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INTRODUCTION

PURPOSE OF RESEARCH

Concrete has proven to be one of the most versatile building materials

available to date. The high compressive strength of concrete and its

ability to cast into almost any shape or size has inspired new areas of

design avenues. Concrete is primarily used as a bearing material within

construction, although modern designers have used it in new applications

such as; pressure vessels for nuclear reactors, undersea vessels for

mineral oil storage, off-shore platforms for oil drilling and production,

and even ship's hulls. This wider range of applications can be traced to

improved methods of dealing with tensile stresses within concrete

structures. Steel reinforcement and prestressing methods have allowed

designers to incorporate tensile loads, where as prior to these methods

concrete was normally used in designs involving only compressive loads.

A paradox arises when considering concrete, despite its time honored

and widespread use there is still much that is unknown as to the nature and

behavior of concrete when consideration is given to mathematical

characterization. Significant research into the study of concrete has only

been achieved in the past twenty-five years or so. Research by cement

technologists and chemists have established a generally accepted picture of

the composition and internal structure of hardened cement paste. The"

knowledge of the internal structure of any material is essential if its

complex mechanical behavior at the engineering level is to be properly
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understood. These improvements in understanding of concrete structure have

provided fertile grounds for development of theories of elastic and

inelastic behavior.

Past design methods, when using concrete, have generally involved very

simplified idealizations of the material behavior and include large factors

of safety. These methods depended on experience which was incorporated

into design codes, rules, and recommendations. An exact detailed

mathematical description of the materials behavior was in most cases of no

practical relevance, as a vehicle for its use was unavailable. This is no

longer true with the advent of computer aided design methods, such as

finite element analysis. In addition the recent introductions of high

strength concretes of 10,000 PSI or more compressive strength capabilities,

has changed the design problems. Structural engineers are now considering

complex designs involving extreme dimensions and higher safety standards

using unusual or severe load conditions. The use of numerical analysis

through the finite element method is the most desirable mode of structural

analysis under these increasingly demanding restraints.

Computer aided design methods have lagged behind in concrete

structural analysis when compared to other well characterized ' materials.

The lack of or inadequacies in descriptive material models, especially for

brittle materials such as concrete, have limited the application of

the finite element method to concrete structural design. There are

additional reasons for lack of widespread use such as the degree of

homogeneity to adopt, the type of element to be used, the cohesion factor

between concrete and steel, and especially the numerical solution procedure

of the resulting non-linear set of equations. Mathematical solutions to

these problems have been a continuing area of much needed research.
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The inadequacies of present material models for concrete can be traced

to its complex, quasi-linear and under certain conditions quasi-plastic

states of mechanical response. Thus formation of a mathematically

tractable function has been hindered by the very nature of concrete. In an

effort to resolve the material characterization problems associated with

concrete this investigation focuses on the ultimate strength prediction.

The development of such a strength criterion based on sound mathematical

procedures and proven material characteristics would be most valuable.

Development of such a criterion will greatly enhance computer aided design

procedures as well as classical design methods. An improved strength

criterion is a powerful tool which will advance the accuracy and safety of

modern structures designed using concrete.

The development of any multiaxial strength criterion is best proceeded

by experimental testing of the material under combination loads. The

experimental results are used to guide development and validate the

proposed strength criterion. The multiaxial stress space formed under

biaxial load conditions is the primary concern of this investigation. An

accurate strength criterion for concrete under biaxial states of stress is

required in many design instances such as, the shell of a nuclear power

plant or material storage tanks. There have been many experimental results

published for the failure of concrete under biaxial states of stress.

These results will be reviewed and the most accurate selected for

validation of the proposed strength criterion.

The increase in popularity of composite materials has stimulated

growth in the area of material characterization. The developments of

descriptive strength criteria for anisotropic brittle materials has been

accelerated by the increasing popularity of designing systems using
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fiber-reinforced composite materials. In addition advances in the theories

of non-linear continuum mechanics have proven highly applicable in this

instance. The tensor function theory approach to the development of

descriptive constitutive equations and subsequent strength criteria has

proven its capabilities in these areas. These general theories will be

investigated and their application to concrete expanded and evaluated.

The application of the tensor function theory approach to the

development of a strength function for concrete is followed in this

investigation. Concrete is idealized as a composite material adhering to

modern material theory. The average response of the individual components

are taken to indicate the total response of the material system. Thus the

macroscopic approach is adopted and the material is characterized as a

homogeneous, isotropic continuous media. The composite nature justifies

using the powerful general strength theories often recommended for usage

with more exotic materials.

The objective of this investigation is to develop a simple, rational,

multiaxial strength criterion for plain concrete at isothermal, static,

monotonically increasing load conditions. The proposed strength criterion

developed is a general, three-parameter, unified equation capable of

predicting failure of concrete under biaxial loading conditions. The

proposed criterion satisfies the invariant requirements of coordinate

transformation by adhering to the laws of continuum mechanics. The

strength function is easily characterized to the material quality through

three simple engineering strength tests.

The proposed criterion will be graphically compared and verified

against experimental results under biaxial load conditions. In addition

the newly proposed criterion is compared to past theories and proven to be
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superior. The results are highly useful as concrete will remain the major

structural material of choice owing to its outstanding technological and

economic qualities.



CHAPTER ONE

MATERIAL CHARACTERISTICS AND EXPERIMENTAL DATA

Literature Review

The Composition of Concrete

The heterogeneous nature of concrete creates a complex material which

is difficult to characterize. Concrete is a multi-phase material normally

classified as a composite. A few of the components in concrete being;

course aggregate, sand, unhydrated cement particles, cement gel, capillary

and gel pores, pore water, admixtures, and accidentally or deliberately

entrapped air voids. Plain concrete is a combination of these components

formed into a uniform, evenly distributed mixture. This mixture is cured

while being contained in a form, until a minimum strength is obtained. The

ultimate strength is very dependent on the total process from initial

mixing to the final cure.

The proportions of the components which form the initial concrete mix

are commonly expressed in terms of the specific volume or volume fraction:

V+V+V+V + V - 1 (1.1)
c w s ca v

where, V, represents the relative volume fractions of the subscripts which

are: c is unhydrated cement, w is initial water content, s is sand, ca is

coarse aggregate, and v is entrapped air. Equation (1.1) is not all

inclusive as other components are added from time to time.
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also:
M M M M M M

r Ci 1 1 C a s ca v.

c c a s ca v

where G represents specific gravity of the subscripted components.

Concrete undergoes a process known as hydration upon initial mixing.

Avram et.al. [5] states that the chemical reaction between the cement

mineralogical components and water forms the hydration process. This

chemical process proceeds forming a hardened cement paste which binds

together the fine and coarse aggregate particles.

The ultimate strength of plain concrete is affected by numerous

aspects, i.e. the materials of composition, environmental curing

conditions, and mixing proportions. To attain the desired ultimate

strength of a particular mix two primary influences must be considered; the

initial ratios of the respective parts and the environmental cure

conditions. The environmental conditions with the greatest effects on

concrete strength variations during hardening are temperature and moisture

conditions states Avram et.al. [5].

Newman [67] in order to simplify the overall strength characterization

of concrete considers hydrated cement pastes, mortars, and concretes as

two-phase materials. Each material is composed of coarse particles

uniformly distributed and embedded within a reasonably homogeneous matrix.

Thus for concrete the primary strength influencing components are mortar

and coarse aggregates. The two-phase model suggested is large compared

with the maximum size of the particles imbedded in the matrix. By

following this reasoning the behavior of the matrix under load can be

expressed in terms of the average stresses and strains of a homogeneous and

isotropic material.
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The overall properties of the two-phase model are highly dependent on

the individual characteristics of the mortar and aggregate. The specific

mortar properties are dependent on the mix proportions and cement type

used. The ultimate strength of the cement paste is best described by

Abrams [1] classic law of:

S = — = strength, PSI (1.3)
B
x

where, x, represents the water to cement ratio (w/c), 'A' is given as

14,000 PSI, and
?

B' is seven (7). Abram's law states that the strength of

cement paste is an inverse function of the water to cement ratio.

The strength of concrete is highly dependent on the classifications of

the cement type used. The mineralogical constituents of the cement

determine its classification. The main cement used for construction is of

the Portland variety. Portland cement is available in five different

classifications. The classif icaitons define the primary usage for the

cement and differ mainly in their compound composition and fineness. A

good description may be found in Davis et.al. [19] or Avram et.al. [5],

The aggregates are generally inert filler material which consume

approximately 80% of the concrete volume. Aggregates are classified by

their source, mode of preparation, and mineralogical composition. Natural

aggregates consist of hard, non-weathering, frost resistant rocks. The

most frequently used artificial aggregates are blast-furnace slag,

agglomerated ashes, ceramic particles, expanded clays, fibers and others.

The aggregate used depends on the desired concrete characteristics.

Newman [69] presents the properties of concrete materials in tabular

form to demonstrate the differences between hardened cement paste and

aggregates. The primary emphasis of his comparison is to demonstrate that
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the macroscopic characteristics are the average of the individual component

characteristics which essential are widely different. The factors

affecting the intrinsic properties of concrete systems being dependent on

the degree of homogeneity, properties of the cement paste, properties of the

aggregates, and properties of the aggregate-paste interface.

The final ultimate strength property of a concrete mix is also

influenced by other factors. The environmental conditions during the cure

period are highly influencial. The longer the period of moist storage and

the higher the temperature (within the 40° to 100° F range [69]) the

greater the strength at any age. The strength of moist concrete increases

with age. The hydration process between cement and water may not be

completed for 25 years or more, states Newman et.al. [7], The rate of

increase in the strength of concrete gradually decreases, tending towards

an asymptotic value when the rate of increase reaches zero.

The Mechanical Behavior of Concrete

The behavior of concrete under loading represents the complex inner

response of the material to an external action. The response is due to a

large number of influencial factors and is covered well in Avram et.al.

[5], To summarize, the major mechanical aspects of concrete behavior will

be addressed here. The stress-strain relations and ultimate strengths of

concrete are dependent on various testing conditions including; specimen

size, moisture condition and temperature, the state of stress and strain

actually induced in the specimens, and the methods by which they are

loaded. In addition recent testing has considered the rate of load

application in material response.

The influence of secondary characteristics to the response of concrete

has been the subject of research in recent years. The need for adequate
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constitutive equations for representation of material response under

various loading and environmental conditions has prompted inclusion of

secondary influences as much as possible. Desai and Siriwardance [20] have

reviewed recent progress in constitutive equation development for concrete.

In past years much of the experimental testing of concrete was performed

under short-term, monotonic, static load conditions. Therefore much of the

published data has ignored the secondary influences such as, rate of

loading, fatigue factors, variations of temperature, and others.

