) and (1.32)
verified using the continuity equation for each phase.

1:3e2: Auxiliary Equations

gas

are easily

Equationg (1.27)-(1.30) are a set of 10 equations in 31 + B8 NS

unknowns, where NS is the total number of particle size classes.

Auxiliary equations relating the unknowns to each other or to known

system properties are therefore needed. The auxiliary equations

give the gas physical properties and transport coefficients,

the

solid-phase physical properties, the chemical reaction rates, and
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the heat transfer rates. The calculation of the radiatiom heat.lcss
terms (Qrg and Qrp) is discussed in detail in Chapter 2, and the re-
maining auxiliary equations are listed and discussed in References 4
and 16. In these equations, the overall gas properties are computed
from those of the individual gaseous species and related to conditions
of temperature, pressure, etc. The solid phase is assumed to contain . -
char, ash, volatiles, and moisture, and overall solid phase properties
are computed from those of the individual components for each particle
size class. Finally, the equations account for a complete sequence
physio—chemicél processes including devolatilization, gas phase hydro-
. carbon oxidation, moisture vaporization, and char oxidation.

Complete specification of the problem also requires a number of
boundary conditions and initial conditions. The boundary conditions
generally specify a linear combination of each unknown and its
gradient at the system boundaries.lgl Initial conditions specify
the system properties at time t=0.

1.3.3 Additional Simplifications

Most investigators have modeled propagating pulverized coal
flames by assuming that the properties of the two-phase mixture vary
in a one-dimensional mannef along the direction of propagation.5’ls’l7’18
This one-dimensional treatment is valid if the flame can be considered
infinite in extent normal to the direction of propagation (i.e., a
plane flame), or if sufficient mixing occurs that the flame is
homogeneous over any cross section perpendicular to the flow. Further-

more, the momentum equations are eliminated based on the following

assumptions:
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a) Body forces are negligible
b) Viscous dissipation is negligible
c) Pressure is uniform in the gas phase

d) Relative motion between the coal particles and the gaseous
species 1s negligible, and hydrodynamic forces (primarily

drag) can therefore be neglected.
The conservation laws are further simplified by assuming that
the inlet particle suspension is monodisperse, that the flow is low-
. speed, that the heat capacity of each phase is constant, and that

system properties are time independent. Equations (1.25)-(1.30) become

EE-{pgv) = rp (gas continuity) (1.33)
d . .
EE—(ppv) = - rp (particle continuity) (1.34)
dT dq .
pgvcg EEE - gt QCp - Qrg + Hg (gas energy) (1.35)
dT
N - i 1.
ppvcp T Qcp Qrp + Hp (particle energy), (1.36)

where the flow is along the z-axis, v is the flow speed, and cg and

cp are the heat capacities (at constant pressure) of the gas and solid
phases, respectively. The terms Hg and Hp are the volumetric rates

- of heat release to the gas and particle phases, respectively, due

to the surface burning of the coal particles. These quantities are
defined by [cf. Egs. (1.29) and (1.30)].

H =(h_ ~-h 1.37
g ( gs 8) rP ( )

H =(e_=-h_) r_. (1.38)
P P gs P
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The evaluation of the particle burning rate rp is simplified
enormously if the particles are assumed to contain negligible amounts
of volatiles and moisture. In this case, only the heterogeneous
reaction of carbon with oxygen needs to be considered.16 Generally,

only the reactions C + 1/2 02 + CO and C + 02 > COZ o considered.s’lﬁ’ls

1.4 Summary of Existing Solutioms for Coal Suspensions

Essenhigh and Csaba17 considered a plane flame which is at uni-
form tempefature (the ignition temperature) and is decoupled from the
pre-ignition zone. The coal particles in the pre-ignition zone are
heated by radiant energy transfer from the flame, and part of this
energy 1is transferred to the gas by convection. The gas phase con-
duction term %%—is neglected. Analytical expressions are obtained
for the spatial variation of the gas and particle temperatures, with
the ignition temperature and the length of the pre-ignition zone as
parameters. Special forms of these expressions are given for the
cases Tp = Tg (i.e., infinite heat transfer rate between the two
species) and Tg = constant (i.e., infinite gas heat capacity). The
treatment of radiative‘heat transfer is very approximate, as both
scattering and thermal emission are neglected in the pre-ignitiom
zone. The thermal energy emitted by the flame is attenuated in the
pre-ignition zone according to Bouguer's law.12

Bhaduri and Bandyopadhyayl8 have‘determined the axial variation

of composition and temperature for plane flame and jet flame

models. They assumed that particles and the gas have the same
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local temperature (i.e., Qcp = (), and that the particle diameter
decreases linearly with position along the flame axis. Heat con-
duction by the gas phase is neglected (i.e., %% = (). The entire
system is assumed adiabatic, and ;hermal radiation and chemical
energy release are spent exclusively in heating the two-phase mixture.
The treatment of radiation is similar to that of Essenhigh and Csaba,
with both scattering and thermal energy emission neglected. Again,
Bouguer's law is used to compute the attenuation of the radiant energy
in the system.

In the model of Krazinski et a1.5, the gas and solid phases
are allowed to have differing temperatures, and the gas phase con-
duction term-%% is retained. Part of the heat generated by chemical
reaction is released into the particulate phase with the remainder
released in the gaseous phase. The exact partition of heat release
between the two phases is unknown, but it is estimated that roughly
30% of the total heat of reaction is delivered to the particles. The
particle burning rate rp is controlled by both chemical kinetics at
the particle surface and diffusion of oxygen to the particle surface.
Radiant energy transfer is computed using the diffusion approximation
of the radiative transfer equation, which allows for scattering,
absorption, and thermal energy emission. The basic limitation of this
work is the neglect of radiant energy losses at the system boundaries.

Smoot et al.15 considered a more complex model of reacting coal
dust suspensions. Effects of gaseous species diffusiom, coal pyrolysis,
gas phase volatiles reactions, and char oxidation on the propagation

of pulverized coal-air mixtures are included. The variation of the
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gas and particle temperatures, the mass fractions of the gaseous
species, and the diameter of the coal particles with distance along
the flame are computed. The gas heat capacity, density, and trans=-
port coefficients are not assumed constant and are computed as
~functions of the gas composition, which varies with position in

the system. Although the model is more sophisticated in its des~
cription of the reacting mixture, it is of limited usefulness because
radiative heat transfer is neglected entirely, and because the system
~is assumed to be adiabatic.

A number of investigators have considered simple one-~dimensional
models to compute tﬁe spatial variation of.the temperature and radiation
intensity distributions in the direction normal to the propagation
~direction. For example Field et al.16 considered a reacting pulverized
.coal suspension bounded by infinite, parallel, flat walls. The energy
release-rate (due to chemical reaction) and the non-radiative energy
.loss rates are assumed a priori, and therefore the conservation
- equations are reduced to a simple energy balance which must be solved
simultanecusly with the radiation equations. Models of this type can
be used to study the effects of scattering, particle size, wall tempera-
ture, and the rates of heat generation oun the temperature and intensity
distributions, as well as on the energy loss rates at the system

boundaries.
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2.0 THERMAL RADIATION TRANSPORT

Calculation of the radiant heat loss terms by the gas and solid
pﬁases in a pulverized coal suspension requires evaluation of the
thermal radiation intensity throughout the medium. The radiation
intensity distribution in an absorbing, emitting, and scattering
medium can be determined by solution of the radiative tramnsfer
equation. In this chapter, the general form and common simplifications
of the equation of transfer are presented, and the evaluation of the
radiant heat loss terms Qrg and QIP in the gas and solid phase
energy balances is discussed. The dual nature of radiant energy
as electromagnetic waves and particles (photons) is recognized, and
both the classical electromagnetic wave and the quantum mechanical
particle viewpoints are used in the description of radiant energy

emission and propagation in a medium.

2.1 Thermal Radiation

All substances constantly emit electromagnetic radiation as a
resuit of atomic and molecular agitation associated with the internal
energy of the material.25 The mechanisms by which electromagnetic
radiation is produced include conversion of matter to radiant energy,
deceleration of energetic charged particles, electronic transitions,
and changes in the vibrational-rotatiomal energy states of molecules.
Depending on the production mechanism, the emitted radiation can vary
greatly in frequency v from radiowaves (v g 106 s_l) to cosmic rays

B & 10 &5y,
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Thermal radiation constitutes a small part of the spectrum over
which energy can be transmitted by electromagnetic waves and is con-
fined to the frequency range of roughly 1011 s—1 to 1015 3—1,2 as shown
in Fig., 2.1. This radiation is emitted by matter by virtue of its
temperature and is generally detectable as heat or light. Gaseous
bodies emit thermal energy which is confined to a number of single
frequencies (line spectra) or to bands of frequencies that result
from the overlap of a number of lines (band spectra). -This thermal
emissibn from gases is caused either by electronic transitions in
the viéible region of the spectrum or by wibrational-rotational
molecular transitions in the infrared. Solid bodies are characterized
by much higher densities of atoms or molecules, and the large number
of possiblé transitions causes the emission by solids to be continuous
over a wide range of frequencies.25 Thermal emission from solids is
a result of lattice vibrations in the far infrared, and molecular

vibrations and bound electron transitions in the near infrared.

2.2 The Equation of Radiative Transfer

Radiative transfer encompasses all phenomena that involve the
propagation and interaction of electrcmagnetic radiation in a medium.
The fundamental quantity which describes the radiation field is the
specific radiation intensity (or simply the intensity), Iv(?,ﬁ,t),

which may be defined as

Iv(?,'ﬁ,t) = hye n(T,8,v,t). (2.1)
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In this equation, h is Planck's constant, ¢ is the photon speed

(i.e., the speed of light in the medium), and n(;,ﬁ,v,t) is the photon
‘angular density, This angular density is defined as the expected
number of photons per unit volume about the point ;, per unit
frequency aboutlv,_traveling at time t in a unit solid angle about

the direction §. From Eq. (2.1), it may be seen that the intensity is
the product of the energy per photon (hv), the photon speed (c), and
the photon angular demsity (n), and therefore the intensity can be
interpreted as an energy angular flux, i.e., the energy crossing a
unit area perpendicular to @ in a unit time at peint .

The radiative transfer equation expresses the change of the
radiation intensity with position and time in a medium that absorbs,
scatters, and emits photons. This equation has been derived by
Chandrasekhar,26 Sobolev,27 Kourganoff,28 and others by equating
the net gain of radiant energy by a beam of photons to the total
rate of change in the beam's intensity. Upon neglecting effects of
polarization and photon~photon collisions, the equation of transfer

may be written

0

3 > - > = o e
Eap Vo, ()] I (8,0 = T (r,&,1), (2.2)

where cev(?,t) is the extinction coefficient, and Tv(?,ﬁ,t) is the source
function. The extinction coefficient represents the probability per

unit differential path length of the medium of all processes which
remove radiant energy from a beam of photons. The source function is

the radiant energy that is added to the beam per unit frequency about v,
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per unit solid angle about 5, per unit volume, and per unit time.
Equation (2.2) therefore states that the total rate of change of
the intensity is simply the difference between the energy added and
the energy removed from a beam of radiation per units of volume,
solid angle, frequency, and time.

2.2.1 The Extinction Coefficient

In general, both abscrption and scattering of photons contribute
; ’ 2 i :
to the attenuation of a beam of radiation. 9 The extinction coefficient
cev can therefore be related to the absorption coefficient Oav and the

scattering coefficient T s by
- > >
cev(r,t) = cau(r,t) + Gsv(r’t)' (2.3)

The absorption and scattering coefficient are the probabilities that a
photon of frequency v will be absorbed or scattered, respectively,

per unit differential path length at point ? and at time t. If the
photon frequency remains unchanged after a scattering event, the
scattering is termed elastic. Photons may also undergo inelastic
scattering, and the photon frequency changes by some Av, where hAv is
the energy lost or gained by the "target' particle.

2.2.2 The Source Function

Radiation inscattering and thermal energy emission ars sources
of energy to a beam of radiation, and hence the source function
T (?,ﬁ,t) is composed of an elastic scattering contribution and an
v

emission contribution. Inelastic scattering processes (e.g., Compton
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scattering and Raman Scattering) are usually negligible in the trans-
port of thermal radiation, and therefore no frequency changes occur
as a result of scattering. With the assumption of elastic scattering
as the sole scattering process, the source function may be written

as
-
o (r,t)

- > - -
& mer,ﬂ',o p, G8,7,0) do’

+ Ev(}’,?z',t) , (2.4)

where pv(§’+§,;,t) is the scattering phase function defined as the
probability at point T and time t that a beam of radiation of
frequency v moving in the direction & will be scattered into unit
solid angle about the direction 3. The term EU(¥,§,t) in Eq. (2.4)
is the emission coefficient and is the energy added to the beam per
unit volume, frequency, solid angle, and time.

In general, the scattering phase function P, depends on both
the initial and final directions in a scattering event (i.e., the
directiocns & and'ﬁ, respectively). However, the phase function in
most media is rotationally invariant and depends only on the angle
0 between the initial and final directions (cos® = ﬁ-ﬁ'). With the
assumption of rotational invariance, the phase functicn is denoted by
p, (315,00,

It should be noted that in order to conserve radiant energy, the
phase function must satisfy the constraint30

1

HJ pu(ﬁ-"i' JT,t) dn = 1. (2.5)
4r
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The phase function is thus equal to unity for the case of isotropic
scattering, and hence p,, may be interpreted as the ratio of the
scattered intensity in a given direction to the scattered intensity

in the same direction if scattering were isotropic.

2.3 Simplifications of the Equation of Transfer

The general form of the radiative transfer equation may be

written using Eqs. (2.3) and (2.4) as-

1 3 <> . > -> - >
[-EE+ Qv + aav(r’t) +.Usv(r’t)] Iv(r,Q,t)
+
g (r,t)
. I (r,8,t) p (R0',7,t) d' + E (r,8,t). (2.6)
4 o v v v

Solution of this first order, integro-differential equation, subject
to prescribed boundary conditions and initial conditioms, gives

the intensity as a function of three position coordinates, three com-
ponents of the directional variable, frequency, and time. If the

radiation properties (i.e., o gy and Pv) and the emission co-

ay’
efficient (Eg) are known, this solution could, in principle, be found.
However, a general analytical solution is not known, and a numerical
‘golution of Eq. (2.6) would not be practical in view of the large
number of independent variables. Furthermore, the general solution
(if available) would be so excessively detailed as to be of little
direct practical use in most cases. Therefore, a number of simplifi-

cations are invariably introduced before attempting the solution of

the radiative transfer equatiom.
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2.3.1 Steady-State

Since radiant energy propagates at the speed of light, the
radiation field in a medium relaxes nearly instantaneously to a steady
configuration determined by existing hydrodynamic conditions and
material properties of the medium, This assumption of a quasi-steady

radiation field simplifies Eq. (2.6) to

Gevr (1,® + 0, I (1,& =

Usu(¥)

- = > o> >
S wavcr,n') p (e0',7) do' + E (T,0). (2.9

The time-dependent equation is considered only if the manner in which
the radiation intensity approaches its quasi-steady state configuraticn
is of interest.

2.3.2 Local Thermodynamic Equiiibrium

The emission coefficient Ev(¥,§) is generally a complicated function
of frequency which is determined from detailed quantum statistical
calculations involving the population of energy states in the medium.13
However, the existence of local thermodynamic equilibrium (LTE) at
every point in the medium simplifies greatly the calculation of the
emission coefficient. The condition of LTE is based on the assumption
that the emitted spectrum from each volume element in the medium
depends solely on its temperature and absorption coefficient, and is
unaffected by the spectrum of the incident radiation.26 This
assumption is generally valid for solids and particulates, since
the absorbed energy is quickly redistributed into internal energy

states with an equilibrium distribution characteristic of the tempera-
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ture of the medium. For gases, this redistribution of absorbed energy
occurs by molecular collisions, and the LTE assumption is valid only
if the redistribution is rapid relative to the time required for
re-emission.

With the assumption of LTE, the emission coefficient is given

by the Kirchhoff-Planck law:27

E (£, = o (DB [T(D)], (2.8)
with
3 -1
Bv[T(;)] = 2 }ZW {exp[ h\)+ J-l} s (2.9)
: c kT{r)

and where k is Boltzmann's constant, The quantity Bv[T(;)] is the
Planck intensity function and gives the spectral variation of the
radiant energy emitted by a black-body at temperature T in any

: direction, per unit area normal to that directioﬁ, and per units of
frequency, solid angle, and time. With the LTE assumption, the quasi-~

steady radiative transfer equation becomes

BevI (7,8) + o (D) I (F,8) =
Eﬁﬁffl * Ty T8 T ' > o
i JhﬂIv(r,ﬂ ) p,@+8,7) do' +0_ () BIT(D] . (2.10)

2.3.3 Plane-Symmetric Geometry

For plane-symmetric probleﬁs (i.e., the medium and boundary con-
ditions do not depend on the y or z coordinates), the radiatiomn in-
tensity is a function of one spatial coordinate (x), and two angular
variables (the polar angle 3 and the azimuthal angle ¢}.31 This

planar coordinate system is illustrated in Fig. 2.2. In this geometry,



Fig. 2.2,

Coordinates in plane geometry.

28
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the quasi-steady, LTIE, radiative transfer equation becomes

BIv(x,9,¢)

cosd ————+ g_ (%) T (x,6,0) =

csu(x) 2 T 7
- Jo de' Jo I,(x,8",¢") p (8',4"0,06;x) sind' d6’

+ cav(x) Bv[T(x)] . (2.11)

To simplify further the radiative transfer equation, the azimuthal

angle ¢ may be eliminated from Eq. (2.11) by averaging the equation
JZE 22

over ¢ (i.e., by operating on each term with =—

57 de). With the

, 0
assumption of rotational invariance, the phase function pv(e',¢‘+e,¢;x)

in Eq. (2.11) depends only on the cosine of the scattering angle B,

which is related to the initial and final directions in a scattering

event [(6',¢') and (8,$), respectively] by3l
. 2.1
cos® = GeR' = ' + (l-uz)lf2 (L-p' /2 cos(¢=9'), (2.12)
where u = cosd and p' = cos8'. Since cos® depends on the difference

between ¢ and ¢' (and not on their individual values), the azimuthally

averaged phase function,

27
pv(u'+u,x) = %;-JO pv(¢',¢'+6,¢;X) d¢, {2..13)

is independent of ¢'. Thus the averaging of Eq. (2.1l) over ¢ yields

BI\J(K:}J)

B ax

+ o, (0 T (k) =

1
———Er—-J_l I,Gu") p (u'suex) dp' + o, (x) BIT(x)], (2.14)
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where the azimuthally averaged intensity Iv(x,p) is defined as

1 n
I‘)(X:U = ._2“'77 JO Iv(xse,¢) dd. {2.15)

2.3.4 Multi-Frequency Range Approximation

In the multi-frequency range approximation, the total frequency
spectrum is divided into a number of contiguous frequency ranges
Avn, n=1l,...,N, as shown in Fig. 2.3. Integration of the steady-state,
plane-symmetric, LTE form of the radiative transfer equation over
each of the discrete frequency intervals yields33

aIn(XsU)

s ax

+ cen(x) In(x,u) =

Usn(x) 1
P J_l In(x,u') pn(u'+u,><) du' + Gan(X) Bn[T(X)],
- T [PRRR  ( (2.16)
where
In(x,v) = JAv Iv(x,u) dv (2.17)
n

cin(x) = Jﬂv Giv(x) Iv(x,u) dv/In(x,u) (i=e,s, or a) (2.18)
n

Usn(x) pn(u'+u.X) = JAU csv(x) pv(u'+u,x) Iv(x,u') dv/In(x,u) (2.19)
n

Uan(x) BH[T(X)] = J dav(x) BV[T(x)] dv. (2.20)
Av
I

Unfortunately, evaluation of the radiation properties Csi Gsn’

Ton’ and Py is seen to require a knowledge of the unknown intensity
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distribution Iv(x,u). However, if the Avn are made sufficiently
small that the intensity-Iv and Planck's function Bv can be assumed
constant over each Avn, these radiation properties become simply the
averages of the corresponding frequency-dependent properties over
each frequency interval. Alternatively, the Aun can be chosen so
that the radiation propertlies may be well approximated as constants

over each interval, whereby Gen’ c , 6 , and p, are simply the

8N an

radiation properties in Avn. With either of these assumptions (i.e.,

constant Iv and BU or constant radiation properties over Avn), the

quantity Bn[T(le in Eq. (2.20) becomes

Bn[T(x)] = JAv BU[T(x)] dv = fn(x) Jo BU[T(x)] dv. (2.21)
n
In this equation, fn(x) is defined as
J Bv[T(x)] dv
v
£ (x) = — : (2.22)

B [T(x)] dv
g Vv
Equation (2.16) may thus be rewritten as

EIn(x,u)

o X

+ Gen(x) In(x,u) =

Usn(x)

1
3 J lIn(x,u') pn(u'+u) du' + 0 (%) fn(x) GTa(X)/ﬁ,

n=1,...,N, (2.23)
where the Planck function BU[T(X)] integrated over all frequencies
gives the emissive power of a black body in any direction per unit

. 26 ,
area normal to that direction, i.e.,
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J B [T(x)] dv = aTa(x)/n. (2.24)
g v

The quantity G is the Stefan-Boltzmann Constant, and T(x) is
the local temperature.

Equation (2.23) represents a set of N uncoupled equations for the
intensities integrated over each of the frequency intervals. The
solution of these equations yields the intensity as a function of
position and direction in each frequency -interval and thus approxi-

mates the spectral dependence of the intensity distribution.

2.3.5 The Gray Case
In a gray medium, the absorption and scattering coefficients and
the scattering phase function are independent of frequency. The

steady-state, one-dimensional, LTE radiative transfer equation becomes

aIv(x,u) Gs(x) 1
jf et o (x) I (x,u) =—5 [_lIU(X,u') p(u'+u,x) du'
+ Ua(x) Bv[T(x)} . (2.25)

The local emission term ca(x) Bv[T(x)] is seen to have the same
spectral variation as the emission from a black body. Equation (2.25)

may be integrated over all frequencies to obtain

31(x,u) Gs(x) l‘
i "“-‘5;""* Ge(x) I(x,u) = 5 J--l I(x,u") p(u'*u,x) du’
+o_(x) ST b, (2.26)
where
I(x,u) = j I (x,u) dv. (2.27)
0¥
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2.3.6 MNo=Scattering Case

If scattering is neglected in Eq. (2.26) [i.e., ds(x)=0, and

Ge(x)=ca(x)], this equation becomes

u §3§§1E1-+ o (x) I(x,m) = o, (x) 5T (x) /7. (2.28)

This equation may be rewritten

ALeat) 4 2 1e,m) = s(e,w, (2.29)
where
dg = o_(x) dx, (2.30)
and
S(,u) = = 5T () /7. (2.31)

Equation (2.29) is a first order differential equation which is easily
solved analytically by use of the integrating factor exp(&/u). The

solution is

&
I(g,u) = I(0,n) exp(~ %D + J S(£',u) exp[(&'=8)/u] dg", w>0,
0
(2.32a)

. and

Et—E £
I(E,u) = I(E ,u) exp/——| + J S(E',u) exp[(E'=E)/u] dE', u< 0,

S

(2.32b)
where I(0,u) is the intensity at £=0 (known for positive u), and
I(at,u) is the intensity at E=£t (known for negative u).

