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Abstract 

 

The future of healthcare delivery systems and telemedical applications will undergo a 

radical change due to the developments in wearable technologies, medical sensors, mobile 

computing and communication techniques. E-health was born with the integration of networks 

and telecommunications when dealing with applications of collecting, sorting and transferring 

medical data from distant locations for performing remote medical collaborations and diagnosis. 

Healthcare systems in recent years rely on images acquired in two dimensional (2D) domain in 

the case of still images, or three dimensional (3D) domain for volumetric images or video 

sequences. Images are acquired with many modalities including X-ray, positron emission 

tomography (PET), magnetic resonance imaging (MRI), computed axial tomography (CAT) and 

ultrasound. Medical information is either in multidimensional or multi resolution form, this 

creates enormous amount of data. Efficient storage, retrieval, management and transmission of 

this voluminous data is extremely complex. One of the solutions to reduce this complex problem 

is to compress the medical data losslessly so that the diagnostics capabilities are not 

compromised. This report proposes techniques that combine integer transforms and predictive 

coding to enhance the performance of lossless compression. The performance of the proposed 

techniques is evaluated using compression measures such as entropy and scaled entropy. 
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Chapter 1 - Introduction 

 
              Recent developments in health care practices and development of distributed 

collaborative platforms for medical diagnosis have resulted in the development of efficient 

technique to compress medical data. Telemedicine applications involve image transmission 

within and among health care organizations using public networks. In addition to compressing 

the data, this requires handling of security issues when dealing with sensitive medical 

information systems for storage, retrieval and distribution of medical data. Some of the 

requirements for compression of medical data include high compression ratio and the ability to 

decode the compressed data at various resolutions.  

 

              In order to provide a reliable and efficient means for storing and managing medical data 

computer based archiving systems such as Picture Archiving and Communication Systems 

(PACS) and Digital-Imaging and Communications in Medicine (DICOM) standards were 

developed. Health Level Seven (HL7) standards are widely used for exchange of textual 

information in healthcare information systems. With the explosion in the number of images 

acquired for diagnostic purposes, the importance of compression has become invaluable in 

developing standards for maintaining and protecting medical images and health records.  

 

              Compression offers a means to reduce the cost of storage and increase the speed of 

transmission, thus medical images have attained lot of attention towards compression. These 

images are very large in size and require lot of storage space. Image compression can be lossless 

and lossy, depending on whether all the information is retained or some of it is discarded during 

the compression process. In lossless compression, the recovered data is identical to the original, 

whereas in the case of lossy compression the recovered data is a close replica of the original with 

minimal loss of data. Lossy compression is used for signals like speech, natural images, etc., 

where as the lossless compression can be used for text and medical type images.  

 

             There has been a lot of research going on in lossless data compression. The most 

common lossless compression algorithms are run-length encoding, LZW, DEFLATE, JPEG, 

JPEG 2000, JPEG-LS, LOCO-I etc. Lempel–Ziv–Welch is a lossless data compression 
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algorithm which can be used to compress images as shown in [18]. The performance of LZW 

can be enhanced by introducing three methods. The first two methods eliminate the frequent 

flushing of dictionary, thus lowering processing time and the third method improves the 

compression ratio by reducing number of bits transferred over the communication channel. The 

details of these methods are given in [19]. JPEG is most commonly used lossy compression 

technique for photographic images which can be converted into lossless by performing integer 

reversible transform. Lossless compression in JPEG [20] is achieved by performing integer 

reversible DCT (RDCT) instead of the floating point DCT used in original JPEG on each block 

of the image later using lossless quantization.  Lossless JPEG does not allow flexibility of the 

code stream, to overcome this JPEG 2000[4-5] has been proposed. This technique performs 

lossless compression based on an integer wavelet filter called biorthogonal 3/5. JPEG 2000‟s 

lossless mode runs really slow and often has less compression ratios on artificial and compound 

images. To overcome this drawback JPEG-LS [7] has been proposed. This is a simple and 

efficient baseline algorithm containing two distinct stages called modeling and encoding. This 

technique is a standard evolved after successive refinements as shown in articles [10], [11], and 

[12]. JPEG-LS algorithm is more scalable than JPEG and JPEG 2000.  

 

In this report, Chapter 1 concentrates on the fundamentals of lossless compression and 

the areas where it can be used effectively. In Chapter 2 different coding techniques such as 

Huffman, arithmetic and predictive are discussed in detail. Chapter 3 discusses the basics of 

wavelets, wavelet transforms both continuous as well as discrete and it also gives detailed 

description of how the integer wavelet transforms can be implemented using filter bank and 

lifting scheme. This chapter also discusses the derivation of perfect reconstruction conditions. 

Chapter 4 includes the implementation techniques and experimental results. These techniques are 

tested using different medical images, different predictor coefficients in predictive coding 

technique and different filter coefficients in lifting scheme. The last chapter includes the 

summary and suggestions for future improvements of the proposed techniques.  

 

 



3 

 

Chapter 2 - Lossless Compression Coding Techniques 

 
Lossless compression allows extracting the original image to be perfectly reconstructed 

from the compressed image. Compression is a two step process, the first step creates a statistical 

model and the second step uses this model. The mapping of input data into bit sequences is done 

in such a way that the frequently encountered data will produce shorter output than less frequent 

data. There are two ways in constructing a statistical model one is called the static model and the 

other is the adaptive model. The simplest one among the two is the static model where in the data 

is analyzed and a model is constructed, then this model is stored with the compressed data. Even 

though this model is simple and modular it has some disadvantages. It is an expensive model for 

storage and forces using the same model for all the data compressed. It also performs poorly on 

files containing heterogeneous data. Adaptive models are the most popular type of models in 

practice.  These models are dynamically updated as the data is compressed. Both the encoder and 

decoder begin with a trivial model yielding poor compression initially, but as they learn more 

about the data, performance is improved. Lossless compression methods may be categorized 

according to the type of data they are designed to compress. While, in principle any general-

purpose lossless compression algorithm (general-purpose meaning that they can compress any 

bit string) can be used on any type of data, but many are unable to achieve significant 

compression on data that are not of the form for which they were designed to compress.  

Lossless compression is preferred for artificial images such as technical drawings, icons 

or comics. This is because lossy compression methods when used especially at low bit rates, 

introduce compression artifacts. It can also be used for high value content, such as medical 

imagery or image scans in health industry where there is archiving of large number of images. 

Lossless compression increases the efficiency of sharing and viewing personal images, uses less 

storage space and is quicker in transmission and reception of images.  It is also used in the chain 

of retail stores where the introduction of new products or the removal of discontinued items can 

be much more easily completed when all employees receive, view and process images in the 

same way. In federal government agency where viewing, storing and transmitting processes can 

reduce large amounts of time spent in explaining and solving the problem or issue, lossless 

compression is used. It is widely used in the security industry where it can greatly increase the 

efficiency of recording, processing and storing images. In Museums, where accurate 
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representation of museum images or gallery items is required, especially when uploading them to 

a website lossless image compression can be effectively useful.  

