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Abstract

Exponential and character sums occur frequently in number theory. In most applications

one is only interested in estimating such sums. Explicit evaluations of such sums are rare.

In this thesis we succeed in evaluating three types of mod pm sums when p is a prime and

m is sufficiently large. The twisted monomial sum,

S1 =

pm∑
x=1

χ(x)e2πinx
k/pm ,

the binomial character sum,

S2 =

pm∑
x=1

χ1(x)χ2(Ax
k +B),

and the generalized Jacobi sum,

S3 = Jpn(χ1, . . . , χk, p
m) =

pm∑
x1=1

· · ·
pm∑
xk=1

x1+···+xk=pn

χ1(x1) · · ·χk(xk), m > n,

where the χ are mod pm Dirichlet characters.

We additionally show that these are all sums which can be expressed in terms of classical

Gauss sums.
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Chapter 1

Introduction

We are concerned here with the explicit evaluations of certain exponential sums modulo pm

where p is a prime, namely the twisted monomial sum,

S1 = S1(χ, nx
k, pm) =

pm∑
x=1

χ(x)epm(nxk), (1.1)

where

eq(x) := e2πix/q, (1.2)

the binomial character sum,

S2 = S2(χ1, χ2, Ax
k +B, pm) =

pm∑
x=1

χ1(x)χ2(Ax
k +B), (1.3)

and the generalized Jacobi sum,

S3 = Jpn(χ1, . . . , χk, p
m) =

pm∑
x1=1

· · ·
pm∑
xk=1

x1+···+xk=pn

χ1(x1) · · ·χk(xk), m > n, (1.4)
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where the χ are multiplicative characters. We will show all of these sums can be explicitly

evaluated when m is sufficiently large. Cases where exponential sums can be evaluated are

rare, making the sums which can be specifically evaluated standouts. As we shall see in

Chapter 4 these are all sums which can be expressed in terms of classical Gauss sums.

In order to obtain our evaluations we apply the reduction method of T. Cochrane and

Z. Zheng [4], thereby reducing our sums to the consideration of a particular characteristic

equation. In Chapter 5 we reduce the twisted monomial sum,

S1 =

pm∑
x=1

χ(x)epm
(
nxγp

t
)
,

with p - γ, to the equation

c1 +Rt+1nx
γpt ≡ 0 mod pm−t−1 (1.5)

when t+ 1 < m < 2t+ 2, and to

c1 +Rt+s+1nx
γpt ≡ 0 mod pt+s+1, (1.6)

when 2t+ 2 ≤ m, where the Rj are parameters dependent on our choice of a primitive root

mod pm and the ci’s are parameters depending on the character (these parameters will be

discussed in detail in Chapter 2). Depending on the range, if (1.5) or (1.6) has no solution

the sum is zero; however if there is a solution we are able to directly evaluate the sum as

shown in the following theorem, which appears as Theorem 5.1.1 in Chapter 5.

Theorem 1.0.1. For p an odd prime, t ∈ Z, t ≥ 0, let

f(x) = nxγp
t

, p - nγ.

Case I: Suppose that t+ 1 < m ≤ 2t+ 2. If χ is a dpt-th power of a primitive character

2



and the characteristic equation (1.5) has a solution α then

S1(χ, f(x), pm) = dpm−1χ(α)epm(f(α)).

Otherwise, S(χ, f(x), pm) = 0.

Case II: Suppose that 2t+ 2 < m. If χ is a dpt-th power power of a primitive character

and (1.6) has a solution then

S1(χ, f(x), pm) = dp
m
2
+tχ(α)epm(f(α))

(
−2rc1
pm

)
εpm , (1.7)

where α is a solution of (1.6),
(
·
pm

)
is the Jacobi symbol, εpm is as in (2.29) and d =

(γ, p− 1).

It should be pointed out that in absolute value this result simplifies to S1 = 0 or

|S1(χ, f(x), pm)| =


dpm−1, if t+ 1 < m ≤ 2t+ 2,

dp
m
2
+t, if 2t+ 2 < m.

We get a similar evaluation when p = 2, dependent again on solutions to certain character-

istic equations.

In Chapter 6 we evaluate the pure character sum,

S2 =

pm∑
x=1

χ1(x)χ2(Ax
k +B).

Again using the methods of Cochrane and Zheng we obtain a characteristic equation,

g′(x) ≡ 0 mod pmin{m−1, [m+n
2

]+t} (1.8)

where g′(x) comes from writing χ1(x)χ2(Ax
k +B) = χ(g(x)) for some mod pm character χ,
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leading to the following evaluation; see Theorem 6.1.1.

Theorem 1.0.2. Suppose that p is an odd prime and χ1, χ2 are mod pm characters with χ2

primitive.

If χ1 = χk3, and (1.8) has a solution x0 with p - x0(Axk0 +B), then

pm∑
x=1

χ1(x)χ2(Ax
k +B) = dχ1(x0)χ2(Ax

k
0 +B)


pm−1, if t+ n+ 1 < m ≤ 2t+ n+ 2,

p
m+n

2
+t, if m > 2t+ n+ 2, m− n even,

p
m+n

2
+tε1, if m > 2t+ n+ 2, m− n odd,

where ε1 is as in (6.13)

If χ1 does not satisfy χ1 = χk3, or (1.8) has no solution satisfying p - x0(Axk0 +B), then

the sum is zero.

For p = 2 similar results are obtained in Chapter 6; see Theorem 6.2.1.

In order to evaluate the multi-variable general Jacobi sum, (1.4), we use a general result

from Chapter 4, that expresses S1, S2 and S3 in terms of the classical Gauss sum,

G(χ, pm) =

pm∑
x=1

χ(x)epm(x).

For example, when the characters are primitive,

Jpn(χ1, . . . , χk, p
m) =

∏k
i=1G(χi, p

m)

G(χ1 . . . χk, pm−n)
. (1.9)

In Chapter 3 we use the Cochrane and Zheng reduction method to get the following evalu-

ation of the mod pm Gauss sum; see Theorem 3.1.

Theorem 1.0.3. Suppose that χ is a mod pm character with m ≥ 2. If χ is imprimitive,

4



then G(χ, pm) = 0. If χ is primitive, then

G(χ, pm) = p
m
2 χ
(
−cR−1j

)
epm

(
−cR−1j

)
(
−2rc
p

)m
εpm , if p 6= 2, and pm 6= 33,(

2
c

)m
ωc, if p = 2 and m ≥ 5,

(1.10)

for any j ≥ dm
2
e when p is odd and any j ≥ dm

2
e + 2 when p = 2. Here x−1 denotes the

inverse of x mod pm, and ω := eπi/4.

Using (1.9) and Theorem 1.0.3 we are then able to evaluate S3 explicitly; see Theorem

7.0.1 (we write all three of our sums in terms of Gauss sums in Chapter 4, however we only

use this for direct evaluation in the case of our multi-variable Jacobi sum).

Theorem 1.0.4. Let p be a prime and m ≥ n + 2. Suppose that χ1, . . . , χk are k ≥ 2

characters mod pm with at least one of them primitive.

If the χ1, . . . , χk are not all primitive mod pm or χ1 . . . χk is not induced by a primitive

mod pm−n character, then J(χ1, . . . , χk, p
m) = 0.

If the χ1, . . . , χk are primitive mod pm and χ1 · · ·χk is primitive mod pm−n, then

Jpn(χ1, . . . , χk, p
m) = p

1
2
(m(k−1)+n)χ1(c1) · · ·χk(ck)

χ1 · · ·χk(v)
δ, (1.11)

for p odd,

δ =

(
−2r

p

)m(k−1)+n(
v

p

)m−n(
c1 · · · ck

p

)m
εkpmε

−1
pm−n ,

and

v := p−n(c1 + · · ·+ ck), ω := eπi/4. (1.12)

Evaluations of 1.4 are also given when p = 2 in Chapter 7; see Theorem 7.0.1.
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Chapter 2

Preliminaries

Let q be a positive integer. For a multiplicative Dirichlet character χ mod q and f(x), g(x) ∈

Z[x] we define a mixed exponential sum

S(χ, g(x), f(x), q) :=

q∑
x=1

χ(g(x))eq(f(x)) (2.1)

where

eq(x) = e2πix/q. (2.2)

Note it is sometimes useful to use the equivalent notation

e

(
x

q

)
= e2πix/q. (2.3)

We are concerned here with the explicit evaluations of these and closely related sums when

q = pm with p a prime and f , g are specific polynomials with integer coefficients, namely

(1.1), (1.3) and (1.4). We show in Section 2.2 why it is enough to reduce to the prime power

case, but we first start with some definitions and preliminaries.

6



2.1 Dirichlet Characters

We begin by defining a special class of multiplicative homomorphisms called group charac-

ters.

Definition 2.1.1. Given a finite group 〈G, ∗〉 a character χ is a function χ : G→ C∗ such

that for a, b ∈ G, χ(a ∗ b) = χ(a)χ(b).

For the identity element, e, and some a in G we have χ(a) = χ(e ∗ a) = χ(e)χ(a) and

since χ is nonzero on G, we have χ(e) = 1. Further, χ(a)|G| = χ(e) = 1, and thus χ(a) is a

|G|-th root of unity.

For any finite abelian group, G, we know that G ∼= Zn1 × . . . × Znr where the Zni are

additive cyclic groups. Let the generators of G be a1 = (1, 0, . . . , 0), . . . , ar = (0, . . . , 0, 1).

For a generator ai we have that χ(ai)
ni = χ(niai) = χ(0) = 1; thus χ(ai) is an nith root

of unity. Since we know χ(ai) = eni(ci) for some integer 0 ≤ ci ≤ ni − 1 we have exactly

ni distinct places to send each ai resulting in
∏r

i=1 ni = |G| different characters. We also

note that for finitely generated groups the characters are defined by their actions on the

generators.

In this thesis we let G = Z∗q where we write Z∗q for the multiplicative group of units in

Z/qZ. The characters on Z∗q are then extended to all of Zq by defining the characters to be

zero on elements of Zq not in Z∗q.

Definition 2.1.2. A Dirichlet character χ mod q is a non-identically zero function χ : Zq →

C with χ(ab) = χ(a)χ(b) for all a, b ∈ Zq and χ(c) = 0 if (q, c) > 1.

One of the most well known examples of a Dirichlet character is the Legendre symbol.

We define the Legendre symbol modulo a prime, p, by

(
a

p

)
=


1, if (a, p) = 1, and a is a square mod p,

−1, if (a, p) = 1, and a is not a square mod p,

0, if (a, p) > 1.

(2.4)
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Alternately we will denote the Legendre symbol as the quadratic character χQ.

For q1 | q we say that a mod q character χ is induced by a mod q1 character, χq1 , if

χ(n) =


χq1(n), if (n, q) = 1,

0, otherwise.

We call a character primitive if it cannot be induced by a lower modulus character.

One can examine the structure Dirichlet characters by examining the characters on prime

powers. Letting the prime factorization of q =
∏k

i=1 p
αi
i where pi are primes, we claim that

there exists a corresponding primitive root ai such that Z∗
p
αi
i

= 〈ai〉 unless pi = 2, with

αi ≥ 3 in which case Z∗2αi = 〈−1, 5〉 (see Section 2.8 in [18]). The order of each ai mod pαii

is exactly φ(pαii ), and thus χ(ai) is a φ(pαii ) root of unity unless pi = 2 with αi ≥ 3 in which

case 5 has order 2α−2 and −1 has order 2 and thus χ(−1) is a 2-nd root of unity and χ(5)

is a 2αi−2-nd root of unity. The characters of Z∗
p
αi
i

are defined by their action on the ai’s,

that is

χ(ai) = eφ(pαii )(ci), 1 ≤ ci ≤ φ(pαii ) (2.5)

unless pi = 2 with αi ≥ 3 when we have

χ(−1) = ±1, χ(5) = e2αi−2(ci), 1 ≤ ci ≤ φ(2αi−2). (2.6)

For any mod pαii character χ we can extend χ to be a mod q character by defining it to be

0 for all a ∈ Zq with (a, q) > 1. We additionally note that for two mod q characters, χ1 and

χ2, we have that χ1χ2 is also a mod q character.

We claim that every mod q character can be be written as the product k mod q characters

induced by mod pαii characters, i = 1, . . . , k. The number of characters for Z∗
p
αi
i

is φ(pαii );

thus we have
∏k

i=1 φ(pαii ) = φ(q) choices for a mod q character χ of the form χ = χ1 . . . χk

where the χi are mod q characters induced by mod pαii characters. As there are φ(q)

8



characters for Z∗q if each of the choices of χi gives a different mod q character then every

mod q character may be constructed in this way. Let χ′ and χ′′ be two mod q characters

with χ′ = χ′′, and χ′ = χ′1 . . . χ
′
k, χ

′′ = χ′′1 . . . χ
′′
k, where the χ′i and χ′′i are induced by mod

pαii characters. By the Chinese Remainder Theorem for each ai there exists an Ai ≡ ai mod

pαii with Ai ≡ 1 mod p
αj
j , for j 6= i. When pi = 2 with αi ≥ 3 we also need an Ai ≡ 5 mod

2αi and A0 ≡ −1 mod 2αi , Ai ≡ A0 ≡ 1 mod pαj , i 6= j. For 23 - pαjj , χ′(Aj) = χ′′(Aj),

and thus χ′j(aj) = χ′′j (aj). When pj = 2 with αj ≥ 3 we have that χ′(Aj) = χ′′(Aj) and

χ′(A0) = χ′′(A0), implying that χ′j(5) = χ′′j (5) and χ′j(−1) = χ′′j (−1). Since a pαii character

is determined by it action on the generators of Z∗
p
αi
i

, χ′j and χ′′j must be the same character

for each j. Therefore, any mod q character, χ can be expressed as

χ = χ1 . . . χk (2.7)

where the χi are mod q characters induced by mod pαii characters.

The character which sends all the elements of the multiplicative group to 1 is called the

principal character, defined by

χ0(b) =


1, if (q, b) = 1,

0 else.

2.2 Reducing to the case of prime modulus

Let q =
∏k

x=1 p
αi
i with pi prime. For a mod q mixed exponential sum we will use the fact

that any mod q character, χ = χ1 . . . χk, where the χi are mod pαii characters extended to

Zq to break our composite sums up into sums modulo prime powers. Define mi = q/pαii and

let hi be integers such that
∑k

j=1 hjmj = 1. Note that
∑k

j=1 xjhjmj ≡ xihimi ≡ xi mod

pαii , thus

g(x1h1m1 + · · ·+ xkhkmk) ≡ g(xi) mod pαii .

9



Further,

(x1h1m1 + · · ·+ xkhkmk)
j ≡ (x1h1m1)

j + · · ·+ (xkhkmk)
j mod q

giving

eq
(
(x1h1m1 + · · ·+ xkhkmk)

j
)

= eq
(
(x1h1m1)

j + · · ·+ (xkhkmk)
j
)

=
k∏
i=1

epαii (hjim
j−1
i xji ) =

k∏
i=1

epαii (hix
j
i ).

Thus

eq (f(x)) =
k∏
i=1

epαii (hif(xi)).

We may assume that f(0) = 0, for if not we may write eq(f(x)) = eq(f(x)−f(0))eq(f(0)) and

the eq(f(0)) can be pulled out of the sum straightaway. Additionally x1h1m1 + · · ·+xkhkmk

runs over a complete set of residues modulo q as the xi’s run from 1, . . . , pαii . So for the

general mod q mixed exponential sum, (2.1), we have

S(χ, g(x), f(x), q) =

q∑
x=1

χ(g(x))eq(f(x))

=

p
α1
1∑

x1=1

χ1(g(x1))epα11
(h1f(x1)) · · ·

p
αk
k∑

xk=1

χk(g(xk))epαkk
(hkf(xk))

=
k∏
i=1

S(χi, g(x), hif(x), pαii ).

Thus, for the general mixed exponential sum is suffices to deal only with the case q = pα

which includes our S1, (1.1).

10



Similarly if χ′, and χ′′ are mod q characters then our S2 sum,

S2(χ
′, χ′′, Axk +B, q) =

q∑
x=1

χ′(x)χ′′(Axk +B)

=
k∏
i=1

p
αi
i∑

xi=1

χ′i(xi)χ
′′
i (Ax

k
i +B)

=
k∏
i=1

S2(χ
′
i, χ
′′
i , Ax

k +B, pαii ),

for χ′i, χ
′′
i induced by mod pαii characters. For S2 it suffices to examine only prime powers.

Likewise, for the generalized Jacobi sum,

JB(χ1, . . . , χk, q) =

q∑
x1=1

· · ·
q∑

xk=1

x1+···+xk≡B mod q

χ1(x1) · · ·χk(xk),

if the χi are mod rs characters with (r, s) = 1 then, writing χi = χ′iχ
′′
i where χ′i and χ′′i are

mod r and mod s characters respectively, writing xi = uirr
−1 + viss

−1, where ui = 1, . . . , s,

vi = 1, . . . , r, and rr−1 + ss−1 = 1, gives

JB(χ1, . . . , χk, rs) =
s∑

u1=1

r∑
v1=1

· · ·
s∑

uk=1

r∑
vk=1

χ1(rr
−1u1 + ss−1v1)

(rr−1u1+ss−1v1)+···+(rr−1uk+ss−1vk)≡B mod rs

· · ·χk(rr−1uk + ss−1vk),

=
s∑

u1=1

r∑
v1=1

· · ·
s∑

uk=1

r∑
vk=1

χ′′1(rr−1u1)χ
′
1(ss

−1v1)

(rr−1u1+ss−1v1)+···+(rr−1uk+ss
−1vk)≡B mod s

(rr−1u1+ss−1v1)+···+(rr−1uk+ss
−1vk)≡B mod r

. . . χ′′k(rr
−1uk)χ

′
k(ss

−1vk)

=
s∑

u1=1

· · ·
s∑

uk=1

u1+···+uk≡B mod s

χ′′1(u1) . . . χ
′′
k(uk)

r∑
v1=1

· · ·
r∑

vk=1

v1+···+vk≡B mod r

χ′1(v1) . . . χ
′
k(vk).

= JB(χ′1, . . . , χ
′
k, r)JB(χ′′1, . . . , χ

′′
k, s).