2.3.7 No-Emission Case

If the thermal energy emission term is additionally neglected,

Eq. (2.28) becomes
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" —I—(-"—ﬁ)-+ o (x) L(x,u) = 0. (2.33)

The solution of this equation is given by Eqs. (2.32a) and (2.32b)

with S(g,u) = 0, i.e.,

I(E,u) = I(0,u) exp(lf;), >0, (2.34a)

and

I(g,n)

EC-E
I(E.:t:]-l) exp u 3 p<0, (2.341))

For constant S, (E=cax), Eqs. (2.34a) and (2.34b) reduces to Bouguer's

law:

T(x,u) I(0,u) exp(~0ax/u}, w>0, (2.35a)

and

L(x,u) = I(x,1) explo_(x -x)/u)], u<0. (2.35b)

2.4 The Integrated Intensity and Net Flux Distributions

The integrated intemnsity Qv(¥) and the net flux vector jv(?)

are defined by

& (r) = J I (r,0) de, (2.36)
v v
4
and

J@® = J 21 (r,0) da. (2.37)
v d v

The net flux vector gives the net flow rate of radiant energy at

point ?, per unit frequency about v, across a unit area perpendicular
to the direction of J. The net energy flow rate across an arbitrarily
oriented surface dA whose outward normal is o is found from

jv(?)'ﬁ dA. The integrated intensity ¢v(?) cannot be related to an
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energy flow but may be regarded simply as 47 times the average
intensity T;(?) [= %; f4ﬁIv(?,§) d2]. Alternatively, @v(;) may be
interpreted as the product of the photon energy hv and the total path
length travelled by photons in unit frequency abeout v, in a unit volume
at point ¥, and in a unit time.

By division of the total solid angle about every point T into a
number of smaller solid angles, Aﬂj, ji=1,...,M, it is possible to

define the partial flux vector over each of the intervals Aﬂj by

I @ = J 21,8 do,  §=1,...,M, (2.38)
V] AR, Y
where
M
Z AL, = 47
j=1 7

Clearly, the net flux is the resultant vector obtained from addition

of all the partial flux vectors, i.e.,

> >
Jv(r

) =
J

I~

- - .
. ij(r). (2.39)

The partial fluxes characterize the total flow of radiant energy

per unit frequency and per unit area perpendicular to their respective
directions. Although it is also possible to define similarly the
partial integrated intensities @vj(?), these quantities are seldom

used in radiative transfer calculations.

2.5 Radiative Equilibrium

The radiative equilibrium condition is a statement of the steady-

state energy balance in a medium in which heat sources are absent,
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and heat transfer by conduction and convection is negligible. This

condition may be written a527

dv [ E (r,8) dO = J o (r) dv J I (7,8) aq, (2.40)
JZ 4w ¥ 0 &% 4 ¥

i.e., the volumetric rates of radiant energy emission and radiant
energy absorption are equal at every point in the medium. Clearly,
this condition must be satisfied to maiptain steady-state conditions
in a purely radiating medium.

If radiation is not the only mode of heat transfer, the radiative
equilibrium condition is not applicable, and the steady-state energy

balance is of the form

Jw dv J E (7,0) do = J g (7) dv J I (£, do + ¢(). (2.41)
0 4n ¥ o 2V st Y

In this equation, G(?) represents the net rate of energy addition
per unit volume at point ;<by all non-radiative energy transfer pro-
cesses. Equation (2.41) states that the volumetric rate of radiant
energy emission must equal the sum of the volumetric rates of
radiant energy absorption and non-radiative energy addition at every

point in the medium.

2.6 Radiation Transport in Pulverized Coal Suspensions

The absorption, scattering, and emission coefficients characterizing

a pulverized coal suspension are computed from



9., " Uavg + Gavp (2.42)
Usv = Osvg + csup | (2.43)
Ev = '}E‘.\)g + Evp' (2.44)

where the subscripts p and g imply the various coefficlents are
evaluated separately for the particulate and gaseous phases,
respectively. If the pulverized coal cloud is in local thermo-
dynamic equilibrium, the emission coefficient becomes

LTE

E = g B (Tg) + Oy

" i T Bv(Tp)' (2.45)

vp

Thus with the LTE assumption, only the absorption coefficient and
the temperature of each phase are needed to compute Eu'

The evaluation of the radiation properties (the absorption and
scattering coefficients, and the scatteriﬁg phase function) for the
particulate and gaseous components in pulverized coal combustors is
discussed in Chapter 3. If it is assumed that these properties are
known (as functions of position and frequency), the quasi-steady
LTE equation of transfer contains three unknown functions: IU(?,ﬁ),
Tp(?), and Tg(?). Two additional equations involving the unkngwn
particle and gas temperature distributions are the particle and gas
phase energy balances, Egqs. (1.29) and (1.30). These equations are

rewritten symbolically as

Qrp(r) = Gp[Tp(r). Tg(r), Dp(r), Dg(r), eeeds (2.46)

38
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and

Qrg(r) =G [Tp(r), Tg(r), pp(r), og(r), coels (2.47)

)

where all the nonradiative energy transfer terms have been lumped as
Gp for the solid phase and Gg for the gas phase., The non-radiative
energy inputs include the work done by surface and body forces, the
energy released by chemical reaction, the heat transferred by con-
duction, and the sensible energy change for each phase.16 The terms
Qrp(?) and Qrg(¥) represent the net loss of radiant energy (i.e.,
emission minus absorption) from each phase per unit volume of the mix-
ture and per unit time. With the assumption of LTE, these terms can

be expressed as

]

IvG,Ez’) e
(2.48)

Qrp(r) b b Gavp(r) BV[Tp(r)] dv - Jocavp(r) dv Jaﬂ

'3 1o

> -p‘ﬂ
4 I Gavg(r) Bv[Tg(r)] dv - J

cavg(}’) va Iv(‘r*,ﬁ) dq.

->
Qrg(r) i

0

(2.49)
Substitution for Qrp(r) and Qrg(r) from Eqs. (2.48) and (2.49) into

Eqs. (2.46) and (2.47), respectively, yields

2>}

4 B (T ) dv - J o dv J 1 dQ =G (2.50)
! Jo Zavp BT o &% b Y P

4m J g B (T ) dv - Jm g dv J I d2 =G . (2.51)
o V8 Vg g av8 ar Y g

Equations (2.50) and (2.51) are the additional equations relating
the intensity Iu(g,ﬁ) to the temperature distributions of the two

phases, T (?) and Tg(¥>' In general, the terms Gp and Gg are also
P
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functions of the veloecity, composition, and physical properties of
each phase. The additional unknowns introduced by these terms
necessitates consideration of the continuity and momentum equations
for each phase, as well as additional (auxiliary) equations and

simplifying assumptions as discussed in Chapter 1.

2.7 Summary

In this chapter, the radiative transfer equation, which must be
solved to compute the radiant energy propagation and the radiation
heat transfer in an absorbing, emitting, and scattering medium has been
presented. The complexity and excessive detail of a general solution
of the equation of transfer create a need for simplifications of the
general equation. Simplifications of the time dependence, the emission
coefficient (for LTE conditions), the frequency dependence, and the
medium geometry have been outlined. An analytical solution was given
for the no scattering case, and the equation of transfer was shown to
reduce to Bouguer's law when both scattering and thermal energy
emission were neglected. Finally, definitions were given for the
integrated intensity and net flux distributions, which are required
to formulate the diffusion approximation of the radiative transfer
equation (see Chapter 4).

The solution of the equation of transfer (subject to boundary
‘conditions for the intensity) is needed to compute the radiant heat
losses in pulverized coal media. However, it has been shown that the
temperature dependence of the emission coefficient in the équation of

transfer causes the equation to be coupled with the conservation laws
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that were presented in Chapter l. A number of techniques for solving

the equation of transfer are discussed in Chapter 4.
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3.0 RADIATIVE PROPERTIES OF MATERIALS IN
PULVERIZED COAL COMBUSTION

3.1 Classes of Materials

Solution of the radiative transfer equation in pulverized
coal flames requires numerical values of the radiative properties
for the various materials present in the system. These materials are
divided into the broad categories of particulates and gaseous radiators.
The accurate evaluation of the radiation properties of these materials
is difficult because of their strong dependence on temperature and com-
positioﬁ, and because of the uncertainfy in the complex mechanism by
which coal ignites and burns out. Gaseous radiators are non-gray,
and data for their absorption coefficient as a function of frequency
are mostly unavailable. Only receﬁtly have attempts been made to
evaluate theoretically the radiation properties of gases. The optical
properties of particles are continuous functions of frequency, but
they have been measured only over limited ranges cf temperature and
frequency. Although the particles in coal flames are irregular in
shape, these particles are usually assumed to be spherical, since
the theory of the interaction of electromagnetic radiation with
spheres is well developed. Furthermore, effects of surface asperities,
particle agglomeration, and coherent scattering in particle suspensions
are commonly neglected.

Clearly, the great uncertainty (or unavailability) of radiation
properties is the major problem in the accurate evaluation of the

radiation heat transfer in pulverized coal media. Sensitivity
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studies are needed to determine which data are important, and
additional theoretical and experimental investigations are needed
to determine the important parameters more accurately.

The radiation properties of particulates and gaseous radiators
are discussed in this chapter to the extent that they are known.
The particulates are subdivided into two classes: 1) coal, char,
and ash particles, whose size parameter o (= ndp/k, where dp is the
particle diameter, and A is the radiation wavelength) is greater than
or roughly equal to unity and 2) soot particles which are characterized
by values of o much smaller than unity. The radiation properties of
the various categories are discussed separately because of the funda-
mental differences in their interaction with thermal radiation. Finally,
the radiation properties of combustor walls are also discussed in
this chapter, since these properties are required té formulate the
boundary conditions for the radiation intensity and to calculate the

radiant energy leakage through the medium boundaries.

3.2 Particulates

3.2.1 Absorption and Scattering Efficiencies

The absorption and scattering coefficients of a particle sus-
pension are related to the effective cross sectional areas for ab-
orption, C and for scattering, C of particles in the kth

SOERELO,: Ly ks 8y Lok P :

size class for radiation of frequency v by

Uau = lz{ Ca\)k Nk

(3.1
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and

Osv ™ E Csvk Nk (3.2)

where Nk is the number demnsity of particles in the kth size class.

The absorption or scattering efficiency of a spherical particle of
diameter dpk is the ratio of the cross sectional area for the given
interaction to the geometric cross sectional area of the particle,
ndﬁk/4. Denoting the absorption and scattering efficiencies of particles

h

§ t . iy
in the k= size class (for radiation of frequency v) by Fauk and Fsuk’

respectively, the absorption and scattering coefficients may be written

as
=1
Gav A E Favk Svk’ (3.3)
and
-1
Yev T % E Fsvk Svk’ (3.4)
where
2
Svk = ﬁdpk Nk. (3.3)

The quantity svk represents the total surface area of particles in
the kth size class per unit volume. The extinction efficiency Feuk
is the sum of the absorption and scattering efficiencies, and thus

the extinction coefficient L. (= T + Gsv) can be computed from

a
Yev B ook, Bt (3.6)

~r

Therefore, the absorption, scattering, and extinction coefficients
of a particle suspension can be computed given the corresponding

efficiencies and the number density of particles for each size class
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present in the suspension.

3.2.2 Coal, Char, and Ash Particles

The absorption or scattering efficiency of a single coal, char,
or ash particle depends on the complex refractive index of the carticle,
m = n (l-ik), and on the particle size relative to the radiation

4,5

wavelength, a = ﬁdp/h. The refractive index is generally a function

of radiation wavelength, particle temperature, and particle com-

position.16’34

Most data giving the refractive index of carbonaceous
solids (ash is neglected for the moment) were measured at room tempera-
ture and over the visible portiom of the electromagnetic spectrum.
However, these data and simple theoretical calculations of the real

and imaginary parts of the refréctive index (n and k) indicate only

2,34 Accurate values

a weak dependence on temperature and wavelength.
of the optical properties are thus not known at flame temperatures,
but it is generally thought that 1.5 < n < 3 and 0.1 < k < 1.0, with
both values increasing as the hydrogen to carbon (H/C) ratio of the
coal decreases.16 Additional uncertainty is introduced by the rapid
change of this H/C ratio during the preheating and combustion of the

coal particles in a boiler flame.

Coal and char particles can be divided into two size groups, large

13

particles (¢ >> 1) and intermediate sized particles (a * 1) The
principal radiative properties of each group are reviewed below.

a) Large Particles:  Scattering of thermal radiatiom by

large particles (a >> 1) is significant and generally quite anisotropic

in nature.l2 The absorption and scattering efficiencies and the
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scattering phase function are determined from simple laws of

geometric optics which describe scattering in terms of reflectionm,
diffraction,'and refraction.25 For opague coal and char particles,

the scattered radiation is separable into reflected and diffracted
components. The diffracted component‘is concentrated within a small
solid angle about the incident direction and is difficult to distinguish

from the unscattered radiation.6’12’16

The energy diffracted by a
spherical particle is the same as that diffracted by a hole of the same
diameter,25 and consequently the cross section for diffraction equals
wdﬁ/é. In radiative transfer calculations, this diffracted radiation
is usually treated as if it were unscattered and totally transmitted.
When the diffracted radiation is thus neglected, its contribution must
be subtracted from the total scattering and extinction efficiencies.

In the large particle limit, the extinction efficiency approaches
unity, while the scattering efficiency approaches the reflectivity of
the material composing the particle. The scattering phase function is

backward peaked (see Fig. 3.1) and may be expressed as4’12’25

p(0) = —% (sind = Geosd), (3.7)

where g is the scattering angle. This phase function is derived by
first computing the intensity of ;adiation that is diffusely reflected
through an observation angle © by an elemental area on the surface of
an opague sphere. Integration of this intensity over the portion of

the sphere surface that is visible to the otserver yields the total in-
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PHASE FUNCTION, p(®)

] - 1 ]

T 3r/4 ] /4 O
backward forward
scatter scatter

SCATTERING ANGLE, ®

Fig. 3.1. The scaFtering phase function for a large, diffusely
reflecting, opaque sphere - P(Q) = 8(sind~0cos®) /(3m).



tensity scattered at an angle ©. Division of this intensity by
the intensity which would be scattered if scattering were isotropic
yields the phase function of Eq. (3.7).

b) Intermediate Sized Particles: Geometric optics cannot be

used to describe scattering by intermediate sized particles (a = 1)
since the diffracted radiation is not distinguishable from scattering

12,15

which occurs within the bulk of the particle. Scattering is

significant, and Mie's scattering theory is used to compute extinction

and scattering efficiencies, as well as the scattering phase function.4’l6

Blokth has computed the extinction and scattering efficiencies
(using Mie theory) for a high carbon coal at a radiation wavelength
of 2 ym for a wide range of particle sizes using a representative
value of the refractive index of m = 1.93 (1-10.53).16 These results
are shown in Fig. 3.2 and indicate'a weak dependence of the efficiencies
on particle size for particles larger than roughly 5 um in diameter.
The coal and char particles in a pulverized coal flame are of
widely varying sizes, and a number of distributidn functions describing
the fraction of particles exceeding a given size have been postulated
(e.g., the Rosin-Rammler distributionlB). The sizes of pulverized
coal and char particles given by these distributions are typically

between 10 and 100 ym. The radiation wavelengths of importance at

combustion temperatures (v 1500 K - 3000 K) are in the range 0.5 um

2,4,16 2,16

to 10 pm, with the maximum radiation intensity at roughly 2 um.
Therefore, the particle size parameter o in pulverized coal combustion

is typically between 15 and 150. Consequently, the extinction and
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radiation wavelength, A = 2 um, and the assumed refractive
index, m = 1.93(1-10.53).
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scattering efficiencies for these particles can be expected to
approach their limiting values which apply for a >> 1. Efficlencies
have been computed in this study using the subroutine DBMIE36 (which
solves the Mie equations) for a range of particle size parameters with
an assumed refractive index of m = 1.93 (1-i0.53). These results
are shown in Table 3.1l. A contribution of unity has been subtracted
from the computed efficiencies to exclude diffracted radiation.
These results indicate a weak dependence of the extinction and scatter-
ing efficiencies on the particle size for the range of size parameters
considered. Furthermore, the relative importance of scattering (the
.single scatter albedo w = Fs/Fe) is nearly unaffected by a ten-fold
increase in the particle size.

The effect of the assumed refractive index of coal and char
particles on the computed extinction and scattering efficiencies
was also examined in this study. These efficiencies were calculated
for values of the real part of the refractive index of 1.5 and 3 and
values of the imaginary part ranging from 0.1 to 1. The particle
size and radiation wavelength were taken as 50 pm and 2 um, respectively,
both typical for pulverized coal combustion. The efficiencies were
again calculated by the subroutine DBMIE and are compared in Table 3.2.
It may be seen from this table that the relative importance of scattering
increases with an increase in either the real or imaginary parts of the
refractive index. TFor the upper limits of both n and « (n=3, x=1), the
contribution of scattering to the total extinction of radiation is

greater than 50%.



Table 3.1.

The extinction and scattering efficiencies and the single

scatter albedo as g function of particle size.
computed by DBMIES

Values

for m=1.93 (1-10.53), and A=2um.

Particle Particle Size | Extinction Scattering Single Scatter
Diameter, Parameter, Efficiency, Efficiency, Albedo,
d (um) a=7md /A F F w=TF/F
P p e s s' e
10 15.71 1.326036 0.352368 0.2657
50 78.54 1.117158 0.300529 0.2690
100 157.08 1.073761 0.284531 0.2650




Table 3.2.

The extinction and scattering efficiencies and the
single scatter albedo as a function of the r%fractive
index, m=n(l-ik). Values computed by DBMIE3 for
50 um particles at a radiation wavelength of 2 um

(a=ﬁdpjl = 78.54).

.
Extinction Scattering -Scattering
Efficiency Efficiency Albedo
n K F F w=F/F
e s s e
1.5 0.1 1.104177 0.138063 0.1250
0.5 1.108103 0.233199 0.2105
1.0 1.129336 0.408763 0.3619
3.0 0.1 1.104387 0.327257 0.2963
0.3 1.121173 0.414433 0.3696
1.0 1.144074 0.588127 0.5141
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Ash particles are non-carbonaceous, and the main constituents
of ash are the oxides of magnesium, aluminum, and calcium, although
a large number of other metallic oxides are also present.é Ash is
non-absorbing over the visible portion of the electromagnetic spectrum,
but little is known of its radiative properties in the infrared.16
It is widely believed that the radiant emission and scattering by ash
particles may be quite important in the post-burn regions of pulverized
coal flames, where most of the carbon content of the coal particles
has been consumed by chemical reaction., However, since there are no
reported data on its optical properties, further discussion of ash

particles is omitted.

3.2.3 Soot Particles

Soot particles consist primarily of carbon and hydrogen and are
formed when the hydrocarbons and tarry constituents of coal volatiles
are heated in an oxygen-deficient atmosphere. There is little data
on soot concentrations in pulverized-coal flames, but if combustion
conditions are poor and allow fer its formation, soot can be a signifi-
cant contributor to the absorption and emission of thermal radiation.l6

Soot particles are very small (a << 1), although they may agglo-
merate to form larger bodies. If this agglomeration is neglected, it
can be assumed that the electric field which is established within
each particle by the incident radiatiom is uniform throughout the

6,12

particle and equal to that of the incident radiation. This

assumption simplifies greatly the calculation of the radiation properties,

‘ 2
and the associated scattering is known as Rayleigh scattering.é’ =
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The efficiencies for scattering and absorption are given by:z’12
ﬂzK
F =24 a ' (3.8)
& [n2(1~r2)+2}2 + 4 n4 KZ
8 4 ([0 (1-e-11[n>A-kD+2] + 4n” %1% + 36n* ?
Fs=3 @ L 2.2 » 39

{InZ(1=c%) + 21° + &n" &2}

where n and k are the real and imaginary parts of the refractive

index, and a is the particle size parameter. As is the case for coal

and char particles, values of n and « are weak functions of particle
temperature and radiation wavelength an& are expected to fall in the
ranges 1.5 to 3 and 0.1 to 1, respectively. Evaluation of the absorption
and scattering éfficiencies indicates that scattering is negligible,

and that the absorption coefficient varies as A—l. Therefore, a

soot suspension is non~gray, and the radiation calculations must be

based on either spectral values or suitable frequency averages of

the absorption coefficient.

3.3 Combustion Gases

Radiant emission and absorption by gases at combustion tempera-

2,12,13 Carbon

tures are primarily due to asymmetric gas molecules.
dioxide and water vapor are of major importance, while carbon
monoxide is a weaker emitter. Other minor constituents such as
hydroxil radicals and nitrogen oxides are typically ignored. Atomic

species (H, 0, N), and homonuclear diatomic molecules (Hz, 0y, N,)

are non-emitting.12 The emission and absorption of thermal radiation
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by gases is restricted to a number of discrete wavelength intervals
(bands), and scattering is negligible. The overall behavior of
gaseous radiators is very non-gray, although the simultaneous presence
of many gases tends to increase the grayness of the mixture.16
The non-grayness of gaseous radiators introduces a number of

difficulties. The monochromatic emissivity of a gaseous volume is
given by l-exp (-Gang)’ where Gavg and L are the absorption coefficient
and the mean beam length12 of the volume, respectively. However, the
majority of gas radiation data gives experimentally determined values
of the total emissivity Eg, which is defined a512

-

J €,0 By (Tg) dv

0 v T ®
e, * = J [1-exp(-o,, )] B,(T ). (3.10)

rB(T)d\J oI,
o ¥ 8

Clearly, data for eg cannot be converted to data for the absorption

coefficient needed for solution of the radiative transfer equation.
Moreover, even if the absorption coefficient is known as a function

of frequency, the non-grayness of the gas volume complicates the calcu-
lation of the radiation intensity distribution, which must be determined
by solving the equation of transfer integrated over a number of frequency
intervals using the multi-frequency range model discussed in Section
2.3.4. Finally, the absorption coefficients of gases are strong functions

Bated which further complicates the

of gas temperature and pressure,
solution of the radiative transfer equation if these quantities are

not known a priori.



56

Although total emissivity data are of limited usefulness in

radiative transfer theory, the data are required for zone calcu-~

4,16

latiouns, where the total gas emissivity is used to compute

the radiant energy emitted by each zone. Hottel and Sarofiml2
treat the subject of gas emissivity in detail and present charts
which give:

i) The emissivity of carbon dioxide at 1 atm total pressure
as a function of temperature for several values of ch’
where P is the partial pressure of COZ‘ (A correction
factor for total pressures different from 1 atm is also

‘given.)

ii) The emissivity of water vapor at 1 atm pressure as a
function of temperature for several values of pr in the
limit pw+0, where 12 is the partial pressure of the
water vapor. (Correction factors for total pressures

other than 1 atm, and pW#O are also given.)
iii) The correction factor Ae needed to compute the emissivity
of a mixture of CO2 and H20 from

Smixture ECO2 * Eazo = e,

The term Ae accounts for the partial overlap of the
absorption bands of the two gases and is a function of
temperature and the quantities pr and ch'
A number of theoretical models have also been developed for
calculation of the emissivity of gaseous mixtures. These models
give the gas emissivity integrated over either narrow frequency

band537 (corresponding to rotational transitions within a vibrational-

rotational band) or wide frequency bands associated with the princi-



pal vibrational transitions of the gaseous molecules. 8 With the
narrow bénd model, the thermal radiation spectrum is divided into
_numerous small intervals for each radiating species. Within each of
these intervals, the spectral lines are assumed to be randomly located,
while the line intensities are assumed to follow an exponential prob-
ability .distribution. This model suffers from the massive amounts of
input data and large computer time requirements needed to compute the
parameters of the model.39 In the wide band model, the detailed
positions and intensities of the spectral lines within each band are
assumed unimportant and are approximated by a simple exponential
function. 38 Although these wide band models are simple enough for

hand calculations, they are applicable only to homogeneous gaseous
mixtures and are accurate only over limited ranges of tem.perature.39

In summary, data required to solve the radiative transfer equatiouns

in gaseous media are largely unavailable. Fortunately, the radiant
energy emission by gases is small compared to emission by particulates
in pulverized coal flames. Gaseous radiation exceeds that by particles
only once a large fraction of the solid fuel has been consumed.16
The radiation by gases is therefore often neglected in pulverized coal

combustors.s’ls’l7

3.4 Combustor Walls

The walls of conventional combustion chambers are either lined
with refractory materials or are metals cooled by water or steam.
Refractory walls are poor conductors which either reflect or absorb

and subsequently re~emit all incident radiant energy. Water cooled



walls can be considered cold (i.e., non~radiating), and incident
radiant energy is either reflected or absorbed by the wall and sub-
sequently removed by the coolant. Both types of walls are diffuse
reflectors, and their reflectivity and emissivity values may vary

with radiation wavelength A and wall temperature Tw" If the wave-

58

length dependence is weak (i.e., the walls are gray), the reflectivity

gw and the emissivity Ew must sum to unity. Typical emissivity values

are 0.5 to 0.9, with refractory walls characterized by the lower
emissivities.

