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Abstract

The Efimov effect plays a central role in few-body systems at ultracold temperature and

has thus accelerated a lot of studies on its manifestation in the collisional stability of the

quantum degenerate gases. Near broad Feshbach resonances, Efimov physics has been stud-

ied both theoretically and experimentally through the zero-energy scattering observables.

We have extended the theoretical studies of Efimov physics to a much broader extent. In

particular, we have investigated the three-body Efimov physics near narrow Feshbach reso-

nances and have also identified the Efimov features beyond the zero temperature limit. We

have found, near a narrow Feshbach resonance, the non-trivial contribution from both of the

resonance width and the short-range physics to the three-body recombination and vibra-

tional dimer relaxation. Remarkably, the collisional stability of the Feshbach molecules are

found to be opposite to that near the broad resonances: an increased stability for molecules

made by bosons and a decreased stability for those made by fermions. The universal physics

observed near the narrow Feshbach resonances is further found not to be limited to the zero

temperature observables. We have found that the general features of Efimov physics and

those pertaining to a narrow resonance are manifested in different energy ranges above zero

temperature. This opens the opportunity to observe Efimov physics by changing the col-

lisional energy while keeping the atomic interaction fixed. The landscape of the universal

Efimov physics is thus delineated in both of the interaction and the energy domain. We have

also investigated Efimov physics in heteronuclear four-body systems where the complexity

can be reduced by approximations. In particular, we have proposed ways for controllable

production of the Efimov tri-atomic molecules by three-body or four-body recombinations

involving four atoms. We have also confirmed the existence of four-body Efimov effect in

a system of three heavy particles and one light particle, which has resolved a decade-long



controversy on this topic. Finally, we have studied the collisional properties of four identical

bosons in 1D, which is important to the experiments on the quantum gases confined in the

1D optical lattices.



UNIVERSAL EFIMOV PHYSICS IN THREE- AND

FOUR-BODY COLLISIONS

by

Yujun Wang

B.S., Nanjing University, China, 2002

A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Physics

College of Arts and Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2010

Approved by:

Major Professor
Dr. Brett D. Esry



Copyright

Yujun Wang

2010



Abstract

The Efimov effect plays a central role in few-body systems at ultracold temperature and

has thus accelerated a lot of studies on its manifestation in the collisional stability of the

quantum degenerate gases. Near broad Feshbach resonances, Efimov physics has been stud-

ied both theoretically and experimentally through the zero-energy scattering observables.

We have extended the theoretical studies of Efimov physics to a much broader extent. In

particular, we have investigated the three-body Efimov physics near narrow Feshbach reso-

nances and have also identified the Efimov features beyond the zero temperature limit. We

have found, near a narrow Feshbach resonance, the non-trivial contribution from both of the

resonance width and the short-range physics to the three-body recombination and vibra-

tional dimer relaxation. Remarkably, the collisional stability of the Feshbach molecules are

found to be opposite to that near the broad resonances: an increased stability for molecules

made by bosons and a decreased stability for those made by fermions. The universal physics

observed near the narrow Feshbach resonances is further found not to be limited to the zero

temperature observables. We have found that the general features of Efimov physics and

those pertaining to a narrow resonance are manifested in different energy ranges above zero

temperature. This opens the opportunity to observe Efimov physics by changing the col-

lisional energy while keeping the atomic interaction fixed. The landscape of the universal

Efimov physics is thus delineated in both of the interaction and the energy domain. We have

also investigated Efimov physics in heteronuclear four-body systems where the complexity

can be reduced by approximations. In particular, we have proposed ways for controllable

production of the Efimov tri-atomic molecules by three-body or four-body recombinations

involving four atoms. We have also confirmed the existence of four-body Efimov effect in

a system of three heavy particles and one light particle, which has resolved a decade-long



controversy on this topic. Finally, we have studied the collisional properties of four identical

bosons in 1D, which is important to the experiments on the quantum gases confined in the

1D optical lattices.



Table of Contents

Table of Contents viii

List of Figures xi

List of Tables xiv

Acknowledgements xvi

Dedication xvii

1 Introduction 1
1.1 Efimov effect in three- and four-body systems . . . . . . . . . . . . . . . . . 1
1.2 Efimov physics in ultracold atomic gases . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Efimov physics in Bose gases . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Efimov physics in Fermi gases . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Prologue for the work in this thesis . . . . . . . . . . . . . . . . . . . . . . . 13

2 Theoretical formulation for few-body scattering 16
2.1 Jacobi vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Hyperspherical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Delves’ hyperspherical coordinates . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Democratic hyperspherical coordinates . . . . . . . . . . . . . . . . . 24

2.3 Adiabatic hyperspherical representation . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Three-body adiabatic equations in Delves’ coordinates . . . . . . . . 28
2.3.2 Three-body adiabatic equations in Smith-Whitten coordinates . . . . 30

2.4 Few-body scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Adiabatic potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Deriving universal expressions for inelastic rates . . . . . . . . . . . . . . . . 38

3 Universal Efimov physics in three-body systems 41
3.1 Ultracold three-body collisions near narrow Feshbach resonances . . . . . . . 42

3.1.1 Modeling Feshbach resonances . . . . . . . . . . . . . . . . . . . . . . 46
3.1.2 Three-body inelastic processes for identical bosons . . . . . . . . . . . 48
3.1.3 Three-body relaxation for fermionic system (FFF ′) . . . . . . . . . . 55
3.1.4 Adiabatic potentials with the zero-range potential model . . . . . . . 56
3.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Colliding Bose-Einstein condensates to observe Efimov physics . . . . . . . . 59
3.2.1 Energy-dependent oscillations in K3 for a > 0 . . . . . . . . . . . . . 60

viii



3.2.2 Higher partial wave contributions . . . . . . . . . . . . . . . . . . . . 65
3.2.3 Three-body recombination in BEC collisions . . . . . . . . . . . . . . 68
3.2.4 A multi-channel approach for recombination at finite energies . . . . 70
3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Universal three-body physics at finite energy near Feshbach resonances . . . 75
3.3.1 Three-body Efimov resonance at finite energy . . . . . . . . . . . . . 76
3.3.2 Energy-dependent oscillations in K3 for a < 0 . . . . . . . . . . . . . 79
3.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Universal Efimov physics in four-body systems 87
4.1 Efimov trimer production via four-body recombination . . . . . . . . . . . . 88

4.1.1 Four-body hyperspherical coordinates . . . . . . . . . . . . . . . . . . 89
4.1.2 Four-body adiabatic potentials . . . . . . . . . . . . . . . . . . . . . . 91
4.1.3 Four-body recombination . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1.4 Experimental issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.1.5 Fermi contact potential in adiabatic hyperspherical representation . . 101
4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Four-body Efimov physics induced by three-body Efimov effect . . . . . . . . 104
4.2.1 Efimov effect with Born-Oppenheimer approximation . . . . . . . . . 105
4.2.2 HL+H +H recombination . . . . . . . . . . . . . . . . . . . . . . . 109
4.2.3 Four-body Efimov effect . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Universal four-body physics in one dimension . . . . . . . . . . . . . . . . . 120
4.3.1 Definitions for two-body scattering in 1D . . . . . . . . . . . . . . . . 122
4.3.2 Four-body hyperspherical coordinates in one dimension . . . . . . . . 123
4.3.3 Four-body adiabatic hyperspherical potentials in 1D . . . . . . . . . . 126
4.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

My Publications 137

References 138

A A diabatic picture generated by freezing three-body geometry 161
A.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.2.1 Three identical particles . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.2.2 Two identical particles . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.2.3 Calculating adiabatic potentials . . . . . . . . . . . . . . . . . . . . . 182

A.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B Single-channel approach for deriving three-body inelastic rates 186
B.1 Zero-energy recombination (a < 0) and relaxation (a > 0) for large effective-

range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

ix



B.2 Recombination at finite energies (a < 0) . . . . . . . . . . . . . . . . . . . . 189

C A multi-channel approach for deriving three-body inelastic rates 190
C.1 General formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
C.2 An analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

x



List of Figures

1.1 The Efimov spectrum in a three-body system . . . . . . . . . . . . . . . . . 3
1.2 The wavefunction for a two-body halo state. . . . . . . . . . . . . . . . . . . 5
1.3 Three-body recombination rates for identical bosons near Feshbach resonances. 9
1.4 Three-body loss rates measured for identical 7Li near a Feshbach resonance. 9

2.1 The three-body Jacobi vectors. . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 The four-body Jacobi vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 A set of adiabatic hyperspherical potentials. . . . . . . . . . . . . . . . . . . 35
2.4 The adiabatic potential model for three-body recombination when a < 0. . . 39

3.1 Schematic potentials for a Feshbach resonance. . . . . . . . . . . . . . . . . . 46
3.2 Comparison between a Feshbach resonance and a shape resonance. . . . . . . 48
3.3 Ultracold three-body recombination rates (a > 0) for identical bosons. . . . . 49
3.4 Ultracold three-body recombination rates (a < 0) and relaxation rates (a > 0)

for identical bosons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Schematic adiabatic hyperspherical potentials near a narrow Feshbach reso-

nance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Adiabatic hyperspherical potentials near a narrow Feshbach resonance. . . . 53
3.7 Relaxation rates for mixed-spin fermions with a>0 and large |reff |. . . . . . . 56
3.8 Schematic potentials and pathways for three-body recombination near zero

energy (a > 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.9 Schematic potentials and pathways for three-body recombination at finite

energy (a > 0, J = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.10 The J=0 recombination rate K3 at finite energies. . . . . . . . . . . . . . . . 64
3.11 Scaled numerical three-body recombination rates K3(E)E2. . . . . . . . . . . 66
3.12 The J = 0+ contribution to K3(E)E2 for Cs+Cs+Li with different scattering

length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.13 Atomic losses during BEC collisions. . . . . . . . . . . . . . . . . . . . . . . 70
3.14 Schematic adiabatic hyperspherical potentials in the multi-channel model for

a > 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.15 A two-channel calculation of the J=0 recombination rate K3 at finite energies

using the multi-channel model (a > 0). . . . . . . . . . . . . . . . . . . . . . 73
3.16 The J=0 recombination rate K3 at finite energies calculated by using the

multi-channel model (a > 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.17 Three-body Efimov resonance at finite energy manifested in the adiabatic

hyperspherical potentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xi



3.18 The evolution of an Efimov resonance with a in the three-body recombination
probability P (a<0)(E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.19 The resonance structures in J=0 recombination rate K3 at finite energies
(a < 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.20 The three-body recombination probabilities for a < 0 near broad Feshbach
resonances at finite energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.21 The three-body recombination probability for a < 0 near narrow Feshbach
resonances at finite energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.22 The three-body relaxation rate for a > 0 near narrow Feshbach resonances
at finite energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 The “K”-type Jacobi vectors for A+ A+ A+B system. . . . . . . . . . . . 91
4.2 The lowest four-body adiabatic hyperspherical potentials Wν . . . . . . . . . . 96
4.3 The recombination probability for several transitions. . . . . . . . . . . . . . 99
4.4 The recombination rates K3 for the process HL+H +H → HHL+H when

M/m = 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.5 The schematic effective hyperspherical adiabatic potentials Wν for a∗HH �

aHL � r0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.6 The recombination rates K3 for the process HL+H +H → HHL+H with

M/m=50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.7 The lowest three-body continuum adibatic hyperspherical potential for HHL

with different mass ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.8 Schematic Efimov energy spectrum for HHHL four-body system. . . . . . . 117
4.9 The collisional relaxation rates Vrel for (Cs−2 )∗+Cs→Cs−2 +Cs . . . . . . . . . 118
4.10 The “H-type” Jacobi vectors in one dimension. . . . . . . . . . . . . . . . . . 124
4.11 The two-body coalescence lines (rij = 0) on the hyperangular plane for four

particles in 1D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.12 Avoided crossings in the four-body adiabatic hyperspherical potentials of the

three- and four-body continuum channels. . . . . . . . . . . . . . . . . . . . 129
4.13 Four-body adiabatic potentials for the dimer-dimer and atom-trimer channels

with one two-body bound state. . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.14 The comparison between numerically calculated few-body binding energies

and the analytical prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.15 The non-adiabatic couplings between the weakly-bound dimer-dimer and

atom-trimer channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.16 The four-body adiabatic potentials with both weakly-bound and a deeply-

bound two-body subsystems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.1 The shape-diabatic potentials and the adiabatic potentials . . . . . . . . . . 166
A.2 Hyperangular wave-functions in shape-diabatic representation. . . . . . . . . 167
A.3 The diagonal couplings in shape-diabatic representation. . . . . . . . . . . . 168
A.4 The couplings between the bound channel and continuum channels. . . . . . 169
A.5 The off-diagonal couplings between the continuum channels. . . . . . . . . . 170

xii



A.6 The shape-diabatic potentials the adiabatic potentials for systems with high
angular momentum bound states. . . . . . . . . . . . . . . . . . . . . . . . . 171

A.7 The couplings in the shape-diabatic representation and adiabatic representation.172
A.8 The diabatic and adiabatic couplings for the channels near a crossing. . . . . 173
A.9 Diabatic hyperangular wave-functions. . . . . . . . . . . . . . . . . . . . . . 174
A.10 The shape-diabatic potentials and adiabatic potentials with large scattering

length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
A.11 The lowest few shape-diabatic potentials and adiabatic potentials for systems

with short-range repulsions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
A.12 Diabatic hyperangular wave-functions. . . . . . . . . . . . . . . . . . . . . . 177
A.13 The couplings in the shape diabatic representation. . . . . . . . . . . . . . . 178
A.14 The couplings in the shape diabatic representation. . . . . . . . . . . . . . . 179
A.15 The diabatic hyperangular wave-functions. . . . . . . . . . . . . . . . . . . . 180
A.16 The “θ-potentials” uλ(R, θ) at R = 40 a.u.. . . . . . . . . . . . . . . . . . . . 181
A.17 The diabatic hyperangular channel function. . . . . . . . . . . . . . . . . . . 181

xiii



List of Tables

2.1 Transformation effect of the permutation operators in Smith-Whitten hyper-
spherical coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Effective-range for some selected Feshbach resonances. . . . . . . . . . . . . . 44

4.1 Universal coefficients cν,ν′ for non-adiabatic couplings Pν,ν′ . . . . . . . . . . 95

A.1 The lowest three adiabatic potential energies calculated at R = 10 a.u.. . . . 183
A.2 The lowest three adiabatic potential energies calculated at R = 100 a.u.. . . 183
A.3 The lowest three adiabatic potential energies calculated at R = 500 a.u.. . . 184

C.1 Universal coefficients cν,ν′ for non-adiabatic couplings Pν,ν′ . . . . . . . . . . 195

xiv



Acknowledgments

First and foremost, I would like to sincerely thank my advisor Dr. Brett Esry for his

guidence and support all through my Ph.D. study. Beginning from the first lecture I have

attended in his class, Brett has helped me build a lot of insights in physics, particularly in

quantum scattering. Thanks to his patience and “hand-in-hand” directions, I have been able

to make fruitful progress in my Ph.D. research. The knowledge I have learned from Brett is

certainly not limited to academic area. He has helped me understand how to manage time

wisely and collaborate with other people efficiently. This valuable experience will be very

helpful for my future life.

During my stay in our research group, I have also been benefited greatly from other

group members. The one on the top of the list is Dr. Jose D’Incao, who gave me a nice

introduction to the study of few-body physics when I first joined the group. Let alone the

help he has offered during the collaborations, I have learned from him to use simple pathway

analysis to get quanlitative results for quantum scattering, which has been one of the most

valuable tools for my research.

Next I would like to thank our group members Dr. Blake Liang and Dr. Jesus Hernández.

The discussions we had have helped me make clear a lot of detailed questions in reseach. I

am also thankful for their kind help on reading my thesis. The final version of this thesis

has been improved significantly by incorporating their suggestions and comments.

In the following I want to give my appreciation to those who have been helpful for

some particular research projects. I am grateful to Dr. Javier von Stecher and Dr. Chris

Greene from JILA for the discussions on four-body Efimov effect. And I want to thank

Dr. Deote Blume from University of Washington for the discussions on one-dimensional

few-body systems. Also, I want to acknowledge Dr. Christophe Näegerl from Innsbruck for
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Chapter 1

Introduction

1.1 Efimov effect in three- and four-body systems

The Efimov effect is one of the most bizarre few-body phenomena in the quantum world,

where the two-body subsystem cannot be bound without the existence of the third particle.