Hence, it suffices to consider the case of prime power moduli, q = pm, for all three of our

sums.
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2.3 The Power-Full Lemma

A most useful result for manipulating mixed and pure exponential sums is the connection

between the degree of the polynomials f, g and the type of character necessary for the sum

to not be zero. For instance in order to write our sums (1.1), (1.3) and (1.4) in terms of

Gauss sums (which will be discussed in Chapter 4) we must first prove the following powerful

lemma

Lemma 2.3.1. For any odd prime p, multiplicative characters χ1, χ2 mod pm, and f1, f2

in Z[x], the sum S =

pm∑
x=1

χ1(x)χ2(f1(x
k))epm(f2(x

k)) is zero unless χ1 = χk3 for some mod

pm character χ3.

While it should be noted this condition springs up naturally when evaluating the sums,

it is useful to prove it here.

Proof. Taking z = aφ(p
m)/(k,φ(pm)), a a primitive root mod pm, we have zk = 1 and

S =

pm∑
x=1

χ1(xz)χ2(f1((xz)k))epm(f2((xz)k)) = χ1(z)S.

Hence if S 6= 0 we must have 1 = χ1(z) = χ1(a)φ(p
m)/(k,φ(pm)) and consequently χ1(a) is

a complex φ(pm)/(k, φ(pm))-th root of unity and so χ1(a) = eφ(pm) (c′(k, φ(pm))) for some

integer c′. Letting c1 be any integer satisfying

c′(k, φ(pm)) ≡ c1k mod φ(pm),

(c1 is unique mod φ(pm)/(k, φ(pm))) we equivalently have χ1 = χk3 where χ3(a) = eφ(pm)(c1).
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2.4 Definitions and Congruence Relationships

2.4.1 The case p is odd

Let a be a primitive root mod p, the existence of which is an elementary result in number

theory (see Section 2.8 in [18]). Further from Theorem 2.40 in [18] we know if a is a primitive

root mod p2 it is a primitive root for all higher powers of p as well. For a mod p primitive

root, a, we must have a is also a primitive root mod p2 to get that a is a primitive root mod

pj for all j. By using that ap−1 = 1 + rp for some r we take

(a+ λp)p−1 ≡ ap−1 + (p− 1)pλap−2 mod p2

≡ (1 + rp)− pλap−2 mod p2

≡ 1 + (r − λap−2)p mod p2,

and take λ such that p - (r − λap−2) giving us just the primitive root we are looking for.

For this thesis we assume p - r and λ = 0, thus a is a primitive root for all powers of p. We

now define the integers r and Rj by

aφ(p) = 1 + rp, aφ(p
j) = 1 +Rjp

j. (2.8)

Note, p - r and for any j ≥ 2

aφ(p
j) = 1 +Rjp

j = (aφ(p
j−1))p = (1 +Rj−1p

j−1)p

≡ 1 +Rj−1p
j +

(
p

2

)
R2
j−1p

2(j−1) mod p3(j−1)

giving

Rj ≡ Rj−1 mod pj−1,

13



and thus for any j ≥ i we have

Rj ≡ Ri mod pi. (2.9)

For a character χ mod pm we implicitly define c by

χ(a) = eφ(pm)(c), (2.10)

with 1 ≤ c ≤ φ(pm). Note, p - c exactly when χ is primitive.

Lemma 2.4.1. For the p-adic integer

R := p−1 log(1 + rp) = p−1
∞∑
i=1

(rp)i(−1)i−1

i
(2.11)

we have

R ≡ Rj mod pj.

Proof.

aφ(p
j) = (1 + rp)p

j−1

= 1 +Rjp
j,

so

log(1 + rp)p
j−1

= log(1 +Rjp
j).

By taking the Taylor series expansion of log(1 + x) we get

pj−1 log(1 + rp) = pjR =
∞∑
i=1

(Rjp
j)i(−1)i−1

i
,

and thus we have

R =
∞∑
i=1

(Rj)
ip(i−1)j(−1)i−1

i
.

14



If pν | i for any i, then plainly ν < i− 1 for all odd p, giving

R ≡ Rj mod pj.

2.4.2 The case p = 2 and m ≥ 3

When p is not odd and m ≥ 3 we need two generators −1 and a = 5 for Z∗2m (again see [18],

Chapter 2, Section 8), and define Rj, j ≥ 2, and c by

a2
j−2

= 1 +Rj2
j, χ(a) = e2m−2(c), (2.12)

with χ a mod 2m character, primitive exactly when 2 - c. Noting that R2
i ≡ 1 mod 8, we get

Ri+1 = Ri + 2i−1R2
i ≡ Ri + 2i−1 mod 2i+2. (2.13)

For j ≥ i+ 2 this gives the relationships,

Rj ≡ Ri+2 ≡ Ri+1 + 2i ≡ (Ri + 2i−1) + 2i ≡ Ri − 2i−1 mod 2i+1 (2.14)

and

Rj ≡ (Ri−1 + 2i−2)− 2i−1 ≡ Ri−1 − 2i−2 mod 2i+1. (2.15)

2.5 Gauss Sums

We can now define our first and most well known exponential sum, the Gauss sum

G(χ, q) =

q∑
x=1

χ(x)eq(x) (2.16)
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where χ is a mod q character.

Letting q = pm where p is prime, explicit evaluations of these sums exist for m > 1

(which we will derive in detail in Chapter 3). The cases when the m = 1 sum has exact

evaluation are few, the most famous example being the quadratic Gauss sum

p∑
x=1

ep(x
2) =


√
p, if p ≡ 1 mod 4,

i
√
p, if p ≡ 3 mod 4,

the evaluation of which is involved (for a nice treatment see Chapter 1.3 of [2]). One can

equivalently write the quadratic Gauss sum in the form (2.16) using the Legendre symbol,

p∑
x=1

ep(x
2) =

p∑
x=1

(
1 +

(
x

p

))
ep (x) =

p∑
x=1

ep(x) +

p∑
x=1

(
x

p

)
ep (x)

=

p∑
x=1

(
x

p

)
ep (x) = G(χQ, p),

where recall we use χQ to denote the mod p character that coincides with the Legendre

symbol. Here we use that
∑p

x=1 ep(x) = 0, a central notion in the proofs of the main

theorems in this dissertation. It is worth stating that, more generally, summing a linear

exponential sum modulo q over a complete set of residues is either q or 0. That is

q∑
x=1

eq(Ax) =


q, if q | A,

0, otherwise.

(2.17)

Plainly if q divides A each term in the sum is 1 giving the total sum to be q, if not then

q∑
x=1

eq(Ax) =
eq (A)− eq (A)q+1

1− eq (A)
= 0.

The bulk of this thesis deals with evaluating mixed sums modulo pα with α ≥ 2 using
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methods of T. Cochrane and Z. Zheng as detailed in [4], where we are able to reduce certain

mixed exponential sums and pure character sums to cases similar to (2.17).

2.6 Character Sums and The Duality of Gauss Sums

A pure character sum has the following properties

pm∑
x=1

χ(x) =


φ(pm), if χ is the principal character,

0, otherwise.

(2.18)

When χ is the principal character it plain the sum is φ(pm). To see the sum is zero otherwise

we take a to be a primitive root mod pm when p is odd and write the sum

pm∑
x=1

χ(x) =

φ(pm)∑
γ=1

χ(aγ) =

φ(pm)∑
γ=1

eφ(pm) (cγ) ,

giving an exponential sum over a complete set of residues as in (2.17), giving the result.

Similarly for p = 2 we write

pm∑
x=1

χ(x) =
2m−2∑
γ=1

χ(5γ) + χ(−1)
2m−2∑
γ=1

χ(5γ) =
2m−2∑
γ=1

e2m−2(cγ) + χ(−1)
2m−2∑
γ=1

e2m−2(cγ)

the rest follows from (2.17).

Summing over characters gives a similar result. Letting χ1, . . . , χφ(pm) be all the charac-

ters mod pm we have that

φ(pm)∑
i=1

χi(b) =


0, if b 6≡ 1 mod pm,

φ(pm), if b ≡ 1 mod pm.

(2.19)

By the definition of a Dirichlet character if (b, p) > 1, χ(b) = 0. Otherwise b = aβ for some

17



0 ≤ β ≤ φ(pm) when p is odd, so we can write

φ(pm)∑
i=1

χi(b) =

φ(pm)∑
i=1

χi(a
β) =

φ(pm)∑
i=1

eφ(pm)(ciβ).

Since each character sends the primitive root a to a different 1 ≤ ci ≤ φ(pm) we have a sum

over a complete set of residues. By (2.17) the sum is zero unless φ(pm) | β, in which case

b = aβ = (aφ(p
m))β

′ ≡ 1 mod pm for β′ such that β = β′φ(pm), and the sum is φ(pm).

When p = 2, m ≥ 3, b = (−1)w5β, with 0 ≤ w ≤ 1 and 1 ≤ β ≤ 2m−2 and we can write,

2m−1∑
i=1

χi(b) =
2m−2∑
j=1

χj(5
β) +

2m−2∑
j=1

χj((−1)w)χj(5
β) =

2m−2∑
j=1

e2m−2(cjβ) +
2m−2∑
j=1

e2(w)e2m−2(cjβ).

Since each character sends 5 to a different 1 ≤ ci ≤ 2m−2 we have a sum over a complete set

of residues. Again by (2.17) the sum is zero unless 2m−2 | β, and w = 0, giving that b ≡ 1

mod 2m.

This brings us to a rather useful lemma for picking out powers mod pm.

Lemma 2.6.1. For b such that (b, p) = 1, if b is a kth power mod pm

∑
χk=χ0

χ(b) =


D, if p is odd,

(2, k)D, if p = 2, m ≥ 3,

where

D =


(k, φ(pm)), for p odd,

(k, 2m−2), for p = 2, m ≥ 3.

. (2.20)

If b is not a kth power mod pm ∑
χk=χ0

χ(b) = 0.

Using this Lemma and observing that the number of x’s that give the same value as xk
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is D or (k, 2D) if p = 2, we can pick off kth powers in the following manner:

pm∑
x=1

χ(g(xk))epm(f(xk)) =
∑
χD1 =χ0

(
pm∑
u=1

χ1(u)

)
χ(g(u))epm(f(u))

=

pm∑
u=1

∑
χD1 =χ0

χ1(u)χ(g(u))epm(f(u)),

which will become very useful for writing our sums in terms of Gauss sums in Chapter 4.

Proof. We have seen there are exactly φ(pm) characters mod pm. We will show that D of

these characters are kth powers. For p odd we have a primitive root a mod pm and we can

write any character

χ(a) = eφ(pm) (c) , 1 ≤ c ≤ φ(pm).

Thus if χ is a kth power of some character χ′ we have

eφ(pm) (c′k) = χ′(a)k = χ(a) = eφ(pm) (c)

for some c′. Thus we are solving for c′ in the congruence c ≡ c′k mod φ(pm) which has

D = (k, φ(pm)) solutions when D | c. Therefore there are exactly D characters such that

χk = χD = χ0,

(namely the characters with c such that c = yφ(pm)/D for y = 1, . . . , D). If b is a kth power

mod pm ∑
χD=χ0

χ(b) = D.

If b is not a kth power mod pm then b = aβ where D - β, giving

∑
χD=χ0

χ(b) =
∑
χD=χ0

χ(aβ) =
D∑
y=1

eφ(pm)

(
yβφ(pm)

D

)
=

D∑
y=1

e

(
yβ

D

)
= 0
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by (2.17).

If p = 2, m ≥ 3 we have that the characters are defined by

χ(−1) = e2(c0), 1 ≤ c0 ≤ 2, and χ(5) = e2m−2(c), 1 ≤ c ≤ 2m−2.

Thus we have kth power characters for the (k, 2m−2) = D solutions to c ≡ c′k mod 2m−2

when D | c, along with the (2, k) solutions to c0 ≡ c′0k mod 2 when (2, k) | c0. If (k, 2) = 1

then D = 1 and there is only the principal character with χD = χ0, if (k, 2) = 2 there are

2D characters with this property. Thus if b is a kth power mod 2m

∑
χD=χ0

χ(b) =


2D, if (k, 2) > 1,

1, if (k, 2) = 1.

If b is not a kth power then b = (−1)w5β where (k, 2) - w and D - β, giving

∑
χD=χ0

χ(b) =
∑
χD=χ0

χ(−1)wχ(5)β =

(k,2)∑
x=1

e2(xw)
D∑
y=1

e2m−2

(
yβ2m−2

D

)

=

(k,2)∑
x=1

e2(xw)
D∑
y=1

e

(
yβ

D

)
= 0.

by (2.17).

The Duality of the Gauss Sum is another useful property given in the following lemma.

Lemma 2.6.2. If χ is a primitive character mod pj, j ≥ 1, then

pj∑
y=1

χ(y)epj(Ay) = χ(A)G(χ, pj).

Proof. For p - A this is plain from y 7→ A−1y. If p | A and j = 1 the sum equals
∑p

y=1 χ(y) =

0. For j ≥ 2 as χ is primitive there exists a z ≡ 1 mod pj−1 with χ(z) 6= 1, (there must be
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some a ≡ b mod pj−1 with χ(a) 6= χ(b), and we can take z = ab−1) so, since Az ≡ A mod

pj,
pj∑
y=1

χ(y)epj(Ay) =

pj∑
y=1

χ(zy)epj(Azy) = χ(z)

pj∑
y=1

χ(y)epj(Ay) (2.21)

and
∑pj

y=1 χ(y)epj(Ay) = 0.

An alternate way of showing this for j ≥ 2 and p odd is writing y = au+φ(p
j−1)v, for a a

primitive root mod pm, χ(a) = eφ(pj)(c), u = 1, ..., φ(pj−1), v = 1, .., p,

pj∑
y=1

χ(y)epj(Ay) =

φ(pj−1)∑
u=1

χ(au)epj(Aa
u)

p∑
v=1

ep(cv) = 0. (2.22)

2.7 Reduction Method of Cochrane and Zheng

In [4] Cochrane and Zheng establish a reduction method for evaluating exponential sums of

the form

S(χ, x, f(x), pm) =

pm∑
x=1

χ(x)epm(f(x)) (2.23)

which was then generalized to sums of the form

S(χ, g(x), f(x), pm) =

pm∑
x=1

χ(g(x))epm(f(x))

in [5] with g, f rational functions over Z. The method for evaluating (2.23) involves finding

the set, A, of all nonzero residues mod p satisfying the congruence

p−t1(rxf ′(x) + c) ≡ 0 mod p (2.24)
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(with the integers r and c defined in (2.8) and (2.10)), where pt1 || rXf ′(X) + c. We write

S(χ, x, f, pm) =

pm∑
x=1

χ(x)epm (f(x)) =

p−1∑
α=1

Sα,

where for any integer α with p - α,

Sα = Sα(χ, x, f, pm) :=

pm∑
x=1

x≡α mod p

χ(x)epm (f(x)) .

Theorem 2.7.1 (T. Cochrane, Z. Zheng [4]). Let p be an odd prime, f be any polynomial

over Z and t1 be as above and t such that pt || f ′. Suppose that m ≥ t1 + 2. Then for any

integer α with p - α we have

1. If α /∈ A, Sα(χ, f, pm) = 0.

2. If α is a critical point of multiplicity ν ≥ 1 then t = t1 and

|Sα(χ, x, f, pm)| ≤ νp
t

ν+1pm(1− 1
ν+1

). (2.25)

3. If α is a critical point of multiplicity one then

Sα(χ, x, f, pm) =


χ(α∗)epm (f(α∗)) p

m+t
2 , If m− t is even,

χ(α∗)epm (f(α∗))χ2(Aα)G (χQ, p) p
m+t−1

2 , if m− t is odd,

where α∗ is the unique lifting of α to a solution of the congruence p−t(Rcf ′(x)+c) ≡ 0

mod p[(m−t+1)/2], and Aα ≡ 2αp−t(f ′(α) + αf ′′(α)) mod p. In particular, we have

equality in (2.25).

Here χQ is the Legendre symbol (2.4) and so G (χQ, p) is the quadratic Gauss sum

discussed earlier, and R is the p-adic integer R := p−1 log(1 + rp).
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When f(x) = nxk with p - k we have the twisted gauss sum

pm∑
x=1

χ(x)epm
(
nxk
)

(2.26)

and (2.24) takes the simple form

rkxk + c ≡ 0 mod p, (2.27)

we have that either (2.26) is zero or a sum of (p− 1, k) Sα sums, depending whether there

is a solution to (2.27) or not. When the critical points have multiplicity one the Sα can be

evaluated explicitly. For example if f(x) = x then as observed in Cochrane and Zheng [4,

§9] the critical point congruence is simply rx + c ≡ 0 mod p. For p odd and m ≥ 2, if χ is

imprimitive there is no critical point and S(χ, x, pm) = 0, while if χ is primitive there is one

critical point of multiplicity one and

S(χ, x, pm) = χ(α∗)epm(α∗)pm/2
(
−2rc

pm

)
ε, (2.28)

where
(

x
pm

)
denotes the Jacobi symbol,

εpm :=


1, if pm ≡ 1 mod 4,

i, if pm ≡ 3 mod 4,

(2.29)

and

Rα∗ ≡ −c mod p[(m+1)/2]. (2.30)

(A small adjustment is needed in (2.30) in the case p = m = 3, see (5.15), and more

generally in [4, Theorem 1.1(iii)] when p = m − t = 3). The same formula (2.28) occurs

in Mauclaire [16] with α∗ defined by χ(1 + pm/2) = epm/2(−α∗) when m is even and χ(1 +
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p(m−1)/2 + 2−1pm−1) = ep(m+1)/2(−α∗) when m is odd. Mauclaire also deals with the case

p = 2 in the second part of [16]. A variation of (2.28) was obtained by Odoni [19] (see also

Berndt, Evans and Williams [2, Theorems 1.6.2-1.6.4]). In Chapter 3 we will evaluate the

f(x) = x sum using the reduction method but replacing p-adic integer R with a slightly

simpler constant, as well as dealing with the case p = 2. In the later chapters we will be

evaluating sums with critical points of multiplicity greater than one and obtaining explicit

evaluations.
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Chapter 3

Evaluation of Gauss Sums

The mod pm Gauss sum is given as

G(χ, pm) =

pm∑
x=1

χ(x)epm(x)

In this chapter we will give an explicit evaluation of the Gauss sum for all p, illustrating

the reduction methods of Cochrane and Zheng discussed in 2.7. By using the congruence

relationships in 2.4 we get an evaluation particularly useful for the explicit evaluation of the

general Jacobi sum,

Jpn(χ1, . . . , χk, p
m) =

pm∑
x1=1

· · ·
pm∑
xk=1

x1+···+xk=pn

χ1(x1) · · ·χk(xk), m > n,

in Chapter 7.