An example of concrete response during short-term, monotonic loading

is given in the stress-strain curve of Figure (1.1). The initial portion

of the curves are reasonably straight up to about 40 to 60 percent of the

ultimate strength. Plain concretes are non-linear and have no readily

identifiable elastic limit. Newman et.al [71] has defined two different

'elastic' constants (see Fig. 1.1) as: (1) the tangent modulus of

elasticity given by the slope of 'OB' and, (2) the secant modulus of

elasticity given at the stress 'A' by the slope of '0A'. It has also been

noted that the modulus of elasticity is a function of the concrete class

and is affected by the same factors as the compressive strength. The

American Concrete Institute building code suggests the use of the following

equation to determine the modulus of elasticity for use in standard

calculations [19]:

E = W 33 n/o~ (1.4)

where, E , represents the modulus of elasticity in P.S.I. , W is the weight

3
of the concrete in lb/ft , and a is the uniaxial compressive strength in

c l- o

P.S.I.

The Poissons ratio for concrete is variable and depends on the load

3 2application rate. During relatively low load rates (< 10 to 10 lb/in S
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[69]) a static Poisson's ratio is considered. The static Poisson's ratio

varies during loading from .14 to almost .5. The dynamic Poisson's ratio

(load rates > 10 lb. /in S [69]) is generally about 20% higher than the

static value.

The recorded response of concrete is highly dependent on the loading

method and conditions at test time. Thus the stress-strain curve, ultimate

strength, modulus of elasticity, and Poissons ratio determination are

highly dependent on the testing techniques.

Influence of Test Procedure

For the measured values of the mechanical properties of concrete to be

considered fundamental and unique they must be obtained from tests which

have produced known stress conditions in the specimens, independent of any

machine or testing effects. Wastiels [99], Nelissen [66], Avram et.al.

[5], and Newman-Newman [71] have extensively reviewed the many problems in

testing techniques for concrete. These studies concluded that there are

two primary influences which affect the accuracy of the mechanical

properties determined from experimental data; the specimen geometry and the

load application device. The two influences are not mutually exclusive but

are interactive.

The induced stress within the test specimen must be easily determined

and uniform in the critical zone, so that the exact stress condition at

failure is known. The edge effects caused by the loading mechanism can

produce uneven loading with or without shear stresses in the boundary zone.

The frictional restraint between the specimen and loading platens caused by

the differences in the Poissons ratio prevent the ends of the specimen from

expanding laterally, thus inducing shear stresses in the boundary zone.

Nelissen [66] reviewed the various methods used to eliminate the edge
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effects caused by the loading mechanism. He reached the conclusion that

the system proposed by Kupfer, Hilsdorf, and Rusch [57] was the most

effective. These investigators developed a brush bearing platen for use as

a load application device. A representative sketch of this platen is given

in Figure (1.2). These platens are best designed for the particular

strength quality of concrete to be tested, as discussed in Nelissen [66].

These concrete load application platens consist of a series of closely

spaced small steel rods which are flexible enough to allow lateral

deformation without inducing shear stresses near the edge of the specimen.

For tensile tests the ends of the bars of the platens can be glued to the

concrete.

Another popular testing procedure is the hydrostatic pressure systems

which are used to induce stresses into a specimen. The surface of the

specimen to be loaded is exposed to a fluid under pressure. Pure, normal

stresses result on the specimen surface with no induced shear stresses.

The investigators using hydrostatic test procedures must insure that the

pressurized fluid does not enter into the specimen pores or high tensile

stresses could develop causing premature failure. Typically the surface

exposed to the pressurized fluid is covered or coated with an impermeable

material

.

Atkinson [4] describes a hydrostatic test cell for multi-axial loading

of cubic concrete specimens by independently controllable pressure

chambers, thus any combination of triaxial compressive stresses is

obtainable. This pressure cell was used by Gertsle [31] for triaxial and

biaxial concrete testing. The hydrostatic system proposed by Atkinson [4]

eliminates the undesirable testing condition of non-parallel loading

platens that can induce a non-uniform stress distribution within the

specimen.
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An inherent restraint of hydrostatic loading systems is their

inabilities to induce normal tensile stresses. To overcome this handicap

combination mechanical and hydrostatic loading mechanisms have been

proposed. Newman [67] describes and uses a combination loading system for

concrete specimens

.

To further the understanding of edge loading effects on concrete

specimens Nelissen [66] studied the stress distribution produced within a

square cube specimen by use of the finite element method. The results were

inconclusive due to Nelissen 's admitted lack of adequate material

characterization for concrete. Although he did conclude that the brush

bearing platens were superior to solid steel platens for load application.

Herrmann [36] addresses the importance of edge effects on concrete

specimens from a statistical point of view. He concluded that due to

practical limitations samples of concrete are usually far too small to

achieve statistical homogeneity. Therefore considerable statistical

scatter is inevitable. Herrmann argued that specimens with zero shear

stresses and uniform normal stresses on the edges are lower bounds for the

determination of mechanical properties. He further concludes that material

property results obtained from uniform normal displacement tests are closer

to the actual composite properties than those measured from uniform normal

stress tests. Thus the mechanical brush bearing platen test is favored

over the hydrostatic testing method.

The specimen geometry being used influences the determination of the

stresses induced. The stresses are generally calculated from the measured

loading force distribution within the critical zone of the specimen. To

obtain accurate stresses the specimen shape should be of a type which
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provides a summary of specimen shapes and analyzes the problems associated

with calculation of the stress state in each. He concludes that square

cube specimens are the most accurate. He uses these in the development of

his experimental data investigation.

The Fracture and Failure of Concrete

Concrete specimens subjected to any state of stress can support loads

up to 40-60 percent of ultimate without any apparent signs of distress. As

the load continues to be increased, soft but distinct noises of internal

disruption can be heard until, at about 70-90 percent of ultimate, small

fissures or cracks appear on the surface. These cracks spread and

interconnect until, at ultimate load, the specimens fracture into separate

pieces [52],

Newman and Kotsovos have undertaken a series of papers which further

defines the deformational and strength characteristics of concrete [51, 52,

53, 67, 68, 69]. They and other investigators such as Wastiels [99]

suggest .four distinct stages in the process of crack initiation and

propagation. Kotsovos [52] further categorizes the failure mechanism of

concrete as being promoted by two separate stress components; crack growth

occurring in the direction of the applied maximum principal compressive

stress is caused by the deviatoric component, and crack growth of random

orientation is caused by the hydrostatic component. Kotsovos concludes

that crack growth caused by the deviatoric component of stress eventually

becomes unstable, leading to the ultimate collapse. He states that the

hydrostatic components of stress leads to delayed crack growth and never

becomes unstable.

An inherent characteristic of concrete is that it contains a

proliferation of flaws and microcracks which exist even prior to loading.
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These preexisting flaws are randomly oriented and distributed throughout in

a range of shapes and sizes. Upon loading, these flaws act as stress

concentration points which initiate the final cracks which propagate

causing complete material failure. The four stages of concrete crack

growth defined and generally agreed to in the literature are as follows:

1) A quasi-elastic behavior occurs up to 30-40 percent of ultimate,

during which additional microcracks are forming. The hydrostatic and

deviatoric components are operating and causing crack growth.

2) Concrete begins to exhibit a plastic behavior between 45-90 percent

of ultimate, during which the microcracks begin to branch. This period is

known as Localized Stable Crack Growth . The hydrostatic and deviatoric

stress components are both operating to cause crack growth.

3) An increasing load continues the stable crack growth as the cracks

begin connecting through the cement matrix, occurring between 70-90 percent

of ultimate. This stage is known as the Onset of Stable Fracture

Propagation (O.S.F.P.). The hydrostatic component of stress tends to delay

crack growth caused by the deviatoric component during this stage.

4) The final stage occurs during what is known as the Onset of

Unstable Fracture Propagation (O.U.F.P.). At this point unstable crack

growth occurs and total ultimate failure follows as the specimen breaks

into pieces. This occurs between 70-90 percent of the ultimate. The

hydrostatic component of stress tends to stop crack growth during this

stage while the deviatoric component promotes unstable crack growth.

Kotsovos [52] proposes an upper and lower bound for definition of

concrete failure. The upper bound being O.U.F.P. and the lower bound being

O.S.F.P. Analogous properties of these bounds would be the yield point and

the ultimate strength when discussing ductile materials.
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Biaxial Test Data for Concrete Failure

To verify the proposed failure criterion for concrete under biaxial

states of stress a comparison to failure data obtained experimentally must

be accomplished. A review of the published literature exposed numerous

examples of concrete failure testing. The published literature consisted

of uniaxial, biaxial, and triaxially loaded specimens. Since this

investigation is primarily concerned with the development of a failure

criterion for a biaxial stress state, further evaluation shall be

restricted to experimental failure data under biaxial loading only.

Comprehensive studies of the published failure data for concrete in

biaxial loading have been accomplished by Wastiels [99] and Nelissen [66].

They conclude that a critical assessment of published experimental data is

vital. This is especially important in obtaining failure data for concrete

under biaxial states of stress as triaxial conditions are easily induced.

As was discussed previously there are numerous problems involved with

obtaining the desired state of stress in a specimen. Much of the published

data has been shown to be in error. To complement and update the

previous reviews of failure data for concrete a summary review of the most

favorable data available shall be accomplished here.

In reviewing chapter one up to this point it can be said that concrete

is a highly complex, variable, and difficult to characterize material. The

properties of plain concrete have been shown to be influenced by its

composition, while the mechanical behavior has been shown to be influenced

by the testing methods. Indeed the ultimate strength point is not even

well defined in the literature. In general the test data available does

not adequately define the composition of the concrete mix being tested or

the test conditions under which the investigation was performed.
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To select the best available concrete failure data this investigation

followed the recommendations of Wastiels [99] and Nelissen [66] while

adding a few more. The criteria used to select acceptable failure data was

culled from the literature and by comparison studies of accepted failure

data for biaxial loading. The main criteria used for selection of

experimental data was:

1) The stresses within the test specimen must be easily calculable by

accurate means. Approximate or non-linear stress distributions should be

avoided.

2) Load applicaton to the specimen must be free of edge effects or

the specimen critical failure zone must be truely loaded in a known biaxial

state.

3) The material properties must be adequately defined so as to permit

duplication of the test. This includes the exact type of Portland cement,

aggregate make-up, environmental conditions during cure and specimen age at

test.

4) An adequate description of the loading sequence should be given.

The failure testing should have been performed with monotonically

increasing, static results as the conclusion.

5) The material failure condition will have been considered at the

Onset of Unstable Fracture Propagation (O.U.F.P.). The specimen should

have been loaded to complete failure.

6) An adequate number of failure tests should have been performed to

allow for an average value for a given failure data point. The failure

data obtained must be the statistical average.

7) The failure data must be in general agreement with accepted test

results from the literature.
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These seven criteria for data acceptance are not totally definitive

but are used as a general guideline. A strong reliance on the reviews

previously mentioned dealing with experimental data was imperative.