In this section different coding techniques used to achieve lossless compression are 

discussed. The primary encoding algorithms used to produce bit sequences are entropy coding 

techniques of which the most efficient are Huffman coding (also used by DEFLATE) and 

arithmetic coding. We also go over lossless predictive coding technique. 

2.1. Entropy Coding 

Entropy measures the amount of information present in the data or the degree of 

randomness of the data. After the data has been quantized into a finite set of values it can be 

encoded using an entropy coder to achieve additional compression using probabilities of 

occurrence of data. This technique reduces the statistical redundancy. The entropy coder encodes 

the given set of symbols with the minimum number of bits required to represent them. It is a 

variable length coding which means that it assigns different number of bits to different gray 

levels. If the probability of occurrence is more, then fewer bits/sample will be assigned.  

ENTROPY (H): Suppose we have M input levels or symbols (S1, S2…SM) with their 

probabilities (P1, P2…., PM) 

 

In the least random case it takes only one value where 

                                                                        H=0 

Most random case:  

 

The average number of bits per pixel needed with Huffman coding is given by 
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Where pk represent the probabilities of the symbols and Nk represent the number of bits per the code 

generated. Coding efficiency (ŋ) can also be calculated using H and R generated earlier 

 

 

2.2. Huffman Coding 

Huffman coding is an entropy coding algorithm which is used in lossless compression. In 

this technique the two smallest probabilities are combined or added to form a new set of 

probabilities. This uses a variable length code table which is based on the estimated probability 

of occurrence for each possible value of the source symbol. This is developed by David. A. 

Huffman. In Huffman coding each symbol is represented in a specific method which expresses 

the most common characters with fewer strings than used for any other character. Huffman 

coding is equivalent to simple binary block encoding. Although Huffman‟s original algorithm is 

optimal for a symbol-by-symbol coding (i.e. a stream of unrelated symbols) with a known input 

probability distribution. It is not optimal when the symbol-by-symbol restriction is dropped, or 

when the probability mass functions are unknown, not identically distributed, or not independent.  

The basic technique involves creating a binary tree of nodes which can be finally stored 

as an array. This size depends on the number of symbols which have given probabilities. Now 

the lowest two probabilities will be added and one probability will be represented by „0‟ and the 

other probability which is added will be assigned a „1‟. This process is repeated until all the 

additions are completed leaving a sum of one. The simplest construction algorithm uses a 

priority queue where the node with lowest probability is given highest priority. The performance 

of the method is calculated using entropy as mentioned in Section 2.1. 

2.3. Arithmetic Coding 

Arithmetic coding is a form of variable-length entropy encoding that converts a string 

into another form that represents frequently used characters with fewer bits and infrequently used 

characters with more bits with the goal of using fewer bits in total. As opposed to other entropy 

encoding techniques that separate the input message into its component symbols and replace 

each symbol with a code word, arithmetic coding encodes the entire message into a single 
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number which is a fraction n where (0.0 ≤ n < 1.0). It is also called a statistical technique since it 

is based on probabilities like all the other techniques. The code extracted for the entire sequence 

of symbols is called a tag or an identifier. 

Arithmetic Coding is also a coding technique in which a message is encoded as a real 

number in an interval from one to zero.  Arithmetic coding typically has a better compression 

ratio than Huffman coding as it produces a single symbol rather than several separate code 

words. To perform arithmetic coding we will be provided with symbols and probabilities for 

each symbol and a message that has to be coded. The arithmetic coding technique even though 

gives better performance than Huffman coding, it has some disadvantages. In this coding 

technique the whole codeword must be received for the symbols to be decoded, and if a bit is 

corrupted in the codeword, the entire message could become corrupt.  

2.4. Run Length Coding (RLC) 

The run length coding is used to compress data streams which contain long runs of the 

same value or symbol. This is most useful on data that contains many such runs for example 

simple graphic images such as icons, line drawings, and animations. Zero RLC is the most 

commonly used run length coding technique. In this technique only zeros are run length coded. 

The data in zero RLC can be compressed using two methods. In the first method the zeros before 

the number are zero run length coded and in the second method the zeros after the number are 

zero run length coded. 

In the case of binary images Huffman encoding will not be able to compress properly, in 

such cases run length coding is very efficient. The most effective application of RLC is fax 

machine used in CCITT standard which uses 8 bits to encode. The drawback of RLC is that it is 

not useful with files that don‟t have many runs as it could potentially double the file size. To 

overcome these drawbacks an improved RLC technique has been developed called the dynamic 

window based RLC. 

Dynamic window-based RLC (DW-RLC) [17] is a sophisticated RLC, unlike the basic 

RLC this algorithm does not use runs of same value but it allows the runs to fall within a gray-

level range called a dynamic window range. This range is dynamic because it starts out with any 
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range narrowing down the maximum and minimum values to the actual range while 

encountering each pixel value. 

2.5. Predictive Coding 

Predictive coding was developed for the purpose of bit rate reduction in telephone calls. 

It was discovered that by quantizing and transmitting the residue sequence the bit rate could be 

substantially reduced while maintaining an acceptable level of fidelity at the receiver. In 

predictive coding we take the difference or prediction error into consideration rather than taking 

into account the original sample/image. The differences are taken between the original sample 

and the sample(s) before the original sample. Let f (n) be the original sample then the difference 

d (n) will be given by  

d (n) =f (n)-f (n-1). 

 

 

Figure 2.1 Original Histogram 
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Figure 2.2 Histogram of the Difference 

 

Fig.2.2 shows that it is easier to encode the difference rather than encoding the original sample 

because of less dynamic range. 

2.6. Lossless Predictive Coding Technique 

The principle behind predictive coding seems obvious when it is explained, but nothing 

has appeared in current literature providing a statement as to which filtering techniques can be 

used for lossless data compression.  

 

There is no particular condition in specific for invertible filters but broad statements can 

be made about sufficient conditions for lossless filtering. The condition as given in [21] says 

“The digital implementation of a filter is lossless if the output is the result of a digital one-to-one 

operation on the current sample and the recovery processor is able to construct the inverse 

operator”. It is important to note that the operations must be one-to-one not only on paper but 

also on the computer. Integer addition of the current sample and a constant is one-to-one under 

some amplitude constraints on all computer architectures. 

Integer addition can be expressed as 
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Where fof is the overflow operator, x (n) is the current sample, s (n) an integer value which 

defines the transformation at time n, and e (n) is the current filter output.  

 

The reverse operation is given by the equation 

 

 

This process always leads to an increase in number of bits required. To overcome this, rounding 

operation on the predictor output is performed making the predictor lossless. The lossless 

predictive encoder and decoder are shown in Fig.2.3 and Fig.2.4. 