The general case of walls which are part refractory and part
heat sink can be treated by assuming the walls to reflect a fraction
of the incident radiant energy, and to absorb the remaining fractiom.
Part of the absorbed energy is reradiated back to the combustor (at
a rate determined by the wall temperature), while the remainder is
removed by ‘the coolant. Therefore, if the partial radiant flux inci-
dent from a medium on a gray, diffusely reflecting wall is denoted
by J°, then the flux J+ from the wall to the medium (i.e., the

radiosity of the wall) is given by

'+'_ - ALI»
J=p, Tt oT_ » (3.11)

where Tw, Py and e, 2 respectively, the wall temperature , re-
flectivity, and emissivity. The radiant energy which is lost by the
system is simply the net radiant flux J in the outward direction to

the medium, i.e.,

J = J -J = (l-pw)J =8 UTw' (3.12)
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Since for a gray wall, the reflectivity and emissivity sum to unity,

the net outward flux simplifies to

. o ek
J = €, (J - aTw). (3.13)

The uncertainty in the mechanism of coal combustion and the
unavailability of detailed data for the radiation properties of
the various components of coal flames have proven to be major obstacles
in the accurate evaluation of the radiation transport in these media.
This unavailability or uncertainty in radiation properties has effectively
crippled most computer codes that attempt to model radiative transfer
in coal suspensions. TFortunately, it is likely that the presence
of large particles (relative to the radiation wavelength) causes

these suspensions to be essentially gray,13’16

which simplifies
greatly the solution of the equation of transfer. Radiant emission
by gases has little effect on the spectral dependence of emitted
radiation until most of the large coal and char particles have been
consumed. Even after this consumption, it is possible that radiant
emission by ash particles dominates that by gases, leading to a con-
tinuous (and possibly gray) emission spectrum. In conclusion, a real
need exiéts for further investigation of the radiative properties of
gases and ash particles, of the formation mechanism and expected
concentrations of soot particles in coal flames, and of the effects

of particle shape irregularity, composition, and agglomeration on

the radiation properties of particle suspensions.
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4.0 SOLUTION OF THE EQUATION OF TRANSFER

In this chapter, it is assumed that the radiation properties
are known throughout a medium, and methods for obtaining the solution
of the radiative transfer equation are discussed. Analytical
solutions are known only for very specialize& situations such as
non-scattering media and non-emitting, infinite or semi-infinite
media.ao No exact solution is known for the general form of the
equation of transfer, and, consequently, a number of approximate
and numerical methods have been developed to compute the radiant
interchange in scattering and emitting media. These methods include

41,42

the discrete ordinates method,26 flux methods, spherical

harmonics (a special case of which is the diffusion approximation)l’5

43,44

and Monte Carlo methods. The most commonly used techniques

26,45,46 and the flux

are Chandrasekhar's discrete ordinates method
methods, In this chapter, various solution methods are reviewed, with
particular emphasis on the solution of the equation of transfer by a
numerical discrete ordinates method and by the diffusion approxi-
mation. These two methods, which were originally developed for
solution of the neutron transport equation, are used extensively
and will be applied later in this work to compute the radiation field
in a coal suspension model (see Chapter 5).

For illustrative purposes, the various numerical methods are pre-

sented for the case of quasi-steady radiative transfer in a plane-

symmetric medium which is in local thermodynamic equilibrium and in
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which the temperature distribution is specified. (The solution of
the equation of transfer in a medium with an unknown temperature
distribution is discussed in the final section of this chapter.)
Discussion of the Monte Carlo method, which is used primarily for
multi-dimensional or complicated geometries is omitted altogether,

and the interested reader should consult references 43 and 44.

4,1 The Equation of Transfer and Boundary Conditions

The gquasi-steady, plane-symmetric, azimuthally averaged equation

of transfer in plane geometry can be written as [see Eq. (2.14)]

HIU(x,u) Usu(x)

1
u + Uev(x) I,(x.u) = ——Z—-J_llv(x,u') p, (">, x) dut

A

+ Ev(x). (4.1)

For a particle-gas mixture, the extinction and absorpticn coefficients
are computed from the sum of the coefficients evaluated separately
for each phase, and the emission term Ev(X) depends on the temperature

of each phase as

Ev(x) =g B [Tp(x)] + o,

avp v Bv[Tg(X)]'

Vg
Equation (4.1) may thus be used to compute the intensity in a medium
of arbitrary composition if the radiation properties and the emission
term are evaluated properly from those of the individual components.
The single scatter albedo W, and the differential optical thick-

ness dgv are defined by



w =c_/lo_, (4.2)

and

X
dgv = cevdx or £ = j dev(x) dx (4.3)

Division of each term in Eq. (4.1) by o and use of Eqs. (4.2) and (4.3)

yields
8T (£ _,w) w, (E) (1
vy - v v '
u ___EE;“__.+ () = —5 J_IIU(Ev,u') p, (H'u,8 ) du’
+E(E) /o () (444)

The emission term Ev is a known function of position if the temperature of
each phase is specified a priori throughout the medium.

For ease of notation, the monochromatic subscript is omitted in the
subsequent discussion; however it should be remembered that the quanti-
ties Iv’ £v, ays s and Ev are all frequencywdependent; Equation (4.4)

can thus be written as

1
s alég 2+ 1z, - még} j I(E,u") plu'>y,g) du' + EE)  (4,5)
-1 Ue(q)

It is important to note that Eq. (4.5) also applies to the multi-frequency

range and gray cases if the emission source term E(g) is redefined

as
E(g) = E (&) =J E (&) dv, n = LN, (4.6a)
& (multi-frequency case)
or _
E(Z) = oa(g)STa(é)/v, (gray case) (4.6b)

=

where, for the multi-frequency case, the intensity [in Egq. (4.5)]
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is understood to be integrated over the various frequency intervals,
while for the gray case, the intensity is integrated over all frequencies.
The radiative transfer equation is a first order integro-

differential equation and its solution requires a boundary condition

for the intensity I(£,u). The simplest boundary condition specifies

the incident intensity on the medium at its boundaries (assumed for

the present plane geometry example to be at x=0 and x=xt). If the
.boundaries are non-reflecting, the boundary conditions may thus be

expressed as

I(0,n) = £(w for u>0 (4.7a)
(€, ,1) = g(w) for u<0, (4.7b)
P
where Et is the optical thickness of the medium (= f ce(x) dx,
0

x_ = actual thickness of medium), and f(u) and g(u) are functions
expressing the directional dependence of the incident intensity.
If, in addition to a specified incident intensity at the
boundaries, it is assumed that a fraction of the outwardly moving
intensity is diffusely reflected back into the system, the boundary

conditions become

-1
I(0,u) = £Qu) + 2p J ' IC0,u") dy’ u>0 (4.8a)
wl 0
1
Y = 1 T 1
T(E,s0) = g(w + 20, Jou I(0,u") du u<0,  (4.8b)

where 01 and P 8Te the reflectivities of the boundaries at
g=0 and g=£t, respectively. A physical example of these boundary

conditions is provided by combustor walls, which are typically diffuse
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reflectors and which emit radiant energy at a rate proportional to the
fourth power of their temperature. This wall emission gives rise to
the function f(u) and g(u) that appear in Eqs. (4.8a) and (4.8b),

respectively.

4,2 The Discrete Ordinates Method

In the discrete ordinates method, the solutiom of the equation
of transfer, I(g,u), is sought for discrete values of y which are
usually the ordinates of a numerical quadrature set. The scattering
integral of Eq. (4.5) is thus replaced by an appropriate numerical
integration formula, and the radiative transfer equation is trans-
formed into a set of coupled, ordinary, differential equations. The

results can be written as-

dI(E,ui)
i dE

+ I(E,uy) = mga)

u W I(E,uj) p(uj4ui,i) + E(£) /o (8),

1 4

Il 1=

3
i=1,M, (4.9)

where M is the number of discrete directions considered, and uj and

wj are the ordinates and weights, respectively, of an Mth order

quadrature set.

4,2.1 Chandrasekhar's Method

In the discrete ordinates method of Chandrasekhar, the solution

of Eqs. (4.9) is determined analytically as a continuous function of

the spatial variable £ for each discrete direction My Equation (4.9)
can be rewritten in the form

dI(e)
dg

+ FCE) L(E) = B(E), (4.10)
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where the elements of I, F, and § are

Ii = I(E,ui) (4.11a)
1 w(e) ¥y
Fij - ;’; Gij - =5 ™ P(uj+ui,5) (4.11b)
= _E(2)
g, = gl .
i 7 o0 (4.11c)

and where 51. is the Kronecker delta. Equation (4.10) represents a
set of coupled first order differential equations which may be solved
by standard methods (see References 47 and 48). The analytical
solution of these equations, while expressible in closed form, is
complex and leads to unwiedly expressions for the intensity I(E,ui)
which are not readily amenable to numerical evaluation.

A number of features of Chandrasekhar's method can be illustrated
by considering the simple case of isotropic scattering in a homogeneous,
non-emitting medium. In this case, the single scatter albedo is
independent of position, the emission term vanishes, and the phase
function p(u'+y) becomes unity. The quasi-steady, plane symmetric

discrete ordinates equations [Eqs. (4.9)] thus become

dI(EsUi) © M
wg g F I = .Z wy (5,10, 1=L,M. (4.12)
i=1
. : : 26,49
The solution of this homogeneous equation can be written
M AS
I(E,ui) = E mexp(ksﬁ), _ (4.13)
s=1 i’s

where the AS are constants to be determined from the boundary conditions,

and the kS are computed from the so-called characteristic equation
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M 3
Lws ) el (4.14)

This equation arises because substitution of Eq. (4.13) into Eq. (4.12)

yields a homogenecus equation for AS/(l+ujk). The right side of this

equation can thus be arbitrarily normalized to unity to obtain Eq. (4.14).
Since the uj of most quadrature sets are symmetrically placed

about the origin (u=0), the values of ks computed from Eq. (4.14)

are also paired as + ks. To compute these values of ks the characteristic

equation is rewritten in the form

M M
n(L+ku,) =5 [ w, T (L+ku) =0, (4.15)
j=1 J j=1 4 i=1 J

i#]

which is a polynomial equation of degree M in k. Hence, there are

"M roots (ks, s=1,...,M) which are found to be symmetrically placed

about the origin and which fall between successive values of l/uj.49
The constants AS in Eq. (4.13) are determined from the boundary

conditions. If it is assumed (for simplicity) that the boundaries

are non~-reflecting, the As are given by

M As M
10, = I g - fGy)s Ty oS (4.16a)
s=1 i's
M A exp(f k)
_ S ts -, . M
I(E .u;) = Sél T glu), 1= 3L, .M, (4.16b)

where ul""’“M/Z are the positive discrete values of u, and “l+M/2""’uM

are the negative values (see Fig. 4.1).
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Fig. 4.1. Indexing of the discrete ordinates of an even

quadrature set.
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Equations (4.16a) and (4.16b) can be written in matrix form as
Z2Y=38 (4.17)

where the elements of Z, Y, and B are
{

1+p .k, ]
13

Zij = (4.18a)

exp(k.§ )

'——j—'-t-" 1 = b_{'*'l,o ,M

L l+uikj 2
Yi = A, Tl NI ¢ (4.18b)
( =
. I(O,ui) i ;,...,M!Z (4.18¢)
i I(Et,ui) i ==l,...,M.

The constants AS, s=1,...,M must be determined by solution of this
matrix equation. For high orders of angular approximation (i.e.,
small Hoin = uM/Z’ and therefore, large kﬁax = kM/Z)’ the matrix

elements in Eq. (4.17) related to exp(kmaxit) and exp(-k )

maxat
become very large and very small, respectively. Thus the matrix
Z becomes ill-conditioned, and the numerical solution of Eq. (4.17)

4l:20 This numerical instability with large

is inherently unstable.
quadrature orders is the fundamental problem with the use of
.Chandrasekhar's discrete ordinates method.

Chandrasekhar's method suffers from a number of additional
disadvantages. The roots of the characteristic equation must be

calculated by an iterative numerical procedure, since explicit

expressions for the roots cannot be written. Therefore, even
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though the discrete ordinates equations [Eq. (4.12)] are solved
analytically as continuous functions of position, an error is intro-
duced by the numerical calculation of the roots., Furthermore, the
calculation of the roots ks and the constants As requires considerable
computational effort if a large number of discrete ordinates are
required. Finally, the inclusion of thermal emission or the con-
sideration of non-~homogeneous or multi-dimensional media increases
greatly the difficulty of solving the discrete ordinates equations

and performing the associated numerical computations.

4,2.2 A Numerical Discrete Ordinates Method

The modern discrete ordinates method, which is superior in
many respects to Chandrasekhar's original methad, is based on a
numerical solution of the discrete ordinates equations. This method
is used extensively for solving gamma photon and neutron transport
problems, and its versatility has caused Chandraéekhar's method to be
primarily of historical interest. In this numerical method, the
intensity in each discrete direction is sought at a number of spatial
mesh points which are used to discretize the spatial variable. No
attempt is made to determine the intensity analytically as a continuous
function of positiom.

The total optical thickness of ‘a medium, Et’ is divided into N-1
intervals {(nodes) of thickness A [= Et/(N-l)} using N mesh points, as
illustrated in Fig. 4.2. The discrete ordinates equations [Eq. (4.9)]

are evaluated at the center of each node, and the spatial derivatives



S Gy o

le—1-Aw

|

.__...........___...._.._._z

-
o St S B — —— S —— — — —

!
I
l
|
1 A, - - ¢
£,=0 53,2 ¢ 52 5;5 v S SN
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in these equations are then approximated in terms of intensities
at the node boundaries. The simplest approximation is to use a
central difference scheme to obtain

I CGpy) - LG5

“i . LB yp) = Gl p)s kelee Mol (4.19)
p 1 ISR, . W
where
L, (50 = TUE .0 0 (4.,20)
w(g, 1)) M B y/2)
_ k+1/2 ___Eiiii_

(4.21)

The quantity Qi(E ) is called the source term and is seen to be

k+1/2

composed of a scattering component and a thermal emission component.

The node center intensity Ii(E ) is assumed to be the average

k+1/2

. of the node boundary values, i.e.,
l e i
I (Bpq/g) = 7 (L (Ep) + (51, k=1N-1, (4.22)

Substitution for the node-center intensity from Eq. (4.22) into

Eq. (4.19) and solving for the node boundary intensities yields

l-A/2ui &/ui
or
1+4/2p, B uy
L5 = =477y, L) ~ 8725, Qy(Epyg /) (4.24)

Equations (4.23) and (4.24) can be used to compute the radiation
intensity successively at each mesh point Ek and for each direction

ui given the source teeri at the node centers. Numerical round-
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off error is minimized if Eq. (4.23) is used to compute the intensity
for positive values of py [i.e., photons moving toward increasing ¢
(forward)], and Eq. (4.24) is used to compute the intensity for
negative p [i.e., photons moving toward decreasing £ (backward)].3l
These equations can be viewed as forward and backward sweeps,
respectively, since the intensity is computed at successive points
along the forward or backward directions of the photon travel.

To initiate the forward and backward sweeps, the boundary
values of the radiation intensity are required. These boundary

intensities are given by Eqs. (4.8a) and (4.8b) and are rewritten

for discretized values of the spatial and angular variables as

M
I,(2,) = £, + 20 Y owL LT, i=1,...,M/2 (4.25a)
i sl wl S/ 2+1 i'Tjt i1
o M/2 »
I, () =8 + 20, jzl Wik I (B, fo5tl, ..M, (4.25b)

where fi = f(“i) and g = g(ui). Equation (4.25a) is used to initiate
the forward sweep of Eq. (4.23) (for positive ui), while‘Eq. (4.25b)
initiates the backward sweep of Eq. (4.24) (for negative ui).

Since the source distribution Qi(5k+1/2) and the reflected
component of the boundary intensities depend on the unknown intensity
distribution, an iterative solution procedure is used to converge
to the solution. This iteration procedure is outlined below:

a) guess an initial source distribution Qi(£k+l/2)’ k=1,N-1;
i=1,M.
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b) guess the incident intensity distribution Ii(il) for

positive My

¢) compute the radiation intensity at all mesh points and for
all directions using the forward and backward sweeps from
Eqs. (4.23) and (4.24).

d) compute the node-center intensity in each node for all

directions using Eq. (4.22).
e) recompute the source distribution using Eq. (4.21).

f) return to step ¢ to recompute the radiation intensities
based on updated values of the source distribution and the

incident intensity.

g) repeat steps c to f until convergence to a specified
accuracy is achieved for the intensity at all mesh

points and discrete angles.

This numerical discrete ordinates method is a powerful tech-
nique that is readily applied to the calculation of the intensity
in non-homogeneous, multi-dimensional media which emit and scatter
radiant energy. The primary disadvantage of this method is the need
for a sufficiently fine spatial grid so that the spatial derivative
in the equation of transfer is well approximated by its finite
difference representation. As a result, large arrays are often needed
to store the intensity at all the discrete grid points and directions,
particularly in the solution of multi-dimensional problems. New
methods {(e.g., nodal methodssl and coarse-mesh techniquessz) are
presently being developed to solve the discrete ordinates equations
very accurately using coarse spatial grids, thereby reducing computer

storage requirements and computational effort. Another possible
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disa&vantage of the numerical technique is the slow rate of conver-
gence of the intensity (i.e., the need for many iterations) in media
characterized by large values of the source term.53 However, the
convergence rate may be accelerated by extrapolation of source
digtributions computed in previous iterations prior to recalculation
of the intensity distribution.

4,2.3 Evaluation of the Scattering Matrix

The scattering matrix element p(u +ui,x) is obtained directly by

]

evaluation of the azimuthally averaged phase function p(u'-p,x) at

the discrete directions uj and ui. If the phase function is rotat-

-, ionally invariant, p(u'-»u,x) is given by [cf. Eq. (2.13)]

1 2r
plu'*w) = 5= J p(u'»u,9) d¢, (4.26)
0
where the explicit dependence of p on position is omitted for sim-

plicity. The most common method of obtaining p(u'-u) is to expand

1/2
p(u'>u,9) [= p(cos@), where cos@ = up' + (l-uz)llz(l-u'z) / cos¢]
in terms of Legendre polynomials, i.e.,

L
p(cos@) = ) v, P,(cos@), (4.27)
2=0

where the series has been truncated after L+l terms. The expansion

coefficients ' may be computed by utilizing the orthogonality of

Legendre polynomials to obtain26’3l

1
¥, - E%il I p(cos0) P, (cosd) dcose. (4.28)
=1



3

Substitution of p(cos@) [= p(u'+u,9)] from Eq. (4.27) into Eq. (4.26)
and use of the addition theorem of spherical harmonicss4 gives the
azimuthally averaged phase function
L
plu'™w) = J vy, P (W) P (u"). (4.29)
28 L
2=0
The premature truncation of the Legendre polynomial expansion
of Eq. (4.27) may lead to oscillatory behavior or negative values
in the evaluation of the scattering source for the discrete ordinates
equacions.32 To avoid these truncation errors, the azimuthally

averaged phase function can be computed directly from Eq. (4.26) by

numerical evaluation of the azimuthal integral.

4,3 Flux Methods

A number of so-called flux methods have been developed to
compute the transport of radiation in scattering media.Al The
flux methods are based on the approximation of the continuous angular
variation of the intensity by a finite number of partial radiant
fluxes over a set of discrete solid angle ranges. The most widely

used flux techniques are the two-flux method due to Schuster,z6

and the six-flux method of Chu and Churchill.55 The two-flux

method describes the radiation field at every point by twe oppositely
directed radiant fluxes, while in the six-flux method, the radiation
field at any point is decomposed into six orthogonal components. The
flux equations are derived by assuming the intensity of radiation

to be uniform within each of the contiguous solid angles into which

the total solid angle about a given point is subdivided. The sub-
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gsequent integration of the radiative transfer equation over each of

these solid angle ranges reduces the integro-differential equation

of transfer to a set of approximate, coupled, ordinary differential

equations.

Here, a general M=-flux method is derived for use in plane-

gymmetric, quasi-steady radiative transfer problems.

transfer equation is written as

1

d

M —Eé%AEl + I(E,u) = mgg) J I(g,u") p(u'>u)
-1

The total solid angle at any § is divided into

AQi, i=1,M, with the wvarious ranges defined by

ARt p 2w W 4, 029 <2,

where .u0=l and oy -1. Integration of Eq. (4.30) over the it

angle range yields

Piel A i-1
2n J U -__EEE_ dy + 2w [ I(E,n) du

i i
5 ] () 1
27 J = du J I(E,u') p(p'>u) du' + 2

2
g -1

i=1,M.

du'

+

E(E)
ce(E)

The radiative

(4.30)

M contiguous ranges

i

d

W

K.

l!M!
h
e
o &)

1

(4.31)

solid

(4.32)

The partial radiant flux for the i-th solid angle, Ji(g) [cf. Eq.

(2.38)], may be written for the assumed one-dimensional geometry as

Hi-1
J; () = 2m J p I(g,u) du.

My

(4.33)
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solid angle

If the intensity is assumed constant over the 1
range [= Ii(g)], the partial flux Ji(E) becomes
(4.34)

2 2
J; (€)= w(uy_j-u) I, (E).

With this assumption of constant intensity in each solid angle, Eq.

(4.32) yields the flux equations:
v T
Gy § == 1@
J
(4.35)

dJ, (&)
i 2
+ J. (&) =
dg ui-l+ui i 551 uj_l—uj
E(E) e
Ge(g) » l’M,
(4.36)

+ 2m(uy_1=uy)

-1 Hie1
du' I p(u'=u) dp.

where
P.. =
ji Ju.
J Ul
For the two flux case (M=2), Jl(E) is the partial flux over

the forward hemisphere (0 < u <1, 0 < ¢ < 2m), while~J2(£) is

defined over the backward hemisphere (-1 < u <0, 0 < ¢ < 2m).
Equation (4.35) becomes: |
w(g) [py, J.(8) +p,. 5()] +2n EEL (4 37
P11 Y1 P21 ¥2 o (&) ° :
E(&) ;
E;TET . (4.38)

dJ; (&)
T + 2 Jl(g)
w(E) [pyy J1(E) = Byy J,(8)] + 2m

and
sz(E)
—aE " 2 J,(8)
If backward scattering is neglected (i.e., P1p = Py = 0), these
(4.35) may be rewritten in

equations reduce to the two-flux equations derived by Schuster.

For the general M—-flux case, Eg.

matrix form as
dJ(&)
wrE

(4.39)
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where the elements of J, F, and § are

Ji = Ji(s) (4.40a)
28
= ij  _ _w(E)
P, AT T T 7 Py (4.40b)
S B
5, = 2n(u;_;-w;) E(8) /o (&) (4.40c)

These equations are similar in form to the discrete ordinates
equations and can be solved by the same analytical or numerical
techniques used in the discrete ordinates method.

Solution of the flux equations requires boundary conditions
on the partial radiant fluxes. These conditions are obtained by
angular integration of the boundary conditions for the radiation
intensity, Eqs. (4.8a) and (4.8b). Thé resulting conditions
are

2 2 % <

_ 2 2 _ _ 5
Ji(D) = ﬂ(ui_l ui) fi + pwl(ui~l ui) L j(0), i=1,M/2, (4.41a

et
and
2 2 M/2 "
I (8 = wul_;-u)) gy + o ,uy -H)) jzl Jj(zt), i=5+1,M, (4.41b)

where fi and g; are the incident functions f(p) and g(up), which
have been assumed constant over the ith range of u.

