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Electromagnetic wave scattering by many small bodies

and creating materials with a desired refraction coefficient

A. G. Ramm†∗
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Abstract

Electromagnetic wave scattering by many small particles is studied. An integral equation
is derived for the self-consistent field E in a medium, obtained by embedding many small
particles into a given region D.

The derivation of this integral equation uses a lemma about convergence of certain sums.
These sums are similar to Riemannian sums for the integral equation for E.

Convergence of these sums is essentially equivalent to convergence of a collocation method
for solving this integral equation.

By choosing the distribution law for embedding the small particles and their physical
properties one can create a medium with a desired refraction coefficient. This coefficient can
be a tensor. It may have desired absorption properties.

Keywords electromagnetic waves; scattering theory; many-body scattering problem;
singular integral equations.

MSC 78A25; 78A45; 45E05; PACS 41.20.Jb; 42.25.Bs; 42.25.Gy

1 Introduction

The problem of scalar wave scattering by many small bodies is reduced in [5] and [8] to solving
an integral equation for the effective (self-consistent) field in the medium.

There is a large literature on homogenization for partial differential equations and for prob-
lems of physics and material science, which includes many books and dozens of papers (see [1],
[3], and references therein). In most cases a periodic structure of the medium is assumed and
selfadjointness of the operators involved is used in the mathematical literature. The homog-
enization in material science literature often leads to a homogeneous limiting medium. None
of the above assumptions are used in this paper. The limiting medium in this paper is not
homogeneous, the operators involved are not necessarily selfadjoint. Our methods differ from
the usual methods in the homogenization theory.

The problem we pose was not studied in the literature, to our knowledge. This problem is:
How can one create a material with a desired refraction coefficient by embedding in a given

material many small particles or many small inhomogeneities?
A study of this problem was initiated in the works [5]-[11].
In this paper an equation is derived for effective (self-consistent) field in the medium for

electromagnetic wave scattering. Convergence of certain sums to the solution to this equation
can be considered as converegence of a collocation method for solving a limiting equation for

2



the effective field in the medium, see paper [9] where the convergence of this collocation method
is proved for a wide class of integral equations.

By choosing the distribution law for embedding small particles into a given domain D, filled
with a material with known properties, namely, with known dielectric parameter, conductivity,
and a constant magnetic parameter, and by choosing the physical properties of the embedded
small particles, namely, their dielectric parameters and conductivities, one can create a new
material with a desired refraction coefficient. This refraction coefficient can be a tensor, and it
may have desired absorption properties.

In [5] and [8] similar theory was developed for the scalar wave scattering by many small
particles embedded in an inhomogeneous medium.

In Section 1 we prove an auxiliary result, formulated as Theorem 1. It deals with convergence
of certain sums. Our derivation is simple and is not based on any results concerning weak
convergence of measures.

In Section 2 the integral equation for the electromagnetic field scattered by many small
particles embedded in a given medium is studied. The limiting equation (15) is derived for the
effective field in the medium when the number of the embedded particles tends to infinity while
their size tends to zero.

In Section 3 a derivation of the integral equation (10) is given, its relation to the limiting
equation (15) is discussed, and a possible numerical procedure for solving equation (15) is
proposed. This procedure is a version of the projection method.

We continue this Introduction with the formulation and proof of an auxiliary result concern-
ing convergence of certain sums. Such sums appear in a study of wave scattering by many small
particles. The auxiliary result, formulated below as Theorem 1, is used in Sections 2 and 3 in
a study of the limiting behavior of the electromagnetic field in the limiting medium created by
embedding many small particles when their characteristic size a tends to zero and their number
tends to infinity.

The derivation of the integral equation for the effective field in the medium is based on the
existence of the limit of the sums, similar to the following one:

I := lim
a→0

ϕ(a)
∑

xm∈D

f(xm). (1)

Here ϕ(a) > 0 is a monotone continuous strictly growing function, ϕ(0) = 0, xm are some points
distributed in a bounded domain D ⊂ R3 according to the following law:∑

xm∈∆

1 := N (∆) =
1

ϕ(a)

∫
∆

N(x)dx[1 + o(1)], a → 0, (2)

where ∆ ⊂ D is an arbitrary subdomain in D, N(x) ≥ 0 and f(x) are Riemann-integrable
functions, N ∈ P0, and f ∈ Pν . The inclusion f(x) ∈ Pν means that the following estimate
holds:

|f(x)| ≤ c

[ρ(x, S)]ν
, ν ≤ 3, (3)

where c > 0 is a constant and ρ(x, S) is the Euclidean distance from the point x to the set S.
For ν = 0 condition (3) means that supx∈D |f(x)| ≤ c.
Since we assume f and N to be Riemann-integrable, their sets of discontinuities have

Lebesgue measure zero in R3, see [12]. In applications to scattering theory, studied in this
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paper, the set S consists of the singular point of a Green’s function. This singular point is not
necessarily a fixed point. For example, if the Green’s function is g(x, y) = eik|x−y|

4π|x−y| , then the
singular point y ∈ D can be arbitrary.