More counterintuitively, the Efimov effect is exhibited as an infinite number of three-body

bound states when the two-body subsystems have a zero-energy bound state and any further

increase of the interactions will only result in a decrease of three-body bound states to a

finite number.

The studies on Efimov physics can be traced back to the seminal work by nuclear physi-

cist Vitaly Efimov [12] in the 1970’s. By using the zero-range potential model [13], he solved

the Faddeev equation [14] in hyperspherical coordinates [15, 16] analytically, and found a

long-range effective three-body interaction which can support an infinite number of bound

states when the two-body subsystems have zero-energy bound states. Limited by the com-

putational capacity at that time, numerically solving the three-body Schrödinger equation

was formidable, and the existence of the Efimov effect was difficult to confirm. Furthermore,

in the context of nuclear physics, experimental observation of the Efimov effect has been

more ellusive since the interactions between the elementary particles are fixed by nature and

a coincidence of zero binding energy is quite unlikely.

The binding energy for two particles E2b is connected to their low-energy scattering

1



1.1. Efimov effect in three- and four-body systems

properties when E2b is much smaller than the “natural” energy scale of an interaction,

1/µ2r
2
0, where µ2 is the two-body reduced mass and r0 is the characteristic size of the

short-range interaction. In particular, E2b is related to the s-wave scattering length a by

E2b=~2/2µ2a
2, where a is defined through the scattering phase shift δ(k) as

a = − lim
k→0

tan δ(k)

k
, (1.1)

where k=
√

2µ2E/~2 is the incident wave number, E is the asymptotic scattering energy

and µ2 is the two-body reduced mass. Physically, the scattering length is a better measure

for the Efimov effect than E2b, because more detailed study shows the Efimov effect can

be considered as a consequence of the long-range correlations between the pairs when |a| is

large [17]. The scattering length a changes from −∞ to +∞ when a two-body state changes

from unbound to weakly-bound. The Efimov bound states formed when a is negatively large

are called “Borromean” states [18], and are of particular interest due to the fact that none

of the two-body subsystems can be bound.

As |a| increases, the number of three-body bound states increases and their energies En

form a geometric series:

En = E0e
−2πn/s0 , (n = 0, 1, 2...) (1.2)

where the ground state energy E0 depends on the details of the three-body interactions

at short range, and s0 is a universal constant determined only by the identical particle

symmetry and the mass ratio of the three particles. For identical bosons, s0 ≈ 1.00624. The

maximum value of n is determined by |a| through

nmax ≈
⌊s0

π
ln(|a|/r0)

⌋
. (1.3)

Figure 1.1 shows a sketch of the three-body Efimov bound state spectrum. On the

left part of the figure when a < 0, three-body Efimov states emerge from the three-body

continuum as 1/a gets closer to zero. It is interesting to notice that these three-body Efimov

states will break when any of the particles are removed from the system. The particles in

2



1.1. Efimov effect in three- and four-body systems

such states are highly correlated [18]. On the right part of the figure the Efimov states

disappear into the two-body break-up continuum as 1/a increases further.

Figure 1.1: The Efimov spectrum in a three-body system. On the negative side of a where
weakly-bound two-body state does not exist, three-body Efimov bound states are born directly
from the three-body continuum (top blue region) as |a| increases. Infinite number of these states
accumulate at a = ∞. At positive side of 1/a where a weakly-bound two-body state exists, the
Efimov trimer states merge into the atom-dimer continuum as a decreases.

There is another bizarre three-body phenomenon which has close relationship with the

Efimov effect, which is called Thomas collapse [19]. Compared to the Efimov effect where

|a| is taken to the limit of infinity while r0 is fixed, the Thomas collapse is manifested by

taking the opposite limit: for fixed scattering length a, when r0 decreases the three-body

energy spectrum scales as Eq. (1.2), except that the value of n takes 0,-1,-2,... and E0

becomes the upper bound of the bound state energies. Thus in the limit r0 → 0, a three-

body system with finite two-body binding energies, does not have a lower bound in the

three-body energy. Since the deeper the energy the smaller the size of the bound state,

the three-body system seeking the lowest bound state is expected to collapse to the center,

giving rise to the Thomas collapse. Interestingly, in classical mechanics the collapse of an

orbital occurs in the case of two particles interacting via an attractive 1/r2 potential when
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the interaction strength is stronger than the centrifugal potential [20], where r is the inter-

particle distance. In fact, as will be discussed in the next chapter, the Efimov effect and

the Thomas collapse share the similar physical origin: the “effective” three-body interaction

behaves attractively like 1/R2, where R is hyperradius [15, 16] which represents the overall

size of a three-body system.

The strangeness of the Efimov effect also rises from the way our world is setup by nature.

For three identical bosons, the Efimov effect only occurs in the spatial dimension d to be

within 2.3 < d < 3.8 [21]. For systems with unequal masses, the lower and upper limits

for the dimensional requirement change, but d=3 is the only integer number for the Efimov

effect to occur [21].

In addition to the requirement of the spatial dimensionality, it is interesting to investigate

the possibility of the Efimov effect in a system with more than three particles. In analogy

with the three-body case, the existence of the N -body Efimov effect is tested when a zero-

energy (N − 1)-body bound state is formed. For N = 4, for instance, the above definition

implies that the four-body Efimov effect is completely independent of the three-body one

since the two-body scattering length is not required to be large. It turns out for identical

particles, the Efimov effect is always absent if the number of particles is beyond three [22].

For a system of particles with unequal masses this question is not well understood. In

particular, for a four-body system of three identical heavy particles (H) and one light

particle (L), there has been a controversy about the existence of the four-body Efimov effect

in the previous studies [23, 24]. But as will be discussed in Sec. 4.2, we have confirmed the

existence of the Efimov effect in such a four-body system by numerical calculations. For

the first time we give an estimate on the number of four-body Efimov states for finite mass

ratios.

Because of the fundamental interest in the Efimov effect, people have made a great effort

to identify the possible Efimov states formed in nuclear and atomic systems. One of the

most concrete pieces of evidence for the Efimov states is that the spacing between the bound
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1.1. Efimov effect in three- and four-body systems

Figure 1.2: The wavefunction for a two-body halo state. The wavefunction has large amplitude
outside the interaction region r ≈ r0, and falls off exponentially only when the distance is beyond
the scattering length a.

state energies follows the prediction from Eq. (1.2). However, the existence of at least one

excited Efimov state is necessary, which typically requires |a| to be a few hundred times

larger than r0. A coincidence of such large scattering length by nature is quite unlikely.

In nuclear systems quantum “halo” states whose wavefunctions have a large amplitude in

the classically forbidden region as shown in Fig. 1.2, are more frequently found [18]. One

example is the 11Li nucleus, which is formed by a 9Li core surrounded by two far away

neutrons [18]. The Efimov states can be viewed as an extreme case of the halo states. The

studies of these “halo” nuclei can thus provide understanding for the Efimov states. In

atomic systems, people have found that the 4He trimers are probably the best candidates

for the Efimov states [25–30]. Specifically, the only two trimer states in this system have

energy spacing close to the expected spacing for Efimov states [25–30].
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1.2 Efimov physics in ultracold atomic gases

The development of experimental techniques for cooling atoms into the nano-Kelvin regime [31]

has not only successfully led to the realization of Bose-Einstein condensates (BEC) [31–33]

and the degenerate Fermi gases, but also opened the great opportunity for the studies of

various few- and many-body quantum phenomena.

In studies of many-body physics, for instance, the coherence of the matter wave for a

BEC can be used to build interferometers for high precision measurements. For degenerate

Fermi gases, a lot of effort has been made toward the understanding of superfluity [34–

37], the energy spectra in the strong interaction regime [35, 38, 39] and the behavior of

the many-body system for the BCS-BEC crossover [34]. Weakly-bound diatomic Feshbach

“halo” molecules have also been observed [40], and their dynamics probed [41]. In these

studies, the strongly interacting systems are especially of interest since the systems are far

from the perturbative regime and novel physical behaviors are expected.

In ultracold gases, the interactions are characterized by the two-body scattering length a.

With the fast development in recent years, experimentalists are able to tune the scattering

length through a huge range of values by use of Feshbach resonances [42, 43]. The atomic

system can be easily changed from the weakly interacting regime (|a| → 0) to the strongly

interacting regime (|a| → ∞).

In the strong interaction regime where |a| is large, Efimov physics comes into play and

it can have a significant effect on experimental studies, especially in systems of identical

bosons. Near a Feshbach resonance, Efimov physics plays a central role in the stability

of atomic components, and weakly-bound molecules in ultracold gases. In ultracold ex-

periments, the loss of atoms in an ultracold gas sample can be reduced to a low level for

“one-body” losses [44] with the rates directly proportional to the atomic density n. Such

losses are typically caused by a collision with a “hot” particle in the background of the

vacuum chamber. Two-body losses occur when two atoms undergo inelastic collisions. The

corresponding two-body loss rates are proportional to n2. Since the ultracold atomic gases
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are very dilute, two-body losses are more likely than one-body losses. These collisions will

usually release binding energy and change the internal state of the atoms. The released

energy is typically much higher than the trapping potential such that the colliding atoms

stop being trapped. But, such losses can be avoided by simply preparing the atomic sample

in the ground hyperfine state so that all the energy-releasing two-body inelastic processes

are energetically forbidden.

1.2.1 Efimov physics in Bose gases

For bosonic atomic gases, it has been observed that three-body inelastic collisions can lead

to huge trap losses near a Feshbach resonance [45–47]. For instance, when a > 0 such that

atoms can form a highly-excited weakly-bound dimer state A∗2, the stability of an atomic gas

sample is mainly determined by three-body recombination A+A+A→A∗2+A. The stability

of a molecular gas sample in an atomic bath for the case a > 0 is predominantly determined

by three-body vibrational relaxation A∗2+A→A2+A, where A2 represents any of the deeply-

bound dimer states. When a < 0, only deeply bound dimer states exist, but three-body

recombination, A+A+A→A2+A, can still lead to a tremendous loss of atoms. The stability

of the deeply-bound diatomic molecules A2, however, does not have a dramatic change near

a Feshbach resonance.

If the loss of atoms is dependent on three-body recombination, for identical bosonic

atoms, the density of atoms remaining in the trap is determined by the rate equation:

dn

dt
= − 3

3!
K3n

3, (1.4)

where n is the atomic density, K3 is the rate of the recombination. In the equation above

the factor of 3 in the numerator comes from the assumption that all three atoms involved in

the recombination event are finally lost. The factor of 3! in the denominator comes from the

statistics of the identical bosons when they are in a quantum degenerate state (BEC) [48].

Note that the identical particles here require not only being the same atomic isotope, but

also being in the same internal quantum state.
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Near a Feshbach resonance, the rate constant K3 increases sharply, and both theoret-

ical [49–52] and experimental [45, 46] studies show that K3 follows an overall a4 scaling.

The strong dependence of K3 on the two-body scattering length a turns out to have a

close relationship with the Efimov effect. This connection also celebrates the analytically

derived [52, 53], universal formulae for the rate constant near zero temperature:

K3 = 67.1e−2η

(
sin2[s0 ln

a

r0

+ Φ] + sinh2 η

)
~
m
a4, (1.5)

for a > 0 and

K3 =
4590 sinh 2η

sin2[s0 ln(|a|/r0) + Φ + 1.53] + sinh2 η

~
m
a4 (1.6)

for a < 0. In these equations, r0 represents the characteristic size of the short-range atomic

interactions and m is the atomic mass. Remarkably, the overall behavior of K3 is determined

only by a, while all the complicated atomic interactions at small distances are condensed in

the two short-range parameters Φ and η [52, 53]. The parameter Φ is related to the phase

of the three-body wavefunction when the three atoms are close together at the distance

of r0. This parameter is sensitive to the details of the atomic interactions and thus can

change dramatically for different atomic species. It can also change across different Fesh-

bach resonances [53]. The other parameter η characterizes the probability for a three-body

inelastic process, which have the final products of a free atom and a deeply-bound diatomic

molecule [52, 53]. As observed in the experiments [54–57], the parameter η is typically

smaller than unity and is on the order of 0.1.

The behavior of the recombination rates K3 in Eq. (1.5) and Eq. (1.6) is shown in Fig. 1.3.

One experimental observation of such behavior can be seen in Fig. 1.4, where the loss rate

L3 due to three-body recombination is shown. The expermental data (symbols) have good

agreement with the theoretical prediction (solid black lines) except for very large |a|, where

the temperature of the atomic gas in the experiment is beyond the zero-energy threshold

for the theoretical prediction to be valid [53, 58]. A clear attribute in the recombination

rate is logarithmically separated features, characterized by a series of minima for a > 0
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Figure 1.3: Three-body recombination rates for identical bosons near Feshbach resonances. The
parameters for Eq. (1.5) and (1.6) are Φ = 0, r0 = 15 a.u. and η = 0.07. The value of r0 and η

are taken to be close to experimental data [54, 57].

Figure 1.4: Three-body loss rates for identical 7Li measured near the Feshbach resonance located
at 737 G. The symbols are from experimental data, and the solid black curves are fits from Eq. 1.5
and 1.6. The green curves indicate the square of the energies of the Efimov trimers, as introduced
in Figure 1.1. Figure is adapted from Ref. [57].
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and a series of peaks for a < 0. As the same scaling behavior is also observed in Eq. (1.2)

for the energies of the Efimov states, one may readily speculate the relationship between

the behavior of the recombination rates and the Efimov states formed near a Feshbach

resonance. In fact, as will be presented in Chap. 2, the minima for a > 0 can be understood

by the interference effect of two recombination pathways in the presence of the Efimov effect.

The peaks for a < 0 have a more direct connection to the Efimov effect: they correspond to

three-body shape resonances as three-body Efimov bound states form. In particular, these

peaks appear exactly at the scattering lengths where the energies of the Efimov states pass

across the three-body break-up threshold, as shown in Fig. 1.1.

One of the most striking features in Eq. (1.5) and (1.6) is the universality. For any

three-body systems interacting via short-range interactions, Eq. (1.5) and (1.6) always hold

as long as |a| is the largest length scale in the system which typically means |a| � r0. This

is especially surprising considering the complexity of the short-range interactions between

the atoms from effects like electron polarization, electron and nucleus exchange, spin-spin

interaction, etc. In fact, not limited to the recombination rates for identical bosons, universal

behavior is seen in various scattering length scaling laws for three-body inelastic rates. Once

these scalings laws are identified, they can be directly applied in other fields like nuclear

physics or chemistry.

Though three-body recombination mostly leads to huge loss near Feshbach resonances

and is thus the process people try to avoid in the ultracold experiments, it is nevertheless the

“smoking gun” for observing the Efimov effect. In fact, the first experimental evidence [54]

of the Efimov effect was from the first resonant peak as predicted in Fig. 1.3 when a is tuned

from 0 to −∞.

In ultracold experiments, as the Feshbach resonance is scanned from the negative side

to the positive side of a, a weakly-bound Feshbach diatomic molecule is formed with size of

a. These newly formed molecules in the atomic bath undergo collisions with free atoms and

inelastic transitions occur when these weakly-bound molecules in a highly-excited vibrational
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state relax into deeply-bound lower vibrational states. Energy conservation requires the

released binding energy from the molecule to go to the kinetic energy of the relative motion

between the molecule and the free atom involved in the collision, and both of them are lost

from the trap. For identical bosons, the rate of the relaxation process near zero temperature

is determined by [52]:

Vrel =
20.1 sinh 2η

sin2[s0 ln(a/r0) + Φ+ 1.47] + sinh2 η

~
m
a, (1.7)

with the parameters defined the same as for the three-body recombination.

The behavior of Vrel in Eq. (1.7) is similar to that of K3 for a < 0, as observed in

Eq. (1.6). They both feature a series of logarithmically separated peaks, but the overall

scaling of the rate with a is only linear. Also, the peaks in Vrel have a similar origin as

those in K3, they appear at the scattering length when an atom and a dimer can form a

barely-bound Efimov state. This occurs in Fig. 1.1 when the energies of the Efimov states

merge into the atom-dimer continuum. The difference is that for a < 0 Efimov states are

formed near the three-body break-up threshold while for a > 0 Efimov states are formed

near the atom-dimer threshold and consequently lead to a diverging atom-dimer scattering

length. These physical properties can be more intuitively understood when we introduce

the hyperspherical framework in Chap. 2.