Figure 2.3 Predictive Encoder 

 

 

Generally, the second order predictor is used which is also called Finite Impulse Response (FIR) 

filter. The simplest predictor is the previous value, in this experiment the predicted value is sum 

of the previous two values with alpha and beta being the predictor coefficients.  

f^ (n) =<f (n-1)> 
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Figure 2.4 Predictive Decoder 

 

 

In the process of predictive coding input image is passed through a predictor where it is predicted 

with its two previous values. 

f^ (n) = α * f (n-1) + β * f(n-2) 

f^(n) is the rounded output of the predictor, f(n-1) and f(n-2) are the previous values, α and β are 

the coefficients of the second order predictor ranging from 0 to 1. The output of the predictor is 

rounded and is subtracted from the original input. This difference is given by  

d (n) =f (n)-f^ (n) 

Now this difference is given as an input to the decoder part of the predictive coding technique. In 

the decoding part the difference is added with the f^ (n) to give the original data. 

f (n)= d(n) + f^(n) 
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Chapter 3 - Integer Wavelet Transform 

 

Wavelet-based techniques are the latest development in the field of image compression. 

They offer multi-resolution capability that is not available in any other methods. The wavelet 

transform analyzes a signal in time and scale. The low frequency components in the signal that 

are spread out in time as well as the high frequency components that are localized in time are 

captured by a variable length window. The concept of wavelets in its present theoretical form 

was first proposed by Jean Morlet and the team at the Marseille Theoretical Physics Center 

working under Alex Grossmann in France. The main algorithm of wavelets was developed by 

Stephane Mallat in 1988. 

3.1. Wavelet 

Wavelets are small waves (unlike sine and cosine waves with infinite duration) with 

finite duration having finite energy and an average value of zero. It looks like a brief oscillation 

recorded by a seismograph or heart monitor. The wavelets posses‟ specific properties which 

make them much useful in signal processing. The process of convolution used in the wavelets 

typically involves a shift, multiply and sum technique to acquire information of the unknown 

signal by using the portions of the unknown signal. The wavelets can be used to attain 

information from any type of data that is not limited to only signals and images.  

Generally sets of wavelets are needed to analyze data fully. A set of complementary wavelets can 

be used to get back the original data with least amount of loss in the data. This is the technique 

used in wavelet based compression and decompression algorithms. 

The representation of a function f (t) using wavelet is given by the following formula 

 

Where,  are the wavelet coefficients and Ψ (t) is called the mother wavelet. Equation for 

the wavelet coefficients is given by 
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3.2. Wavelet Transform 

A wavelet transform is the representation of a function using wavelets called the daughter 

wavelets which are scaled and translated copies of the main oscillating waveform called the 

mother wavelet. These wavelet transforms have more advantages over the old Fourier transform. 

The wavelet transform can represent functions that have discontinuities and sharp peaks, and for 

accurately deconstructing and reconstructing finite, non-periodic and/or non-stationary signals 

along with periodic or stationary signals.  

  

The wavelet transforms can be classified into Discrete Wavelet Transform (DWT) and a 

Continuous Wavelet Transform (CWT). Both of this wavelet transforms are analog transforms 

(continuous-time). CWTs operate on every scale and translation possible, whereas DWTs use a 

specific subset of scale and translation values or representation grid. 

3.3. Continuous Wavelet Transform (CWT) 

The CWT is used to divide a continuous time function into wavelets, this transform 

possess the ability to construct a time-frequency representation of a signal. 

Mathematical representation of the CWT of a continuous wave x (t) at a scale a > 0 and 

translational value  is given by 

 

 

Where ψ (t) represents a continuous function both in the time and frequency domain 

called the mother wavelet and represents operation of complex conjugate. The mother wavelet 

provides source function for the generation of the daughter wavelets.  
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3.4. Discrete Wavelet Transform (DWT) 

In discrete wavelet transform the wavelets are discretely sampled. The DWT of a signal 

is calculated by passing the signal through series of filters called filter bank. The samples are 

simultaneously passed through a high pass filter and a low pass filter with impulse response g 

resulting in a convolution y[n]. Convolution is defined as the integral of the product of two 

functions after one is reversed and shifted. y[n] is the convolution of input signal with the 

impulse response.  

The mathematical equation for y[n] is given by  

 

 

Figure 3.1 Block Diagram of Filter Analysis 

 

 

Fig.3.1 represent the DWT of a signal where x (n) is the input signal, ho (n) is the low pass filter 

and h1 (n) is the high pass filter. The output of the low pass filter will be approximate 

coefficients and the outputs of the high pass filter will be the detailed coefficients of the signal. 

The LPF and the HPF are related to each other and the relationship between these filters means 

that a perfect reconstruction is possible. That is, the two bands can then be upsampled, filtered 

again with the same filters and added together to reproduce the original signal exactly. The 

conditions for the perfect reconstruction are derived in frequency domain to avoid complex 

computations in time domain.  The Z transforms representation of the input the downsampled 

and the upsampled signal are given by  
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The block diagram of subband coding is used to derive the conditions for perfect reconstruction. 

 Figure 3.2 Block Diagram for Subband Coding 

 

                                                                                                                                                           

 

 

x (n) 

 

 

The downsampled outputs are multiplied with the z transform of LPF and HPF called the 

analysis filters giving two different equations 

½ [H0 (Z) X (Z) + H0 (-Z) X (-Z)]    (1) 

½ [H1 (Z) X (Z) + H1 (-Z) X (-Z)]    (2) 

The final output X
^ 

(Z) is the sum of equations (1) and (2) multiplied by the synthesis filters and 

the input which is given by  

 

X
^ 
(Z) = ½ [H0 (Z) G0 (Z) + H1 (Z) G1 (Z)] X (Z) + ½ [H0 (-Z) G0 (Z) + H1 (-Z) G1 (Z)] X (-Z)   (3) 

In the case of perfect reconstruction the input and the output are the same therefore 

X
^ 
(Z) = X (Z) 

X
^ 
(Z) = α Z

-β
 X (Z)   (4) 

Where α is the scaling and β is the delay 

[H0 (-Z) G0 (Z) + H1 (-Z) G1 (Z)] = 0   (5) 

 2 

x (n) x (2n) 

X (Z) ½ [X (z
1/2

) +X (-

Z
1/2

)] 

  2 

x (2n) y (n) 

½ [X (z
1/2

) +X (-

Z
1/2

)] 

½[X (Z) + X (-

Z)] 

ho(n) 

h1(n) 

  2 

  2 

 

 

Process  

Involved 

  2 

  2 

Go(n) 

G1(n) 

 + 

x ^ (n) 
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Equation (5) is called an anti-aliasing condition, placing equation (5) in equation (3) we get  

½ [H0 (Z) G0 (Z) + H1 (Z) G1 (Z)] = α Z
-β

 X (Z)   (6)  

 Filters used in DWT are called QMF (Quadrature Mirror Filters). A QMF gives critically 

sampled two-channel representation of the original signal. Two conditions that satisfy the QMF 

based on the perfect reconstruction described in equations (5) and (6) are 

                                                       

(z) - (z) = α Z
-β 

The signal is further decomposed into high and low pass filters using filter banks at each level. 

This increases the frequency resolution of the signal. Due to so many decomposition involved 

the input signal must be a multiple of 2
n
 where n is the number of levels.  

