
CUMULATIVE SUM TECHNIQUES

by

DAVID DONALD KRUEGER

B. S., Wisconsin State University, Oshkosh, 1965

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Statistics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1967

Approved by

:

Oi.yvi- G^JL^
Major Professor



LD
qA>U

TABLE OF CONTENTS£tf

1. INTRODUCTION l

2. CUMULATIVE SUM SCHEMES FOR PROCESS INSPECTION 1

2.1 Purpose of Process Inspection 1

2.2 Calculation and Advantage of Cumulative Suras 2

2.3 One-sided Decision Interval Schemes .... 5

2.4 Two-sided Decision Interval Schemes 19

2.5 Fraction Defective Sampling Schemes . 20

2.6 Two-sided V-mask Schemes 22

2.7 Equivalence of V-mask and Two-sided Decision

Interval Schemes 26

2.8 Gauging in Cumulative Sum Schemes 28

2.9 Comparison of Cumulative Sum and Shewhart Schemes 29

3. ESTIMATION OF THE CURRENT PROCESS MEAN 31

4. CONCLUSION 33

ACKNOWLEDGMENTS 34

BIBLIOGRAPHY 35



1. INTRODUCTION

Cumulative sums have been used for a number of years, but not until

recently have the techniques been developed to take full advantage of this

type of representation of a series of results. For example, in the simplest

form cumulative sums have been used for a long time in compiling the total

sales to date for a business. Another application involves the use of

cumulative sums of inflow minus outflow of water from a reservoir to study

the distribution of depths.

Most of the development of cumulative sum techniques has been related

to industrial quality control problems. E. S. Page (1954) was the first to

publish an account of this type of application when he used cumulative

scores to control the mean of a process. G. A. Barnard (1959) introduced

the method of superimposing a V-mask on cumulative sum charts to control

quantitative variables and several articles were written extending his idea.

Subsequent papers have evaluated the characteristics of quality control

schemes based on these methods.

2. CUMULATIVE SUM TECHNIQUES APPLIED TO PROCESS INSPECTION

2.1 Purpose of Process Inspection

The principal aim of process inspection is to furnish information,

either to assure that a process is producing its output in a specified

matter or to inform that some departure from specifications has occurred

so that corrective action can be taken or an investigation made. In many

cases information from the inspection will indicate the type of action that



is to be taken. A secondary aim of process inspection is to show improve-

ments in a process, since interest not only lies in how to avoid deteriora-

tions but also in how to maintain improvements that are made. Two further

aims are to provide a history of a process for later investigation and to

estimate the current process mean. For the fulfillment of these aims, the

method used in presenting inspection results is important.

2.2 Calculation and Advantages of Cumulative Sums

The longest established statistical method for process inspection is

the Shewhart chart. For this system samples are taken from a process at

regular intervals, and the mean values for the samples are plotted succes-

sively. If any point falls outside the action limits (usually 3 <r~) , a

change is assumed to have occurred and action is taken. The action is

either a corrective measure or an investigation. A certain amount of work

has been done to improve the sensitivity of the control chart by the use of

runs. For example if the last k points fell outside of the tfcr— control

limits, action is taken. This idea combines the evidence of the current

sample with that of previous samples. It reaches its highest development

in control charts based on cumulative sums.

The cumulative sum chart is therefore very similar to the Shewhart

chart. The differences are in the type of visual records made and the

criteria for taking action. Instead of plotting the sample results x.,

x , ..., a reference value, k, related to the target value, ^6± » is chosen
r

and the sums S * £ (x.-k) are calculated and plotted as a time series.
r

i=l
When the cumulative sum path deviates a specified amount, h, from the target

value, action is taken. As will be shown later a similar criterion is



obtained by considering the slope of the cumulative sura path.

The most fundamental advantage of cumulative sum charts is that a

change in quality can be seen more easily by visual inspection than it can

on the Shewhart type chart where the results are plotted independently of

each other. This is illustrated in Fig. 1. The first half of the results

were obtained by random sampling from a normal population with zero mean and

unit variance, and the second half of the results by random sampling from a

normal population with the mean increased to 0.2.

A second advantage is the ease with which the point of change in quality

can be seen. This is also illustrated in Fig. 1. In practice, the location

of the change is useful in helping to discover the cause of the change.

A third advantage is the improvement in efficiency over the Shewhart

chart for changes in the process mean between 0.5 and 2.0 CT*. In this

region changes can be detected approximately twice as rapidly with cumula-

tive sum charts as with Shewhart carts, or in the same amount of time but

with smaller sample sizes than Shewhart charts. This improvement will be

illustrated later.

A further advantage of cumulative sum charts involves their use to con-

firm, with subsequent results, previous decisions concerning process

changes. If the later results reinforce the earlier results in their indi-

cation of the slope of the chart, then further confidence is gained that a

change has occurred. If they revert toward the target value, the suggestion

may be that the process has corrected itself. Finally the use of cumulative

sum charts on past history provides a useful guide as to the nature of the

process variation.
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Fig. lb. Shewhart control chart
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2.3 One-sided Decision Interval Scheme

The one-sided decision interval scheme that is used with cumulative sura

techniques is in essence a sequence of Wald sequential tests with boundaries

* r

at and h. The sum S = 2 (x -k) is plotted on the chart as long as it
r

i=l

is positive, and action is taken when the alarm value, h, is reached. When

S falls below zero or after action is taken the cumulative sum is started
r

over again. The reference value k is usually chosen so that the cumulative

sum path is downward when the process is running in a satisfactory manner

and upward when there is deterioration in quality. It is possible to show

with the use of nomograms that the best value to use for k is approximately

half way between the acceptance quality level and the rejection quality

level.