The resonantly increasing relaxation rate with increasing scattering length leads to

huge trap losses of the of the weakly-bound molecules produced near Feshbach resonances.

Though troublesome for the studies of the molecules, it offers an alternative way for observ-

ing the Efimov effect, as reported in Ref. [55].

The experimental signatures of the Efimov effect are not limited to the three-body pro-

cesses mentioned above. The legacy of the three-body Efimov effect has been predicted [59]

and observed [57, 60] in the loss signatures of the atoms by four-body recombinations.

These signatures are the manifestation of four-body resonances attached to three-body Efi-

mov states. Interestingly, there are always two of such resonant states for each of Efimov

state [59], giving rise to two sub-peaks in the loss signal on top of each of the main peaks
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observed in Eq. (1.6) [57, 60].

The experimental manifestations of the three-body Efimov effect discussed thus far are

for identical bosons. The Efimov effect is altered, in a universal way, when the three-body

system includes non-identical particles. It is difficult to obtain large scattering lengths for

three pairs independently for non-identical interactions. If two of the particles are identical

bosons, and the third particle has a large scattering length with each of them, the Efimov

effect shows up and all the three-body inelastic rates are essentially the same as for three

identical bosons. The important universal constant s0, which determines the ratio of the

consecutive Efimov bound state energies and the period of the logarithmically separated

features in inelastic rates, increases as the mass ratio between the bosons and the third

particle increases. The observation of the Efimov effect is thus favored in the three-body

system of two heavy atoms and one light atom where the period in the rates is small.

If there is only one large scattering length in the three-body system, the Efimov effect

does not occur and the three-body inelastic rates do not have log-periodic features near

Feshbach resonances [61]. However, the rates still have universal scaling with the scattering

length. The three-body relaxation rate of the Feshbach molecules is actually suppressed,

and scales like 1/a [61].

1.2.2 Efimov physics in Fermi gases

As mentioned previously, the occurrence of the Efimov effect also depends on identical parti-

cle symmetry. When there are at least two identical fermions, the three-body recombination

rates in the zero temperature limit vanish due to Fermi statistics. Fermi gases of different

spin mixtures have been studied intensively in recent years due to the close relationship

to the study of the superfluity and superconductivity [34]. In these experiments, the scat-

tering length between dissimilar fermions are typically tuned large to get to the strongly

interacting regime. The stability of the gas sample under such conditions is determined by

the universal scaling of the three-body collisions with two identical fermions and another
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fermion from the same isotope but in a different hyperfine state.

A large scattering length between fermionic atoms in different hyperfine states can be

achieved by a Feshbach resonance [43]. The three-body relaxation of Feshbach molecules in

the presence of an atom in either of the hyperfine states is suppressed by the large scattering

length as 1/a3.33 [62]. Though the Feshbach molecules are composite bosons, so that they do

not have Pauli blocking when they are considered as single particles, the collisional relaxation

rate of two such molecules is nevertheless suppressed as 1/a3.2 when the four-body nature of

the collision is considered [63]. These molecules are thus stable under various collisions so

that further studies involving Feshbach resonances, such as the BCS-BEC crossover [34] and

the production of the ultracold molecule in the absolute ground state [64, 65], are greatly

facilitated.

The universal scalings of three- and four-body inelastic processes for all combinations of

particles described above can be understood by the same physics as the three-body Efimov

effect. A comprehensive list of scaling laws for the corresponding rates has been compiled

in Ref. [66, 67]. The extent of Efimov physics, however, is far from being exhausted. In

fact, more interesting scattering phenomena related to Efimov physics have recently been

identified for both three- [5, 11] and four-body [7][68] systems, and the studies on these

systems have been even more active.

1.3 Prologue for the work in this thesis

Before presenting our work for the Efimov-related studies in the few-body systems, I will

summarize the contributions I made during my Ph.D. studies.

• Numerical calculation.

In studies of universal physics in few-body systems, I have performed hundreds of

three-body scattering calculations to extract the universal behavior and to check the

validity of various analytical results. The results of the work will be presented in detail

in the following chapters and can also be found in my following works [1, 2, 5, 7, 11].
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For a specific atomic system where the two-body spectrum is simple, such as a three-

body system comprised of two hydrogen atoms and one alkali atom, I have performed

large-scale computations up to 50,000 CPU hours to calculate various three-body

scattering observables, where the majority of the computational power was used to

solve generalized eigenvalue problem of banded matrix with order about 105 and band

about 2500. The eigenvalue problem comes from solving a set of coupled 2D differential

equations in B-spline basis, as will be discussed in detail in Section 2.3.

• Analytical expression.

Based on the universal scaling behavior generalized from the numerical studies, I have

set up simple models to derive analytical expressions for various few-body scatter-

ing observables. This analytical work not only gives the correct scaling laws in the

universal regime but also provide deep insight on the physical mechanisms which led

to these scaling laws. I will present these expressions in the following chapters and

will explain their derivation in Appendix B and C. They can also be found in my

works [2, 5, 7, 10, 11].

• Numerical methods and algorithmic development.

To handle the numerical difficulty of sharp curve crossings in adiabatic representa-

tions [69], and large dimensionality involved with going toward the few-body systems

with more particles, I have developed diabatic representations for solving the few-body

Schrödinger equation. They will be presented in Sec. 4.1.2 and in Appendix A. They

can also be found in the following works [3, 10].

• Spanning field study.

The methods we use in few-body scattering do not only pertain to the world of ultra-

cold temperatures. I have studied the properties of a hydrogen atom in the presence

of an intense laser field by using adiabatic Floquet representation [70] and a curve

crossing model [71], which can be found in the work [6].
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In the following parts of my thesis, I will present the progress we have made on Efimov

physics in three- and four-body systems. These studies have benefited from the universal

property of the Efimov physics, where general features in the inelastic processes are pre-

dominantly determined by a and the fact that non-universal short-range physics, no matter

how complicated it could be, only contributes to only one or two parameters in the rate

expressions. Specifically, this allows us to use convenient model potentials to mimic atomic

interactions, which greatly simplifies our numerical calculations and the analyses as the re-

alistic atomic interactions in the ultracold experiments are of a multi-channel nature with

at least hundreds of two-body ro-vibrational bound states. The model potentials used in

our calculations, however, are single-channel and have only a few two-body bound states,

which makes the three-body calculations much easier.
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Chapter 2

Theoretical formulation for few-body
scattering

The few-body problem has been of people’s interest since the era of Newtonian mechanics.

In fact, after the two-body problem was solved by Newton in the seventeenth century [72],

people have made a great effort to find a general solution for the three-body problem, but

only realized that this is impossible after nearly three hundred years, as three-body systems

usually exhibit chaotic behavior [73]. Nevertheless, studies on three-body problems have

high priority in basic scientific research especially in astrophysics. For instance, people have

worried about the collapse of celestial bodies interacting with gravitational force in a system

of more than two celestial bodies. This concern comes from the fact that the energy of a

classical three-body system is not discretized so that one of the bodies can continuously take

away binding energy and make the other two finally collapse on each other. Fortunately,

in most celestial systems two-body motion contributes dominantly to the dynamics of the

whole system while the effect of a third or further bodies can be treated perturbatively. The

inter-celestial trajectory in such systems are typically stable.

In the microscopic world such as atoms and molecules however, few-body dynamics are

typically non-perturbative and the classical orbitals are mostly unstable. But the situation

changes fundamentally in the quantum mechanical world. The quantization of the two

most important physical observables: energy and angular momentum lead to stable steady
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states for the few-body system under certain circumstances. More importantly, significant

progress has been made in three-body [50–52, 66, 74] and four-body[10][59, 63, 68] scattering

processes especially under ultracold temperatures.

To solve the few-body scattering problem, one needs to solve the few-body Schrödinger

equation and get the corresponding scattering wave-function. There are different ways to

achieve this. For instance, instead of solving the Schrödinger equation directly one can solve

the Faddeev-Yakubovski equations [14] or Alt-Grassberger-Sandhas (AGS) equations [75].

The benefit of solving these equations is that numerically they better treat the disconnected

amplitudes for various fragmentation configurations in the total wavefunction. However,

spurious solutions can appear and numerical calculations can be inefficient due to the trans-

formation from one fragmentation configuration to another.

2.1 Jacobi vectors

In our numerical studies, we solve the few-body Schrödinger equation directly. For particles

in free space, total linear and angular momentum are conserved. The center of mass mo-

tion can be separated out by transforming the position vectors of the particles into Jacobi

vectors [15, 16]. The Jacobi vectors are essentially built by connecting the positions of the

particles and the centers of mass. These vectors are then scaled by mass factors for further

convenience. For a three-body system with masses mi (i=1, 2, 3), there are three different

choices of mass-scaled Jacobi vectors, defined by:

~ρij =

√
µij
µ3

(~ri − ~rj), (2.1)

~ρij,k =

√
µij,k
µ3

(~rk −
~ri + ~rj

2
), (2.2)

where ~ri (i=1, 2, 3) are the lab-frame position vectors. The three-body reduced mass µ3 is

defined as:

µ3 =

(
m1m2m3

m1 +m2 +m3

) 1
2

, (2.3)

17



2.1. Jacobi vectors

and the reduced masses µij, µij,k are defined by

µij =
mimj

mi +mj

, µij,k =
mk(mi +mj)

mi +mj +mk

. (2.4)

An illustration of the three-body Jacobi vectors is shown in Fig. 2.1 All three choices

of Jacobi vectors are equivalent: they can be transformed to each other by kinematic ro-

tations [76]. In numerical calculations, selecting one particular set of Jacobi vectors can

be more convenient for calculating the asymptotic wavefunction when the three-body sys-

tem breaks up into a A2 +A configuration where the two-body composite A2’ is connected

directly by one of the Jacobi vectors.

Figure 2.1: The three-body Jacobi vectors.

For a four-body system, there are 18 different definitions of mass-scaled Jacobi vectors.

They can be categorized, however, into two groups. One is the so-called “K-type”, as defined

by

~ρij =

√
µij
µ4

(~ri − ~rj), (2.5)

~ρij,k =

√
µij,k
µ4

(~rk −
~ri + ~rj

2
), (2.6)

~ρijk,l =

√
µijk,l
µ4

(~rl −
~ri + ~rj + ~rk

2
), (2.7)

where µijk,l is the reduced mass between particle l and the other three bodies:

µijk,l =
ml(mi +mj +mk)

mi +mj +mk +ml

. (2.8)

The four-body reduced mass µ4 is defined as

µ4 =

(
m1m2m3m4

m1 +m2 +m3 +m4

) 1
3

. (2.9)
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Another group, called “H-type”, is constructed by connecting two pairs of particles first and

then the center of mass for each pair, and is defined as

~ρij =

√
µij
µ4

(~ri − ~rj), (2.10)

~ρkl =

√
µkl
µ4

(~rk − ~rl), (2.11)

~ρij,kl =

√
µij,kl
µ4

(
~ri + ~rj

2
− ~rk + ~rl

2
), (2.12)

where µij,kl is the reduced mass between the pairs:

µij,kl =
(mi +mj)(mk +ml)

mi +mj +mk +ml

. (2.13)

All other sets of Jacobi vectors within each group can be obtained by permutation of the

particles. The sets of Jacobi vectors from different group can only be transformed to each

other by kinematic rotations. As shown in Fig. 2.2, the “K-type” vectors are better fitted

for describing the A3 +A break-up, while the “H-type” vectors are expected to give a better

treatment of A2 + A2 break-up.

Figure 2.2: The four-body Jacobi vectors of “K-type” (a) and “H-type” (b).

The Jacobi vectors for an N -body system can be defined, in principle, by following

the similar procedure of connecting the particles and their center of masses. The N -body

reduced mass µN can be defined in the way such that the Jacobian has no overall mass

factor after the tranformation from lab vectors to Jacobi vectors [16]. This leads to

µ
−N−1

2
N

(
N∏
i=2

mi

∑i−1
k=1mk∑i

j=1mj

) 1
2

= 1. (2.14)
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2.2. Hyperspherical coordinates

Then µN takes the following form which is independent of a specific definition of Jacobi

vectors:

µN =

(
N∏
i=1

mi/

N∑
j=1

mj

) 1
N−1

. (2.15)

2.2 Hyperspherical coordinates

In few-body scattering, different groups of interparticle distances can go to infinity when the

system breaks up in various ways. It is numerically inconvenient to deal with more than one

coordinate going to infinity and it also requires separate scattering analyses for each of the

break-up configurations. However, one can define hyperspherical coordinates [15, 16], as the

generalization of spherical coordinates in the two-body case, to represent the break-up of

a few-body system by a single coordinate. Hyperspherical coordinates and hypershperical

harmonics were introduced as early as 1935 by Zernike and Brinkman [77]. In the early

days when computational capability was very limited, studies on the Schrödinger equation

in the hyperspherical coordinates are mostly focused on the transformation properties of

the coordinates and the mathematical properties of the hyperspherical harmonics [78, 79].

With the rapid development of computational power, hyperspherical coordinates are

being widely adopted in atomic, molecular, and nuclear physics. For instance, in atomic

physics hyperspherical coordinates have been used successfully to explain the spectrum of

doubly excited states for the He atom and the H− ion [80]. In molecular physics, hyper-

spherical coordinates are used to study the ro-vibrational energy spectrum [30, 81, 82] and

various scattering processes [83, 84]. The application of hyperspherical coordinates in nu-

clear physics starts early [15, 16, 21] and is most renowned by studies of halo nuclei [18].

Hyperspherical coordinates have also been widely used in quantum chemistry calculations.

For instance, the coordinates have been adopted in calculations for reactive scattering by

Launay, et al. [85–98], Parker, Pack, et al. [99–105]. In addition to the studies of realistic

physical systems, hyperspherical coordinates have achieved great success in the study of
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2.2. Hyperspherical coordinates

universal physics. An approach similar to hyperspherical coordinates had been used for

the discovery of the Efimov effect in the early days [12, 106, 107], and different forms of

hyperspherical coordinates have been successfully used in studies on the universal scattering

properties of the few-body systems in recent years [50, 59, 63, 66, 68, 74].

The coordinate in the hyperspherical coordinates representing break-up is recognized

as hyperradius R, defined from the sizes of the mass-scaled Jacobi vectors. Its square is

defined by the square sum of all the mass-scaled Jacobi vectors. For instance, for a three-

body system it is defined by

R2 = ρ2
ij + ρ2

ij,k (2.16)

for a three-body system, and defined by

R2 = ρ2
ij + ρ2

kl + ρ2
ij,kl (2.17)

for a four-body system if “H-type” Jacobi vectors are used.

One important property of the hyperradius is its invariance under kinematic rotations.

This dramatically eases the numerical calculations, as it allows one to use other convenient

representations for the remaining degrees of freedom. Since the hyperradius R is invariant,

the differences between the hyperspherical representations are contained in the definitions

of the hyperangles. Some of these angles describe the spatial rotations and others describe

the geometrical configurations. By using a collective coordinate Ω to represent all the

hyperangles, the few-body Schrödinger equation takes the following form [108]:[
− 1

2µN

(
∂2

∂R2
+

(N − 1)D − 1

R

∂

∂R

)
+

Λ(Ω)2

2µNR2
+ V (R,Ω)

]
Ψ = EΨ, (2.18)

where N is the number of particles, D is the spatial dimension and E is the total scattering

energy. The first-order hyperradial derivative can be eliminated upon the substitution:

Ψ =
∞∑
ν=0

R−
(N−1)D−1

2 ψ, (2.19)
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2.2. Hyperspherical coordinates

and Eq. (2.20) becomes{
− 1

2µN

∂2

∂R2
+

Λ(Ω)2

2µNR2
+

[(N − 1)D − 1][(N − 1)D − 3]

8µNR2
+ V (R,Ω)

}
ψ = Eψ. (2.20)

The square of the generalized angular momentum operator Λ2 describes the rotation of

the system on a (N−1)×D dimensional sphere and V includes all the interactions between

the particles.

Though the definition for the hyperradial part of the Hamiltonian in Eq. (2.20) can

be written in a simple general form, the definition for the hyperangles Ω cannot. Even

for a particular N and D there are many ways to define a set of hyperangles [108–113].

The definition of the hyperangles Ω is important in the numerical convergence and for

imposing identical particle symmetry in the calculations. In the following, we will discuss

the hyperangular degrees of freedom specifically for the three-body systems while keeping

the hyperradial degrees of freedom as general as possible. The discussion for four-body

hyperangles will be presented in Sec. 4.3 for the individual applications.