Figure 3.3 A 3 level filter bank 

 

3.5. Implementation of Integer Wavelet Transform 

In integer wavelet transform there is a mapping between integers to integers. In this section 

different ways of implementing integer wavelet transform have been discussed.  

3.5.1. Implementation Using Filter Bank 

In signal processing, a filter bank is an array of band-pass filters that separates the input 

signal into multiple components each one carrying a single frequency subband of the original 

signal. The process of decomposition performed by the filter bank is called analysis and the 

output of analysis is referred to as a subband signal with as many subbands as there are filters in 

the filter bank. The reconstruction process is called synthesis.  
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Figure 3.4 Filter Bank Implementation 

                                                                             LPF 

 

                                    X 

                                                                       

                                                                               

                                       Analysis Filter 

After performing decomposition, the important frequencies can be coded with a fine resolution. 

The minimum requirement of the filters both the analysis filters and the synthesis filters are 

achieved by using the analysis filters and are derived from the perfect reconstruction conditions 

mentioned in Section 3.4. 

 is chosen by the QMF rule there fore 

 

Now the synthesis filters will be given by 

  and 

 

3.5.2. Lifting Scheme 

The simplest lifting scheme is the lazy wavelet transform, where the input signal is first 

split into even and odd indexed samples. 

 

HPF 
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H1 (z) 
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S1 
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The samples are correlated, so it is possible to predict odd samples from even samples which in 

the case of Haar transform are even values themselves. The difference between the actual odd 

samples and the prediction becomes the wavelet coefficients. The operation of obtaining the 

differences from the prediction is called the lifting step. The update step follows the prediction 

step, where the even values are updated from the input even samples and the updated odd 

samples. They become the scaling coefficients which will be passed on to the next stage of 

transform. This is the second lifting step. 

 

 

Finally the odd elements are replaced by the difference and the even elements by the 

averages. The computations in the lifting scheme are done in place which saves lot of memory 

and computation time. The lifting scheme provides integer coefficients and so it is exactly 

reversible. The total number of coefficients before and after the transform remains the same. 

 

Figure 3.5 Forward Lifting Scheme [16] 

 

 

The inverse transform gets back the original signal by exactly reversing the operations of 

the forward transform with a merge operation in place of a split operation. The number of 
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samples in the input signal must be a power of two, and these samples are reduced by half in 

each succeeding step until the last step which produces one sample. 

Figure 3.6 Inverse Lifting Scheme [16] 

 

The Haar wavelet transform uses predict and update operations of order one. Using different 

predict and update operations of higher order, many other wavelet transforms can be built using 

the lifting scheme. 

Figure 3.7 Steps for Decomposition Using Lifting 
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Basic steps involved in the decomposition are illustrated in Fig.3.7. Firstly the image/signal is 

sent through a low pass and band pass filter simultaneously (predict and update in case of lifting) 

and down sampled by a factor of 2. The process is repeated and the final four outputs are 

combined to from the transformed image as shown in Fig.3.8. 

 

Figure 3.8 Input and Outputs of Lifting Scheme 

 

 

 

 

 

                                      Original Image                         Transformed Image 

The transformed image in Fig.3.8 shows different subbands of which the first subband is 

called LL which represents the low resolution version of the image, the second subband is called 

LH which represents the horizontal fluctuations, the third band is called the HL which represents 

the vertical fluctuations, and the fourth subband is called the HH which represents the diagonal 

fluctuations. Same procedure can be followed to obtain different levels of image decomposition 

by changing the inputs given to the lifting or filter bank implementation techniques. 
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Chapter 4 – Implementation and Experimental Results 
 

In this report the Integer Wavelet Transform (IWT) and the Predictive Coding 

Techniques are used to perform lossless image compression. The performance of the proposed 

techniques is calculated by finding the Entropy and scaled entropy of the compressed image. The 

performance is also measured using compression ratio which is given by the ratio of the bits in 

the original uncompressed data to the number of bits in the compressed data.  

4.1. Procedure 

The procedure of the implementation involves four methods of performing compression 

on the medical image. In the first method IWT is performed first followed by predictive coding 

technique on the transformed image. In the second method the predictive coding technique is 

applied first followed by the integer wavelet transform. The third method involves reduction of 

the filter coefficients by a factor of 3/2 and then applying integer wavelet transform followed by 

predictive coding technique. The fourth method also used the reduced filter coefficients and 

performing predictive coding followed by integer wavelet transform. All these methods use Haar 

filter in the lifting scheme and the filter coefficients are given by  

h1= [-1 9 9 1]/ (16); 

h2= [0 0 1 1]/ (-4); 

Where h1 are the prediction filter coefficients and h2 are the update filter coefficients in the 

lifting scheme.   

The reduced filter coefficients are given by  

h1= [-1 9 9 1]/ (16*1.5); 

h2= [0 0 1 1]/ (-4*1.5); 

The implementation of all the four methods for five different medical images is also shown in the 

results. We implemented all the four methods using two other filters in lifting scheme called 

Daubechies 2 and Daubechies 3 and the results are presented. 
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4.2. Implementation Using Method 1 
 

 

Figure 4.1 Block Diagram for IWT Followed by Predictive Coding 

 

 

In this method integer wavelet transform is applied on the image which divides the image 

into four subbands ss, sd, ds, dd. Now predictive coding is applied on the four different bands 

separately giving outputs d1, d2, d3 and d4. The reconstruction process involves applying the 

predictive decoding followed by inverse integer transform. The reconstructed image is 

represented by z. To verify the perfect reconstruction the original and the reconstructed images 

are subtracted and the output is a dark image with maximum and minimum values as zero. 
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4.2.1. Outputs of Method 1  

Figure 4.2 Original Image 

Original Image

 

 

Figure 4.3 Image Obtained after Subband Coding 

Image Obtained after Subband Coding
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Figure 4.4 Encoded Image 

Encoded Image

 

 

Figure 4.5 Decoded Image 

Decoded Image
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Figure 4.6 Reconstructed Image 

Reconstructed Image

 

 

Figure 4.7 Difference of the Original and Reconstructed Image 

Difference of the original and restructured image
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4.3. Implementation Using Method 2 
 

Figure 4.8 Block Diagram for Predictive Coding Followed by IWT 

 

In this method predictive coding is applied on the image first, this converts the image into 

f^ (n). Now on this output integer wavelet transform is applied which divides the image into four 

subbands ss, sd, ds, dd. The reconstruction process involves applying the inverse integer wavelet 

transform on the transformed image followed by applying predictive decoding on the output of 

the inverse transform F (n). The reconstructed image is represented by z.  
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4.3.1. Outputs of Method 2 

Figure 4.9 Original Image 

Original Image

 

Figure 4.10 Predictive Encoder 

Predictive Encoder
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Figure 4.11 Image Obtained after Subband Coding 

Image Obtained after Subband Coding

 

 

 

Figure 4.12 Image after Inverse IWT 

Image after inverse IWT
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Figure 4.13 Predictive Decoder 

Predictive Decoder

 

 

 

 

Figure 4.14 Difference of Original and Reconstructed Image 

Difference of Original and Restructured
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4.4. Implementation Using Method 3 

In this method the filter coefficients used in the integer wavelet transform using lifting 

scheme are reduced by a factor of 3/2 and the same steps mentioned in Section 4.2 are 

performed. 