The wide variation of concrete properties would appear to make it

impossible to compare different experimental test results. The variation

in material mixes and ultimate strengths make direct comparison of the

experimental results between investigators impossible. Fortunately,

normalization of the experimental data yields comparable results. Thus the

experimental failure data for concrete is divided by the specimens uniaxial

compressive strength (a ) to normalize the relationships. The failure

envelope for the biaxial states of loading appear very similar when

normalized, as may be seen in Figures (1.3) through (1.20).

The experimental test results for the failure of concrete have been

presented in differing forms throughout the literature. Data has been

presented as shear-normal stresses, octahedral shear-normal stresses, and

as principal normal stresses. The failure stress points are either

presented in the respective plane by plotting or in tabular format. The

data is not always normalized and sometimes normalized in an incompatible

manner.

In this investigation all experimental data was translated into normal

principal stresses. The data was then normalized with respect to the

uniaxial compressive strength of the specimen geometry used in the test

program. The data was then plotted in the principal stress plane of

biaxial loading for comparison. Brittle materials are generally much

stronger in compression than in tension, thus in brittle material research

compressive stresses are often regarded as positive. Compression will be

considered as positive throughout this investigation.
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Evaluations of pertinent experimental works for biaxial loaded

concrete are now presented:

1) Mchenery and Kami (1958) , [63], Figure (1.3)

This investigation tested hollow concrete cylinders of three different

strengths by applying axial compression or tension combined with inside

pressure. A uniform stress distribution was assumed through the cylinder

wall and plasticity theory used to calculate the stress values. In reality

a triaxial state of stress is present on the inside of the cylinder and a

truely plastic state is non-existent. Experimental results for the

tension-compression region were obtained. The accuracy is questionable due

to the method of stress calculation and comparison to others.

2) Rosenthal and Glucklich (1970) , [83], Figures (1.4) and (1.5)

This investigation obtained experimental data for the complete failure

region of two different strengths of concrete. Hollow cylinders were

tested in axial compression and internal pressure. A uniform stress

distribution was assumed through the cylinder wall and plastic theory used

for stress calculations. The experimental data is questionable due to the

method of stress calculations. Also the data is inconsistent with the

reported shape of the biaxial failure envelope.

3) Bresler and Pister (1957, 1958) , [9, 10], Figures (1.6) and (1.7)

This investigation tested four different strengths of concrete in the

tension-compression region only. Hollow cylinders were loaded by applying

torque to the outer surface and axial compression. A uniform stress

distribution was assumed through the wall and a linear-elastic solution was

used for stress calculation. The experimental results appear consistent

with other works, even though the assumptions are approximate.
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4) Goode and Helmy (1967) , [34], Figure (1.8)

Two different strength concretes were tested in the tension-

compression region only. Hollow cylinders were subjected to torsion and

axial loading. The stress distribuij^on was assumed uniform through the

wall, and linear-elastic theory used for stress calculation. Results

appear very scattered and do not follow the prescribed path of the failure

envelope.

5) Isenberg (Johnson & Lowe) (1969) , [45], Figures (1.9) and (1.10)

A single strength of concrete was tested in the tension-compression

region only. Hollow cylinders were loaded by torsion and axial

compression. The stresses were calculated from linear-elastic theory. The

results appear consistent with other works. This is one of the most

complete, informative investigations using hollow cylinders.

6) Kupfer, Hilsdorf, and Rusch (1969), [57], Figure (1.11)

Three strengths of concrete were tested. Square plates were loaded

through brush bearing platens, which these investigators introduced. The

complete failure region of all four biaxial quadrants were investigated.

The stress distribution in these specimens are well known, as the relation

is linear betwe'en the force and area of application. The stress equation

being, S = P/A, where 'P' is the loading and 'A' is the cross sectional

area of the specimen. These results are considered some of the most

accurate tonate.

7) Pandit and Tanwani (1975) , [77], Figure (1.12)

This investigation tested one strength of concrete in the biaxial

compression region only. Square plates were loaded by brush bearing

platens. This specimen again allows for a linear calculation of stress as

in example (6). The experimental results differ from the data of example



-21-

(6) at the compression stress ratio of .5 (i.e. a,/o
7

= .5). The other

data points are consistent with expected results.

8) Tasuji, Nilson, and Slate (1979) , [90], Figure (1.13)

This investigation tested one strength of concrete in the complete

biaxial principal stress region. Square plates were loaded through brush

bearing platens. This specimen geometry yields stress calculations that

are linear as in examples (6) and (7). The experimental data and failure

envelope shape are consistent with other results.

9) Weigler and Becker (1963) , [102], Figures (1.14) and (1.15)

These investigators tested six different strengths of concrete in the

biaxial compression region only. Square plates were loaded through solid

platens with soft ductile shims between the specimen and the platens. The

results show a larger increase at the stress ratio of one, which is not

consistent with other results. The introduction of edge effects are most

likely the cause of the poor results.

10) Vile (1965) , [97], Figure (1.16)

This investigator tested one strength of concrete in the complete

biaxial principal stress region. Square plates were loaded through solid

platens with no friction reducing method. Vile felt the plates were

slender enough to insure true biaxial loading in the critical region.

Apparently he was correct as his results compare favorably to others.

11) Nelissen (1972) , [66], Figures (1.17), (1.18), and (1.19)

This investigator tested two different strengths of concrete for the

complete biaxial principal stress region. Cubes (18 x 18 x 13 cm) were

loaded through brush bearing platens. This investigation is the most

informative, thorough, and detailed of all biaxial tests found. The

results appear consistent with other works and the discussion invaluable.
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12 ) Mills and Zimmerman (1970) , [64], Figure (1.20)

These investigators tested three strengths of concrete in the biaxial

compression region. Only one strength of concrete contained adequate data

for evaluation. Solid steel platens with lubricated teflon pads were used

for loading. These results appear to give higher values than other works,

therefore the data is questionable.

In reviewing the failure data which has been published for biaxial

loading of concrete it becomes apparent that there is slight differences in

the shape of the normalized failure envelope in Figures (1.3) through

(1.20). Following the suggestions of eminent investigators and review of

additional data the poor quality results may be eliminated. Therefore the

following data sets for concrete in biaxial loading have been chosen to

verify the proposed strength function:

1) Kupfer, Hilsdorf, and Rusch [57], Figure (1.11).

2) Tasuji, Nilson, and Slate [90], Figure (1.13).

3) Vile [97], Figure (1.16).

4) Nelissen [66], Figures (1.17), (1.18), and (1.19).

5) Johnson and Lowe [45], Figures (1.9) and (1.10).

Conclusions

The complex characteristics of the composite material concrete can be

represented as a two-phase model. At the phenomenological or engineering

level the concept of concrete as a two-phase material may be replaced by

the assumption that it is homogeneous, isotropic, continuous medium

composed of structural elements of identical properties. Strictly

speaking, the assumption of homogeneity can be justified only on a

statistical basis considering the average properties of the elements or

groups in the body.
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The experimental strength data published to-date covers a wide range

of concrete strength qualities, mix proportions and test methods. A

critical assessment of these results is deemed necessary to select failure

data which most accurately represents the true failure conditions. The

mechanical properties determined from experimental results are highly

dependent on the test methodology.

In reviewing the experimental data, which may be considered most

accurate, several conclusions can be drawn. The strength of concrete in

uniaxial tension is shown to be somewhere between 5 and 11 percent of the

absolute value of the strength in uniaxial compression. Also, higher

strength concrete (above 4,000 PSI) tends to be on the lower percentage

side of the range for its uniaxial tensile strength, generally between 9

and 5 percent of the absolute value of the uniaxial compressive strength.

The lower strength concretes tend to be near 10 percent.

The strength of concrete in biaxial compression is between 108 and 120

percent of the uniaxial compressive strength at a load ratio of one, i.e.

oJ a = 1.0. This value of biaxial compression tends to be approximately

116 percent on the average.

The maximum biaxial compressive strength for concrete occurs at a

stress ratio of approximately .5, (i.e. a./o^ = .5). At this ratio the

biaxial strength is between 120 to 135 percent of the uniaxial compressive

strength

.
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CHAPTER II

MATERIAL STRENGTH CRITERIA

Literature Review

Introduction

The characterization of a material failure under time-independent,

isothermal conditions of multiaxial stress depend upon the material

classification at the time of failure. Materials are classified as either

brittle or ductile depending upon their state at the time of

classification. The state of a material depends on such factors as

temperature, pressure, rate of loading, and others. Thus failure

classification for any given material is variable and depends on the

material state.

Ductile state failure is generally defined as the onset of plastic

flow. Plastic flow occurs when a material is loaded beyond its elastic

limit or yield point. The material enters the plastic deformation range

once the elastic limit is exceeded. Ductile fracture occurs following

excedence of the elastic limit and ensuing physical material separation.

Generally the failure criterion for a ductile state is defined as a yield

criterion [ 74 ]

.

The failure of a material in the brittle state is defined as total

fracture occurance before any appreciable plastic flow. A yield point for

the brittle state of a material is indefinable, as brittle materials fail

catastrophically by complete fracture. Failure in the brittle state is

defined by a fracture criterion [74].

-34-
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The physical process of brittle fracture is uncomparable to that of

ductile fracture as they can be shown to be caused by differing mechanisms.

Paul [74] concludes that ultimate fracture in the ductile state depends on

the strain history and load path, while an understanding of the brittle

fracture process is relatively imperfect. Thus the failure mechanics for

the material states are incompatible. A yield criterion for ductile

materials will not be the same as a fracture criterion for brittle

materials.

Paul [74] demonstrates that failure of a material in the ductile state

is controlled by a different stress system than brittle state failure.

Material in the ductile state yield or undergo plastic flow as a result of

shear stresses. Material in the brittle state fail due to a combination of

shear and normal stresses. Stress at a point can be defined by a second-

order tensor which is separable into normal and shear components. The

stress tensor can be the sum of the following; a hydrostatic stress tensor

( a ) and a deviatoric stress tensor (S. .). The stress condition and its

parts can be represented in tensorial notation as:

lo
±i

] = [S
±

.] + o
m
[I] i,j = 1,2,3 (2.1)

°m
= 1/3 (a

ll
+ a22

+
33 }

The hydrostatic component represents a stress state of equal normal

stresses, while the deviatoric component represents a stress state of pure

shear.

The failure criterion for a ductile material, is independent of the

hydrostatic component of the stress tensor depending only on the stress

deviation (S. .) [74], Thus ductile failure criterion are considered
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pressure-independent. A function for a yield criterion may be expressed

as:

f(S ) =1 i,j = 1,2,3 (2.2)

The brittle state of a material has been found to be pressure-

dependent [74]. Thus a fracture criterion depends on both the hydrostatic

(o ) and the deviatoric (S. .) stress components. A fracture function may

be expressed as:

f(o._.) = 1 i,j = 1,2,3 (2.3)

Paul [74] has shown that the failure criterion for isotropic

materials, when expressed in the principal stress coordinates (a., o.
;

, o )

will geometrically represent a failure surface in three-dimensional

principal stress space. Equation (2.2), represented geometrically, is

shown in Figure (2.1). Figure (2.1) is a cylindrical yield surface with

its axis aligned on the hydrostatic axis ( a = a = a ). The area within

the cylinder is considered to be the elastic region, while the cylinder

wall represents the yield surface. The yield surface is independent of the

hydrostatic pressure or equivalently the location along the hydrostatic

axis, as the cylinder extends indefinitely along both axis directions.