2.2.1 Delves’ hyperspherical coordinates

The key feature of the Delves’ hyperspherical coordinates [15, 16] is that the hyperangles

representing the configurational motion are defined by the relative size of the Jacobi vectors.

In a three-body system there is only one such angle, φ, defined as

φ = tan−1

(
ρ12,3

ρ12

)
, (0 ≤ φ ≤ π/2), (2.21)

where we have picked the first set of Jacobi vectors in Fig. 2.1. The rest of the hyperangles

can be either defined in a space-fixed frame or a body-fixed frame. In a space-fixed frame,

the hyperangles are taken as the polar angles ϑ12, ϑ12,3 and azimuthal angles ϕ12, ϕ12,3 of

the Jacobi vectors. The symmetry of the total orbital angular momentum J can be built

in the three-body wavefunction ψ by superposing all the partial angular momentum states
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2.2. Hyperspherical coordinates

Y`12m12 , Y`12,3m12,3 with the appropriate Clebsch-Gordon coefficients [114]:

ψ =
∑

`12,m12

`12,3,m12,3

f`12,`12,3(R, φ)〈`12m12`12,3m12,3

∣∣JM〉Y`12m12Y`12,3m12,3 . (2.22)

The indices of m12 and m12,3 are suppressed in ψ since the equation for ψ in free space is

independent of them. The identical particle symmetry for particles 1 and 2 can be imposed

by only including the harmonics Y`12m12 which have the correct permutation symmetry.

This definition of the hyperangles is simple and easy to generalize for more particles.

It also has the benefit that the obvious basis functions for the angular degrees of freedom

recognized as the spherical harmonics Y`m are in analytic form. For some types of interac-

tions V , the matrix elements of the Hamiltonian 〈Y`′m′ |H|Y`m〉 can be evaluated analytically

which means few-body problems that have fast convergence with (`,m) can be solved very

efficiently.

However, for describing a A2 + A break-up where the pair A2 is not connected directly

by the Jacobi vector, lots of partial angular momenta will be required for convergence when

the separation of the system becomes large. For instance, using the Delves’ hyperspherical

coordinates defined above, the number of spherical harmonics required for representing the

break-up between the particle 2 and a two-body bound state formed by particle 1 and 3

scales linearly with d/r0, where d is the distance between particle 1 and the pair, r0 is the

size of pair bound states.

One approach to deal with this situation is to go to the body-fixed frame. In the body-

fixed frame, the overall rotation of the system is characterized by three Euler angles α, β

and γ [115]. For a three-body system, in addition to the hyperangle φ, the other hyperangle

is the angle between the two Jacobi vectors θ (0 ≤ θ ≤ π). We give the explicit form of the

square of the generalized angular momentum operator Λ2 in the body-fixed frame as the

following [108]:

Λ2 = T0 + T1 + T2 − 2, (2.23)

23



2.2. Hyperspherical coordinates

where

T0 =
∂2

∂φ2
− 4

sin2 2φ

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
, (2.24)

T1 =
4

sin2 2φ

1

sin2 θ
J2
z −

1

cos2 φ
(2J2

z − J2), (2.25)

T2 =
1

cos2 φ

(
2iJy

∂

∂θ
+ 2 cot θJxJz

)
. (2.26)

The operator J2 is the square of the total orbital angular momentum operator and the

operators Jx, Jy, Jz are the projection of J on the principle axes of the moment of inertia

and the quantization axis (z-axis) for the angular momentum is taken along the Jacobi

vector ~ρi.

In the body-frame Delves’ coordinates, the identical particle symmetry for two particles

connected directly by a Jacobi vector can be imposed by restricting the range of the hy-

perangle θ and requiring appropriate boundary conditions. The detailed procedure will be

introduced in Sec. 2.3.

2.2.2 Democratic hyperspherical coordinates

Though the Delves’ hyperspherical coordinates are easy to be defined and are intuitively

understandable, it is difficult to impose the permutation symmetry of the particles not

directly connected by Jacobi vectors. A definition of hyperspherical coordinates which can

impose the permutation symmetry with simple operations is thus highly desirable. The

“democratic” hyperspherical coordinates are designed to treat all the particles on equal

footing regardless of the fact that they have been unequally treated by using the Jacobi

vectors.

To build as much of the identical particle symmetry into the hyperspherical coordinates

directly it is crucial to finding invariant physical identities under permutation operations.

One observation is that the moment of inertia tensor is invariant under permutation of

identical particles. Since the invariant coordinates should also not be changed under spatial

rotation, we transform the coordinates of the particles in the body-fixed frame so the mo-
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2.2. Hyperspherical coordinates

ment of inertia tensor is diagonal. The number of independent diagonals in the moment of

inertia tensor determines the maximum possible invariant coordinates under identical par-

ticle permutations. In general, if the spatial dimension is 3, all three moments of inertia of

the particles are independent, implying three invariants can be obtained when defining a set

of hyperspherical coordinates. In 2D, though, only two moments of inertia are independent

and the third one can be expressed as the sum of the other two. Finally in 1D only one is

independent. Thus, in addition to the hyperradius, there will be two invariant hyperangles

in 3D and one invariant hyperangle in 2D. No hyperangle is invariant in 1D.

Since in hyperspherical coordinates one of the invariant coordinates has already been

defined as the hyperradius, the rest invariant coordinates can be defined as hyperangles.

Note that the three-body system is a special case because the particles can always be put in

a plane and the number of independent moments of inertia is reduced to two. The number

of hyperangles which are changed under permutation is D(N − 1) − (nin − 1) − nrot,

where nin is the number of invariant coordinates and nrot=D(D− 1)/2 is the number of the

angles for spatial rotations, which are the polar angle in 2D and the three Euler angles in

3D. The angles for spatial rotations are counted separately since at most they are simply

shifted under permutations. Defining democratic hyperspherical coordinates is usually not

intuitive, but there are general procedures available to follow [111–113, 116, 117].

For three particles in 3D, we follow the definition of the hyperangles from Smith and

Whitten [109, 110]. The quantization axis for angular momentum (z-axis) is chosen to be

along the direction perpendicular to the plane containing the three particles. The invariant

hyperangle θ and the hyperangle φ are related to the Jacobi vectors in the body-fixed frame

25



2.2. Hyperspherical coordinates

by [110, 118]

(~ρ12)x = R cos(θ/2− π/4) cos(φ/2 + φ12/2), (2.27)

(~ρ12)y = R sin(θ/2− π/4) sin(φ/2 + φ12/2), (2.28)

(~ρ12,3)x = −R cos(θ/2− π/4) sin(φ/2 + φ12/2), (2.29)

(~ρ12,3)y = R sin(θ/2− π/4) cos(φ/2 + φ12/2), (2.30)

where φ12=2 tan−1(m3/µ3). The z components of the vectors are zero. The range for θ is

[0, π/2], and the range for φ is [0, 2π]. The interparticle distances in the Smith-Whitten

hyperspherical coordinates are expressed as

rij = 2−1/2dijR[1 + sin θ cos(φ+ φij)]
1/2, (2.31)

where

d2
ij =

mk

µ3

mi +mj

mi +mj +mk

, (2.32)

with i, j, k chosen cyclically, and

φ12 = 2 tan−1(m3/µ3), φ23 = 0, φ31 = −2 tan−1(m2/µ3), (2.33)

where 0 < φ12 < π and −π < φ31 < 0. Note that the previous discussion argues that there

should be two invariant hyperangles when the spatial dimension is 3, regardless the number

of particles. Though in above definition for three-body democratic coordinates we have only

φ invariant, there is actually another invariant hyperangle, but defined exactly as zero [116].

The square of the generalized angular momentum operator Λ2 in Smith-Whitten hyper-

spherical coordinates is defined by [116, 119]

Λ2 = Tθ + Tφ + Trot, (2.34)
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2.3. Adiabatic hyperspherical representation

where

Tθ = − 4

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
, (2.35)

Tφ =
2

sin2 2θ

(
i
∂

∂φ
− cos θ

2
Jz

)2

, (2.36)

Trot =
2

1− sin θ
J2
x +

2

1 + sin θ
J2
y + J2

z . (2.37)

2.3 Adiabatic hyperspherical representation

To solve the few-body Schrödinger equation Eq. (2.20), one needs to solve a D(N − 1) di-

mensional differential equation. Since the hyperradius R is invariant under all symmetry

operations, it is convenient to deal with the hyperradial and hyperangular degrees of free-

dom separately and build all the symmetry in the hyperangular solutions. Also, since the

hyperradius measures the overall size of a few-body system, we can assume it represents

a slow motion compared to the hyperangular motions which represent the change of the

spatial configuration. As firstly pointed out by Macek as early as in 1968 [120], the hyper-

radial and hyperangular motions can be assumed to be approximately separable so that an

adiabatic representation can be expected to provide high efficiency in solving Eq. (2.20).

By treating the hyperradius as an adiabatic parameter, we can solve the adiabatic equa-

tion{
Λ(Ω)2

2µNR2
+

[(N − 1)D − 1][(N − 1)D − 3]

8µNR2
+ V (R,Ω)

}
Φν(R; Ω) = Uν(R)Φν(R; Ω),

(2.38)

and obtain a set of hyperangular basis functions {Φν} parametrized by R. The total wave-

function can be expanded in this basis set as

ψ(R,Ω) =
∞∑
ν=0

FE,ν(R)Φν(R; Ω). (2.39)

Equation (2.20) reduces to a set of coupled 1D equations:(
− 1

2µN

d2

dR2
+ Uν(R)

)
FE,ν −

1

2µN

∑
ν′

(
2Pν,ν′

d

dR
+Qν,ν′

)
FE,ν′ = EFE,ν , (2.40)
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2.3. Adiabatic hyperspherical representation

where the non-adiabatic couplings Pν,ν′(R) and Qν,ν′(R), which drive inelastic transitions,

are defined as

Pν,ν′(R) =

〈〈
Φν

∣∣∣∣ ddR
∣∣∣∣Φν′

〉〉
, Qν,ν′(R) =

〈〈
Φν

∣∣∣∣ d2

dR2

∣∣∣∣Φν′

〉〉
. (2.41)

The double angular bracket here indicates integration over only the hyperangular degrees

of freedom. With the above definitions, the Hamiltonian in Eq. (2.40) is not manifestly

Hermitian with respect to the indices ν and ν ′. That is, the Hamiltonian is not symmetric

piece by piece under the exchange of ν and ν ′. In numerical calculations the Hermiticity

of the Hamiltonian will be lost with finite numerical accuracy. However, we can make the

Hamiltonian manifestly Hermitian by rewriting Qν,ν′ using the following identity

Qν,ν′ =
dPν,ν′

dR
+ (P 2)ν,ν′ , (2.42)

where the square of the coupling matrix Pν,ν′ can be evaluated by

(P 2)ν,ν′ = −
〈〈
dΦν

dR

∣∣∣∣dΦν′

dR

〉〉
. (2.43)

It should be noted that Pν,ν′ is antisymmetric matrix and (P 2)ν,ν′ is a symmetric matrix.

Writing it this way has the additional benefit that the second order derivative of the adiabatic

functions is no longer required, which is usually not easy to evaluate accurately.

Solving the adiabatic equation Eq. (2.38) is typically the most time demanding in our

calculations since more degrees of freedom are involved. In free space, the total angular

momentum is conserved so that in the body-fixed frame the Euler angles can be separated

from the “internal motion” of the system, by expanding the adiabatic wave-function Φν over

eigenfunctions of total angular momentum.

2.3.1 Three-body adiabatic equations in Delves’ coordinates

In the following we will give the details for solving the three-body adiabatic equations. The

adiabatic wavefunction can be expanded in the following form:

Φν(R; Ω) =
J∑

K=Kmin

uν,K(R; θ, φ)D̃JΠ
KM(α, β, γ), (2.44)
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2.3. Adiabatic hyperspherical representation

where the symmetrized Wigner D-functions D̃JΠ
KM [108] are the simultaneous eigenfunctions

of total angular momentum and total parity Π. They can be expressed by Wigner D-

functions as:

D̃JΠ
KM(α, β, γ) =

1

4π

√
2J + 1

[
DJ
KM(α, β, γ) + (−1)J+KΠDJ

−K,M(α, β, γ)
]
. (2.45)

Here K and M are the magnetic quantum numbers of the projection of total orbital angular

momentum on the body-fixed and space-fixed z-axes, respectively. The eigenvalue of the

total parity Π can take values ±1, which determines the range of K in the summation in

Eq. (2.44): Kmin=0 for “parity-favored” states when Π=(−1)J and Kmin=1 for “parity-

unfavored” states when Π=−(−1)J .

The identical particle symmetry of the particles “1” and “2” which are connected directly

by a Jacobi vector can be easily implemented. The permutation operator P12 gives the

following transformation:

P12D̃
JΠ
KM = Π(−1)KD̃JΠ

KM , (2.46)

P12θ → π − θ. (2.47)

The identical particle symmetry can then be imposed by restricting the range of the hyper-

angle θ to be [0, π/2], and requiring the following boundary conditions for the body-frame

components uν,K(R; θ, φ):

uν,K(R; θ, φ)
∣∣
θ=π/2 = AΠ(−1)Kuν,K(R; θ, φ)

∣∣
θ=π/2 , (2.48)

∂uν,K(R; θ, φ)

∂θ

∣∣
θ=π/2 = AΠ(−1)K+1∂uν,K(R; θ, φ)

∂θ

∣∣
θ=π/2 , (2.49)

(2.50)

where A = 1 for bosons and A = −1 for fermions. The range restriction on θ leads to a

2! reduction in the numerical calculations for a given accuracy. The permutation operation

of P13 and P23, however, mixes up the hyperangles θ and φ so that imposing the identical

particle symmetry for these pairs is much harder.
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2.3. Adiabatic hyperspherical representation

Permutation φ DJ
KM

P12 2π − φ (−1)JDJ
−KM

P23 2π/3− φ (−1)JDJ
−KM

P31 4π/3− φ (−1)J+KDJ
−KM

Table 2.1: Transformation effect of the permutation operators in Smith-Whitten hyperspherical
coordinates. The effects of other two permutation operations P12P23 and P12P31 can be obtained
by applying the individual operators consecutively.

2.3.2 Three-body adiabatic equations in Smith-Whitten coordi-
nates

The permutation symmetry for three identical particles can be most easily imposed in Smith-

Whitten coordinates. We expand the adiabatic wavefunction in the basis of Wigner D-

functions DJ
KM :

Φν(R; Ω) =
∑
K

uν,K(R; θ, φ)DJ
KM(α, β, γ). (2.51)

For the “parity-favored” states K takes the values of −J , −(J−2), ... ,J−2, J , and for the

“parity-unfavored” states K takes the values of −(J−1), −(J−3), ... ,J−3, J−1. Though

Wigner D-functions we are using here is same as those in previous section, the difference

in the choices of quantization axis makes the permutation effect on Wigner D-functions no

longer the same for the two cases.

The permutation symmetry for two identical particles is also simple in Smith-Whitten

coordinates and has been given in Ref. [121]. Here we give the method to impose the

permutation symmetry for three identical particles. In Table 2.1, we list the transformation

effect of the permutation operators on the hyperangle φ and the Wigner D-functions. These

transformations are equivalent to the following boundary conditions when we restrict the

range of the hyperangle φ to be within [0, π/3]:

uν,K(R; θ, 0) = A(−1)Juν,−K(R; θ, 2π) = A(−1)J+Kuν,−K(R; θ, 0), (2.52)

∂uν,K(R; θ, φ)

∂φ

∣∣∣∣
φ=0

= A (−1)J+K+1∂uν,−K(R; θ, φ)

∂φ

∣∣∣∣
φ=0

, (2.53)
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and

uν,K(R; θ, π/3) = A(−1)Juν,−K(R; θ, π/3), (2.54)

∂uν,K(R; θ, φ)

∂φ

∣∣∣∣
φ=π/3

= A (−1)J+1∂uν,−K(R; θ, φ)

∂φ

∣∣∣∣
φ=π/3

. (2.55)

Here the restriction of the range on φ leads to a 3! reduction for numerical calculations.

In either Delves’ or Smith-Whitten coordinates, the adiabatic equation Eq. (2.38) for

three-body systems reduces to 2D equations for coupled body-frame components uν,K . We

typically solve these equations by expanding the body-frame components in a 2D direct

product B-spline basis {Bi(θ)} ⊗ {Bj(φ)}. The boundary conditions for imposing the iden-

tical particle symmetries are directly built in the basis functions.

