
THE USE OF FRAMES IN DATABASE MODELING

by

BARBARA MOORE SWEET

B. S. , Kansas State University, 1982

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Approved by

Jfrq*r r.

Major Professor

%%6V
|

A115DS IbDEfcS

jg? TABLE OF CONTENTS

C- X PAGE
LIST OF FIGURES iii
ACKNOWLEDGEMENTS iv

DEDICATION v

PREFACE 1

CHAPTER 1

INTRODUCTION 4

1 . 1 Introductory remarks 4

1.2 Desirable Characteristics of Databases 5

1.3 Introducing New Database Models in Industry 7

1.4 Organization of Thesis 8

CHAPTER 2

THE CONCEPT AND CAPABILITIES OF FRAMES 10

2 . 1 Background 10

2.2 A Brief History of Frames 11

2.3 FRL Terminology 13

2.4 The Frame System Structure 16

2.4.1 The FDM Attribute Frame 16

2.4.2 The FDM Element Frame 19

2.4.3 Using Frames to Represent Frames 20

2.5 The Conceptual Capabilities of Frames 21

2.5.1 Inheritance 21

2.5.2 Default Values 26

2.5.3 Demons 26

2.5.4 Perspectives 29
2.5.4.1 Perspectives in KRL 32

2.6 The FDM User-View Frame 32
2.6.1 Security 34
2.6.2 The Specification of User Views 35

2.7 The FDM Inference Frame 38

CHAPTER 3

ORGANIZATIONAL ISSUES 40

3.1 Multivalued Dependencies 40

3.1.1 Multivalued Dependencies in the Network,
Hierarchic, and Relational Models 41

3.2 Multivalued Dependencies in the FDM 50

CHAPTER 4

ACCESS ISSUES 52
4.1 Multiple User- Views 52
4.2 Representation of Incomplete Information 54
4.3 Update and Deletion Anomalies 57

4.3.1 Anomalies in the Network, Hierarchic, and
Relational Models 57

4.3.2 Update and Deletion Anomalies in the FDM 62

ii

CHAPTER 5

QUERY ISSUES 64

5.1 Unprocessable Queries 64

5.2 Query Optimization Using Semantic Constraints 66

5.2.1 Two Methods of Semantic Query Optimization 68

5.2.2 Semantic Query Optimization in the FDM 69

CHAPTER 6

THE SEMANTIC DATA MODEL 71

6.1 Components of the SDM 71

6.2 A Criticism of the SDM 72

CONCLUSION 75

BIBLIOGRAPHY 77

iii

LIST OF FIGURES

FIGURE PAGE
1 FRL Frame Structure 15

2 Frame Structure Example 18

3 FDM Frame Types 22

4 FDM Element Frame Examples 24

FDM Attribute Frame Examples 25

5 FDM Frames with Demons 28

6 Perspective Tree 31

7 Perspective Matching Example 33
8 FDM User-view Frame Structure 36

9 N-M and I-M Dependencies in the Network and
Hierarchic Model s 42

10 Unnormalized Relation Example 45

10.1 Fourth Normal Form of Figure 10 45
10.1a Additional Relation to Figure 10.1 45

11.1 Cross Product of Figure 10 47

11.2 Disjoint Representation with Null Values
of Figure 10 47

11.3 Minimal Number of Values with Null Values of

Figure 10 47

11.4 Minimal Number of Values with Repetitions of

Figure 10 49
12 INSTRUCTORS Relation Example 59

13 FACULTY, COURSE, COURSE-STATS Relation Examples 60

14 Semantic Constraint Example 67

iv

ACKNOWLEDGEMENTS

I wish to acknowledge with deep appreciation the members of my

thesis committee for their encouragement and advice.

My thanks to Dr. Roger T. Hartley, who acted as my major professor

and committee chair. Dr. Hartley gave me reassurance and guidance

during the few short months I had to complete this work.

I also wish to thank Dr. Elizabeth A. Unger, who was my first

advisor at Kansas State University and did me the honor of being on my

committee. Dr. Unger told me in 1979 that I would go on to graduate

studies, "...probably in Artificial Intelligence."

Finally, my thanks to Dr. Rodney K. Bates, who was of more help

while on my committee than he might realize. Dr. Bates gave the

objective ear which kept this thesis from reading like a chapter out of

Alice in Wonderland.

DEDICATION

To Robert: husband, best friend, and the most

patient man I've ever met.

PREFACE

In all areas of computer science there is a demand from industry to

create new tools for information management. The amount of information

which computer system users need to have available and well managed is

not, and will not, be decreasing. This need is causing the development

of better hardware, better software design techniques, improved ways to

link hardware and software to make communication and processing more

easily available, and better methods to store and use information. At

this time it seems impossible to keep up with current demands, much less

to plan for future needs. But because the demands will continue to

increase faster than they can be met, it is essential for researchers in

computer science to design systems now that can fill the growing demands

in the future. This is as true for the field of database modeling as

any other area of computer science.

An analogy can be drawn to a parent purchasing clothing for a

child. Since the parent knows the child will continue to grow in the

future, the "wise buyer" looks for a fit a bit larger and longer than

the child's current size. This gives the new garment a longer period of

use.

It is even more important for database models to be flexible so

that they can cope with the growth trends and shifting priorities of

industrial consumers. An example similar to the purchase of clothing

for a growing child is the manner in which a woman might look for a

dress to buy. She may look for a style and fabric which can effectively

allow for future shortening or lengthening of the hem. This way, as

fashions change, the dress can be altered so as to be current rather

than being discarded or being inappropriately or unf ashionably used.

2

"Smart" consumers are constantly using strategies to make purchases

today which will still fill the needs of the future. They buy homes

with extra space if family growth is expected. The same is true of

automobiles, cold-storage appliances, and other long lasting items.

Many of these items are what are called "big ticket" items - expensive.

This accounts for future minded buying strategies.

Commercial databases are certainly "big ticket" items.

Unfortunately, many database systems are purchased to fill immediate

needs and may be found inadequate when the future becomes the present.

It is not hard to understand why industry continues to purchase the

"good old reliable" database models, even though they are inflexible and

constraining to users. They may not supply the future needs of the

users, but new models are hard to use, still not very user friendly, and

really don't offer any greater range of user capabilities.

It is important that database designs be developed which anticipate

the needs of the future but do not increase in user complexity and

design inflexibility at the same tit.e. There are many available methods

to make databases reliable and consistent, but they also require

industrial consumers to accept greater degrees of adjustment in adapting

them for use.

Databases must be designed to include features which make them

flexible, easy to use, and reliable. Users should not need to know how

the database is organized, what processes are required to locate and

manipulate specific contents, or how to optimize interaction with the

database. The database should handle these things. The database must

be a partner to the user, not an obstacle, in information management.

As the size of databases and the uses they must accommodate continue to

3

increase, it will become increasingly unrealistic to expect those who

interact with databases to be able to keep track of the rules and

requirements of their use. The databases must perform this task and be

adaptable to changes and growth in the application areas they are being

used for. If not, why should industrial consumers accept improved

database models?

The frame-based model proposed in this thesis is intended to supply

both a reliable and consistent means of information management and a

model which would support more complex user needs, but not more complex

user responsibility. By incorporating the semantics of the application

environment into the database itself the model has the capability of

monitoring and controlling its use, and to supply a conducive

environment for user interaction.

CHAPTER 1

INTRODUCTION

This thesis introduces a database model based on frames, a

conceptual structure developed in Artificial Intelligence knowledge

representation. This frame based database, hereafter referred to as FDM

(Frame Database Model), is offered as an alternative database model for

commercial applications.

The body of the thesis will argue the importance of alternative

methods of data base modeling, the appropriateness of frames as

structures for database modeling, and describe the benefits available to

commercial applications from a frame based model. The next section will

explain the approach and organization of this thesis.

1.1 INTRODUCTORY REMARKS

The approach this thesis takes concerns the intentional vs. the

extensional perspective of database modeling. There is no discussion of

issues which involve the physical or implementation level of database

development and maintenance, nor will specific issues of data

organization and run time efficiency be addressed. The effect of the

conversion from conceptual model to logical model will be discussed as

necessary, but it is not in any way the focus of this thesis.

It should be stated that an FDM will probably have a slower

processing time than standard systems because of the increased

complexity. This is admittedly an undesirable side effect in commercial

application databases since processing turn around time is usually a

high priority. The problem is unavoidable but could be diminished or

5

eliminated by application of good software engineering techniques and by

future developments in firm/ hardware. Since run time efficiency is a

problem, in varying degrees, with all database implementations, it might

be the case that the capabilities of an FDM outweigh this disadvantage.

1.2 DESIRABLE CHARACTERISTICS OF DATABASES

It is necessary to establish the characteristics which are

desirable in any database. In addition, it will be demonstrated that

the current and future needs of commercial applications will suggest

that the development of new database models is a timely research area.

Within the application area of an implemented database the data

elements of that database are tokens which have semantic reference to

"things" in the real world. These data elements are the contents of the

database. As stated by Hammer [21], at any given moment the current

state, or contents, of a database should capture the current state of

its application environment. However, the contents of the database have

no representation of intentional meaning. It is necessary for a user of

the database to apply processes to the database such that process

results are usable and meaningful.

A database representation of an application environment should also

be natural and unrestricted [2]. tony database models are designed to

be as natural and unrestricted as possible. They are also limited by

the necessity of protecting the integrity and reliability of the

contents of an instance of an implemented database. The different

approaches of database model design, structured (network and hierarchic)

and unstructured (relational), are used to create models which strictly

6

adhere to rules that minimize erroneous information. Examples of such

rules include the limitations on representing many- to-many multivalued

dependencies (all standard models) , and the representation of incomplete

information (relational model).

Because of the nature of the two different approaches, each design

method has priorities of organization and manipulation of the contents

of a database. For example, the effect that different levels of

normalization have on the organization of relational databases. In some

cases, such as in the Boyce-Codd normal form, the organization of the

database is effected in a restricted fashion such that it may not be

possible to retain real world relationships among attributes.

It is not enough for a database model to be designed so that an

implementation has structural or organizational restrictions which

comply with the semantic references of the outside application

environment. The database model should also contain representations of

those semantic references.

Some of the problems associated with developing databases with the

aforementioned desirable characteristics are caused by the database

model. However, many of the problems which affect the objective of a

natural and unrestricted representation occur when the conversion is

made from the conceptual model of a specific database to the actual

implementation. The common database models (network, hierarchical,

relational) and even the more recently developed semantic data model,

must be implemented using data definition languages. Different data

definition languages may impose their own liL-itaoions on the

representation of the database. An example of this is the use of

virtual records in the CODASYL implementation of the hierarchic model.

7

1 .3 INTRODUCING NEW DATA BASE MODELS IN INDUSTRY

It can be argued that the current database models are already able

to accommodate the needs of database users in industry. Improvements

brought about by research are often not readily accepted for use in

industry. In addition, industry is reluctant to adopt improvements in

database modeling due to the need for retraining and adjustment to the

use of new models when implemented.