3.1 Evaluation of the Gauss Sum

We shall need an explicit evaluation of the mod pm, m ≥ 2, Gauss sums. The form we use

comes from applying the technique of Cochrane & Zheng [4] as formulated in [20]. For odd
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p this is essentially the same as [5, §9] but for p = 2 seems new. Variations can be found in

Odoni [19] and Mauclaire [16] (see also [2, Chapter 1]).

Theorem 3.1.1. Suppose that χ is a mod pm character with m ≥ 2. If χ is imprimitive,

then G(χ, pm) = 0. If χ is primitive, then

G(χ, pm) = p
m
2 χ
(
−cR−1j

)
epm

(
−cR−1j

)
(
−2rc
p

)m
εpm , if p 6= 2, and pm 6= 33,(

2
c

)m
ωc, if p = 2 and m ≥ 5,

(3.1)

for any j ≥ dm
2
e when p is odd and any j ≥ dm

2
e+ 2 when p = 2.

For the remaining cases

G(χ, 27) = 3
3
2χ
(
−cR−1j

)
e33
(
−10cR−1j

)(−2rc

3

)
i,

and

G(χ, 2m) = 2
m
2


i, if m = 2,

ω1−χ(−1), if m = 3,

χ(−c)e16(−c), if m = 4.

(3.2)

Here x−1 denotes the inverse of x mod pm, and r, Rj and c are as in (2.8) and (2.10) or

(2.12) and ω := eπi/4.

It is important to note that although we are evaluating the Gauss sum using an arbitrary

Rj during the course of the proof we get the evaluation

G(χ, pm) = p
m
2 χ (α) epm (α)



(
−2rc
p

)m
εpm , if p 6= 2, pm 6= 33,

1, if p = 2 and m ≥ 5 is even,(
1−ic√

(2)

)
, if p = 2 and m ≥ 5 is odd,

(3.3)
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where α is a solution to

c+Rdm
2
ex ≡ 0 mod pd

m
2
e, (3.4)

unless χ is imprimitive in which case there is no solution to (3.4), relatively prime to p and

G(χ, pm) = 0. The Gauss sum evaluation of the theorem becomes useful when evaluating

(1.4) in Chapter 7.

Proof. For p odd, let a be a primitive root of p for all powers of p. We can write

G(χ, pm) =

pm∑
x=1

χ(x)epm (x) =

φ(pm)∑
γ=1

χ(aγ)epm (aγ) .

For an interval I1 of length φ(pd
m
2
e) it is clear that

γ = φ(pd
m
2
e)u+ v

with u ∈ I2 =
[
1, pb

m
2
c], v ∈ I1, runs through a complete set of residues mod φ(pm). Hence,

G(χ, pm) =
∑
v∈I1

χ(av)
∑
u∈I2

χ(aφ(p
dm2 e)u)epm

(
aφ(p

dm2 e)u+v
)

=
∑
v∈I1

χ(av)
∑
u∈I2

e
pb
m
2 c(cu)epm

(
(1 +Rdm

2
ep
dm

2
e)uav

)
.

Observing (1 +Rdm
2
ep
dm

2
e)u ≡ 1 +Rdm

2
ep
dm

2
eu mod pm gives

G(χ, pm) =
∑
v∈I1

χ(av)
∑
u∈I2

e
pb
m
2 c(cu)epm

(
(1 +Rdm

2
ep
dm

2
eu)av

)
=
∑
v∈I1

χ(av)epm (av)
∑
u∈I2

e
pb
m
2 c(cu)epm

(
Rdm

2
ep
dm

2
euav

)
=
∑
v∈I1

χ(av)epm (av)
∑
u∈I2

e
pb
m
2 c

(
u(c+Rdm

2
ea
v)
)
.
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Noting that the u sum is over a complete set of residues mod pb
m
2
c gives G(χ, pm) = 0 unless

c+Rdm
2
ea
v ≡ 0 mod pb

m
2
c, (3.5)

has a solution α = av0 . If p | c there is no solution and G(χ, pm) = 0. When p - c, there

exists a solutions when α ≡ −cR−1dm
2
e mod pb

m
2
c. To simplify our result we choose α to be a

solution to the stronger congruence

c+RJx ≡ 0 mod pJ , (3.6)

where J :=
⌈
m
2

⌉
, to satisfy (3.5). Given any two solutions, av0 and av1 , to (3.5) we have

av0 ≡ av1 mod pb
m
2
c

or equivalently

v0 ≡ v1 mod φ(pb
m
2
c).

When m is even bm
2
c = dm

2
e thus there can only be one solution in the range of v. Taking

I1 to contain av0 gives the result for m even. When m is odd, given a solution av0 , we have

av0+yφ(p
bm2 c) for y = 1, . . . , p are all the solutions in an interval of length φ(pd

m
2
e). Taking I1

to contain these solutions and letting L = bm
2
c = m−1

2
we get

G(χ, pm) = pL
p∑
y=1

χ(av0+yφ(p
L))epm

(
av0+yφ(p

L)
)

= pLχ(av0)

p∑
y=1

χ(ayφ(p
L))epm

(
av0(1 +RLp

L)y
)

= pLχ(av0)

p∑
y=1

e
pd
m
2 e (cy) epm

(
av0(1 +RLp

L)y
)
.
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As long as m ≥ 3 we have

(1 +RLp
L)y = 1 + yRLp

L +

(
y

2

)
R2
Lp

m−1 +

(
y

3

)
R3
Lp

3
(m−1)

2 + . . .

≡ 1 + (RLp
L − 2−1R2

Lp
m−1)y + 2−1R2

Lp
m−1y2 mod pm

Thus

G(χ, pm) = pLχ(av0)epm (av0)

p∑
y=1

e
pd
m
2 e (cy) epm

(
av0((RLp

L − 2−1R2
Lp

m−1)y + 2−1R2
Lp

m−1y2)
)

= pLχ(av0)epm (av0)

p∑
y=1

e
pd
m
2 e (y(c+RLa

v0)) epm
(
av0(−2−1R2

Lp
m−1y + 2−1R2

Lp
m−1y2)

)
.

(3.7)

We here note that RL ≡ RJ + 2−1R2
Lp

L− 3−1R3
Lp

m−1 mod pJ where the last term is zero

unless p = 3, m = 3. This can be seen from

1 +RJp
J = aφ(p

J ) = aφ(p
L)p = (1 +RLp

L)p

≡ 1 + pRLp
L +

(
p

2

)
R2
Lp

2L +

(
p

3

)
R3
Lp

3L

≡ 1 + pJ
(
RL − 2−1R2

Lp
L + 3−1R3

Lp
m−1) mod pm+1,

implying that

RJ ≡ RL − 2−1R2
Lp

L + 3−1R3
Lp

m−1 mod p(m+1)−J .

Using this congruence as well as the fact that av0 is a solution to the stronger characteristic
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equation (3.6) we have

e
pd
m
2 e (y(c+RLa

v0)) = e
pd
m
2 e

(
y(c+ av0(RJ + 2−1R2

Lp
L − 3−1R3

Lp
m−1))

)
= e

pd
m
2 e

(
yav0(2−1R2

Lp
L − 3−1R3

Lp
m−1)

)
= epm

(
yav0(2−1R2

Lp
m−1 − 3−1R3

Lp
3m−1

2 )
)
.

Thus the y sum becomes, (when not in the special case p = 3,m = 3)

p∑
y=1

epm
(
yav0(2−1R2

Lp
m−1)

)
epm

(
av0(−2−1R2

Lp
m−1y + 2−1R2

Lp
m−1y2)

)
=

p∑
y=1

ep
(
av02−1R2

L(y2)
)

=

(
av02−1R2

L

p

) p∑
y=1

ep
(
y2
)

=

(
−2cr

p

) p∑
y=1

ep
(
y2
)

=

(
−2cr

p

)
G (χQ, p) .

Here G (χQ, p) . is the quadratic gauss sum which famously sums to
√
p or i

√
p as p ≡ 1 or

3 mod 4. Note that for a solution, av0 , to the equation

c+RJx ≡ 0 mod pJ ,

by (2.9) we may take av0 = −cR−1J ≡ −cR
−1
j mod pJ for any j ≥ J and −cR−1j will be a

solution as well. This together with (3.7) gives the result for p odd except when p = m = 3.

30



When p = 3, m = 3 we get the y sum

3∑
y=1

e27
(
yav0(2−1R2

L9−R3
L9)
)
e27
(
av0(−2−1R2

L9y + 2−1R2
L9y2)

)
=

3∑
y=1

e3
(
av02−1R2

L(y2)−R3
La

v0y
)

=
3∑
y=1

e3
(
av02−1(y2 +RLy)

)
= e3

(
−av02−1

) 3∑
y=1

e3
(
av02−1(y + 2−1Rl)

2
)

= e3 (av0)
3∑

w=1

e3
(
−av0w2

)
= 31/2

(
−2rc

3

)
e3

(
−cR−1dm

2
e

)
i

completing the p odd case.

For p = 2, m ≥ 6 similarly write the sum in terms of the generators −1 and 5 giving,

G(χ, 2m) =
2m∑
x=1

χ(x)e2m (x) =
∑

A∈{−1,1}

2m−2∑
γ=1

χ(A5γ)e2m (A5γ) .

We let γ = u2d
m
2
e−2 + v where v ∈ I1 and u ∈ I2 where I1 is an interval of length 2d

m
2
e−2

and I2 =
[
1, 2b

m
2
c]. Thus after simplification similar to the p odd case we have

G(χ, 2m) =
∑

A∈{−1,1}

∑
v∈I1

χ(A5v)
∑
u∈I2

e
2b
m
2 c (cu) e2m

(
A5v

(
1 +Rdm

2
e2
dm

2
e
)u)

=
∑

A∈{−1,1}

∑
v∈I1

χ(A5v)
∑
u∈I2

e
2b
m
2 c (cu) e2m

(
A5v + A5vuRdm

2
e2
dm

2
e
)

=
∑

A∈{−1,1}

∑
v∈I1

χ(A5v)e2m (A5v)
∑
u∈I2

e
2b
m
2 c (cu) e2m

(
A5vuRdm

2
e2
dm

2
e
)

=
∑

A∈{−1,1}

∑
v∈I1

χ(A5v)e2m (A5v)
∑
u∈I2

e
2b
m
2 c

(
u
(
c+ A5vRdm

2
e

))
.

So G(χ, 2m) = 0 unless we have a solution to either the A = 1 or −1 characteristic equation

c+ A5vRdm
2
e ≡ 0 mod 2b

m
2
c. (3.8)
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Notice that both c±5vRdm
2
e ≡ 0 mod 2b

m
2
c cannot be simultaneously satisfied as −5v1 6≡ 5v2

mod 2b
m
2
c so −cR−1dm

2
e is either 5v or −5v for some v. Clearly we can have no solution to

equation (3.8) if 2 | c, thus χ must be a primitive character. For the sake of simplification

we take our solutions to be solutions of the stronger characteristic equation

c+ A5vRdm
2
e ≡ 0 mod 2d

m
2
e. (3.9)

For two solutions A05
v0 and A05

v1 , we have

5v0 ≡ 5v1 mod 2b
m
2
c.

Thus

v0 ≡ v1 mod 2b
m
2
c−2,

which is precisely the length of I1 when m is even. Taking I1 to contain this solution we get

G(χ, 2m) = 2m/2χ (A05
v0) e2m (A05

v0) . (3.10)

For m odd we take I2 to contain the two solutions, A05
v0 and A05

v0+2b
m
2 c−2

giving

G(χ, 2m) = 2b
m
2
c
(
χ(A5v0)e2m (A05

v0) + χ
(
A05

v0+2b
m
2 c−2

)
e2m

(
A05

v0+2b
m
2 c−2

))
= 2b

m
2
c
(
χ(A05

v0)e2m (A05
v0) + χ

(
A05

v0+2b
m
2 c−2

)
e2m

(
A05

v0+2b
m
2 c−2

))
= 2b

m
2
cχ(A05

v0)e2m (A05
v0)
(

1 + χ
(

52b
m
2 c−2

)
e2m

(
A05

v0+2b
m
2 c−2

− A05
v0
))

= 2b
m
2
cχ(A05

v0)e2m (A05
v0)
(

1 + χ
(

52b
m
2 c−2

)
e2m

(
A05

v0Rbm
2
c2
bm

2
c
))

= 2b
m
2
cχ(A05

v0)e
2d
m
2 e (A05

v0)
(

1 + e
2d
m
2 e

(
c+ A05

v0Rbm
2
c

))
.

We know from (2.13) that Rbm
2
c ≡ Rdm

2
e − 2b

m
2
c−1R2

bm
2
c mod 2d

m
2
e+1. Coupled with the
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solution to the stronger characteristic equation from (3.9) we get

c+ A05
v0Rbm

2
c = c+ A05

v0
(
Rdm

2
e − 2b

m
2
c−1R2

bm
2
c

)
≡ −A05

v02b
m
2
c−1 mod 2d

m
2
e

since R2
j ≡ 1 mod 4 for j ≥ 2. Using this gives

e
2d
m
2 e

(
c+ A05

v0Rbm
2
c

)
= e22 (−A05

v0) = e22
(
cR−1dm

2
e

)
= −ic,

as Rj ≡ −1 mod 4 for any j ≥ 3. Thus for p = 2 we have

G(χ, pm) = 2m/2χ(α)e2m(α)


1, if m is even,(

1−ic√
2

)
, if m is odd,

(3.11)

where α is a solution to

c+RJx ≡ 0 mod 2J , (3.12)

and zero if there is no solution or χ is imprimitive. If 2 - c and j ≥ J + 2 then (using (2.14)

and Rj ≡ −1 mod 4, j ≥ 3) we can take

α ≡ −cR−1J ≡ −c(Rj + 2J−1)−1 ≡ −c(R−1j − 2J−1) mod 2J+1,

and

χ(α)e2m(α) = χ(−cR−1j )e2m(−cR−1j )χ(1−Rj2
J−1)e2m(c2J−1),

where, checking the four possible c mod 8,

(
1− ic√

2

)
= ω−c

(
2

c

)
.
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Now

e2m(c2J−1) = e2m−2(c2J−3) = χ
(

52J−3
)

= χ
(
1 +RJ−12

J−1) ,
where, since Rj ≡ RJ−1 − 2J−2 mod 2J+1,

(
1−Rj2

J−1) (1 +RJ−12
J−1) = 1 + (RJ−1 −Rj)2

J−1 −RjRJ−12
2J−2

≡ 1 + 22J−3 +RJ−12
2J−2 ≡ 1 +R2J−32

2J−3 mod 2m.

Hence

χ(1−Rj2
J−1)e2m(c2J−1) = χ

(
522J−5

)
= e2m−2(c22J−5) =


ωc, if m is even,

ω2c, if m is odd.

One can check numerically that the formula still holds for the 2m−2 primitive mod 2m

characters when m = 5. For m = 2, 3, 4 one has (3.2) instead of 2iω, 2
3
2ω2, 22χ(c)e24(c)ω

c

(so our formula (3.1) requires an extra factor ω−1, ω−1−χ(−1) or χ(−1)ω−2c respectively).
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Chapter 4

Rewriting Sums in Terms of Gauss

Sums to Obtain Weil and Weil Type

Bounds

For a general mixed exponential sum of the form

S(χ, g(x), f(x), p) =

p∑
x=1

χ(g(x))ep(f(x))

with f, g rational with the poles of g omitted, a rather well known result of Weil [24] is the

upper bound on such sums. If f is a polynomial and the sum is non-degenerate then

|S(χ, g(x), f(x), p)| ≤ (deg(f) + `− 1) p1/2, (4.1)

where ` denotes the number of zeros and poles of g (see Castro & Moreno [3] or Cochrane

& Pinner [8] for a treatment of the general case). Here we are dealing with special sums

that can be written in terms of Gauss sums which can be used to give the Weil bound in

the mod p case and Weil type bounds for general prime powers, which in certain cases are
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sharp.

4.1 Gauss Sums and Weil type bounds

For a character χ mod pj, j ≥ 1, we let G(χ, pj) denote the Gauss sum

G(χ, pj) =

pj∑
x=1

χ(x)epj(x).

Recall (see for example Section 1.6 of Berndt, Evans & Williams [2]) that

∣∣G(χ, pj)
∣∣ =


pj/2, if χ is primitive mod pj,

1, if χ = χ0 and j = 1,

0, otherwise.

(4.2)

For the classical mod p Gauss sum, letting d = (k, p− 1) we can write

p−1∑
x=0

ep(Ax
k) = 1 +

p−1∑
x=1

ep(Ax
d)

= 1 +
∑
χd=χ0

p−1∑
u=1

χ(u)ep(Au)

= 1 +
∑
χd=χ0
χ 6=χ0

χ(A)G(χ, p)− 1

=
∑
χd=χ0
χ 6=χ0

χ(A)G(χ, p)

by Lemma 2.6.2, and Lemma 2.6.1. From (4.2) we get exactly the Weil bound of

∣∣∣∣∣
p−1∑
x=0

ep(Ax
k)

∣∣∣∣∣ ≤ (d− 1)p
1
2 .
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In this chapter we show the sums we are considering can all be written in terms of prime

power Gauss sums.

4.2 Twisted monomial sums as Gauss Sums

In this section we write the twisted monomial Gauss

S1 = S1(χ, x, nx
k, pm) =

pm∑
x=1

χ(x)epm
(
nxk
)

in terms of Gauss sums. Here the Weil bound comes from writing S1 as a sum of (k, φ(pm))

(when p is odd) and (2, k)(k, 2m−2) (when p = 2) sums of absolute value
√
p, giving

∣∣S1(χ, x, nx
k, pm)

∣∣ ≤ Dpm/2, (4.3)

when p is odd, and ∣∣S1(χ, x, nx
k, pm)

∣∣ ≤ (2, k)D2
m
2 ,

when p = 2, m ≥ 3, where

D =


(k, φ(pm)), for p odd,

(k, 2m−2), for p = 2, m ≥ 3.