The flux methods are generally less accurate than the discrete
ordinates method (based on the same number of discrete .directions

as the number of partial fluxes) because of the key assumption made
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in the derivation of the flux equations that the intensity is con=-
stant within each solid angle range. The accuracy of the flux
methods can be improved, however, if better approximations of the
directional dependence of the intensity within each range are used.
57

The assumption of lin83156 or higher order polynomial variations

have been shown to yield excellent results in neutron transport problems.

4,4 The Diffusion Approximation

In many cases, details of the directional dependence of the
radiation intensity are not required, and only the integrated
intensity is of interest. An approximate equation for the inte-
grated intensity ¢ may be derived by integration of the equation
of transfer and its first angular moment over all directions. The
iﬁtensity distribution in thé latter equation is then expanded in
a series of spherical harmonics (Legendre po%ynomials in one-
dimensional geometry). Truncation of this series after the linear
‘terms yields two equations in two unknowns, the integrated intensity
and the net flux. This truncation is termed the Pl_approximation
and is equivalent to assuming the intensity to be only linearly
anisotropic. Elimination of the net flux from the two equations

then yields58

-v-[D () 7o (D)] + o, () o (¥) = 4n E (D), (4.42)
where

¢ () = j I (f,3) 4o (4.43)
v bor d
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> l 54 S +> =1
Dv(j:) e [cev(r) uk osv(r)] i (4.44)
and
E% = L 5 J dQ J g.a Pv(ﬁ"ﬁ) daa', (4.43)
(4m) 4

and where the scattering phase function P, is assumed to be rotation-
ally invariant. The quantities D and E$ are the diffusion co-

efficient and the average cosine of the scattering angle €, respectively.
If the quantity 3.8 (= cos®) 1s denoted by u*, Eq. (4.45) simplifies

to

1 1 * % %
pE == v P () du (4.46)
-1 '

The numerical solution of the diffusion equation will be
illustrated for ome-dimensional plane geometry. In this geometry,

the diffusion equation, Eq. (4.42), becomes

-4 e L 4+ 5 (0 o) = Sk, (4.47)
where
1
d(x) = 2m J I(x,n) du, (4.48)
<1
and
S(x) = 41 E(x), - (4.49)

and where the monochromatic subscript v has been suppressed.
Equation (4.47) describes equally well the multi~frequency

range case or the gray case if the directionally integrated in-
tensity ¢(x) is understood to be integrated over varicus frequency

ranges or over all frequencies, respectively, and if the emission
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source term S(x) is given by either

S(x) = 4 En(x), n=1,N (multi-frequency case), (4.50a)

ar

5(x) = 4 o_(x) 31" (x) (gray case). (4.50b)

The diffusion equation, Eq. (4.47) is an inhomogeneous, second
order differential equation with non-constant coefficients. If the
emlission source term S(x) and the absorption and diffusion coefficients
are known functions of position, the solution of the diffusion
equation can in some cases Be determined analytically. In general,
however, the solution must be obtained numerically.

The diffusion equation can be written in terms of the optical
coordinate & by division of each term in Eq. (4.47) by 9, and

multiplication of D in the first term by ce/oe, namely

d de(g)

- IY(E) dt + G;(i) @(E) = 8'(g), (4.51)
where
D'(£) = D(&) Ue(E) (4.52a)
0;(5) = a_(8)/o (&) (4.52b)
§'(g) = S(E)/de(E). (4.53)

and where the substitution d£=de(x)dx has been made.
Since the diffusion equation is . a second order differential
equation, its solution requires two boundary conditions involwving

the integrated intensity . ¢(x). These conditions can be obtained by
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multiplication of the boundary conditions on the intensity, Eqs. (4.8a)
and (4.8b) by u and integrating Eq. (4.8a) over positive values of
¢ and Eq. (4.8b) over negative values. These equations become
1l 1 1 -1
p I(0,u) du = J WEQ) du + 20 4 [ p du J u' I(E ,u') du' (4.54)
o - Jo ¥t 0 ¢
(=1 -1 -1 1
pI(E ,u) du = J kg(w) dw + 20, J u du J w' I(0,u") du'. (4.55)
Jo & 0 welo 0
The partial fluxes J+(€) and J (£) are defined by
+ &
J (8) = 2x J ¥ I(g,p) du, (4.56)
0
- and
— r-l
J (&) = 2nm u I(g,u) du. (4.57)
0
These qﬁantities may be used to rewrite Egqs. (4.54) and (4.553) as
7)) = F+op. . 30 (4.58)
wl
I =6+, I (4.59)
t w2 £’
where
1
F=2r | uw £(p) du, (4.60)
‘0
and
-1
G = 2m pog(u) du. (4.61)
‘0
i G - i ted
The partial fluxes J (¢) and J (g) are related to the integrate
intensity % (§) byﬁg
+ _ 8(8) _D'(g) de() 4.62
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(g = R, D) 44E) (4.63)

Substitution of these expressions into Eqs. (4.58) and (4.59) gives

the boundary conditions in terms of the integrated intensity @(£)

as
D' (0) g%égl = 2,0(0) - b, (4.64)
' dQ(Et)
D (Et) -—&*E—— = —82¢(Et) + bZ’ (4.65)
where
1-p
1 wl
g (4.66a)
1 2 mel
1-p
1 w2
ORI (4.66b)
2 2 L@WZ
b, =2 1;5——- (4.66¢)
wl
. 7
b, =2 . (4.66d)
2 l+pw2

To obtain a numerical solution of the diffusion equation, the
total optical thickness of the medium is divided into N-1 nodes using
N mesh points (see Fig. 4.2). Integration of the diffusion equation
over the thickness of one node about each interior (non~boundary)
mesh point and approximation of spatial derivatives by finite

differences yields

2
+ [ D + D' E

_D o ) 1 7
k=172 T D1z ¥ 7 g iw1/2 * %0172 %

' o
k-1/2 k-1

=n! = af = _
Divi/2 ®ee1 = Sk b e k=2,...,N-1,  (4.67)
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where

L Skt1/2
0 =3 8(g) dt (4.68)
£
k=1/2
. Ex+1/2
T, Sw sy, (4.69)
k=1/2

and where the subscripts k-1/2 and k+1/2 imply that the values of
U; and D'are evaluated in the nodes to the left and right of the point
Ek’ respectively.

Equation (4.67) represents a set of N-2 equations for the N
unknown values of the integrated intensity at each mesh point.
Two additional equatiomns are needed and are obtained by integration
of the diffusion equation over the first and last half-nodes,
respectively. These integrations yield

2 2
. i A g e
Dyys ¥ g g9y 5+ 8808 — Ty & + b,A (4.70)
and
2 2

A
(] ] o AN -
+ g g7t O n-1/272 +t3M% =8

_n' 1
Py-1/2 *n-1 §7 F By
where the boundary conditions, Eqs. (4.67) and (4.68), have been

used, and where

. %372
¢l = m J b(g) dg {(4.72a)
5
. £3/2
" ' x at
5} =5s S'(5) dE ¥ S'(E)) (4.72b)
&
1 oy
¢N =33 J $(E) dg (4.72¢c)

bN-1/2

+— + b,4, (4.71)
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d
an E,.N
1 1 = 1
N-1/2

Equations (4.67), (4.70), and (4.71) represent a system of
N equations in N unknowns. These equations can be written in

matrix form as

A% =35, (4.73)

where the coefficient matrix A is tridiagonal, diagonally dominant,
and symmetric. This matrix is therefore non—singular,éo and the solution
vector ¢ (i.e., the integrated intensities at all mesh points) can be
found by either a simple elimination or an iterative procedure given
the source vector S (i.e., the temperature is known.at every point).

The numerical solution of the diffusion equation requires less
computer storage and computing time than the numerical solutiomn of the
discrete ordinates equations or the flux equations. Only one quantity,
the integrated intensity, is computed at every spatial mesh point (as
~opposed to a set of intensities or fluxes). Furthermore, if the
temperature is known, the solution of the diffusion equation can be
accomplished by a straight-forward elimination procedure, and iterative
techniques are not required. The main limitation of diffusion theory
igs that the diffusion equation is based on the assumption that the in-
tensity is only weakly dependent on angle. This assumption is poor
near boundaries, in media where material properties vary dramatically

from point to point within distances of the order of a mean free

path (i.e., £ = 1), and near localized sources of radiant energy. In
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general, a strong angular dependence of the intensity occurs in regioms
where the spatial variation of the intensity is also rapid.58 In
optically thick media (which are characterized by slow spatial variations
‘of the intensity), and at large distances from boundaries and sources,

the diffusion approximation has been shown to give accurate results.59

4.5 Solution of the Equation of Transfer When the Temperature is Unknown

The various techniques used to solve the equation of transfer
have been presented with the assumption that the temperature distributions
of all phases present in the system are known. Since in this case the
emission term Ev(x) is specified, the equation of transfer contains
only one unknown function, the radiation intensity. In general, however,
the temperature of each phase is not known a priori and must be com-
puted from a total energy balance on the phase in question. Since
the energy balance involves thé net volumetric rate of radiant energy
emission (which is computed from the radiation intensity), the tempera-
ture distribution depends intimately on the radiation intensity distri-
bution. In other words, the temperature of each phase is needed to
solve the radiative transfer equation, and the solution of the radiative
transfer equation is needed to compute the temperature. In principle,
it is possible to solve the energy balance of each phase for the
temperature as an explicit function of the intensity, and to sub-
stitute the result into the equation of transfer to obtain an equation
in terms of the intensity alone. However, this simple elimination is

not possible because the energy balance invelves derivatives and non-
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linear functions of temperature. In this section, it is assumed that
the velocity and composition of each phase are known and, consequently,
the energy balance relates the temperature of the phase to the radiation
intensity without introduction of additional unknowns.

The methods for solution of the radiative transfer equation which
have been discussed in this chapter are still applicable when the
temperature of each phase is unknown if the solutions are used as
part of an iteration scheme in which the temperature distributions
are initially assumed. With the assumed temperatures, the various
solution techniques are readily applied to obtain a first estimate
of the radiation intensity distribution. The computed intensity is
then substituted into an energy balance relation for each phase,
and updated (and more accurate) temperature profiles are obtained.

This procedure is repeated until convergence of the radiation intemsity
aﬁd the temperature distribution of each phase is achieved.

4.5.1 Energy Balance Relations

For a gas-particle mixture, the energy balance relations for
the two phéses are given by Eqs. (2.46) and (2.47) and are rewritten

for one-dimensional geometry in compact form as

Q. (%)

. coe 4.74
p0 = G IT (0, TG, p G0, o] (4.74)

Q. (%)

cee] . 4.75) .
- Gg[Tg(X), Tp(X), og(x), ] ( )

The net volumetric rate of radiant energy emission by the particulate

phase is given by
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= =]

1
cavp(x) dv J Iv(X,u) du.

Gavp(X) Bv[Tp(XJ] dv = 2w JO B

Qrp(X), = 4m Jo

(4.76)
This expression can be used to compute Qrp(x) only 1f the intensity
is known as a continuous function of frequency. For the multi-

frequency range case, the net emission rate becomes

- N
QG0 =4 I o, () £ (0§10

n=1

N 1
27 nzl_canpcx) J_lln(x’“) dy. (4.77)

For the gray case, Qrp(x) becomes
QL (x) = 4 o (x) 6T (x) - 21 0__(x) Jl I(x,u) du. (4.78)
Tp ap p ap™’ J 4
The same expressions give the volumetric rate of radiatiom emission
by the gas phase if the subscripts p are replaced by g in Eqs. (4.78)-
(4.78).

The non-radiative enmergy inputs to each phase, GP ang Gg, are

written as [cf. Egs. (1.35) and (1.36)]

dT (x)
= - —L - .7
GP op(x) v(x) M Qcp(x) + Hp[Tp(X),Tg(x)], (4.79)
and
dT (%) daf)
Gg = -og(X) v(x) B -——g—dx + Qcp(x) - —H——dx + Hg[Tp(X),Tg(x)l.

(4.80)

These equations are based on several simplifications of the general

energy conservation laws that have been discussed in Chapter 1. The
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inter-species convection term Qcp(x) is proportional to the tempera-

ture difference between the two phases, i.e.,
QCP(X) =h [TP(X) - Tg(X)]. (4.81)

where the proportionality constant h is assumed to be independent of
temperature. If heat transfer by gaseous species inter-diffusion is
neglected, the heat flux q(x) is given by Fourier's law:

dT (x)

—, (4.82)

q(x) = =

where the gas thermal conductivity A is assumed constant. Finally,
the energy release rates due to chemical reaction, Hp[Tp(x),Tg(x)]
and Hg[Tp(x),Tg(x)], which are not written explicitly, are generally
nonlinear functions of the gas and particle temperatures.
Substitution of Eqs. (4.79)-(4.82) into the energy balance

relations of Eqs. (4.74) and (4.75) yields

dT (%)
= + cl(x} Tp(x) + Sp[Tp(x), Tg(x), Qrp(x)] = 0 (4.83)
a%7 (x) dT_(x)
8 ). & o ; \
dxz + cz(x) ix + Cq Tg(x) + Sg[Tp(x), Tg(k), Qrg(x)] 0, (4.84)
where
e () = hie o (x) el (4.85a)
CZ(K) = —Cg pg(x) v(x)/A (4.85b)
cy = -h/) (4.85¢c)

- -1 : :
S_ = Icp Dp(x) v(x)] © {-h Ig(x) + Qrp(x) - Hp[Tp(x),Tg(x)]} (4.85d)
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-1 -
S, =7 T = Q (0 +H [T (0,7, (0]} (4.85e)

The gas phase energy balance, Eq. (4.84) is a second order differential
equation, which may be transformed into the following pair of first
order differential equatioms:

dT (x)
-2

T Tg(x) = 0, (4.86)

and

dt (%)

B 4 eplx) Tg(x) *e3 T(x) + 8,01 (x),T,(x),Q,,(x)] = 0. (4.87)

To reduce further the notation for these energy balance equations,

Eqs. (4.83), (4.86), and (4.87) are written in vector form as

$2 16 + 8[T (0,1 (0,7, 00,x] = 0, (4.88)
- where
Tp(x)
=T, | (4.89)
‘Tg(x)
and
cl(x) Tp(XJ + Sp[Tp(XJ, Tg(X), Qrp(X)]
s = |-T (x) . (4.90)
= g

¢y (x) Tg(X) +egT () + Sg[Tp(X),Tg(x),QrgCX)]

Equation (4.88) can be solved by standard numerical methods [if the
constants cl(x), cz(x), and ¢, are known] for given values of Qrp(x)

and Q (x). For such a solution, two boundary conditions must be
g :
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specified for the gas temperature, since the gas energy balance is
a second order differential equation. These conditions can be
transformed into two conditions involving the functions ig(x) and
fg(x) [= dTg(x)/dx],which are needed for the solution of Eq. (4.88).
On the other hand, only one boundary condition is required for the
particle temperature, as the solid phase energy balance is a first
order differential equation.

4.5.2 Summary of Solution Procedure for Coupled Temperature-
Intensity Egquations

The overall iterative procedure for the simultanecus solution of
the equation of transfer and the energy balances on each phase in a
chemically reacting, multi-phase medium is summarized below. It
should be noted that this procedure is applicable only when the velocity
"and composition of each phase are known throughout the medium.

a) guess an initial temperature distribution for each phase.

b) solve the radiative transfer equation by one of the methods
discussed in this chapter based on these assumed temperature
distributions.

¢) compute the radiant emission terms Qrp and Qrg using Eq. (4.76),
(4.77), or (4.78). ‘

d) based on the computed emission terms, recompute the temperature
of each phase by solution of Eq. (4,88).

e) return to step b.

f) repeat steps b to e until convergence is obtained.
If the velocity and composition of each phase in the system are
also unknown, the continuity equation for each phase [Eqs. (1.33)

and (1.34)] must be considered in addition to the energy balance
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and radiation equations. These continuity equations can be incorporated
into the solution methodology at the expense of a more complex iteration
precedure and, consequently, increased computational effort.

In conclusion, a number of techniques which may be used to
solve the equation of radiative transfer in a scattering and emitting
medium have been discussed in this chapter. Two of these methods,
the numerical discrete ordinates method and the diffusion approximation,
will be used to compute the radiant energy transport in a pulverized
coal suspension model in Chapter 5. An original M-flux method for
solution of plane-symmetric radiative transfer problems has also been
developed in this chapter; However, since flux methods are expected
to be less accurate than discrete ordinates sclutions using an equal
number of discrete directions, the flux methods are not used in the

" numerical examples of Chapter 5.
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5.0 NUMERICAL EXAMPLES

5.1 Statement of the Problem

In this chapter, the numerical solution of the radiative transfer
equation is obtained in a chemically reacting pulverized coal sus-
pension. The primary purposes of the many numerical examples presented
are to demonstrate that the transport of radiant energy in a scattering-
emitting medium can be accurately modelled, to show how the temperature
dependence of the heat generation rate by chemical reaction can be
incorporated, to compare results obtained with the discrete ordinates
approximation and with the diffusion approximation of the equation of
transfer, and to assess the effects of va?ious parameters (e.g.,
optical properties, particle size, boundary conditions) on computed
temperature and radiation intensity distributions. The numerical
examples are not éoncerned with solution of the general forms of the
conservation and hydrodynamic‘equations.

An example problem is considered in which the temperature and
radiation intensity distributions are calculated for a homogenecus,
infinitely long, pulverized coal suspension surrounded by parallel
flat walls as shown in Fig. 5.1. The thickness of the medium is X s
the bounding walls are at temperatures Tw and T

1 w2’

properties vary in a one-dimensional manner between the walls. The

and the system

solid phase is assumed to be composed of low-volatile coal and char
particles, which generate heat by means of heterogeneous chemical

reaction with the oxidizing gases in which they are dispersed. The
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composition of the system is assumed to be known, and effects of
fuel consumption are neglected. The system is assumed to be at
steady-state, and no net transfer of energy occurs in directions
normal to the x-axis. These assumptions of steady state conditions
and one-dimensional energy transfer are quite reasonable in the char

burnout region of a pulverized ceoal flame.s’16

5.2 The Energy Balance

The gas and solid phase energy balances are giﬁen by Egs. (4.74)

and (4.75) as

Qrp(X) = Gp[Tp(x),TgCX), ai3 )3 {5.1)
and

Qrg(X) = Gg[Tg(X),TP(x), ek 8] 7 {5:2)

The gaseous species are assumed transparent to radiation, and the

O s G T X ,T X 9 « e 5.3

i.e., the sum of the nonradiative energy inputs to the gas phase

must also vanish. For a given net radiant emission by the solid

phase [i.e., Qrp(x) is known]}, the gas and solid phase temperature

distributions can be computed by the procedure explained in Section 4.3.
For simplicity, the gas phase temperature will be either assumed

a priori or taken equal to the particle temperature, and thus only

the solid phase energy balance is considered. Calculations by
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Krazinski et al.5 and Smoot et al.l5 (who considered the energy
balance on both phases) predicted that the maximum difference in
temperature between the two phases over a wide range of conditions
is 100 K (roughly 5%). However, a number of recent experimental

1:'esultsb:L

indicate that under some conditions, the difference in
temperature between the two phases can be significantly greater
than 100 K.

The steady-state particle energy balance is written more explicitly

using Eq. (4.79) as
dT (x)

Qu () ==e 0 () V() —E— = Q) +H T (),T, (0], (5.4)
where allowance is made that the assumed gas temperature differs from
the particle temperature by retaining the inter-species conduction
term Qcp(x) in the energy balance. Since the velocity of the sus-

pension, v(x), is zero, the sensible energy term vanishes, and the

particle energy balance becomes
Q. (0 = =q () + H [T (),T ()] (5.5)

The net emission term Qrp(x) is given by Eq. (4.78) as
A 1
= 4 - ; i ¥
Qrp(X) 4o (x) oTP(XJ 21 g, (x) Lll(x,n) dy, (5.6)
where the gray-case form of Qrp(x) is used because the formation of
(non-gray) soot particles is negligible in combustion of low volatile

coal, and because the absorption coefficient of coal and char particles

is largely independent of frequency. Expressions for the remaining
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terms in the particle energy balance (i.e., Hp and Qcp) are derived
in the following two sectioms.

5.2,1 The Chemical Heat Generation Term

" The volumetric rate of energy input to the particulate phase
due to chemical reaction (i.e., the heat generation rate) is written

as

H = r_Ah, (5.11)

where rp is the mass burning rate of particles per unit volume, and
Ah is the energy release to the solid phase per unit mass of fuel
consumed. With the assumption that the burning particles contain
negligible volatile matter and moisture, the mass burning rate rp

is determined solely by the rate of the heterogeneous reaction of

the carbon particles with the oxidizing gases (assumed to be primarily

oxXygen, 02). The burning rate may be expressed asl6

NS Svk
rp = PO Z g (5.12)
2 k=1 de + Ks
where P0 is the partial pressure of oxygen, Svk is the surface

2
. . th . .
area per unit volume of particles in the k size class, and NS

is the number of particle size classes. The parameters K, and KS

dk
are reaction rate coefficients which account for the diffusion of
oxygen to the particle surface and the reaction rate at the particle
surface, respectively. Clearly, the smaller of the two coefficients
controls the overall rate of fuel consumption, and the limits of

K.. << K and K << K., are termed diffusional control and surface
dk s s dk

reaction control, respectively.
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The rate coefficients Ky and K, may be exPreSSed5,16,62
24 JDO(TP+Tg)°'75
e = , (5.13)
dk  5,0.75  1.75 p 4
o pk
and
KS = .Z EXP('E/RTp)s (5.14)

where Do.is the binary diffusion coefficient of oxygen in air at the
temperature To, J is an integer which equals unity if carbon dioxide is
the reaction product and equals two if carbon monoxide is the product,
E is the activation energy of the heterogeneous reaction of carbon with
oxygen, Z is the pre-exponential factor (assumed independent of
temperature), and R is the universal gas constant, From Eq. (5.13),
the diffusional rate coefficient is seen to be a weak functiom of
particle temperature and inversely proportional to particle diameter;
whereas the surface reaction coefficient varies with temperature in
the well-known Arrhenius manner and is assumed to be independent of
particle size.

Substitution of Egs. (5.12), (5.13), and (5.14) into Eq. (5.11)
gives the heat generation rate as a function of the particle and

gas temperatures, namely

NE Svk

2 k=1f24 ap_(r_+1 )0 77 (7t 3

P_EB _
0.75 ; 1.75 + |Z EXP(FE/RTP)
R d
o} pk

(5.15)

Hp_= P0 Ah

2
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The volumetric surface area of particles in the kth size class,

Svk’ is given by

S = ﬁdz

- ok Nk, (5.16)

where Nk is the number density of particles in the kth size class.

This number density can be computed from the particle bulk density

ppk and the density of coal char Pe by
p
K, B , (5.17)
k (r/6) d3 0
pk "¢
from which the quantity Svk becomes
6 p ‘
5 el (5.18)
vk d p
pk "¢

The heat generation rate Hp is plotted as a function of the
particle temperature Tp in Fig. 5.2. Representative values of the
activation energy (35 kcal/mole), the pre-exponential factor
(6 kg cm_2 s-l atm-l), and the binary diffusion coefficient of
oxygen (3.49 cmZ/s at 1600 K) were obtained from Field et al.16
and used to compute Hp. The mechanism factor J for the example was
taken to be 2 (i.e., C0 is the reaction product)., The remaining para-
meters were chosen so that a monodisperse suspension of 50 ym particles
with a particle density P of 1.5 g cm—3 and a particle concentration

_l)

°p of 167 g e generates heat at a rate of 1 W cn™3 (239 keal o> s

-at a temperature of 1750 K. This rate of heat generation is consistent

p ; ; 16
with rates which occur in pulverized coal combustors.
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Fig. 5.2. The rate of heat generation by chemical reaction as a

function of the particle temperature. Dashed lines
give the diffusional coutrol and surface reaction con-
trol limits of the heat generation rate.