There are two reasons for the importance of research in the area of

"intelligent" database models, models which can monitor and/or intercede

in the organization and access of themselves, for industry.

First, a major problem with current databases is that a user must

have some degree of understanding of the implemented database, the

manipulations which may be performed on the database, and the rules for

using these manipulations. A user will want a database to be as easy to

understand as possible. Users also do not want to have to relearn or

adapt to the changes in the use of a database as research develops

modifications in modeling and design. The solution for the user is to

be able to work with an intelligent database. Such a database could

greatly reduce the necessity for the user to understand the database

itself and the rules for its use.

Second, in the future, the maintenance of integrity in a given

database will be increasingly important, as the size of databases

increases, and the practice of single database use by multiple users for

multiple applications expands. It will be increasingly important under

such conditions for any given user of a database to be unable to corrupt

that database for other users. Data bases of the future should be able

to monitor themselves to be certain they are safely used and maintained.

8

This is not to say that a database should or will become a "black box".

The database would be understandable by those who are in a position to

need to know about the workings and organization of the database (the

database administrator, DBA). In fact, work on the XPLAIN expert system

[20] indicates that it is possible for the database to respond to a

query of why it has performed in a given manner using reasoring paths,

rather than responding using a trace-back of the processing execution.

However, the user would not need an indepth understanding of the way the

database functions. The user would only need to know information

essential to interaction with the database with regard to their

particular application area.

1.4 ORGANIZATION OF THESIS

Chapter 2 explains the capabilities and structure of frames. This

chapter also contains a brief history of the use of frames in Artificial

Intelligence knowledge representation.

Chapter 3 discusses the issue of multivalued dependencies. The

methods in which the standard database models treat this issue are

discussed. The way in which the FDM is affected by iLultivalued

dependencies, or in point of fact is not affected, is presented.

Chapter 4 discusses issues and problems which arise in database

access and how the FDM might resolve them. The issues and problems

include multiple user view facilities, representation of incomplete

information, and update and deletion anomalies, and query processing.

9

Chapter 5 discusses database query issues. There are two topics

included in this chapter: unprocessable queries and semantic query

optimization.

Chapter 6 concludes this thesis. In addition to concluding

remarks, this chapter contains a discussion of the SDM database model,

including an explanation of its components and a criticism of its

limitations.

10

CHAPTER 2

THE CONCEPT AND CAPABILITIES OF FRAKES

Chapter 2 explains the concept and capabilities of frames, and

discusses the structure and components of the FDM. Section 2.1 gives a

brief background to the use of frames for knowledge-bases in Artificial

Intelligence knowledge representation. Section 2.2 contains a brief

history of the origins of frames as an Artificial Intelligence

construct. Section 2.3 offers the FRL (Frame Representation Language)

terminology and form for use in this thesis to facilitate the

presentation of examples. Section 2.4 explains frame system structure,

and introduces the FDM attribute frame (Section 2.4.1) and element frame

(Section 2.4.2) types. Section 2.4.3 discusses the use of frames tc

represent and define frames.

Section 2.5 explains the conceptual capabilities of frames. These

include inheritance (Section 2.5.1), default values (Section 2.5.2)

,

demons (Section 2.5.3) > and perspectives (Section 2.5 .4) . Perspectives

are explained using another frame representation language, KRL (Section

2.5.4.1). Section 2.6 describes the FDM user- view frame type, and

Section 2.7, the FDM inference frame type.

2.1 BACKGROUND

In many Artificial Intelligence knowledge representation projects,

databases have been implemented using frames. These databases created

using frames are one variety of what are called knowledge-bases in

Artificial Intelligence. Some of the databases have been designed using

hypothetical application environments such as a children's story [22],

X

11

and some using commercial application environments such as an airline

travel system [5]. These databases have served as test case

knowledge-bases for knowledge representation projects. They have tended

to be by-products of these projects and not the target goals themselves.

These databases have not been designed with those characteristics which

are desirable in commercial databases, however, the features of frames

used in knowledge representation domains can be used to define

themselves, define the database they are used to build, represent the

contents of the database, and define and monitor the usage of the

database.

2.2 A BRIEF HISTORY OF FRAMES

The human memory is not simply a storehouse of facts. It also

maintains the means to organize and use facts. The composite of facts

and the means to use facts can be called knowledge. Both Psychology and

Artificial Intelligence have been interested in understanding how

knowledge can be represented and what types of mechanisms might be used

to activate knowledge. From this interest has stemmed the concept of

knowledge representation.

It has seemed likely, for some tite, that human memory makes use of

some type of mechanism which allows individuals to recognize events and

objects which are similar to events and objects which have been

encountered before [26]. Such a mechanism would require features which

allow matching, classification, generalization, and differentiation of

prescriptive facts. It is clear that such a mechanism must contain, to

12

some degree, the semantic references intrinsic to events and objects so

that these features may be facilitated.

The concept of a "frame" structure as a means of knowledge

representation was first introduced to the Artificial Intelligence

community by Minsky in 1974 [33. In his paper, iinsky Describes frames

as a mechanism for representing stereotypical information about events

and objects. "We can think of a frame as a network of nodes and

relations" (pg. 1). A structure of frames is generally hierarchic, with

more generalized stereotypical information placed in the upper levels of

the structure, and the more specific object or event information at the

lower levels. Higher level frames are prototypes of related lower level

frames. Within a frame, pertinent prescriptive facts may be held as

well as components which link (or relate) the frame to other frames and

activate the frame within the structure.

Minsky 1 s original proposal of the frame concept was intentionally

vague in terms of implementation and processing. This has caused the

specific design of frames in actual systems to be based on the needs and

perceptions of future designers. Since 1974 many methods of frame

system implementation have been developed. Because of the range of

problem domains and desired behavior of these systems, each system has

somewhat different features.

A central theme to many frame systems is the ability to perform

matching strategies. The field of natural language processing has seen

frame systems designed and implemented for natural language

understanding. Systems developed for this purpose include GUS [11] and

the script system [8], which is a modification of the frame concept.

The area of expert systems has created problem- solving programs using

13

frames. One such system is ISAAC [25] designed to solve problems in

physics.

Collectively, each of these frame systems fall into the category of

representational schemes called knowledge-bases [9]. Each one of these

systems supports a database consisting of logical frame structures.

Systems such as GUS [11] and NUDGE [6] have been developed in problem

domains which are common commercial database application areas, namely

travel reservations and appointment scheduling. The primary area of

interest in development of GUS was the natural language interaction with

the system and not the refinement of the database structure as a

commercially usable product. NUDGE was developed to augment an

inter-office scheduling system for appointments and meetings. Although

it used a database for its processing, again the concerns of commercial

database maintenance were not central to the project. Rather, the

interest was primarily in the areas of recognition of information about

the problem domain which must be represented in the system,

experimentation with multiple representation methods, and analysis of

the FRL (Frame Representation Language) as a successful implementation

tool [6].

2.3 FRL TERMINOLOGY

Because FRL is one of the most easily understood languages for

representing frame systems, its terminology and form have been borrowed

from ref. 14 for the presentation of examples in this" thesis. However,

its use is for clarification purposes and is not intended to present

14

implementation requirements. The frame capabilities are being

presented, not a method for implementation.

The basic components of the FRL frame form are shown in Figure 1 .

"Frame" is the frame name. The contents of the frame are subdivided and

named using "slots". The two most common slots in FRL are "A-Kind-Cf

"

(AKO) and "INSTANCE". The AKO slot acts much as an IS- A link in a

semantic network [27]. An IS-A link indicates a relationship between

two objects such that object A, which IS-A object B, has all of object

B's generic features. In other words, A is a specification of B. An

example would be that a ROBIN IS-A BIRD. The frame name(s) which

appears in the datum position for an AKO slot is an immediate upper

level attribute frame which acts as a prototype of the frame that

contains the AKO slot. A frame name which appears in a specific

attribute frame's INSTANCE slot is a member of a group of one or more

frames which conforms to the specif -.cations of the attribute frame.

This concept of "conforming to specifications" is explained in the next

section.

A "facet" within a slot indicates the nature of the "datum". A

facet may indicate a specific value ($VALUE), a default value ($DEFAULT)

when a specific value does not exist, or demon types ($IF-I.ELDED) to

trigger an attached procedure when a value must be acquired. Additional

demons are provided to deal with situations such that some action must

be performed when something is changed in the slot's datum contents, or

when the frame is newly created ($IF-ADDED and $IF-REMOVED) , or to

define the allowable datum for a slot ($REQUIRE). The "datum" itself

may be some numeric, alphanumeric, or logical constant, another frame

name, or procedural statement.

co

CD

W)
a
ca

CO

(D

o

15

CM CvJ •

CD ^-^ CD *

Ml • cm •

cd —

N

cd

CO • •—n CQ *—

s

OQ • CO •

CD CO CD

s -p • e •

tH CD rH rH rH
CD s CD 0)

M s ttf) CtO M
cd o cd cd cd

CQ a CO •—

>

CO CO

CQ CO • CQ CQ

CD CD CD « CD CD

£
O

s S £

^H £ iH cd rH T-H

H H -p H «—

s

H
(D • CD cd • CD

& • fl p rQ • rQ
<M * Cti CO . cd

H rH CD H H
'

o
CQ

-P
tH CM

i
B i-H

s
CD

O £ ^^
3 3 • 3 cd 3 •

-P -p • -p Ph -p •

cd cd • cd cd •

T3 T3 -d CD Tj
"*-' s— U

o
' CO

-P
«H (M £ rH O
-P +3 -P H
CD CD • CD OQ
O a a
US cd • cd CD

<+H <H "H fH
s ^^ O

£
rH (M

tH -P -P •

CD O O •

S H rH •

3 CO CQ

h ^—

'

1

^H

g
13
EH i

a i

O
<x »H
Eh
co

lW 5a
H

2 h
fe

p
i

i

Ph

16

FRL also includes "labels" and "messages" (which act as comments)

that can be used to clarify the contents of a frame, but which are not

essential to understanding the basic form or components of a frame.

2.4 THE FRAME SYSTEM STRUCTURE

The hierarchic structuring of a frame system is defined by the

semantic hierarchy of the application domain. Each level of the

structure is dependent on its previous levels. The very top levels of

the structure define the structure itself and the structure of its

components - frames. These components are the different types of

frames active in the structure. In the FDM these are the attribute,

element, inference, and user-view frame types. The top levels define

these frame types by defining their components and by representing their

semantic uses and differences. Each frame placed below another frame,

in a parent-child order, must fulfill the semantic requirements of its

parent level.

To see how this structure definition works it is helpful to first

look at how the structure of a "real world" example would be

represented. This example might itself appear at some level in a FDM

database. It is also necessary at this tin.e to introduce two of the FDM

frame types in detail.