The one-sided decision chart just described, is very similar to the

chart in Fig. la. A decision that quality has changed will be reached at

the same time with both charts. An advantage of this type of plotting is

that the chart is bounded in the sense that the cumulative sum does not run

off the paper. Also this method is easily applicable to a table of succes-

sive results if it is desired not to plot the data. A disadvantage of this

chart is that it does not present a past history of all the results, which

would be needed if post-mortem investigation and parameter estimation were

desired.

The alarm level, h, can be derived mathematically if the statistical

model of the production process is known, both in its normal target state

*
A Wald sequential test with boundaries (a,b) and initial score x is

a procedure in which observations x 1§ x 2 are taken as long as°
a Z. b, where Z. Z. , + x., and Z = z .

i i i-1 loo



and all of its possible departure states. Since these conditions of full

knowledge are rarely met, other means of obtaining h are needed. Average

run length is a criteria frequently used.

The average run length was first defined by Page (1954) to be the

average number of elements sampled before action was taken. Since then

most writers have defined the average run length as the average number of

samples of size n taken before some corrective action or investigation is

made. The choice of the decision scheme is based on two average run lengths,

L and L , the run lengths when the process is producing at acceptance and
a r

rejection quality levels respectively. Usually L is chosen to be of the

order of 250 to 1000 samples, and L , 6 to 10 samples.

In some instances it may be better to relate the decision scheme

directly to the amount of material produced before taking any action. When

the rate of production with respect to time is constant, the amount of

material produced is directly related to the time that elapses between the

moment the process starts to run at a specific quality level and the moment

action is taken. The average value of this time is called the average dura-

tion (Av.D.). It was shown by Ewan and Kemp (1960) that schemes could be

designed to give average durations at acceptance and rejection quality

levels by using a simple relationship that exists between average run length

and average duration. Let s be the time that elapses between taking samples,

and let £ be the average time between the occurrence of a change and the

selection of the first sample after the change. Then the average duration

for quality other than acceptance quality is given by

Av D = (ARL - l)s + t , where ARL is the average run length at

this quality.



If the probability that the process level changes in any particular

sampling interval is constant with respect to time and is small relative to

the sampling interval, then t s/2, and

Av D = (ARL - %)s .

If the first sample is taken at time s after the process is set into

operation, then at the acceptance quality level,

Av D = L «s .

a

In the derivation of the average run length, Page (1954) assumed the

results, x , were continuous variates. The rule he used was:
i

Take observations at regular intervals, assign a

score, x , to the ith observation, and plot the cumu-

r

lative score S = i. x, on a chart. Take action
r

i-1 *

after the nth observation if S - h, where
n

s' max [s' + x , 0] , n * 1
n n— 1 n

S' =
o

so that S = whenever S < min S. .

n OiKn '

This system of scoring was chosen so that the mean sample path was

downward when quality was satisfactory and upward when quality was unsatis-

factory. As noted before, this scheme breaks down into a series of Wald

sequential tests.

The following notations will be used in the derivation of the average

run length:
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P(z) = probability that the Wald sequential test with initial

score z and boundaries (0,h) will end on the lower

boundary.

N(z) = unconditional average sample number.

N.(z) = average sampling number conditional upon the test ending

on the lower boundary.

N (z) = average sampling number conditional upon the test ending

on the upper boundary.

ARL expected number of samples taken before action is taken.

Since the test is started at S = ,
n

P(r acceptance tests before a rejection test) = [P(0)] [l-P(O)] .

The expected number of acceptance tests before a rejection test is therefore

2 r[P(0)]
r
[l-P(0)] = Ll-P(0)][P(0) + 2P

2
(0) + 3P

3
(0) '•'..]

r»l

= P(0) + P
2
(0) + P

3
(0) + . . .

= P(0)/[l - P(0)] .

With this result, the average run length can be evaluated.

ARL E[number of acceptance tests before a rejection test]

• N^O) + N
2
(0)

= N
x
(0) P(0) / [l - P(0)] + N (0)

= -[N (0)' P(0) + N
2
(0) [l - P(O)]"} / [l - P(0)] .

However,



N(0) N.(0) • P(test ends on lower boundary) + N
2
(0) PUest

ends on upper boundary)

= N^O) P(0) + N
2
(0) [l - P(0)] .

Therefore

ARL = N(0) / [l - P(0)j . (1)

Page stated that N(0) and P(0) could be obtained by the use of integral

equations of Fredholm type. He gave the integral equation for the average

sample number N(t) of a Wald sequential test with boundaries at (a,b) and

initial score z as

N(z) = 1 +
J

N(x) f(x - z) dx ,
(2)

a

where f(x - z) represents the density function of x - z.

The equivalent integral equation for P(z) is determined in the follow-

ing manner.

f
>(z) = P(z|X=x) f(x) dx ,

-co

-z h-z

P(ziX=x) f(x) dx +
J

P(z|X=x) f(x) dx

-co -z

r«0O

+
I

P(ziX=x) f(x) dx .

h-«

For the first integral, P(z|X=x) = 1, since for -co = x = -z, z + x = 0.