101

Limiting forms of Hp under diffusional control (Kd << KS) and
surface reaction control (Ks << Kd) are also shown in Fig. 5.2. The
overall rate is seen to be controlled almost exclusively by the
chemical reaction for Tp < 1500 K and by oxygen diffusion for
Tp > 2000 K.

5.2.2 The Inter-Species Convection Term

The convective term Qcp in the particle energy balance, Eq. (5.5),

may be writtena’s’16

NS

Nu A .
= T =T - ‘ 519
s kzl [dpk (T -T )1 S (5.19)

where Nu is the Nusselt number (which takes the value of 2 for a
spherical pérticle at rest relative to the surrounding fluid),4’5
and A is the thermal conductivity of the gas evaluated at the mean

temperature in the particle boundary layer. The thermal conductivity

varies as TO'75,16 and therefore A may be expressed
(x_+1 y/2)%7°
A= R E— , (5.20)
0

where lo is the gas thermal conductivity at a temperature To'

The - convective heat loss term Qcp thus becomes
T +T 03 NS svk
(T,-T,) I (5.21)

cp e ZTO o k=1 dpk

5.3 Dimensionless Form of the Energy Balance

Substitution for Qrp [from Eq. (5.6)}, Hp [from Eq. (5.15)], and

th‘[from Eq. (5.21)] into the particle energy balance, and non-

-
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dimensionalizing the resulting equation by division of each term

by 4o, S(E/R)4 yields

4 5 NS 5
TP(X) = ¥(x) +E—'—F—-S— Z vk
ak"vk k=1 ~0.75 1
k T byl Gt ()] +7 expll/T ()]
NS S
—— vk 0.75 _
E Faksvk k=1 dpk & (X)+Tg(X)] [TP(X) Tg(x)]’ (3.22]

¢ 1
where the substitution o, =7 E Faksvk [from Eq. (3.3)] has been

made, and where

tp(x) = TP(X)/T* (dimensionless particle temperature) (5.23)
rg(x) =_Tg(x)/T* (dimensionless gas temperafure) (5.24)
" .

T = E/R (reference temperature) (5.25)

1
¥(x) = 0(x)/(407) = 2m J T(x,u) du/(40")

-1
(dimensionless integrated intensity) (5.26)
* w G 4
& = oT = o(E/R) (reference integrated intensity). (5.27)

% *
The quantities T and & are constants which have dimensions of
temperature and intensity, respectively. The parameters a, bk’

and ¢ in Eq. (5.22) are

a="P Ahr/@* (5.28a)
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24 gp 075 -1
b, = (5.28b)

c (5.28¢c)

(ZTO)O'TSQ* '

Equation (5.22) is a dimensionless energy balance on the volume
element at the point x; the left hand side represents the dimension-
less radiant emission by the coal char particles, while the terms on
the right side are dimensionless forms of the radiant energy absorption,
the chemical heat generation, and the heat conduction to the gas phase.
The equation is simplified by assuming the particle size distribution

to be monodisperse (i.e., NS = 1). Equation (5.22) becomes

) A
(1, () + rg<x>1“°'

4
T () = ¥(x) +
P 75 + B exp[l/rp(x)]

0.75
- C - .
[‘rp(x} + Tg(x)] [TP(X) Tg(X)], (5.29)
where

A= a/Fb (5.30a)

a
B =1/%b (5.30b)
C=c/F d. (5.30c)

ap

If the gas and particle temperatures are assumed equal (i.e.,

Tp = rg), the convective term vanishes, and Eq. (5.29) becomes

A
b)

T:(X) = ¥(x) + (5.31)

{ZTP(K)]—O'7 + B exp[l/rp(x)]
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5.4 Calculation of the Equilibrium Temperature at a Fixed Point

The first and last terms in Eq. (5.31) are denoted by E[Tp(x)] and
H[Tp(x)], respectively, i.e.,

E[rp(x)} = ¥(x) + H[Tp(x)] (5.32)

For a fixed value of x, this becomes

E(TP) =¥ + H(Tp). (5.33)

The equilibrium particle temperature at any x must satisfy the
energy balance, Eq., (5.33). The solution of Eq. (5.33) for the dimension-
less particle temperature Tp is illustrated in Fig. 5.3. The dimension-
less radiant emission E(Tp) and two different heat generation functions,
Hl(Tp) and HZ(TP); are shown as functions of Tp. The heat generation
functions were obtained using different assumed values of the para-
meter A, with the parameter B kept constant. The term ¥, which
represents the radiant energy absorption, serves to shift each
generation Eunction upward by a constant amount for all values of
Tp. The equilibrium particle temperature is simply the temperature
.at which the displaced generation function and the emission function
intersect. It may be seen from Fig. 5.3 that, for any value of y, the
displaced function H1 + y always intersects the emission function at
a unique temperature. On the other hand, the displaced function
H, + v may intersect the emission function at a unique temperature

2

{as with H, + wz) or at three different temperatures (as with H2 + Wl).

2

It is easily verified that multiple intersections are possible only
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if at some temperature, the slope of the generation function exceeds

the slope of the emission function; i.e., if at some Tp, the condition

A [1.5 (zrp)“1'75

0.75

+ B exp(l/rp)/fpzl 3

> 41

- 2
[(2Tp) + B exp(l/rp)]

is met.

1f more than one intersection exists, it may be shown that the
middle one is unstable; whereas the intersection at the lowest or
highest temperature represents a possible equilibrium temperature.
The particular temperature attained by the particles in this case
depends on its previous temperature histcry.16 It should be noted
that the stable equilibrium temperatures occur when the emission
function varies more rapidly with temperature than the displaced
generation function (at their point of intersection). The equilibrium
particle temperature can thus be computed by a basic iteration method

. . , ; i : 63
which involves inversion of the more rapidly varying emission function.

T(n+l) and T(n)]

Successive estimates of the temperature [ are thus
related by
0.25
I e e = , (5.34)
[2t>77] "°°7 + B expfl/1 ]
P P
; s (o) _ 0.25 o ’ ;

with a possible initial guess 7 =y . This iteration is repeated

until convergence of the temperature is obtained. If a unique equili-
brium temperature exists, the iterative procedure always converges
to that temperature, regardless of the initial guess, as shown in

Fig. 5.4(a). 1If three equilibrium temperatures exist, the iterative
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Fig. 5.4. Convergence of the iterative calculation of the equilibrium
particle temperature for (a) single intersection case and
(b) triple intersection case.- The quantity T _ represents
a stable equilibrium-temperature. B
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procedure converges to the higher equilibrium temperature for initial
temperature guesses greatér than the unstable equilibrium tempera-
ture and to the lower equilibrium temperature for guesses less than
the unstable temperature. The convergence of the iterative solution
in the multiple intersection case is illustrated in Fig. 5.4(Db).

The equilibrium particle temperature distribution is obtained
By determining the temperature at which the displaced generation
function and the emission function 1ntersect at every point in the
system., Therefore, the amount of radiant energy absorbed must be

computed throughcout the medium. In this study,
1 * *
¥ = om J TGy du/(48%) = 8(x)/(40")
-1
is determined from solution of the radiative transfer equation by
both the discrete ordinates method {for the intensity 1) and the
diffusion approximation (for the directionally integrated intemnsity ¢).

5.5 Simultaneous Solution of the Enerpgy Balance with the Equation
of Transfer

Since the coal dust cloud is assumed homogeneous, and its radiation
properties are independent of frequency, the steady-state, plane

symmetric equation of transfer can be written
~ &
oT_ (&)

' 1
u EE%%LHL + I(E,u) = %’J I(E,u") plut>u) dp' + (1-w) ——E;———, (5.35)
-1

where the substitution Uafce = l-w has been made. This equation can be

* 5
non-dimensionalized by division of each term by ¢ [= G(E/R)q] to obtain

A
: i T (&)
CEED s ren =8 [ rean s e+ 0 B 630
x)
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*
where I'(g,p) = I(E,u)/® . The particle energy balance, Eq. (5.29),
1s rewritten upon substitution for the dimensionless absorption term

from Eq. (5.26) as

A
-0.75

4 m 1
T (&) = E—J I'(E,u)dp +
P Wl

[TP(E) + Tg(E)] + B EXP[l/Tp(E)]

]0.

F i
-C [TP(E) # Tg(E) [TP(E) = Tg(E)]-

(5.37)
For a given gas temperature distributiom [i.e., tg(E) specified],
Eqs. (5.36) and (5.37) are two equations in two unknowns, the dimension-
less intensity and particle temperature. Substitution for Tpa(g)
from Eq. (5.37) in Eq. (5.36) yields

, ) | X
p B e e - %J I'(E,u") p(u'>w) du’ +1—EEJ I'(E,u') du'
-1 -1

+ BIT(E) ], (5.38)

where

A
]—0.75

_ l-w
I= m

H[T(E)

{TP(E) + Tg(E) + B exp [l/Tp(E)]

0.75

s 0 [TP(E) + Tg(E)} [TP(E) - Tg(i)}] .(5.39)

The dimensionless particle temperature TP(g) is related to the
dimensionless intensity I'(g,u) by Eq. (5.37), and thus the term H[T(g)]
is, in principle, expressible as ﬁ[I'(g,u)]. Hence, Eq. (5.38) can be

written as
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; 1 1
) 4o, = 2 1, pGu'w) du' + 332 | 17(g,ut) ap’
de 2 4 2 ),
+ HT'(E, 0], (5.40)

in which ﬁ is a highly non-linear function of I'. Equation (5.40)
is a nonlinear, first order, integro-differential-equation which
involves the intensity as the only unknown (if ﬁ is a known function
of I'). Unfortunately, the explicit dependence of ﬁ-on the radiation
intensity cannot be determined because of the transcendental relation
between the temperature and intensity in Eq. (5.37). Consequently,
the energy balance and the equaﬁion of transfer must be solved
simultaneously.

Solution of the two equations requires a boundary comndition for
the radiation intensity. Assuming the walls to Ee diffusely-reflecting,

gray surfaces, the boundary condition is

A

cTWl -1 .
I(O,U) = E:Wl ——TI'_+ 2le ,[ u' I(O,]—l'} dl.l', U>Os (5'413)
0
and
ST:Z 1
I(Et,u) =€ n T P J p' I(O,u") du', u<0,  (5.41b)
0

where Twl’ Pl and €, 2T respectively, the temperature, the
reflectivity, and the emissivity of the wall at £=0; and TWE’ P2?
and €, are the corresponding quantities for the wall at €=Et. The
incident intensity from each wall is seen to be composed of an

emitted component and a diffusely reflected component. The boundary

conditions can also be expressed in dimensionless form (by division
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%
of each term by ¢ ) as

£ -1
' = wl 4 1Ty ' '
I"(0,u) T Tl T, [O p' I'(0,u') du', u>0, (5.42a)
and T 1
t R lia) 1 ] 1 ¥
I (Et,u) T w2 T P, Jo AR S ) dp', u<0, (5.42b)
where Tl and T 2Te the dimensionless temperatures of the two walls

* %
(Tw1 = Twl/T and T2 = TWZIT Y.

It is important to note that solution of the equation of transfer
and the energy balance [Egs. (5.36) and (5.37)] for the dimensionless
intensity and particle temperature depends only on the paraméters A,

B, and C, the single scatter albedo w, the phase function p(u'»>u), the
assumed gas temperature distribution Tg(E), an& on the boundary con-~
ditions (i.e., the quantities € pw, T and Et). Of these parameters,
only the optical thickness of the medium Et depends on the particle
bulk density pp, the density of coal char Pas oI the system gize X, .
Therefore, for a given system optical thickness, the computed tempera-
ture and radiation intensity are independent of the particular choices
of pp, 0> and Xy

A computer code RATREQ has been written which solves the equation
of transfer simultaneously with the particle energy balance. The
numerical discrete ordinates method discussed in Chapter 4 is used to
compute the radiation intensity at a number of discrete spatial mesh
points and in a number of discrete directions. Imitially, a tempera-

ture is assumed at each mesh peint, and the radiation intensity distri-

bution is computed based on the assumed temperatures and an assumed
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value of the scattering source term. The radiation intensity is
then used to calculate the amount of radiant energy which is absorbed
at each discrete point in the medium. This quantity is substituted
into the particle energy balance, and the resulting equation is solved
by the basic iteration method discussed in Section 5.4 for an updated
value of the particle temperature at each point. The computed in-
tensity and the updated temperature distributions are used to recom-
pute the scattering source and the thermal emission source, respectively,
which are then used to recompute the radiation intensity. This pro-
cedure is repeated until convergence of the temperature and the
radiation intensity distributions is obtained.

It should be noted that the procedure used by RATREQ updates
the temperature distributions each time the radiationm intensity is
computed. An alternative procedure is to compute the intensity for
the assumed temperature and scattering source distributions and to re-
compute only the scattering source in each iteration until convergence
of the intensity for the assumed temperature distribution. The con-
verged intensity is then used to recompute the temperatures, and the
entire procedure is repeated until convergence of the temperature
distribution. This procedure is not employed because the re—evaluation
of the temperature distribution (based on the computed intensity)
requires a simple iterative solution of the emergy balance which
converges rapidly and therefcre requires little computational effort.
Therefore, the temperature is continuously updated along with the

computed intensity.
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The solution of the equation of transfer requires the evaluation
of the radiation properties of the particles in the medium. The
subroutine DBMIE36 is used to compute the extinction and scattering
efficiencies of the coal and char particles (given the particle
diameter, the wavelength of radiation, and the complex refractive
index of the particle). The computed efficiencies can then be used
to calculate the scattering, extinction, and absorption coefficients
using Eqs. (3.3)-(3.6). Another subroutine, PHASE, has been written
in this study to compute the scattering matrix by the azimuthal inte-
gration of the scattering phase function. The phase function for
large, diffusely reflecting spheres [given by Eq. (3.7)] is used in
this work. Substitution of this phase function into Eq. (2.15) and

use of Eq. (2.13) yields

2m )
p(u'>u) = ..n J {sin[arccos(pu' + Vl-u2 Vl—u'2 cos¢)] -
0

2
3w
(up' + 1/l--u2 Vl—u'z cosd) arccos(up' + Vl—uz v’l—u'z cos¢)} dé.
(5.43)

This integration is performed numerically by PHASE for discrete wvalues

of u and u' to obtain the scattering matrix.

5.6 Simultaneous Solution with the Diffusion Equation

With the assumption that the coal dust cloud is uniform and
that its radiative properties are frequency-independent, the quasi-

steady, one-dimensional diffusion equation [Eq. (4.51)] becomes

2
D! d—‘;i + 0! 8(8) = ~4o! &rp“(@. (5.44)

dg
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*
Division of each term by ¢ gives the dimensionless form of the
diffusion equation

2

L2+ 8% 0 () = -4 82 e, (5.45)
dg P
where
o' (g) = HE) (5.46)
¢
2 c; Ga
g2 -8 .2 (5.47)
Do

The particle energy balance may be written with the dimension-
less radiant absorption term expressed in terms of the integrated
intensity as

o' (g) A
-0.75
[z (&) + 1.(8)] + B exp[1l/7 (8)]

0.75
J

- C [TP(E) + Tg(E) [TP(E) = Tg(E)]-‘ (5.48)

This equation can be solved for the integrated intemsity ¢'(£).
Substitution of the result into the second term of the diffusion

equation yields

2y -
42 8) L up? it [x (8)] =0, (5.49)
2 P
dg
where the last two terms in Eq. (5.48) have been denoted by H[TP(E)}.

In principle, it is also possible to solve Eq. (5.48) for the particle

temperature Tp(g) as a function of the integrated intensity ¢'(g)

and to express H[Tp(g)] as H[®'(g)]. Equation 5.49) would become
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2 1 ~
4288 4 wg® afe' ()] = 0
az

(5.50)

where ﬁ[@'(s)] is a highly nonlinear function of the integrated in-
tensity. Equation (5.50) is a nonlinear, second order differential
equation and contains only one unknown function, the integrated
intensity. However, the explicit dependence of TP(E) on ¢'(£) cannot
be determined from Eq. (5.48) and consequently, ﬁ cannot be written
as an explicit function of the integrated intensity. As was the
case with the radiative transfer equation, the diffusion equation
must be solved simultaneously with the particle energy balance via
an iterative procedure.

The boundary conditions on the integrated intensity are obtained
by angular integration of the boundary conditions on the intensity

[Eqs. (5.41a) and (5.41b)], as explained in Section 4.4. The boundary

conditions for diffusely reflecting,gray walls become

d¢ (0)

4t = al¢(0) - bl, (5.51)
and
SLIG
3z = "3¥E) + by, (5.52)
where
R (5.53a)
1  2D' 1+p 1
1-p
1 w2 -
g 1 e (5.53b)
2 2D l-l-pw2
a4
£ oT
_ 2wl "wl = N
bl D" 1io (5.53¢)
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A4
EWZGTWZ
l+pW

2
by = D'
2

2 . (5.53d)

These boundary conditions are nondimensionalized by division of each

*
term by ¢ to obtain

do' (0 ,
—““d‘é—l = 81‘1"(0) - bl (5.54)
d¢'(€t)
& - -az¢ (Et) + b, £5.55])
T _ * 1 = *
where bl = bl/® and b2 b2/¢ .

The diffusion equation and the particle energy balance can be
solved for the integrated intensity and the particle temperature subject
to the boundary conditions, Egs. (5.54) and (5.55). Again, for a given
system optical thickness Et’ the solution is independent of the particle

bulk density p the density of coal char S and the system size L

b?
This is verified by the independence of the parameters. (other than
Et) in the diffusion equation, the energy balance, and the boundary
conditions of éhe quantities DP, DC, and X, .

A computer code DIFFEQ has been written which solves the diffusion
equation by the numerical procedure described in Section 4.4. The
code solves the diffusion equation simultaneously with the particle
energy balance by an iterative procedure. An initial temperature
distribution is guessed, and the integrated intensity is computed
based on this guess. The integrated intensity is then substituted

into the emergy balance to recompute the temperature at each point

by the basic iteration technique. This procedure is repeated until
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convergence of the temperature and the inegrated intensity. Since
only thermal emission contributes to the source term of the diffusion
equation, no re-evaluation of a scattering source term is required

to compute the integrated intensity corresponding to a given tempera-
ture distribution.

As is the case with RATREQ, the radiation properties needed to
solve the diffusion equation using DIFFEQ are calculated using DBMIE36.
The scattering phase function does not appear in the diffusion equation,
andlhence the subroutine PHASE is not used by DIFFEQ. However, the
evaluation of the diffusibn coefficient D [={3(oe—asﬂ*)}_l] requires
calculation of the average cosine of the scattering angle, u*. Sub-

stitution of the phase function into the expression for u%, Eq. (4.46),

yields

1 f—
TE %}'J du%* [u*fl-'u*2 - u*z arccosu*]. (5.56)
-1

This expression can be evaluated analytically to obtain

¥ o= = 4/9. (5.57)

5.7 Numerical Results

5.7.1 Testing of Computer Codes

The proper operation of the programs RATREQ and DIFFEQ was
verified by numerous test problems. First, the convergence of computed
temperature and rédiation intensity distributions with respect to spatial
and angular discretization was verified. The results were found to con-

verge to within 1% of a benchmark value (computed with very fine spatial
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and angular grids) if ten mesh points per mean free path (unit
optical thickness) and eight angular quadrature ordinates are used.
The convergence criterion (i.e., the stopping condition) which was
used in the iterative solutions is that the computed temperature and
intensity distributions change by less than 0.1% between successive
iterations at each spatial and angular mesh point. The independence
of computed temperature and radiation intensity distributions of the
initial source distribution guesses was verified. The solutions were
also checked by performing an energy balance on the entire system and
it was verified, upon convergence of the solution, that the coal dust
medium satisfied an energy balance in which the radiation leakage from
the system equals the heat generated by chemical reaction minus the heat
lost by convection to the gas phase (if the gas and particles are not
assumed to be in thermal equilibrium),

The computer codes were additionally checked by comparison of
_results computed for simple test cases with results presented in
Field et al.l6 The first problem considered is that of a combustor
with cold black walls in which the rate of heat generation by chemical
reaction is constant (i.e., temperature-independent), convective losses
are absent, and scattering of radiation neglected. The temperature
distribution is computed by RATREQ and DIFFEQ and compared in Fig. 5.5
with that computed by the no-scattering solution of Usiskin and
Sparrow64 (and presented by Field et al.lG). These results show
that the discrete ordinates solution (of RATREQ) is in excellent

agreement with the solution.of Usiskin and Sparrow, with a maximum
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Fig. 5.5. Comparison of the temperature distribution computed by the

discrete ordinates method (RATREQ) and the diffusion approxi-
mation (DIFFEQ) to result obtained by the solution of
Usiskin and Sparrow for a non-scattering medium bounded

by cold, non-reflecting walls. The rate of heat generation
H is uniform and independent of temperature.
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Fig. 5.6. Comparison of temperature distributions computed by the dis-
crete ordinates met&gd and by the diffusion approximation to
a two-flux solution™" for a one-metar thick medium with a

constant rate of heat generation. The medium is bounded by
cold, non-reflecting walls.
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difference in computed temperature of roughly 10 K (i.e., < 17),

The diffusion approximation result (of DIFFEQ) differs by a maximum

of 60 K from the other two solutions (i.e., < 4%). A second test
problem is considered which is identical to the first problem, except
that scattering is present. Here, the solution of Usiskin and Sparrow

is not applicable, and the temperature distributioms computed by RATREQ
and DIFFEQ are compared with the two-flux solution of Schuster and
Hammaker26 (presented in Reference 16). This comparison is shown

in Fig. 5.6 and indicates a good agreement of the results computed by the
various methods.

5.7.2 Comparison of Diffusion and Discrete Ordinates Results

A large number of calculations were performed by RATREQ and
DIFFEQ to compare the particle temperature and integrated intensity
distributions computed by the discrete ordinates method and the diffusion
approximation and to test the effects of various parametérs on these
results. All calculations were performed with the temperature-dependent
heat generation rate H given by Eq. (5.15); and the majority of the
calculations are based on the assumption that the particle an& gas
phases are in thermal equilibrium (i.e., the inter-species cénvection
term Qcp vanishes).

The particle temperature and integrated intensity distributioums
calculated by the discrete ordinates method and the diffusion approxi-
mation for a one-meter thick medium (gt = 2.234) bounded by cold, non=-
reflecting walls are shown in Fig. 5.7. The two methods give nearly

the same temperature and integrated intensity at the system boundaries,



122

2300 -

2200 =

2100 =

2000 =

PARTICLE TEMPERATURE (K)

w=0.269
ISOTROPIC SCATTERING

— TEMPERATURE SAME AS FIG. 5.2

w=e INTEGRATED INTENSITY

DIFFEQ

oo D D L en ey,
- -

RATREQ

-

/’
800 |- 7 - ‘\,\\\ - 300
F ~
700 ¥~ Y4200
| | | i
0.0 0.2 0.4 0.6 0.8 1.O
POSITION {m)
Fig. 5.7. Comparison of the particle temperature and integrated in-

tensity distributions computed by RATREQ and DIFFEQ for a
one-meter thick system with the temperature-dependent heat
generation rate. TI'Zle computed radiation 1ea12cage at each
wall is 102.0 W cm “ (RATREQ) and 94.8 W cm “ (DIFFEQ).
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with the error introduced by the diffusion approximation increasing to
a maximum at the center of the medium. The maximum difference in
temperature is approximately 5%, while the maximum error in the inte-
grated intensity is considerably larger (roughly 20%). The computed
radiation leakage at each wall is also shown with Fig. 5.7, and the
results agree to within 8Z.