By Lemma 2.3.1 S1 is zero unless χ = χk1 for some character χ1 mod pm, thus we can write

S1 =

pm∑
x=1

χ(x)epm
(
nxk
)

=

pm∑
x=1

χk1(x)epm(nxk)

=

pm∑
x=1

χ1(x
k)epm(nxk),
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and by Lemma 2.6.2 and Lemma 2.6.1,

S1 =
∑
χD2 =χ0

pm∑
u=1

χ1χ2(u)epm(nu) =
∑
χD2 =χ0

pm∑
u=1

χ1χ2(n)χ1χ2(u)epm(u)

=
∑
χD2 =χ0

χ1χ2(n)G(χ1χ2, p
m).

When p is odd, there are D = (k, φ(pm)) characters χ2 where χD2 = χ0, and so one immedi-

ately obtains a Weil type bound

∣∣S(χ, x, nxk, pm)
∣∣ ≤ Dpm/2. (4.4)

When p = 2, m ≥ 3 an additional factor of (2, k) is needed by the fact that there are (2, k)D

characters with χD2 = χ0.

4.3 Binomial Character Sums as Gauss Sums

In this section we write the binomial characters sum

S2 = S2(χ1, χ2, Ax
k +B) =

pm∑
x=1

χ1(x)χ2(Ax
k +B)

in terms of Gauss sums. From Lemma 2.3.1 we know that this sum is zero unless χ1 = χk3

for some character χ3 mod pm, in which case the sum can be written as a sum of (k, φ(pm))

mod pm Jacobi like sums
∑pm

x=1 χ5(x)χ2(Ax+B) and again be expressed in terms of Gauss

sums.

Theorem 4.3.1. Let p be an odd prime. If χ1, χ2 are characters mod pm with χ2 primitive

and χ1 = χk3 for some character χ3 mod pm, A,B ∈ Z with p - B and n and A′ are given by

A = pnA′, 0 ≤ n < m, p - A′, (4.5)

38



then

pm∑
x=1

χ1(x)χ2(Ax
k +B) = pn

∑
χ4∈X

χ3χ4(A
′)χ2χ3χ4(B)

G(χ3χ4, p
m−n)G(χ2χ3χ4, p

m)

G(χ2, pm)
, (4.6)

where X denotes the mod pm characters χ4 with χD4 = χ0, D = (k, φ(pm)), such that χ3χ4

is a mod pm−n character.

We immediately obtain the Weil type bound

∣∣S(χ1, χ2, Ax
k +B, pm)

∣∣ ≤ (k, φ(pm))p(m+n)/2. (4.7)

Before proving the Theorem 4.3.1 we note a number of special cases. For m = 1 and p - A

this gives us the bound ∣∣∣∣∣
p−1∑
x=1

χ
(
xl(Axk +B)w

)∣∣∣∣∣ ≤ dp
1
2 ,

where

d = (k, p− 1). (4.8)

For l = 0 we can slightly improve this for the complete sum,

∣∣∣∣∣
p−1∑
x=0

χ(Axk +B)

∣∣∣∣∣ ≤ (d− 1)p
1
2 , (4.9)

since, taking χ1 = χ3 = χ0, χ2 = χ, the χ4 = χ0 term in Theorem 4.3.1 equals −χ(B),

the missing x = 0 term in (4.9). These correspond to the classical Weil bound (4.1) after

an appropriate change of variables to replace k by d. For m ≥ t + 1 the bound (4.7) is

dp
m+n

2
+t, as we shall see in (6.12) we have equality in (4.7) for m ≥ n+ 2t+ 2, but not for

t+ n+ 1 < m < 2t+ n+ 2.

Notice that if (k, φ(pm)) = 1 and χ1 = χk3 and, in case p | A for some mod pm−n character,
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χ3, then we have the single χ4 = χ0 term and

pm∑
x=1

χ1(x)χ2(Ax
k +B) = pnχ3(A

′)χ2χ3(B)
G(χ3, p

m−n)G(χ2χ3, p
m)

G(χ2, pm)
.

Thus
∣∣∣∑pm

x=1 χ1(x)χ2(Ax
k +B)

∣∣∣ = p(m+n)/2 if χ2, χ2χ3 and χ3 are primitive mod pm and

pm−n. Noting thatG(χ, pm) = χ(−1)G(χ, pm) this can be writtenG(χ3, p
m−n)G2(χ2, p

m)/G(χ2χ3, p
m)

and we plainly recover the form

J(χ1, χ2, p
m) =

G(χ1, p
m)G(χ2, p

m)

G(χ1χ2, pm)
(4.10)

in that case.

For the multiplicative analogue of the classical Kloostermann sum, χ assumed primitive

and p - A, Theorem 4.3.1 gives a sum of two terms of size pm/2,

pm∑∗

x=1

χ(Ax+ x−1) =
χ3(A)

G(χ, pm)

(
G(χ3, p

m)2 + χQ(A)G (χ3χQ, p
m)2
)

when χ = χ2
3 (otherwise the sum is zero), where χQ here denotes the mod pm extension of

the Legendre symbol (taking χ2 = χ, χ1 = χ, k = 2 we have D = 2 and χ4 = χ0 or χQ).

For m = 1 this is Han Di’s [10, Lemma 1]. Cases where we can write the exponential sum

explicitly in terms of Gauss sums are rare. Best known (after the quadratic Gauss sums) are

perhaps the Salié sums, evaluated by Salié [25] for m = 1 (see Williams [27],[28] or Mordell

[17] for a short proof) and Cochrane & Zheng [7, §5] for m ≥ 2; for p - AB

pm∑∗

x=1

χQ(x)epm(Ax+Bx−1) = χQ(B)


p

1
2
(m−1)(epm(2γ) + epm(−2γ))G (χQ, p) , m odd,

p
1
2
m (χQ(γ)epm(2γ) + χQ(−γ)epm(−2γ)) , m even,

if AB = γ2 mod pm, and zero if χQ(AB) = −1. Cochrane & Zheng’s m ≥ 2 method works
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with a general χ as long as their critical point quadratic congruence does not have a repeated

root, but formulae seem lacking when m = 1 and χ 6= χQ.

For the Jacobsthal sums we get (essentially Theorems 6.1.14 & 6.1.15 of [2])

p−1∑
m=1

(
m

p

)(
mk +B

p

)
=

(
B

p

) k−1∑
j=0

χ(B)2j+1G(χ2j+1, p)G(χ2j+1χ∗, p)

G(χ∗, p)
,

p−1∑
m=0

(
mk +B

p

)
=

(
B

p

) k−1∑
j=1

χ(B)2j
G(χ2j, p)G(χ2jχ∗, p)

G(χ∗, p)
,

when p ≡ 1 mod 2k and p - B, where χ denotes a mod p character of order 2k (see also

[13]).

Proof of Theorem 4.3.1. Observe that if χ is a primitive character mod pj, j ≥ 1, then by

the duality Lemma 2.6.2,

pj∑
y=1

χ(y)epj(Ay) = χ(A)G(χ, pj). (4.11)

Hence if χ2 is a primitive character mod pm we have

G(χ2, p
m)χ2(Ax

k +B) =

pm∑
y=1

χ2(y)epm((Axk +B)y),

and, since χ1 = χk3 and D = (k, φ(pm)),

G(χ2, p
m)

pm∑
x=1

χ1(x)χ2(Ax
k +B) =

pm∑
x=1

χ3(x
k)

pm∑
y=1

χ2(y)epm((Axk +B)y)

=

pm∑
x=1

χ3(x
D)

pm∑
y=1

χ2(y)epm((AxD +B)y).
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By Lemma 2.6.1 we have

G(χ2, p
m)

pm∑
x=1

χ1(x)χ2(Ax
k +B) =

∑
χD4 =χ0

pm∑
u=1

χ3(u)χ4(u)

pm∑
y=1

χ2(y)epm((Au+B)y)

=
∑
χD4 =χ0

pm∑
y=1

χ2(y)epm(By)

pm∑
u=1

χ3χ4(u)epm(Auy)

=
∑
χD4 =χ0

pm∑
y=1

χ2χ3χ4(y)epm(By)

pm∑
u=1

χ3χ4(u)epm(Au).

Since p - B we have

pm∑
y=1

χ2χ3χ4(y)epm(By) = χ2χ3χ4(B)G(χ2χ3χ4, p
m).

If χ3χ4 is a mod pm−n character then

pm∑
u=1

χ3χ4(u)epm(Au) = pn
pm−n∑
u=1

χ3χ4(u)epm−n(A′u) = pnχ3χ4(A
′)G(χ3χ4, p

m−n).

If χ3χ4 is a primitive character mod pj for some m− n < j ≤ m then by Lemma 2.6.2

pm∑
u=1

χ3χ4(u)epm(Au) = pm−j
pj∑
u=1

χ3χ4(u)epj(p
j−(m−n)A′u) = 0,

and the result follows.

Notice that if m ≥ n+2 then by (4.2) the set X can be further restricted to those χ4 with

χ3χ4 primitive mod pm−n. Hence if pt|| k, with m ≥ n+t+2 and we write χ3(a) = eφ(pm)(c3),

χ4(a) = eφ(pm)(c4) we have pm−1−t | c4, pn|| (c3 + c4), giving pn|| c3. Letting χ1 = χl = χk3,

for some mod pm character, χ, this yields pn+t|| c3k = c1 = cl and pn+t|| l. If n > 0, letting

χ2 = χw, we deduce that pt|| l + wk. Moreover when n = 0 reversing the roles of A and B
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gives pt|| l + wk. Hence when m ≥ n+ t+ 2 we have S(χ1, χ2, Ax
k +B, pm) = 0 unless

pn+t || l, pt || l + wk, (4.12)

holds. For m = n+ t+ 1 we similarly still have pn+t | l.

4.4 The Generalized Jacobi Sum as Gauss Sums

Finally we show that the generalized Jacobi sum

Jpn(χ1, . . . , χk, p
m) =

pm∑
x1=1

· · ·
pm∑
xk=1

x1+···+xk=pn

χ1(x1) · · ·χk(xk), m > n (4.13)

can be expressed in terms of Gauss sums, a fact that will be central in our proof of Theorem

7.0.1.

It is well known that the classical mod p Jacobi sums,

J(χ1, χ2, p) =

p∑
x=1

χ1(x)χ2(1− x), (4.14)

(and their generalization to finite fields) can be written in terms of Gauss sums (see for

example Theorem 2.1.3 of [2] or Theorem 5.21 of [14]). This extends to the mod pm sums.

For example when χ1, χ2 and χ1χ2 are primitive mod pm

J(χ1, χ2, p
m) =

G(χ1, p
m)G(χ2, p

m)

G(χ1χ2, pm)
, (4.15)

and |J(χ1, χ2, p
m)| = pm/2 (see Lemma 1 of [31] or [32]; the relationship for Jacobi sums

over more general residue rings modulo prime powers can be found in [33]). Writing (4.15)

in terms of Gauss sums is well known for the mod p sums and the corresponding result for

(4.13) when n = 0 can be found, along with many other properties of Jacobi sums, in Berndt,

43



R. J. Evans and K. S. Williams [2, Theorem 2.1.3 & Theorem 10.3.1 ] or Lidl-Niederreiter

[14, Theorem 5.21]. There the results are stated for sums over finite fields, Fpm , so it is

not surprising that such expressions exist in the less studied mod pm case. When χ1, . . . , χk

and χ1 · · ·χk are primitive, Zhang & Yao [30, Lemma 3] for k = 2, and Zhang and Xu [32,

Lemma 1] for general k, showed that

J(χ1, . . . , χk, p
m) =

∏k
i=1G(χi, p

m)

G(χ1 . . . χk, pm)
. (4.16)

In Theorem 4.4.1 we obtain a similar expansion for Jpn(χ1, . . . , χk, p
m), with m > n. As

we showed in Theorem 3.1.1 the mod pm Gauss sums can be evaluated explicitly using the

method of Cochrane and Zheng [4] when m ≥ 2. We shall need the counterpart of (4.16)

for the Jpn(χ1, . . . , χk, p
m) along with the evaluation of the Gauss sum from Chapter 3 in

order to evaluate Jpn(χ1, . . . , χk, p
m). We state a less symmetrical version to allow weaker

assumptions on the χi:

Theorem 4.4.1. Suppose that χ1, . . . , χk are characters mod pm with m > n and χk prim-

itive mod pm. If χ1 · · ·χk is a mod pm−n character, then

Jpn(χ1, . . . , χk, p
m) = pn

G(χ1 · · ·χk, pm−n)

G(χk, pm)

k−1∏
i=1

G(χi, p
m). (4.17)

If χ1 · · ·χk is not a mod pm−n character, then Jpn(χ1, . . . , χk, p
m) = 0.

From the well known property of Gauss sums (see for example Section 1.6 of [2]),

| G(χ, pj) |=


pj/2, if χ is primitive mod pj,

1, if χ = χ0 and j = 1,

0, otherwise,

(4.18)

when χ1 · · ·χk is a primitive mod pm−n character and at least one of the χi is a primitive
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mod pm character, we immediately obtain the symmetric form

Jpn(χ1, . . . , χk, p
m) =

∏k
i=1G(χi, p

m)

G(χ1 . . . χk, pm−n)
. (4.19)

In particular we recover (4.16) under the sole assumption that χ1 · · ·χk is a primitive mod

pm character.

Proof. We first note that if χ is a primitive character mod pj, j ≥ 1, then by Lemma 2.6.2

pj∑
y=1

χ(y)epj(Ay) = χ(A)G(χ, pj).

Hence if χk is a primitive character mod pm we have

χk(−1)G(χk, p
m)

pm∑
x1=1

· · ·
pm∑

xk−1=1

χ1(x1) . . . χk−1(xk−1)χk(p
n − x1 − · · · − xk−1)

= χk(−1)

pm∑
x1=1

· · ·
pm∑

xk−1=1

χ1(x1) . . . χk−1(xk−1)

pm∑
y=1

χk(y)epm((pn − x1 − · · · − xk−1)y)

=

pm∑
y=1
p-y

χk(−y)epm(pny)

 pm∑
x1=1

χ1(x1)epm(−x1y) · · ·
pm∑

xk−1=1

χk−1(xk−1)epm(−xk−1y)



=

pm∑
y=1
p-y

χ1 . . . χk(−y)epm(pny)

 pm∑
x1=1

χ1(x1)epm(x1) · · ·
pm∑

xk−1=1

χk−1(xk−1)epm(xk−1)


= χ1 . . . χk(−1)

pm∑
y=1
p-y

χ1 . . . χk(y)epm(pny)
k−1∏
i=1

G(χi, p
m).

If m > n and χ1 . . . χk is a mod pm−n character, then

pm∑
y=1
p-y

χ1 . . . χk(y)epm(pny) = pn
pm−n∑
y=1
p-y

χ1 . . . χk(y)epm−n(y) = pnG(χ1 . . . χk, p
m−n).
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If χ1 . . . χk is a primitive character mod pj with m−n < j ≤ m, then by the same reasoning

as in Lemma 2.6.2

pm∑
y=1
p-y

χ1 . . . χk(y)epm(pny) = pm−j
pj∑
y=1

χ1 . . . χk(y)epj(p
j−(m−n)y)) = 0,

and the result follows on observing that

G(χ, pm) = χ(−1)G(χ, pm).
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Chapter 5

Evaluating the Twisted Monomial

Sums Modulo Prime Powers

We use the Cochrane and Zheng reduction method to show that the sum

S1(χ, nx
γpt , pm) =

pm∑
x=1

χ(x)epm(nxγp
t

)

has an explict evaluation for m sufficiently large.

For a multiplicative character χ mod q and f(x) ∈ Z[x] we define the twisted Gauss sum

S(χ, f(x), q) :=

q∑
x=1

χ(x)eq(f(x))

where eq(x) = e2πix/q. We are concerned here with evaluating these sums when f(x) = nxk

is a monomial and the modulus is a prime power q = pm with m ≥ 2. Obtaining satisfactory

bounds, other than the Weil bound [24], remains a difficult problem when m = 1 (see for

example Heath-Brown and Konyagin [12]). For higher powers though, methods of Cochrane

and Zheng [4] can often be used to reduce the modulus of an exponential sum and sometimes

evaluate the sum exactly.
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When the modulus q is squarefull, i.e. p | q ⇒ p2 | q, and (2nk, q) = 1, Zhang and Liu

[37] consider the fourth power mean value of |S(χ, nxk, q)|, averaged over the characters χ

mod q, and obtained

∑
χ mod q

∣∣S(χ, nxk, q)
∣∣4 = qφ2(q)

∏
p|q

(k, p− 1)2, (5.1)

(their formula contains an additional factor when there are primes p | q with (k, p− 1) = 1

due to an apparent miscount in their Lemma 5). In the quadratic case, |S(χ, nx2, q)|, He

and Zhang [29] obtain similar exact expressions for the sixth and eighth power means when

q is squarefull and coprime to 2n, making the conjecture, subsequently proved by Liu and

Yang [34], that

∑
χ mod q

|S(χ, nx2, q)|2` = 4(`−1)ω(q)q`−1φ2(q), ω(q) :=
∑
p|q

1, (5.2)

for any integer ` ≥ 2. Similarly Guo Xiaoyan and Wang Tingting [26] consider power

means averaged over the parameter n for quadratic and cubic sums, again q squarefull with

(2n, q) = 1 and (6n, q) = 1 respectively, showing that for any real ` ≥ 0,

q∑
n=1

(n,q)=1

|S(χ, nx2, q)|2` = 2(2`−1)ω(q)q`φ(q), (5.3)

when χ is the square of a primitive character mod q (and zero otherwise), and

q∑
n=1

(n,q)=1

|S(χ, nx3, q)|4 = 27ω1(q)q2φ(q), ω1(q) :=
∑
p|q

3|p−1

1, (5.4)

when χ is the cube of a primitive character mod q (and zero otherwise). These average

results all generalize to arbitrary monomials nxk and arbitrary real power means as we

show in Corollary 5.0.1 below.
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Actually, the methods in Cochrane and Zheng [4] can be used to evaluate the individual

sums S(χ, nxk, pm) directly when m ≥ 2, (p, 2nk) = 1, with no need to average.