Let
Dδ := {x : x ∈ D, ρ(x, S) ≥ δ}.

We assume that the limit

lim
δ→0

∫
Dδ

f(x)N(x)dx :=
∫

D
f(x)N(x)dx (4)

exists.
If f ∈ Pν , ν < 3, and N ∈ P0, then the existence of the limit (4) means that the integral

on the right-hand side of (4) exists as an improper integral. If ν = 3, then the integral on the
right-hand side of (4) is a singular integral which exists in the sense of the Cauchy principal
value. The definition and properties of singular integrals one finds in [2].

If f is unbounded, then the sum (1) is not well-defined because f(xm) is infinite when xm ∈ S.
In this case we define the quantity I in (1) as follows:

I := lim
a→0

ϕ(a)
∑

xm∈D

f(xm) := lim
δ→0

lim
a→0

ϕ(a)
∑

xm∈Dδ

f(xm). (5)

Theorem 1 If N ∈ P0, f ∈ Pν , ν ≤ 3, and the assumptions (2)–(4) hold, then

I =
∫

D
f(x)N(x)dx. (6)

Proof. In the set Dδ the functions f(x) and N(x) are bounded and can be assumed continuous
because the set of discontinuities of Riemann-integrable functions is of Lebesgue measure zero.
This set we include into the set S.

For such functions we prove below that

lim
δ→0

lim
a→0

ϕ(a)
∑

xm∈Dδ

f(xm) =
∫

Dδ

f(x)N(x)dx, (7)

provided that assumption (4) holds.
If (7) is proved, then (6) follows from (7) and (5).
Let us prove (7).
Consider a partition of Dδ into a union Uδ of cubes ∆j , such that Dδ = ∪J

j=1∆j := Uδ, where
∆j is a cube with a side b centered at a point x(j), and b = b(a). The intersection ∆i ∩ ∆j ,
i 6= j, does not contain interior points, that is ∆i and ∆j for i 6= j may have common points of
their boundaries but do not have common interior points. For a finite J such a partition may
not exist for Dδ. In this case we consider the smallest Uδ containing Dδ and extend f to Uδ \Dδ

by setting f = 0 in Uδ \Dδ. After this is done, one redefines the set Dδ by setting Dδ = Uδ, and
our arguments remain valid.

We assume that:
lim
a→0

a

b(a)
= 0, lim

a→0
b(a) = 0. (8)
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Let us use relation (2) with ∆ = ∆j and write:

ϕ(a)
∑

xm∈Dδ

f(xm) = ϕ(a)
J∑

j=1

∑
xm∈∆j

f(xm)

= ϕ(a)
J∑

j=1

f(x(j))[1 + o(1)]
∑

xm∈∆j

1

=
J∑

j=1

f(x(j))N(x(j))|∆j |[1 + o(1)],

(9)

where |∆j | is the volume of ∆j ,

f(xm) = f(x(j))[1 + o(1)], ∀xm ∈ ∆j ,

and o(1) → 0 as a → 0 because f is continuous in ∆j and diam Dj → 0 as a → 0.
The sum on the right in (9) is the Riemannian sum for the continuous in Dδ function

f(x)N(x). It is known that if the function f(x)N(x) is Riemann-integrable, then the limit of
this sum, as max1≤j≤J diam(∆j) → 0, exists and is equal to the integral

∫
Dδ

f(x)N(x)dx (see,
e.g., [12], p.269). Since diam(∆j) = b(a)

√
3 → 0, formula (7) is proved. The first assumption

(8) guarantees that there are many points xm in ∆j if N(x) ≥ 0 in ∆j .
Theorem 1 is proved. 2

Remark 1 In the usual definition of the Cauchy principal value for a singular integral
∫
D f(x)dx,

where D ⊂ R3, one assumes that f ∈ P3, that is, (3) holds with ν = 3, S = {x} consists of one
point, and Dδ = {y : y ∈ D, |x − y| ≥ δ}. Necessary and sufficient conditions for the existence
of singular integrals in the sense of the Cauchy principal value can be found in [2], p. 221.