Thus Figure (2.1) represents a pressure-independent failure surface.

The failure of a material in a brittle state has been shown to be

pressure-dependent, thus it depends on the hydrostatic axis location. A

generalized geometric representation of a fracture surface is given in

Figure (2.2). This fracture surface represents an open ended cone with its

vertex located on the hydrostatic axis in the triaxial tension region.

Compression is taken as positive throughout this investigation. The cone

surface (fracture surface) demonstrates the dependence on the hydrostatic

axis location. The radius from the hydrostatic axis to the cone surface
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increases as Che positive hydrostatic pressure increases, noting that the

region inside the cone represents non-failure.

Brittle materials normally exhibit higher absolute strengths in

compression than in tension. This phenomenon is referred to as the

Bauschinger effect. Thus the merdians of the cone-surface shown in Figure

(2.2) do not intersect the compressive principal stress axis at the same

absolute value as the tensile principal stress axis.

Equation (2.2) is a specialized condition of equation (2.3) with the

hydrostatic component eliminated. Therefore the following definitions

apply to both failure criterion:

f(o. .) < 1 no failure occurs. (2.4)

f ( 0. .) = 1 failure will occur,
ij

f ( o. .) > 1 undefined.

Equations (2.4) states that a stress point may be inside or on the

failure surface and that failure occurs only at the surface. These failure

surfaces are idealizations (Figures (1.1) and (1.2)), as individual failure

surfaces for a given material must be determined through experimentation.

Classification of Concrete

The development of a strength criterion is linked to the materials

classification, either brittle or ductile. In chapter one concrete was

shown to have variable properties and complex characteristics. The

materials properties must be idealized at the present level of

investigation to aid classification. The true properties of concrete are

neither brittle nor ductile during any given state.

The state of concrete changes depending on its hydrostatic pressure

[5]. At low hydrostatic pressures concrete behavior is brittle, but at

high hydrostatic pressures it approximates ductile behavior. Additionally
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there are signs of the yield point phenomenon exhibited by ductile

materials, although this can be traced to irreversible crack growth [69].-

Concrete also exhibits a pronounced Bauschinger effect upon repeated

loadings usually attributed to ductile materials.

The lack of a pronounced yield point, the tendency of the material to

fail by complete physical separation, the dependency of the material on the

hydrostatic component of stress (pressure-dependent), and the brittle

characteristics under low hydrostatic pressures all indicate that concrete

is best classified as a brittle material for normal design circumstances.

Thus a fracture criterion in the form of equation (2.3) will best represent

concrete failure.

General Macroscopic Brittle Failure Theories

Throughout history there have been numerous failure theories proposed

for materials under multiaxial states of stress. In general these theories

have been postulated based on physical observations. Paul [74] reviews the

historical development of failure theories up to 1968. In his review he

discusses the development of the four classic failure criteria and

subsequent generalizations of these. As a more comprehensive

understanding of the failure process has evolved, so has failure theory

development. The latest proposed theories of failure can be shown to be

generalizations of the classical theories. The four classical theories of

material failure are:

1) The maximum normal stress theory (Rankine's Theory); and its

counterpart the maximum normal strain theory (St. Venant's

Theory).

2) The maximum shearing stress theory (Tresca's Theory).

3) The maximum strain energy theory (Beltrami's Theory).
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4) The maximum distortion energy theory (Huber-Von Mises-

Hencky Theory).

These classical failure theories are represented well in many

excellent monographs on the subject of material failure, such as Paul [74]

or Nadai [65] . Thus they will not be reviewed in detail in this

investigation. Paul [74] discusses the limitations of the classical

theories and proves their applicability to brittle failure is inadequate.

The aforementioned theories are all limited in their usefulness as they are

subjected to a number of strong constraints.

Paul [74] states that one of the most useful criterion which can be

applied to brittle failure is the Coulomb-Mohr theory. This combined

theory assumes that material failure is attributed to shear stresses that

are dependent on normal stresses. The Coulomb-Mohr criterion represented

in principal stress coordinates as stated by Paul is:

a./f. - o ft = 1 (2.5)It j c

where the material constants f and f represent the uniaxial material
t c

v

strength in tension and compression, respectively.

The Coulomb-Mohr criterion correlates reasonable well for some

materials like soil, but not 'for others. Equation (2.5) represents a

cylindrical cone in three-dimensional stress space as in Figure (2.2). The

failure criterion includes the Bauschinger effect and is easily

characterized by only two parameters. The Coulomb-Mohr criterion is not an

affective failure criterion for two main reasons:

1) The failure criterion is independent of the intermediate

principal stress (d„). This ignores stress interactions.

2) The failure criterion does not accurately predict tensile

failures.
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Paul [75] originally proposed additions of tension cut-offs to the

Coulomb-Mohr criterion. His proposals improved failure prediction within

the triaxial tensile quadrants, yet did not include needed stress

interactions, thus it proves inadequate in all other regions. Paul [74,

75] recognized that the Coulomb-Mohr criterion with tension cut-offs

suffered inadequacies and proposed a generalized pyramidal fracture and

yield criterion. His improvements over his previous work were to include

the effects of the second principal stress, adequate prediction of tensile

strength, and allowance for a non-linear meridian surface of failure.

Geometrically, his criterion approximates a non-linear, curved failure

surface in three-dimensional principal stress space. The three-dimensional

shape is a multi-segmented surface made up of adjoining sets of hexagonal

pyramids. The vertex being in the tension-tension-tension section on the

hydrostatic axis. Paul's criterion is useful only for approximations as it

is inaccurate and ignores many stress interactions. The multi-segmented

failure surface leads to ambiguities as a definition of the segment section

in use is required.

The classic Coulomb-Mohr and Paul's [74, 75] failure theories are

useful only for isotropic materials. This is not a problem for concrete as

it is considered isotropic, yet it demonstrates the lack of generality for

application to anisotropic materials of these theories. These theories

will not adequately predict the failure envelope for concrete.

In general most failure criteria with any degree of applicability to

homogeneous or quasi-homogeneous anisotropic material are of the maximum

distortion energy theory type. Kaminski and Lantz [46] in their critical

review of failure criteria for composite materials concluded that nearly

all of the maximum distortion energy type of theories refer to principal
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strengths of Che material and ignore the influences of stress interactions.

Thus the theories cannot deal with complex materials.

Tang [89J critically reviewed all past failure criterion for their

application to a transversely isotropic brittle material. He concluded

that the failure criteria which adequately fulfill the necessary

requirements are those formed from strength tensor relations based on

tensor function representations. The tensor function approach has been

suggested for use with anisotropic materials such as fiber-reinforced

composites, as the material failure criterion is capable of including any

number of stress interaction terms. Stress interaction components allow

the failure function to account for differing values of ultimate strengths

in tension and compression about each of the material symmetric axis. The

tensor function approach can also account for the dependence of the

ultimate shear strengths on the sign (direction) of the shear stresses.

Recent developments in nonlinear continuum mechanics have enhanced the

application of tensor function theory to failure criterion development.

Gol'denblat and Kopnov [33] were among the first to propose the use of

strength tensors for an anisotropic strength criterion. They proposed the

following form of an equation:

f(o. ) = (F.a.)
a

+ (F. . a. a.)
6

+ (F. .. c.a.o, )
Y + = 1 (2.6)

k' i i' ij i y ljk i j k y

i,j,k = 1,2, ..,6

where the strength tensors(F., F. ., F. ., ) are of second, fourth, and sixths
x

, y. ljk ; i

rank respectively. and are material parameters. The empirical powers (a,

8, y) are also material parameters, a. represents stresses.

Equation (2.6) is one of the most generalized forms for a failure

function consisting of polynomial terms and empirical powers based on the

strength tensor approach. The linear terms (F. a.) account foi normal
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stresses which describe the difference between positive and negative stress

induced failures, i.e. it allows for inclusion of the Bauschinger effect.

The quadratic terms (F a. a.) define an ellipsoid in the stress space as

well as account for second-order stress interaction terras. The higher

order terras account for additional stress interactions as well as allowing

the failure surface to describe irregularities. In using equation (2.6) it

is simplified as necessary to adequately characterize the material failure

surface determined by experimental results.

Tsai and Wu [95J proposed a simplified quadratic tensorial strength

criterion based on Gol'denblat and Kopnov [33]. Their stress tensor

function for anisotropic material failure is:

F(o. ) = F.o. + F. . a.o. = 1 (2.7)
i' l i ij i j

where the strength tensors (F., F. .) and stresses are identical to those of°
i ij

equation (2.6). Tsai and Wu dropped the higher order terras and set the

empirical powers of Gol'denblat and Kopnov to one. Tsai and Wu required

their criterion form to be operationally simplier by including fewer

material parameters. Being quadratic, equation (2.7), can be solved

explicitly while higher order equations may not. The empirical powers of

equation (2.6) complicate equation characterization, while they are set to

one for equation (2.7). Equation (2.7) includes all necessary stress

interaction terms of equation (2.6) allowing for the Bauschinger effect,

stress direction effects, and anisotropy of various materials.

Tsai and Wu's [95] equation reduces to the following for an isotropic

material when written in principal stress coordinates:

F
l

(
°l

+ °2 + a
3

) + Fn (a
i

2
+ a

?

2
+ a

3
2) "

(2.8)
F
ll

(
°l

a
2
+ °1 3

+ °2a
3

)
= L

where the components remain as described in equation (2.7). Equation (2.8)

represents a strength criterion based upon tensor theory in quadratic form.
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The criterion requires only two parameters (F F, ) to characterize the

function to the material. The parameters are determined through simple

engineering strength tests by the following relationships:

2 2
f - f

F -
c '

1

f f + f
2
f

(2-9)
t c t c

2 2
!

t - i„
F„ - ~+ C C

11
f

2 f(ff 2
+ f

2f) ( 2 - 1Q )

t etc t c

where the strength parameters f and f represent the absolute values for

uniaxial tensile and compressive strengths, repectively.

Tsai and Wu's [95] formulation is a simplification of Gol'denblat and

Kopnov's [33]. Each of these criteria can be reduced to past failure

criteria of non-tensorial base by imposing restrictions. Tsai and Wu show

this by reducing their function to that of Hills [37], which is used as a

yield criterion.

Priddy [79] noted that the biaxial failure envelope presented by Tsai

and Wu's [95] equation was always an ellipse. He proved that an elliptical

form of a quadratic equation cannot yield accurate correlations with data

in both the tension-tension and compression-compression quadrants for some

materials. Thus, he proposed including a limited number of mathematically

independent cubic terms to Tsai and Wu's equation to improve the failure

envelope surface control. Priddy presented his equation in invariant form

W = 1 + I + I I
?