By a change of variable, x' = x + z, the second integral becomes

.h

o

P(x') f(x' - z) dx' .
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In the third integral, P(z
I
X=x) = 0, since the cumulative sum would be

greater than h. Therefore,

P(z) = f(x) dx +
J

P(x) f(x - z) dx . (3)

-oo o

From these results, the average run length can be calculated as the ratio of

two integral equations.

With the following modifications of his rule, Page was able to arrive

at a single integral equation for the average run length.

1. Take observations and assign scores as before.

2. Take action if either

(a) S * h and S. > 0, for all i = 1, 2 n-1
n i

or (b) S - min S. * h ,
n

*ri >n i

where S = z, * z > h, and S = S , + x . This modification changes the
o n n-1 n

original rule only near its start. The equation is

r
h

L(z) = 1 + L(0) F(-z) +
J

L(x) dF(x - z) ,
(4)

o

where F(x) is the distribution function of a single score, x.

As was previously stated, the average run length, devised by Page,

assumed a continuous random variable, x. Ewan and Kemp (1960) extended his

idea to include equations which can be formulated when x is a discrete

variate, taking on only integer values. In these equations t, h, and k are

restricted to be integral valued.

For a discrete variate x, let f(x) represent the probability of obtain-

ing the value x, and let F(<*) = £ £(x). Then,
o
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n-1

P(z) = F(k - z) + Z P(y) f(y + k - z) ,
(5)

y=l

n-1

N(z) = 1 + Z N(y) f(y + k - z) ,
< 6 >

y=l

n-1

and L(z) = 1 + MO) F(k - z) + I L(y) f(y + k - z) . (7)

y=l

Kemp (1958) devised a method for obtaining approximate solutions to

equations (2) and (3) for N(z) and P(z) when x was a continuous normal

random variable. Ewan and Kemp (I960) then generalized this method for use

with both continuous and discrete functions.

(i) For a continuous variate x; if f(x) is the probability of obtain-

ing the value x» let

G4.

F(* ) =
J f(x) dx ,

-co

M(* ) = x f(x) dx ,

-oO

or

G(cx ) = e"* f(x) dx ,

-eO

where w is a real non-zero root of the equation,

cO

e f(x) dx = e

-oo

(ii) For a discrete variate, let

F(« ) = i, f(x) ,

o
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M( «) = £ x f(x) ,

o

G(« ) =
a. wx
Z e~ £(x) ,

o

where w is a real non-zero root of the equation,

* ux -.
, _ uk

L e f(x) = e

The results Ewan and Kemp found hold for x in both the continuous and

discrete cases, with integer values of h and k. The two approximations are:

P(z) = {[P(h) - P(0) e
wh

] + [P(0) - P(h)] e
wz
}/ (l-e

wh
) (8)

wh
N(z) = (N(h) - N(0) e + h / (m - k) +

wh,
[N(0) -N(h) -h / (m-k)] e -z} / (m-k)U-e ) , (9)

where,

P(0) = —

F(k) K
2

F(k-h) A
K
l

K
2

K
3

K
4

N(0) —

-

B
l

K
2

B
2 _A.

K
l h

h h

, (10)

and,

wh.
1^ = 1 + (0(h+k)*-F(k)] e

wh
-e"

wk
[G(h+k)* -G(k)]} / (1 - e

Wh
)

K2
=

(
e_Wk

LG ^ h+k >*- G(k) 3 -LF(h+k)*-F(k)]} / (1 - e
W

) ,

K
3

= {F(k)*-F(k-h)-e"
wk

LG(k)*-G(k-h)]} e
wh

/ (1 - e"
h

) ,
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K
4

- l-{F(k)*-F(k-h)-e~
w(k~h) [G(k)*-G(k-h)]} / (l-e

Wh
) ,

B = 1 -{k h + M(h+k)*-M(k) -k[F(h+k)*-F(k)]} / (m - k) ,

B = l- {(l-K
4
)h + M(k)*-M(k-h) -(k-h)[F(k)*-F(k-h)]} / (m-k) .

In these equations, F(t)* = F(t) for a continuous variate and F(t)* F(t-l)

for a discrete variate. This is also true for G(t)* and M(t)*.

The procedure to obtain P(0) and N(0) is as follows:

(a) Estimate P(0) and N(0) by equations (10).

(b) Obtain approximate values of P(z) and N(z) for z = 1, 2, . . .,

(h-1), by equations (8) and (9).

(c) If x is a discrete variate, substitute the approximate values

for P(0), P(l) P(h-l) into equation (5) and recalculate P(h). Sub-

stitute this value and the values of P(0), P(l), . . ., P(h-2) into equation

(5) and recalculate P(h-l). Do this for all z = 0, 1, . . ., h-1. Repeat

the procedure until no change in P(0) is obtained. N(0) may be found by

using equation (6) in the same manner.

If x is a continuous variate, the linear equations are formulated from

the integral equations satisfied by P(z) and N(z) using methods of quadrature.

Once P(0) and N(0) are known, the average run length can be obtained from

equation (1), i.e.,

L(0) = N(0) / (1 - P(0)) .