Our definition deals with the case when S may consist of more than one point. However, in
the applications considered in [5], [8], and in this paper, the set of the points of f at which f is
unbounded consists of one point, and ν = 1, so that the integral on the right-hand side of (4)
exists as an improper integral.

Our arguments are valid in Rn with any n ≥ 1.

2 Electromagnetic wave scattering and creating materials
with a desired refraction coefficient

Let us consider many-body scattering problem for electromagnetic (EM) waves in the case of
small bodies ka � 1, where a is the characteristic size of these bodies, k = ω

√
ε0µ0 is the

wavenumber in the free space, ω is the frequency, ε0, µ0 are dielectric and magnetic parameters.
Assume that there are M � 1 small bodies Dm, 1 ≤ m ≤ M , embedded in a bounded

domain D. Each of the bodies Dm is characterized by its dielectric constant

ε′m = εm + i
σm

ω
,

where εm > 0 is the permittivity and σm > 0 is the conductivity of the material in Dm.
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We assume that µm = µ0 for all m, where µm is the magnetic permeability of Dm and µ0 is
a constant magnetic permeability of the free space.

It is proved in Section 3 that the integral equation for electromagnetic field scattered by
M small particles embedded in D and having constant refraction coefficients K2

m in Dm, 1 ≤
m ≤ M , is a vector integral equation, which we write as the following system of scalar integral
equations:

Ei(x) =E0i(x) +
M∑

m=1

(K2
m − k2)

∫
Dm

g(x, y)Ei(y)dy

+
∂

∂xi

M∑
m=1

K2
m − k2

k2

∫
Dm

∂g(x, y)
∂xj

Ej(y)dy, 1 ≤ i ≤ 3,

(10)

where E = Eiei, {ei}3
i=1 is the Euclidean orthonormal basis of R3, summation is understood

over the repeated indices here and below, E0i are the Cartesian components of the incident field
E0(x),

g(x, y) =
eik|x−y|

4π|x− y|
, K2

m = ω2ε′mµ0 := K2(xm), (11)

ε′(x) is a function in D such that
ε′(xm) = ε′m, (12)

and K2(x) is the refraction coefficient, a function in D, such that (11) holds, that is, K2(xm) =
K2

m.
From the point of view of applications, it is of interest to emphasize that K2

m can be a tensor,
and it can have an imaginary part, which describes the absorption of energy in the material of
particles. In the limiting medium, which one obtains in the limit a → 0, the refraction coefficient
K2

1 (x) (see formula (16) below) can be a tensor describing the anisotropy and absorption of the
created material.

To make this paper self-contained, the derivation of equation (10) is given in Section 3, where
the statement of the electromagnetic wave scattering problem by a body of an arbitrary shape
is also given. This derivation follows the one in [10].

The first sum in (10) we write as

M∑
m=1

(K2
m − k2)

∫
Dm

g(x, y)Ei(y)dy =
M∑

m=1

(K2
m − k2)g(x, xm)Ei(xm)|Dm|[1 + o(1)], (13)

where |Dm| = O(a3) is the volume of Dm, x /∈ Dm, and o(1) → 0 as a → 0.
The second sum in (10) we write as

M∑
m=1

K2
m − k2

k2

∂2g(x, xm)
∂xj∂xi

Ej(xm)|Dm|[1 + o(1)]. (14)

Let us assume that Dm is a cube, centered at the point xm, of side a. Then |Dm| = a3.
Using Theorem 1 with ϕ(a) = a3, one passes to the limit, as a → 0, in the sums (13) and (14),

and obtains the following integral equation for the effective electromagnetic field E(x) = Ei(x)ei
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in the limiting medium:

Ei(x) =E0i(x) +
∫

D
g(x, y)(K2(y)− k2)N(y)Ei(y)dy

+
∂

∂xi

∫
D

∂g(x, y)
∂xj

K2(y)− k2

k2
N(y)Ej(y)dy, 1 ≤ i ≤ 3,

(15)

where N(y) is the function from formula (2), describing the density of the distribution of small
bodies (particles), and K2(x) is a function such that K2(xm) = K2

m.
The quantities Ej(xm) in the sums (13) and (14) depend on a, but converge to finite limits

as a → 0, as follows from the convergence of the collocation method, studied in [9]. Therefore
Theorem 1 is applicable for passing to the limit a → 0 in the sums (13) and (14).