+ fl (2.11)

1
1

= °1 + °2 + °3

1
2

= -( V2 + a
2
a
3

+ a^)

J
3 = a

l°2 3

where stress tensor invariants (I,, I
9

, L) are" represented in principal
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stress coordinates (o a a,) and W is the strain energy density for the

material, a constant, f is a material parameter.

Priddy [79] states that the quadratic theory of Tsai and Wu [95]

contains only one independent data point for each biaxial plane. This

limits the equations control in the tension-tension and compression-

compression quadrants, thus the interactions cannot be treated

independently. Priddy selectively added the invariant I_ and the invariant

combination Ijln while dropping the J„ term from Tsai and Wu's equation.

His arbitrary selection of cubic invariant terms will accommodate only a

limited number of materials as the higher order terms required depend on

the interaction effects. Furthermore, Priddy failed to properly expand the

invariants when writing the full equation in principal stress terms and

thus his final equation form was non-invariant.

Tennyson et.al. [94] also addressed the question of expanding a

strength tensor based function by selectively adding higher order terms.

They reached the conclusion that cubic and higher order terms are often

required in composite material failure function development.

Huang [42] determined the second, fourth, and sixth rank strength

tensors in the three-dimensional case for each of the material crystal

classes from consideration of invariant transformations of the strength

function. He based his work on the criterion of strength proposed by

Gol'denblat and Kopnov [33], Based on Huang's [42] earlier determination

of invariant properties for orthotropic material symmetry Huang and Kirmser

[43] derived a formulation for a strength criterion for a glass-reinforced

composite material. The criterion is a quadratic form of tensor function

theory using invariants of the material symmetry group and is presented as:



f(0.) = F^ + F
2
a
2

+ F
3
a
3

+ F^ 2
+ F^a 2

+ F^a 2

+ 2 F12V2 + 2 F
23

a
2
a
3

+ 2 F^o^

+ F
44

a
4
+ F55°5 + F

66
<r6=. 1 - < 2 - 12)

i,j = 1, 2, ... 6.

where F. and F. . are strength tensors. The stress invariants are o, , o„,
l ij 1' 2*

2 2 2

°3' V V V
Equation (2.12) represents a Taylor expansion of the material symmetry

group invariants up to second-order. The equation may be further expanded

to a cubic by including additional invariant terms of third-order

combinations as presented by Huang and Kirmser [43],

Concrete Specific Strength Criteria

A literature search revealed numerous developments in strength

criteria for concrete. In general past design criterion consisted of

empirically derived nomographs or codes. The introduction of advanced

methods for structural analysis have promoted requirements for more

accurate material characterization. To meet the needs there have been many

curve fitting attempts at development of a strength function [9, 11, 12,

44, 60, 61, 63, 77, 80]. These methods formulate an equation from

experimental data. The data is plotted in either the principal stress

plane or the shear-normal stress plane and a curve fit performed. Thus the

accuracy of the failure equation is highly influenced by the accuracy of

the failure data. To use a curve fit function the material coordinate

system under consideration must be aligned with the coordinate axis with

which the function was developed, thus it is non-invariant. Furthermore

due to the complex shape of the failure surface for concrete a single

equation, generally does not operate in all quadrants of stress space. Thus

-45-
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a total definition of the failure surface requires several functions to

adequately describe the complete region of all stress combinations.

In recent years the trend has been to develop failure functions

incorporating invariants of the stress tensor. This form is more suited

for usage within computer codes. The invariant form of a failure function

tends to include a higher number of stress interaction terms yielding a

higher order function capable of descriptive failure surfaces. Surveys of

the most applicable strength criterion have been accomplished by Wastiels

[98, 99, 100], Ottosen [72], and Newman and Newman [71].

Wastiels [98, 100] has analyzed seventeen different failure criteria

for their validity within the compression-compression region of biaxial

load conditions. Wastiels considered failure criteria specific to biaxial

loading and de-generated triaxial failure criteria into their biaxial form

for accuracy comparisons. The purpose of his survey was to defend his

presentation of a triaxial failure function for concrete.

Wastiels [98,100] found that many of the failure criteria were

inaccurate. He plotted the failure envelopes for the compression-

compression region and compared them to experimental data. Wastiels

concluded that the best criterion for failure of concrete under biaxial

compressive loading conditions was that of Drucker and Prager [23].

Furthermore he concludes that the best failure criteria for triaxial load

conditions are those of Ottosen [72], William and Warnke [103] and his

criterion [98, 100].

The Drucker-Prager [23] failure criterion was originally proposed for

usage with soils. The criterion is a generalized form of the Coulomb-Mohr

failure theory. The Drucker-Prager failure function is of the following

form:
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f(a...) = alj + /J
2

- k i,j, = 1,2,3 (2.13)

I, = Q| + Q2 + Oo

2 2 2
J
2

= l/6[(o
1

-a
2

) + (a
2

- a
3

) + (o
3

- aj) ]

where Che first invariant of the stress tensor I. and the second invariant

of the stress deviator tensor J^ are written in terms of principal stresses

(a., ff_, a..). The material parameters are given as 'a' and 'k'.

The Drucker and Prager function is quadratic, invariant and uses two

material parameters for characterization. Wastiels only concern was the

compression-compression region of the principal stress plane. His limited

evaluation fails to recognize the inadequacies of the Drucker and Prager

function in the tension-compression and tension-tension quadrants.

Equation (2.13) being quadratic, can not adequately describe a complete

biaxial failure envelope due to a lack of function parameters in all

regions.

The failure criterion for concrete proposed by Chen and Chen [13, 14]

is a form of the Drucker and Prager failure function. Wastiels [98, 100]

reviewed this criterion but discarded its value as a triaxial failure

function. Wastiels stated that the lack of a cubic term, the third

invariant of deviator tensor (J,) invalidates Chen and Chen's function for

triaxial loading. He proved that the criterion of Chen and Chen is

superior to Drucker and Prager yet dismissed it due to the aforementioned

reason. Indeed Chen and Chen's proposed criterion is inadequate for

triaxial conditions, yet it is quite suitable for biaxial states of stress

as the invariant term (J
3 ) vanishes for plane stress conditions.

A typographical error has been published in the presentation of Chen

and Chen's [13, 14] criterion within both pape'rs. The error pertains to



material parameter characterization. The corrected results are presented

in the appendix and will be used throughout this investigation.

Chen and Chen [13, 14] proposed two quadratic equations as their

failure criterion. Their proposed criterion is a Taylor expansion of the

invariants following tensor theory in the following form:

for compression-compression region:

A
f( cr.) = J + — . = t

2
i = 1,2,3

l / J 1 u

be c 2 be c c be

(2.14)

A
u 2f, - f 'u

be c be c

for tension-tension & tension-compression region:

e(a.)W2+ gi + fl^ tj i- 1.2,3

A = 1 (f - f f ) t
2
= 1 (f f )u

2
c tc u

6
ct

where the first invariant of the stress tensor (I.) and the second

invariant of the deviator tensor (J„) are as defined in equation (2.13),

also (f ) is the uniaxial tensile strength, (f ) is the uniaxial

compressive strength and (f ) is the biaxial compressive strength when

a. = 0" (absolute values).

In reviewing the failure criterion of Chen and Chen the failure

envelopes produced by equation (2.14) have been generated. Figures (2.3),

(2.3a), (2.4) and (2.4a) demonstrate the biaxial failure envelope in all

regions for the equations within (2.14). The functions are plotted along

with the experimental results of Kupfer, Hilsdorf, and Rusch |57j and

Nelissen [66]. The failure function describes the biaxial envelope

reasonably well in the compression-compression region of Figures (2.3) and

(2.4). The tension-compression and tension-tension function presented in
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equation (2.14) does not represent the experimental envelopes accurately.

Closer examination of the tension-compression quadrants within Figures

(2.3a) and (2.4a) demonstrate the poor correlation.

The proposed criterion of Chen and Chen is not accurate and requires

two independent equations for a complete biaxial failure envelope. The

function represents the compression-compression region well, but is

inadequate in all others.

Ottosen [72 J proposed a four-parameter triaxial failure criterion for

concrete based on geometric relationships between the suspected shape of

the three-dimensional failure surface for concrete and the stress tensor

invariants. He developed a function by using the invariants I., J ?1 and cos

3 6. Thus his proposed form was given as:

f(I,, J
2

, cos 36) = (2.15)

Ottosen 's function is invariant and follows the prescribed shape of

the suspected failure surface very well. The function allows for a smooth

convex failure surface with curved meridians, which open in the compressive

direction of the hydrostatic axis, and the trace in the deviatoric plane

changes from nearly triangular to a more circular shape with increasing

compressive hydrostatic pressure.

Wastiels [98, 100] and Robutti et. al. [81J critically reviewed the

criterion proposed by Ottosen [72]. Wastiels concludes that the criterion

over estimates the strength as the material parameters were obtained from

poorly coordinated data. The criterion could be improved through better

approximations of the parameter values. Ottosen's criterion proves to be

overly complex for usage as a biaxial failure criterion as it requires too

many experimentally determined data points for characterization, unlike

Chen and Chen's [14] criterion.
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William and Warnke [103] developed an elliptical equation to describe

the three-dimensional failure surface of concrete. Their function

development is based on the geometric interpretation of the stress tensor

invariants I, and J„ and the material parameter (cos 9). The invariants

were incorporated into the elliptical representation of the three-

dimensional failure surface for concrete.

Wastiels [98, 100] and Kotsovos [51] working independently, sought to

modify William and Warnke 's [103] original equation through improvements

in the characterization of the material constants. Wastiels version of

William's and Warnke 1

s function was reviewed further and in general all

comments also are applicable to Kotsovos's failure criterion as the base

equations are identical.

Wastiels [98, 100] presents the failure criterion of William and

Warnke [103] in the following form:

t 2C(C
2

- T
2

) cos 6 + C(2T - C)[4(C
2

- T
2

) cos
2
6 + 5T

2
- 4TC]*

5

©
c

4(C
2

- T
2

) cos
2
6 + (C - 2T)

2
(2.16)

where

:

C = .12051 - .55128 a /a
o c

T = .25834 - .63917 a /a
o c

cose = (2a. - a_ - a„)/37T t
1 z J o

where (t ) and ( a ) are the octahedral shear and normal stresses,

respectively and (a ) is the uniaxial compressive strength of concrete.

To review equation (2.16) with the selected biaxial failure data for

concrete it was de-generated into its biaxial form and plotted in Figures

(2.5) and (2.6). The biaxial failure envelopes generated from equation

(2.16) fit the experimental data well in these figures. The failure

envelope is identical in both cases as the failure function is not capable

of accounting for variations in concrete quality. The parameters T anc C
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are fixed by the author, Wastiels. These parameters control the function by

determining the failure envelope positioning. To consider concrete of

different quality the parameters (T, C) must be re-evaluated by producing

enough experimental data to perform a reasonably accurate least squares fit,

yielding the linear equations 'T' and 'C.