Ewan and Kemp (I960) obtained the average run lengths of a number of

schemes for a normal variate with unit variance and mean, m, by the above

approximation. From these initial results they constructed a nomogram,

which is shown in Fig. 2. The average run lengths of a wide variety of
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schemes can be obtained at both acceptance and rejection quality levels

from the nomogram. In Fig. 2, cr(x) = o-/ -fn is the standard deviation

of the samples, and n is the size of the samples. If m
&

is the process mean

at acceptance quality level, the average run length at this point is

obtained by placing a ruler on the nomogram so that it joins the known

Fig. 2. Nomogram from which average run length values can be determined

when x is normally distributed.
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points h /or-(x) and |k-m
|

/ a~(x), and reading off the run length from

the scale on the right hand side of the diagram. In a similar manner the

average run length at m , the process mean at rejection quality level, is

obtained from the line joining |k-m
r |

/eT(x) and h / o-(x).

The usual procedure for devising a scheme is to specify average run

lengths at rejection and acceptance quality levels and find n, k, and h.

Since there are only two equations, |k-m| / o-(x) and h / <r(x), and three

definable variables, several different combinations of the value n, k, and

h would give the same average run length. It is possible to show with the

use of the nomogram that there are advantages to using a central reference

value for k of approximately ^(m + m ). For example, fixed sample size

schemes with the same average run length at the acceptance quality level

have a minimum average run length at the rejection quality level when

k = %(m + m ). Also if a scheme is to have certain values for the average
a r

run length at both acceptance and rejection quality levels, the level of

sampling is a minimum when k = ^(m + ra )

.

a r

For a fixed average run length, if the sample size is plotted against

the reference value, there will be a flat minimum in the region of

k = ^(m + m ). Therefore as long as the reference value is in the region
a r

of the central value, there will be a negligible difference in sample size.

Thus in actual use, the reference value may be rounded off to simplify the

arithmetic necessary to operate a scheme.

In order to design a scheme with specified values of L and L , use

k = ij(m t m ) as the reference value. The values of h and n appropriate

to this reference value can be determined by placing a ruler across the

nomogram so that it joins the points L and L . The values |m -ml 2 Jh /a-
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and h>fn la- are then read off. From these values, h and n may easily be

calculated. If the values so obtained are convenient for use in practice,

no additional work is required and the details of the sampling scheme are

complete. If they are not convenient, the nomogram can be used to devise

an alternative scheme with approximately the same values of h, k, and n.

For example, suppose that it is desired to design a scheme for a

process which produces with acceptable quality as long as m
&

= 4.00, and

produces unacceptable material when the process mean becomes equal to or

exceeds 4.50. The standard deviation of the process is equal to 1.00, and

it is required to have L = 500 and L = 5.00. From Fig. 2, Ik-ml 4"n /<r-
^ a r

is equal to 0.74. If the central value for k is used, this formula gives

a value for n = 8.76. When rounded to the nearest integer the result is

n = 9. Recalculating, |k-m
|
Jn Icr = 0.75. This result, along with L

r
= 5,

produces the values L = 560 and h Jh /o- = 3.2. Therefore, h = 3.2 o~ / 4"n

= 1.06. If it is desired to keep L = 500, then |k-m| >fh /«" = 0.75, and

L = 500 may be used to obtain L = 4.9 and h Jh /o- = 3.125. With this
a J r

scheme, h = 3.125 °~ I Jh = 1.04.

It was shown by Ewan and Kemp (1960) that if x is a Poisson variate

with mean m, the average run lengths of a scheme can be obtained by using

equations (2) to (6) in which

F(<* ) = 2 m
x

e"
1" / xi ,

o

M(«* ) = n F( * - 1) ,

—wk ** w x w
e G(* ) £ (me ) exp(-me ) / xl ,

o

where w is the real non-zero root of the equation
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m(e - 1) = uk .

The notation is modified so that P(z,k,h), N(z,k,h), and L(z,k,h) are

used to denote P(z), N(z), and L(z) respectively. Also the following

approximate relationships are used to determine the average run lengths

of a number of schemes with different values of h and k:

P(z,k,h) = P(z-1, k-1, h+1) (7)

P(z,k,h) = P(z+1, k, h+1) . (8)

If P(z,k,h) is known for z between and h, accurate values of P(z+l,k,h+l)

can be obtained, with the help of equation (8), by direct substitution in

the set of equations generated by equation (2).

Tables 1 and 2 presented by Ewan and Kemp (1960) give the values for h

and k and m of a number of schemes for average run lengths at acceptance

quality level of 500, and for average run lengths at the rejection quality

levels of 3 and 7. It was found from these tables and other calculations

that the schemes for which the sample size is smallest are those with refer-

ence values which are in the neighborhood of the central value. The refer-

ence values shown in these tables are around the central value. It is not

possible to interpolate in these tables for non-integral values of h and k.

In order to design a scheme with specified values of L and L , find

R = RQL / AQL, where RQL and AQL are respectively the rejection and accept-

ance quality levels. If there is more than one scheme with this value of R

in the table, choose the one for which m is a minimum. If there are no
' a

schemes with this value of R, choose the scheme with the nearest value of

R. The values for h and k are then obtained from the table. In order to

determine the amount of material to examine, divide m by the acceptance
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,
3-20 207 6 7 4-60 9-50