Moreover (due to the straightforward relationship between the α satisfying (2.27)) for

general f(x) = nxk, (2nk, p) = 1, m ≥ 2, the
∑
Sα arising in Cochrane and Zheng’s method

will, with a little work, simplify down to a single term of modulus (k, p − 1)pm/2. A fact

that is just a special case of our main Theorem of this chapter, Theorem 5.1.1. When p | k,

though, the critical points are multiple roots so one has to do more work. However we

show here that Cochrane and Zheng’s method can be adjusted to deal with the case p | k.

Additionally our approach reduces to finding a single solution of a certain characteristic

equation (5.13) or (5.14), avoiding the need to sum as with the original Sα.

Working mod pm we write

f(x) = nxγp
t

, p - γn, (5.5)

and define

d = (γ, p− 1). (5.6)

Analogous to the squarefull condition in [26], [29], [34] and [37] we shall assume that

m ≥ t+ 2. (5.7)

Theorem 5.0.2. Let p be an odd prime, χ be a character mod pm and suppose that (5.5)

and (5.7) hold.

If χ is the dpt-th power of a primitive character mod pm and an appropriate characteristic

equation (5.13) or (5.14) has a solution then

∣∣∣S1(χ, nx
γpt , pm)

∣∣∣ = dpτ
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where

τ =


m− 1, if t+ 1 < m ≤ 2t+ 2,

m
2

+ t, if 2t+ 2 ≤ m.

(5.8)

Otherwise S1(χ, nx
γpt , pm) = 0.

Theorem 5.0.2 is an immediate consequence of our main Theorem (5.1.1), where we state

an explicit formula for S1(χ, nx
γpt , pm). The corresponding result for p = 2 is given in (5.34).

Averaging over the n or χ we immediately obtain:

Corollary 5.0.1. Under the same hypotheses of Theorem 5.0.2, for any real b > 0,

∑
χ mod pm

|S1(χ, nx
γpt , pm)|b = (dpτ )b

φ2(p)

d2
pmax{m−2t−2,0}, (5.9)

and when χ is a dpt-th power of a primitive character mod pm,

pm∑
n=1

(n,p)=1

|S1(χ, nx
γpt , pm)|b = (dpτ )b

φ(p)

d
pmax{m−t−1, t+1}. (5.10)

The corresponding results for composite moduli (including (5.1–5.4)) then follow im-

mediately from the multiplicativity discussed in Section 2.2. Since Theorem 5.0.2 shows

that the |S1(χ, nx
γpt , pm)| can assume only one nonzero value, power means are somewhat

artificial here, with (5.9) and (5.10) amounting only to a count on the number of non-zero

cases (we include them for comparison with results in the literature and to emphasize that

the restriction to certain integer power means is unnecessary).

The condition (5.7) is appropriate here. For t ≥ m the exponent reduces by Euler’s

Theorem and as shown in the proof of Theorem 2.1 (see (5.22)) when m = t+ 1 the sum is

zero unless χ is a mod p character, in which case it reduces to a Heilbronn type mod p sum

S(χ, nxγp
m−1

, pm) = pm−1
p−1∑
x=1

χ(x)epm(nxγp
m−1

).
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For m = 2 and d = 1 these are the classical Heilbronn sums, bounded using the Stepanov

method by Heath-Brown [11] and Heath-Brown and Konyagin [12], extended by Puchta [23]

and improved by Malykhin [35] to deal with d = (γ, p− 1) > 1, the latter estimate being

∣∣∣∣∣
p−1∑
x=1

ep2(nx
γp)

∣∣∣∣∣� d1/2 p7/8.

We note that although not stated in their theorems, their methods would allow the inclusion

of a mod p character χ. Obtaining exact values seems unlikely for these types of sum. In

[36] Malykhin considers the general case m > 2, obtaining

∣∣∣∣∣
p−1∑
x=1

epm
(
nxp

m−1
)∣∣∣∣∣ ≤ C(m)p1−1/32·5

m−3

.

We have assumed here that p - n. If p | n and χ is a primitive character mod pm then

S1(χ, nx
γpt , pm) = 0 as can be seen from the proof of Theorem 5.1.1 (if p | n and p - c then

the characteristic equation (5.19) or (5.24) will have no solution). If p | n and χ is a mod

pm−1 character then plainly we can reduce to a mod pm−1 sum.

5.1 Statement of the Main Theorem

Suppose that p is an odd prime and a is a primitive root mod pl for all l. Recall we define

the integers Rl, p - Rl, by

aφ(p
l) = 1 +Rlp

l, (5.11)

and the integers r and c by

r := R1, χ(a) = e (c/φ(pm)) . (5.12)

Note that χ is a primitive character mod pm if and only if p - c.
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We first observe that S1(χ, nx
γpt , pm) = 0 if χ is not a dpt-th power of a character where

d = (γ, p − 1), by Lemma 2.3.1. An alternative proof of this result will occur during the

proof of Theorem 2.1 below.

If χ is the dptth power of a character χ1 and c1 an integer such that

χ1(a) = e (c1/φ(pm))

then as we shall see, the final characteristic equation for the evaluation of S1 will take one

of the two following forms (depending on the size of t relative to m).

Case I: When t+ 1 < m ≤ 2t+ 2

c1 +Rt+1nx
γpt ≡ 0 mod pm−t−1. (5.13)

Case II: When 2t+ 2 < m

c1 +Rt+s+1nx
γpt ≡ 0 mod pt+s+1, (5.14)

where

s := max
{

0,
⌈m

3

⌉
− t− 1

}
.

Expressions simplify slightly in Case II if we use the stronger congruence

c1 +Rdm
2
enx

γpt ≡ 0 mod pd
m
2 e, (5.15)

except for p = 3, m = 3, t = 0 when we need c1 +Rdm
2
enx

γ ≡ −3c1R
2
t+s+1 mod 9.

Notice that, since xk and x(k,φ(p
m)) run through the same set of values mod pm,

S(χk1, nx
k, pm) = S(χ

(k,φ(pm))
1 , nx(k,φ(p

m)), pm), (5.16)
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and so one can always reduce to a monomial nxdp
t

with d | p−1, though we shall not assume

this here.

Theorem 5.1.1. For p an odd prime, t ∈ Z, t ≥ 0, let

f(x) = nxγp
t

, p - nγ.

Case I: Suppose that t+ 1 < m ≤ 2t+ 2. If χ is a dpt-th power of a primitive character

and the characteristic equation (5.13) has a solution α then

S1(χ, f(x), pm) = dpm−1χ(α)epm(f(α)).

Otherwise, S1(χ, f(x), pm) = 0.

Case II: Suppose that 2t+ 2 < m. If χ is a dpt-th power power of a primitive character

and (5.14) has a solution then

S1(χ, f(x), pm) = dp
m
2
+tχ(α)epm(f(α))

(
−2rc1
pm

)
εpm , (5.17)

where α is a solution of (5.15), and r and εpm are as in (2.8) and (2.29). Otherwise

S1(χ, f(x), pm) = 0.

Note in Case II we can use a solution α to the weaker congruence (5.14) if we include in

(5.17) an additional factor

epm−2t−2s−2(−2−2β−11 β2
2) (5.18)

where, writing c1 + Rt+s+1nα
γpt = λ1p

t+s+1, β1 := −2−1Rt+s+1c1, β2 := λ1 − β1. Here and

throughout x−1 denotes the multiplicative inverse of x mod pm.
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5.2 Proof of Theorem 5.1.1

We start by rewriting the sum in terms of our primitive root a

S1(χ, nx
γpt , pm) =

pm∑
x=1
p-x

χ(x)epm(nxγp
t

) =

φ(pm)∑
k=1

χ(ak)epm(nakγp
t

).

We set γ = dγ′, where recall d = (γ, p− 1), and let c be an integer such that

χ(a) = e

(
c

φ(pm)

)
= e

(
c

pm−1(p− 1)

)
.

Case I: Suppose that t+ 1 < m ≤ 2t+ 2.

We let u = 1, ..., dpm−1 and let v run through an interval I of p−1
d

consecutive integers

so that k = up−1
d

+ v sums over φ(pm) consecutive integers and

φ(pm)∑
k=1

χ(ak)epm(nakγp
t

) =
∑
v∈I

dpm−1∑
u=1

χ(au
p−1
d

+v)epm(na(u
p−1
d

+v)γpt)

=
∑
v∈I

χ(av)epm(naγp
tv)

dpm−1∑
u=1

e

(
cu

dpm−1

)
epm

(
naγp

tv
(
ap

t(p−1)γ′u − 1
))

.

Since 2(t+ 1) ≥ m the binomial expansion gives

ap
t(p−1)γ′u − 1 = (1 +Rt+1p

t+1)γ
′u − 1 ≡ γ′uRt+1p

t+1 mod pm,

and the inner sum becomes

dpm−1∑
u=1

e

(
u(c+Rt+1p

tγnaγp
tv)

dpm−1

)
= dpm−1,

if v satisfies

c+Rt+1p
tγnaγp

tv ≡ 0 mod dpm−1, (5.19)
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and zero otherwise. We must examine when (5.19) has solutions.

Since d | Rt+1p
tγnaγp

tv, in order to have a solution we must have d | c . Similarly, since

p - Rt+1γn and t < m − 1, we must have that pt||c. So χ is a dptth power of a primitive

character. Letting c = c′ptd and γ = dγ′ reduces our congruence to

c′ +Rt+1γ
′naγp

tv ≡ 0 mod pm−t−1. (5.20)

Hence (5.20) has no solution and S1(χ, nx
γpt , pm) = 0 if there is no solution to the charac-

teristic equation

c′ +Rt+1γ
′nxγp

t ≡ 0 mod pm−t−1. (5.21)

If this equation has a solution α = av0 we take I to be an interval containing v0. Solutions v to

(5.20) must then satisfy aγp
tv ≡ aγp

tv0 mod pm−t−1, that is γptv ≡ γptv0 mod pm−t−2(p− 1).

Since t ≥ m− t− 2 this reduces to

v ≡ v0 mod (p− 1)/d,

and we have exactly the one solution v = v0 in our range for v.

Hence

S1(χ, nx
γpt , pm) = dpm−1χ(α)epm(f(α)).

Writing c = γptc1 mod φ(pm) we have c′ ≡ c1γ
′ mod pm−t−1 and so the characteristic

equation (5.21) can be written equivalently in the form (5.13).

Note: If m = t+ 1 the same analysis gives pm−1 | c and χ is a mod p character, and the

sum reduces to

S1(χ, nx
pm−1γ, pm) = pm−1

p∑
x=1

χ(x)epm(nxp
m−1γ). (5.22)

Case II: Suppose that 2t+ 2 < m.

We now let s = max{dm
3
e− t−1, 0}, u = 1, ..., dpm−s−1 and let v run through an interval
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I of ps(p−1
d

) consecutive integers where d := (γ, p − 1) as before. Letting k = ups(p−1
d

) + v

we are still summing over φ(pm) consecutive terms and

φ(pm)∑
k=1

χ(ak)epm(nakγp
t

) =
∑
v∈I

dpm−s−1∑
u=1

χ(aup
s( p−1

d
)+v)epm(na(up

s( p−1
d

)+v)γpt)

=
∑
v∈I

χ(av)epm(f(av))

dpm−s−1∑
u=1

e

(
cu

dpm−1−s

)
epm

(
naγp

tv
(
ap

t+s(p−1)γ′u − 1
))

. (5.23)

Expanding binomially, observing that 3(t+ s+ 1) ≥ m, we obtain

ap
t+s(p−1)γ′u − 1 =

(
1 +Rt+s+1p

t+s+1
)γ′u − 1

≡ uγ′Rt+s+1p
t+s+1 + 2−1uγ′(uγ′ − 1)R2

t+s+1p
2t+2s+2 mod pm,

and the inner sum becomes

dpm−s−1∑
u=1

e

(
u
(
c+Rt+s+1γna

γptvpt + 2−1γR2
t+s+1(uγ

′ − 1)naγp
tvp2t+s+1

)
dpm−s−1

)
.

We now let w = 1, ..., dp2t+s+1 and y = 1, ..., pm−2t−2s−2, noting that m− 2t− 2s− 2 ≥ 0

with equality only when m = 4, t = 0. Hence if u = wpm−2t−2s−2 + y we again sum over

dpm−s−1 consecutive integers and we can split the u sum as a product S1(v)S2(v) of a y sum

and a w sum, where

E1(v) =

pm−2t−2s−2∑
y=1

e

(
y
(
c+Rt+s+1γna

γptvpt + 2−1γR2
t+s+1(yγ

′ − 1)naγp
tvp2t+s+1

)
dpm−s−1

)
,

and

E2(v) =

dp2t+s+1∑
w=1

e

(
w
(
c+Rt+s+1γna

γptvpt
)

dp2t+s+1

)
.
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Now E2(v) = dp2t+s+1 if

c+ γRt+s+1na
ptγvpt ≡ 0 mod dp2t+s+1, (5.24)

and E2(v) = 0 otherwise. So again we must examine when (5.24) has solutions. Right away

we see that in order to have a solution we must have pt||c and d | c, so our congruence

reduces to

c′ + γ′Rt+s+1na
ptγv ≡ 0 mod pt+s+1 (5.25)

where c = c′dpt, p - c′ and χ is a dptth power of a primitive character. Thus if the

characteristic equation

c′ + γ′Rt+s+1nx
γpt ≡ 0 mod pt+s+1 (5.26)

has no solution we have S1(χ, nx
γpt , pm) = 0. If it has a solution α = av0 we again choose

I to be an interval containing v0. Hence if v is a solution to (5.25) then aγp
tv ≡ aγp

tv0 mod

pt+s+1, that is γptv ≡ γptv0 mod pt+s(p− 1) reducing to

v ≡ v0 mod ps(p− 1)/d.

So we have only the solution v = v0 in I and so by (5.23)

S1(χ, nx
γpt , pm) = χ(av0)epm(f(av0))S1(v0)S2(v0)

= dp2t+s+1χ(α)epm(f(α))S1(v0). (5.27)

When m = 4, t = 0, plainly E1(v0) = 1. Otherwise writing

c′ + γ′Rt+s+1na
ptγv0 = λpt+s+1, δ1 := −2−1Rt+s+1γ

′c′, δ2 := λ+ 2−1Rt+s+1c
′,

observing that 3t+ 2s+ 2 ≥ m− s− 1 and that y1 = y+ 2−1δ−11 δ2 runs through a complete
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set of residues mod pm−2t−2s−2 as y does, we can rewrite E1(v0) in terms of a classical,

readily evaluated (see for example Apostol [1, §9.10 and Exercise 8.16] or Berndt, Evans

and Williams [2, Theorem 1.5.2]), quadratic Gauss sum:

E1(v0) =

pm−2t−2s−2∑
y=1

e

(
y (λ− 2−1Rt+s+1(yγ

′ − 1)c′)

pm−2t−2s−2

)

=

pm−2t−2s−2∑
y=1

e

(
δ1y

2 + δ2y

pm−2t−2s−2

)

= e

(
− 2−2δ−11 δ22
pm−2t−2s−2

) pm−2t−2s−2∑
y1=1

e

(
δ1y

2
1

pm−2t−2s−2

)
= e

(
− 2−2δ−11 δ22
pm−2t−2s−2

)(
δ1
pm

)
p
m
2
−t−s−1εpm ,

with εpm as given in (2.29).

Thus by (5.27),

S1(χ, f(x), pm) = dp
m
2
+tχ(α)epm(f(α))epm−2t−2s−2(−2−2δ−11 δ22)

(
δ1
pm

)
εpm (5.28)

if χ is a dptth power power of a primitive character and c′ + γ′Rt+s+1nx
ptγ ≡ 0 mod pt+s+1

has a solution α, and S1(χ, f(x), pm) = 0 otherwise. Replacing c′ ≡ c1γ
′ mod pm−t−1 we

have λ ≡ λ1γ
′, δ1 ≡ β1γ

′2, δ2 ≡ γ′β2 mod pm−t−1, with
(
δ1
p

)
=
(
β1
p

)
=
(
−2rc1
p

)
. Thus we

obtain (5.17) with the additional factor (5.18). It remains to show that if we use a solution

α to (5.14) satisfying the stronger congruence (5.15) then this additional factor is 1.

Plainly we can assume that 2(s+ t+ 1) < m ≤ 3(s+ t+ 1) and
⌈
m
2

⌉
≤ 2(s+ t+ 1) with

equality only when s = t = 0 and m = 3. We first note that

Rdm
2
e ≡ Rt+s+1 − 2−1R2

t+s+1p
s+t+1 + 3−1R3

t+s+1p
2(s+t+1) mod pd

m
2 e,
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where the last term vanishes unless p = 3, m = 3 and t = 0. To see this, observe that

1 +Rdm
2
ep
dm2 e =

(
1 +Rt+s+1p

s+t+1
)pdm2 e−s−t−1

≡ 1 +Rt+s+1p
dm2 e +

1

2
R2
t+s+1p

dm2 e+s+t+1
(
pd

m
2 e−s−t−1 − 1

)
+

1

6
R3
t+s+1p

dm2 e+2(s+t+1)
(
pd

m
2 e−s−t−1 − 1

)(
pd

m
2 e−s−t−1 − 2

)
mod p4(s+t+1)

≡ 1 + pd
m
2 e (Rt+s+1 − 2−1R2

t+s+1p
s+t+1 + 3−1R3

t+s+1p
2(s+t+1)

)
mod p2d

m
2 e.

In particular, Rdm
2
e ≡ Rt+s+1 mod ps+t+1. Hence if α is a solution to (5.14), which also

satisfies (5.15),

c1 +Rt+s+1nα
γpt = λ1p

s+t+1, c1 +Rdm
2
enα

γpt ≡ −c13−1R2
t+s+1p

2(s+t+1) mod pd
m
2 e,

and so

c1(Rdm
2
e −Rt+s+1) ≡ ps+t+1

(
Rt+s+1λ1 + c13

−1R3
t+s+1p

s+t+1
)

mod pd
m
2 e,

and

−2−1c1Rt+s+1 ≡ λ1 mod pd
m
2 e−s−t−1.

Hence β2 ≡ 0 mod pd
m
2 e−s−t−1 and epm−2t−2s−2

(
−2−2β−11 β2

2

)
= 1.

Finally we need to verify that a solution av0 to (5.14) guarantees a solution av of (5.15).