2.4.1 THE FDM ATTRIBUTE FRAME

The first frame type which is needed in the FDM is the attribute

frame. The attribute frame contains the semantic (and syntactic)

17

specifications to which any related lower level frame must comply. In

other words, given a frame B which is linked, via its AKO slot, to frame

A, then any contents of frame B must be compatible with the

specifications of frame A. Bobrow and co-workers [11] describe this

association by stating:

"If one frame is the prototype of another, then we say that

the second [frame] is an instance of the first [frame]. A

prototype serves as a template for its instances." (pg. 163)

For example, a college student is also a person. To consider the

concept of an individual being a college student is to consider all of

the semantic features of being a person plus those specific features

which semantically define a college student. A sample case of a frame

structure which represents this relationship is shown in Figure 4 (see

Chapter 2.5.1). This structure could be expanded to represent that a

person is a mammal, and a college student has the semantic features, via

the AKO slot of PERSON, of a mammal. The chain could continue to

represent a mammal as an animal, and an animal as a living thing. The

extent to which the chain continues up, or must be suboivided down,

depends on the requirements of the domain being represented.

An attribute frame contains the stereotypical semantic aefinition

of a group or class. It contains only the specific information which

always holds true about its members. For example, an attribute frame

for a mammal (Figure 2) would contain the constraints of all mammals

being "warm-blooded vertebrate animals which have lungs and milk

producing glands in the females" [18]. These features are common to all

mammals. Any frame related at a lower level to the mammal frame must

minimally be able to fit these criteria, and each shares this

18
mammal :

AKO : $value : animal

INSTANCE : $value : canine
,
person, whale ,..

.

SKELETAL-STRUCT : $value : vertebrate

AIR-INTAKE : $default : lungs

CIRC-SYSTEM : $value i warm-blooded

ENVIRONMENT : $default : land

whale :

AKO : $value : mammal

INSTANCE : $value : blue , sperm, hump-back, .

.

FOOD : $default i plankton

ENVIRONMENT s $value : salt-water

lung :

AKO : $value : body-organ : def : Either of two spongy,
saclike thoracic organs
in most vertebrates,
functioning to remove
carbon dioxide from the
blood and provide it
with oxygen

USE : $if-needed : life-support (lung)

moby-dick :

AKO : $value : sperm

LOCATION : $value : atlantic

FRAME STRUCTURE ELEMENTS

-- FIGURE 2 —

19

information. Though the majority of mammal types live on land, it is not

always true, as with whales. Therefore that information might appear as

a default in the mammal frame, but not as a rule for the association of

lower level frames.

An attribute frame can also hold semantic and/or syntactic

constraints, as values of its own slots, which act in a template type

manner to restrict the values of corresponding slots in lower level

attribute or element slots. The $REQUIRES facet is used for this

purpose.

2.4.2 THE FDM ELEMENT FRAME

The second type of FDM frame is the element frame. These frames

should only occur at the lower levels of the frame structure. Their

names are instances of prescriptive facts, such as a person's name.

They contain references to their immediate attribute frame(s) in their

AKO slots, and the names of other frames to which they are related.

These may be other element, attribute, and inference frames, which will

be described when needed. In some cases, usually in the form of a

comment and for explanatory purposes, a linguistic cefinition will be

represented. This might be a definition of the frame name or of some

item in the frame. Figure 2 contains an example where the dictionary

definition of "lung" is contained in the element frame named LUKG.

Many times it is necessary to represent items which have no

semantic reference in and of themselves. Values of this kind are

sometimes numeric (25, 4, 970), alphanumeric (bud, 9m), and logical

truth values. Someone might be '25' years ola, but 25 itself has no

20

semantic reference other than its meaning in a number system. If the

database application domain is not dealing with a number system, it

probably would not be useful to represent this type of semantic

information. So in many cases it would not be appropriate to represent

these types of items as individual frames. These items usually appear

as an $VALUE, $DEFAULT, or $REQUIRE datum in either attribute or element

frames. The use of $REQUIRE to handle syntactic type-checking is

included in Section 4.2.

An element frame should not have an INSTANCE slot. Examples of

element frames in Figure 2 are LUNG and MOBY-DICK. LUNG might be an

attribute frame in some application where instances of element frames

such as IRON- LUNG, NATURAL- LUNG, and ARTIFICIAL- LUNG were desirable as

semantic sub-types. For this example LUKG serves its purpose as an

element frame.

2.4.3 USING FRAMES TO REPRESENT FRAMES

Now that the above two frame types have been described and used to

represent a real world example, it can be seen that these same frame

types can be used to describe themselves. An attribute frame named

FRAME would have instances of ATTRIBUTE-FRA1.E, ELEMENT-FRAME,

INFERENCE-FRAME, and USER- VIEW-FRAME. These frames are also attribute

frames and contain the semantic criteria for associated lower level

frame occurrences of their type. These are very high level, or

"meta- level", frames which are generally static in any particular FDM

design. Changes made to these frames effect the entire database. As a

21

result, changes should be made rarely, with much prior consi deration,

and only by someone in the highest levels of authority, i. e. , the DBA.

Figure 3 shows the type of information that would be represented in

these attribute frames. The actual form of these frames would be

dependent on the frame implementation language used, just as was stated

earlier concerning the other frame examples appearing in this thesis.

The use of the word reference in the figure means the occurrence of

other frame names, within a given datum, in any of the frame's slots,

except the AKO and INSTANCE slots.

2.5 THE CONCEPTUAL CAPABILITIES OF FRAMES

To see how an FDM can improve commercial database organization and

manipulation it is necessary to explain the capabilities of frames in

greater detail. There are four basic properties that frames use to

share information and control activities within the frame system. These

are inheritance, default values, demons, and perspectives [4].

2.5.1 INHERITANCE

Inheritance makes sharing of generic, stereotypical, and/or

specific information possible. This inheritance can be vertical or

horizontal among frames, depending on the requirements of the system.

Vertical inheritance consists of the information contained in an upper

level frame which is information also true for any lower level frame

where the upper level frame appears in its AKO slot.

22
ATTRIBUTE FRAME

— contains specific information which is pertinent to

its level and no higher level frame

-- contains necessary references of higher level frames

(AKO) which contain constraints which it must fulfill

in all cases

— contains references of lower level frames (INSTANCES)

which must fulfill all of the constraints which it

contains

— may contain references of other frames

-- contains constraints which specify its relationship

to other frames which it references

— may contain non- frame-name items, such as numeric and

string constants and "boolean values

EIEMENT FRAME

— should not contain references of lower level frames

(INSTANCES)

INFERENCE FRAME

— is procedurally functional

-- may be independent of reference to other frames,

except AKO at the top level

USER-VIEW FRAME

— may contain constraints which override other specified

frame-interaction references, except of the top level

FDM FRAME TYPES

-- FIGURE 3 --

23

The hierarchic ordering of the frame structure lends itself to

vertical inheritance. A frame which is subordinate to another frame may

be an instance of that frame. In Figure 4, the frame for JONES is an

instance of the frame STUDENT. Similarly, vertical inheritance upward

can be indicated by specifying STUDENT to have a relation A-Kind-Of to

the PERSON frame.

Horizontal inheritance, sometimes also called "indirection'-, is

facilitated by the appearance of another frame name in the datum

position of a slot. This makes information in the second frame

available to the first. In Figure 4, there is a frame for CS460. A

user might query the database to find out if CS460 is taught in an

air-conditioned room. The datum in the ROOMS slot of CS460 is the frame

name F212 and the desired information is contained in its slot

FACILITIES.

Both vertical and horizontal inheritance can be used in conjunction

when necessary. Again using Figure 4 as an example, a user might query

whether the enrollment size of CS460 could be increased to 50 without

changing the room due to capacity limits. Using horizontal inheritance

the F212 frame is examined but is found to have no slot for the room's

capacity. Vertical inheritance uses F212's AKO slot to examine its

immediate attribute frame CLASS-ROOMS. The CLASS-ROOMS frame has a

capacity slot with a default value datum of equal to or greater than 50.

It is possible to respond to the user that the change should be possible

without a room change being necessary.

24
jones :

AKO : $value : student

COURSES : $value : cs460 , ee24l , . .

.

: $if-removed : enrollment (remove, course)

: $if-added : enrollment (add, course)

ROOM : $value : si 04, si 12, f212

ROOM-LOC : $if-needed : find-room (room)

cs460 :

AKO : $value : course

INSTRUCTOR : $if-needed : find-inst(course)

ROOM : $value : f212

ROOM-LOC : $if-needed : find-room (room)

NO-STDNT : $value : 45

NAME-STDNT : $value i Jones,...

f212 :

AKO : $value i class-room

COURSES : $value : cs460,...

LOCATION : $value : fairchild

FACILITIES : $value : pro jector, screen.air-conditioner

FDM ELEMENT FRAME EXAMPLES

— FIGURE 4 --

25
student :

AKO : $value : person

INSTANCE : $value : jones,,..

AGE : $default : &17

M-V-D : $value : course , class-rooms, teacher, ..

.

class-rooms :

AKO : $value : rooms

INSTANCE : $value : f212,sl04, sll2 , .

.

„

CAPACITY : $default : 50

M-V-D : $value : course, teacher, student ,..

.

FACILITIES : $default : black-board

course :

INSTANCE : $value : cs460,ee2^1

,

. .

ENROLLMENT -SIZE : $if-needed : calc-enmt (student)

M-V-D : $value : class-rooms , student

BEING-HELD : $requires : room-asign(course) ,inst-asign
(course) ,stdnt-enroll(enroll-
size>15)

PDM ATTRIBUTE FRAME EXAMPLES

-- FIGURE 4 --

(continued)

26

2.5.2 DEFAULT VALUES

Default values serve as acceptable values when specific values are

missing. They can be used very effectively in an attribute frame when a

lower level frame does not contain a needed value but a range limit

value might fulfill the need for the information. Default values are

represented in FRL terminology by the facet name ^DEFAULT.

The previous example given for inheritance demonstrated the use of

a default value when looking for the capacity of room F212. It is still

not possible to definitely determine what the capacity of F212 actually

is, but in the example the available default information was useful to

the query.

With this example and with the example of the whale in Figure 2 it

is cautioned that these default values should not be used as

specifications of rules of compliance for lower level frames. These

should be represented using specific values, ranges of values, and/or

demons.

It is also important to carefully consider the appropriateness of

allowing default values and/or limiting their use. The issues involved

in these considerations are discussed in Section 5.1.

2.5.3 DEMONS

The activation of demons generally causes movement and processing

within the frame structure, or grouping of frames, which is invisible to

the user of the structure. Since demons act in accordance with the

current state of the structure, it is not possible to predict the result

of a specific instance of a demon's activities, however, it is possible

27

to generalize the behavior of a demon as far as its intended purpose, if

well designed. Because of this it is essential that the use and design

of a demon be very carefully considered before it is incorporated into

the frame structure. Demons can be destructive to the contents of the

structure. While this is appropriate behavior at times, demons must be

designed with this potentiality in mind so that their abilities to alter

the structure are completely understood by the designer, and their power

limited accordingly.

Demons can be used to infer information, for horizontal

inheritance, and to control the effects of value changes within a

grouping of frames. Demons are able to perform their functions by

activating procedural segments which are contained within the

structure. Their specific participation in the FDM, and how they would

be contained, is explained in Section 5.1.