3-63 4 * 101 3-67 2 04 7 7 4X7 9-92
3-43 5 j 1-18 4 05 2 02 8 1

7 51 1 10 33
3-34

. 3 3
|

1-23 4-11 2 00 6 8 5-24 10- <0
2-97 4 3 1-52 4-51 1-96 7 8 5 57 10 91
2-87 5 3 1-75 5 03 1-95 8 8 5-83 11-18
2-83 * 3 1 -95 5-51 1-94 9 8 607 11 80
2-77 ' 3 2-13 5-91 1-91 7 9 6-2S 1 1 02
2-75 4 4 204 5-60 1-89 8 9 655 12 19
2 58 5 4 2-33 602 1-87 9 9 6 83 I2"9
2 52 6 4 2-58 6-50 1-86 7 10 694 12-03
2-48 7 4 2-79 6-91 1-84 8 10 7-28 13- 19
2-47 8 4 2-96 7-31 1-82 9 10 7-57 13-80
2-43 5 5 2-92 7 09 1-80 8 11 800 14 40
2-35 6 5 3-21 7-53 1-78 9 11 8-30 14-80
2-30 7 5 3-46 7-96 1-77 10 11 8-59 15-23 •

2-27 8 5 3-68 8-34 ... ... ...
!

Table 2. Values of ma , mr , R = (mr/ma ), h and k for schemes with
A.R.L. 500 at A.Q.L. and A.R.L. = 3 at R.Q.L. for a
Poisson variate.
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quality level.

A numerical example of a Poisson variate follows: suppose it is neces-

sary to control the level of faults in lengths of fabric. The quality is

acceptable if the faults do not exceed a mean of 5 per 10 yards and is

unacceptable if the mean number of faults exceeds 10 per 10 yards. It is

required to have an average run length of 500 at acceptance quality and 7

at rejection quality. The decision interval, the reference value, and the

number of yards of fabric to examine at one time can be determined by using

Table 1. The nearest value of R is 1.97 with a decision interval, h = 6, a

reference value, k = 3, and Poisson parameter, m =1.95. Therefore the

6
number of yards of fabric which should be examined is (1.95 / 5) x 10

yards = 0.39 x 10 yards.

2.4 Two-sided Decision Interval Schemes

n

Given the two-sided schemes, (1) S = Z (x - k.), and (2)

n
n

i=l

S
1

= 2 (x. - k ), it was shown by Kemp (1961) that if the two schemes are

i=l
run simultaneously, then 1/L = 1/L + 1/L , where L , L , and L are the

average run lengths of the two-sided scheme, scheme (1), and scheme (2)

respectively.

This result is found by the following method. The expected number of

occasions of the crossing of the upper boundary of scheme (1) when N samples

are taken is N / L. . Likewise for scheme (2) the expected number of occa-

sions is N / L. It was shown by Ewan and Kemp (I960) that when one of the

two cumulations crosses its action limit, the other can not be between its

boundaries. Therefore the cumulations for the two schemes will not inter-

fere with one another. When the two schemes are considered together, the
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expected number of occasions of crossing is N/L
q

= N/I^ + N/L
2

. This leads

to the result, 1/L = 1/L, + 1/L_.

It is easily seen that when iiisa N(0,1) variate and k
1

= -k
2

, then

L = L when the process is running at its target value. Therefore

L = ^L . If the values of the process mean which are unacceptable are
o 1

m + A and m - A, then when the process mean equals m + A, L (m + A) will
. a a a '

usually be so large that L (m + A) = L. (m + A). Similarly L (m - A)
* o a la u tx

= L (m - A).
2 a

The following example is identical with the example given for the one-

sided scheme, except that now deviations in both directions are considered.

It is desired to design a scheme to control the mean at A. 00 and to detect

changes in the mean of ± 0.50. The standard deviation of the process is 1,

and it is required to have L (m ) = 500 and L (m t 0.50) = 5.00. Choose
o a o a

a central reference value and use the results L (m ).= %L. (m ) , and
O 3. L B

L (m + 0.50) = L, (m +0.50). The values of h and n are determined from
o a la
the single sided scheme with L = 1000 and L = 5.00. From Fig. 2,

|k-m| / or (x) = 0.8 | m -ra
| Jn / 20" = (.5) Jn / 2. Thus n = 10.34.

Rounding this up, use n = 11. Recalculating |k-m
| / o-(x) = 0.82 and using

this result along with L (m ± 0.50) = 5, L (m ) > 1000/2 and h Jh /o-
o a a

= 3.45. Thus h = 1.05. If it is desired to keep L (m ) = 500, use
9

|k-m| / er-(x) = 0.82 and L (m ) = 500 to obtain L (m ± 0.50) = 4.8 and
a

h Jn / = 3.3. In this case, h = 1.00.

2.5 Fraction-defective Sampling Schemes

The distribution of defective items in a sample of size n has the

binomial distribution. Usually the proportion defective is sufficiently
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small and the Poisson approximation may be applied. Kemp (1962) constructed

Table 3 which gives some values of m , R, h, and k for a variety of fraction
£1

defective sampling schemes. The values p and p represent the proportion

of defective items at the acceptance and rejection quality levels respec-

tively. The value R = m /m = N /N = p /p . The values chosen for
r a pr pa

a

inclusion in this table are those which will give sampling schemes requiring

the smallest sample sizes.