Since Rdm
2
e ≡ Rt+s+1 mod ps+t+1,

c1 +Rdm
2
ena

v0γpt = λps+t+1
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for some integer λ. Taking v = v0 + hφ (ps+1) we have

c1 +Rdm
2
ena

vγpt = c1 +Rdm
2
ena

v0γptahγφ(p
s+t+1)

= λps+t+1 +Rdm
2
ena

v0γpt
(
(1 +Rt+s+1p

s+t+1)γh − 1
)

≡ ps+t+1
(
λ+Rdm

2
ena

v0γptγRt+s+1h
)

mod p2(s+t+1),

and choosing h with λ + R2
t+s+1na

v0γptγh ≡ −c13−1R2
t+s+1p

s+t+1 mod pd
m
2 e−s−t−1 gives the

required solution.

5.3 Proof of Corollary 5.0.1

From Theorem 2.1 we know that if S1(χ, nx
γpt , pm) is non zero then χ must be a dptth power

of a primitive character mod pm, and there must be a solution to a characteristic equation

(5.21) or (5.26),

c′ + r′γ′nxγp
t ≡ 0 mod pκ, (5.29)

where c = c′dpt < φ(pm), (nc′, p) = 1, and r′ and κ depend on the range of t. If such is the

case then |S1(χ, nx
γpt , pm)| = dpτ . Thus to prove Corollary 1.1 we simply count the χ (i.e.

count the c′) or n that give us solutions. Writing in terms of our primitive root x = av,

−r′γ′n = avo , c′ = av1 , (5.29) becomes,

(av)γp
t ≡ av1−v0 mod pκ,

which is equivalent to

γptv ≡ v1 − v0 mod φ(pκ).
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This linear congruence in v has a solution when

(γpt, φ(pκ)) = d(pt, pκ−1) = dpmin{m−t−2,t}

divides v1− v0. So we have φ(pκ)

dpmin{m−t−2,t} values of c′ mod pκ (or likewise values of n mod pκ)

that yield solutions.

Note that c′ ranges from 1 to φ(pm)
dpt

= pκ p
m−κ−t−1(p−1)

d
, giving

φ(pκ)

dpmin{m−t−2,t}

(
pm−κ−t−1(p− 1)

d

)
=
φ2(p)

d2
pmax{m−2t−2,0}

c′s that will allow a solution to our characteristic equation, and (5.9) is clear.

Similarly n ranges over the terms relatively prime to p from 1 to pm = pκ(pm−κ),

φ(pκ)

dpmin{m−t−2,t}p
m−κ =

φ(p)

d
pmax{m−t−1,t+1},

giving (5.10).

5.4 When p = 2, m ≥ 6

We now examine the case when p = 2 and m ≥ 6, giving sums of the form

S1(χ, nx
γ2t , 2m) =

2m∑
x=1

χ(x)e2m(nxγ2
t

)

where χ is a character mod 2m, n and γ are odd, and t ≥ 0. Since x2
m−2 ≡ 1 mod 2m for

any odd x we shall assume that

t < m− 2.

When dealing with these sums the methods are nearly the same except that we need two
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generators, a = 5 and −1, to generate all of Z∗2m . Even so, this case is actually simpler

computation-wise. As for odd p we can also immediately say that S2(χ, nx
k, 2m) = 0 unless

χ = χk1 for some character χ1 mod 2m. The proof of this is almost the same the proof of

Lemma 2.1 (we get the same relation for χ(a) and, when m > 2 and the second generator

−1 is needed, taking z = −1 in the same argument gives χ(−1) = 1 if k is even).

Here we write

χ(a) = e
( c

2m−2

)
and define the odd integer Rdm

2
e and when t ≥ 1 the odd integer Rt+2 by

a2
dm2 e−2

= 1 +Rdm
2
e2
dm

2
e, a2

t

= 1 +Rt+22
t+2. (5.30)

We will have S2(χ, nx
2tγ, 2m) = 0 unless c = 2tc′ with c′ odd, and our characteristic equation

will take the form

c′ + nRdm
2
eγx

2tγ ≡ 0 mod 2b
m
2
c. (5.31)

We first evaluate the sums

S(n) :=
2m−2∑
k=1

χ(ak)e2m(nakγ2
t

).

Lemma 5.4.1. Suppose that c = 2tc′ with c′ odd. If 0 ≤ t <
⌈
m
2

⌉
− 2 and (5.31) has a

solution α = av0 then

S(n) = 2b
m
2
c+tχ(α)e2m(nαγ2

t

)ψ,

where

ψ =


1, if m is even,

1 + (−1)(
γ−1
2

+λ) i
Rdm2 e

c′
, if m is odd,

(5.32)

with λ defined by

c′ + nRdm
2
eγα

γ2t = λ2b
m
2
c. (5.33)
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If
⌈
m
2

⌉
− 2 ≤ t < m− 2 and c′ + nRt+2γ ≡ 0 mod 2m−2−t then

S(n) = 2m−2e
( n

2m

)
.

Otherwise S(n) = 0.

Proof.

S(n) =
2m−2∑
k=1

e

(
kc

2m−2

)
e2m(nakγ2

t

).

If t+ 2 ≥
⌈
m
2

⌉
then

nakγ2
t

= n
(
1 +Rt+22

t+2
)kγ ≡ n

(
1 +Rt+2kγ2t+2

)
mod 2m,

and

S(n) = e
( n

2m

) 2m−2∑
k=1

e

(
k(c+ nRt+2γ2t)

2m−2

)
.

The sum is 2m−2 if c+nRt+2γ2t ≡ 0 mod 2m−2 (and zero otherwise). This only occurs when

c = 2tc′, c′ odd, with c′ + nRt+2γ ≡ 0 mod 2m−t−2.

Suppose now that t <
⌈
m
2

⌉
− 2. We write k = u2d

m
2
e−t−2 + v where v runs through an

interval I of length 2d
m
2
e−t−2 and u = 1, ..., 2b

m
2
c+t. Using (5.30) and expanding binomially

gives

S(n) =
∑
v∈I

2b
m
2 c+t∑
u=1

e

(
(u2d

m
2
e−t−2 + v)c

2m−2

)
e

(
na(u2

dm2 e−t−2+v)γ2t

2m

)

=
∑
v∈I

χ(av)e

(
navγ2

t

2m

)
2b
m
2 c+t∑
u=1

e

(
cu

2b
m
2
c+t

)
e

navγ2t
(

(1 +Rdm
2
e2
dm

2
e)uγ − 1

)
2m


=
∑
v∈I

χ(av)e

(
navγ2

t

2m

)
2b
m
2 c+t∑
u=1

e

u
(
c+ nRdm

2
eγ2tavγ2

t
)

2b
m
2
c+t

 .

So as in our previous cases we end up with a sum over a full set of residues and the inner
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sum is zero unless

c+ nRdm
2
eγ2tavγ2

t ≡ 0 mod 2b
m
2
c+t.

In order to have a solution plainly c = 2tc′ for some odd c′, reducing our congruence to

c′ + nRdm
2
eγa

vγ2t ≡ 0 mod 2b
m
2
c.

Thus S(n) = 0 unless we have a solution α = av0 to our characteristic equation (5.31). We

take I to be the interval
[
v0, v0 + 2d

m
2
e−t−2]. If av is another solution then plainly

vγ2t ≡ v0γ2t mod 2b
m
2
c−2,

and

v ≡ v0 mod 2b
m
2
c−t−2.

When m is even bm
2
c = dm

2
e and we only have the solution v0 in our range for v, and

S(n) = 2
m
2
+tχ(α)e2m(nαγ2

t

).

When m is odd we note that 2b
m
2
c−t−2 is half the range of v and we have two solutions

α = av0 and av0+2b
m
2 c−t−2

. Plugging these in, using that a2
bm2 c−2

= 1 + Rbm
2
c2
bm

2
c for some

odd Rbm
2
c when m ≥ 6, and expanding binomially, we get

S(n) = 2b
m
2
c+t
(
χ(av0)e2m(n(av0)γ2

t

) + χ(av0+2b
m
2 c−t−2

)e2m(n(av0+2b
m
2 c−t−2

)γ2
t
)

= 2b
m
2
c+tχ(α)e2m(nαγ2

t

)
(

1 + χ(a2
bm2 c−t−2

)e2m(nav0γ2
t
(

(1 +Rbm
2
c2
bm

2
c)γ − 1

))
= 2b

m
2
c+tχ(α)e2m(nαγ2

t

)

(
1 + e

(
c′

2d
m
2
e

)
e

(
nRbm

2
cγ2b

m
2
cav02

tγ + γ(γ−1)
2

n(Rbm
2
c)

22m−1av0γ2
t

2m

))

= 2b
m
2
c+tχ(α)e2m(nαγ2

t

)

(
1 + (−1)

γ−1
2 e

(
c′ + nRbm

2
cγa

v0γ2t

2d
m
2
e

))
.
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We note that a2
dm2 e−2

= 1 +Rdm
2
e2
dm

2
e = (1 +Rbm

2
c2
bm

2
c)2 = (a2

bm2 c−2

)2 giving us that

Rbm
2
c = Rdm

2
e − (Rbm

2
c)

22b
m
2
c−1 ≡ Rdm

2
e − 2b

m
2
c−1 mod 2d

m
2
e.

Plugging this in for Rbm
2
c we get

e

(
c′ + nRbm

2
cγa

v0γ2t

2d
m
2
e

)
= e

(
c′ + nRdm

2
eγa

v0γ2t

2d
m
2
e

)
e

(
−nγav0γ2t

22

)

= e

(
λ

2

)
e

(
c′Rdm

2
e

4

)
,

(using the characteristic equation and that
⌊
m
2

⌋
≥ 2) and the claimed result follows.

Theorem 5.4.1. Suppose that χ is a 2tth power of a primitive character mod 2m. If 0 ≤

t <
⌈
m
2

⌉
− 2 and (5.31) has a solution α then, with ψ as in (5.32),

S1(χ, nx
γ2t , 2m) = 2b

m
2
c+t+δχ(α)e2m(nαγ2

t

)ψ, δ =


0, if t = 0,

1, if t > 0.

If
⌈
m
2

⌉
− 2 ≤ t < m− 2 and c′ + nRt+2γ ≡ 0 mod 2m−2−t then

S1(χ, nx
γ2t , 2m) = 2m−1e

( n
2m

)
.

Otherwise S1(χ, nx
γ2t , 2m) = 0.
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Thus for m ≥ 6 the non-zero values satisfy

∣∣∣S1(χ, nx
γ2t , 2m)

∣∣∣ = 2τ , τ =



m
2
, if t = 0,

m
2

+ t+ 1, if 0 < t <
⌈
m
2

⌉
− 2,

m− 1, if
⌈
m
2

⌉
− 2 ≤ t < m− 2.

(5.34)

Proof. We start by writing the sum in terms of the generators, −1 and a, of Z∗2m ,

S1(χ, nx
γ2t , 2m) =

2m∑
x=1

χ(x)e2m(nxγ2
t

)

=
1∑

ω=0

2m−2∑
k=1

χ((−1)ωak)e2m(n((−1)ωak)γ2
t

)

= S(n) + χ(−1)S((−1)2
t

n).

If t = 0 then

S1(χ, nx
γ2t , 2m) = S(n) + χ(−1)S(−n).

By the lemma each S(±n) is zero unless (5.31) has a solution α. A solution will be either

of the form α = av0 or −av0 (since m ≥ 6 we can not have solutions of both forms). By

Lemma 5.4.1, in the first case S(−n) = 0 and

S1(χ, nx
γ2t , 2m) = S(n) = 2b

m
2
cχ(α)e2m(nαγ)ψ.

In the second case S(n) = 0 and

S1(χ, nx
γ2t , 2m) = χ(−1)S(−n) = χ(−1)2b

m
2
cχ(−α)e2m(−n(−α)γ)ψ.

If t > 0

S1(χ, nx
γ2t , 2m) = S(n) + χ(−1)S(n)
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Thus if χ(−1) = −1 our sum is zero. Otherwise

S1(χ, nx
γ2t , 2m) = 2S(n)

and the result follows from the lemma.
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Chapter 6

Evaluating the Binomial Character

Sums Modulo Prime Powers

In this section we show that the multiplicative character sums,

S∗(χ, xl(Axk +B)w, pm) =

pm∑
x=1

p-x

χ(xl(Axk +B)w) (6.1)

have a simple evaluation for large enough m. In particular, if p - ABk, we can evaluate (6.1)

for m ≥ 2. Equivalently, for characters χ1 and χ2 mod pm we define

S2 = S(χ1, χ2, Ax
k +B, pm) =

pm∑
x=1

χ1(x)χ2(Ax
k +B). (6.2)

These include the mod pm generalizations of the classical Jacobi sums

J(χ1, χ2, p
m) =

pm∑
x=1

χ1(x)χ2(1− x). (6.3)

We note that the classical Jacobi Sum is zero if p = 2. However, for the general case (6.2)

the sum may be nonzero for p = 2, e.g. if A is off and B is even. In Chapter 7 we consider
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multi variable Jacobi sums. See [2] or [14] for an extensive treatment of mod p Jacobi sums

and their generalizations over Fpm .

These sums have been evaluated exactly by Zhang Wenpeng & Weili Yao [30] when χ1,

χ2 and χ1χ2 are primitive and m ≥ 2 is even (some generalizations are considered in [32]).

Writing

χ1 = χl, χ2 = χw, χ1(x)χ2(Ax
k +B) = χ(xl(Axk +B)w), (6.4)

with χ1 = χ0 the principal character if l = 0, the correspondence between (6.1) and (6.2)

is clear. Of course the restriction p - x in (6.1) only differs from
∑∗ when l = 0. We shall

assume throughout that χ2 is a primitive character mod pm (equivalently χ is primitive and

p - w); if χ2 is not primitive but χ1 is primitive then S(χ1, χ2, Ax
k + B, pm) = 0 (since∑p

y=1 χ1(x + ypm−1) = 0), if both are not primitive we can reduce to a lower modulus

S(χ1, χ2, Ax
k +B, pm) = pS(χ1, χ2, Ax

k +B, pm−1).

It is interesting that the sum (6.1) can be written explicitly in terms of classical Gauss

sums for any m ≥ 1. In particular one can trivially recover the Weil bound in these cases.

We explore this in Section 2.

We assume, noting the correspondence (6.4) between (6.1) and (6.2), that

g(x) = xl(Axk +B)w, p - w (6.5)

where k, l are integers with k > 0 (else x 7→ x−1) and A, B non-zero integers with

A = pnA′, 0 ≤ n < m, p - A′B. (6.6)

We define the integers d ≥ 1 and t ≥ 0 by

d = (k, p− 1), pt || k. (6.7)
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For m ≥ n+ t+ 1 by Lemma 2.3.1 it transpires that the sum in (6.1) or (6.2) is zero unless

χ1 = χk3, (6.8)

for some mod pm character, χ3 (i.e. χ is the (k, φ(pm))/(k, l, φ(pm))-th power of a character).

This condition will also arise naturally in our proof. In order for the sum to be nonzero we

must also have a solution, x0, to a characteristic equation of the form,

g′(x) ≡ 0 mod pmin{m−1, [m+n
2

]+t} (6.9)

with

p - x0(Axk0 +B). (6.10)

Notice that in order to have a solution to (6.9) we must have

pn+t || l, pt || l + wk, (6.11)

if m > t+ n+ 1 (equivalently χ1 is induced by a primitive mod pm−n−t character and χ1χ
w
2

is a primitive mod pm−t character) and pn+t | l if m = t+ n+ 1.

When (6.8) holds, (6.9) has a solution x0 satisfying (6.10) and m > n+ t+ 1, Theorem

6.1.1 below gives an explicit evaluation of the sum (6.2). From this we see that for any odd

prime p,

∣∣∣∣∣
pm∑
x=1

χ1(x)χ2(Ax
k +B)

∣∣∣∣∣ =


dpm−1, if t+ n+ 1 < m ≤ 2t+ n+ 2,

dp
m+n

2
+t, if 2t+ n+ 2 < m.

(6.12)

The condition m > t+n+ 1 is natural here; if t ≥ m−n then one can of course use Euler’s

Theorem to reduce the power of p in k to t = m− n− 1. If t = m− n− 1 and the sum is

non-zero then, as in a Heilbronn sum, we obtain a mod p sum, pm−1
∑p−1

x=1 χ(xl(Axk +B)w),
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where one does not expect a nice evaluation. For t = 0 the result (6.12) can be obtained

from [6] by showing equality in their Sα evaluated at the d critical points α. For t > 0 the

α will not have multiplicity one as needed in [6].

Finally, recalling Section 2.2, if χ is a mod rs character with (r, s) = 1, then χ = χ1χ2

for a mod r character χ1 and mod s character χ2, and for any g(x) in Z[x]

rs∑
x=1

χ(g(x)) =
r∑

x=1

χ1(g(x))
s∑

x=1

χ2(g(x)).

Thus it is enough to work modulo prime powers.

6.1 Evaluation of the Sums for p Odd

Theorem 6.1.1. Suppose that p is an odd prime and χ1, χ2 are mod pm characters with χ2

primitive.

If χ1 satisfies (6.8), and (6.9) has a solution x0 satisfying (6.10), then

pm∑
x=1

χ1(x)χ2(Ax
k +B) = dχ(g(x0))


pm−1, if t+ n+ 1 < m ≤ 2t+ n+ 2,

p
m+n

2
+t, if m > 2t+ n+ 2, m− n even,

p
m+n

2
+tε1, if m > 2t+ n+ 2, m− n odd,

where n, d, t and g are as defined in (6.6), (6.7) and (6.5), with

ε1 =

(
α

p

)
ep
(
−2−2β2α−1

)
ε, ε =


1 p ≡ 1 mod 4,

i p ≡ 3 mod 4,

(6.13)

where α and β are integers defined in (6.21) below and
(
α
p

)
is the Legendre symbol.

If χ1 does not satisfy (6.8), or (6.9) has no solution satisfying (6.10), then the sum is
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zero.

Note ep (−2−2β2α−1) = 1 if the solution to (6.9) satisfies the stronger congruence, mod

p[
m+n

2 ]+t+1.

For the mod pm Jacobi sums, χ1 = χl, χ2 = χw, χ primitive mod pm with p - lw(l + w),

we have x0 = l(l + w)−1 and

pm∑
x=1

χ1(x)χ2(1− x) =
χ1(l)χ2(w)

χ1χ2(l + w)
p
m
2


1, if m is even,(
−2rc
p

)(
lw(l+w)

p

)
ε, if m ≥ 3 is odd,

with r and c as in (2.8) and (2.10).