Demons used to infer information in the structure should never have

destructive capabilities. As will be shown further on in this thesis,

the use of inference in a specific FDM design may or may not be

appropriate, depending on the requirements of the user.

To again draw upon FRL terminology and form to demonstrate how an

inference demon might be incorporated into a frame structure, an example

appears in Figure 5 of an $IF-NEEDED facet. The occurrence of the

$IF-NEEDED facet indicates that its datum value will be active in

finding information which is not immediately available in the structure

and must be searched for or inferred. The datum itself may be a series

of procedural statements or the name of a frame which contains the

needed procedural statements. In Section 5.1 a discussion of how these

sue
28

AKO : $value

JOB : $value

CITIZEN : $value : gb

AGE : $value : 35

CHILDREN : $if-needed

$if-removed

$if-added :

mother , spouse , employee

doctor

chain-child

: parent-of(remove, child)

parent-of (add , child

)

SEX : $if-needed : sex-type

mother:

AKO : $value : parent

INSTANCE : $value i sue , . .

.

SEX : $value : female

sex-type :

AKO : $value : person-inference

EVAL : $value : if AKO = spouse, sex not = find- spouse (sex)

if AKO = mother, sex = mother(sex)

if AKO = father, sex = father (sex)

voter-type :

AKO : $value i

EVAL : $value

person-inference

if citizen = 'us' and age - 18, vote = 'yes'

FDM FRAMES WITH DEMONS

-- FIGURE 5 —

29

inference demons are greatly relied on for dealing with unprocessable

queries will be found.

Demons used for frame structure control and maintenance are the

demons which will have destructive capabilities. In FRL terminology

these are represented in Figure 5 as the $IF-ADDED, $IF-DELETED, and

$IF-ALTERED facets. These demons also activate procedural statements

internal to the frame structure. Their major role is to maintain the

consistency and integrity of the frame structure. In Figure 5 there are

examples of the $IF-ADDED and $IF-DELETLD facets in the INSTANCE slot of

the frame MOTHER. If another frame were added with MOTHER in its AKO

slot, or the frame name SUE were deleted, then the appropriate demon

would be activated to make sure that this change is reflected in other

areas of the structure which are affected. For example, if a frame ANN

were instantiated and at some point added to the $VALUE facet datum of

the INSTANCE slot of MOTHER, then the ^IF-ADDED demon would make sure

that MOTHER appears in the $VALUE facet datum of the AKO slot in the

frame ANN.

In the FDM these demons perform the function of controlling the

update and deletion anomalies which are discussed in Section 4.3.2.

2.5.4 PERSPECTIVES

Perspectives make it possible to semantically represent information

from multiple viewpoints (i.e. , John is a dentist, and John is a member

of a bowling league) . Being a dentist and being a member of a bowling

team may both be true perscriptive facts about John. They each have

30

features which are not shared with one another. They are different

"aspects" of John [17].

At times, the user of a frame structure may wish to locate more

complete, but stereotypical, information about some individual, like

John, which has a unique semantic reference external to the frame

structure. There are obvious advantages to being able to do this

selectively so that all of the available higher level information need

not be examined, only that which is pertinent. Perspectives make it

possible to examine the more likely paths to find general information

from higher levels of the frame structure.

Looking at Figure 6 it can be seen that John' s AKO slot would

contain the frame names BIRD-WATCHER, BOWLING-LEAGUE-MEMBER, DENTIST,

and FATHER. Suppose the following query were posed to the frame

structure:

"John has an x-ray machine. What other types of work are done

with x-ray machines?"

As stated in Section 2.4.1, only information which is stereotypical to

its immediate lower level frames may be contained in that frame. For

the sake of this example, doctors typically have x-ray machines.

Because of this, an examination would have to be made, either using a

breadth- first or depth-first search, of all of John's AKO frames and

each of their AKO frames, until finally the DOCTOR frame is found.

In the best case, using a breadth-first search, it would be

necessary to examine six other frames before finding the DOCTOR frame.

Indeed, this is probably a contrived case. However, this type of

problem can arise. Perspectives offer a semantic solution to this

problem.

31

\C

32

2.5.4.1 PERSPECTIVES IN KRL

FRL does not have a form of representation for perspectives. They

are included in KRL (Knowledge Representation Language) [5]. The

previous example is the type of system processing that GUS [11],

developed using KRL, was designed to handle.

In KRL the use of perspectives involves the comparison of specific

item features to prototype features. When matches occur betweei. the

item and the prototype, the perspective of the prototype is available as

a viewpoint with which to complete the processing.

Figure 7 uses an adapted version of the KRL representation of a

perspective. The query example is the same as in the previous section.

John is the specific item and the feature in question is the x-ray

machine. Various samples of prototypes are given, with their

stereotypical features. The features of JOHK are compared to the

features of the prototypes and a match is made with the DOCTOR

prototype.

The use of perspectives in the FDM to deal with types of queries

similar to the example query would be advisable only if appropriate to

the user's requirements. The major use of perspectives in the FDM will

be in an adapted form for specifying user-view frames as described in

the next section.

2.6 THE FDM USER- VIEW FRAME

User-view frames are very high level frame instances in the FDM.

These frames are used to monitor and control access for their specific

33
prototype FATHER has

feature: children

prototype BOWLING-LEAGUE-MEMBER has

feature: league-meeting-time
feature: league-meeting-place
feature: Dowling-oall-weight

prototype BIRD-WATCHER has

feature: binoculars

prototype DOCTOR has

feature: medical-diploma
feature : x-ray-machine
feature: nurse

prototype DENTIST has

feature: dental-drill
feature: dental-chair

item JOHN has

feature: x-ray-machine

PERSPECTIVE MATCHING EXAMPLE

-- FIGURE 7 ~

34

area, or subscheme [2], of the FDM structure. These frames rely

primarily on perspectives and demons to perform these functions.

2.6.1 SECURITY

The major difference between the user-view frame and other types of

frames in the FDM is that it contains certain exceptions to the

"prototype of an instance" rule set forward in Section 2.4.1. While a

higher level user-view frame would still specify the semantic and

syntactic constraints of its instances, its contents might not be

available to its instances. This would facilitate security and privacy

between user views.

This can be accomplished by disabling certain capabilities of its

instances, such as upward vertical inheritance and demon activation.

This disablement would allow the user-view frame to, in effect, lock its

doors to particular types of access from instances. It is necessary

that a user- view frame be able to do this, otherwise a lower level

frame could change its contents, particularly the constraints it holds,

which would allow uncontrolled access to unauthorized areas of the FDM

structure.

One method of enforcing disenablement would be by creating a

special primitive datum type for use in ^REQUIRE type facets. In this

thesis this datum will be called "NONE". Again, to use the analogy of a

locked door, NONE would act as a dead-bolt. NONE bars access from lower

level instances to the slots in which it is contained. These slots are

only accessible from higher level frames.

35

Depending on which slots contain this value, different types of

frame access would be denied. NONE could appear in slots which make

parts of the user-view frame inaccessible to the user (to peruse or make

changes to the frame's contents), or to internal FDM process flow (for

inheritance or demon processing for inference or frame content changes).

By denying accesses of these types, system- internal intentional and

unintentional tampering can be greatly reduced. This also removes much

of the possibility of erroneous system processing. Generally, the use

of these locked doors keeps processing, done by one user, limited to the

specified user view.

In addition to making certain access and process capabilities

unavailable, and thereby improving the security of the FDM, it would be

easily possible to include features to the top level user-view frame(s),

for the schema [21] specification of the database, to monitor which user

view is attempting to break which constraints. This would facilitate

the keeping of a log of the processing in the FDM.

2.6.2 THE SPECIFICATION OF USER VIEWS

User-view frames form a substructure within the FDM structure. Any

one user view may be constructed of one or more user-view frames which

hierarchically define the user view (Figure 8). Contained in the

user-view frame(s) is the user view control capabilities. Some of these

controls are used for accomplishing the security maintenance, described

in the previous section, as well as to maintain consistency of accessing

within its view. This can involve such thins as dealing with

conflicting accessing and alterations to the database.

36

o

w i

i

CO

>
I

w

p

37

The user-view frames can override the capabilities (Sections 2.5.1,

2.5.2, and 2.5.3) of the frames associated with them. They specify any

constraints on the use of inheritance, demons, and default values which

lower level frames may attempt, but are inappropriate for the particular

user's view of the FDM. Even though the lower level frames contain such

capabilities, their activation can be stopped or limited from within the

user-view frames. The use of demons can best facilitate this.

The user-view frame(s) specifies the perspective of the user's

view. Unlike the KEL use of perspectives, the user view does not

originate from matching an individual item to prototypes. Rather the

user-view frame(s) specifies which attribute frames are included or

excluded from the view. These attribute frames are those in the actual

database levels of the FDM and not the metalevels.

User-view frames may also contain features for monitoring

activities in the FDM while the view is active. This would provide the

user with information concerning which processes have taken place. More

complete information could be provided to the DBA as to how the

processing was done (i. e.
t
the paths of the processing)

.

The user- view frame(s) only has control of its specified areas of

the FDM while it is active. The limitation or disablement of a frame

feature is only effective during this time. In this way the same lower

level frames may be activated for other user views and their

capabilities will be able to function as is appropriate under the

control of newly activated user-view frames.

Section 4.1 gives examples of how user-view frames effect the

perception and use of the FDM for multiple users. These examples show

38

hew user's views can be semantically separate, and how the user-view

frames can effect user processing.

2.7 THE FDM INFERENCE FRAME

Section 2.5.3 described how demons can be used to infer information

and to assure that an alteration to a frame is consistent with other

frames the altered frame is associated with. Demons activate procedural

statements to accomplish these functions. It is often the case that the

same procedural statements need to be activated from many different

frames within a frame structure.

If a user of a frame structure had to repeatedly place the needed

procedural statements in these frames as the datum values for demon

facets, it would only be a matter of time before some error occurred in

the copying. In addition, if a specific group of procedural statements

needed to be altered very frequently and there were many occurrences of

the group, more processing would be required to change all occurrences

than if only one occurrence existed.

In FDM an inference frame (so named even though they are for all

demon functions) would contain the only occurrence of a demon's needed

procedural statements. The demon facet's datum would be the needed

inference frame's name. In this way the inference frame is mutually

accessible by the frames which must make use of it.

Aside from the obvious advantages of modularity, the use of

inference frames also facilitates greater consistency and control of

demon activity. There is only one version of a specific set of

procedural statements, thus any erroneous behavior can be easily traced.

39

Inference frames also make it easier for the user- view frames to control

demon activity. This is done by disabling access to the inference frame

itself instead of finding and disabling each demon facet which uses

those procedural statements.

Section 5.1 demonstrates some of the types of procedural statements

which might be contained in inference frames and gives examples of their

use in the FDM.