L
a

L
r

R 5.00 7.50 10.00

m
a

k h m
a

k h m
a

k h

500 1.18 2.00 5.00 0.64 1.20 3.75 0.50 0.90 3.75

2.50 250 0.93 1.50 4.50 0.52 0.90 3.50 0.42 0.80 3.00

125 0.71 1.20 3.75 0.47 0.70 3.25 0.32 0.60 2.25

500 0.66 1.20 4.00 0.46 0.90 3.50 0.32 0.70 3.00

3.00 250 0.56 0.90 3.00 0.40 0.80 3.00 0.27 0.60 2.50

125 0.48 0.80 3.00 0.31 0.60 3.00 0.15 0.30 2.00

500 0.54 1.20 3.00 0.35 0.80 3.00 0.24 0.60 2.75

3.50 250 0.41 0.90 2.50 0.27 0.60 2.50 0.18 0.40 2.50

125 0.34 0.70 2.25 0.18 0.40 2.00 0.13 0.30 1.75

500 0.38 0.90 2.75 0.24 0.60 2.75 0.16 0.40 2.50

4.00 250 0.32 0.80 2.25 0.21 0.60 2.00 0.12 0.30 2.00

125 0.28 0.70 1.75 0.16 0.40 1.75 0.07 0.20 1.50

Table 3. Values of ma , R, h, and k for fraction-defective sampling

schemes.

In order to design a scheme when p and p have specified values,

calculate R and find from Table 3 the values of m , k, and h_ which correspond

to the values of L and L that the scheme is to have. The quantities h and
a r n —
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k. are the actual decision interval and reference value respectively, and m
&

represents the mean number of defective items per sample at acceptance

quality level for the scheme. If n is the number of items tested per

sample, m = np , and hence the required value of n. can be found.
fl fit

To illustrate, suppose a process is such that p = 0.01 and pr
= 0.03.

It is desired to have L = 500 and L =7.50. Then calculate R = .03 / .01
a r

= 3. and use Table 3. ' It is found that ra = 0.46, k = 0.90, and h = 3.50.
' a

Since m = np , n = 46. Hence the scheme consists of taking samples of 46

items, counting the number of defective items, subtracting 0.90 from this

figure, and plotting the results cumulatively using a value of 3.50 for the

decision interval.

Tables 1 and 2 may also be used for fraction defective schemes. As an

example, suppose the proportion of defectives that can be tolerated at

acceptance quality level is 0.005 and the proportion at rejection quality

level is 0.015. Suppose also that the average run length is to be 500 at

the acceptance quality level, and 7 at the rejection quality level. The

value nearest to R = 0.015 / 0.005 = 3, in Table 3, is R = 3.04. For this

R value, k = 1, h = 4, and m
&

= 0.52. Then n = ra
&

/ p&
= 0.52 / 0.005 = 104.

Therefore the scheme would consist of taking samples of size 104 at regular

intervals, counting the number of defective items, subtracting k = 1 from

this figure, and plotting the results cumulatively, using a value of 4 for

the decision interval.

2.6 Two-sided V-raask Scheme

This scheme was devised by Barnard (1959) and is much like the two-

sided decision interval scheme. First the origin of measurement is shifted
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to the target value by letting the reference value be /*• . The cumulative

suras are then S = L (x -a*- ) . As long as the process mean remains near

i=l

the target value, the graph of the cumulative sums does not deviate too much

from the horizontal. To check if the process is on target, a V-shaped mask

is superimposed on the cumulative sum chart with the vertex of the V point-

ing forward and at a distance d ahead of the most recent point on the chart.

This is illustrated in Fig. 3, where & is the angle between each of the

limbs of the V-mask and the horizontal.

If all of the curve is visible, it is assumed that the process is in

statistical control. If the cumulative sura path cuts one of the limbs of

the V-mask, then the decision is that the process mean has changed. When

the upper limb is crossed, a decrease in the process mean is indicated,

while if the lower limb is crossed an increase in the process mean is indi-

cated. The V-mask is moved along the chart as each new cumulative sum is

plotted.

current point

-/A

- V-mask

>» '»'»
Observation number, r

Fig. 3. V-mask superimposed on a cumulative sum chart.
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The properties of the V-raask scheme are determined by the two para-

meters d and &• It is easily seen that the larger the lead distance and

the angle of the V, the fewer will be decisions which state that the process

mean has changed. The form of the V should be such that no decision is

reached if the process is operating in a satisfactory manner, but a real

change should be detected as quickly as possible.

One way of selecting the proper parameter values for a particular

application is to try out a variety of masks on historical records. Since

this method of selection is subjective, Barnard (1959) developed a method

using the ARL, as was done with decision interval schemes.

Goldsmith and Whitfield (1961) have evaluated several average run

lengths for V-mask quality control schemes where the results are mutually

2
independent and come from a Normal distribution with variance crz . For

standardization purposes it was assumed that the plotting interval on the

horizontal axis was equal to a 2 o— unit on the vertical axis. With this

scale, when the process mean shifts 2or~ from the target, the mean path of

the cumulative graph makes an angle of 45 with the horizontal. This

arrangement permits a rapid visual picture of the behavior of the process.

When the plotting interval on the horizontal axis is equal to\)o~ (V ? 2)

on the vertical axis, the values of tan 9 used should be multiplied by

2A) .

The graphs of Goldsmith and Whitfield give average run lengths with

lead distances, d, of 1, 2, 5, and 8 horizontal axis units, and tan © values

to give a range of L from 20 to 1500 samples. Fig. 4 illustrates one of

the graphs. The average run length evaluation was carried out by Monte

Carlo simulation on a Ferranti "Mercury" digital computer. A sequence of
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Normal deviates was generated by a fast table look-up procedure. Each

calculated ARL had a coefficient of variation of less than 10 per cent,

which was concluded to be adequate enough for practical purposes. Kemp

(1961) stated that these average run lengths agree with those obtained by

Ewan and Kemp to within the degree claimed.