A continuous in D function K2(x) is uniquely determined by its values at a set of points
{xm} dense in D. In the limit M → ∞, or, which is the same, in the limit a → 0, the set of
points {xm} is dense in D, so the values K2

m determine K2(x) uniquely in this limit.
As a → 0, one obtains the limiting medium created by embedding small particles Dm into

D.
One may interpret this result from the physical point of view as follows:
As a → 0, the limiting medium, obtained by embedding small particles Dm according to the

distribution law (2) with ϕ(a) = a3 has the following refraction coefficient:

K2
1 (x) = K2(x)N(x). (16)

By choosing N(x) and K2(x), which are at the disposal of an experimentalist, one can create
a desirable refraction coefficient K2

1 (x), including tensorial ones. From the point of view of a
physicist, the cofficient K2

1 (x) is an analog of the coefficient K2 in formula (21) in Section 3.

3 Derivation of equation (10)

Consider the following scattering problem. An incident electromagnetic field (E0,H0) is scat-
tered by a bounded region D, filled with a material with parameters (ε, σ, µ0). The exterior
region D′ is a homogeneous region with parameters (ε0, σ = 0, µ0). Consider for simplicity the
case when ε = const and σ = const ≥ 0 in D. Let ε′ = ε + iσ

ω . The governing equations in R3

are
∇× E = iωµ0H, ∇×H = −iωε′E. (17)

At the boundary S of D one has boundary conditions

[N,E+] = [N,E−], (18)

and
N · ε′E+ = N · ε0E−, (19)

where N is the unit normal to S, pointing into D′, E+(E−) is the limiting value of E on S from
inside (outside) S, [N,E] is the cross product, and E ·N is the dot product of two vectors. The
fields E and H satisfy the radiation condition at infinity.

Let

k2 = ω2ε0µ0, K2 = ω2ε′µ0, K2 =
{

k2, inD′,
K2, inD.

(20)
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Equations (17) imply

∇×∇× E −K2E = 0, H =
∇× E

iωµ0
in R3. (21)

Therefore, in order to solve problem (17)-(19) it is sufficient to find E satisfying the first equation
(21), boundary conditions (18), (19), and the radiation condition

E = E0 + V ; Vr − ikV = o

(
1
r

)
, r := |x| → ∞. (22)

Equation (21) for E can be written as

LE := ∇×∇× E − k2E = pE; p := p(x) = K2 − k2 =
{

0, in D′,
K2 − k2, in D.

(23)

The incident field E0 solves equation (23) with p = 0.

Let δ(x) denote the delta-function and δij :=
{

1, i = j,
0, i 6= j.

Let G = Gij(x) be the Green’s function solving the problem:

LG = δ(x)δij , Gr − ikG = o

(
1
r

)
, r →∞. (24)

Then the solution to (23)-(22) solves the integral equation

E = E0 +
∫

R3

G(x− y)p(y)E(y)dy. (25)

The Green’s function G(x) = G(|x|) is symmetric, Gij = Gji, see formula (31) below.
Let us state and prove three Lemmas.

Lemma 1.1 There is at most one solution to equation (25) satisfying conditions (18) and (19).

Proof. If there are two solutions to equation (25), then their difference E solves the homoge-
neous equation (25), satisfies boundary conditions (18) and (19), and the radiation condition.
Thus, E solves (23), (22), (18) and (19). Therefore, E and H = ∇×E

iωµ0
solve equations (17) and

satisfy condition (18), (19) and (22). It is known (see, e.g., [4]) that this implies E = H = 0.
Lemma 1.1 is proved. 2

Lemma 1.2 There is at most one solution to equation (25).

We prove that if E solves equation (25), then it satisfies (22), (18), (19) and (23). Therefore
by Lemma 1.1 (25) has at most one solution.

Proof. Applying operator L to (25) one obtains equation (23). The integral in (25) is the
term V in formula (22). It satisfies the radiation condition because G does. Equation (23) is
equivalent to (21). Equation (21) together with the formula H = ∇×E

iωµ0
yield both equations

(17). Conditions (18) and (19) are consequences of equations (17). Therefore, every solution to
(25) is in one-to-one correspondence with the solution to equations (17). This correspondence
is given by the formulas E = E, H := ∇×E

iωµ0
. By Lemma 1.1 equation (25) has at most one

solution satisfying (18) and (19). We have proved that every solution to (25) satisfies (18) and
(19). Therefore, (25) has at most one solution.
Lemma 1.2 is proved. 2
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Lemma 1.3 Equation (25) has a unique solution.