 

4.4.1. Outputs of Method 3 

 

 

 

Figure 4.15 Original Image 

Original Image
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Figure 4.16 Image Obtained after Sub band Coding 

Image Obtained after Subband Coding

 

 

Figure 4.17 Encoder Image 

Encoded Image
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Figure 4.18 Decoded Image 

 

Decoded Image

 

Figure 4.19 Reconstructed Image 

 

Reconstructed Image
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Figure 4.20 Difference of the Original and Reconstructed Image 

Difference of the original and restructured image
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4.5. Implementation Using Method 4 
 

In this method also the filter coefficients are reduced by a factor of 3/2 and same steps 

mentioned in Section 4.3 are implemented. 

 

4.5.1. Outputs of Method 4 

 

Figure 4.21 Original Image 

Original Image
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Figure 4.22 Predictive Encoder 

Predictive Encoder

 

 

 

Figure 4.23 Image Obtained after Sub Band Coding 

Image Obtained after Subband Coding
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Figure 4.24 Image after Inverse IWT 

Image after inverse IWT

 

 

 

Figure 4.25 Predictive Decoder 

Predictive Decoder
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Figure 4.26 Difference of Original and Reconstructed Image 

Difference of Original and Restructured

 
 

Table 4.1 Tabulations of Method 1 using different values of alpha and beta 

S.NO ALPHA BETA ORIGINAL 

ENTROPY 

ENTROPY 

AFTER 

WAVELET 

TRANSFORM 

ENTROPY 

AFTER 

PREDICTIVE 

CODING 

SCALED 

ENTROPY 

1 0.1 0.1 5.9604 5.6760 5.5322 5.1572 

2 0.3 0.3 5.9604 5.6760 5.2844 5.0973 

3 0.5 0.5 5.9604 5.6760 5.2578 5.1930 

4 0.7 0.7 5.9604 5.6760 5.6104 5.4533 

5 0.9 0.9 5.9604 5.6760 5.9678 5.7244 

6 0.1 0.01 5.9604 5.6760 5.5971 5.1836 

7 0.01 0.1 5.9604 5.6760 5.6076 5.2026 

8 0.01 0.01 5.9604 5.6760 5.6672 5.2258 
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Table 4.2 Tabulations of Method 2 using different values of alpha and beta 

S.NO ALPHA BETA ORIGINAL 

ENTROPY 

ENTROPY 

AFTER 

WAVELET 

TRANSFORM 

ENTROPY 

AFTER 

PREDICTIVE 

CODING 

SCALED 

ENTROPY 

1 0.1 0.1 5.9604 5.4356 5.3224 5.1648 

2 0.3 0.3 5.9604 5.4356 5.1512 5.0663 

3 0.5 0.5 5.9604 5.4356 5.1896 5.1450 

4 0.7 0.7 5.9604 5.4356 5.4968 5.4177 

5 0.9 0.9 5.9604 5.4356 5.8104 5.6996 

6 0.1 0.01 5.9604 5.4356 5.3673 5.1947 

7 0.01 0.1 5.9604 5.4356 5.3897 5.2197 

8 0.01 0.01 5.9604 5.4356 5.4299 5.2478 

 

 

 

Table 4.3 Tabulations of Method 3 using different values of alpha and beta 

SN0 ALPHA BETA ORIGINAL 

ENTROPY 

ENTROPY 

AFTER 

PREDICTIVE 

ENTROPY 

AFTER IWT 

SCALED 

ENTROPY 

1 0.1 0.1 5.9604 5.8193 5.4969 5.1020 

2 0.3 0.3 5.9604 5.4284 5.1257 4.8988 

3 0.5 0.5 5.9604 5.0654 4.9148  4.8723 

4 0.7 0.7 5.9604 5.6886 5.4011 5.2283 

5 0.9 0.9 5.9604 6.1320 5.8337 5.5640 

6 0.1 0.01 5.9604 5.8594 5.5705 5.1422 

7 0.01 0.1 5.9604 5.9145 5.5953 5.1802 

8 0.01 0.01 5.9604 5.9487 5.6614 5.2185 
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Table 4.4 Tabulations of Method 4 using different values of alpha and beta 

SN0 ALPHA BETA ORIGINAL 

ENTROPY 

ENTROPY 

AFTER 

PREDICTIVE 

ENTROPY 

AFTER IWT 

SCALED 

ENTROPY 

1 0.1 0.1 5.9604 5.8193 5.2627 5.0966 

2 0.3 0.3 5.9604 5.4284 4.9286 4.8317 

3 0.5 0.5 5.9604 5.0654 4.7891 4.7589 

4 0.7 0.7 5.9604 5.6886 5.2158 5.1371 

5 0.9 0.9 5.9604 6.1320 5.6163 5.4999 

6 0.1 0.01 5.9604 5.8594 5.3276 5.1500 

7 0.01 0.1 5.9604 5.9145 5.3591 5.1863 

8 0.01 0.01 5.9604 5.9487 5.4234 5.2389 
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4.5.2. Comparing all the four methods using different Images 

 

 

Figure 4.27 MRI of Brain 

Original Image

 
 

 

 

 

Figure 4.28 Iris Image 
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Figure 4.29 Nasal Fracture 

 

 

 

 

 
 

Figure 4.30 Throat Cancer 
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Figure 4.31 Nasal Fracture 2 
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Table 4.5 Comparison Table for different images using method 1 

Image Original Entropy 
Entropy after 

IWT 

Entropy after 

Predictive 

Coding 

Scaled Entropy 

Brain 5.9604 5.6760 5.2844 5.0973 

Iris1 6.8416 7.0029 5.4107 5.3845 

Nasal Fracture 6.4294 6.3516 4.0988 3.9990 

Throat Cancer 7.2322 6.8841 5.2829 5.1932 

Nasal Fracture 2 6.4444 6.5342 4.5150 4.4520 

 

Table 4.6 Comparison Table for different images using method 2 

Image Original Entropy 

Entropy after 

Predictive 

Coding 

Entropy after 

IWT 
Scaled Entropy 

Brain 5.9604 5.0654 4.9148  4.8723 

Iris1 6.8416 5.0425 5.2760 5.2556 

Nasal Fracture 6.4294 3.9267 3.7370 3.6634 

Throat Cancer 7.2322 5.1922 4.9891 4.9121 

Nasal Fracture 2 6.4444 4.1847     4.1980 4.1576 
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Table 4.7 Comparison Table for different images using method 3 

Image Original Entropy 
Entropy after 

IWT 

Entropy after 

Predictive 

Coding 

Scaled Entropy 

Brain 5.9604 5.4356 5.1512 5.0663 

Iris1 6.8416 6.8988 5.2047 5.1797 

Nasal Fracture 6.4294 6.1483 4.0103 3.9568 

Throat Cancer 7.2322     6.6987 5.2151 5.1505 

Nasal Fracture 2 6.4444 6.3369 4.3953 4.3570 

 

 

Table 4.8 Comparison Table for different images using method 4 

Image Original Entropy 

Entropy after 

Predictive 

Coding 

Entropy after 

IWT 
Scaled Entropy 

Brain 5.9604 5.0654 4.7891 4.7589 

Iris1 6.8416 5.0425 4.9817 4.9632 

Nasal Fracture 6.4294 3.9267 3.5275 3.4855 

Throat Cancer 7.2322 5.1922 4.8434 4.7889 

Nasal Fracture 2 6.4444 4.1847 3.9952 3.9681 
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4.5.3. Comparing the four methods using different filters 

The other filters used are Daubechies 2 and Daubechies 3 in the lifting scheme. 