The same comparisons are made for a two-meter thick system
(Et = 4,468) in Fig. 5.8. Again the agreement between the discrete
ordinates and diffusion results is best at the system boundaries,
with a maximum difference in temperature (at the center) of 3%, a
maximum difference in integrated intensity of 6%, and a difference in
the radiant leakage from each wall of 4%. The increase in system size
improves the agreement between the two solutions because of the de-
creased anisotropy of the radiation intensity associated with larger
systems. This increases the validity of the %; approximation which is
used to derive the diffusion equation.

It should be noted that the only errors introduced by the discrete
ordinates solution of the equation of transfer result from the spatial
and angular discretizations. However, if the solution is fully con-
verged with respect to the spatial and angular grid sizes; the discrete
ordinates solution is exact. The discrete ordinates results are there-
fore inherently more accurate than the diffusion approximation results,
and the effects of various parameters on the computed temperature dis-

tributions are best tested using the discrete ordinates model.
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5.7.3 Effect of Scattering

The effect of scattering on the computed particle temperature distri-
bution is tested using RATREQ. First, scattering is assumed isotropic,
and a number of temperature profiles are computed for a one-meter thick
suspension based on different assumed values of the refractive index of
the char particles (i.e., different scattering efficiencies and single
scatter albedos). These results are then compared with a case in which
scattering is neglected entirely and a case in which scattering is
anisotropic. These results are shown in Fig. 5.9 and indicate that
increasing the scattering albedo causes an increase of the particle
temperature at every point In the medium, as well as increasing
slightly the curvature of the temperature profile. This may be ex-
plained by the fact that scattering of radiation contributes to the
source term (i.e., the right side) of the equation of tragsfer. The
increase of the source term céuses an increase in the radiation intensity,
and congequently an increase in particle temperature. The maximum
difference in computed temperature between the cases in which scattering
is most significant (i.e., the highest refractive index) and scattering
is neglected is approximately 120 K, which represents a difference of
roughly 5Z. |

The effect of the anisotropy of scatter is to raise the overall
temperature profile. This increase is caused by the predominance of
backﬁard scattering from the large, diffusely reflecting coal and char
particles. The backward scattering decreases the leakage of radiant
energy at the walls, since a larger fraction of the radiation propa-

gating away from the center of the medium is redirected back towards
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Fig. 5.9. Effect of scattering on the particle temperature dis-

tribution - (a) no scattering; (b) m=1.5(1-1i0.1),
w=0.125, isotropic scattering; (c) m=1.93(1-1i0.53),
w=0.269, isotropic scattering; (d) same as c, aniso-
tropic scattering; (e) m=3.0(1-11.0), w=0.514, iso-
tropic scattering.
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the center than is the case with isotropic scattering. The decreased
radiation leakage leads to an increased.radiation intensity throughout
the system and consequently an increase in temperature.

The effect of the anisotropy of scattering on the angular depen-
+dence of the radiation intensity is shown in Fig. 5.10. The intensity
is shown as a function of y at two positions in a one-meter thick
suspension (the boundary and the center). The anisotropy is seen to
increase the intensity distribution for all values of y, with
the greater shift occurring at the center of the medium,

5.7.4 Effect of Boundary Conditions

The effect of the assumed temperature éﬁd reflectivity of the
walls bounding a one-meter thick suspension on the temperature distri-
bution computed by RATREQ is illustrated in Fig. 5.11; the wall tempera-
ture is increased from O K to 1600 K, and the reflectivity is varied
from 0 to 0.2. The increase of either the wall temperature or re-
flectivity causes an increase of the particle temperature at every
point in the medium. 8ince the walls emit radiant energy at a rate
proportional to the fourth power of their temperature, an increase
in wall temperature increases significantly the intemnsity incident
on the suspension from the walls, which causes the increase in particle
temperature. Similarly, an increase of the wall reflectivity causes
a larger fraction of the radiant energy incident on the walls to
be returned to the medium, again yiélding higher temperatures,
Interestingly, the increase of the particle temperature produces an

increase in the rate of heat generation by chemical reactiomn, which
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particle temperature distributiom - (a) Tw=0’ pw=0,
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necessitates an increase of the radiation leakage rate from the
medium (to maintain the energy balance of the entire system). There-
fore, the increase of the wall temperature or reflectivity also in-
creases the radiant heat loss from the medium. The computed radiant
losses are given with Fig. 5.11 for the various conditions of wall
temperature and reflectivity.

The effect of assuming the two walls surrounding the medium to
have different temperatures and reflectivities 1is also shown in
Fig. 5.11. As expected, the maximum temperature in this case occurs at
a point closer to the hotter and more reflective wall. It should also
be noted that the radiation leakage is greater at the cooler wall,
gince that wall neither emits any radiation towards the medium nor
reflects any incident radiation, and thus all the radiant enmergy inci-
dent on the wall is lost by leakage.

5.7.5 Effeet of Particle Size

The particle temperature distribution was computed by RATREQ for
50 um particles and compared with temperaturé distributions computed
for 25 um particles based on the same particle bulk density pé, the
same particle number density N, and the same particle surface area
per unit volume Sv' These results are shown in Fig. 5.12.

The temperature distribution for the 25 um particles is seen
to be much higher than that of the 50 um particles when the comparison
is based on equal bulk densities. Even though the same amount of
fuel mass is present per unit volume, the surface area per unit volume

is much larger for the smaller 25 um particles. Since the particle
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surface is the site of the heterogeneous chemical reaction of the
particles, the smaller particles possess greater reaction surface area
and consequently a larger heat generation rate per unit volume. The
increased rate of heat generation leads to the greatly increased
temperature of the smaller particles. The opposite is true when the
comparison of the temperatures of the two particle sizes is based on
the saﬁe particle number density. 1In this case, it is the larger
particles which are characterized by a greater surface area per unit
volume, a larger volumetric heat generation rate, and a higher tempera-
ture, Finally, thé comparison based on equal values of the particle
surface area per unit volume indicate the smaller‘Particles attain
higher temperatures. This is explained by the fact that the diffusional
rate coefficient Kd (which appears in the expression for the particle
burning rate rp) is inversely proportional to particle size, and

hence the reaction rate of large particles is more limited by the
diffusion of oxygen to the particle surface. The decreased particle
burning rate causes a decrease of the heat generation rate and the
computed temperatures for the larger particles.

5.7.6 Effect of Convection to Gas Phase

The effect of assuming a gas temperature which is not equal to
the particle temperature at each point in the system is shown in
Fig. 5.13. The computed particle temperature distributions corresponding
to two assumed values of a uniform gas temperature distribution [Tg(E) =
1800 K, and Tg(g) = 2200 K] are compared to the particle temperature

distribution corresponding to thermal equilibrium between the two
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phases [Tg(E) = TP(E)]. The comparison is performed for a one-meter
thick suspension for two different rates of heat generation [H(T) = Hl(T)
and H(T) = ZHl(T)]. The heat generation function Hl is the same

as that shown in Fig. 5.2, and the thermal conductivity of the gas was
gzeumed bo be 8,568 x 10 Fegt B S .ak temperature of 1600 K.

The assumed gas temperatures of 1800 XK and 2200 K are seen to
vield a drastically different particle temperature distribution from
that computed in the thermal equilibrium case. For an assumed gas
temperature of 1800 K, the computed particle temperature at any point
in the medium differs by less than 40 K from the assumed gas temperature
(for H = Hl), and by less than 90 K (for H = ZHI)' For a gas
temperature of 2200 K, the particle temperature differs by a maximum
of 40 K from the gas temperature (for H = Hl),.and by roughly 100 K
(for H = ZHl). Thus the maximum difference in temperature between the
two phases increases slightly with an increase in the assumed gas
temperature, particularly for large rates of heat generation. However,
this temperature difference is limited by the increased thermal con-
ductivity of the gas phase at elevated temperatures, which leads to
larger rates of inter-species convection heat transfer, thereby off-
setting the thermal disequilibrium between the two phases. Therefore,
the gas phase is an effective heat sink which prevents the particle
temperature from deviating greatly from its own. Consequently, the

assumption of thermal equilibrium between the two phases is largely

justified.
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Since the gas phase energy balance equation is not considered
in this study, no provision is made for transfer of the heat gained
(or lost} by the gas phase by convection from the solid phase. This
is tantamount to the assumption that the gas phase 1is characterized
by an infinite heat capacity and is thus able to absorb or release
any amount of heat without a change in temperature. This assumption
has also been made by Essenhigh and Csaba17 in their calculation of
the particle temperature in coal suspensions.

5.7.7 Effect of Optical Thickness

It has been shown in Sections 5.4 and 5.5 that for a given optical
thickness of the medium, the simultaneous seclution of the equation
of transfer and the particle energy balance (for the intensity and
temperature distributions) is independent of the actual system thick-
ness xt-and the particle bulk density pp. The sole effect of changing
either of these parameters is to change the optical thickness of the
medium, and therefore their individual effects on the computed tempera-
ture distributions are not considered. The effect of varying the optical
thickness on the temperature distribution is shown in Fig. 5.14. It can
be seen that doubling the optical thickness causes a considerable in-
crease in particle temperature, as well as a somewhat smaller spatial
temperature variation. The temperature increase for the larger system
is a result of the decrease in the surface area available for radiation
leakage relative to the volume of the medium.

An interesting behavior of the particle temperature is observed

if the maximum temperature attained by the particles (i.e., the
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temperature at the center of the suspension) is plotted as a function

of the optical thickness of the medium. The behavior is best illus-
trated by curve (a) in Fig. 5.15, for which the gas and particle
temperatures are equal (i.e., particles do not gain or lose energy

by convection) and the walls are cold and non-reflecting (i.e., no
radiation is incident on the medium at the boundaries). The maximum
particle temperature is seen to be zero for values of the system optical
thickness below a critical value Ecr' As the system size passes through
the critical value, the maximum temperature changes discontinuously
(i.e., exhibits a bifurcation) to a non-zero value. The medium ignites
only for system optical thicknesses greater than Ecr' For thicknesses
smaller than Ecr’ non-zero temperature (and intensity) distributions
yield radiant heat losses by leakage through the walls that exceed

the energy which is generated by chemical reaction. This excess of
leakage over the heat production forces the system temperature to an
equilibrium value of zero (for which both the leakage and heat gene-
ration rates are equal to zero).

The discontinuous change of the maximum temperature with optical
thickness is also observed when the heat generation rate is tripled
[curve (b) of Fig. 5715]. This increase in heat production is seen to
cause both a decrease in the critical optical thickness and a signi-
ficant increase of the maximum particle temperature at any given
optical thickness,

The curves (c¢) and (d) ofIFig. 5.15 illustrate the effeet of

assuming a uniform gas temperature distribution different from that
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of the particle phase. The curves for this unrealistic situation do
not exhibit the ignition behavior which characterizes curves (a) and
(b). The insensitivity of the maximum temperature to the optical
thickness (when the two phases are not in thermal equilibrium) is a
result of the heat transferred by convection between the two phases.
The particle temperature cannot deviate greatly from the gas temperature
because the effectiveness of the gas as a heat source or sink is roughly
proportional to the temperature difference between the two phases.
Therefore, even for optically thin suspensiens in which the leakage
exceeds the chemical'heat generation, and for which the particle
temperature ﬁould consequently be expected to decrease, the convective
gains from the gas phase prevent the particle temperature from falling
to zero. Similarly, for very large systems, in which the particle
temperature would tend to increase, a particle temperature is maintzined
close to the assumed gas temperature by convection of heat to the gas
phase.

The effect of the activation energy on the variation of the
maximum temperature with optical thickness is shown in Fig. 5.16. A
small variation of the activation energy is seen to yield a con~-
siderable change in the critical optical thickness, with the critical
value decreasing for the smaller activation energy. However, for
optical thicknesses greater than the critical values, the effect of
the different activation energies on the maximum temperature is seen
to be minimal due to the predominance of the diffusional control

mechanism at high temperatures. The variation of gcr with the acti-
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vation energy E is caused by the increased rate of heat generation at
any given temperature with decreased values of E. This greater heat
production rate (for given temperature and intensity distributions)
allows optically thinmer systems to ignite.

The effect of the assumed wall temperature on the variation of
the maximum temperature with optical thickness is illustrated in
Fig., 5.17. Curve (a) in this figure is identical to curve (a) of
Fig. 5.15 and represents the observed variation for cold, nomn-reflecting
walls. The wall temperature is progressively increased in curves (a)
through (d), while the reflectivity remains zero. An increase in
wall temperature to 1000 K [curve (b)] yields particle temperatures
equal to tﬁe wall temperature for system thicknesses below a critical
value which is smaller than the critical value observed with cold walls.
Further increases in the wall temperature cause both the critical
thickness and the temperature jump at the critical thickness to
decrease [curves (c¢) to (f)]. At a wall temperature of 1600 K, the
bifurcation of the maximum temperature is not observed, and the par-
ticles are seen to ignite regardless of the system optical thickness.
The decrease in the critical thickness with increasing wall temperature
is illustrated in Fig. 5.18 for different wall reflectivities. This
decrease of gcr may be explained by the fact that the emission from
the walls is a source of radiation to the reacting system. This in-
cident radiation causes an increase of the particle temperature through-
out the medium and, consequently, an increase of the heat generation

rate, thereby allowing optically thinner systems to ignite.
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The effect of varying the wall reflectivity on the maximum
temperature vs. optical thickness curves is illustrated in Fig. 5.19
for the case of cold walls. The increase of wall reflectivity is
seen to have two effects, raising the maximum temperature for a
given optical thickness and decreasing the critical optical thickness.
The variation of the critical optical thickness with wall reflectivity
is shown in Fig. 5.20 and is seen to be nearly linear for several
assumed wall temperatures. The decreased critical thickness for in-
creasing reflectivity is caused by the decreased fraction of radiatiomn
incident on the walls tﬁat is lost by leakage, which allows smaller
systems-to ignite.

A comparison of the ignition curves obtained from the discrete
ordinates solution and the diffusion approximation of the equation of
transfer is shown in Fig. 5.21., The maximum particle temperature in a
medium bounded by cold, non-reflecting walls is shown in each case as
a function of the optical thickness. The critical thickness is seen
to be smaller by roughly 10%Z for the discrete ordinates solution.

For any specified optical thickness, the discrete ordinates solution
yields a higher maximum temperature than the diffusion approximation
(with a difference in maximum temperature of approximately 10% for

£, = 2, and 1.5% for Ee = 5). As expected, the error (in maximum
temperature) due to the diffusion approximation decreases dramatically
with increasing optical thickness of the suspension.

It should be noted that the actual numerical values of the many

results presented in this chapter are of limited significance, since
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they are specific to the simplified energy balance and heat generation
models developed in this chapter. However, valuable insight was
gained by examination of the trends exhibited by these results. A
number of genefalizations of these simplified models are proposed in
the following chapter, together with a brief summary of this study and

the associated conclusions.
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6.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.1 Summary and Conclusions

The purpose of this study was two-fold: to formulate the
general theory of the radiative transfer problem in chemically
reacting particle-gas mixtures, and to apply the solution of the
equation of transfer by techniques developed in neutron transport
theory to the calculation of the temperature and radiation intensity
distributions in pulverized coal suspensions. A number of numerical
gsolution methods for the radiative transfer equation have been reviewed.
In particular, the discrete ordinates method and the diffusion approxi-
mation were used to calculate the radiatiom transport for a model of
combustion in particle suspensions. The discrete ordinates method has
been applied in this study for the first time to the solution of the
radiative transfer equétion in a medium containing a temperature-
dependent‘heat source distribution. The combination of a numerical
discrete ordinates method with an iterative solution procedure allows
the extension of this solution algorithm to the calculation of the
radiant energy transfer in media containing energy sources or sinks
with an arbitrary temperature dependence.

Simplifications of the energy balance on a pulverized coal sus-
pension and of the geometry of the suspension allowed consideration
of a numerical example that exhibited many important features of
realistic problems (e.g., non-linear enmergy production rate, multiple
anisotropic scattering of thermal radiation, bounding wails which

reflect and emit radiation). This numerical example was used to
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study the effects of the numercus problem parameters on the com-
puted temperature and intensity distributicns and to compare results
obtained from the discrete ordinates and the diffusion approximation
solutions of the radiative transfer equatiom.

The diffusion approximation was shown to yield pumerical results
in good agreement with the more accurate results obtained by the
discrete ordinates method. The error in integrated intensity was
found to be somewhat larger than the error in temperature for a
given optical thickness of the pulverized coal suspension. As
expected, the accuracy of the diffusion approximation improved with
increasing optical thickness due to the decreased anisotropy of the
radiatiﬁn intensity in optically thick suspensions, which are
characterized by a reduced spatial variation of the intemsity. There-
fore, if solutions are sought in media whose optical thickness &t 2z 3,
the diﬁfusion approximation can be used to compute the radiation
transport with little error.

In the absence of all heat loss modes other than radiatiocm, coal
dust suspensions were found to ignite only if their optical thickness
exceeds a critical value. This critical optical thickness depends
on the temperature and reflectivity of the walls bounding the sus-
pension and is very sensitive to the parameters of the heat generation
model. Steady state solutions for the temperature and intensity
distributions were found to exist for any system optical thickness,
and the critical optical thickness represented a point at which the

steady state solutions increased discontinuously to a large value.
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This same behavior has been observed with gaseous combustible mix-
tures characterized by an Arrhenius heat production rate and energy

. losses by conductive heat transfer only.65 Although the ignition be-
havior observed in this study was based on a simplified energy pro-
duction rate, the results are useful because a minimum explosive
particle concentration can be inferred given the system thickness

and values of the wall temperature and reflectivity.

The effect of the assumed optical properties of the coal
particles on the computed temperature distribution was found to be
small, although not negligible., The assumption of isotropic scattering
was shown to yield little error in either the angular dependence of
the radiation intensity at a given point or the computed temperature
distribution. All results were obtained for particles in the so-
called large particle limit, for which the scattering phase function
is backward peaked (since diffracted radiation is treated as being
unscattered). For very small coal and char particles (with size
parameters § 5), the diffraction angle increases, and diffraction can
no lenger be treated as purely forward scattering. The scattering
phase function becomes forward peaked and must be determined from
Mie theory. The effect of Mie scattering by these small particles on
the computed temperature and intensity distributions was not investi-
gated in this work.

The effects of particle size and the boundary conditions on the
particle temperature distribution and the radiant energy loss from

the suspension was found to be significant. Smaller particles and
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hotter, more highly reflective walls yielded higher temperatures
and greater radiation leakage rates at the boundaries. Finally,
most calculations in this study were based on the assumption of
thermal equilibrium between the solid and gas phases. If the gas
phase temperature distribution was assumed a priori, the particle
temperature was found to converge to a value nearly equal to the

gas temperature at every point in the suspension.

6.2. Recommendations for Further Study

It is apparent that many generalizations can be made to the
simple model of radiant heat transfer in pulverized coal clouds
investigated in Chapter 5 of this work. Consideration of polydisperse
particle size distributions and a generalized set of coal reactions
(i.e., devolatilization, moisture vaporization, and char oxldation)
can be incorporated into the present model, and the solution
alporithm would remain unchanged. Other generalizations can be in-
cluded at the expense of many additional coupled equations that must
again be solved by iterative, numerical techniques. The most impor-
tant of these generalizations are the incorporation of a description
for the consumption of coal particles and the calculation of the gas
phase temperature distribution by consideration of a separate energy
balance for the gaseous species.

The additional equations which must be solved simultaneously
with the equations of the present model are the gas and particle con-

tinuity equations, and the gas energy balance equation. Clearly,
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steady state conditions can exist in a reacting ccal dust cloud

only if the fuel and oxidizer that are consumed are replaced by their
continucus introduction into the reacting system at a finite velocity.
Since fuel and oxidizer are consumed along the flow direction (and
product gases are formed), the particle and gas concentrations, as
well as the particle diameter and density vary along this direction.
The particle and gas continuity equations are needed to compute this
variation of the particle and gas concentratioﬁs along the flow
direction. The gas phase energy balance would allow for heat trams-—
fer by conduction and the energy release resulting from gas phase
chémical reactions. Both the gas and solid phase energy balances

can be simplified greatly by assuming that the flow is low-speed
(laminar), and thus the convective transport of kinetic energy is
-negligible (as was mentioned in Chapter 1). The momentum equations
for the two phases can be eliminated by assuming the phases to be in
dynamic equilibrium and by neglecting pressure gradients, body forces,
and viscous dissipation.

The variation of the particle conceuntration and particle diameter
along the flow direction causes the rate of heat generation and the
radiation properties to be functions of position. Consequently, the
temperature and intensity distributions are functioms of at least two
spatial coordinates (one along the flow direction, the other normal to
it), Therefore, the equation of transfer, the continuity equations,
and the energy equations must be solved in two-dimensional geometry.

Since the discrete ordinates solution of the equation of transfer
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requires large computer storage capacity and computational effort
in multi~-dimensional geometries, it is recommended that the diffusion
approximation be used to compute the transport of radiation either in
x-y plane géometry or in r-z cylindrical geometry.

The improvement of the calculation of the radiation trans-
port in coal dust suspensions is heavily dependent on advances in
the experimental and theoretical evaluatiﬁn of the radiation properties
of the many components present in pulverized coal flames. For example,
additional data are needed for the optical properties of ash particles,
particularly at infrared wavelengths. ‘Furthermore, more experimental
evideﬁce is needed regarding the formation of soot in pulverized coal
flames, as the emission of radiation by soot particles is directly
proportional to their mass concentration. Finally, data for the absorp-
tion coefficient of the various gaseous species as a function of
frequency are needed to assess accurately the contribution by com-
bustion gases to radiant absorption and emission. A knowledge of the
radiation properties as a function of frequency (and position) in
coal suspensions allows calculation of gaseous (banded) radiationm,
and radiation from non-gray particles by solving the multi-frequency

range formulation of the equation of tramnsfer.
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9.0 APPENDICES

9.1 RATREQ Computer Code

The computer program RATREQ computes the particle temperature,
the radiation intensity, and the directiocnally integrated intensity
distributions in a mono-disperse, plane-symmetric suspemnsion of coal
" and char particles. The numerical discrete ordinates method dis-
cussed in Section 4.2.2 of this work is used to solve the gray, LTE
form of the radiative transfer equation. This equation is solved
simultaneously with the particle energy balance equation, Eg. (5.29),
by the iterative procedure described in Section 5.5. Equation (5.34)
is used to calculate the particle temperature distribution corresponding
to the radiation intensity distribution computed in each iteratiom.
The gas phase temperature profile must be assumed a priori (or may
be taken as equal to that of the solid phase), Allowance is made for
either isotropic or anisotropic scattering. With isotropic scattering,
the scattering matrix p(uj+ui) [see Eq. (4.9)] is unity for all pairs
of uj and My while for anisotropic scattering, the scattering matrix
ig computed by the subroutine PHASE by the numerical integration of
the scattering phase function over the azimuthal angle [using Eq. (5.43)].
A detailed description of the input parameters to RATREQ is given with
the preogram listing.

9.2 DIFFEQ Computer Code

The DIFFEQ computer program calculates the particle temperature

and the integrated intensity distributions by the simultaneous solution
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of the radiation diffusion equation [Eq. (5.45)] and the particle
energy balance [Eq. (5.48)]. The iterative solution procedure is
discussed in Section 5.6, while the solution of the diffusion

equation for a specified thermal emission source term is described

in Section.4.4. The subroutine INNER solves the tridiagonal system

of equations [Eq. (4.73)] for integrated intensity distribution given
the emission source at each mesh point. A direct elimination proce-
dure66 is used to solve this system of equations. The recalculation
of the particle temperature is performed by the basic iteration tech-
nique of Eq. (5.34). Both isotropic and anisotropic scattering can be
accommodated by DIFFEQ by varying the average cosine of the scattering
angle, u*. For isotropic scattering, p* = 0; while for the backward-
peaked phase function of Eq. (3.7), u* = -4/9. Again, the gas tempera-
ture distriBution may either be specified a priori or may be assumed
gqual to the solid phase temperature profile. -The input parameters

to DIFFEQ and further description of the program are given with the

program listing.