We have also solved the 2D equations by solving each dimension consecutively, which

can reduce the requirement for computational resources significantly. A generalization of

this method to few-body systems with more particles gives hope for performing scattering

calculations with more particles. The detailed implementation of this method is presented

in Appendix A.

2.4 Few-body scattering

We use the variational method to solve the hyperradial equation Eq. (2.40). Since the form

of Eq. (2.40) is independent of the number of particles, the following procedure can be used

for solving the N -body hyperradial equation in general. For calculating the bound state

energies, we expand the hyperradial functions in a set of finite element basis functions:

FE,ν(R) =
∑
i

cE,ν,iBi(R). (2.56)

The equation for the expansion coefficients ci is reduced to a generalized eigenvalue equation

by applying the variational principle:

H~c = ES~c, (2.57)
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where the Hamiltonian and the overlap matrices are

Hν,i;ν′,j =

∫ ∞
0

dR

[
δν,ν′

(
1

2µN

dBi

dR

dBj

dR
+ UνBiBj

)
+

1

2µN
Pν,ν′

(
dBi

dR
Bj −

dBj

dR
Bi

)
+

1

2µN
(P 2)ν,ν′BiBj

]
, (2.58)

Sν,i;ν′,j = δν,ν′

∫ ∞
0

dRBiBj. (2.59)

For scattering calculations, the scattering matrix S for Eq. (2.40) is obtained by using

the eigenchannel R-matrix method [122]. Specifically, by applying the variational princi-

ple [122, 123] and expanding the total wavefunction Ψ by Eq. (2.39) and (2.56), the few-body

Schrödinger equation Eq. (2.20) is reduced to the following generalized eigenvalue problem

Γ~c = bΛ~c (2.60)

for the logarithmic derivative b on the hypersphere

b =
∂ ln Ψ

∂R
. (2.61)

In our calculations, the non-adiabatic couplings Pν,ν′ between some channels decay very

slowly as 1/R [21] so that we need to integrate the hyperradial equation up to 106−107 a.u.

To deal with such situations, we use a propagation method [124] to divide the hyperradii

into small boxes of sizes about 103 − 104 a.u. so that we are able to integrate millions of

oscillations in the hyperradial wavefunctions. Within each box (R1 ≤ R ≤ R2), the matrices

Γ and Λ are defined as

Γν,i;ν′,j =

∫ R2

R1

dR

{
δnu,ν′

[
1

2µN

dBi

dR

dBj

dR
+ (2µNUν − k2)BiBj

]
+

1

2µN
Pν,ν′

(
dBi

dR
Bj −

dBj

dR
Bi

)
+

1

2µN
(P 2)ν,ν′BiBj

}
, (2.62)

Λν,i;ν′,j = δν,ν′
∑
i,j

[Bi(R1)Bj(R1) +Bi(R2)Bj(R2)] . (2.63)

The adiabatic potentials and non-adiabatic couplings are calculated up to the hyperradius

where they acquire asymptotic behavior, which is usually about 20 times larger than the two-

body scattering length a. We determine some of the power-law behavior for the asymptotic
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expansions from Ref. [21]. The rest of the power-law behavior is determined empirically

from the numerical data. And we fit the coefficients of the lowest three terms also from

the numerical data. These asymptotic expansions are then used in the hyperradial boxes

from the distance where the numerical potentials and couplings end to the distance R = Rm

where we match the numerical solutions to the asymptotic ones.

After solving the expansion coefficients ~c, the solution matrix F can be constructed

by the linearly-independent solutions after imposing regularity at the origin R = 0. The

R-matrix R is obtained by

R = FF ′
−1
, (2.64)

where F ′ is the hyperradial derivative of the solution matrix F . The reactance matrix K

is evaluated by the following expression at the hyperradius R = Rm:

K = (f − f ′R)(g − g′R)−1|R=Rm , (2.65)

where the asymptotic solution matrices f and g are diagonal whose elements are expressed

in terms of the first and the second kind of Bessel functions, as given in Appendix C. The

scattering matrix S is then obtained by

S = (1 + iK)(1− iK)−1, (2.66)

where 1 is the unit matrix.

The inelastic collision rates can be immediately obtained once the scattering matrix is

calculated. The general expression for N -body recombination has been derived in Ref. [125].

Here we explicitly give the three-body recombination rate which will be used throughout

our work:

KJΠ
3 =

∑
f,i

Cπ2(2J + 1)

µ3k4
|(SJΠ)f,i|2. (2.67)

Since the initial plane wave state for the three particles can be written as a superposition

of all the hyperspherical continuum channels, the sum of i is over all these three-body
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2.5. Adiabatic potentials

continuum channels. The sum of f is over and all possible final two-body bound channels.

The value of the constant C is 192 when all three particles are identical [126] and is 64 when

two of the particles are identical [118, 125]. The expressions for three-body relaxation rate

follow the two-body ones since in such scattering processes both initial and final channels

are the two-body break-up channels.

The adiabatic hyperspherical representation usually has very quick convergence with

respect to the adiabatic channels. The physical reason behind is that the hyperradius R

is typically a slow dynamical variable compared with the hyperangles. This is in analogy

with the Born-Oppenheimer approximation widely used in chemistry, but note that the

adiabatic hyperspherical representation is exact and does not break down when the masses

are all comparable. An approximate version of the representation can be made, however,

by neglecting the couplings. In fact, for some cases these single channel approximations

can give quite good estimates of the few-body bound state energies and the positions of

resonances [108].

2.5 Adiabatic potentials

As mentioned previously, the adiabatic hyperspherical representation can usually give a good

description of the physical properties in a few-body system even under the single-channel

approximation. This implies that the diagonals in the hyperradial equation Eq. (2.40) are

the most essential for describing the stationary states in a few-body system. In the following

we will show the typical behavior for the diagonal potentials

Wν,ν(R) = Uν(R)− 1

2µ3

Qν,ν(R) (2.68)

in three-body systems.

Assuming that the individual particles are structureless, when the hyperradius R goes

to infinity the three-body system can break-up either into three free particles or one free

particle and two particles bound together. A typical set of adiabatic potentials for J = 0+
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2.5. Adiabatic potentials

Figure 2.3: A set of adiabatic hyperspherical potentials for JΠ = 0+ symmetry.

are shown in Fig. 2.3. All the adiabatic potentials behave like 1/R2 as R→ 0. Such behavior

holds for particles interacting with any potentials which are less singular than 1/R2 near

origin so that the 1/R2 centrifugal potentials dominate at small hyperradii. Specifically,

these potentials assume the free-particle behavior [21]:

Wν,ν(R) =
λ(λ+ 4) + 15/4

2µ3R2
, (2.69)

where λs are non-negative integers. When R→∞, there are two different behaviors for the

potentials. For the channels corresponding to the three-body break-up, the three particles

are free asymptotically thus the potentials again behave like Eq. (2.69). For the channels

correspond to atom-diatomic break-up the potentials behave like

Wν,ν(R) = Eν,`0 +
`(`+ 1)

2µ3R2
, (2.70)

where Eν,`0 is the bound state energy of the diatomic system with vibrational and rotational

quantum number of ν and `0, respectively, and ` is the asymptotic angular momentum

between the atom and the diatomic system.
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Generally, when three-body break-up needs to be considered, the calculation of the to-

tal cross section requires not only the integration over the scattering angles, but also an

integration over all possible distributions of the total energy over the two Jacobi vectors.

In numerical calculations this requires a discretization scheme which is difficult to imple-

ment in a rigorous way. In hyperspherical coordinates, however, the three-body break-up

is represented by discrete channels so that the inclusion of the physics from the three-body

break-up is simply achieved by the convergence of the observable with respect to the number

of three-body continuum channels. This is especially convenient for three-body recombina-

tion calculations.

Adiabatic hyperspherical potentials are especially useful in the study of universal physics.

In systems with large two-body scattering length a, the scaling of the adiabatic potentials

and the non-adiabatic couplings can be derived by solving the Faddeev equations [14] with

the zero-range potential model [13], which is the approach also used by Efimov [12, 106, 107]

for the discovery of the Efimov effect. Specifically, the three-body solution Ψ takes the

functional form for the free-particle solutions with appropriate boundary condition satisfied

when the interparticle distances rij go to 0. This boundary condition can be expressed in a

general form as [127]:

∂

∂rij
(rijΨ) = k cot δ(k2)Ψ, (rij → 0) (2.71)

where δ is the two-body phase shift and k2 is the two-body wave number. In general, δ

has non-universal dependence on two-body interactions, but at low energies where k2 is

small, the right hand side of Eq. (2.71) can be approximated by using low energy scattering

parameters:

k cot δ(k2) ≈ −1

a
, (k2 → 0). (2.72)

For three identical bosons, the boundary condition Eq. (2.71) with the low energy approxi-

mation Eq. (2.72) leads to a transcendental equation

sν cos(
π

2
sν)−

8√
3

sin(
π

6
sν) = 12−

1
4 sin(

π

2
sν)

2R

a
, (2.73)
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where sν is related to the adiabatic hyperspherical potential by

Uν =
s2
ν − 1

4

2µ3R2
. (2.74)

The lowest potential U0, the so called Efimov potential, which represents the weakly-bound

A∗2 + A break-up threshold when a > 0 or the lowest three-body continuum channel when

a < 0, is determined by a purely imaginary solution sν = is0 from Eq. (2.73). The potential

is attractive and behaves like the following:

Wν,ν(R) ' −s
2
0 + 1/4

2µ3R2
, (r0 � R� |a|), (2.75)

where the value of s0 can be obtained by taking the limit a→∞, which gives s0 ≈ 1.00624.

Here we use A to represent an atom and use a superscript ∗ to indicate an excited state.

Note that attractive 1/R2 potential also shows up in electron-dipole scattering and has been

studied in Refs [128–130].

As pointed out by Efimov [131], some of the three-body scattering processes are de-

termined by the universal long-range behavior of a few adiabatic potentials. From our

numerical calculations, we have confirmed that in most cases there are only one or two

adiabatic potentials as well as the couplings between them are most important. The basic

example here is the energies of the Efimov bound states. Within the single-channel approx-

imation, the hyperradial solutions for the three-body bound states in the Efimov potential

Eq. (2.75) can be written in terms of the modified Bessel functions with imaginary order:

FEn,ν(R) =

√
2κ2

n sinh(πs0)

πs0

R1/2Kis0(κnR), (2.76)

where κn=
√
−2µ3En is the bound wavenumber. Since the coefficient for attractive 1/R2

potential in Eq. (2.75) is supercritical (> 1/4), the system will have the “fall to the center”

problem [132], also known as Thomas collapse [19]. This is manifested by an infinite number

of oscillations in the hyperradial wavefunction FEn,ν when R → 0. As pointed out by

Efimov [12, 106], in reality, when R is near the short-range distance r0 the behavior of the

potential in Eq. (2.75) is overtaken by non-universal short-range details, so that a cutoff for
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FEn,ν near R ≈ r0 is required which gives the short-range dependent ground state energy

E0. He also pointed out that an infinite number of bound state can accumulate towards

the zero-energy threshold, with the energies En and the maximum value of n determined by

Eq. (1.2) and (1.3), respectively.

The transcendental equations similar to Eq. (2.73)for other combinations of particles

will be given in the following chapters when each specific case is addressed.

2.6 Deriving universal expressions for inelastic rates

Our numerical calculations show that at ultracold energies only one or two adiabatic channels

are important in determining the universal scaling behaviors for the scattering processes. We

can thus design a simple model based on the scaling of a few adiabatic potentials to derive

the expressions for the rate constants of three-body inelastic processes. Here we present the

method we use for deriving the three-body recombination rate near zero scattering energy

when a < 0, which had also been used by Jonsell for the same problem [133].

As shown in Fig. 2.4, the recombination starts from the three-body continuum where the

adiabatic channels are essentially decoupled (Pν,ν′ ∼ 1/R5/2). Near zero scattering energy,

only the lowest continuum channel is important since higher channels are more repulsive and

thus much more classically forbidden. Inelastic transitions occur at the hyperradii where

the coupling between the incident channel and the deeply-bound A2 +A channels cannot be

neglected. We have found from numerical calculations that the non-adiabatic couplings Pν,ν′

and Qν,ν′ between these two channels are only significant near R . r0. This is not difficult

to understand, as the distance between the two particles that will be recombined should be

close to the size of the recombined state r0 and the third particle which is responsible for

taking away the binding energy needs to be within the distance of r0 from the other two so

that they can interact and have energy exchange. Thus we assume that the two channels

are decoupled for any R > r0. We are able then to write down the hyperradial solution in

different regions of hyperradii where the scaling behavior of the potentials is analytically
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Figure 2.4: The adiabatic potential model for three-body recombination when a < 0.

known.

The scaling behavior of the recombination rates can be obtained once the scaling of

hyperradial wavefunctions is known. In the present case, we divide the potential for the in-

cident channel into three regions, and assume that the potentials have the following behavior

in our model:

Wν,ν(R) = Wν(r0) R ≤ r0, (2.77)

Wν,ν(R) = −s
2
0 + 1/4

2µ3R2
r0 ≤ R ≤ β|a|, (2.78)

Wν,ν(R) =
15/4

2µ3R2
R ≥ β|a|, (2.79)

where β is a parameter reflecting the uncertainty in determining the boundary. The cor-

responding hyperradial solutions in the Efimov region (r0 ≤ R ≤ |a|) and the asymptotic

region are the Bessel functions of order is0 and order 2, respectively. We model the inelastic
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transition near R = r0 by using a complex phase in Fν(r0), which is equivalent to adding

an optical potential [134]. After matching Fν(R) at R = r0 and R = |a|, we calculate the

elastic scattering probability R in the initial three-body continuum channel and calculate

three recombination rate by using the relation

K3 =
192π2

µ3k2
(1−R). (2.80)

The recombination rate K3 into deep two-body bound channels for a < 0 is finally obtained

as

K3 =
12
√

3π3β4 sin 2ϕ0 sinh 2η

sin2[s0 ln(|βa/r0|) + Φ] + sinh2 η

a4

m
. (2.81)

For details of the derivation please refer to Appendix B.

40



Chapter 3

Universal Efimov physics in
three-body systems

Recent studies have substantially pushed forward the understanding of the three-body Efi-

mov effect in ultracold atomic gases [49–52, 66]. Since most analytical theories developed

thus far [49, 52, 66, 135] assume that the three-body scattering is at zero-energy and the

two-body scattering is only determined by the scattering length a, they are valid only under

certain experimental conditions. For instance, the Feshbach resonances [42] used for obtain-

ing large a are required to be relatively broad in the magnetic field [43] and the temperature

of the gas samples need to be extremely low [58]. In Refs. [136, 137], the authors have

employed models which are valid when the width of the resonance is narrow, but with the

short-range physics left out. The finite energy effect has been considered in Refs. [53, 138–

140] for explaining the experimental data, but only as small corrections. In Sec. 3.1, we

have extended our study to narrow Feshbach resonances with the non-trivial short-range

physics included, where the material is adapted from a preprint [2]. In Sec. 3.2 and Sec. 3.3,

we have identified novel phenomena at higher collisional energies which can be traced back

to the Efimov effect . In particular, Sec. 3.2 is adapted from a published paper [11], and

Sec. 3.3 is adapted from a preprint [5].
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3.1. Ultracold three-body collisions near narrow Feshbach resonances

3.1 Ultracold three-body collisions near narrow Fesh-

bach resonances

Strongly interacting three-body systems play an important role in many areas of physics

including condensed matter, atomic, molecular, and nuclear physics [18, 52]. Advances in

the control of interatomic interactions have made ultracold atomic gases a preferred test

bed for many interesting physical phenomena. One of the most important tools for this

control is the Feshbach resonance [42, 43, 141–143]. Applying an external field, the s-wave

scattering length a between two atoms can be tuned from −∞ to +∞.

A major experimental difficulty encountered for Bose gases in the strongly interacting

limit, |a|�r0 where r0 is the characteristic range of the interatomic interactions, is that the

system becomes unstable due to three-body collisional loss of atoms and molecules. For a

pure atomic sample, the loss is dominated by the three-body recombination, and the density

change of the sample is determined by Eq. (1.4). Though in the typical experiments the

three-body recombination is not favored for the low density (1012–1015 cm−3), the recom-

bination rate surges very quickly as |a|4 near a Feshbach resonance. For the weakly-bound

molecules produced through a Feshbach resonance, though the loss rate from atom-dimer

relaxation scales more mildly as a, they are lost quickly since the loss rate is both linear in

the atomic density and the dimer density.