Proof. Recall that a is a primitive root for all powers of p and we define the integers Rl,

p - Rl, by

aφ(p
l) = 1 +Rlp

l,

so that r = R1. Since (1 +Rs+1p
s+1) = (1 +Rsp

s)p, for any s ≥ 1 we recall

Rs+1 ≡ Rs mod ps. (6.14)

We define the integers c, c1 = cl, c2 = cw, by

χ(a) = eφ(pm)(c), χ1(a) = eφ(pm)(c1), χ2(a) = eφ(pm)(c2). (6.15)

Since χ2 is assumed primitive we have p - c2.

We write

γ = u
φ(pL)

d
+ v, L :=


1, if m ≤ n+ 2t+ 2,⌈
m−n
2

⌉
− t, if m > n+ 2t+ 2,
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and observe that if u = 1, ..., dpm−L and v runs through an interval I of length φ(pL)/d then

γ runs through a complete set of residues mod φ(pm). Hence setting h(x) = Axk + B and

writing x = aγ we have

pm∑
x=1

χ1(x)χ2(h(x)) =
∑
v∈I

χ1(a
v)

dpm−1∑
u=1

χ1(a
u
φ(pL)
d )χ2

(
h

(
au

φ(pL)
d

+v

))
.

Since 2(L+ t) + n ≥ m we can write

h

(
au

φ(pL)
d

+v

)
= A

(
aφ(p

L+t)
)u( k

dpt

)
avk +B = A

(
1 +RL+tp

L+t
)u( k

dpt

)
avk +B

≡ h(av) + A′u

(
k

dpt

)
avkRL+tp

L+t+n mod pm.

This is zero mod p if p | h(av) and consequently any such v give no contribution to the sum.

If p - h(av) then, since RL+t ≡ RL+t+n mod pL+t,

h

(
au

φ(pL)
d

+v

)
≡ h(av)

(
1 + A′u

(
k

dpt

)
h(av)−1avkRL+t+np

L+t+n

)
mod pm

≡ h(av)a
A′u

(
k
dpt

)
h(av)−1avkφ(pL+t+n)

mod pm.

Thus,

pm∑
x=1

χ1(x)χ2(h(x)) =
∑
v∈I

p-h(av)

χ1(a
v)χ2(h(av))

dpm−L∑
u=1

χ1

(
au

φ(pL)
d

)
χ2

(
au

φ(pL)
d

Akavkh(av)−1

)
,
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where the inner sum

dpm−L∑
u=1

edpm−L
(
u
(
c1 + c2Ah(av)−1kavk

))
is dpm−L if

c1 + c2h(av)−1A′avk
(
k

dpt

)
dpt+n ≡ 0 mod dpm−L (6.16)

and zero otherwise. Thus our sum will be zero unless (6.16) has a solution with p - h(av).

For m ≥ n + t + 1 we have m − L ≥ t + n and a solution to (6.16) necessitates dpt+n | c1

(giving us condition (6.8)) with pt+n || l for m > n+ t+ 1. Hence for m > n+ t+ 1 we can

simplify the congruence to

h(av)

(
c1

dpt+n

)
+ c2A

′avk
(
k

dpt

)
≡ 0 mod pm−L−t−n, (6.17)

and for a solution we must have pt || c1 + kc2. Equivalently,

cg′(av)

dpt+n
≡ 0 mod pm−t−n−L, (6.18)

and the characteristic equation (6.9) must have a solution satisfying (6.10). Suppose that

(6.9) has a solution x0 = av0 with p - h(x0) and that m > n+t+1. Rewriting the congruence

(6.18) in terms of the primitive root, a, gives

avk ≡ ab mod pm−t−n−L

for some integer b. Thus two solutions to (6.18), av1 and av2 must satisfy

v1k ≡ v2k mod φ(pm−t−n−L).

That is v1 ≡ v2 mod (p−1)
d

if m ≤ n+ 2t+ 2 and if m > n+ 2t+ 2

v1 ≡ v2 mod
φ(pm−n−2t−L)

d
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where m− n− 2t− L = L if m− n is even and L− 1 if m− n is odd. Thus if n+ t+ 1 <

m ≤ n + 2t + 2 or m > n + 2t + 2 and m − n is even our interval I contains exactly one

solution v. Choosing I to contain v0 we get that

pm∑
x=1

χ1(x)χ2(h(x)) = dpm−Lχ1(x0)χ2(h(x0)).

Suppose that m > n+2t+2 with m−n odd and set s := m−n−1
2

. In this case I will have

p solutions and we pick our interval I to contain the p solutions v0 + yps−t−1
(
p−1
d

)
where

y = 0, ..., p− 1. Since dpt | c1 and dpt | k we can write, with g defined as in (6.5),

g1(x) := g(x)c = xc1(Axk +B)c2 =: H
(
xdp

t
)
.

Thus, setting χ = χc4, where χ4 is the mod pm character with χ4(a) = eφ(pm)(1),

pm∑
x=1

χ1(x)χ2(h(x)) = dp
m+n−1

2
+t

p−1∑
y=0

χ
(
g
(
av0+yp

s−t−1( p−1
d )
))

= dp
m+n−1

2
+t

p−1∑
y=0

χ4

(
H
(
xdp

t

0 ayφ(p
s)
))

,

where

xdp
t

0 ayφ(p
s) = xdp

t

0 (1 +Rsp
s)y = xdp

t

0 + yRsx
dpt

0 ps mod pm−n−1. (6.19)

Since

p−nH ′(xdp
t

) =

(
xg′1(x)

dpt+n

)
x−dp

t ∈ Z[x],

we have pn |
H(k)

(
xdp

t

0

)
k!

, for all k ≥ 1. As xg′1(x) = (c1 + kc2)g1(x)− c2kBg1(x)/h(x),

p−nH ′′(xdp
t

)x2dp
t

=

(
c1
dpt

+ c2
k

dpt
− c2

k

dpt
B

h(x)
− 1

)(
xg′1(x)

dpt+n

)
+ c2

(
k

dpt

)2

A′Bxk
g1(x)

h(x)2
.

75



Plainly a solution x0 to (6.9) satisfying (6.10) also has g′1(x0) ≡ 0 mod p
m+n−1

2
+t and

x0g
′
1(x0)

dpt+n
= λp

m−n−1
2 , H ′(xdp

t

0 ) = x−dp
t

0 λp
m+n−1

2 , (6.20)

for some integer λ, and

p−nH ′′(xdp
t

0 ) ≡ c2

(
k

dpt

)2

A′Bxk−2dp
t

0

g1(x0)

h(x0)2
mod p.

Hence by the Taylor expansion, using (6.19) and that Rs ≡ Rm−1 ≡ r mod p,

H
(
xdp

t

0 ayφ(p
s)
)
≡ H(xdp

t

0 ) +H ′(xdp
t

0 )yRsx
dpt

0 p
m−n−1

2 + 2−1H ′′(xdp
t

0 )y2R2
sx

2dpt

0 pm−n−1 mod pm

≡ g1(x0)
(
1 +

(
βy + αy2

)
Rm−1p

m−1) mod pm

≡ g1(x0)a
(βy+αy2)φ(pm−1) mod pm,

with

β := g1(x0)
−1λ, α := 2−1c2h(x0)

−2rA′B

(
k

dpt

)2

xk0, (6.21)

and

χ4

(
H
(
xdp

t

0 ayφ(p
s)
))

= χ(g(x0))ep(αy
2 + βy).

Since plainly p - α, completing the square then gives the result claimed

pm∑
x=1

χ1(x)χ2(h(x)) = dp
m+n−1

2
+tχ(g(x0))ep(−4−1α−1β2)

p∑
y=0

ep(αy
2)

= dp
m+n−1

2
+tχ(g(x0))ep(−4−1α−1β2)

(
α

p

)
εp

1
2

where ε is 1 or i as p is 1 or 3 mod 4. Notice that if x0 is a solution to the stronger congruence

g′(x0) ≡ 0 mod p[
m+n

2 ]+t+1 then β = 0 and the ep(−4−1α−1β2) can be omitted.

76



6.2 Evaluating the Binomial Character Sum for p = 2

Suppose that χ1 and χ2 are mod 2m multiplicative characters with χ2 primitive mod 2m,

m ≥ 3. This section represents joint work with Chris Pinner and Joe Sheppard [22] in which

we evaluate the complete character sum

S2 :=
2m∑
x=1

χ1(x)χ2(Ax
k +B). (6.22)

Plainly S2 = 0 if A and B are not of opposite parity (otherwise x or Axk + B will be

even and the individual terms will all be zero). We assume here that A is even and B is

odd and write

A = 2nA1, n > 0, k = 2tk1, 2 - A1k1B.

If B is even and A odd we can use x 7→ x−1 to write S2 in the form

S2 =
2m∑
x=1

χ1χ
k
2(x)χ2(Bx

k + A).

Since Z∗2m =< −1, 5 >, the characters χ1, χ2 are completely determined by their values on

−1 and 5. Since 5 has order 2m−2 mod 2m we can define integers c1, c2 with

χi(5) = e2m−2(ci), 1 ≤ ci ≤ 2m−2,

where en(x) := e2πix/n. Since χ2 is primitive we have 2 - c2. We define the odd integers Ri,

i ≥ 2, by

52i−2

= 1 +Ri2
i. (6.23)

Defining

N :=


d1
2
(m− n)e, if m− n > 2t+ 4,

t+ 2, if t+ 2 ≤ m− n ≤ 2t+ 4,
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and

C(x) := c1(Ax
k +B) + c2Akx

kRNR
−1
N+n (6.24)

(here and throughout this section y−1 denotes the inverse of y mod 2m) it transpires that

the sum S2 will be zero unless there is a solution x0 to the characteristic equation

C(x0) ≡ 0 mod 2b
1
2
(m+n)c+t, (6.25)

with 2 - x0(Axk0 +B), when m−n > 2t+ 4, and a solution to C(1) or C(−1) ≡ 0 mod 2m−2

when t+ 2 ≤ m− n ≤ 2t+ 4.

Theorem 6.2.1. Suppose that m − n ≥ t + 2. The sum S2 = 0 unless c1 = 2n+tc3, with

2 - c3, and χ1(−1) = 1 when k is even, and the characteristic equation (6.25) has an odd

solution x0 when m− n > 2t+ 4. Assume these conditions do hold.

When m− n > 2t+ 4,

S2 = 2
1
2
(m+n)+t+min{1,t}χ1(x0)χ2(Ax

k
0 +B)


1, if m− n is even,

ωh
(
2
h

)
, if m− n is odd,

where
(
2
x

)
is the Jacobi symbol, ω = eπi/4, C(x0) = λ2b

1
2
(m+n)c+t for some integer λ and

h := 2λ+ (k1 − 1) + (2n − 1)c3.

When t+ 3 < m− n ≤ 2t+ 4,

S2 =



2m−1χ2(A+B), if k is even and C(1) ≡ 0 mod 2m−2,

2m−2χ2(A+B), if k is odd and C(1) ≡ 0 mod 2m−2,

2m−2χ1(−1)χ2(−A+B), if k is odd and C(−1) ≡ 0 mod 2m−2,

0, otherwise.
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When m− n = t+ 3,

S2 =


2m−1χ2(A+B), if k is even and χ1(5) = ±1, χ1(−1) = 1,

2m−2 (χ2(A+B) + χ1(−1)χ2(−A+B)) , if k is odd and χ1(5) = ±1,

0, otherwise.

When m− n = t+ 2,

S2 =


2m−1χ2(A+B), if k is even and χ1 = χ0 or k is odd and χ1 = χ4,

0, otherwise,

where χ0 is the principal character mod 2m and χ4 is the mod 2m character induced by the

non-trivial character mod 4 (i.e. χ4(x) = ±1 as x ≡ ±1 mod 4 respectively).

Note that the restriction m−n ≥ t+2 is quite natural; for m−n < t+2 the odd x have

Axk + B ≡ A + B mod 2m and S2 = χ2(A + B)
∑2m

x=1 χ1(x) = 2m−1χ2(A + B) if χ1 = χ0

and zero otherwise.

Our original assumption that χ2 is primitive is also reasonable; if χ1 and χ2 are both

imprimitive then one should reduce the modulus, while if χ1 is primitive and χ2 imprimitive

then S2 = 0 (if χ1 is primitive then u = 1+2m−1 must have χ1(u) = −1, since x+2m−1 ≡ ux

mod 2m for any odd x, and x 7→ xu gives S2 = χ1(u)S2 when χ2 is imprimitive).

6.3 Proof of Theorem 6.2.1
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6.3.1 Initial decomposition

Observing that ±5γ, γ = 1, . . . , 2m−2, gives a reduced residue system mod 2m and writing

S(A) :=
2m−2∑
γ=1

χ1(5
γ)χ2(A5γk +B),

if k is even we have

S2 = (1 + χ1(−1))S(A) =


0, if χ1(−1) = −1,

2S(A), if χ1(−1) = 1,

(6.26)

and if k is odd

S2 = S(A) + χ1(−1)S(−A). (6.27)

6.3.2 Large m values: m > n+ 2t+ 4

If I1 is an interval of length 2d
m−n

2
e−t−2 then plainly

γ = u2d
m−n

2
e−t−2 + v, v ∈ I1, u ∈ I2 :=

[
1, 2b

m+n
2
c+t
]
,

runs through a complete set of residues mod 2m−2. Hence, writing h(x) := Axk + B and

noting that 2 - h(5v),

S(A) =
∑
v∈I1

χ1(5
v)
∑
u∈I2

χ1

(
5u2

dm−n2 e−t−2

)
χ2

(
A5vk5ku2

dm−n2 e−t−2

+B

)
=
∑
v∈I1

χ1(5
v)χ2(h(5v))

∑
u∈I2

χ1

(
5u2

dm−n2 e−t−2

)
χ2(W )
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where

W = h(5v)−1A5vk
(

5ku2
dm−n2 e−t−2

− 1

)
+ 1.

Since n+ 2dm−n
2
e ≥ m and 2dm+n

2
e ≥ m we have

W = A15
vkh(5v)−12n

((
1 +Rdm−n

2
e2
dm−n

2
e
)uk1
− 1

)
+ 1

≡ 1 + A15
vkh(5v)−1uk1Rdm−n

2
e2
dm+n

2
e mod 2m

≡
(

1 +Rdm+n
2
e2
dm+n

2
e
)A15vkh(5v)−1uk1Rdm−n2 eR

−1

dm+n
2 e mod 2m

= 5
A15vkh(5v)−1uk1Rdm−n2 eR

−1

dm+n
2 e

2d
m+n

2 e−2

= 5
A5vkh(5v)−1ukRdm−n2 eR

−1

dm+n
2 e

2d
m−n

2 e−t−2

.

We can write

∑
u∈I2

χ1

(
5u2

dm−n2 e−t−2

)
χ2(W ) =

∑
u∈I2

e
2b
m+n

2 c+t

(
u
(
c1 + c2A5vkh(5v)−1kRdm−n

2
eR
−1
dm+n

2
e

))
,

which equals 2b
m+n

2
c+t for the v with

c1h(5v) + c2A5vkkRdm−n
2
eR
−1
dm+n

2
e ≡ 0 mod 2b

m+n
2
c+t (6.28)

and zero otherwise. Since m ≥ n + 2 equation (6.28) has no solution (and hence S2 = 0)

unless c1 = 2n+tc3 with 2 - c3, in which case (6.28) becomes

(
c3A+ c2A1k1Rdm−n

2
eR
−1
dm+n

2
e

)
5vk ≡ −c3B mod 2b

m−n
2
c. (6.29)
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If no v satisfies (6.28) then plainly S2 = 0. Assume that (6.28) has a solution v = v0 and

take I1 = [v0, v0 + 2d
m−n

2
e−t−2). Now any other v solving (6.29) must have

5vk ≡ 5v0k mod 2b
m−n

2
c ⇒ vk ≡ v0k mod 2b

m−n
2
c−2 ⇒ v ≡ v0 mod 2b

m−n
2
c−t−2.

So if m− n is even, I1 contains only the solution v0 and

S(A) = 2b
m+n

2
c+tχ1(5

v0)χ2(A5v0k +B). (6.30)

Observe that a solution x0 = 5v0 or x0 = −5v0 of (6.25) corresponds to a solution v0 to

(6.28) when k is even and a solution v0 to (6.28) for A or −A respectively (both can not

have solutions) if k is odd. The evaluation for S2 follows at once from (6.30) and (6.26) or

(6.27). When m− n is odd, I1 contains two solutions v0 and v0 + 2b
m−n

2
c−t−2 and

S(A) = 2b
m+n

2
c+tχ1(5

v0)

(
χ2(h(5v0)) + χ1(5

2b
m−n

2 c−t−2

)χ2(A5v0k5k2
bm−n2 c−t−2

+B)

)
= 2b

m+n
2
c+tχ1(5

v0)χ2(h(5v0))

(
1 + χ1(5

2b
m−n

2 c−t−2

)χ2(ξ)

)

where, since 3bm−n
2
c+ n ≥ m for m ≥ n+ 3,

ξ = A5v0k
(

5k12
bm−n2 c−2

− 1

)
h(5v0)−1 + 1

= A5v0kh(5v0)−1
(

(1 +Rbm−n
2
c2
bm−n

2
c)k1 − 1

)
+ 1

≡ A5v0kh(5v0)−1
(
k1Rbm−n

2
c2
bm−n

2
c +

(
k1
2

)
R2
bm−n

2
c2
m−n−1

)
+ 1 mod 2m

≡
(
A15

v0kh(5v0)−1k1Rbm−n
2
cR
−1
bm+n

2
c +

1

2
(k1 − 1)2b

m−n
2
c
)
Rbm+n

2
c2
bm+n

2
c + 1 mod 2m

≡
(

1 +Rbm+n
2
c2
bm+n

2
c
)A15v0kh(5v0 )−1k1Rbm−n2 cR

−1

bm+n
2 c

+ 1
2
(k1−1)2b

m−n
2 c

mod 2m

= 5

(
A15v0kh(5v0 )−1k1Rbm−n2 cR

−1

bm+n
2 c

+ 1
2
(k1−1)2b

m−n
2 c

)
2b
m+n

2 c−2

.
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Hence, setting

c3 + c2A15
v0kh(5v0)−1k1Rdm−n

2
eR
−1
dm+n

2
e = λ2b

m−n
2
c

(only the parity of λ will be used) and recalling that c2 is odd, we have

χ1(5
2b
m−n

2 c−t−2

)χ2(ξ) = e
2d
m−n

2 e

(
c3 + c2A15

v0kh(5v0)−1k1Rbm−n
2
cR
−1
bm+n

2
c

)
(−1)

1
2
(k1−1)c2

= e
2d
m−n

2 e

(
c2A15

v0kh(5v0)−1k1

(
Rbm−n

2
cR
−1
bm+n

2
c −Rdm−n2

eR
−1
dm+n

2
e

))
(−1)

1
2
(k1−1)+λ.