40

CHAPTER 3

ORGANIZATIONAL ISSUES

Chapter 3 deals with the issue of representing multivalued

dependencies (one- to-many and many- to-many relationships) in database

models. (Given a set of values, hereinafter referred to as an

attribute, a multivalued dependency will occur when one or more values

of a specific attribute functionally determines more than one value of

another attribute.) When one value of the domain attribute functionally

determines many values in the range attribute, a one-to-many

relationship exists between these attributes. When many values of the

domain attribute functionally determine many values in the range

attribute, a many- to-many relationship exists.

Section 3.1 offers examples of the types of semantic references

that multivalued dependencies may have in the real world. Section 3.1.1

discusses how the network, hierarchic, and relational database models

deal with multivalued dependencies. Special attention is given to the

relational model's fourth normal form. Section 3.2 discusses how the

FDM can deal with multivalued dependencies.

3.1 MULTIVALUED DEPENDENCIES

A very large number of the facts to be represented in databases are

members of attributes which have multivalued correlations to other

attributes. These can be called multivalued dependencies and may be

one-to-many or many-to-many relationships. A one-to-many relationship

is illustrated by an individual parent with multiple children, a person

who is multilingual, or by a salesperson who works in multiple

41

sales-districts. A many- to-many relationship might be illustrated by

many individuals multilingual in the sams languages, or by salespeople

who work in more than one district but are only one of many who work in

a specific district.

Because of the amount of information which is multivalued,

databases need to be able to support multivalued dependency

representations. A database which is not able to do so will not be able

to be a natural representation of its environment. In the standard

database models, multivalued dependency relationships are dealt with

using methods depending on which specific model is being used for

representation.

3.1.1 MULTIVALUED DEPENDENCIES IN THE NETWORK, HIERARCHIC, AND
RELATIONAL MODELS

The network model could, conceptually, allow both types of

multivalued dependency at the intentional modeling level. However, in

order to provide a network which is a directed graph, a many-to-Lany

multivalued dependency is transformed into two one-to-many multivalued

dependencies (Figure 9). The directed graph is a simpler structure to

conceptualize and this, in turn, makes the extensional modeling task

easier.

The hierarchic model restricts the occurrence of multivalued

dependencies to the one-to-many relationship because of the basic

structure of hierarchic ordering of nodes, as well as for the ease of

extensional modeling. In order to create a hierarchically ordered model

it is necessary that there be a parent-child relationship between nodes.

For this reason, many- to-many relationships are again transformed into

kz

Network Mode

D i recied Graph Network Model

Hierarchic Mode

N-M AND 1-N DEPENDENCIES IN
THE NETWORK AND HIERARCHIC MODELS

-- FIGURE 9 --

43

pairs of one-to-many relationships and virtual records are used as

pointers at the extensional modeling level (Figure 9).

The occurrences of multivalued dependencies are easily dealt with

in the network and hierarchic models and do not cause any functional

problems at the intentional level, though the limitation of using only

one- to-many multivalued dependencies makes a completely natural

representation of the application environment impossible. The

relational model is a completely different case from the network and

hierarchic models and must be looked at in greater depth.

The relational model allows only one-to-one relationships in the

first three forms of normalization. The fourth normal form allows for

one-to-many relationships through a dependency called an MVD. An MVD, X

->-> Y, exists in a relation R (X,Y, Z) if, and only if, Z is independent

of, i. e. , has no relationship to, Y. Then X ->-> Z also exists [19].

The practical value of fourth normal form is questionable when querying

those relations which contains an MVD.

Forth normal form restricts the number of multivalued dependencies

occurring within one relation to one. If there were three attributes

which were related to each other as multivalued dependencies they would

have to be broken up into two separate relations. For example, the

attributes STUDENT, COURSE, ROOM are often many- to-many relations. Each

student may have many courses, those courses may be held in different

rooms at different times and generally will have more than one student.

Students will often have courses in different rooms if more than one

class-room exists and each room will likely have more than one student

in it, and be used to teach more than one course. The relationship of

courses to rooms, in addition to the relationships of students to

44

courses and students to rooms, also disallows this set of attributes to

be in a fourth normal form relation.

As a sample case, there is a student (JONES) who is taking two

courses CS460 and EE241 , where course CS460 is taught in rocm F212 and

course EE241 is taught in rooms S104 and S112. Figure 10 is a

representation of the sample case in an unnormalized form. Figure 10.1

is a representation in fourth normal form where the relation has been

broken up into two separate relations.

In order to directly access any tuple in either of the multivalued

dependency relations, it is necessary to have each of the multivalued

attributes contained in the key. This makes the fourth normal form

impractical since to directly access any tuple for querying, all of the

values of that tuple must already be known. Querying a fourth normal

form relation can only be useful in instances where the user wishes to

verify that a given tuple does currently exist in the database.

It is also a problem that fourth normal form requires there to be

multiple relations to represent multiple one-to-many multivalued

dependencies. In the sample case, the relationship between courses and

rooms is no longer represented. It is not possible to query the

relations in Figure 10.1 to find out the room in which CS460 is taught.

The semantic correlation of courses and rooms cannot be represented

unless an additional relation (Figure 10.1a) is placed in the database.

All of the information in Figure 10.1a is redundant. Since this is a

simple case given as an example, the amount of redundancy is not great.

As the number of inter-related multivalued dependency attributes

increases, the redundancy increases proportionally.

^5

STUDENT COURSE ROOM

JONES

cd460 f212

EE241 sl04

s!12

UNNORMALIZED RELATION EXAMPLE

— FIGURE 10 --

STUDENT COURSE

JONES cs460

JONES EE241

STUDENT ROOM

JONES f212

JONES sl04

JONES sl!2

FOURTH NORMAL FORM OF FIGURE 10

-- FIGURE 10.1 --

COURSE ROOM

cs460 F212

EE241 s!04

ee241 s!12

ADDITIONAL RELATION TO FIGURE 10.1

-- FIGURE 10.1a --

46

A violation of fourth normal form, such that more than one

one-to-many multivalued dependencies are allowed in a relation, requires

the selection and use of an alternative organizational method for the

relation's contents. The methods discussed in this thesis were

presented in ref. 1, and are all examples of two one-to-many multivalued

dependencies represented in one relation.

The method of representing the contents of a multiple multivalued

dependency relation using a cross product of attribute values (Figure

5.2) results in massive amounts of redundancy of information, may cause

update and deletion anomalies, and still requires inclusion of all

multivalued dependency attribute values in the access key. (Specific

issues dealing with update and deletion anomalies are discussed in

Section 4.3.) The use of a cross product representation may also cause

erroneous information to be contained in the relation. This is

unavoidable, since each possible combination of attribute values must

appear in the relation, whether or not the combinations actually exist.

For example, Jones' course CS460 is actually held in room F212 and not

in any other room. Because of the cross product results, tuples in

which course CS460 is associated with rooms S112 and S104 must also be

represented. In the case of Figure 5.2 fifty percent of the tuples in

the relation are erroneous.

Figures 11.2 and 11.3 present two methods of representation, each

using null values. In both cases the likelihood of update and deletion

anomalies is high. In Figure 11.2 the correlation of courses to room

numbers has again been lost so that it is not possible to reliably query

the room in which a specific course is taught, or whxch courses are

taught in a specific room. Figure 11.3 shows most of the correlations

STUDENT COURSE ROOM

JONES cs460 f212

JONES cs460 sl04

JONES cs460 sll2

JONES EE241 F212

JONES ee241 sl04

JONES EE241 sll2

^7

CROSS PRODUCT OF FIGURE 10

— FIGURE 11.1 --

STUDENT COURSE ROOM

JONES cs460

JONES EE241

JONES f212

JONES sl04

JONES sl!2

DISJOINT REPRESENTATION WITH NULL VALUES
OF FIGURE 10

-- FIGURE 11.2 --

STUDENT COURSE ROOM

JONES cs460 F212

JONES EE241 slM

JONES s!12

MINIMAL NUMBER OF VALUES WITH NULL VALUES
OF FIGURE 10

— FIGURE 11.3 --

48

of courses to rooms, but it is still not possible to tell which course

is taught in room S112.

The representation of the sample case values in Figure 11.4 is a

major improvement in terms of performing reliable queries to the

relation. All of the information is available, and in correlated form,

for all attributes of the multivalued dependencies. However, this

representation is still prone to maintenance anomalies.

The examples of the two minimal- number- of- values forms represented

in Figures 11.3 and 11.4 are not random mixes, as these two forms are in

Kent's examples [1]. Problems with erroneous tuples would arise in both

cases if the relation were randomly mixed. Since representations with

non-random mixes are already error prone, there seems to be little need

to include random mixing. It is not difficult to conceptualize the

maintenance and query errors which would arise from randomly mixing the

values in the minimal-number-of-values method. Specifically, the

correlation between courses and rooms in Figure 11.4 would be lost.

Because of the extreme nature of Kent's unrestricted-random-mix

method, an example of the representation of the sample case using this

method has not been included in the figures or discussion.

Given the mechanical problems with representations of multiple

multivalued dependency within one relation, it is necessary to conform

to the non-violated fourth normal form. However, as pointed out above,

not only is query processing of minimal use, but only two of the

semantic correlations of the sample case attributes can be represented,

STUDENT to COURSE and STUDENT to ROOM, without the addition of relations

which contain completely redundant information (Figure 10.1a).

49

STUDENT COURSE ROOM

JONES cs460 F212

JONES EE241 sl04

JONES EE211 sll2

MINIMAL NUMBER OF VALUES WITH REPETITIONS
OF FIGURE 10

— FIGURE 11.4 —

50

3.2 MULTIVALUED DEPENDENCIES IN THE FDM

In an FDM the representation of either one- to-many or many- to- many

relationships are not restricted in any way. Both types of multivalued

dependency can be directly used in the model with no difficulty. The

FDM does not deal with sets of values, as with an attribute, but rather

deals with individual element frames which represent each prescriptive

fact. These element frames can be linked to others, for multivalued

dependency purposes, by containing multivalued dependency and functional

dependency (one-to-one) slots.

The problem of needing to know all the values within a group of

values in order to access those values, the major problem with the

non-violated fourth normal form, does not arise either. The FDM can use

the links within an element frame to access its associated element

frames.

The attribute frame can include a specification as to whether its

lower level element frames may be multiply related to the element frames

of other attribute frames. In Figure 6 the attribute frames COURSE and

STUDENT contain each other in their multivalued dependency slots. Since

the frames are reciprocal, they have a many-to-many relationship. In

order to show how a one-to-many multivalued dependency can be specified,

the multivalued dependency for COURSE does not contain the attribute

frame name TEACHER. (It is often the case that one course will be

jointly taught by two or more instructors, but for this example a limit

of one instructor per course will be imposed.) If the attribute frame

TEACHER has a multivalued dependency value of the attribute name COURSE,

then there is a one- to-many relationship from TEACHER to COURSE.

51

An individual FDM design may have a default of one-to-one

multivalued dependencies if no attribute name is specified, and may or

may not have its name appear in the multivalued dependency slot of

another attribute frame. It may be judged, by the particular system's

designer, to be more appropriate to have a one-to-one slot specified to

contain the correspondent attribute frame name in the case of a

one-to-one relationship. The inclusion of both functional and

multivalued dependency slots would comprehensively specify the ways in

which an attribute frame and its lower level element frames could be

related to others in the database.