The failure criteria proposed by Wastiels [98, 100] and Kotsovos [51]

both reflect the same problems. The functions are non-invariant and highly

complex to characterize for variations of concrete quality. The

characterization method of these functions requires voluminous experimental

data to obtain the parameters through least squares methods.

One of the most recent proposals for a triaxial failure criterion of

concrete is that of Lade [59]. Lade proposed a three-parameter failure

criterion based on stress tensor invariants. He has based the development

of his criterion for concrete on his previously proposed failure criterion

for soils [58], only a modification to allow for tensile stresses has been

incorporated. The failure function for concrete proposed by Lade [59] is

as follows:

F(a ) = (j
l- - 27) C^)"

1

- N - (2.17)
3

I, = a, + 5~ + a,

. = . + ap ; i = 1,2,3

where the first (I.) and the third (I,) invariants of the stress tensor are

modified by addition of the (ap) term to the principal stresses ( o , , a 9 ,

a o). the terms 'm
1

, 'N', and 'a' are material parameters while 'p'

represents atmospheric pressure.



-52-

The material parameters for equation (2.17) are determined by

regression analysis of experimental failure data for concrete. To use

equation (2.17) a wide variation of values is given for the material

parameters by Lade. He presents a table listing the parameter values

calculated for twenty-two sets of experimental data.

In reviewing Lade's [59] failure criterion it was de-generated into

its biaxial form and plotted for two sets of experimental data in Figures

(2.7) and (2.8). The inaccuracies of equation (2.17) become apparent as

the biaxial failure envelope does not fit the experimental data very well.

In Figure (2.7) equation (2.17) over estimates the biaxial strength in the

compression-compression region and under estimates the strength in the

tension-compression region. The failure envelope in Figure (2.8) does not

pass through the uniaxial compression stress and underestimates the

strength by 20 percent.

The failure criterion proposed by Lade [59] is a three-parameter

invariant function, although it is essentially a curve fitting routine. To

use the function a complete data set must first be experimentally obtained

and a linear regression performed to evaluate the material parameters.

This procedure is overly complex for actual usage. In addition Lade's

criterion fails to include the second invariant of the stress tensor (J~).

Concrete failure has been shown to depend on the shear component of stress,

which the second invariant represents. This criterion produces poor

results and is overly complex to characterize, thus its value is limited.

Conclusion

In reviewing the proposed failure criteria for concrete under both

biaxial and triaxial load conditions a satisfactory criterion is not

available. The published criteria suffer from many inadequacies such as,
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poor agreement with experimental data, non-invariance or overly complex

characterization schemes. In general the concrete specific failure

criteria are based on invariants of the stress tensor and most are

artificially characterized through curve fit routines. These curve fit

based functions are highly dependent on the accuracy of the experimental

data under which they were developed and cannot easily be characterized for

differing strength qualities of concrete.

The composite material approach involving tensor theory based

functions appears most promising for comprehensive failure criterion

development. The concrete strength criterion proposed by Chen and Chen

[14] follows the tensorial approach. Their criterion comply with tensorial

theory as they use a Taylor expansion of invariants with strength tensor

parameters. This proposed criterion consists of two equations for a

complete description of the failure envelope, as both are merely quadratic.

As was previously suggested, higher order terms are necessary to allow

development of a single equation criterion capable of describing the known

biaxial failure envelope.
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CHAPTER 3

A PROPOSED STRENGTH CRITERION FOR CONCRETE

Introduction

The characteristic properties of concrete have been shown to be those

of a complex, multi-phase material which is best studied as a composite.

The physical properties in the final state depend on the original mixed

proportions and the environmental conditions during cure. Real materials

are in general nonhomogeneous, anisotropic, and noncontinuous, as they are

composed of groups of elements formed into a large number of discrete

particles. However there is a dimensional level of aggregation (the

phenomenological or engineering level) at which the concept of the element

structure can be replaced by a homogeneous, isotropic, continuous medium

composed of structural elements of identical properties. The mechanical

characteristics of concrete are best idealized at the macroscopic level for

engineering design applications. The assumption of homogeneity can be

justified only on a statistical basis when considering the average

properties of the elements in the body.

The mechanics of the failure mechanism for concrete were shown to be

initiated by numerous microscopic flaws or cracks inherent within the

concrete matrix. The average influence of these microscopic flaws, as

viewed from macroscopic theory, reveal distinct levels of change in the

mechanical behavior of concrete. As the stress level increases the

mechanical behavior changes from quasi-elastic to plastic, with two

distinct points of departure. The initial discontinuity point is at the

onset of stable fracture propagation while the ultimate strength is reached

at the onset of unstable fracture propagation. The hydrostatic and

-59-
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deviatoric components of the localized stress have been shown to delay and

propagate the internal crack growth, respectively.

The development of a strength criterion for a material depends on its

state at or during failure conditions, either it is brittle or ductile.

The mechanical response and failure mode of concrete is best classified as

a brittle material at normal hydrostatic loads. Strength characterization

of most brittle materials is dependent on the hydrostatic as well as the

deviatoric component of stress, while ductile material characterization is

independent of the hydrostatic component. Thus a fracture criterion for

concrete must depend on the complete stress tensor and is represented as

previously given by equation (2.3).

f(a. .) = 1 i,j, = 1,2,3 (2.3)

In reviewing the strength criteria of the previous chapter the most

applicable forms follow equation (2.3), yet none prove totally

satisfactory. The strength criteria reviewed were shown to lack compliance

with experimental results, require strict adherence to a given material

property coordinate system ( non-invariance ) , and/or require complex

methodology for material parameter characterization. These criteria have

for the most part been formulated within the framework of the classical

theories of plasticity, which are subjected to a number of strong

constraints. These approaches lack generality and pertinance, and they

tend to be complex mathematically.

In recent years with the introduction of materially complex,

anisotropic, fiber-reinforced composites, more appropriate methods for

material characterization have been sought. In the field of non-linear

continuum mechanics there has been continuous developments following more

powerful approaches to these problems. In reviewing the recently proposed
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general strength criteria, the continuum mechanics approach has been most

notable. The application of general and explicit tensorially based

scalar-valued or tensor-valued functions have proven to be highly useful

towards developing strength criteria and constitutive equations. Many

investigations have shown the value of using tensor function theory in

these applications.

The continuum mechanics approach to material characterization based on

tensor function theory appears highly useful for concrete. The composite

nature and complex failure mechanism of concrete dictate a need for a more

powerful approach to strength criterion development. The purpose of this

chapter is to demonstrate the utility of tensor function theory as applied

to concrete failure prediction. The general results are applicable to any

quasi-elastic brittle material, but for the purpose of concrete

characterization a specific criterion is developed.

Development of the Proposed Strength Criterion

The development of a strength criterion for the prediction of the

ultimate strength of concrete under multiaxial loading should be formulated

from the systematic theories of modern continuum mechanics. The criterion

should' be validated by accurate and well organized experimental data for

the determination of the failure surface for concrete. A strength

criterion to predict the failure of concrete is by necessity governed by

the failure mechanisms. These failure mechanisms must be related

mathematically, forming a failure function.

The tensor function technique of non-linear continuum mechanics

associated with a unified approach to constitutive equation development is

logically applicable to strength criterion formulation. These functions

satisfy the invariance requirement under a group of orthogonal

transformations specific to the material symmetry. In addition tensor
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function theory allows inclusion of any number of stress interaction terms,

which gives the theory broad applicability to anisotropic material

characterization. Thus the tensor function approach to strength criterion

development through non-classical means results in a novel approach and a

much improved criterion.

A general strength function has been shown to be expressible as:

f(°- •) = 1 i,j, = 1,2,3 (3.1)

where ( a
. .) are stress components referred to an arbitrary coordinate

system. This form of the failure function in equation (3.1) was followed by

past investigators presented in chapter two. In general these fracture

criteria are functions of the applied stress, but were non-invariant, i.e.

William-Warnke [103], Wastiels [98, 100], Kotsovos [51], and others.

A strength function for a given material symmetry (isotropic for

concrete) must be invariant under a group of transformations of

coordinates, {t-.}. This insures the scalar polynomial function of the

strength criterion is single-valued as indicated by equation (3.1).

Additionally it is known that failure is a physical phenomenon which is

totally independent of coordinates. Thus the requirement of invariance

states:

f(o.
j

) = £(o ) i,j, = 1,2,3 (3.2)

where (a. .) represents the transformed stress components, also:

a. . = t. t . a i,j,r,s = 1,2,3 (3.3)ij tr js rs J v '

The strength function is required to be invariant with respect to the

material symmetry group . The material symmetry group or isotropy group of



-63-

a material is defined as the group of transformations of the material

coordinates which leave the constitutive equations invariant (Malvern

[62]). Invariant quantities for each system of anisotropic materials have

been obtained by Smith and Rivlin [88], and Huang [42]. Huang determined

the second, fourth, and sixth rank strength tensors in the three-

dimensional case for each of the crystal classes from consideration of

invariant transformations of the strength function. The invariants for the

isotropic material case have been determined from these investigators and

are presented in principal stress coordinates. The invariant terms for the

isotropic material symmetry case are as follows:

1
1

=
°1 + °2 + °3

1
2

= "^ a
l
a
2

+ °?°3 + °3 a
l^

O- 1*)

H = V2°3
Any strength function for an isotropic material in the form of

equation (3.1) is expressible as:

f(I
x

, I,, I
3

) = 1 (3.5)

By coincidence the invariants of the material symmetric class

(isotropic) are also the invariants of the stress tensor. The deviatoric

tensor is obtained by subtracting the mean normal stress ffom each of the

diagonal elements of the stress tensor. Thus the invariants of the

deviatoric tensor are related to the invariants of the stress tensor and

material symmetry invariants. The deviatoric invariants are also

considered invariants of the isotropic material symmetry. They are

expressible in principal stress coordinates as:

2 2 2
J
2

= l/6[(a
1

- o
2

) + (a
2

- o
3

) + (a
3

- a^
]

J
3

= (o
x

- o)(g
2
-a)(a

3
-a) (3.6)

where: <r= 1 (Oj + a
2

+ o
3

)
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The principal directions of the deviatoric tensor are the same as those of

the stress tensor, since both represent directions perpendicular to planes

having no shear stresses. Therefore any strength function is expressible

as a polynomial in the invariant quantities as:

f(Ij, J
2

, J
3

) = 1 (3.7)

The proposed strength function of Chen and Chen [14] followed the

invariant tensorial function form of equation (3.7). They proposed a two-

equation strength criterion using the material invariants discussed. Their

proposed strength criterion is as follows:

for the compression-compression region

3

A „

tav j
2 ) = J

2
+ r 1

!
= v (3 - 8a)

for all other regions,

1=7 _ _
6 1 3 1

f
"l>

J 2>
= J2-| I

l

2
+ Til l

= V < 3 - 8b >

2
where A^ and t " are material parameters as shown in chapter two equation

(2.14).