Since 1 +Ri+12
i+1 = (1 +Ri2

i)2 we have

Ri+1 = Ri + 2i−1R2
i ≡ Ri + 2i−1 mod 2i+2,

giving Ri ≡ 3 mod 4 for i ≥ 3, and

Rbm−n
2
cR
−1
bm+n

2
c −Rdm−n2

eR
−1
dm+n

2
e

≡R−1bm+n
2
cR
−1
dm+n

2
e

(
(Rdm−n

2
e − 2d

m−n
2
e−2)Rdm+n

2
e −Rdm−n

2
e(Rdm+n

2
e − 2d

m−n
2
e+n−2)

)
mod 2d

m−n
2
e

≡(1− 2n)2d
m−n

2
e−2 mod 2d

m−n
2
e.

From (6.28) we have c2A15
v0kh(5v0)−1k1 ≡ −c3 mod 4 and

S(A) = 2b
m+n

2
c+tχ1(5

v0)χ2(h(5v0))
(

1 + i(2
n−1)c3(−1)

1
2
(k1−1)+λ

)
.

The result follows on writing
1 + ih√

2
= ωh

(
2

h

)
.
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6.3.3 Small m values: t+ 2 ≤ m− n ≤ 2t+ 4

Since n+ 2(t+ 2) ≥ m we have

A5γk +B = A12
n(1 +Rt+22

t+2)γk1 +B

≡ (A+B)
(
1 + γk1A1Rt+2(A+B)−12t+n+2

)
mod 2m

≡ (A+B)
(
1 +Rt+n+22

t+n+2
)γk1A1(A+B)−1Rt+2R

−1
t+n+2 mod 2m

= (A+B)5γAk(A+B)−1Rt+2R
−1
t+n+2 .

Hence χ1(5
γ)χ2(A5γk +B) equals

χ2(A+B)e2m−2

(
γ
(
c1(A+B) + c2AkRt+2R

−1
t+n+2

)
(A+B)−1

)
and S(A) = 2m−2χ2(A + B) if C(1) ≡ 0 mod 2m−2 and 0 otherwise. Since m − n ≥ t + 2

the congruence C(1) ≡ 0 mod 2m−2 implies c1 = 2t+nc3 (with c3 odd if m− n > t+ 2) and

becomes

c3(A+B) + c2A1k1Rt+2R
−1
t+n+2 ≡ 0 mod 2m−n−t−2. (6.31)

For m− n = t+ 2 or t+ 3 this will automatically hold (for both A and −A when k is odd)

and S2 = 2m−1χ2(A+B) for k even and χ1(−1) = 1, and

S2 = 2m−2(χ2(A+B) + χ1(−1)χ2(−A+B))

for k odd. Further for k odd and m − n = 2 we have −A + B ≡ (1 + 2m−1)(A + B) mod

2m with χ2(1 + 2m−1) = −1 and S2 = 2m−2χ2(A + B)(1 − χ1(−1)) = 2m−1χ2(A + B) if

χ1(−1) = −1 and zero otherwise. Note when m−n = t+2 we have c1 = 2m−2 and χ1(5) = 1

and when m− n = t+ 3 we have c1 = 2m−2 or 2m−3 and χ1(5) = ±1.

Since c3B is odd (6.31) can not hold for both A and −A for m− n > t+ 3 and thus at

most one of S(A) or S(−A) is non-zero. When k is odd the congruence condition for −A
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becomes C(−1) ≡ 0 mod 2m−2.

85



Chapter 7

Evaluating Jacobi Sums

For multiplicative characters χ1 and χ2 mod q one defines the classical Jacobi sum by

J(χ1, χ2, q) :=

q∑
x=1

χ1(x)χ2(1− x). (7.1)

More generally for k characters χ1, . . . , χk mod q one can define

J(χ1, . . . , χk, q) =

q∑
x1=1

· · ·
q∑

xk=1
x1+···+xk=1

χ1(x1) · · ·χk(xk). (7.2)

If the χi are mod rs characters with (r, s) = 1 then, writing χi = χ′iχ
′′
i where χ′i and χ′′i are

mod r and mod s characters respectively, as we have discussed in Section 2.2

J(χ1, . . . , χk, rs) = J(χ′1, . . . , χ
′
k, r)J(χ′′1, . . . , χ

′′
k, s).

Hence, it suffices to consider the case of prime power moduli q = pm.

Zhang & Yao [30] showed that the sums (7.1) can in fact be evaluated explicitly when m

is even (and χ1, χ2 and χ1χ2 are primitive mod pm). Working with a slightly more general

binomial character sum the authors [21] showed that techniques of Cochrane & Zheng [4]
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can be used to obtain an evaluation of (7.1) for any m > 1 (p an odd prime). Zhang and

Xu [32] considered the general case, (7.2), obtaining (assuming that χ, χn1 , . . . , χnk , and

χn1+···+nk are primitive characters modulo pm)

J(χn1 , . . . , χnk , pm) = p
1
2
(k−1)mχ(uu)χ(nn1

1 . . . nnkk ), u := n1 + · · ·+ nk, (7.3)

when m is even, and when the m, k, n1, . . . , nk are all odd

J(χn1 , . . . , χnk , pm) = p
1
2
(k−1)mχ(uu)χ(nn1

1 . . . n
nk−1

k−1 )


εk−1p

(
un1...nk

p

)
, if p 6= 2;(

2
un1...nk

)
if p = 2,

(7.4)

where
(
m
n

)
is the Jacobi symbol and (defined more generally for later use)

εpm :=


1, if pm ≡ 1 mod 4,

i, if pm ≡ 3 mod 4.

(7.5)

In this Chapter, representing joint work with M. Long and C. Pinner [15], we give an

evaluation for all m > 1 (i.e. irrespective of the parity of k and the ni). In fact, we evaluate

the slightly more general sum

JB(χ1, . . . , χk, p
m) =

pm∑
x1=1

· · ·
pm∑
xk=1

x1+···+xk=B

χ1(x1) · · ·χk(xk).

Of course when B = pnB′, p - B′ the simple change of variables xi 7→ B′xi gives

JB(χ1, . . . , χk, p
m) = χ1 · · ·χk(B′)Jpn(χ1, . . . , χk, p

m).

For example JB(χ1, . . . , χk, p
m) = χ1 · · ·χk(B)J(χ1, . . . , χk, p

m) when p - B. From the
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change of variables xi 7→ −xkxi, 1 ≤ i < k one also sees that

Jpm(χ1, . . . , χk, p
m) =


φ(pm)χk(−1)J(χ1, . . . , χk−1, p

m), if χ1 · · ·χk = χ0,

0, if χ1 · · ·χk 6= χ0,

where χ0 denotes the principal character, so we assume that B = pn with n < m.

Theorem 7.0.1. Let p be a prime and m ≥ n + 2. Suppose that χ1, . . . , χk are k ≥ 2

characters mod pm with at least one of them primitive.

If the χ1, . . . , χk are not all primitive mod pm or χ1 . . . χk is not induced by a primitive

mod pm−n character, then J(χ1, . . . , χk, p
m) = 0.

If the χ1, . . . , χk are primitive mod pm and χ1 · · ·χk is primitive mod pm−n, then

Jpn(χ1, . . . , χk, p
m) = p

1
2
(m(k−1)+n)χ1(c1) · · ·χk(ck)

χ1 · · ·χk(v)
δ, (7.6)

where for p odd

δ =

(
−2r

p

)m(k−1)+n(
v

p

)m−n(
c1 · · · ck

p

)m
εkpmε

−1
pm−n ,

and for p = 2 and m− n ≥ 5,

δ =

(
2

v

)m−n(
2

c1 · · · ck

)m
ω(2n−1)v, (7.7)

with εpm as defined in (7.5), the r and ci as in (2.8) and (2.10) or (2.12), and

v := p−n(c1 + · · ·+ ck), ω := eπi/4. (7.8)

Of course it is natural to assume that at least one of the χ1, . . . , χk is primitive, otherwise

we can reduce the sum to a mod pm−1 sum. For n = 0 and χ1, . . . , χk and χ1 · · ·χk all
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primitive mod pm our result simplifies to

J(χ1, . . . , χk, p
m) = p

m(k−1)
2

χ1(c1) · · ·χk(ck)
χ1 · · ·χk(v)

δ, v = c1 + · · ·+ ck,

with

δ =


1, if m is even,(
vc1···ck

p

)(
−2rc
p

)k−1
εk−1p , if m is odd and p 6= 2,(

2
vc1···ck

)
, if m ≥ 5 is odd and p = 2.

In the remaining n = 0 case, p = 2, m = 3 we have J(χ1, . . . , χk, 2
3) = 2

3
2
(k−1)(−1)b

`
2
c where

` denotes the number of characters 1 ≤ i ≤ k with χi(−1) = −1.

When the χi = χni for some primitive mod pm character χ we can write ci = nic (where

c is determined by χ(a) as in (2.10) or (2.12)) and we recover the form (7.3) and (7.4) with

the addition of a factor
(
−2rc
p

)k−1
for p 6= 2, m odd, which of course can be ignored when

k is odd as assumed in [32].

For completeness we observe that in the few remaining m ≥ n+ 2 cases (7.6) becomes

Jpn(χ1, . . . , χk, p
m) = 2

1
2
(m(k−1)+n)


−iωk−

∑k
i=1 χi(−1), if m = 3, n = 1,

ωχ1···χk(−1)−1−v
∏k

i=1 χi(−ci), if m = 4, n = 1,

i1−v
∏k

i=1 χi(ci), if m = 4, n = 2.

For m = n + 1 (with at least one χi primitive) the Jacobi sum is still zero unless all

the χi are primitive mod pm and χ1 · · ·χk is a mod p character. Then we can say that

|Jpn(χ1, . . . , χk, p
m)| = p

1
2
mk−1 if χ1 · · ·χk = χ0 and p

1
2
(mk−1) otherwise, but an explicit

evaluation in the latter case is equivalent to an explicit evaluation of the mod p Gauss sum

G(χ1 · · ·χk, p) when m ≥ 2. We saw in Section 4.4 that if χk is a primitive mod pm character
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and χ1 · · ·χk is a mod pm−n character we can write

Jpn(χ1, . . . , χk, p
m) = pn

G(χ1 · · ·χk, pm−n)

G(χk, pm)

k−1∏
i=1

G(χi, p
m).

We will use this and the explicit evaluation of the Gauss sums in Theorem 3.1.1 to evaluate

the sum.

7.1 Proof of Theorem 7.0.1

We assume that χ1, . . . , χk are all primitive mod pm characters and χ1 · · ·χk is a primitive

mod pm−n character, since otherwise from Theorem 4.4.1 and (4.18), Jpn(χ1, . . . , χk, p
m) = 0.

In particular we have (4.19).

Writing R = Rdm
2
e+2 then by (4.19) and the evaluation of Gauss sums in Theorem 3.1.1

we have

Jpn(χ1, . . . , χk, p
m) =

∏k
i=1G(χi, p

m)

G(χ1 . . . χk, pm−n)

=

∏k
i=1 p

m/2χi(−ciR−1)epm(−ciR−1)δi
p(m−n)/2χ1 . . . χk(−vR−1)epm−n(−vR−1)δs

= p
1
2
(m(k−1)+n)

∏k
i=1 χi(ci)

χ1 . . . χk(v)
δ−1s

k∏
i=1

δi, (7.9)

where pnv = c1 + · · ·+ ck,

δi =


(
−2rci
p

)m
εpm , if p is odd, p 6= 2,(

2
ci

)m
ωci , if p = 2 and m ≥ 5,
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and

δs =


(
−2rv
p

)m−n
εpm−n , if p is odd,(

2
v

)m−n
ωv, if p = 2 and m− n ≥ 5,

and the result is plain when p is odd or p = 2, m− n ≥ 5.

The remaining cases p = 2, m ≥ 5 and m − n = 2, 3, 4, follows similarly using the

adjustment to δs observed at the end of the proof of Theorem 3.1.1 .

7.2 A more direct approach

We should note that the Cochrane & Zheng reduction technique [4] can be applied to directly

evaluate the Jacobi sums when p is odd and m ≥ n + 2 instead of using the Gauss sum

evaluation. For example if b = pnb′ with p - b′, then from [21, Theorem 3.1] we have

Jb (χ1, χ2, p
m) =

pm∑
x=1

χ1(x)χ2(b− x) =

pm∑
x=1

χ1χ2(x)χ2(bx− 1)

= p
m+n

2 χ1χ2(x0)χ2(bx0 − 1)

(
−2c2rb

′x0
p

)m−n
εpm−n ,

where x0 is a solution to the characteristic equation

c1 + c2 − c1bx ≡ 0 mod pb
m+n

2
c+1, p - x(bx− 1). (7.10)

If (7.10) has no solution mod pb
m+n

2
c then Jb(χ1, χ2, p

m) = 0. In particular we see that:

i. If p - c1 and p | c2, then Jb(χ1, χ2, p
m) = 0.

ii. If p - c1c2(c1 + c2) then

Jb(χ1, χ2, p
m) = χ1χ2(b)χ1(c1)χ2(c2)χ1χ2(c1 + c2)p

m
2 δ2.
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where

δ2 =

(
−2r

p

)m(
c1c2(c1 + c2)

p

)m
εpm .

iii. If p - c1 and b = pnb′, p - b′ with n < m−1 then Jb(χ1, χ2, p
m) = 0 unless pn || (c1 + c2)

in which case writing w = (c1 + c2)/p
n,

Jb(χ1, χ2, p
m) = χ1χ2(b

′)
χ1(c1)χ2(c2)

χ1χ2(w)
p
m+n

2

(
−2r

p

)m−n(
c1c2w

p

)m−n
εpm−n .

To see (ii) observe that if p | b, then Jb(χ1, χ2, p
m) = 0, and if p - b, then we can take

x0 ≡ (c1 + c2)c
−1
1 b−1 mod pm (and hence bx0− 1 = c2c

−1
1 ). Similarly for (iii) if pn || (c1 + c2)

we can take x0 ≡ p−n(c1 + c2)c
−1
1 (b′)−1 mod pm.

Of course we can write the generalized sum in the form

Jpn(χ1, . . . , χk) =

pm∑
x3=1

· · ·
pm∑
xk=1

χ3(x3) . . . χk(xk)

pm∑
x1=1

b:=pn−x3−···−xk

χ1(x1)χ2(b− x1)

=

pm∑
x3=1

· · ·
pm∑
xk=1

χ3(x3) . . . χk(xk)Jb(χ1, χ2, p
m),

Hence assuming that at least one of the χi is primitive mod pm (and reordering the characters

as necessary) we see from (i) that Jpn(χ1, . . . , χk, p
m) = 0 unless all the characters are

primitive mod pm. Also when k = 2, χ1, χ2 primitive, we see from (iii) that Jpn(χ1, χ2, p
m) =

0 unless χ1χ2 is induced by a primitive mod pm−n character, in which case we recover the

formula in Theorem 7.0.1 on observing that
(
c1c2
p

)n
ε2pm−n = ε2pm ; this is plain when n is

even, for n odd observe that
(
c1c2
p

)
=
(

(c1+c2)2−(c1−c2)2
p

)
=
(
−1
p

)
, (since p | (c1 + c2) as χ1χ2

is imprimitive). We show that a simple induction recovers the formula for all k ≥ 3. We

assume that all the χi are primitive mod pm and observe that when k ≥ 3 we can further

assume (reordering as necessary) that χ1χ2 is also primitive mod pm, since if χ1χ3, χ2χ3 are

not primitive then p | (c1 + c3) and p | (c2 + c3) and (c1 + c2) ≡ −2c3 6≡ 0 mod p and χ1χ2
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is primitive. Hence from (ii) we can write

Jpm(χ1, . . . , χk, p
m) =

χ1(c1)χ2(c2)

χ1χ2(c1 + c2)
p
m
2 δ2

pm∑
x3=1

· · ·
pm∑
xk=1

χ3(x3) . . . χk(xk)χ1χ2(b)

= χ1(c1)χ2(c2)χ1χ2(c1 + c2)p
m
2 δ2Jpn(χ1χ2, χ3, . . . , χk, p

m).

Assuming the result for k−1 characters we have Jpn(χ1χ2, χ3, . . . , χk, p
m) = 0 unless χ1 · · ·χk

is induced by a primitive mod pm−n character in which case

Jpn(χ1χ2, χ3, . . . , χk, p
m) = χ1χ2(c1 + c2)

k∏
i=3

χi(ci)χ1 . . . χk(v)δ3p
m(k−2)+n

2

with

δ3 =

(
−2r

p

)m(k−2)+n(
v

p

)m−n(
(c1 + c2)c3 . . . ck

p

)m
εk−1pm ε−1pm−n .

Our formula for k characters then follows on observing that δ2δ3 = δ.
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MA, (1996), 451-463.

[12] D. R. Heath-Brown and S. Konyagin, New bounds for Gauss sums derived from kth

powers, and for Heilbronn’s exponential sum, Quart. J. Math. 51 (2000), 221-235.

[13] P. Leonard & K. Williams, Evaluation of certain Jacobsthal sums, Boll. Unione Mat.

Ital. 15 (1978), 717-723.

[14] R. Lidl & H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its applica-

tions 20, 2nd edition, Cambridge University Press, 1997.

[15] M. Long, V. Pigno & C. Pinner, Evaluating Prime Power Gauss and Jacobi Sums, sub-

mitted Rocky Mountain J. Math. (http://www.math.ksu.edu/∼ pinner/research.html

preprint 39.)

[16] J.-L. Mauclaire, Sommes de Gauss modulo pα, I & II, Proc. Japan Acad. Ser. A 59

(1983), 109-112 & 161-163.
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[27] K. Williams, On Salié’s sum, J. Number Theory 3 (1971), 316-317.
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