Daubechies 2 is an orthogonal wavelet with two vanishing moments and Daubechies 3 filter is 

also an orthogonal wavelet with 3 vanishing moments.  

The coefficients of Daubechies 2 are given by  

h1= [(1 + √3)/4√2, (3 + √3)/4√2, (3 − √3)/4√2, (1 − √3)/4√2] 

h2= [-(1 − √3)/4√2, (3 − √3)/4√2, (3 + √3)/4√2, (1 + √3)/4√2] 

The coefficients of Daubechies 3 are given by 

 h1= [0.3327 0.8069 0.4600 -0.1350 -0.085 0.0352] 

h2 = [-0.0352 -0.085 0.1350 0.4600 -0.8069 0.3327] 

 

 

      

Table 4.9 Comparison Table for different images using Daubechies 2 filter in method 1 

Image Original Entropy 
Entropy after 

IWT 

Entropy after 

Predictive 

Coding 

Scaled Entropy 

Brain 5.9604 5.8990 5.5205 5.4986 

Iris1 6.8416 7.3438 5.3810 5.3619 

Nasal Fracture 6.4294 6.9186 4.3993 4.3655 

Throat Cancer 7.2322 7.2054 5.6088 5.5627 

Nasal Fracture 2 6.4444 6.9887 4.7088 4.6776 
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Table 4.10 Comparison Table for different images using Daubechies 2 filter in method 2 

Image Original Entropy 
Entropy after 

IWT 

Entropy after 

Predictive 

Coding 

Scaled Entropy 

Brain 5.9604 5.0654 5.0273 5.0107 

Iris1 6.8416 5.0425 4.9678 4.9504 

Nasal Fracture 6.4294 3.9267 3.8059 3.7778 

Throat Cancer 7.2322 5.1992 5.0953 5.0539 

Nasal Fracture 2 6.4444 4.1897 4.1725 4.1512 

 

 

Table 4.11 Comparison Table for different images using Daubechies 2 filter in method 3 

Image Original Entropy 
Entropy after 

IWT 

Entropy after 

Predictive 

Coding 

Scaled Entropy 

Brain 5.9604 5.8404 5.5227 5.4889 

Iris1 6.8416 7.4059 5.3699 5.3437 

Nasal Fracture 6.4294 6.7487 4.3438 4.3025 

Throat Cancer 7.2322 7.0520 5.5766 5.5175 

Nasal Fracture 2 6.4444 6.9194 4.7126 4.6789 

 

 



46 

 

Table 4.12 Comparison Table for different images using Daubechies 2 filter in method 4 

Image Original Entropy 
Entropy after 

IWT 

Entropy after 

Predictive 

Coding 

Scaled Entropy 

Brain 5.9604 5.0654 5.0204 5.0077 

Iris1 6.8416 5.0425 4.9736 4.9562 

Nasal Fracture 6.4294 3.9267 3.8226 3.7986 

Throat Cancer 7.2322 5.1922 5.1103 5.0736 

Nasal Fracture 2 6.4444 4.1847 4.1533 4.1344 

 

 

Table 4.13 Comparison Table for different images using Daubechies 3 filter in method 1 

Image Original Entropy 
Entropy after 

IWT 

Entropy after 

Predictive 

Coding 

Scaled Entropy 

Brain 5.9604 6.1303 5.7089 5.6927 

Iris1 6.8416 7.3861 5.4636 5.4417 

Nasal Fracture 6.4294 6.9672 4.5255 4.4975 

Throat Cancer 7.2322 7.2774 5.7492 5.7119 

Nasal Fracture 2 6.4444 7.0513 4.8399 4.8143 
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Table 4.14 Comparison Table for different images using Daubechies 3 filter in method 2 

Image Original Entropy 
Entropy after 

IWT 

Entropy after 

Predictive 

Coding 

Scaled Entropy 

Brain 5.9604 5.0654 5.1926 5.1822 

Iris1 6.8416 5.0425 5.0055 4.9895 

Nasal Fracture 6.4294 3.9267 3.9046 3.8815 

Throat Cancer 7.2322 5.1992 5.2270 5.1936 

Nasal Fracture 2 6.4444 4.1897 4.2724 4.2543 

 

 

Table 4.15 Comparison Table for different images using Daubechies 3 filter in method 3 

Image Original Entropy 
Entropy after 

IWT 

Entropy after 

Predictive 

Coding 

Scaled Entropy 

Brain 5.9604 6.1140 5.6658 5.6521 

Iris1 6.8416 7.2264 5.4841 5.4629 

Nasal Fracture 6.4294 6.8515 4.5225 4.4969 

Throat Cancer 7.2322 7.2990 5.7402 5.7013 

Nasal Fracture 2 6.4444 6.9912 4.8073 4.7826 
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Table 4.16 Comparison Table for different images using Daubechies 3 filter in method 4 

Image Original Entropy 
Entropy after 

IWT 

Entropy after 

Predictive 

Coding 

Scaled Entropy 

Brain 5.9604 5.0654 5.1356 5.1259 

Iris1 6.8416 5.0425 5.0044 4.9876 

Nasal Fracture 6.4294 3.9267 3.8853 3.8623 

Throat Cancer 7.2322 5.1922 5.1865 5.1548 

Nasal Fracture 2 6.4444 4.1847 4.2209 4.2030 
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4.6. Graphs 

 

 

Figure 4.32 Graph between predictors and scaled entropy for method 1 and method 3 
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Figure 4.33 Graph between predictors and scaled entropy for method 2 and method 4 
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Figure 4.34 Comparing the behavior of different images with alpha and beta values as 0.5 

 

 

 

 

Figure 4.35 Behavior of different images using Daubechies 2 filter in all the four methods 
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Figure 4.36 Behavior of different images using Daubechies 3 filter in all the four methods 
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Figure 4.37 Comparing the Performance of 3 Filters For Brain MRI Image 
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Chapter 5 - Conclusion 

5.1. Synopsis 
  

This report presented four different methods for lossless medical image compression and 

these methods are tested using five different images obtained from the medical image database of 

North Carolina State University and University of Iowa. The images are compressed losslessly 

by performing integer wavelet transform using lifting technique as mentioned in the report of 

Daubechies and Wim Sweldens [22] and lossless predictive coding technique using second order 

predictors. In Daubechies method a technique for factoring wavelet transform into lifting steps 

has been developed. Lifting is achieved by performing simple filtering steps using finite filters 

such as Haar filter. In all our methods we have used first order Haar filter for performing lifting. 