CHd*
R TT T
T T2
R T2
Ckekk
CxkEx
Ceexs
Coknk
LT
[ odokk
CHtxs
CHk%k
Cenee
CHesx
[t e
CHaksx
Ckkkk
ok
Ckak
ook
Caskx
CHkEx
XTI
Ch¥sxk
T3
2T
C*xxk
C ®kokk
Cenkk
CRnksk
Coexs
W TTT
Cakkd
noEREE
[ #xek
Coewkex
CxRE
Cxx%x
Chkdk
CA%xk
CAkEk
SRk
C Xk k%
Coakkk
CEERE
C #HH%
etk
Cretk
ChEde
Chukk
C Rksk
C ok
C*kx
CoHkds
Chksk
R TT
C okdok
Cohkkn

PROGRAM RATREQ

PURPOSE

TO COMPUTE THE RADIATION INTENSITY. THE DIRECTIONALLY INTEGRATEOD
INTENSITY, AND THE PARTICLE TEMPERATURE DISTRIBUTIONS IM A MOND-
OISPERSE, PLANE~SYMMETRIC PULVERIZED COAL SUSPEMSION. THE SUSPEN-
SION GENERATES HEAT BY CHEMICAL REACTION AND IS BOUNDED BY IMFINITE,
PARALLEL, FLAT WALLS.

PROCEDURE

THE GRAY, LTE FORM OF THE EQUATION OF TRANSFER 15 SOLVED BY A
NUMERICAL DISCRETE ORDINATES METHOD SIMULTANEQUSLY WITH AN ENERGY
BALANCE EQUATION FOR THE PARTICLES. INITIALLY A SOURCE TERM
(SCATTERING+THERMAL EMISSION) IS ASSUMED. THE EQUATION OF TRANSFER
1S SOLVED FOR THE RADTATICN INTENSITY BASED ON THIS IMITIAL SOURCE
GUESS. THIS INTENSITY IS THEN SUBSTITUTED INTO THE ENERGY BALANCE,
AND THE PARTICLE TEMPERATURE DISTRIBUTION IS COMPJUTED BY A BASIC
ITERATION PROCEDURE. THE COMPUTED TEMPERATURE AND INTENSITY
DISTRIBUTIONS CAN BE USED TO UPDATE THE SOURCE TERM. AND THE
1TERATIVE PROCEDURE IS REPEATED UNTIL CONVERGENCE IS ACHIEVED.

INPUT DATA

NSCAT = 1 FOR ISOTROPIC SCATTERING
= 2 FOR ANISOTROPIC SCATTERING
NCOND = 1 IF THE SOLID AND GAS PHASES ARE ASSUMED TO BE IN
. THERMAL EQUILIBRIUM
= 2 IF THE GAS PHASE TEMPERATURE ODISTRIPUTION [S ASSUMED
A PRIORI
NP = NUMEER OF OI SCRETE MESH POINTS
ND = NUMBER OF DIRECTION COSINES (DISCRETE ORDINATES)
uwir = DIRECTION COSINES. I=1.ND
All) = WEIGHTS. 1=1.ND
NDZ = QUADRATURE SIZE USED TO PERFURM THE AZIMUTHAL INTEGRATICN
; OF THE SCATTERING PHASE FUNCTION (NECDED ONLY IF NSCAT=2}
uzitly = ORDINATES. I=1,NDZ
AZ(CT) = WEIGHTS. I=1.NDZ
EPSE = TEMPERATURE CONVERGENCE CRITERION
11vAX = MAXIMUM NUMBER OF SOURCE TERM- ITERATIJNS
JIMAX = MAXIMUM NUMBER OF TEMPERATURE ITERATIONS
oe = PARTICLE DIAMETER (CM)
FEXT = EXTINCTION EFFICIENCY
FSCAT = SCATTERING EFFICIENCY
DIv = THICKNESS OF SUSPENSICN (CM)
TWl = WALL TEMPERATURE AT X=0 (K)
TwW2 = WALL TEMPERATURE AT X=CIM (K}
RWl = WALL REFLECTIVITY AT X=0
RW2 = WALL REFLECTIVITY AT X=DIM
RH1ID = PARTICLE BULK CENSITY (G/CM*»3)
RHIP = NENSITY OF COAL PARTICLES (G/CM#*%2)
PGAS = OXYGEN (D2) PARTIAL PRESSURE [ATHMI
T6LJ) = ASSUMED GAS TEMPERATURE PROFILE (NEEDED OMLY 1IF NCOND=l).
J=1.NP (K}
PHI =1 FOR C + 02 = C0O2
= 2 FOR C + 0.5 02 = (0O
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Cokxkxk ENTHL = SPECIFIC ENERGY RELEASE FOR PHI=1 (CAL/G)

ChEEE ENTHZ = SPECIFIC ENERGY RELEASE FOR PHI=2 (CAL/G)

C¥*Es EACT = ACTIVATION EMNERGY OF HETEROGENEOUS REACTION (CAL/MOL)
Chdskn EE = PRE-EXPONENTIAL FACTOR (G/{CM**2%S#ATM))

Cxtdx Dco = GAS DIFFUSIVITY AT TG=TS0 {CM**2/G)

CHkkk THCO = GAS THERMAL CONDUCTIVITY AT TG=TS50 {W/{CM*K}!}

C vk FRAC = FACTOR USFD TO NORMALIZE THE HEAT GENERATIUN RATE
CHkkk

C#*x* OUTPUT QUANTITIES

CoFxse

CkexR Q(J.1) = CONVERGED SOURCE DISTRIBUTIGM: J=14NPs I=1eND (W/CME%3)
CXkkk R(J,1) = INTENSITY DISTRIBUTION., J=1,NP. I[=1,HD (Ww/CM¥*2)

CHkoxk FLIX(J) = DIRECTIONALLY INTEGRATED INTENSITY DISTRIBUTION, J=l.P
C ek (W/CM*%2)

CHvex T(J) = PARTICLE TEMPERATURE DISTRIBUTION, J=1,NP (K}

C#dxk RLIADL = RADIANT ENERGY LEAKAGE AT X=0 (W/CM%%2)

C ok RLJIAD2 = RADIANT ENERGY LEAKAGE AT X=DIM (W/CM**2}

C #okxk CaND = ENERGY TRANSFERRED 8Y CONDUCTIOM TO GAS PHASE (W/CM¥*2)
C Aok GEN = ENERGY GENERATED BY CHEMICAL REACTION (W/CH*#*2)

C#kkk DIFF = RLOADL+RLOAD2+COND-GEN (W/CM*%2); THIS QUANTITY EQUALS
CRkEx . ZERO WHEN THE ENERGY BALANCE ON THE ENTIRE PARTICLE
Cddkx SUSPENSION IS SATISFIED. '

R T2 20

C#*%x SUBROUTINES REQUIRED

Chere

CoRERE PHASE - COMPUTES THE SCATTERING MATRIX IF NSCAT=2

Cr*ix TIC - PERFORMS THE ITERATIVE CALCULATION OF THE PARTVICLE TEM-
CH¥es PERATURE PROFILE IF NCOND=2

C ok

IMPLICIT REAL*8 (A-H.0-21)
DIMENSION O(51,17)4R(51,17)
DIMENSION T(51),TI(51),TS(51).FLUX{S51)
DIMENSION X{L17)+XH{L7) XX (17)
COMMON /TC/ XI(51).S{51),TGIS1) ,BND,CND,OND+EPSI2,GEN.COMD,JIMAX,
CNP . :
COMMUN /PHAZ PUL17+170.UdLT)JALLT)FULT) /UZ(64) s AZL64) NDNDZ
Cevex :
Cxexx ASSIGN VALUES OF INPUT VARIABLES
CEkks
NSCAT=1
NCOND=1
NP=11
ND=8
EPSI=1.00
11MAX=100
JIMAX=40
OP=50.D-4
DIM=1.32
NACC=1
NI=5
BOL=5.6693D-12
DO 1 K=1.NP
1 TG{K)=2.2D3
READ (5,1000) EE.EACT
READ {5.10001 FEXT.FSCAT
READ (5,1100) TWl,EWL.RWL
READ (5.1120) TW2,EW2,RW2
READ (5,1100) PGAS,RHOD,RHIP
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Covkk

Chnts
Coaamks
Crkkx

CExEE
C ok
Ceskn

READ (5,1100) TS0.DCO.THCO
READ (5.1200) ENTH1 .ENTHZ ,PHI +FRAC
READ (5.1000) (U{I)}.A([).1I=1.ND)

COMPUTE MISCELLANEOUS PARAMETERS

PI=DARCOS(~1.00)

NPM=NP-1

NELX=DIM/NPM

NOH=NO/ 2

NOHP=NIH+1

SW=6.D0/({DP*RHOP)
SIGA=0.25D0%(FEXT-FSCAT ) *RHOD*SW
ALB=FSCAT/FEXT

TAUD=DIM*S IGA*FEXT/ {FEXT~FSCAT!
DEL=TAUD/NPM

TREF=EACT/1.987D0
PHIREF=BOL*TREF ¥%¢
EPSI2=EPSI/TREF
DELH=ENTHL*(2.00/PHI-1.00)+ENTH2%*(2.00-2.00/PHI}
EMIS1I=EWL*BCL*TWL**4/P1
EMISZ=EW2*BOL 2TW2%*4/P]

PRINT INPUT PARAMETERS

WRITE (4.,60001

WRITE (46.,3000) DIM,DP

WRITE (5,3100) FEXT,FSCAT.RHOD,5W.RHOP

WRITE (643200} ALB.TAUD.SIGA

WRITE (6,3300) TWL,EWL.RW1.TW2.EW2,RW2

WRITE (6.3350} EE

WRITE (643400} EACT.DELH.PGAS

WRITE (6,3410) DOCO.THCO

WRITE (6+3500) NP«ND+EPSI I IMAX «JIMAX

WRITE {6.3600)

WRITE (56,3700} (UCT).A{1).T=1+4DH)

WRITE (6,50001

WRITE (6,2700) ENTH1.ENTHZ.PHI,DELH,BOL.EPSI2Z
WRITE (6+2000) TSO.TREF,PHIREF,EMISL,EM152,FRAC

COMPUTE DIMENSIONLESS CONSTANTS NEEDED FOR TEMPERATURE [TERATION

BR=2.40D1*PHI*DCO*TREF*40.7500/ ([ 2.D0*T S0 }**0.,7500*T50%82.0600%0P)
CC=6.D0*PGAS*DELH*4 ., 18400 %R HOD*FRAC/ {DP*RHOP}
DO=1.201*THCO*RHDD*TREF ** 1. 7500/ (RHOP*DP*¥2%(2.D0*T50i**0.7500)
FF=1.00/14.D0%5IGA*PHIREF)

WRITE (6.2000) B88.CC.DD.FF

BND=BB/EE

CND=FF+CC*8B8B

DND=0DD*FF

WRITE (5,2000) BND.CND.DND

N0 5 K=1.NP

TGIK}=TG(K)/TREF

COMPUTE QUANTITIES NEEDED FOR SOURCE ITERATION

<D0 10 I=1.ND

X(1Y=RNEL/U(T)
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Cxdoxx

15
20

Ckbxk
Ckxkx
Cxdde

30

40
50
CRxAk
Cokkkk

Ceese
&0

70

an

99
C*%kk

CHkkk
Cxkkx

100

110

120
¢ Rk
[ 221
Crkxs
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XH{I}=0.5D00%X(1}
XX(I)={1.00-XH(I)}/L1.D0+XH{1))

COMPUTE EXACT KERNEL FORM OF THE SC#TTERING PHASE FUNCT ION

IF (NSLAT.EOQ.1} GO TO 15

NDZ=16

READ (5.,1000) (UZ(I}.AZ(1)sI=1:NDZ)
CALL PHASE

GO TO 30

DO 20 I=1.ND

D0 20 J=1.ND

P(I+J)=1.00

WRITE (6,2300) ((P([+J).,J=1,ND),s1=1,ND}

GUESS AN INITIAL SCURCE DISTRIBUTION AND LEFT BOUNDARY INTENSITY

00 40 K=2.NP

DO 40 I=1.,ND
Q(K,I)=7.5D1

DO 50 I=NODHP,ND
R{1+1)=0.00
1ACC=0

I1=1

FORWARD SWEEP

SUM=0.00

DO 70 I=NDHP.ND

SUMaSUM+AC T} *ULLI*R(1.0)

CURR1=DA8BS(5UMI}

bo 80 1=1,NDH

RILoF)=EMIS1+2.00%RW1*CURRL

D0 90 K=2,NP

0D 90 §=1.NDH

REK T I=RIK=1+IDARXX(I) 4L+ 1 IEX(T)/ (1, 004XH(T)}

BACKWARD SWEEP

SUM=0.00

no 100 I=1.NOH

SUM=SUM+ACT )1 *U( T ) *R(NP. 1}

CURRZ2=DABS({ SUM)

D0 110 I=NOHP,NO

R{NP,I)=EM1S2+2 . 00*RW2*CURR?2

DO 120 K=1.NPM

00 120 I=NDHP.ND
RINP=KsI)=RINP-K+L+I)/XXL I} =QIMP=K+1,1)*X (1 )/ (1.00-XH{I))

COMPUTE THE TEMPERATURE DISTRIBUTICN

WRITE (6.1700) IaACC
WRITE (6,2200) 11
GEN=0.00

COND=0.D0

DD 140 K=1,NP
SUM=0.00

DO 130 (=1.ND
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137 SUM=SUM+ALT)*RE{K. 1)
SIK)=2.00%P[*SUM/{4.00*%PH[REF)
IF (11.EQ.1) XI{K)=5{K)*xD, 2500
140 CONTINJE
GEN=0.D0
CaOND=0.00
[F (NCOND.EQ.2)} GO TO 132
C**x& THERMAL EQUILIBRIUM CASE
DO 131 K=1,NP
00 135 JI=1,J1MAX
AND=XILK)
Z1=(XI{K])+AND ) *%0.750D0
12=DEXPIL1.DO/XIK]])
FACI=CND/(1.00/Z1+8BND%*Z2]
FACZ=OND*Z1*{XI{K)=-AND)
XXI=(S{KI+FACL-FAC2)%*%0.25D0
IF (DABSIXXI-XIIK)).LE.EPSI2Z2} GO TO 128
XTIK) =XX1
135 CONTINUE
138 TIK)=XXI*TREF
Z=1.00
IF {{(K.EQ.L}.ODR.{K.EQ.NP})) Z=0.500
GEN=GEN+Z#FAL]
COND=COND+ Z*FAC2
131 CONTINUE
GO TO 134
Ck%kkd JNTER-SPECIES CONDUCTION CASE
132 catt TIC
DO 133 K=1.NP
TIK¥=XI (K)*TREF
133 CONTINUE
134 DO 136 K=1.NP
TSIK)=T{K]
136 CONTINUE
WRITE {6.2300) {T{K)K=1,NP}
CaEnk
Cx¥** COMPUTE RADIANT LEAKAGE. CONDUCTION LOSSES. AND TOTAL HEAT GENERATICN
g T
GEN=GEN*DELX/FF
COND=CONO*DELX/FF
RLOADLI=2.00%P[*{] .DO-RW1)*CURRL1-PI*EMIS]
RLOADZ=2,.0D%P [*{ 1.00-RH2Z) *C URR2~-PI*EMIS52
SUM=RLOADL+RLOADZ
DIFF=5UM+CCND-GEN
WRITE (6,2000) SUM,LOND.GEN.DIFF
IF (11.EQ.L1} GO TO 160
ETTT
Co#**% CHECK FOR CONVERGENCE OF THE TEMPERATURE DISTRIBUTION
R TT Y
DU 150 K=1,.NP
IF (DABSIT{(K}I-TIIK}}.GT.EPSI) GO TO 155
150 CONTINUE
GO0 7O 2700
CH¥%kk
Cexsk CONVERGENCE ACCELERATION OPTICN
Coaxk
155 IF (NACC.EQ.1) GO TO 10
ACCPAR=DFLGAT(IIMAX]/II
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164

166

169

168
165
[okkkd
C*¥dek
C ki
160

179
180
130

R TEE
Cranx
Caxss

239

210
220
CHeex
Cesxs
Ceess

Cares
1000
1100

DO 167 K=1.NP

IF (TIK}.LE.TIIK)) GO TO 164
CONTINUE

IACC=IACC+1

IF [1ACC.EQ.NI)} GO TO 169

GO TO 160

DO.166 K=1.NP

IF (T{K).GE.TI(K)) GO TO 155
CONTINJE

1ACC=1ACC-1

If (IACC.EQ.-NI) GO TO 169
GO TO 160

DO 168 K=1.,NP
TSIK)=TI{K)I+(T{KI-TL(K) I *ACCP AR
CONT INUE

IACC=0

RECOMPUTE THE SOURCE DISTRIBUTION

11=11+1

IF {11.GT.I11IMAX) GO TO 200
D0 180 K=2.NP
TEMP=0.500%(TS{KI+TSIK-1))
0B88=1{1.00~ALB)*BOL*TEMP%%4/P]
00 180 I=1.ND

S5UM=0.090

DO 170 J=1.ND : .
RMIG=0.500% (R{K+J)+R{K~1,J) }
SUM=SUM+ALJ)*RMID*P{J. 1)
QSCAT=ALB®SUM/2.DO
Q{K.[1=05CAT+08B8

00 190 K=1,NP

TIEK)I=T{K]

GO TO &0

CALCULATE RESULTS FOR THE CCNVERGED TEMPERATURE PROFILE

WRITE (6,2200) 11
00 220 K=1.NP
SUM=0.20

DO 210 I=1.ND
SUM=SUM+AL{ 1 )*R{K.I)
FLUXIK]}=5UM%2,D00%P 1

PRINT RESULTS

WRITE (6.2300) (IO(K+I),1=1.ND}+K=2.NP}
WRITE {6.5000)

WRITE (6.+2300) {((RI{K+I)s1=1+ND}.K=1.NP)
WRITE (6450001

WRITE (6.2400N) {TiK)+K=1:NP}

WRITE (46,5000}

WRITE (6,2400) (FLUX(K) .K=l,NP]

WRITE {6.5000)

WRITE (6+,2000) RLOADL.KLOAUZ, COND,GENJDIFF

FORMAT (2G20.12)
FORMAT (3620.12)
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1200 FORMAT (4G20.12)

2000 FORMAT (6(3X.E12.5))

2200 FORMAT (3X,"ITERATION NO.',13)

2300 FORMAT (8(1X+El4.71})

24N0C FORMAT [5(3X,EL2.5))

3290 FNRMAT (T10,'SYSTEM SIZE =* ,E12.5+" CM'"+/+T 10, *PARTICLE ODIAMLTER =
CT.E12.5.% CMY ,///7])

3100 FORMAT (TLOL'EXTINCTION EFFICIENCY =",E12.5+/+TLO+"'SCATTLERING EFFIL
CCIENCY ="' 4EL2.5¢/+T10+"'PARTICLE MASS LOADING =7,E12.5," G/CM**3",/
CeTLO."SPECIFIC SURFACE OF PARTICLES =',E12.5,' CM*x2/G'./.T10,'PAR
CTICLE DENSITY =',E12.5,"' G/CM*43",////)

3200 FORMAT (TL1O,'SINGLE SCATTER ALBEDO =',FT.4,/,T10,'OPTICAL THICKNES
CS OF SYSTEM (MFP) =',FB.4./,TIN,"ABSORPTION CRCSS SECTIUN (L/CM) =
CY.E12.5.//77)

3300 FORMAT (T10.'LEFT WALL:',6X,"TEMP., ="', FB.2," K'".5X.'EMISSIVITY ="',
CF5.2¢5X"REFLECTIVITY ='",F5.2:,/+T1N.'RIGHT WALL:'" ,SX,*'TEMP, =',F8,
C2+" KY'+SXs'"EMISSIVITY =',F5.2,5%X, 'REFLECTIVITY =',FS5.2,/77/7)

3350 FORMAT (T10,'PRE~EXPCNENTIAL FACTOR =',E12.5+" G/ (CM*22%SKATM] ")

3400 FORMAT (T10.'ACTIVATION ENERGY ='.,E12.5.' CAL/MOL' , /.T10,'SPECIF
CIC ENERGY RELEASE =',El2.5+" CAL/G'".//+yTL10:'GAS PRESSURE ="'",F5.2,!
C ATM' 4 //71)

3410 FORMAT (T10,'GAS PROPERTIES AT 1600 K2'y//,T20.'BINARY DIFFUSION C
COEFF. {02 IN N2} =?',F5.2,*% CM**2/5',/,T20.' THERMAL COND. =',E12.5,
C' W/CMXK',////)

3500 FOPMAT (T10.'NUMERICAL SOLJTION PAFRAMETERS:',//,T20.'NO. OF MESH P
COINTS =',13,/,T20.'NO. OF DISCRETE DIRECTION COSINES ='",13,/.T20,"
CTEMP, CONVERGENCE CRITERION (K) =',EL12.5+/+T20,"MAXINMUM NO. OF QUT
CER ITERATIONS ='.14,/,T20.' MAXIMUM NO. OF TEMP. ITERATIONS ='.13./
c/r/7)

3600 FORMAT (T10,'ANGULAR QUADRATURE SET USED:'.//:,T25,'ORDINATE',T50,"
CWEIGHT',/)

3700 FORMAT (T21,E146.7:.T46.E14.7)

5000 FORMAT (//7/)

6N00 FORMAT ('1')

Catnk
STOP
END
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CokEdk

20
15

10

170

SUBROUTINE TIC .

SUBROUT INE TO COMPUTE THE PARTICLE TEMPERATURE OISTRIBUTICN IF YHE
PARTICLE AND GAS PHASES ARE NOT IN THERMAL EQUILIBRIUM. THE NEWTON -
METHGD IS5 USED TO COMPUTE THE PARTICLE TEMPERATURE AT EACH DISCRETE
MESH PIINT

IMPLICTIT REAL#B [A-H.0-Z)

COMMON /TC/ XI(51).,5(51).T7G(51}.BMDCND,DND+EPSI2:GENCUNO»JIMAX,
CNP

DO 10 K=1,NP

0D 20 Ji=1.JIMAX

Al=XT{K}¥*4

AND=TG{K)

A2=XT{K)+AND

A3=X1{K}-AND

A4=DEXP(1.DO/XI(K})

AS=DND*A2%*0.75D0%A3
A6=BND*A4+1.U0/A2%¥*0. 7530

AT=CND/ &b

11=4.D0%X] (K] #*¢3

12=0OND*{ Az**(,7500+0.7500*%A 3/AZ**0,25D") )
13={0.75D0/ A2*%]1 . 7500+BND*A 4/ AL**0.5D0) #A7/ A6
AXI=XI{K)=~{ AL+AS-AT-S{(KI} /L 21 +Z22-73}

IF (DABSIXXI-XI(K)).LE.EPSIZ) GO TO 15
XIT{K)=XX1

CONTINUE

XE(K)=XX1

Z=1.00

IF (IK.EQ.1}.OR.(K.EQ.NP) ) ZI=0.500
GEN=GEN+Z*AT

CONO=LIND+2%A5

CONT INUE

RETURN

END
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SUBROUTINE PHASE

SUBRDUTINE TO COMPUTE THE EXACT KERNEL FORM., P(U(I)--2U(J))} UF THE SCAT-

TERING PHASE FUNCTION OF A DIFFUSELY-REFLECTING CPAQUE SPHERE.,
PLTHETA) = (B/(3*PI)I*(SINITHETA)-THETA®COS{THETA) )
WHERE THETA IS THE SCATTERING ANGLE.