52

CHAPTER 4

ACCESS ISSUES

4.1 MULTIPLE USER VIEWS

Databases are most cost- efficient when shared by multiple users.

Each user should have access to that portion of the database which is

pertinent to their application area, but to no more. In an FDM, frame

instances can be specified to define a given user's view. Such a

user-view frame would monitor and control the activities which that user

may perform while interacting with the database.

User-view frames would make it possible for the user view to be a

completely individual perspective of the database. These frames can

direct the semantic reference of the user view. In this way the

manipulation of the database can mirror the reference perspective of the

user's application. A specific user view would not only differ from

another user view by access rights and difference of access paths, but

would also provide a semantically specific view of the database.

For example, a database might contain an inventory for a small

grocery store. This inventory may need to be analyzed by different

users of the database for different reasons. An accountant might

examine the inventory to produce a quarterly tax report and is concerned

with which items are currently in the store. A police officer, on the

other hand, may be investigating a robbery in the store and is looking

for missing items, possibly by comparing the old inventory to a new

inventory taken after the robbery. A customer may examine the inventory

to see not only if a given item is sold in the store, but whether a

specific brand or size of that item is sold, as well.

53

The user- view frames can also control the processes which are

allowed to be performed which change the contents of the database. A

standard example is the case where one user may have access authority

only to retrieve information and another user may have authority to

retrieve and alter the same information. It is desirable to induce

mechanisms within the schema user-view frames which can assure that the

access authority of any one user is enforced.

The user-view frame would lit.it the activation of inference

mechanisms in the database during that user's access by masking or

enabling specific inference frames. This is important because some

application areas are flexible in the degree to which retrieved

information may be non-factual. For example, a company may wish to

access a database to get a listing of potential customers to contact.

If this user were interested in persons in a general salary range with

few current financial obligations (no mortgage payments, one or two

children, etc .
) , the use of inferred and default values in accessed

element frames would yield a more useful query result than if only

factual values were used in the query.

On the other hand, other users may require only factual information

to be the results of queries for their application areas. An example

would be database access for tax or payroll purposes. In such a case,

the user- view frame would limit the behavior of the database so that no

inferred or default values are available.

These user- view frames could be used to limit and monitor the

abilities of the user to make actual alterations in the contents of the

database. This can be especially important when multiple users are

accessing the database at the same time. Unless strict monitoring and

54

control is exercised over the alteration of the database contents, the

alterations made by one user can make information unavailable or

erroneous to another user. It is necessary that the database monitor

the different active user-views, so that cross-checking of user needs

can be done and used to minimize conflicts. This requires more

processing time but can provide greater assurance of compatibility

across multiple users' needs.

For example, if one user needs to delete items from the database

(whether the item is represented in an element, inference, or attribute

frame), the deletion of those items may affect another user who still

needs them. The database can remove the links to those items for the

first user's view, but may be designed not to remove the item itself, so

that it is still available to the second user's view.

4.2 REPRESENTATION OF INCOMPLETE INFORMATION

The representation of incomplete information is a problem which

occurs in the relational database model. This problem is also referred

to as the insertion anomaly [2]. The occurrence of this problem arises

when a tuple is to be added to a relation but not all of the tuple

elements have a value. If the empty elements have null values placed in

them, how will it be possible to later replace the null values with

specific values? If the null value is placed in an element whose

attribute is a key to the relation, will it be possible to access that

tuple in the future?

Because of the difficulties associated with using null values to

fill in empty tuple elements, the general method of dealing with

55

incomplete tuples is to not allow them. However, the values of the

tuple which do exist may be needed in the database. They are pieces of

information which belong in the database.

The second normal form of relational normalization was largely

developed to eliminate insertion anomalies. The representation of

incomplete information is a problem which does not arise in the FDM.

Any given instance of a frame contains only that information

necessary to that instance, and to the level of that instance, within

the FDM. An element frame instance of a specific data element (a value

token of an attribute) should never exist unless at least one higher

level frame exists which represents the semantic reference of the

attribute. The higher level frame(s) must also contain the syntactic

specifications of a data element instance of the attribute. In this way

it is possible to specify the semantics and syntax of any current or

expected data elements of that attribute.

Those frames which contain the semantic and syntactic constraints

of an attribute can be said to specify the class membership of the

attribute. Any element frame instance which is added to the database

must fit the specifications of its attribute frame(s). If the new

element frame instance does not conform to the attribute frame(s) the

addition of the item is disallowed and the user is informed of the

conflict.

For example, if a user attempted to add the element frame instance

of DOCTOR to the database under the attribute of ADDRESS-CITY, the

entry would not be allowed. The syntax of the new value may be valid (a

character string of appropriate length) but the semantic reference of

the attribute frame for cities would not allow a value such as DOCTOh.

56

Obviously, some types of data element values would still be

error-prone. For example, it would be very difficult to check a numeric

value of the correct syntactic specification for semantic specification

of an attribute frame such as OCCUPATION-SALARY or HOME-MONTHLY-PAYMENT.

A value such as 700.00 could be valid for either attribute, but not

correct for both. By using attribute frames, the validity-checking for

element frame instances would be improved, but not guaranteed.

Other than the problem of maintenance anomalies which arise in the

relational model when incomplete information is allowed, there is the

argument that certain information is so closely linked in the real world

that its omission is erroneous. That all persons have a sex, and only

one sex, is such a linked information set. In many cases it is possible

to find a value for a missing data element, when its second association

is this closely linked, by using inference, inheritance, and default

mechanisms. In a relational database, if a relation existed with

attributes including SEX and NAME, the addition of a tuple containing

data elements for each attribute except SEX would not normally be

allowed.

In the FDM, it is possible to reliably infer a value for an

individual's sex depending on which other generic frames exist and which

element frames associated with the individual are currently available at

the time of query. The database can infer the sex of an individual if

other information is present in the database such as the sex of the

spouse, if married, whether the individual is a mother or father, if a

parent, or whether the individual is a brother or sister, if a sibling.

More discussion of the processing of queries when incomplete information

exists will be given in Section 5.1.

57

4.3 UPDATE AND DELETION ANOMALIES

Anomalies in databases can be caused when the contents of the

database are erroneously altered. These anomalies take the form of

information being lost or inaccessible and information being

inconsistent. The former case is known as a deletion anomaly and the

latter is known as an update anomaly [2],

Because of the limited knowledge a user can have of the actual

organization and current contents of a database, it is unreasonable to

expect the user to be able to safeguard against these anomalies when

performing maintenance processing. As a result, each of the standard

models includes features which are intended to eliminate the risks of

anomalies occurring.

4.3.1 ANOMALIES IN THE NETWORK, HIERARCHIC, AND RELATIONAL MODELS

In the network and hierarchic models, virtual records are used at

the extensional level to eliminate these anomalies [2] as well as the

insertion anomaly. (See Section 4.2 for discussion of insertion

anomalies.) Update and deletion anomalies pose a more difficult problem

in the relational model. In fact, the development of the second and

third normal forms [13] was primarily motivated by the need to eliminate

insertion/deletion and update anomalies, respectively.

There are two major reasons why these anomalies are so difficult to

control in the relational model. First, the prescriptive facts

represented in a relation which has more than one attribute are grouped

together in the tuples of that relation. Therefore, an alteration of

one fact, or element, of a tuple effects an alteration on the entire

58

tuple. Second, when redundancy of a fact occurs within the database, an

alteration of that fact within one tuple may cause the redundant

occurrences of that fact to be inconsistent.

When the alteration of a fact is its deletion, a void is created in

the tuple in which the fact was contained. Unless the database is

designed to facilitate null values as place-keepers for deleted facts,

the remainder of the affected tuple is also deleted. (The use of nulls

as place-keepers also creates many problems. For example, if there are

multiple occurrences of nulls, how will they be differentiated in later

updating? Also, if the deleted fact is a key, or part of a key, how

will the effected tuple continue to be accessed?) In such cases, and

when the remaining facts within the tuple are still needed in the

database, the loss of the tuple causes the loss of the integrity of the

database.

For example, Figure 12 shows that if all the courses taught by

Smith were deleted from INSTRUCTORS, then Smith and the rest of the

facts regarding Smith are lost even though Smith cay still be an

instructor and have an office and phone. In the case of Figure 13, if

Smith were intentionally deleted from the FACULTY relation, possibly

because he is no longer employed as an instructor, it must be possible

to be certain that this is consistently reflected in COURLE. Either the

courses would no longer be offered, and therefore removed from COURSE,

or a new instructor would be assigned Smith's courses. If the courses

are canceled, then CLASS-STATS must reflect this. If a new instructor

were assigned to Smith's courses, then this is an update to COURSE.

This change must also be reflected in FACULTY to insure consistency.

59

NAME OFFICE PHONE COURSE ROOM

MILLS 214 4855 405 212

BROWN 60 4498 798 212

SMITH 219 4450 305 212

MILLS 214 4855 305 208

MILLS 214 4855 720 202

SMITH 219 4450 460 208

SMITH 219 4450 420 212

BROWN 60 4498 300 202

JONES 144 4710 720 212

MILLS 214 4855 630 208

INSTRUCTORS (NAME .OFFICE .PHONE

.

COURSE , ROOM)

INSTRUCTORS RELATION EXAMPLE

— FIGURE 12 --

60

NAME POSSITION OFFICE

MILLS INST 214

WHITE RSRCH 128

BROWN INST 60

SMITH INST 219

STEIN CHAIR 105

JONES INST 114

AMES RSRCH 204

NO INST TIME

798 BROWN T 11:00

305 MILLS W 1:30

720 JONES w 9:30

300 BROWN T 1:05

460 SMITH T 9:05

305 SMITH w 8:30

420 SMITH w 3:30

FACULTY (NAME , POSITION, OFFICE) COURSE (NO, INST, TIME)

NO OFFERED ENROLLMENT

1

ROOM

720 SPRING 35 212

300 FALL 200 202

460 SPRING 50 208

305 FALL 100 208

798 SPRING 15 212

305 SPRING 100 212

420 FALL 50 212

COURSE-STATS (NO , OFFERED .ENROLLMENT . ROOM

)

FACULTY, COURSE, COURSE-STATS RELATION EXAMPLES
~ FIGURE 13 —

61

This type of alteration can cause update anomalies. When a fact is

changed, it must be reflected appropriately throughout the database.

Another example of an alteration which can lead to an update

anomaly would be if Smith were to change his position to research. For

this example it is assumed that research faculty do not also teach

courses. The change to FACULTY would have to cause a change in COURSE,

namely a deletion of the COURSE tuples in which Smith is the instructor.

As a result either facts in the database might be lost or become

inconsistent.

Depending on the maintenance procedures applied to the database for

update and deletion, there may be some way to inform the user that an

anomaly is likely to occur, possibly even what type and where. However,

it may not be possible to guarantee that all areas which might be

affected could be identified.