In ultracold two-component Fermi gases where the components correspond to the same

atomic isotope in different hyperfine states F and F ′, three-body processes are suppressed

near a Feshbach resonance where F and F ′ interact resonantly. This can be understood

by the Pauli exclusion from the two identical fermionic atoms involved in the three-body

collisions. In particular, the three-body recombination into a weakly-bound dimer :F +

F + F ′ → (FF ′)∗ + F is suppressed as k2 near zero energy. For the three-body relaxation

(FF ′)∗+F → FF ′+F , the rate is suppressed by 1/a3.33 even though it is non-zero as k → 0.

This increased stability for two-component Fermi gases allows the experimental realization

of a broad range of novel physical phenomena.
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3.1. Ultracold three-body collisions near narrow Feshbach resonances

For the identical bosons, while the overall behavior of K3 and Vrel is determined by a

as shown in Eq. (1.5), (1.6) and (1.7), any comparison with a physical system also requires

the short-range three-body parameters Φ and η which cannot, in general, be predicted from

two-body physics alone [53].

The past few years have seen the experimental verification [54–57, 60, 144–148] of var-

ious predictions for Efimov physics especially for the explicit analytical expressions for the

universal inelastic rates. These predictions, except the ones in Ref. [136, 137], were based

on the assumption that ultracold scattering properties are universal and depend only on

a, which is a good assumption for broad resonances. This focus on broad resonances and

the dominance of a was natural given the low-energy expansion of the two-body s-wave

scattering phase shift δ,

k2 cot δ = −1

a
+

1

2
reffk

2
2 + . . . , (3.1)

where k2 is the two-body wavenumber and reff is the effective range. For the magnetic

Feshbach resonances used in the ultracold experiments, the reff can be estimated from the

resonance parameters by [149]

reff = − 1

|µ2abg∆µ∆B|
, (3.2)

where µ2is the two-body reduced mass, abg is the background scattering length, ∆µ is the

difference of the magnetic moment between the two channels involved in the resonance

and ∆B is the resonance width. In Table 3.1, we list the effective-range for some selected

Feshbach resonances [43]. Since |reff | is inversely proportional to the resonance width for

reff<0 [136], the second term in Eq. (3.1) is negligible, at low collisional energies for broad

resonances. Near a narrow resonance, however, |reff | is large and the second term in Eq. (3.1)

is no longer negligible even at ultracold collision energies. This implies that reff should be

incorporated in the three-body universal theory for the narrow resonances. While specific

systems have been modeled near a resonance [150–153], no simple analytical expressions

like those in Equations. (1.5)–(1.7) have yet appeared. Narrow resonances, however, are
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Atomic species Resonance position (G) abg (a.u.) ∆µ (µB) ∆B (G) reff (a.u.)
6Li 543.25 60 2 0.1 –71300
7Li 736.8 –25 2 –192.3 –76
23Na 1195 62 –0.15 1.4 –17100
23Na 907 63 3.8 1 –947
23Na 853 63 3.8 0.0025 –373000
87Rb 1007.2 100 2.79 0.21 –1010
87Rb 911.7 100 2.71 0.0013 –168000
87Rb 685.4 100 1.34 0.006 –73400
87Rb 406.2 100 2.01 0.0004 –734000
87Rb 9.13 99.8 2.00 0.015 –19700
133Cs 47.97 926 1.21 0.12 –287
133Cs 19.84 160 0.57 0.005 –84600
133Cs 53.5 995 1.52 0.0025 –10200
52Cr 589.1 105 2 1.7 –276
52Cr 499.9 107 4 0.08 –2880
39K+87Rb 317.9 34 2 7.6 –185

Table 3.1: Effective-range for some selected Feshbach resonances.

expected not only to affect Efimov physics [136, 137] but also to modify the BEC-BCS

crossover picture for fermionic systems [154].

Furthermore, the physics near narrow Feshbach resonances are regarded as intrinsically

different from the physics near broad resonances since the two-body wavefunction is closed-

channel dominant and the two resonant ultracold atoms always carry bound state charac-

teristics even if they do not form a bound state. The possibility of new many-body physics

near narrow Feshbach resonances has already been proposed theoretically in Refs. [154–156].

In addition, many of the recent experiments on ultracold systems with mixed species are

done near relatively narrow Feshbach resonances [157–160]. And with the development of

the optical Feshbach resonances [141–143] it is promising to gain experimental fine control

over the width of the resonance. It is thus important to develop the universal theory for the

three-body physics near narrow resonances.

In the previous works on this topic by Petrov and Gogolin, et al. [136, 137], the zero-

range potential (ZRP) [13] model is used and the short-range physics is completely neglected.
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Though their results give the general scaling for the three-body scattering observables in

terms of both the scattering length and effective-range, the validity of these results in the

presence of finite-range interactions is missing. Particularly, Petrov calculated the recombi-

nation rate for identical bosons near a narrow Feshbach resonance with a>0 using a modified

ZRP to include reff [136]. By solving his model numerically, he found that the minima de-

scribed by Eq. (1.5) still appear for a�|reff | but occur at fixed values of |reff |/a without

any reference to a three-body parameter like Φ. Gogolin et al. [137] reproduced these re-

sults with a very different method but effectively the same physical model. There are some

other theoretical work addressing the modification of the Efimov physics by the effective-

range [161–163], where |reff | ≈ r0 so that a perturbative treatment is still adequate. Their

results, however, cannot be applied to the narrow Feshbach resonances.

Here we aim to expand our knowledge of universality near a narrow Feshbach resonance.

We are especially interested in the change of the universal behavior for the three-body

processes which depends on the short-range physics. In particular, we study the dependence

of ultracold three-body collision rates on reff , obtaining analytic expressions for K3 and Vrel

similar to Equations. (1.6) and (1.7), and verified by numerical solutions. Surprisingly, we

find that all inelastic processes leading to deeply-bound two-boson states are suppressed as

|reff |−1, indicating that Bose gases are more stable near narrow resonances. In contrast, we

find that Fermi gases should be less stable due to enhanced losses for large |reff |.

More fundamentally, and in contrast to [136] and [137], we show that the short-range

three-body physics is important near a narrow resonance for identical bosons — even in

the limit r0→0. Mathematically, it is true that no three-body parameter is needed since

the inclusion of reff in the zero-range model regularizes it [127][9], removing the Thomas

collapse [19]. Physically, however, we will show that a three-body parameter is still needed

to represent the short-range three-body physics for any realistic system. Consequently, a

and reff alone are insufficient to describe ultracold three-boson observables.

To this end, we calculate various three-body inelastic rates numerically by solving
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Eq. (2.20) for three bodies. In these calculations, we use the adiabatic hyperspherical

representation in Smith-Whitten coordinates since we are focusing on the universal physics

for identical bosons.

3.1.1 Modeling Feshbach resonances

Feshbach resonances are in general a multi-channel phenomenon. A two-channels picture is

sufficient to reproduce the resonant behavior to sufficiently accuracy. As shown in Fig. 3.1,

Figure 3.1: Schematic potentials for a Feshbach resonance. The dashed curve with arrows
indicate that the two channels are coupled. As the relative separation between the two channels
are tuned by the magnetic field in experiment, a Feshbach resonance occurs when the scattering
energy (indicated by the horizontal solid back line) matches the bound state energy in the upper
channel. Both the scattering amplitude in the lower channel (blue sinusiodal curve) and the
amplitude in the upper channel (red dashed curve) are significantly enhanced. In particular, when
the energy of a bound state in the upper-channel move across the threshold of the lower channel,
the scattering length for the lower channel goes through a pole.

a Feshbach resonance occurs when the collisional energy between two atoms in the lower

channel is near the bound state energy in the upper channel. The resonance leads to a

large change in the scattering wavefunction, as can be exhibited through the effective-range

expansion in Eq. (3.1). In particular, by tuning the relative separation between the two

channels the scattering length in the lower channel goes through a pole when a bound state

in the upper channel moves across the threshold of the lower channel. The strength of
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the coupling between the two channels determines the width of the resonance and controls

the size of the effective range reff in Eq. (3.1). When there is only one open channel, the

asymptotic scattering wavefunction for the single-channel model can be made identical to

the multichannel case. In other words, the asymptotic wave function does not depend on the

short-range two-body physics that generates the resonance [135, 136]. From this spirit, we

can model a single-channel two-body potential with a shape resonance to reproduce the same

scattering property as for a multi-channel case. The shape resonance we use will then be

essentially identical to a multi-channel Feshbach resonance. Specifically, the single-channel

two-body interaction we use takes the following form:

Vsech(r) = −Dsech2(3r/r0) +Be−2(3r/r0−2)2

, (3.3)

where r is the distance between the two atoms. As shown in Fig. 3.2, instead of coupling

two different channels in a Feshbach resonance case, we couple the scattering region with

the short-range region in our single-channel model, by the use of a potential barrier. The

resonance in this model thus corresponds to a shape resonance.

In our three-body calculations, we use a pair-wise sum of model potentials with the form

of Eq. (3.3), where the potential depth D primarily controls a, and the barrier height B

is adjusted to produce the desired reff . One indicator of the universal physics is that the

change on the short-range physics is very small near the universal scaling limit (|a| � r0,

for instance). In the present case small changes in short-range physics are required when

|a| � r0 and |reff | � r0. With the single-channel potential we use, however, non-negligible

change for the short-range physics is required to obtain a large |a| and a large negative

reff simultaneously. The universal scaling behavior is thus entangled with the non-universal

change of the short-range behavior. To solve this problem, we introduced a hard wall in

Wνν(R) at R=r0 to cut off the short-range behavior which changes non-universally. The

behavior of the potentials Wνν(R) beyond R=r0 are universal so that the universal scalings

can be extracted. We have verified that our numerical results are not sensitive to the precise

location of this hard wall.
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Figure 3.2: Comparison between a Feshbach resonance and a shape resonance. (a) A two-
channel representation of a Feshbach resonance. The amplitude at short range (red curve) indicates
the amplitude in the closed channel. The amplitude at large distance (blue curve) indicates the
asymptotic scattering amplitude in the open channel. The dashed curve with arrows indicates
that the two channels are coupled. (b) A schematic show of a shape resonance. One intuitive
understanding of the connection to a Feshbach resonance is to consider that for both cases the
scattering wavefunction is “coupled” to a short-range component: a component in another channel
for a Feshbach resonance and a component behind the barrier for a shape resonance.

3.1.2 Three-body inelastic processes for identical bosons

Figure 3.3 shows our numerical calculations for K3 when a > 0. We generated each curve

by varying a at fixed |reff |, corresponding to tuning across a Feshbach resonance with a

particular width. For |a|�|reff |, the rates retain the features predicted in Eq. (1.5), which is

expected since the scaling of the inelastic rates should be still be determined by the Efimov

physics when a is the largest length scale in the whole system. For |a|<|reff |, K3 deviates

from this formula and approaches the (a7|reff |)1/2 behavior predicted in [136]. Experimental

data for three-body recombination are available for |reff | > a > 0, where |reff | ≈ 1000 a.u.

The figure also shows that the rates seem to converge to a universal curve as |reff | increases.

Moreover, as the limit r0/|reff | → 0 is approached, the position of the first Efimov feature

(minimum) as a function of |a|/|reff | agrees reasonably well with the ZRP predictions from

Refs. [136] and [137]. Recalling that reff is only about –200 a.u. for a 1 G wide resonance, we

see that typical experiments will actually fall far from the ZRP results. Any experimental

attempts to reduce the loss of the atoms near a Feshbach resonance by tuning the ratio
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Figure 3.3: Ultracold three-body recombination rates for identical bosons (a > 0). The vertical
dashed lines indicate the position of the first Efimov feature predicted in Refs. [136, 137]. Here
we show K3 with one or more two-body s-wave bound states (BS), including the analytical result
from [136] (thick solid line) and the experimental data of Na at 907 G Feshbach resonance [45]
(filled triangles), both scaled to match our data . The experimental data In the lowest panel we
show the recombination rates calculated by using two different two-body potentials: the potential
defined in Eq. (3.3) and a modified Morse potential2. Here r0=50 a.u.. Figure is adapted from
Ref. [2].

a/|reff | to reach a minimum position of K3 need substantial calibration that considers the

short-range physics.

2The modified Morse potential we use here is VMorse(r)=D((1− e−(3r/r0−1))2 − 1) +Be−2(3r/r0−2)2 .
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One interesting observation in Fig. 3.3 is that the minima in K3 for more than one two-

body bound state become deeper as |reff | increases. In fact, if there is only a single two-body

state and it is weakly-bound, K3 is exactly zero at the minima. In realistic atomic systems,

however, the recombinations into the deeply-bound two-body channels make K3 finite at

the positions of the minima. This can be clearly seen in Fig. 3.3 for relatively small |reff |.

The deeper minima for larger |reff | indicates the suppression of the recombinations into the

deeply-bound states. As will be discussed later, this suppression near the narrow Feshbach

resonances is the consequence of a new scaling behavior with large |reff |.

In Fig. 3.4, we show the recombination rates for a < 0 and the relaxation rates for a > 0.

A common property for these three-body processes is that the couplings between the initial

and final channels are significant only at short range. The inelastic transitions for these

cases thus predominantly occur when the hyperradius R . r0. As with the K3 for a > 0,

the numerical rates on each curve are calculated by changing a with a fixed reff . When |reff |

increases, the curves seemingly converge to a limit, and we compare the positions for the

first peak in both K3 (a < 0) and Vrel (a > 0) with their corresponding ZRP predictions. In

particular, the K3 (a<0) prediction is based on the location of the first Efimov state in [137]

and the Vrel prediction is based on the position of the first pole in the atom-dimer scattering

length in [136].

One important feature in Fig. 3.4 is that the rate curves for each inelastic process have

similar magnitude when multiplied by |reff |, which indicates a 1/|reff | suppression in both

of the inelastic processes. To understand this new scaling behavior, we study the scaling of

the corresponding adiabatic hyperspherical potentials.

Figure 3.5 shows the idealized Wνν(R) for three identical bosons with r0 � |reff | � |a|.

Two numerical examples which have the same reff but different numbers of s-wave two-body

bound states are shown in Fig. 3.6. The main effect of a large |reff | on Wνν(R) is that

the weakly-bound atom-dimer potential is modified in the range r0�R�|reff |, taking the

Coulomb-like form c0/(2µ|reff |R) [136] instead of the usual attractive 1/R2 Efimov potential.
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3.1. Ultracold three-body collisions near narrow Feshbach resonances

Figure 3.4: Ultracold three-body recombination rates (a < 0) (a) and relaxation rates (a > 0) (b)
for identical bosons. The solid lines are to guide the eye, while the dashed lines are the analytical
results from Equations. (3.9) and (3.4), respectively, using the α and β indicated from a fit in the
limit |reff |→∞. In both cases, r0=50 a.u.. Figure is adapted from Ref. [2].

The Coulomb-like behavior is actually the residue of a cancellation of potential Uν(R) and

the contribution from diagonal coupling Qν,ν/2µ3 in Eq. (2.68). Both of these two terms have

same attractive 1/R2 leading behavior. Compared to the broad Feshbach resonances where

the diagonal coupling Qν,ν/2µ3 is of a higher order ∼ 1/R3 in the region r0 � R� |a|, the

attractive 1/R2 behavior inQν,ν/2µ3 observed here is a surprise, and it suppresses the Efimov

behavior in the potential in the region r0�R�|reff |. Studies [9] have shown that this new

behavior in Qν,ν/2µ3 comes from the short-range component of the two-body wavefunction,
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3.1. Ultracold three-body collisions near narrow Feshbach resonances

which is generally absent in the ZRP treatments. Our numerical analysis indicates, however,

that the coefficient c0 is not universal — even changing from attractive to repulsive when

more s-wave two-body states are added (see Fig. 3.6). This non-universality makes it even

more surprising that the rates in Fig. 3.3 are universal, which we have verified by repeating

the calculations with other model potentials and with varying numbers of deeply-bound

two-body states.

Figure 3.5: Schematic Wνν(R) used to derive Eq. (3.4) and (3.9) with r0�|reff |�|a|. The
difference in the potentials between the two processes is only in the asymptotic region. In the
Coulomb-like region, we set the potential to be zero in our model since the potential can be
attractive or repulsive (see Fig. 3.6) without changing the physical observables.