IMPLICIT REAL*8 {4=-H,0-12)

COMMON /PHAS PL{1717)U(17) JA{LITYFILT7)UZCH4)AZ6%) NUJNOL
NOH=ND/ 2

NOHP=NUH+1

PI1=DARCOS(-1.D0)

00 60 [=1,ND
FIT)=0SORTI(1.DU~UH T )%%2)

D0 9D 1=1,NDH

00 90 J=1.ND

UFAC=UL T ) *U(J}

FFAC=F(l}*F{J)}

INTEGRATE QOVER THE AZIMUTHAL ANGLE
SUM=9.D0

DO BO L=1,NNDZ
CONL=UFAC+FFAC®0DCOSH{PI*{DARCOS(UZIL})+1.N0))
CON2=DARCODS{LONL} :
SUM=SUM+ (DS IN(CON? ) -CONL*CONZ2 Y*AZ{L}
P{T:J)=4.D0%SUM/(3.00%P]]}

CONTINJE i

UTILIZE SYMMETRY NF THE SCATTERING FUNCTION
DC 50 I=NOHP,ND

D0 S0 J=1.ND

PILoJ)=P{ND¢+l=J . ND+L-T)

00 70 J=2,ND

JM=J-1

DO 70 i=1l.,.JM

P{JdaId=P(I.+J)

RENURMALIZE THE SCATTERING MATRIX

no 40 [=1.ND

SUM=0.00

DO 30 Jd=1..ND

SUM=SUM+AL J)*PL] . J)

FLI)=SUM

00 20 1=1.ND

ba 20 J=1.,ND

Pll.Ji=P{l.J)*2.00/F1{I]]

WRITE [&.300) (F(1).I=1.ND}

WRITE {6.200) {({P{I.J}ed=1.NO)-I=1,ND)
FORMAT {4({rX«El&.T})

FORMAT {6(2X,E12.5)1

RETURN

END
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PROGRAM DIFFEQ

PURPOSE
TO COMPUTE THE OIRECTIOMALLY INTEGRATED [NTENSITY AND THE PARTICLE
TEMPERATURE DISTRIBUTIONS IN A MGNO-DISPERSE, PLANE~SYMMETRIC
PULVERIZED COAL SUSPENSION. THE SUSPENS{ON GENERATES HEAT BY
CHEMICAL REACTION AND IS BOUNDED BY INFINITE. PARALLEL. FLAT WALLS.
PROCEDURE
THE GRAY. LTE FORM OF THE DIFFJSION APPROXIMATION OF THE EJUATION
OF TRAMSFER IS SOLVED SIMULTAMEOUSLY WITH AN ENERGY BALANCE ON THE
PARTICLES. INITLALLY. A THERMAL EMISSION SOURCE TERM I5 ASSUMED.
THE OIFFUSION EQUATION [S SOLVED FOR THE INTEGRATED INTENSITY BASED
CN THIS INITIAL S0URCE GUESS. THIS INTEGRATED INTENSITY IS THEN
SUBSTITUTED INTO THE ENERGY BALANCE. AND THE PARTICLE TEMPERATURE
DISTRIBUTION IS COMPUTED BY A BASIC ITERATION PROCEDURE. THE COM-
PUTED TEMPERATURE PROFILE CAN THEN BE USED TO UPDATE THE THERMAL
EMISSION SOURCE DISTRIBUTION, AND THE ITERATIVE PROCEDURE [S REPEATED
UNTIL CONVERGENCE 15 OBTAINED.
INPUT DATA
NCOND = 1 IF THE SOLID AND GAS PHASES ARE ASSUMED TO BE IN
THERMAL EQUILIBRIUM
= 2 IF THE GAS PHASE TEMPERATURE DISTRIBUTIUN IS ASSUMED
A PRIGRI
N = NUMBER OF, DI SCRETE MESH POINTS
EPSI = TEMPERATURE CONVERGENCE CRITERICN
i1Max = MAXIMUM NUMBER OF SOURCE TERM [TERATICNS
JIMAX = MAXIMUM NUMBER OF TEMPERATURE ITERATIONS
- UBAR = AVERAGE CISINE OF SCATTERING ANGLE
op = PARTICLE DIAMETER (CM)
FEXT = EXTINCTION EFFICIENCY
FSCAT = SCATTERING EFFICIENCY
DIY = THICKNESS OF SUSPENSION (CM)
TWl = WALL TEMPERATURE AT X=0 (K}
Th2 = WALL TEMPERATURE AT X=DIM (K)
RWl = WALL REFLECTIVITY AT X=0
RW2 = WALL REFLECTIVITY AT X=0JM
RHOD = PARTICLE BULK DENSITY (G/CM*x¥3)
RHOP = DEMSITY OF LOAL PARTICLES {G/CM*%3}
PGAS = OXYGEN (02) PARTIAL PRESSURE {ATM)
IG(I) = ASSUMED GAS TEMPERATURE PROFILE (NEEDED ONLY IF NCOND=2),
i=1,N (K)
PHI =1 FOR C + 02 = €02
=2 FOR C + 0.5 02 = CO
ENTHL = SPECIFIC ENERGY RELEASE FOR PHI=1 (CAL/G)
ENTHZ = SPECIFIC ENERGY RELEASE FOR PHI=2 (CAL/G)
EACT = ACTIVATION ENERGY OF HETEROGENECUS REACTION (LAL/MOL)
EE = PRE=-EXPONENT JAL FALTOR (G/{CM*%x2%5%ATM))
DCa = GAS DIFFUSIVITY AT TG=T50 (CM**2/G)
THLD = GAS THERMAL CONDULTINITY AT TG=T730 (W/lLM¥*K))
FRAC = FACTOR USED TO NCORMALIZE THE HEAT GENCRATION RATE

C*2% QUTPUT QUANTITIES

122



Cdxs
Ckivkk
C ok
CEkks
CHEaxs
LT
ChEkk
Ch¥k
CHdedt
C*hdk
C %k k
ok 2123
ChRkx
CHxnkk
22T
CHeds
Cdeden
C ek
2T

C*ex
CEaxs
CExxk

Cxktw

173

ERY] = CONVERGE(D SOURCE DISTRIBUTION, I=1,N (W/CM*%3)
FLUX{I)} = INTEGRATED INTENSITY DISTRIBUTICN, [=1N (W/CM*%2)
T(1) = PARTICLE TEMPERATURE DISTRIBUTION, I=1.N {K)
KLDADL = RAUDIANT ENERGY LEAKAGE AT X=0 (W/CM%x*2)
RLOADZ = RADIANT ENERGY LEAKAGE AT X=0DIM {W/CM%%x2)
COND = ENERGY TRAMSFERRED BY CONDUCTION TO GAS PHASE (W/CME*2}
GEN = ENERGY GENERATED 8Y CHEMICAL REACTICN (W/CMu%Z)
DIFF = RLOADI+RLOAD Z+COND-GEN (W/CM*%2); THIS QUANTITY EQUALS
ZERO WHENW THE ENERGY BALANCE ON THE ENTIRE PARTICLE
SUSPENSION 15 SATISFIED.

SUBROUTINES REQUIRED

INNER = COMPUTES THE INTEGRATED INTENSITY OISTRIBUTION GIVEN THE
THERMAL EMISSION SOURCE DISTRIAUTION
TIC ~ PERFORMS THE ITERATIVE CALCULATION OF THE PARTILLE TEM~
PERATURE PROFILE IF NCOND=2

IMPLICIT REAL*8 (A—-H.0-1)

DIMENSIGN T(51)-TI(51}.75(51)

COMMUN ZTC/ XI(51)+5(51).TG(51)BND.CND,.DND,EPS5I2,GEN,COND, HHAX,

" CJ IMAX

COMMON ZINN/ QUSL) «FLUKI51) HI{5L1}ALPHAL{S1)DELDL.,ON.,DOD

COMMON ZINNTC/ N

ASSIGN VALUES OF INPUT VARIABLES

NCOND=L

EPSI=1.0D0 ,

pp=50.0-4

DIM=1.D2

N=11

1IMAX=50

JIMAX =40

UBAR=0.LO

BOL=5.66930-12

NACC=2

Ni=4

DO 1 K=1.N

TG(K)=2.203

REAL (5.1000)} EE.EALT

READ (5,1000) FEXT.FSCAT

READ (5.1100) Thl+EWL«RWL

READ (5.1100) TW2,EWZ.RW2

READ (5,1100) PGAS.RHOD.RHAP

READ (5,1100) T50.DC0.THCO

READ {5.1200) ENTH1.ENTHZ ,PHI .FRAC

COMPUTE MISCELLANEOUS PARAMETERS

Coxes
Ctks

PI=DARCOS(-1.001}

M=N-1

DELX=DIM/M
SW=6.00/(LUP¥RHUP}
FAB=FEXT-FSCAT
S$I1Ga=0.2500%FAB*RHOD*SK
S1GS=SIGA*FSCAT/FAB
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CHhteke

SIGT=SIGA*FEXT/FAB
D=1.00/{3.00%(SIGT-SIGS*UBAR))

TREF=EACT/1.98700

PHIREF=BOL*TREF**4
DELH=ENTHLI*{2.00/PHI~1.D01+ENTHZ2¥ (2.00-2.00/PHI )
EPSI2=EPSI/TREF

EMISL=FWl*BOL*TWL**4/ P!

EMIS2=EWZ*BOL *TW2%*4/P]

PRINT INPUT PARAMETERS

WRITE (6.6000])

WRITE 16,3000} DIM.DP

WRITE (6+3100) FEXT.FSCAT.RHID,SW,RHOP

WRITE (6.3200} SIGA,SIGS.SIGT.O

WRITE (06,3300} TWl.EWLl.RW1.TW2,EV2,RV2

WRITE (6.3350) EE

WRITE (56,3400} EACT.DELH.PGAS

WRITE (643410} DCO.THCD

WRITE (6,3500) N+EPSI«IIMAX.JIMAX

WRITE (6.2000) ENTHL.ENTHZ2.PHI.DELH,ROL . EPSI2
WRITE (6,2000) TS50.TREF.PHIREF+EMIS1,EM152,FRACL
WRITE (6.5000)

COMPUTE OIMENSICMLESS CONSTANTS NEEDED FOR TEMPERATURE ITLRATION

BB=2.4001¥PHI *0CO*TREF#%0.7500/( (2. D0*T S0V **0,7500%T750%82,3600%DP)
CC=6.DO*PGAS*DELH*4 ., 184D0*HOD*FRAC / (DP*RHOP }
DO=1.20L*THCO*RHOD*TREF**1,75D0/ ( RHOP*DP*#2% (2 ,DO*T SO )* *0,.7500)
FF=1.D0)/14.00*SIGA*PHIREF)

WRITE {6,2000) BB.LC.D0FF

BND=8B/EE

CND=FF*C(*BB

OND=DD*FF

WRITE 16.2000) BND.CND,OND

WRITE (6,5000)

DO 5 K=1.N

TGIK)=TG{K) /TREF

COMPUTE ELEMENTS OF TRIDIAGCNAL MATRIX

Al=STGA*DELX*%2/D

AZ2=DELX/{(2.00%D)
A3={1.00-RW1)/(1.D0+FKW1)
A4=11.00-RWZ2)/1]1.D0+RW2Z)

WRITE (6,2000) AlL.AZ2.A3.A4

FACl=A2%A3

FACZ=A2%A4
FAC3=2.00%PI*EMISI*DELX/(D* (1 .00+PW1]))
FAC4=2.D0%P [*EM[S2*DELX/{D*{1.00+RW2]}
WRITE {6.20001 FACL1.FAC2,FAC3 .FACS
00=-1.30

DE=2.D0+Al

D1=1.00+FAC1+0.5D0*A1
ON=1.00+FACZ+0.500%A1

WRITE (6.2000) OUD.DE.D1.DON

WRITE (&.5000)
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SPECIFY INITIAL SOURCE GUESS

DO 10 K=1.,N
Q{K)=1.00
1ACC=0

Ii=1

BEGIN THE ITERATIVE SOLUTION

Q{11 =0.500%DELX**2*Q(1}+FAC3
QINI=0.5D0%DELX**2*Q( N} +F AC %
DO 50 K=2.M
Q{K)=DELX**2%Q(K)

CONTINUE

CALL INNER

COMPUTE THE TEMPERATURE DISTRIBUTION

WRITE (6.5000)

WRITE (6.1000) IACC

WRITE (6,2200) 11

WRITE [6.2300) (Q{K}K=1.N)

00 60 K=1.N
STKI=FLUX{K)/{4.00%PHIREF)

IF (I1.EQ.1) XI(K)=S5{K)**0.250"
CGNT INJE

GEN=0.D0

CONO=0.D0

IF (NCOND.EQ.2) GD TO 101
THERMAL EQUILIBRIUM CASE

DO 100 K=1.N

DO 70 J1=1,JIMAX

AND=XT (K}
Z1=(XI{K)+AND)**Q, 7500
12=DEXP(1.DO/XI{K]))
FAC=CND/(l.D0/Z1+8ND*Z72])
FAC2=DN2*Z 1 ¥( X1 {K)~AND)
XXI={SIK)+FAC-FAC2)**0. 2500

ITF (DABSIXXI-XI{K)).LE.EPSI2) GO TD 80
XTEK)=XXI

CONT INUE

TIK}=XXI*TREF

TF {(K.EJ.{N/2+1)) HMAX=FAC-FAC2
I=1.00

[F ({K.EQuLl)ORLIKLEQ.NIY Z2=0.500
GEN=GEN+Z*FAC

COGND=COND+Z2*FAC2

CONT INUE

GD TO 123

INTER=SPECIES CONUUCTION CASE
CALL TIC

00 102 K=L.N

TIK)=XT{K)}*TREF

CONT INJE

D0 104 K=1.N

TSIK}=T(K)

CONTINJE

WRITE (642330} (TUK)K=14N}
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CHdkd :
Coss COMPUTE RAULANT LEAKAGE. CINDUCTION LOSSES. AND TOTAL HEAT GENERATLON
Coedenn
GEN=GEN*DELX/FF
COND=CIOND*DELX/FF
) RLOADL=(0.25D0%FLUX(11*(1.00+A3)-0.500%0*FAC3/DELX)I*(1.00-RWL]}
C-FMIS51%P!
RLCAD2=(D . 2500=FLUXINI*{1 .DO+AS)~0.500%0*FACL/DEL X) *{ 1. 00-RW2)
C~EMIS2%P]
SUM=RLOADL+RLOADZ
DIFF=SUM+CUOND=-GEN
WRITE (6.2000) SUM.COND.GEN,DIFF
(of 23 30
Ceek® CHECK FOR CONVERGENCE OF THE TEMPERATURE DISTRIBUTION
C kokedok .
IF {(1[.EQ.1) GO TO 110
DO 150 K=1.N
IF (DAISITI(R)-TI{K)}.GTLEPSI) GO TO 115
150 CONTINJE
GO TD 200
WETTTY
CH%t%x CONVERGENCE AGCELERATION CPTICN
[tk
115 1F INACC.ED.1) GO TO 110
ACCPAR=0FLOAT(IIMAX)/]II
00 120 K=1.N
1F (T{(L}.LE.TI{K))} GO TQ 135
120 CONTINUE !
1ACC=1ACC+1
1f ([ACCLEQ.NI} GO TD 125 .
GO TO 110
135 00 140 X=1.,N
IF (TIK).GE.TI(K))} GO TO 145
140 COUNTINUE
IACC=IACC~1
IF {(JACC.EQ.-NI} GO TO 125
GO 70 110
125 DO 130 K=1.N
TSIKI=TI{K)+(T(K)~-TI{K))*ACCP AR
130 CONTINJE
145 TACL=0 ~
CHkky
Cx%x% RECOMPUTE THE SOURCE DISTRIBUTION
Cabks
110 Ti=i1+1
1F (11.GT.1IMAX) GO TO 2D9
DD 170 K=1:N
QIKI=4.DO*SIGA*BDL*TS(K)*%4 /D
THIK)=TIK]
170 CONTINUE
GG 10 30
Coadns
CH¥%x CALCULATE AND PRINT RESULTS
s
200 WRITE (6.22001 11
WRITE {6.230001 (QUK]).K=1,N}
WRITE (6.5000)
WRITE (6+2300) (FLUXIK) ,K=1.N)



WRITE (6.5000)

WRITE {64+2300) (T{K] K=1.N)

HMAX=HMAX*UPXRHOP/ (6. DO*RHOD* FF)

WRITE (6.,2000) HMAX

WRITE (6.2000) RLOADLIRLOADZ2,CUNDGEN,DIFF
Ckeks

1000 FORMAT (2G20.12}

1100 FORMAT (3G20.12}

1200 FORMAT (4G20.12)

2000 FORMAT (6(3X.ELl2.50)

2200 FORMAT {3X,'ITERATION NG.'.13)

2300 FORMAT (BI1X.El4.7)}

3000 FORMAT (TLOD,*'SYSTEM SIZE =% ,E12.5." CM',/,TLN,'"PARTICLE DIAMETER =

LT LEL2.5.' LMY /417D

3100 FORMAT (TLlO.'EXTIHNCTION EFFICIEMCY =1 ,E12.5./+T10.*SCATTERING EFFI
CCIENCY =',F12.5+/+T10."PARTICLE MASS (LOADING =',E12.5,' G/UM**3?,/
CeTLO+*'SPECIFIC SURFACE OF PARTICLES =',E12.5,% CHM*%2/G',/,T10.'PAR
CTICLE JENSITY =',E12.5+% G/CM*%23',////)

3200 FORMAT (TL12,'CROSS SECTIONS - (1/CM)z",/sT1l6:"ABSORPTION =*:€12.5¢/

' CTL6+'SCATTERING =* 4 EL2.5¢/+ TLO "EXTINCTION =*4E12.5.//,T10s 'DIFFUS
CION CDEFFICIENT =',E12.5.1 CM'"y////1)

3300 FORMAT (T10.'LEFT WALL:'. &% ,"TEMP., =",Fd.2+* K'+5Xs "EMISSIVITY =",
CF5.¢2+5X "REFLECTIVITY =14F5.2 4/ «T10,'RIGHT WALL:'.5X.'TEMP, =',FB.
C2e' K' 55X "EMISSIVITY =',F5.2,5X, "REFLECTIVITY ='.F5.2.////)

3350 FORMAT {TLO,.'PRE~EXPONENT 1AL FACTOR =',EL2.5," G/ICM*¥k2XSHATM) ")

3400 FORMATY (T10,'ACTIVATION ENERGY =',E12.5.,' CAL/MOL' , /+T1D,'SPECIF

: CIC ENERGY RELEASE ='+EL12.5+"' CAL/G'+//4T10.4*GAS PRESSURE ="' .F5.24"
C ATM* W /7 177)

3413 FORMAT [T1D,'GAS PROPERTIES AT 1607 K:*,//,T20+'BINARY OIFFUSION C
COEFF. 102 IN N2) =7,F5.2,"' CM*%2/5%,/,T20.' THERMAL CUND. ='4ELle.5y
C' W/CMEK? , ///77) -

3507 FORMAT (T10,"NUMERICAL SOLUTION PARAMETERS:'¢//,T20.'NUMBER OF MES
CH POINTS =9,13./.T20.'TEMP, COMVERGENCE CRITERION [K) ='4E12.5+/.T
C20.'MAXIMUM NUMBER OF OUTER ITERATIONS =',14,/,.T20."'MAX THUM NUMBER
C OF TEMP. ITERATIONS =*.13+////)

S000 FORMAT (///)

6000 FDRMAT ('11}

CAns
sTOP
END

12
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SUBROUT INE INNER
Cx*k& SUBRQUTINE TO COMPUTE THE [NTEGRATED INTENSITY DISTRIBUTICN GIVEN THE
CHxkk THERMAL EMISSION SOURCE. A OIRECT ELIMIMNATION PRCCEDURE IS USED TO SULVE
C**%& THE SET OF TRIDIAGONAL EQUATIONS
Ck%kh
IMPLICIT REAL%8 (A-H.0-Z1)
CUMMGN /ZINN/ Q(S1).FLUX(S51) H{51),ALPHA(S5]1) «DE.DL.ON,0D
COMMON JINNTC/ N
H(1)=0D/D1
M=N-1
DO 40 I=2.M
69 HI{l1)=2D/{DE-OD*H{I-1})
ALPHA{1)=0(1)/01
DO 55 I=2.M
55 ALPHA(L}=(OQ(I)-00*ALPHA(IL-1})}/{DE-OD*H{ 1-1))
FLUXIN}={ Q{N)-0D*ALPHA(M) )}/ (DN-OD*H(M) )
. DO 50 I=1.M
50 FLUXIN=L)==FLUXIN=J+L}*H(N=1)+ALPHA(N~I}
RETURN g
END
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SUBROUTINE TIC

SUBROUTINE TO COMPUTE THE PARTICLE TEMPERATURE DISTRIBUTION IF THE
PARTICLE AND GAS PHASES ARE NOT IN THERMAL EQUILIBRIUM. THE NEWTON
METHOD IS USED TO COMPUTE THE PARTICLE TEMPERATURE AT EALH DISCRETE
MESH POINT

IMPLICIT REAL*8 (A-H,0-2)

COMMON /TC/ XI{511.S(51),TG(51).BND+CND.OND+EPSI2+GENCONDsHHAX,
CJIMAX

COMMON ZINNTC/ N

DO 10 K=Ll.N

DO 20 JI=l.JIMAX

AND=TGIK)

Al=XT(K)*¥4

A2=XI(K)+AND

Ad=XII[KI)-AND

A4=DEXP(1.D0/X1(K))

AS=DND*A2%%0,.T75D0%A3
A6=BND®A4+]1 .D0/ A2%¥*0.7500

A7=CND/A6

Zl=4.D0%X ] (K)*%3
I2=0OND*{A2*%0.7500+0.750D0*A3/ A2+*0,25D0)
23=(0,75D0/A2%*].7500+BND*A4/ A1 *%0,500) *AT/ A6
XXI=XI10<I-(AL+AS-AT-5(K}) At 21422-23) -
IF (DABS(XXI-XI(K)}.LE.EPSI2) GO TO 15
XI{KEP=XXI :

CONT INUE

XI(K}=XXI

IF {K.EO.IN/2+1]1) HMAX=AT-AS5

7=1.00 7

IF ((K.ED.1).CR.IK.EQ.NI) Z=0.5D0
GEN=GEN+Z*AT -

COND=COND+ Z*A5

CONTINUE

RETURN

END



RADTATIVE TRANSFER IN PULVERIZED COAL SUSPENSIONS

by
HUSSEIN KHALIL

B.S., Kansas State University, 1978

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

" Department of Nuclear Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1980



ABSTRACT

A detailed description of the radiative transfer problem in
pulverized coal combustion is presented, with emphasis on the modeling
of coal dust-gas mixtures, the solution of the radiative transfer
equation, and discussion of the available radiation properties of the
materials‘in pulverized coal systems. In addition, a simple coal sus-
pension model is developed to compute the temperature and radiation in-
tensity distributions in reacting coal dust clouds. A diffusion
limité@,-Afrhenius expression is used to describe the rate of heat
generafibn:due to the hetérogeneous reaction of the cdal particles with
the gaéesnih which they are disPeréed. The particle suspension is bounded
by infiﬁite,-pﬁrallel, flat walls and is assumed to be optically gray
and in locél thermodynamic equilibrium. This mode; is then used to
examine the effecté_of radiation scafﬁering, particle sizé,ipa&ticlé
bulk densify, and boundary conditions on the computed temperature
profile and En the radiant heat loss at the walls.

The radiation intemnsity and particle temperature distributions
are computed accurately by the simultaneous solution of the radiative
transfer equation and an energy balance equation for the particles.
Both the discrete ordinates method and the diffusion approximation are
used to solve the equation of transfer, and a comparison of the two
solution techniques is performed. This discrete ordinates method is
applied for the first time to the calculation of the radiation inten-
gity in a medium containing a temperature-~dependent, nonlinear heat

gource. The agreement between the diffusion approximation and the



discrete ordinates solution is shown to improve_with increasing optical
thickness of the suspension.

Finally, in the absence of all non-radiative heat loss modes,
coal dust suspensions are shown to ignite only if their optical
thickness exceeds a critical value. This critical optical thickness
depends on the temperature and reflectivity of the bounding walls and

is very sensitive to the parameters of the heat generation model.