The strength functions of (3.8) are a combination of invariants. The

functions are of quadratic form. The quadratic form has been addressed in

chapter two and shown to be inadequate in its definition of the failure

envelope for the biaxial principal stress plane (o,~ o„). The order of the

polynomial based on tensor function theory was discussed by Huang [42,

43], Tennyson et.al. [94], Ottosen [72], and Priddy [79]. They suggested

higher order terms are necessary to include additional stress interactions.

The quadratic form at best can describe a conic curve which cannot yield

accurate correlations with experimental data in all four quadrants of the

biaxial plane.

Any continuous function is expressible as a polynomial function of the

invariants up to a desired order of the polynomial. The requirement of
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higher order terras within the strength function (3.7) leads to the

following modification:

f(I.
(l)

) = 1 (3.9)

where I denotes the usage of invariant quantities, I, in the i-th

degree and the j-th element. The combination of the invariants proposed

for an isotropic material are as follow:

first degree: I.

2
second degree: I. , J„ (3.10)

3 2 I
—

third degree: I. , I,J n ,J,, I. JJ.

System (3.10) represents terms which may be required to form a cubic

strength function for isotropic materials.

A combination of the invariant system has been proposed by Cui [18]

for usage with concrete. Based on tensor function theory Cui combined the

invariant terms into a polynomial combination of the cubic invariants as

follows:

f(I. ) = A.I. + A., I + A
22

J„ + A... I. + A,
22

I,J
2

+ A
333

J
3

+ AU2 I
1

2
}J~T = 1 (3.11)

where all 'A's' represent material parameters of the strength tensor.

These parameters are determined from seven independent engineering strength

tests of the concrete being characterized. The proposed cubic function of

equation (3.11) represents a complete set of tensor generators for the

isotropic material case up to the third degree.

This investigation is concerned with a biaxial stress condition which

causes failure. The proposed cubic equation (3.11) is reduced to six

material parameters under a biaxial loading condition. The third invariant

of the deviator tensor (Jo) is not independent but is a polynomial

combination of three other invariant combinations:

J3^3 + \\h- l

Wh
3

(3.12)
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where I, = in the biaxial state of stress. Thus equation (3.11) is

rewritten in the following form for a biaxial state of stress:

A
1
X
1

2
+ A

11
I
1

2
+ A

22
J
2

+ A
111

I
1

3
+ A

122
X
1
J
2
~ A

112
I
1

2

^2 =1 (3 - 13)

The cubic term 'Aiit' requires a sign change to completely

characterize the four quadrants comprising the biaxial region of stress.

The sign of 'A,,,' remains positive (+) in all quadrants but the tension-

tension quadrant where the sign changes to negative (-). The change was

found necessary to allow for a continuous failure envelope in the tension-

tension region.

The proposed strength criterion of equation (3.13) requires six

independent material constants (A., A.., A,.,, A„_, A.,,,,, A.
|7 ), thus to

characterize the cubic equation (3.13) to a given strength quality of

concrete six independent engineering tests are required. A viable, simple

strength criterion should be characterized by the least number of

engineering tests which produce a criterion with acceptable accuracy.

Therefore this investigation has sought to simplify the proposed equation

by Cui through elimination of terms with slight influence.

The strength function presented by Chen and Chen [14] can be shown as

a special case of the proposed cubic function of equation (3.13). Their

criterion for the compression-compression region is re-written in the

following form:

1
A
u—

o

J
2
+ -

^2 l
]

= 1 < 3 - u )

t 3t
u u

Comparison of equation (3.14) to the cubic equation of (3.13) reveals the

similarities. Four higher order terms in equation (3.13) have been

eliminated and the following material parameters are equivalent:
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k - -L
22 "

2
t

^
(3.15)

u

A

A - u

A similar analogy can be drawn for the equation of the tension-tension and

tension-compression region (3.8b) presented by Chen and Chen. Therefore

the proposed strength function of Chen and Chen is merely a reduced form of

the cubic function proposed by Cui, equation (3.13).

The strength criterion proposed by Cui requires six independent

material strength tests, while the criterion of Chen and Chen requires only

three. Through judicious selection of terms from comparison of the two

strength criteriaj a unified, three-parameter, cubic strength function is

proposed. The proposed function is similar to that of Chen and Chen but it

includes additional higher-order invariant combinations. The proposed

function, recommended for use as a fracture criterion for concrete

subjected to biaxial states of stresses, is given as follows:

f(Ij
(i)

) = j^Ij + Ai
x

2
+ ^I

x

3
+ J

2
= B

2
(3.16)

2
where a,, a~, and B are material parameters which are determined through

simple engineering material tests, and
T

A' is a constant value.

The strength criterion of equation (3.16) represents a simple fracture

function which satisfies the invariant requirement of isotropic material

symmetry. The strength criterion is based on the continuum mechanics

approach of tensor function theory. The form presented is analytically

simplier than previously proposed criteria which were based on classical

plasticity approaches to fracture definition. In addition the proposed

criterion represents a complete and unified function capable of fully

describing the biaxial failure envelope.
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Characterization of the Proposed Strength Criterion

The proposed failure function presented in equation (3.16) is

characterized to a given strength quality of concrete by the three material

2
parameters a,, a„, and B . These parameters are determined from equations

based on simple engineering material tests. The engineering material tests

required are; uniaxial compressive strength (f ), uniaxial tensile strength

(f ), and the biaxial compressive strength (f ).

To solve for the material parameters the proposed fracture function is

re-written in terms of the stress conditions imposed within the test

specimen during the engineering tests. The parameters are determined by

the simultaneous solution of the three resulting linearly independent

equations. The material parameters are determined from the following set

of equations:

Uniaxial Compression:

°1 = " f
c

;
°
2 = °

3 = ° ( 3 - 17 )

I
:
- a

1
+ a

2
+ d

3
- -f

c
(3.18)

f
2

J
2

=
i [(a

l " a
2
)2 + (o

2 ~ °3
)2 + (a

3 " °1
)2

]

=
~T~

(3 - 19)

substitute I, and J_ into equation(3. 16) yielding:

a f
2

~r f
c

+ A£
c

2
- 27

f
c

3
+ -r b2 < 3 - 20 >

Uniaxial Tension:

°1
= f

t
! °2

=
°3

= ° ( 3 - 21 >

Ij = f
t

(3.22)

f
2

J
2 =~T (3.23)

substitute I. and J into equation (3.16) yielding:
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r f
t
+ Af

t
+
i7

f
t

+ — = B < 3 - 2^

Biaxial Compression:

°1 =°2 =
- f

bc =

a
3 = ° < 3 - 25 >

Ij - "2f
bc

(3.26)

J
2

= -y- (3.27)

substitute I. and J„ into equation (3.16) yielding:

2
-2a. 8a, f

—ji f, + 4A f, - -^ f,
J
+ -2s- = B

Z
(3.28)

3 be be 27 be 3

These results yield three equations with three unknown material

parameters. The three equations (3.20), (3.24), and (3.28) are solved by

the method of equivalent simultaneous linear equations and the material

parameters are given in terms of the simple material strengths as:

a
:

= [(3A + l)(f
t

2
- f

c

2
)(8f

bc

3
- f/) - 3A(f

c

2
- W^Xfj. 3

+ f.
3

)

-(f
c

2
- f

bc

2
)(f

t

3
+ f

c

3
)] (3.29)

(2f, - f )(f
3

+ f
3

) - (f + f )(8f,
3

- f
3

)be c t c t c DC c

-
ai (f

t
+ f

c
) - 3(A + l/3)(f

t

2
- f

c

2
) (3.30)

^0
2 2 3 2

B = Af - a,f + f - a,f (3.31)
c 3 c c 1 c

27 3 3

where f , f , and f. are absolute values. Therefore by measuring or
c t be ' °

estimating the three material strengths f , f , and f, , the proposed

fracture criterion is completely characterized:

The function constant 'A' of equation (3.16) is the coefficient of the

2
squared first invariant term (I. ). The value of the constant 'A' has been
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determined to be independent of concrete strength quality, but does have an

important influence upon the failure envelope shape. Determination of the

value for 'A' has been accomplished by comparison of the failure envelope

generated from equation (3.16) to the failure envelope implied through

experimental data.

In general the value of 'A' influences the overall shape of the

biaxial failure envelope. The regions influenced to the greatest extent by

this value have been found to be the tension-tension and tension-

compression quadrants of the principal stress plane. The value of the

constant which yields the highest accuracy within these regions has been

determined to be:

A = -.34 (3.32)

Comparison to experimental data by using true strength properties (f
,

f and f, ) demonstrates the usefulness of the proposed failure criterion,
t be f e

In Figures (3.1), (3.2), and (3.3) the failure envelope generated from

equation (3.16) is presented with the experimental data of Kupfer,

Hilsdorf, and Rusch [57] and Nelissen [66]. The value of 'A' is as given

2
in (3.32). The material parameters (a,, a, and B ) are calculated from

equations (3.29), (3.30), and (3.31), respectively, using the true

experimental values for f , f , and f. . Figure (3.2) is an enlargement of
c t be °

the tension-tension quadrant of Figure (3.1). The biaxial failure

envelopes generated from equation (3.16) agree with the experimental

envelopes reasonably well. Although both predicted failure envelopes

(Figs. 3.1 and 3.3) tend to overestimate the strength of concrete in

biaxial compression, except at the equal biaxial compression point (a =°9,

a
3

= 0).

The strength predicted within the biaxial compression region can be

improved if the value of 'A' is changed within this quadrant. The value of
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the constant which yields the highest accuracy within the biaxial

compression quadrant has been determined to be:

A = .20 (3.33)

The increased accuracy of the proposed failure criterion, by changing

the constant value 'A' in the compression-compression region, is

demonstrated by comparison to experimental data. The experimental data

selected from chapter one are compared with the final form of the proposed

strength function in Figures (3.4) through (3.8). The accuracy and ability

of the function to conform to variations in the failure envelope shape due

to strength quality variations, is demonstrated in these figures.

The advantage of the proposed strength function in comparison to

previously presented criteria becomes apparent in Figures (3.9) through

(3.12). These figures demonstrate the accuracy of the proposed criterion

with respect to the criteria of Wastiels [98, 100] and Chen and Chen [14],

Figure (3.9) presents the three fracture criteria in comparison with the

experimental data indicated. The proposed criterion proves to be as

accurate as the others in the biaxial compression quadrant. The advantage

of the proposed criterion is clearly demonstrated in Figures (3.10) and

(3.11), where it proves to be of higher accuracy in the tension-tension and

tension-compression regions than the criterion of Chen and Chen. The

strength criterion proposed by Wastiels is incapable of failure prediction

in the tension-tension region, thus it is not indicated in Figure (3.11).

Wastiels recommends using the maximum stress criterion in this region.