The idealized Wνν(R) in Fig. 3.5 can be used to derive quantitative, analytic expressions

for the collision rates by using the approach introduced in Sec. 2.6. By realizing that the

Coulomb-like potential in the region r0 � R � |reff | is actually much weaker compared

with the free-particle energy scale ∼ 1/R2, and with the extra confidence from the empirical
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3.1. Ultracold three-body collisions near narrow Feshbach resonances

Figure 3.6: Adiabatic hyperspherical potentials near a narrow Feshbach resonance. Numerical
Wνν(R) multiplied by 2µR2 with reff=–5000 a.u. and |a|=∞. The lower curve in from the calcu-
lations with a single A2 +A s-wave bound channel and the upper one is from the calculations with
three A2 +A s-wave bound channel. The potentials in the region R�|a| are not universal. When
R�|reff | the potentials recover the universal Efimov behavior. Figure is adapted from Ref. [2].

observation that the change of c0 across zero does not affect the numerical rates, we simply

set the potential to be zero in our model in the region r0 � R � |reff | to facilitate the

derivations. The existence of the Coulomb-like region physically separates the short-range

region and the Efimov region at larger hyperradii. This allows the parametrization of the

short-range wavefunction by a complex three-body short-range scattering length A, where

the real part ReA characterizes the low-energy scattering property and the imaginary part

ImA accounts for the short-range inelastic transitions to deeply-bound two-body states.

When a>0, for instance, we calculate Vrel by considering incidence in the weakly-bound

atom-dimer channel with the transition to the deeper two-body channels driven by non-

adiabatic coupling localized in the region R.r0. Following the procedure for deriving the

analytic scaling laws introduced in Sec. 2.5, for βa� α|reff | � r0 the hyperradial scattering

wavefunction is found by matching the analytic solutions from each region at the bound-

aries α|reff | and β|a| [125, 133], where α and β reflect the uncertainty in defining these
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3.1. Ultracold three-body collisions near narrow Feshbach resonances

boundaries [164] and will be determined by fitting our final expression to the numerical

results. The relaxation rate is then obtained from V
(B)

rel =π(1−R)/µk where R is the elastic

scattering probability, yielding3

V
(B)

rel =
2
√

3πβ sin 2ϕ0 sinh 2η

sin2[s0 ln(|a/reff |) + Φ + ϕ] + sinh2 η

a

m
(3.4)

where

tan Φ = 2s0
α− ReA/|reff |
α + ReA/|reff |

, (3.5)

sinh η =

∣∣∣∣ImAαreff

∣∣∣∣ csc(2ϕ0) sin2(Φ + ϕ0), (3.6)

and

ϕ = s0 ln(β/α) + ϕ0, (3.7)

tanϕ0 = 2s0. (3.8)

with a virtually identical analysis, for β|a| � α|reff | � r0 K
(a<0)
3 can be derived to be,

K
(a<0)
3 =

12
√

3π3β4 sin 2ϕ0 sinh 2η

sin2[s0 ln(|a/reff |) + Φ + ϕ] + sinh2 η

a4

m
. (3.9)

Note that α and β can take on different values than for V
(B)

rel and that here tanϕ0=s0/2.

Similar expressions can be derived for other low-energy scattering observables.

The comparison of Equations (3.4) and (3.9) with Equations. (1.7) and (1.6), respectively,

shows that r0 is replaced by |reff |, as might be expected, but there are also other modifications

due to |reff |. These expressions justify, for instance, the scaling of the rates with |reff | used

in Fig. 3.4: the factor sinh 2η introduces a |reff |−1 suppression. This reduction of η, which

represents transitions to deeply-bound two-body states, is also responsible for the more

pronounced minima in Fig. 3.3 as |reff | increases for those calculations with multiple two-

body bound states. The observation of interference minima in K3 is thus more favorable

near a narrow Feshbach resonance.

3For a detailed derivation procedure, please refer to Appendix B
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Equations (3.4) and (3.9) further reveal the fundamental importance of the short-range

three-body physics through their dependence on A in both η and Φ. This physics is absent

from the zero-range treatments [136, 137], so the agreement in Figs. 3.3 and 3.4 between

our numerical results and the ZRP predictions for the position of the first Efimov feature

is rather fortuitous. We see from the arguments of sin2 in Eqs. (3.4) and (3.9) that A-

independent Efimov feature positions — as predicted in [136, 137] — are found only in

the limit ReA/|reff |→0. For the numerical examples in the numerical results shown above,

ReA∼r0, but this need not be true in general. Particularly, if there is a short-range three-

body resonance near the break-up threshold, the value of ReA can, in principle, take any

value from −∞ to +∞.

3.1.3 Three-body relaxation for fermionic system (FFF ′)

To get a sense of the effect of large |reff | on fermion collisions, we have studied the three-

body relaxation process (FF ′)∗+F → FF ′+F . For broad resonances |reff | ' r0, the a−3.33

suppression of V
(F )

rel [62] originates from a repulsive barrier in the adiabatic potential

Wνν(R) ' p2
0 − 1/4

2µ3R2
(3.10)

in the range r0�R�a [67], where the universal constant p0 ≈ 2.166 is determined by the

transcendental equation from the ZRP model√
π

2
p0 cos(

π

2
p0)− 2

√
2

3
Q

1/2
p0−1/2(

√
3

2
) =

R

a

√
π3−1/4 sin(

π

2
p0), (3.11)

by taking the limit R/a → 0. The function Qm
l (x) is the Legendre function of the second

kind. For finite values of R/a, p0 becomes R-dependent and Eq. (3.11) can be used to

calculate the adiabatic hyperspherical potentials.

When |reff |�r0, however, Wνν(R) is modified in the range r0�R�|reff | by the emergence

of a Coulomb-like potential, just as for bosons. Therefore, the repulsive barrier in that

region is weakened, leading to enhanced vibrational relaxation. Moreover, when a�|reff |,

the dependence of the rate on a is altered, much like for bosons with a�|reff | in Fig. 3.3.
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3.1. Ultracold three-body collisions near narrow Feshbach resonances

All of these effects can be seen in our numerical calculations shown in Fig. 3.7. For a<|reff |,

relaxation scales as (a/|reff |)−1, a much weaker suppression than for broad resonances. For

a>|reff |, we can apply the same kind of analysis as for bosons, using the fact that the

idealized potential behaves as in Eq. (3.10) for |reff |�R�a and assuming the potential is

zero for r0�R�|reff |:

V
(F )

rel =
256π

√
3p2

0 ImA/m

(1− 4p2
0)(ReA/|αreff |)2 + (2p0 + 1)2

(
βa

|αreff |

)1−2p0

. (3.12)

We thus recover the broad resonance scaling with a, V
(F )

rel ∝(a/|reff |)−3.33, but with a much

larger overall magnitude due to the dependence on reff .

Figure 3.7: Relaxation rates for mixed-spin fermions with a>0 and large |reff |. The relaxation
rate for small |reff | is also plotted, showing the same scaling with a but not with |reff | since it is
not in the universal limit. Figure is adapted from Ref. [2].

3.1.4 Adiabatic potentials with the zero-range potential model

Before finishing the discussion on the three-body Efimov physics near narrow Feshbach

resonances, we will show the adiabatic hyperspherical potentials obtained with ZRP model

and show their difference from the full numerical potentials. There have been some work
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3.1. Ultracold three-body collisions near narrow Feshbach resonances

based on ZRP model by taking account of the effective-range correction [9][127, 161–163,

165], and particularly Thøgersen has shown that the ZRP model cannot represent three-

body physics correctly without considering the short-range effect [9].

Here we extend the ZRP treatment introduced in Sec. 2.5 by including up to the effective-

range term in the low-energy expansion of the two-body scattering phase shift to better

represent the two-body scattering properties at finite energy:

∂

∂rij
(rijΨ) =

(
−1

a
+

1

2
reffk

2
2

)
Ψ, (rij → 0) (3.13)

where rij is the interparticle distance. Treating k2
2 as proportional to two-body kinetic

energy operator ∇2
rij

, the above boundary condition leads to the transcendental equation:

s0 cosh(
π

2
s0)− 8√

3
sinh(

π

6
s0) = 12−

1
4 sinh(

π

2
s0)

(
2R

a
+
reff

R
s2

0

)
, (3.14)

where sν is related to the adiabatic hyperspherical potential by

Uν = −
s2
ν + 1

4

2µ3R2
. (3.15)

As mentioned earlier, without taking account of two-body short-range amplitude near r0,

the diagonal coupling Qν,ν/2µ3 is of higher order than 1/R2 and is thus negligible. The

lowest effective adiabatic potential W0(R) then behaves like

W0(R) ' − c0

2µ|reff |R
− 1/4

2µR2
, (3.16)

in the region r0 � R� |reff |, with c0 ≈ 1.68. As mentioned previously, due to the largeness

of |reff |, the potential in Eq. (3.16) is actually dominated by the 1/R2 term. The form of the

zero-range three-body potential thus disagrees with the numerical result for the Coulomb-

like potential by having an additional 1/R2. Further, the non-universal property of the

three-body potentials seen in the numerical calculations in this region is not manifested in

the ZRP potential at all. The behavior of the potentials for the continuum channels in the

region r0 � R � |reff |, however, agrees with the numerical results. They both behave like

the free particle potentials as shown in Eq. (2.69). In the Efimov region |reff | � R � |a|
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and asymptotic region R� |a|, the leading behavior of the zero-range three-body potentials

agrees with the numerical results, as they both recover the behavior of the potentials for

small |reff | case.

3.1.5 Summary

We have studied ultracold collisions of three identical bosons and of mixed-spin fermions near

a narrow Feshbach resonance using the connection between reff for the two-body interaction

and the width of the resonance. We were able to identify the key modifications to the

three-body adiabatic hyperspherical potentials and thus derive analytical expressions for

the rate constants. From these analytical expressions, we showed that short-range three-

body physics is still important, even near a narrow Feshbach resonance. This result is,

perhaps, unfortunate for experimentalists since the positions of the Efimov features are,

in general, still dependent on short-range physics, making it difficult to locate a priori a

minimum of K3 as suggested in [136]. On the other hand, our analysis has shown that

bosonic recombination and relaxation to deeply-bound two-body states are suppressed near

a narrow resonance which might prove beneficial experimentally. Similarly, our analysis

suggests that long-lived weakly-bound FF ′ molecules are most easily obtained near a broad

resonance.
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3.2. Colliding Bose-Einstein condensates to observe Efimov physics

3.2 Colliding Bose-Einstein condensates to observe Efi-

mov physics

Though the Efimov effect is renowned by the emergence of infinite number of three-body

bound states, in ultracold gases, however, evidence of the Efimov effect does not stem from

observation of the bound spectrum. Rather, it traces the signature of such states through

their impact on ultracold three-body scattering processes, usually through the loss of atoms

or molecules. Therefore, the “smoking gun” for Efimov physics has become the observation

of log-periodic features in any physical observable — not just the bound spectrum. Moreover,

in most experimental observations to date [54–56, 144, 145], it is the comparison with theory

that finally serves to establish the connection with Efimov physics.

Nevertheless, ultracold gases have a significant advantage over other weakly-bound sys-

tems such as the halo nuclei [18] and weakly interacting 4He atoms, since the interatomic

interactions — and thus the Efimov physics — can be controlled by Feshbach resonances.

The signature of Efimov physics in experiments so far has been the appearance of features

as a function of a that follow the predicted behavior as shown in Eqs. (1.5)–(1.7).

One of the most dramatic consequences of the Efimov effect is the infinite number of

three-body features. Previous studies all assumed that these features only manifest as a

function of the scattering length near zero collisional energy. Unfortunately, no more than

two of these features in any single sequence have yet been observed, so the fundamental log-

periodic behavior has not been experimentally verified. The main reasons are the technical

challenges of fine tuning a near a Feshbach resonance to achieve extremely large |a| and

keeping the temperature T in the threshold regime T . ~2/2µ3a
2 to prevent thermal and

unitarity effects [58].

Here we propose an entirely new way to observe the features associated with Efimov

states: tuning the relative energy of two colliding Bose-Einstein condensates (BECs). The

core of our proposal relies on the key insight that Efimov physics extends to finite energy

three-body scattering observables. Current thinking is that Efimov physics appears only in
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the a-dependence of zero-energy scattering observables. We show, however, that at fixed

a the energy-dependent rate for three-body recombination of bosons B, B+B+B→B2+B,

shows the log-periodic oscillations characteristic of Efimov physics. By extending the path-

way analysis for explaining the zero-energy Efimov features in the three-body recombination

rates [66] to finite energies, we connect the energy-dependent oscillations one-to-one with

the previously known a-dependent oscillations and the Efimov states themselves. With the

recently-realized ability to collide BECs [166–168] where the collision energy can be precisely

tuned through a large range., we show that the atomic loss signals are ideal for observing

Efimov oscillations through the three-body recombinations during BEC collisions.

3.2.1 Energy-dependent oscillations in K3 for a > 0

Recalling that in Eq. (1.5) the three-body recombination rate K3 for a > 0 features the log-

periodic oscillations which reflects the Efimov effect, these features have been interpreted

in the adiabatic hyperspherical representation in Refs. [49, 50, 66]. In particular, in these

studies it has been shown that the coupling between the initial continuum channel and the

final weakly-bound two-body channel is the most significant near R ≈ a. The inelastic

transition is thus expected to occur predominantly near R ≈ a. As shown in Fig. 3.8,

the inelastic transition leads to two different pathways for recombination, which finally give

the log-periodic oscillations through interference [66]. In fact, these same two recombination

pathways provide a natural way to understand how Efimov physics extends to finite energies.

Using an analysis very similar to that presented in Ref. [66], we trace the pathways through

the idealized adiabatic hyperspherical potentials for total orbital angular momentum J=0

and sketch the result in Fig. 3.9. As described in Ref. [66], these potentials are universal

for R≥r0, so we expect the rates to be universal for collision energies E less than about

~2/2µ3r
2
0. For clarity, we present here a somewhat heuristic derivation that nevertheless

captures the essential details and agrees with the fully-numerical results.

Similar to the recombination near zero energy, when a� r0, recombination at finite en-
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Figure 3.8: Schematic potentials and pathways for three-body recombination near zero energy
(a > 0). The pathways are indexed as #1 (green) and #2 (blue). Channel α represents three
free atoms; channel β, the atom plus dimer; and Vαβ, the coupling between the two channels. To
clarify the channel each pathway is attached to, the pathways are drawn at different heights. But
notice that they all have the same total energy.

ergies occurs predominantly at R ≈ a which leads to the two pathways indicated in Fig. 3.9.

We can write the amplitudes for these two pathways as Aj = Aje
iφj ; A2

j includes the prob-

ability both for the three free particles to get from R =∞ to R ≈ a and for the transition

to the atom-dimer channel at R ≈ a. Near zero energy, Aj mainly results from tunneling

and scales like k2a2 [66], where k =
√

2µ3E/~ is the three-body incident wavenumber. For

higher energies such that a−1 � k � r0
−1, the Aj are essentially independent of both a and

k.

The phases φj from Fig. 3.9 can be obtained via the WKB approximation [66]. Since

the recombination probability P is proportional to |A1 + A2|2, only the phase difference

matters, giving:

φ1 − φ2 =
√
k2a2 + s2

0 −
√
k2a2 − s2

1 −
√
k2r2

0 + s2
0 − s0 ln

(
s0 +

√
k2a2 + s2

0

s0 +
√
k2r2

0 + s2
0

r0

a

)

+ Φ′ − π

2
s1 + s1 tan−1

(
s1√

k2a2 − s2
1

)
. (3.17)

For identical boson systems, s0=1.006 and s1=4.46 which are determined by Eq. 2.73. Since
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Figure 3.9: Schematic potentials and pathways for three-body recombination at finite energy
(a > 0 J = 0). The pathways are indexed as #1 (blue) and #2 (green). Channel α represents
three free atoms; channel β, the atom plus dimer; and Vαβ, the coupling between the two channels.
Figure is adapted from Ref. [11]

the Efimov effect is more favored in a heteronuclear system of two heavy identical bosons

and one distinguishable particle [169] in the sense that the value of s0 is larger which

gives smaller spacing between the Efimov features, we will particularly discuss the energy-

dependent Efimov features for a experimentally realizable atomic system: Cs+Cs+Li. The

universal constants in this system are determined as s0=1.85 and s1=2.76, by the following

transcendental equation:√
π

2
is0 cosh(

π

2
s0) + C1Q

1/2
is0−1/2

(√
mLi +mCs

mCs

C1

)
= iC2

R

a

√
π

2
sinh(

π

2
s0), (3.18)

when the limit R/a→ 0 is taken. The constant s1 is the lowest solution of Eq. (3.18) after

replacing s0 by is1. The mass-dependent coefficients C1 and C2 are

C1 =

√
mLimCs(mLi + 2mCs)

(mLi +mCs)3
, C2 =

√
mLi +mCs

[mLi(mLi + 2mCs)]1/4
, (3.19)

where the masses mLi and mCs are the masses for Li and Cs atoms, respectively.