Through the the use of various levels of normalization the

probability of anomalies can be greatly reduced. Second normal form

decreases insertion and deletion anomalies and third normal form and

Boyce-Codd normal form greatly reduce update anomalies. Boyce-Codd

imposes the strongest restrictions in order to eliminate update

anomalies for functional dependencies, however, because of the

decomposition of relations. Some of the functional dependencies

(one-to-one relations) of the original relations may be lost during the

decomposition [2],

62

4.3.2 UPDATE AND DELETION ACTIVITIES IN THE FDM

The FDM eliminates anomalies by means of monitoring the alteration

activities a user attempts to perform on the database contents. In

situations where these activities affect other portions of the database,

the FDM itself can invoke procedures which insure the consistency after

the alteration is made. The traditional design and use of frame systems

makes the avoidance of anomalies a standard feature. In most frame

systems, the lower level frames (the element frames in the FDM) are

usually dynamic in the structure. Because of this the frequent deletion

and addition of element frames in FDM can be handled by standard frame

system methods.

Since the general structure of the FDM is hierarchic, as discussed

in Section 2.4, the FDM is able to take advantage of the organizational

and pointer linkage features that the hierarchic database model uses for

anomaly control. Where the hierarchic model is able to independently

alter or delete the value of a single data field, the FDM is able to

alter a specific fact independently of other facts in itself. There is

only one instance of any fact, which is represented as the name of an

element frame. Where the hierarchic model uses virtual records as a

means to associate, or link, data, the FDM is also able to link facts to

one another. The name of any frame is never changed, it is only

deleted, thereby deleting the frame instance. The change of a fact is

done by replacing a deleted frame with a new frame instance.

Demons, such as $IF-ADDED and $IF-DELETED in the FRL system [14],

are used to control the effect of a deleted or added frame on other

frames in the database. These demons can add or delete the frame name

in the instance slot of upper level frames. If the deleted element

63

frame name has a link to another element frame for purposes of lateral

inheritance or appears in a MVD or FD slot, the demons can insure that

the deletion is consistently reflected in the linked frames. If a

deleted element frame is a key in the accessing of other element frames,

the demons can trigger attached procedures. Such procedures could

create alternative access routes, if necessary, or inform the user of

possible error hazards. It may also be the case that if another element

frame is only accessible by the deleted fact, other than by its

attribute frame(s), it may be appropriate for that element frame to be

deleted as well.

64

CHAPTER 5

QUERY ISSUES

5.1 UNPROCESSABLE QUERIES

Consider a user of a database who wants to get information about

persons who might be worth canvassing for a political candidate. The

query "Is Sue a registered voter?" is submitted to a database. Figure 5

shows all of the data about Sue that is contained in the database. A

database with no inference capability would return either a result of

"NO", or that no value for registered voter status exists.

In the FDM, another special frame type can be instantiated which

can be used for specific inferences. Inference frames contain semantic

rules which are known about query and/or attribute domains. In this

case, an inference frame could be created which holds rules concerning

the criterion of being a registered voter. One of the rules that could

be placed in this inference frame might be that a person must be a

United States citizen and eighteen years of age or older in order to

register to vote.

If the same query were applied to the database after this addition,

the database would first find that no specific registered voter status

value exists for Sue. The lack of a voter status result would cause

activation of associated inference frames. The inference frame for

being able to register to vote would reference the data that is

available about Sue to find out if she fits the necessary criteria. The

result of the query would be that Sue would not be able to register

because she is not a United States citizen. In this case it is possible

to return a definitive response and a reason for the response.

65

If the value of CITIZEN for Sue were United States, it would not be

possible to return a response concerning her voter registration status

but it would be possible to respond that she is eligible to register.

These inference abilities provide a wider range of usable

information based on the specific data that is contained in the

database. (It is also possible, through inference, to establish that

none of the contents of the database will satisfy a given query, thereby

avoiding pointless further processing.) The degree of reliance placed

upon the use of inference frames (and/or default values for processing

queries when specific data values are not present) depends on the

requirements of the particular user of the database. When the responses

to queries are to be used in areas where a high level of certainty is

not needed, such as political canvassing and identification of potential

customers, inferred and default responses may be appropriate. Indeed,

such responses may be more helpful to the user. Were the user's

requirements to necessitate responses with a high level of certainty

(statistical analysis and legal uses), it may be more appropriate to

recommend allowing little, if any, use of inference and default

mechanisms.

The inference and default mechanisms should always be present for

potential use in the database, but the degree to which they are to be

active must be specified in the instantiation of a specific user's view

frame.

66

5.2 QUERY OPTIMIZATION USING SEMANTIC CONSTRAINTS

Semantic query optimization is the technique of improving query

processing efficiency by taking advantage of the semantic constraints in

the query domain. A semantic constraint is a limiting feature that is

known about a specific piece of information. For example, Figure 14

contains a list of items and poses a question about those items. The

question is, "Which of these items can be placed in a shoe-box?" The

answers are, of course, the frog, pin, coffee cup, and the dice.

In most cases a conscious consideration of the limiting features of

these items, such as size or mobility, is not necessary to answer

correctly. However, if consideration is given to the features of a

shoe-box and the items listed, certain aspects of limitation emerge

which can be made into general rules or constraints that can be applied

to any list of items in the answering of the shoe-box question. A

shoe-box can only hold items whose size is less than the size of the

shoe-box. This eliminates the automobile, person, elephant, and

Nebraska from consideration. There is not enough information available

about the shoe to know if it will fit or not. The shoe could be a boot

and the box could be for sandals.

Shoe-boxes can only hold those things which can be contained by

cardboard. This constraint eliminates the screem (and Nebraska also,

though the size rule has already done so) from items which can be given

in response. An interesting point to note about Nebraska is that the

reader would not usually consider the word "Nebraska", but rather thinks

of the geographic state with the proper name Nebraska. The name

Nebraska is a member of a group, or class, of names which all refer to

different states in the United States. The decision to include or

67

Which of these items can be put in a shoe-box?

— an automobile

— a frog

— a person

— an elephant

— a pin

-- a scream

— a coffee cup

-- a shoe

— Nebraska

— dice

SEMANTIC CONSTRAINT EXAMPLE

-- FIGURE 1> --

68

exclude Nebraska from the correct answer to the shoe-box question is

most likely made based on the common- sense knowledge that it is not

possible for any state, even Rhode Island, to be put in a shoe-box.

So it is convenient and effective to limit the domain of eligible

responses when answering any question. It saves tit.e and energy. This

way it is not necessary to actually attempt to put each item in the

shoe-box to see if it will fit.

Similarly, it can be effective and cost saving to apply these types

of semantic constraints to a database query, and thereby reduce

exhaustive searches.

5.2.1 TWO METHODS OF SEMANTIC QUERY OPTIMIZATION

Outside of the field of Artificial Intelligence, not a great deal

of research has been done, at this time, to design methods of query

optimization using semantic constraints. The two major methodologies

which have been developed in this area are QUIST (QUery Improvement

through Semantic Transformations) [7,16,23] and KBQP (Knowledge- Based

Query Processing) [15].

Both QUIST and KBQP are designed for application to relational

model databases, though KBQP is also intended to be used with the SDM

(Semantic Data Model) [21]. Both systems preprocess queries put to the

database to transform them to equivalent, but more cost efficient, query

forms. Both systems are capable of limited inference. Further both

systems use the semantics of the database application domain to create

sets of semantic constraints to be used in transforming the queries.

69

QUIST accomplishes these transformations by first looking for

"constraint targets" in the original query. These constraint targets

are relations which contain attributes to which semantic constraints may

be applied, primarily for domain restriction. It then applies a set of

constraint rules and decision heuristics to the constraint targets to

find potential equivalent query transformations which will lower

processing costs.

KBQP uses "techniques" (i. e. , domain refinement and mapping

substitutions) and "methods" (i . e. , looking in the knowledge-base for

equivalent facts which show that a smaller domain is equivalent to the

original query's domain) to perform these transformations. V.hen methods

such as this result in positive deductions of equivalency, the results

are added to the knowledge- base, as a new fact, so that it need not be

deduced again in the future.

Two primitive types of expressions are used in the KBQP techniques,

restriction (which acts as Codd' s THETA-SELECT [24]) and image (which

acts like Codd' s PROJECTION). A control structure, which includes a

scheduler, oversees the knowledge-base and the activities of the

techniques and methods. The scheduler uses internal hueristic rules to

set priorities for processing potential query transformations based on

likelihood of their success.

5.2.2 SEMANTIC QUERY OPTIMIZATION IN THE FDM

The methodologies of either QUIST or KBQP can be incorporated into

the FDM. In fact, the tools necessary to implement either methodology

already exists in the FDM design and would naturally facilitate

70

incorporation and use. The "methods" and "techniques" of KBQi can be

represented using inference frames. The positive deduction results,

from use of the methods, can be represented as element or attribute

frames. The constraint rules of QUIST can also be represented in

element or attribute frames. "Constraint targets", rather than being

relations which contain constrainable attributes, would be attribute

frames themselves. Inference frames would examine the query for

constraint targets by examining the appropriate attribute frame to

determine if it has instances of other attribute frames which can refine

the domain of the original query, but still produce an equivalent

query.

The greatest advantage to incorporating one of these methodologies

into the FDM is the existence of the user-view frames. The user-view

frames are already control structures for the FDM, at both the schema

and subschema levels. fcone of the discussions of either of these

methodologies mention the ability to deal with semanticly different

multiple user views. Nor can it be derived from the discussions how

this might be accomplished. Would it be necessary to have separate and

independent versions of implementations? The user-view frame

substructure for any user view can contain the processing control,

evaluation hueristics, and semantic constraint specifications for query

optimization specific to its needs.

71

CHAPTER 6

THE SEMANTIC DATA MODEL

It would not be possible to conclude this thesis without some

discussion of the Semantic Data Model (SDM) [21]. The SDM was designed

as a means of "capturing" the semantic references of an application

environment in its database schema. By being able to capture these

semantic references, the database is a truer reflection of its

application environment, and the processes which are applied to the

database are more semantically meaningful.

It is my contention that the SDM does not go far enough to

effectively accomplish this goal. An SDM database does not actually

include the semantic references of the application environment, but

rather is designed using them as guidelines for its structure,

organization, and access. In addition, while one of the suggested uses

for an SDM is to act as documentation for users of an implemented

database (which might be the extensional level representation of a

standard model type or an SDM), the SDM used for extensional modeling

would not provide the "user friendliness" it could and should.

In Section 6.1 the components of the SDM are described. Section

6.2 is a criticism of the SDM.

6.1 COMPONENTS OF THE SDM

The SDM is built of entities, classes, interclass connections,

attributes, and a set of primitives. The entities of the SDM represent

the "objects" of the application environment. The classes are groupings

of entities which are representative of the groupings of objects in the

72

application environment (the example given involves ship-names,

countries, captains, and ship inspections). Interclass connections are

used to specify the semantic relationships and hierarchic structure

among base classes and non-base classes. A base class is a top level

class which is not a subclass of any other class (i. e. , ships), whereas

a non-base class is a subclass of at most one base class and/or other

non-base classes (i.e. , merchant ships and oil tankers are subclasses of

ships)

.