Proof. Uniqueness of the solution to (25) is proved in Lemma 1.2. Existence of the solution to
(25) follows from the existence of the solution to the scattering problem and the fact, established
in the proof of Lemma 1.2, that a solution to equation (25) solves equation (21), satisfies the
radiation condition (22), and boundary conditions (18), (19).
Lemma 1.3 is proved. 2

From Lemmas 1.1-1.3 one obtains the following result:

Theorem 2 Equation (25) has a unique solution E. This solution E generates the solution to
the scattering problem by the formula E = E, H := ∇×E

iωµ0
.

Let us construct the Green’s function G analytically, in closed form.
Let us look for G of the form

G(x) =
∫

R3

eiξ·xG̃(ξ)dξ, G̃(ξ) =
1

(2π)3

∫
R3

e−iξ·xG(x)dx. (26)

Take the Fourier transform of (24) and get

− [ξ, [ξ, G̃]]− k2G̃ =
1

(2π)3
I, Iij = δij , (27)

where I is the identity matrix, [a, b] is the cross product of two vectors, and a · b is their dot
product. Equation (27) implies

− ξξ · G̃ + (ξ2 − k2)G̃ =
1

(2π)3
I. (28)

Multiplying (28) by ξ, one finds

ξ · G̃ = − ξ

(2π)3k2
. (29)

From (28) and (29) it follows that

G̃ij =
δij

(2π)3(ξ2 − k2)
− ξiξj

(2π)3k2(ξ2 − k2)
. (30)

Taking the inverse Fourier transform of (30) and using the radiation condition (22), one gets

Gij(x) = g(x)δij +
1
k2

∂ijg(x); g(x) =
eik|x|

4π|x|
, ∂i :=

∂

∂xi
. (31)

From (31) and (25) one obtains:

Ei(x) = E0i(x) + (K2 − k2)
∫

D
g(x, y)Ei(y)dy

+
K2 − k2

k2

∂

∂xi

∫
D

∂g(x, y)
∂xj

Ej(y)dy, 1 ≤ i ≤ 3,

(32)
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where summation over the repeated indices is understood. So far we assumed that K2 does not
depend on y in D.

However, equation (32) yields equation (10) if one takes the region D in (32) to be the union
of the small regions Dm and sets K2 = K2

m in Dm.
From equation (10) one obtains equation (15) using Theorem 1.
If one applies to equation (10) the collocation method, discussed in [9], then one obtains a

linear algebraic system for the unknowns Ei(xm):

Ei(xq) = E0i(xq) +
M∑

m=1,m6=q

(K2
m − k2)g(xq, xm)Ei(xm)|Dm|

+
M∑

m=1,m6=q

K2
m − k2

k2

∂2g(xq, xm)
∂(xq)j∂(xq)i

Ej(xm)|Dm|, 1 ≤ q ≤ M,

(33)

where ∂2g(xq ,xm)
∂(xq)j∂(xq)i

denotes partial derivative of g(x, xm) with respect to the j−th and i−th
component of the vector x, calculated at the point x = xq, and there is no summation over the
index q. The sums in (13)-(14) are the same as in (33).

It is proved in [9] that if assumption (2) holds for the distribution of the points xm in D, then
the collocation method converges, as a → 0, to the solution of the limiting integral equation
(15), where N(x) is the function defined in (2).

In equation (15) the operator

TE =
∫

D
g(x, y)(K2(y)− k2)N(y)E(y)dy

is compact in L2(D). Let

γ(y) :=
K2(y)− k2

k2
, QE := ∇

∫
D
∇xg(x, y)γ(y)N(y)E(y)dy. (34)

Then equation (15) can be written as

E = E0 + TE + QE. (35)

Numerically one can solve equation (15) by a projection method. For example, let {φj(x)}
be a basis of L2(D) and φj ∈ H1

0 (D), where H1
0 (D) is the closure of C∞

0 (D) functions in the
norm of the Sobolev space H1(D). Multiply equation (15) by φm (the bar stands for the complex
conjugate), integrate over D and then the third term by parts, to get:

Eim = E0im +
∫

D
dxφm(x)

∫
D

dyg(x, y)(K2(y)− k2)N(y)
M∑

m′=1

Eim′φm′(y)

−
∫

D
dx

∂φm(x)
∂xi

∫
D

dy
∂g(x, y)

∂xj
γ(y)N(y)

M∑
m′=1

Ejm′φm′(y), 1 ≤ m ≤ M, 1 ≤ i ≤ 3.

(36)

This is a linear algebraic system for finding the coefficients:

E
(M)
im := Eim :=

∫
D

Ei(x)φm(x)dx. (37)

The number M determines the accuracy of the appproximate solution E(x). One has

lim
M→∞

‖E(M)(x)− E(x)‖L2(D) = 0. (38)
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