The strength criterion proposed by Wastiels appears to predict the

failure envelope extremely well in all but the tension-tension region of

Figure (3.11). In reality his strength function is artificial and cannot

account for slight variations in the shape of the failure envelope due to

differing qualities of concrete. This lack of failure envelope control is
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evident when compared to the experimental data of Nelissen [66] in Figure

(3.12). In this case Wastiels criterion overestimates the strength in the

entire biaxial compression region. In addition Wastiels criterion is not

an invariant form.

The proposed strength function of equation (3.16) is a single, unified

equation, fracture criterion for concrete in biaxial states of stress. The

fracture criterion proves to be mathematically simple and of higher

accuracy than the criterion of Chen and Chen, while requiring the same

number of material parameters.

Comparison of the Three-Parameter with the Six-Parameter Criterion

The proposed three-parameter cubic strength criterion of equation

(3.16) is a reduced form of the six-parameter cubic strength function given

in equation (3.13), i.e.

2 3-2 I

—
A

1
J
1
+ A

11
I
1

+ A
22

J
2

"' A
111

I
1

+ A
122

I
1
J
2

+ A
112

I
1 V J

2
= : ( 3 - 13 )

The higher order invariant terms I.J. and I i/j are dropped and the

material parameter 'A,,' becomes a constant value 'A'. These changes were

accomplished by judicious analysis of the six parameters within equation

(3.13). To evaluate the effects of the reduced form of the original cubic

function (3.13) a comparison of failure envelopes is accomplished.

The strength function of equation (3.13) is a polynomial combination

of the invariant terms up to the cubic. This function is satisfied at any

combination of stress states which cause failure. The six material

parameters (A,, A , A„
9 , A, . ,

, A.„„, A,,
9 ) are material constants

determined through strength tests. These parameters are linearly

independent, thus six independent experimental 'strength tests are required.

The six parameters are determined by simultaneous solution of the six
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linearly independent equations formed by solving equation (3.13) for each

strength test stress condition.

The experimental failure data of Kupfer, Hilsdorf, and Rusch [57] is

again used for evaluation of the six-parameters of equation (3.13), based

on the concrete tested. These investigators tested three different

compressive strengths of concrete. Each strength requires exclusive

material parameters within equation (3.13) for accurate failure envelope

representation. The six-parameters obtained are presented in table (3.1)

for each strength quality of concrete tested. For comparison the

equivalent material parameters for the proposed three-parameter equation

(3.16) are also given in table (3.2) for A = -.34, and table (3.3) for

A = .20.
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Concrete
Strength
(PSI)

A
l

A
ll

A
22

A
lll

A

122
A
112

2700 -8.762 -33.923 89.000 -6.165 -110.481 98.745

4450 -8.729 -39.995 138.408 -17.500 -250.285 181.025

8350 -8.351 -43 . 690 164.366 -22.948 -328.088 226.142

TABLE 3.1 SIX-PARAMETER CRITERION COEFFICIENTS

Concrete
Strength

A
l

A
ll

A
22

A
lll

(PSI)

2700 11.274 -33.028 97.142 -12.922

4450 11.274 -33.028 97.142 -12.922

8350 11.272 -31.735 93.338 -12.894

TABLE 3.2 THREE-PARAMETER CRITERION COEFFICIENTS (A = -.34)

Concrete
Strength
(PSI)

A
l

A
ll

A
22

A
lll

2700 10.043 4.425 22.123 .756

4450 10.043 4.425 22.123 .756

8350 10.047 4.409 22.045 .710

TABLE 3.3 THREE-PARAMETER CRITERION COEFFICIENTS (A > .20)

NOTE : for Tables (3.2) and (3.3)

Aj = ai /3B
2

; An = A/B
2

; A
22

= a
3
/27B

2
; Am = 1/B

2



-75-

The cubic function (eq. 3.13) is represented using the related six

material parameters from table (3.1) in Figures (3.13) through (3.15). The

proposed three-parameter strength criterion with A = -.34 for all regions,

is present also in these figures. The complete cubic function (eq. 3.13)

proves to be highly accurate, as it complies with the implied experimental

biaxial failure envelope extremely well.

For additional comparison the complete cubic strength function of

equation (3.13) is compared to the reduced form of the three parameter

strength criteria proposed in this investigation using both values of 'A'

and Chen and Chen in Figures (3.16) through (3.18). Additionally Wastiels

criterion is compared to the cubic strength function (3.13) and the reduced

three-parameter form proposed in this investigation in Figures (3.19)

through (3.21).

The cubic function proposed by Cui proves to be of the highest

accuracy when compared with all others. The biaxial failure envelope

generated from Cui's cubic function complies with the experimentally

determined envelope exceptionally well, as can be seen within Figures (3.16)

through (3.21). In further demonstration of this functionscapabilities the

regions of tension-tension and compression-tension are enlarged in Figures

(3.16) through (3.21). The function fit to the data points is superior to

any previously presented functions for failure prediction.

The proposed three-parameter function of this investigation given in

equation (3.16) proves very accurate. The proposed strength criterion is

generated within Figures (3.16) through (3.21) along with the criterion of

Cui. The values for the constant term 'A' are changed to conform to the

active quadrant, as previously recommended. The proposed three-parameter

function is shown to be only slightly less accurate than the complete six-

parameter function. Indeed within the region of greatest design
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concentration (compression-compression) the three-parameter function is eq-

ually as accurate.

The complete cubic function of Cui [18] proves to be of the highest

accuracy, although the requirement of six engineering tests to characterize

the function for each strength quality of concrete may be prohibitive in

many design instances. The proposed strength criterion requires only three

material parameters. These parameters are obtained from three simple

engineering material tests. Furthermore, two of the engineering tests may

be estimated based on experimentally proven biaxial stress conditions of

failure. The biaxial compressive and uniaxial tensile strengths of

concrete have been shown to be known percentages of the uniaxial

compressive strength as discussed in the conclusion of chapter one. Higher

failure envelope accuracy is achieved if the exact values are obtained, but

only a slight loss of accuracy occurs if an intelligent estimate is made.

Thus the proposed strength function can completely characterize the biaxial

failure region of a concrete with only a single uniaxial compression

strength test.
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CHAPTER FOUR

SUMMARY AND CONCLUSION

Summary

This investigation has proposed an improved strength criterion for

prediction of concrete failure under biaxial loading. The variable

characteristics and complex composition of concrete dictate a need for a

comprehensive mathematical strength function. The simplest classical

theories applied to multiaxial states of stress are not acceptable.

A review of the literature uncovered numerous accounts of experimental

data for characterization of the biaxial failure envelope. Further

investigation revealed a critical assessment of the experimental data was

required, as much of it is in error. Five sets of experimental

observations were selected in order to validate the newly proposed strength

criterion.

In reviewing strength criteria published to date several pertinent

investigations were discussed. The strength criteria proposed for concrete

were found to lack suitability for general usage. The expanding field of

nonlinear continuum mechanics and the growth in popularity of fiber-

reinforced composite materials has promoted research in material

characterization through the use of tensorial function theory. The theory

has found wide acceptance in development of constitutive equations and

strength criteria for anisotropic brittle materials. The proposed strength

criterion reflects the recent developments in tensor theory as applied to

strength functions.
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The proposed strength criterion for concrete under a biaxial state of

stress is:

a a

Y T
i
+ AI

i
+
IT

I
i

J
2
" B (3,16)

2
where a-,, a«, and B are determined from equations (3.29), (3.30), and

(3.31), respectively. The values for the constant term 'A' are:

for the compression-compression region:

A = .20

for all other regions:

A = -.34

The proposed cubic strength function, equation (3.16), is a unified,

invariant, three-parameter equation for the prediction of concrete failure.

The criterion complies with mathematical and physical requirements imposed

upon a strength function for concrete. The features which confirm this

compliance are:

1) The function is a unified, single equation, strength criterion.

The function is highly descriptive and capable of accurately predicting

failure in all biaxial states of stresses. The biaxial failure envelope

conforms to the experimentally determined shape exceptionally well.

2) The function is scalar and invariant. The criterion will predict

failure in any given coordinate system with equal accuracy, for the

isotropic material symmetry class.

3) The cubic strength function is mathematically simple. The

function may be used within computer based analysis or by classical

methods.

4) The strength function is easily characterized for a given quality

of concrete. Three material strength properties are required for complete

characterization. These properties can be obtained from simple engineering
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material tests or estimated through experience from previous material

tests.

5) The function is dependent on both the hydrostatic and deviatoric

components of the stress tensor. Mathematically the first invariant (Ii)

is equivalent to hydrostatic pressure, and the second invariant of the

deviator tensor (J„) is equivalent to the shear state of stress.

Conclusion

The failure envelope within the biaxial stress plane for the proposed

strength criterion has demonstrated accurate prediction of failure for all

regions. In comparison to previously proposed strength criteria the

accuracy is comparable or higher. The newly proposed criterion

demonstrates mathematical superiority as it is easily characterized to the

given strength quality of a particular concrete, were as past strength

criterion require complex statistical methods of characterization.
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APPENDIX

Correction of Chen and Chen's Material Parameters

In the course of this investigation a typographical error was

discovered in the published works of Chen and Chen [13, 14]. The material

parameter equations used to characterize the strength criterion proposed by

these investigators are in error. Erroneous strength properties are

predicted if the published material parameter equations are followed. The

strength of concrete in the biaxial compression region is grossly

overestimated using the published values.

The incorrect material parameters for the compression zone are given

as:

2 - -'2
t 3f I - 2f,
u be be-—~2 = ~

(1)

(«;) 3(f- - i)

and;

2 -3 - 2 - - ?
t . 2f - 3f,
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err J

2f. -
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These material parameters were re-evaluated based on the published

strength criterion equation proposed by Chen and Chen for the compression

zone. The corrected material parameter equations are:
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and;

t
2

f f (2f - f. )o be c c be
2

=
= (*)

(f'r 3(2f, - f )
c be c

The corrected material parameters of equations (3) and (4) were tested

and found to be correct. The corrected material parameters were used

exclusively throughout this investigation when discussing or plotting the

strength criterion proposed by Chen and Chen. The additional material

parameter equations were also evaluated and found to be correct.
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ABSTRACT

A general, three-parameter, unified strength criterion for the

prediction of concrete failure under biaxial states of stress is developed.

From the laws of continuum mechanics the criterion is formulated in terms

of the invariant quantities of the stress tensor associated with isotropic

material symmetry. The proposed function satisfies the invariant

requirements of coordinate transformation, stress interaction requirements,

and is easily characterized. The function requires only three simple

engineering strength tests, estimated or measured, to completely

characterize it to any strength quality of concrete.

The strength criterion is validated using selected experimental

failure results for concrete under biaxial stress states. In addition the

proposed criterion is graphically compared to past strength criteria for

concrete. The proposed strength criterion is proven to be highly pertinent

and useful, as it represents the experimentally determined biaxial failure

envelope more accurately than previously proposed criteria.