There are two basic types of attributes in the SDM, class and

member. Class attributes are features of an entire class. Member

attributes are features which are common to all members (entities) of a

class. Primitives are used to derive attributes from within the

database, and to define interclass connections.

The components of the SDM make it possible to support limited

inheritance and inference. Multivalued relationships are also allowed

to occur between classes and their members. Null values are allowed to

occur as values for non-mandatory attributes and are treated as "don'

t

6.2 A CRITICISM OF THE SDM

As stated before, the major drawback to the SDM is that it does not

sufficiently represent the semantic references of the application

domain. These semantics are used for defining an SDM database, but they

are not contained within the database. The classes, interclass

connections, and attributes are specified using the application

environment semantics, and the application semantics must be known by

73

the users of the database for access and processing. This need on the

part of the users should be minimized, and can be facilitated by the

semantics being represented in the database. For example, in ref. 21,

oil tankers and merchant ships are both subclasses of ships. This is a

true semantic relationship among these groups. However, there is no

representation of "to be a subclass" contained in the database.

In Appendix B of ref. 21, a suggested data definition language,

presented in a stylized BNF, is given for the specification of a SDH.

This DDL includes specifications for all the components of the SDM, from

SCHEMA <- «CLASS» to NUMBER OPERATOR <- [+;-;*;/;!]. In the FDM this

specification would itself be contained within the database. The

representation would be at the "metalevel" described in Section 2.4.3.

The representation of the SDM specifications is not mentioned in the

presentation of SDM. It is necessary, for a model to be a semantic

representation of an application environment, for the model to contain

the representation of the semantics themselves.

The result of omitting the representation of the semantics within

the SDM results in four areas of limitation in using the SDM. First, an

implementation of a SDM database will be semantically static. Second,

the representation of semantically different multiple user views is not

possible. Third, a database so designed is not able to monitor and

control itself using the semantic references of the application

environment. Finally, a user of the database must be aware of the

semantic references used in its design to be able to effectively

interact with the database.

The SDM does support multiple user views to a limited extent. The

user views are completely independent of the database. The SDH supplies

74

the ability to access the same portions of the database content using

different access routes. This is done by interclass connections derived

using predefined inversion and matching specifications among class

membership attributes. For example, the attribute Ships- registered-here

of the class COUNTRIES is specified as the inverse of the attribute

Country- of- registry of the class SHIPS, and vice versa. It appears that

only one inverse specification is allowed for any one member attribute.

It is likely that the restriction of one inverse specification is due to

the lack of a semantic representation of the "meaning" of the inverse

relationships between two member attributes. Without this, it is not

possible to differentiate between multiple inverse specifications from

within the database. It would be necessary that the users be aware of

each inverse specification and be responsible for their appropriate

use.

The capabilities and components of the SDM can all be included in

the FDM without including its limitations. Many of the concepts

presented in the SDM design would be useful to include as

access-processing strategies. Unfortunately, the limitations of the SDM

cause me to conclude that it is better suited to being used for a

documentation aid than as an extensional database model.

75

CONCLUSION

This thesis has introduced a frame based database model called the

Frame Database Model (FDM) as an alternative database model. The point

has been made that the databases of the future must not only be reliable

and consistent, but also must be natural and unrestricted

representations of their application envirorments. In order to achieve

these two goals, the FDM is designed to contain the semantic references

of the application envirorment as well as the prescriptive facts which

must be represented in any database.

Frames have been presented as the conceptual modeling tools which

facilitate the FDM design. Frames make possible the representation of

the semantic references, as well as the prescriptive facts, of the

application environment. Frames allow the representation of the

intensional model itself within the FDM. Four types of frames have been

described for these representations: attribute, element, inference, and

user- view.

The representation of the semantic references of the application

environment makes it possible for the FDM to monitor and control the

processes which are applied to it. This contributes to achieving a high

degree of consistency and reliability. By including the semantic

references of the application environment in the FDM itself, it is also

possible to fulfill more of the needs of database users. This also

decreases the responsibility of the users to understand the organization

and structure of the database. For new database models to be accepted

by industry they must be as "user friendly" as possible, especially if

the model itself is complex.

76

There are certain areas of current database modeling which have

been problematic. These areas have been discussed, both in relation to

the FDM and the current models. The issues which have been discussed

include multivalued dependencies, multiple user views, the

representation of incomplete information, and update and deletion

anomalies. In addition, this thesis has also included a discussion of

database query issues. Specifically, these issues are the handling of

unprocessable queries and query optimization using semantic

constraints.

There is no question that the FDM would be a large and complex

system. This is an unfortunate by-product of its vast capabilities.

However, the future requirements of industry may make this by-product a

point of minor significance. Additionally, the optimization of the

physical behavior of computer systems continues to improve with time,

but is not a concern of the intensional modeling level. The intention

of developing the FDM is to provide a design for a complete database

system.

77

BIBLIOGRAPHY

[1] Kent, William. "A Simple Guide to Five Normal Form in Relational
Database Theory", Communications of the ACM, Vol.26, No. 2 (Feb.

1983) 120-125.

[2] Ullman, Jeffrey D. Principles £f_ Database Systems
r 2nd Ed.

(Maryland: Computer Science Press, Inc., 1982) 25-32,123-128,212.

[3] Minsky, Marvin. "A Framework for Representing Knowledge", in The
Psychology of Computer Vision (P. Winston, Ed.) (New York:

McGraw-Hill, 1975) 211-277.

[4] Winston, Patrick Henry. Artificial Intelligence. 2nd Ed.

(Massachusetts: Addison-Wesley Publishing Co. , 1984) 257-267.

[5] Bobrow, Daniel G. and Terry Winograd. "An Overview of KRL, a

Knowledge Representation Language", Cognitive Science, Vol.1, No.1,

3-45.

[6] Goldstein, Ira P. and Bruce Roberts. "Using Frames in Scheduling",

in [10], 255-284.

[7J King, Jonathan J., "Intelligent Retrieval Planning", Proc. First

National Conference on Artificial Intelligence (Stanford, Ca.

,

1980) 243-245.

[8] Schank, Roger and Robert Abelson. Scripts Plans Goals and
Understanding , (New Jersey: Lawrence Erlbaum Assoc, Inc., 1977)

36-46.

[9] Mylopoulos, John. "An Overview of Knowledge Representation", ACM

Workshop on Data Abstraction, Databases, and Conceptual Modeling

(1980) 5-12.

[10] Winston, Patrick Henry and Richard Henry Brown. Artificial

Intelligence : An MIT Perspective , Vol.1 (Massachusetts: MIT Press,

1982).

[11] Bobrow, Daniel G., Ronald M. Kaplan, Lartin Kay, Donald A. Norman,

Henry Thompson and Terry Winograd. "GUS, A Frame-Driven Dialog
System", Artificial Intelligence, Vol.8, No.1 (1977) 155-173.

[12] Codd, E. F. "A Relational Model of Data for Large Shared Data
Banks", Communications of the ACM, Vol.13, No. 6 (1970) 377-387.

[13] Codd, E. F. "Further Normalization of the Data Base Relational
Model", in Data Base Systems (R. Rustin, Ed.) (1972) 33-64.

[14] Roberts, Bruce and Ira P. Goldstein. The FRL Manual, LIT-AI Lab,

Memo 409 (Sept. 1977).

78

[15] Hammer, Michael and Stanly B. Jr. Zdonik. "Knowledge-Based Query

Processing", Proc. Sixth International Conference on Very Large

Databases, Montreal (Oct. 1980) 137-147.

[16] King, Jonathan J. "QUIST: A System for Semantic Query Optimization

in Relational Databases", Proc. Seventh International Conference on

Very Large Data Bases, Cannes, Fr. (Sept. 1981) 510-517.

[17] Hayes, P. J. "The Logic of Frames", in Readings in Artificial
Intelligence (B. Webber, N. Nilsson, Ed.) (California: Tioga
Publishing Co. , 1981) 451-458.

[18] ih£. American Heritage Dictionary oL iiie. English Language,
(P. Davies, Ed.) (New York: Dell Publishing Co., Inc. , 1975).

[19] Fagin, Ronald. "Multivalued Dependencies and a New Normal form for
Relational Databases", ACM Transactions on Database Systems, Vol.2,

No. 3 (Sept. 1977) 262-278.

[20] Swartout, William R. "XPLAIN: A System for Creating and Explaining
Expert Systems", Artificial Intelligence, Vol.21, No. 3 (Sept. 1983)
285-325.

[21] Hammer, Michael and Denis McLeod. "Database Description with SDM:

A Semantic Model", ACM Transactions on Database Systems, Vol.6,
No. 3 (Sept. 1981) 351-386.

[22] Shank, Roger C. and Christofer K. Riesbeck. "Inside Computer
Understanding", (New Jersey : Lawrence Erlbaum Assoc, Inc., 1981)

197-227.

[23] King, Jonathan J. "Modeling Concepts for Reasoning about Access to
Knowledge", Proceedings of the Workshop on Data Abstraction,
Databases and Concept Modelling, Pingree park, Colorado (June 1980)
510-517.

[24] Codd, E. F. "Extending the Database Relational Model to Capture
More Meaning", ACM Transactions on Database Systems, Vol.4, No.

4

(Dec. 1979) 397-434.

[25] Novak, Gordon S. , Jr. "Representation of Knowledge in a Program
for Solving Physics Problems", Proc. Fifth International Joint
Conference on Artificial Intelligence, Cambridge, Massachusetts
(Aug. 1977) 286-291.

[26] Fahlman, Scott E. "Representing Implicit Knowledge", in Parallel
Models of Associative Memory (G. E. Henton, F. A. Anderson, Ed.)
(New Jersey: Lawrence Erlbaum Assoc, Inc., 1981) 145-159.

[27] Winograd, Terry. "Frame Representations and the
Declarative/Procedural Controversy", in Representation and
Understanding: Studies in Cognitive Science (D. G. Bobrow,
A. Collins, Eds.) (New York: Academic Press, 1975) 185-210.

THE USE OF FRAMES IN DATABASE MODELING

by

BARBARA MOORE SWEET

B. S. , Kansas State University, 1982

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

ABSTRACT

This thesis introduces a database model based on frames, a

conceptual structure developed in Artificial Intelligence. The body of

the thesis will argue the importance of developing alternative methods

of database modeling, The appropriateness of frames as a structure for

database modeling, and describe the benefits available to commercial

applications from a frame based model.

The concept of a frame-based database model (FDM) is presented. The

ATTRIBUTE, ELEMENT, INFERENCE, and USER-VIEW frame components of the FDM

are discussed.

The specific issues of database modeling covered in this thesis

are:

- multivalued dependencies

- multiple user views

- representation of incomplete information

- update and deletion anomalies

- unprocessable queries

- query optimization using semantic constraints