In lossless predictive coding technique we take the difference or prediction error into 

consideration rather than taking into account the original sample/image, the differences are taken 

between the original sample and the sample(s) before the original sample as it is easier to encode 

the difference rather than encoding the original sample.  

 

In the first lossless compression method, the image is transformed into four subbands 

using lifting technique, then predictive coding is applied to each subband using different 

predictor coefficients alpha and beta, giving an encoded image as output. Now the reverse 

process is applied to the encoded and the transformed image getting back the original image. The 

second method employs predictive coding technique on the image first followed by the integer 

wavelet transform giving a transformed output, which is then passed through the reverse 

techniques to get back the original image. The third and forth methods performed on the image 

involve reduction of  the Haar filter coefficients by a factor of 3/2 and the methods one and two 

are implemented on all the images. The report also presents results when two other filters are 

used in lifting technique instead of Haar filter. The two other filters used are Daubechies 2 and 

Daubechies 3. Entropy and scaled entropy are used to calculate the performance of the system, 

which calculates the number of bits per pixel. A lower entropy and scaled entropy indicate higher 

performance of the system. 
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The analysis of the experimental results has given many conclusions. Choosing the 

predictor coefficients is more critical as the alpha and beta value can lie between 0 and 1, so 

different combinations of these coefficients are tested. The best combination in methods 1 and 2 

are 03, 0.3 and methods 3 and 4 are 0.5, and 0.5. Among all the four methods, the forth method 

of performing predictive coding followed by integer wavelet transform using the reduced filter 

coefficients gave a better compression. This process reduced the entropy of the original image by 

almost 40% as shown in Table 4. This result can also be seen in Fig.44 and Fig.45 where the 

graphs are plotted for all the four methods. Of all the three filters used the first order Haar filter 

gave better performance as shown in Fig.49. Out of all the images used, the nasal fracture images 

gave the least entropy for all the four methods performed this can be seen in the tables present in 

Sections 4.5.2 and 4.5.3 and Fig.46.  

5.2. Future Suggestions 
 

The lifting scheme used in this report is only a two level lifting scheme. In order to 

improve the entropy of the transformed image, a multi level lifting scheme is to be implemented. 

The performance of the predictive coding can be increased by using higher order predictors with 

two dimensional predictions. Another possibility for improving the performance would be to use 

model-based and adaptive approaches. 

The performance of the four lossless compression techniques proposed in the report can 

also be improved by performing different combinations of various transforms and coding 

techniques other than IWT and predictive coding, and realize the most optimal combination that 

gives the least entropy.   
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APPENDIX A - Matlab Code 

IWT followed by Predictive 

 

clear all; 

close all; 

clc; 

  

F=imread('Lena1.bmp'); 

F=rgb2gray(F); 

figure(1); 

imshow(F,[]); 

title('Original Image'); 

  

%lifting scheme 

i2=double(F); 

h1=[-1 9 9 1]/(16*1.5); 

h2=[0 0 1 1]/(-4*1.5); 

  

%rows 

o=i2(:,1:2:size(i2,2)); 

e=i2(:,2:2:size(i2,2)); 

y0=e-round(filter2(h1,o)); 

y1=o+round(filter2(h2,y0)); 

%column 

y00=y1(1:2:size(y1,1),:); 

y01=y1(2:2:size(y1,1),:); 

sd=y01-round(filter2(h1,y00)); 

ss=y00+round(filter2(h2,sd)); 

%column 

y10=y0(1:2:size(y0,1),:); 

y11=y0(2:2:size(y0,1),:); 
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dd=y11-round(filter2(h1,y10)); 

ds=y10+round(filter2(h2,dd)); 

figure(2) 

im=[ss sd;ds dd]; 

imshow(uint8(im)); 

title('Image Obtained after Subband Coding'); 

  

%compression 

[m1 n1]=size(ss); 

[m2 n2]=size(sd); 

[m3 n3]=size(ds); 

[m4 n4]=size(dd); 

%predictive coding for ss subband 

F1=zeros(m1,2); 

F2=[F1 ss]; 

F3=zeros(2,n1+2); 

F4=[F3;F2]; 

F5=double(F4); 

  

alpha=0.5; 

beta=0.5; 

%taking the 2nd order predictor 

for i=3:n1+2 

    for j=3:n1+2 

        F6(i-2,j-2)=round((alpha)*(F5(i,j-1)+(beta)*F5(i,j-2))); 

        F6(i-2,j-2)=round((alpha)*F5(i-1,j)+(beta)*F5(i-2,j)); 

    end 

end 

D1=double(ss)-F6; 

  

%predictive coding for sd subband 
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F11=zeros(m2,2); 

F21=[F11 sd]; 

F31=zeros(2,n2+2); 

F41=[F31;F21]; 

F51=double(F41); 

  

%taking the 2nd order predictor 

for i=3:n2+2 

    for j=3:n2+2 

        F7(i-2,j-2)=round((alpha)*(F51(i,j-1)+(beta)*F51(i,j-2))); 

        F7(i-2,j-2)=round((alpha)*F51(i-1,j)+(beta)*F51(i-2,j)); 

    end 

end 

  

D2=double(sd)-F7; 

  

%predictive coding for ds subband 

F111=zeros(m3,2); 

F211=[F111 ds]; 

F311=zeros(2,n3+2); 

F411=[F311;F211]; 

F511=double(F411); 

  

%taking the 2nd order predictor 

for i=3:n3+2 

    for j=3:n3+2 

        F8(i-2,j-2)=round((alpha)*(F511(i,j-1)+(beta)*F511(i,j-2))); 

        F8(i-2,j-2)=round((alpha)*F511(i-1,j)+(beta)*F511(i-2,j)); 

    end 

end 
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D3=double(ds)-F8; 

  

 %predictive coding for dd subband 

F1111=zeros(m4,2); 

F2111=[F1111 dd]; 

F3111=zeros(2,n4+2); 

F4111=[F3111;F2111]; 

F5111=double(F4111); 

  

  

%taking the 2nd order predictor 

for i=3:n4+2 

    for j=3:n4+2 

        F9(i-2,j-2)=round((alpha)*(F5111(i,j-1)+(beta)*F5111(i,j-2))); 

        F9(i-2,j-2)=round((alpha)*F5111(i-1,j)+(beta)*F5111(i-2,j)); 

    end 

end 

  

D4=double(dd)-F9; 

figure(3); 

imshow([D1 D2;D3 D4],[]); 

title('Encoded Image'); 

im1=(([D1 D2;D3 D4])); 

E=entropy(uint8([D1 D2;D3 D4])); 

%finding entropy 

E0=entropy1(im); 

E=entropy1(im1); 

E1=entropy1(D1); 

E2=entropy1(D2); 

E3=entropy1(D3); 

E4=entropy1(D4); 
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total=(1/4)*(E1+E2+E3+E4); 