Two empirical formulas which can be used to obtain these results were

given by Goldsmith and Whitfield. They are:

<
(j

O
O

at.

IS

DISPLACEMENT OP CURRENT MEAN -*
Fig. 4. Average run lengths of current mean for symmetric V-mask with d=2.
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log
1Q

log
1Q

L
q

= -0.5244 + 0.0398d + 1.1687tan9 + 1.264ltan9 x

log
1Q

d .

L = (2d tan©) / (q - 2tan9) + 2/3 .

The first of these equations provided a good approximation for L at all

values of d_ and _9 investigated, and the second provided a good approxima-

tion when 1.5 < q < 4, where qo— is the amount the process is off target.

As an example, suppose it is required to have L = 500 and L, 15 with
o 1

q = 1. Then by interpolation from Fig. 4, the mask with parameters d = 2,

and tan 9 = 0.565 is satisfactory.

Barnard suggested that a parabolic mask may be more appropriate than a

V-mask. He arrived at this suggestion by applying several different V-masks

to the same set of results. Other than Barnard's work however, there seems

to have been little done with this type of mask.

2.7 Equivalence of V-mask and Two-sided Decision Interval Scheme

The equivalence between the V-mask and two-sided decision interval

scheme can be demonstrated by reference to Fig. 5. The cumulative sum at

A, which is the last plotted point, is S , and at C is S . The V-mask has
n - n-r

a lead distance = d horizontal plotting intervals and an angle 9 between its

limbs and the horizontal. B is the intersection of a vertical line from C

and a horizontal line from A. Therefore,

BC = S - S .

n n-r

The path of the cumulative sum will cross the lower limb of the V when

BC > BD , or
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Observation number, r

Fig. 5. Cumulative sum of (x -/*- ) plotted against number of samples.

S - S > BO tan 9 .

n n-r -

But BO = w(r + d), where w the vertical scale distance per horizontal

plotting interval. Therefore,

S - S >w(r+d) tan 9 ,n n-r

S - S - (rw tan 9) *: wd tan 9 ,n n-r

Z (x -/*• - w tan 9) ^ wd tan 9
i=n-r+l

This is equivalent to accumulating the deviations of x from a reference

value, k = /* + w tan 9, and using a decision interval h = wd tan 9.

A similar argument shows that the upper limb is crossed when
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n

i. (x -/m. + w tan »)< -wd tan 9 .

i=n-r+l

This is equivalent to the decision procedure with reference value k =

/* - w tan 9, and h = -wd tan 9.

There are situations when one method of presentation is favored over

the other. If it is expected that the process level will fluctuate in a

random fashion about the target valuers,., and if the past history of these

deviations is useful for technical investigation as well as control pur-

poses, the combined use of the V-mask and cumulative sum chart is a very

powerful technique. On the other hand, if the only information required is

whether the process is running at an acceptable level, the two-sided decision

interval may be better.

2.8 Gauging in Cumulative Sum Schemes

Cumulative sum schemes using gauging are advantageous if it is possible

to build equipment to automatically do the testing. Page (1962) developed

schemes for controlling the mean and standard deviation of a process using

gauging. He was mainly concerned with sampling, gauging, and recording one

observation at a time, since this is the most convenient arrangement to

perform automatically.

With this method, observations from the process are assumed to be

2normal and independent with variance cr; . The gauges are set at />- ± G

If A, B, and C represent the number of articles that fall below^ - G ,

that fall between the gauges, and that exceed /a. + Go- respectively, then

C-A is sensitive to changes in the mean and C+A is sensitive to changes in

the standard deviation.
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In order to control the mean, a cumulative sum of the (C - A) for

samples of size one is plotted and a V-mask is applied to the chart to test

for a change. Page presented and compared several gauging schemes with

Shewhart schemes and cumulative sum schemes. In general, the gauging

schemes are less sensitive, than regular cumulative sum schemes, to moderate

departures in the mean, but are more sensitive than Shewhart schemes. For

large departures, both Shewhart and cumulative sum schemes act much faster

than the gauging schemes.

In order to control the standard deviation, the cumulative sum

2j(C. + A - k) is plotted. A change in the standard deviation is assumed

to have occurred if the path rises a height h above the minimum. Several

one-sided gauging schemes for single observations for controlling the vari-

ance of a population were presented. Some of these schemes were compared

with Shewhart range schemes. The comparison suggested that it was possible

to find a cumulative sum gauging scheme which could be carried out automat-

ically and which would give a similar performance to a Shewhart range

scheme

.

2.9 Comparison of Cumulative Sum and Shewhart Schemes

Several different methods have been used to compare the average run

lengths for Shewhart and cumulative sum schemes. Goldsmith and Whitfield

(1961) selected the two schemes so that values of the average run length at

the acceptance quality level were approximately equal. The results of this

comparison are illustrated in Tables 4a and 4b.
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Table 4a. d = 5, tan = 0.35, equivalent control lines at t 2.96

Deviation of current mean
Average run length

with
^o— a~ 2cr 3a- 4o- 5o-

Cumulative scheme

Shewhart scheme

319

320

42.3

137

9.23

39.5

3.50

5.89

2.09

1.92

1.59

1.17

1.21

1.02

Table 4b. d = 2, tan = 0.40, equivalent control lines at ± 2.14

Deviation of current mean
Average run length

with
h<r~ o— 2o~ 3a- 4o- 5a-

Cumulative scheme

Shewhart scheme

30.7

30.5

13.9

18.1

5.84

7.75

2.04

2.24

1.30

1.24

1.05

1.03

1.005

1.002

Table 4. Comparisons between cumulative sum and Shewhart schemes with
approximately equal average run length at acceptance quality
level.

The value of the cumulative sum scheme is most evident for moderate

deviations from the current mean, but exceptionally large changes are picked

up a little more rapidly with the Shewhart chart. If it is allowable to

have slack in the process, then it may be better to use Shewhart charts,

as cumulative sum charts will cause interruptions when the quality of

production is acceptable much more frequently than Shewhart charts.

Table 5 compares the required sample sizes for a Shewhart scheme and a

cumulative sum scheme to have equivalent run lengths. It may be seen that

for the higher values of L
r

, more than 100% additional testing is required

for a Shewhart chart. There are circumstances when this additional sampling

is regarded as trivial, and in these cases the Shewhart chart could be used.
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L
a

L
r

250 500 1000

2.50 1.3 1.3 1.3

5.00 1.8 1.9 2.0

7.50 2.2 2.4 2.5

10.00 2.5 2.8 3.0

Table 5. Ratio of the sample size required for a Shewhart scheme
to that required for a cumulative sum scheme with
equivalent run lengths at acceptance and rejection
quality level.

Several other comparisons of cumulative sum and Shewhart schemes were

found in the literature. Kemp (1961) gave the values of L for cumulative

sura charts and for single-sided Shewhart charts with the same sample size

and average run length at acceptance quality level. Kemp also gave compari-

sons between cumulative sum charts and more efficient Shewhart charts. Ewan

(1963) presented a comparison with the same L , but with a different sample

size and interval.

3. ESTIMATION OF THE CURRENT PROCESS MEAN

The current process mean may be estimated from a cumulative sura chart

by superimposing a parabola-shaped cursor on the chart, as illustrated by

Fig. 6. This is done by placing the vertex of the cursor directly over the

current point on the graph of the cumulative sura, with the reference value

equal to the target value, and rotating the cursor so that it includes
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-J L. -1 I ' ' -1 '

Observation number, r •

Fig. 6. Use of parabolic cursor to estimate the current process mean.

between its limbs the greatest possible number of consecutive points, count-

ing backwards from the current point. When a maximum number, ra, of such

points are included, the cursor should be rotated so that one limb is caused

to pass through the m th point. Then the slope of the axis of symmetry cor-

responds to the change in the process average. For example, if w is the

vertical scale distance per horizontal plotting interval, then the estimated

change in the process mean will be w tan &. The estimate of the process mean

is k + w tan ©, where k is the reference value.

A parabola need not always be used for the cursor, as a quartic or a

rectangular cursor may be better for certain sets of data. Whichever cursor

is chosen however, the shape should be symmetric and should exclude points

on the cumulative sum chart which relate to a considerably earlier period.

Before a particular shape is adopted, a "dry running" procedure should

be applied to past records. For a numerical comparison of different shapes
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and sizes of parabolas, a measure of the effectiveness of a given shape is

obtained by computing the mean square difference between the estimated

current mean and the actual value of the next observation. The shape which

gives the smallest mean square difference on a series of past observations

should be chosen. Although this method of obtaining the correct shape for

the cursor is quite lengthy, the operation of the estimation procedure Is

straightforward.

4. CONCLUSION

This report has covered the work in the literature concerning cumula-

tive sum techniques. It was seen that most of the applications deal with

controlling the mean of some industrial process, but there are many other

applications of cumulative sums possible. Goldsmith and Whitfield (1964)

briefly discussed some of these further applications in the fields of sales

forecasting, accounting, economics, and job categorisation. Overall,

cumulative sum techniques are useful whenever a series of results has been

produced at regular intervals of time.
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Although cumulative sums have been used for a long time, the tech-

niques for their use have been developed only recently. The principal

application of cumulative sums has been its use as a quality control

technique for controlling the mean of an industrial process. In this
n

case, the sums, S = 2 (x -k), are plotted on a chart against n, the
i=l

x

number of observations. One of the advantages which this representation

of a series of results has over the usual Shewhart control chart is the

ease with which a change in quality and the point of change in quality can

be seen. Improvement in efficiency for changes in the process mean between

0.5 and 2.0cr is another.

The first development of the techniques of cumulative sums was done in

1954 by E. S. Page, who devised one-sided decision interval schemes for

controlling the mean of a process. These techniques were extended to two-

sided decision interval schemes by Ewan and Kemp. The average run length is

usually used as the criteria for the choice of a scheme. It is usually

defined as the average number of samples taken before making the decision

that a change in the process mean has occurred.

G. A. Barnard introduced the method of superimposing a V-mask on cumu-

lative sum charts in order to control quantitative variables. It was later

shown that the V-raask schemes and the two-sided decision interval schemes

were equivalent.

E. S. Page has evaluated the characteristics of cumulative sum schemes

designed to control the mean and standard deviation of a Normal distribu-

tion, where the results are given a score according to the zone in which

they fall. These gauging schemes are useful if equipment is available to
i

do the recording automatically.



Cumulative sum charts are also useful for estimating the process mean.

This is done by superimposing a parabola on the cumulative sum path so that

the slope of the axis of symmetry will measure the change in the process

mean.