  

% decoding ss 

F10=D1+F6; 

  

%decoding sd 

F11=D2+F7; 

  

%decoding ds 

F12=D3+F8; 

  

%decoding dd 

F13=D4+F9; 

figure(4); 

imshow([F10 F11;F12 F13],[]); 

title('Decoded Image'); 

  

%reconstruction 

x00=F10-round(filter2(h2,F11)); 

x01=F11+round(filter2(h1,x00)); 

  

x0(1:2:2*size(x00,1),:)=x00; 

x0(2:2:2*size(x01,1),:)=x01; 

  

x10=F12-round(filter2(h2,F13)); 

x11=F13+round(filter2(h1,x10)); 

  

x1(1:2:2*size(x10,1),:)=x10; 

x1(2:2:2*size(x11,1),:)=x11; 

   

z0=x0-round(filter2(h2,x1)); 



63 

 

z1=x1+round(filter2(h1,z0)); 

  

z(:,1:2:2*size(z0,2))=z0; 

z(:,2:2:2*size(z1,2))=z1; 

  

figure(5); 

imshow(uint8((z))); 

title('Reconstructed Image'); 

I=(z)-double(F); 

figure(6); 

imshow(I); 

title('Difference of the original and restructured image') 

  

  

Predictive Followed by IWT 
 clear all; 

close all; 

clc; 

  

F=imread('Lena1.bmp'); 

F=rgb2gray(F); 

figure(1); 

imshow(F,[]); 

title('Original Image'); 

  

[M,N]=size(F); 

F1=zeros(M,2); 

F2=[F1 F]; 

F3=zeros(2,N+2); 

F4=[F3;F2]; 

F5=double(F4); 
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figure(2); 

imshow(F4); 

  

alpha=0.5; 

beta=0.5; 

%taking the 2nd order predictor 

for i=3:N+2 

    for j=3:N+2 

        F6(i-2,j-2)=round((alpha)*(F5(i,j-1)+(beta)*F5(i,j-2))); 

        F6(i-2,j-2)=round((alpha)*F5(i-1,j)+(beta)*F5(i-2,j)); 

    end 

end 

  

 D=double(F)-F6; 

 figure(3); 

 imshow(D,[]); 

 title('Predictive Encoder'); 

 Entropy=entropy1(D); 

  

% lifting scheme 

i2=double(D); 

h1=[-1 9 9 1]/(16*1.5); 

h2=[0 0 1 1]/(-4*1.5); 

%rows 

o=i2(:,1:2:size(i2,2)); 

e=i2(:,2:2:size(i2,2)); 

y0=e-round(filter2(h1,o)); 

y1=o+round(filter2(h2,y0)); 

%column 

y00=y1(1:2:size(y1,1),:); 

y01=y1(2:2:size(y1,1),:); 
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sd=y01-round(filter2(h1,y00)); 

ss=y00+round(filter2(h2,sd)); 

%column 

y10=y0(1:2:size(y0,1),:); 

y11=y0(2:2:size(y0,1),:); 

dd=y11-round(filter2(h1,y10)); 

ds=y10+round(filter2(h2,dd)); 

figure(4) 

im=[ss sd;ds dd]; 

imshow(uint8(im)); 

title('Image Obtained after Subband Coding'); 

%CALCULATING ENTROPY‟S 

E=entropy1(im); 

E1=entropy1(ss); 

E2=entropy1(sd); 

E3=entropy1(ds); 

E4=entropy1(dd); 

total=(1/4)*(E1+E2+E3+E4); 

   

  

%reconstruction 

x00=ss-round(filter2(h2,sd)); 

x01=sd+round(filter2(h1,x00)); 

  

x0(1:2:2*size(x00,1),:)=x00; 

x0(2:2:2*size(x01,1),:)=x01; 

  

x10=ds-round(filter2(h2,dd)); 

x11=dd+round(filter2(h1,x10)); 

  

x1(1:2:2*size(x10,1),:)=x10; 
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x1(2:2:2*size(x11,1),:)=x11; 

   

z0=x0-round(filter2(h2,x1)); 

z1=x1+round(filter2(h1,z0)); 

  

z(:,1:2:2*size(z0,2))=z0; 

z(:,2:2:2*size(z1,2))=z1; 

  

figure(5); 

imshow(((z)),[]); 

title('Image after inverse IWT'); 

  

%decoding 

F7=(z)+double(F6); 

figure(6); 

imshow(F7,[]); 

title('Predictive Decoder'); 

I=(F7)-double(F); 

figure(7); 

imshow(I,[]); 

title('Difference of Original and Restructured'); 

 

Code for Entropy 
 

function sum=entropy1(im1) 

[n n]=size(im1); 

x5=im1(:); 

x6=im1(:); 

r1=reshape((im1),1,n*n);%converting into a row matrix 

[x1 i1]=sort((r1));%sorting and getting the indices 
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x2=r1(i1);%placing the sorted values in the indices 

l1=length(x2); 

 sum1=0; 

for i=1:l1 

    occur=0; 

    for j=1:l1 

        if( x1(i)==x2(j)) 

            occur=occur+1; 

        end 

    end 

    p1(i)=occur/l1; 

    sum1=((p1(i)*log2(p1(i)))/(occur))+sum1; 

end 

sum=(-sum1); 

APPENDIX B - Matlab Program Listings  
 

IMREAD: 

Reads a grayscale or color image from the file specified by the string filename. 

IMSHOW: 

 Displays the grayscale image I.-imshow (I). 

RESHAPE: 

Returns the m-by-n matrix B whose elements are taken column-wise from A. An error results if 

A does not have m*n elements.- B = reshape(A,m,n) 

SORT: 

Sort array elements in ascending or descending order.-B = sort (A) 

SIZE: 

Array dimensions- returns the sizes of each dimension of array X in a vector d with ndims(X) 

elements.- d = size(X). 
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FILTER2: 

2-D digital filter filters the data in X with the two-dimensional FIR filter in the matrix h. 

It computes the result, Y, using two-dimensional correlation, and returns the central part of the 

correlation that is the same size as X.- Y = filter2 (h,X) 

ROUND: 

Round to nearest integer rounds the elements of X to the nearest integers. For complex X, the 

imaginary and real parts are rounded independently.- Y = round(X). 

LENGTH: 

Length of vector. The statement length(X) is equivalent to max (size(X)) for nonempty arrays 

and 0 for empty arrays.- n = length(X) 

DOUBLE: 

Converts to double precision, double(x) returns the double-precision value for X. If X is already 

a double-precision array, double has no effect.- double(x) 

ZEROS: 

zeros(N) is an N-by-N matrix of zeros.  ZEROS (M, N) or ZEROS ([M, N]) is an M-by-N matrix 

of zeros. 

SUM  

S = sum (X) is the sum of the elements of the vector X. If X is a matrix, S is a row vector with 

the sum over each column. 

TITLE 

Title ('text') adds text at the top of the current axis. 

Unit8 

I = Uint8(X) converts the elements of the array X into unsigned 8-bit integers. 
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