For incident energies such that a−1 � k � r0
−1, the phase difference in Eq. (3.17) can

be simplified as

φ1 − φ2 = −s0 ln(kr0) + Φ (3.20)
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to a good approximation (Φ combines Φ′ with other universal constants for compactness).

Using K3 ∝ P/k4, the recombination rate in this energy range is thus

K3 ∝ k−4
[
c1 + c2 sin2(−s0 ln(kr0) + Φ)

]
, (3.21)

where c1 and c2 can be written in terms of A1 and A2. They can also be obtained — along

with Φ — by fitting to the numerically-obtained K3.

Equation (3.21) thus summarizes one of our main results in this section: energy-dependent

log-periodic oscillations that are intimately connected with Efimov physics. An important

feature of Eq. (3.21) is that the oscillatory structure in the energy range a−1 � k � r0
−1

is independent of a. So, the energy dependence measured at different, convenient a can, in

principle, be combined to produce the full energy range.

The one-to-one connection between the well-known a-dependent oscillations at zero en-

ergy and the E-dependent oscillations from Eq. (3.21) is contained in Eq. (3.17) but is

more easily seen in Fig. 3.10. Figure 3.10 shows Eq. (3.17) through the whole energy range

0 < k . r0
−1 where recombination is expected to be universal. Note that Eq. (1.5) applies

in the lower left half of Fig. 3.10 while Eq. (3.21) applies in the upper right half.

One interesting observation in Fig. 3.10 is that each oscillation in E corresponds with one

oscillation in a at zero energy. Since the number of the Efimov bound states is determined

by a, it is natural to make a connection between the bound states and the energy-dependent

oscillations. This connection can be understood qualitatively by the following arguments.

In the phase difference expression Eq. (3.17), the log term gives the energy-dependent log-

period oscillations in the recombination probability. In the energy range 0 < k < 1/r0, the

number of oscillations n are given by the change of the phase difference φ1 − φ2:

n ≈
⌊s0

π
ln(|a|/r0)

⌋
, (3.22)

which is same as the number of Efimov bound states given by Eq. (1.3). Since the energy

separation for each energy-dependent oscillation is same as the separation between the
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Figure 3.10: The J=0 recombination rate K3 at finite energies5. The rate is scaled as K3E
2/a4

to emphasize the Efimov oscillations, especially the connection between the a-dependence and
the E-dependence from equations (1.5) and (3.21), respectively. Equation (3.17) was used with
Cs+Cs+Li masses, Φ′=0, and r0=15 a.u.. The amplitudes of the two interfering pathways were
assumed equal to emphasize the oscillations. Figure is adapted from Ref. [11].

bound states, a one-to-one correspondence between the energy-dependent oscillations and

the Efimov bound states can be made.

Before continuing our discussion, we want to emphasize that our results are not in the

category of “finite-energy corrections”. Though there are theoretical works addressing the

finite-energy effect in the recombination rates for better fitting the experimental results

measured at finite temperature [53, 138–140], our work is fundamentally different. In these

works, the energy range considered is limited to E . 1/2µ3a
2, where the recombination rate

is still in the zero-energy regime and the finite-energy effect can be treated as corrections.

The energy-dependent oscillations we are showing here, however, appear at much higher

energy where the energy-dependence is no longer perturbative.

5Collision energies are reported in Kelvin using the conversion T = E/kb. 1 Kelvin corresponds to
3.1668×10−6 a. u. of energy.

64



3.2. Colliding Bose-Einstein condensates to observe Efimov physics

3.2.2 Higher partial wave contributions

The discussion so far has been limited to J=0, which is the dominant contribution near zero

scattering energy for identical bosons. At finite collision energies, however, the total K3

has contributions from J>0 that must be included. Should these higher partial waves also

support Efimov states — which does occur in some systems [169] — then the corresponding

oscillations in their partial recombination rates would generally add out-of-phase, washing

out all evidence of Efimov physics. In fact, this is why no such oscillations in the total rate

have been observed in electron-polar molecule scattering, where the scattering potentials

also have an attractive 1/R2 behavior for several angular momenta [130, 170]. In the cases

we consider here, however, there are no attractive 1/R2 Efimov potentials for J>0 [169].

The higher partial wave contributions are expected to behave smoothly without oscillatory

structures across the energy range we are considering here. Thus, the oscillatory structure

predicted in Eq. (3.21) and shown in Fig. 3.10 should be visible in the total rate.

Besides J>0 contributions, higher collision energies also require taking into account the

thermal distribution of velocities [58, 171], if considering the conventional loss experiments

on quantum gases. In this case, the energy-dependent rate K3(E) must be converted to a

temperature-dependent rate 〈K3(T )〉 via thermal averaging [171].

To verify the predictions above, we calculate K3 by solving the three-body Schrödinger

equation numerically in Smith-Whitten hyperspherical coordinates [109, 110] (see Sec. 2.2,

2.3 and 2.4). We first consider three bosonic 133Cs atoms, assuming a pair-wise sum of

short-range, single-channel, two-body model potentials in the following form:

Vij = D sech(rij/r0)2. (3.23)

To illustrate the effect of higher partial waves, we have calculated recombination for the low-

est two angular momenta relevant for recombination. For Cs atoms they are the J = 0+, 2+

contributions. The results are shown in Fig. 3.11(a). To more clearly show the oscillations,

we plotK3E
2, which is proportional to the recombination probability. The oscillatory modu-
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lation in the total rate, though small, is still discernible. Upon thermal averaging, however,

the oscillations are no longer apparent. Also, three identical bosons require temperature

changes of e2π/s0 ≈ 515 to observe a single period, which is experimentally challenging at

the present time [172].

Figure 3.11: Scaled numerical three-body recombination rates K3(E)E2 for (a) Cs+Cs+Cs
with aCs+Cs=8000 a.u. and (b) Cs+Cs+Li with aCs+Li=5000 a.u.. The lowest two contributing
angular momenta are shown along with their sum and its thermal average, 〈K3(T )〉T 2. The dotted
lines are from Eq. (3.21). The expected lower and upper limit of universal behavior are indicated
by the dashed lines at Eth ≈ ~2/2µ3a

2 and Es ≈ ~2/2µ3r
2
0, respectively. The rapid oscillations

in the J = 1− contribution in (b) are not related to the Efimov effect. Figure is adapted from
Ref. [11].

This factor can be reduced, however, by seeking three-body systems with larger s0.

Fortunately, as already mentioned previously, this is readily achieved for two heavy, identical

bosons with mass mB and a third lighter partner with mass mX and resonant interactions

are between the heavy-light pairs. In principle, the larger the mass ratio mB/mX the

better, given that the mass ratio is still smaller than the critical value where the Efimov

effect starts appearing in the higher partial waves. For two identical bosons and one light

atom, the Efimov effect never shows up in J = 1− partial wave for any mass ratio [169] and
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the next lowest partial wave which can have an Efimov effect is J = 2+ which gives the

critical mass ratio about 38.6 [169]. One of the best available candidates is the Cs+Cs+Li

system with a period of e2π/s0 ≈ 30 for the energy-dependent oscillations. The lowest partial

wave contributions are from J = 0+, 1− in this case. The numerically-calculated Cs+Cs+Li

recombination rates are shown in Fig. 3.11(b). The oscillatory Efimov structure appears

very clearly in the total rate, but is still virtually eliminated by thermal averaging. The

period of the oscillations has indeed shrunk to about 30, making the observation of multiple

cycles much more accessible experimentally.

Figure 3.12: The J = 0+ contribution to K3(E)E2 for Cs+Cs+Li with different scattering
length (aCs+Li). (a) Energy-dependent rates. (b) Thermally-averaged results. At aCs+Li=1000 a.u.,
the two oscillations as E decreases from Es correspond to the ground and first excited Efimov states,
respectively. At aCs+Li=5000 a.u., the second excited Efimov state appears since the number of
oscillations increases to three. The dotted line is from Eq. (3.21). Figure is adapted from Ref. [11].

While Fig. 3.11 verifies our basic prediction of energy-dependent oscillations, it does not

address the interplay between a and E. Figure 3.12, however, shows the numerical results

that confirm this component of our prediction. It shows that as a increases, the Efimov
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features appear at lower energies — in agreement with Eq. (3.17) and Fig. 3.10.

3.2.3 Three-body recombination in BEC collisions

To avoid the thermal averaging that obscures the Efimov features, we propose to measure

the losses during collisions of two BECs instead of simply raising the temperature in thermal

gases. Using this approach, the collision energy can be set accurately and can be tuned easily

through orders of magnitude with a so-called BEC accelerator [173]. Due to the complicated

many-body dynamics during such a collision, though, it is not completely obvious that the

final atomic loss will correctly reflect the Efimov physics we seek. We thus solved the

following coupled time-dependent mean-field equations for colliding transversely-confined

condensates with the loss terms [174] corresponding to all possible recombination processes:

i
∂

∂t
φCs(~rCs, t) =

(
hCs +

2πaCsCs

µCsCs

(NCs − 1)|φCs|2 +
2πaCsLi

µCsLi

NLi|φLi|2
)
φCs

− i

4
(NCs − 1)(NCs − 2)K3,CsCsCs|φCs|4φCs

− i

2
(NCs − 1)NLiK3,CsCsLi|φCs|2|φLi|2φCs

− i

4
NLi(NLi − 1)K3,CsLiLi|φLi|4|φCs, (3.24)

i
∂

∂t
φLi(~rLi, t) =

(
hLi +

2πaLiLi

µLiLi

(NLi − 1)||φLi|2 +
2πaCsLi

µCsLi

NCs|φCs|2
)
φLi

− i

4
(NLi − 1)(NLi − 2)K3,LiLiLi|φLi|4φLi

− i

2
(NLi − 1)NCsK3,CsCsLi|φCs|4φLi

− i

4
NCs(NCs − 1)K3,CsLiLi|φCs|2|φLi|2φLi, (3.25)

where φCs and φLi are the mean-field wavefunction for Cs and Li BECs, NCs and NLi are

the number of Cs and Li atoms, respectively. The reduced mass µAB and scattering length

aAB are between the two atoms indicated by the subscripts. The physical density n for

a BEC can be obtained by simply multiplying the number of atoms by the corresponding

mean-field wavefunction. The single-particle Hamiltonian hCs and hLi are defined as the
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following, which includes kinetic energy operator and a transverse harmonic trap:

hCs = − 1

2mCs

∇2
Cs +

1

2
mCsωCsρ

2
Cs, (3.26)

hLi = − 1

2mLi

∇2
Li +

1

2
mLiωLiρ

2
Li, (3.27)

where mCs and mLi are the atomic masses, ωCs and ωLi are the transverse trapping frequen-

cies, ρCs and ρLi are the transverse radius of the condensates.

The three-body collision energies are assumed to be time-independent and are calculated

as the total initial kinetic energy in the center of mass frame of the three relevant atoms.

We take aCs+Li=5000 a.u., which produces three full oscillations, yet is still likely achievable

experimentally. We use typical values for aCs+Cs and aLi+Li, namely 500 a.u. and 4 a.u.,

respectively [175, 176]. The condensate collision takes place within a quasi-one-dimensional

geometry with transverse trapping frequencies of 800 Hz for 133Cs and 2240 Hz for 7Li [177]

and no longitudinal confinement.

In Fig. 3.13, we show the results of the mean-field calculations. Figure 3.13(a) shows

the Cs and Li densities as a function of time for a typical collision and the time-dependent

loss associated with it. We find that Cs and Li are lost at approximately a 2:1 ratio at all

energies we have calculated, indicating that the Cs+Cs+Li process dominates. The number

of atoms lost, though, depends on the interaction time as well as the recombination rates.

If the relative velocity of the condensates is initially v, then the interaction time scales as

v−γ with γ between 0 (corresponding to the condensates sticking to each other) and 1 (the

condensates pass without interacting). Since K3 itself scales like E−2, the final loss will

scale like E−2−γ/2. Figure 3.13(b) thus shows the loss multiplied by E2+γ/2 for γ=0,1. The

Efimov oscillations are seen in both cases with only the relative magnitudes of the peaks

changing slightly.
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Figure 3.13: Atomic losses during BEC collisions. (a) The time-dependent fractional atom loss,
1 − N(t)/N0, during the collision of a Li BEC with a Cs BEC at E=4 µK along with snapshots
of the atomic densities in the overall center-of-mass frame. Though the condensate dynamics are
quite complicated, the loss is always smooth during the collision. Initially, there are 104 atoms
in each condensate and a⊥=

√
~/mCsωCs with ωCs=2π×800 Hz. (b) The final loss fraction of Cs

atoms is multiplied by E2+γ/2 (filled and open circles) to show the Efimov oscillations. Oscillations
are seen in both cases, and their positions correspond to those seen in K3E

2 (no symbols).

3.2.4 A multi-channel approach for recombination at finite ener-
gies

In Sec. 3.2.1, the pathway analysis gives a simple formula for the three-body recombination

at finite energies. The method is intuitive, although heuristic. By using the adiabatic

hyperspherical representation, here we formulate a more rigorous treatment for the three-
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body recombination at finite energies.

Noticing that the three-body recombination is a multi-channel phenomenon when a > 0,

the single-channel approach used for deriving the recombination rate when a < 0 in Sec. 3.1

is not adequate for the present case. To this end, we develop a simple multi-channel model

which provides a rigorous and convenient description for the recombination process we are

interested in.

Our model for applying multi-channel treatment is similar to the single -channel case,

where the adiabatic potentials are divided into different regions. For simplicity here we only

consider the broad Feshbach resonances for J = 0+. The schematic adiabatic potentials

are shown in Fig. 3.14. The behavior of the adiabatic potentials in the Efimov region

Figure 3.14: Schematic adiabatic hyperspherical potentials used in the multi-channel model for
a > 0.

(r0 � R� a) is determined by Eq. (2.75). In the asymptotic region (R� a), the behavior

is determined by Eq. (2.69) and (2.70).

The main idea for this approach is to write down the multi-channel hyperradial solutions

in each region and extract the scattering matrix S after matching the solutions at all of

the boundaries. The success of the pathway analysis in the previous sections as well as in

Refs. [66] indicates that the basic idea in the pathway analysis — the transitions occur pre-
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dominantly over certain range of the hyperradii — is concrete rather than speculative. This

idea is further supported by the numerical study on the scaling behavior of the non-adiabatic

couplings [164]. In particular, for a > 0 recombination, the non-adiabatic couplings between

the initial (three-body continuum channels) channels and the final channel (weakly-bound

atom-dimer channel) peak near R = a. We thus model that the couplings are non-zero only

in the region β1a ≤ R ≤ β2a, where the parameters β1 and β2 can be adjusted to give better

agreement with the full numerical results. Outside this region the channels are treated as

uncoupled. As will be presented in detail in Appendix C, the scattering matrix is written

in terms of the multi-channel solutions in each hyperradial region, which gives a general

expression for K3 valid for the whole range of energy where the rate is universal (k � 1/r0).

In particular, by using the two-channel approximation, the J = 0 partial three-body recom-

bination rate acquires a simple analytical form when the scattering energy is in the range

1/a� k � 1/r0:

K3 =
192π2

µ3k4

∣∣∣∣ e4cβ1 − e4cβ2

2ie2c(β1+β2) cot(φ0 + s1π/2) + e4cβ1 + e4cβ2

∣∣∣∣2 , (3.28)

tanφ0 = tanh
π

2
tan(Φ + γ − s0 ln

kr0

2
), (3.29)

γ = tan−1 Im[Γ(is0)]

Re[Γ(is0)]
, (3.30)

where c = c1,0 ≈ 0.17 as listed in Appendix C. The short-range phase Φ is the same as those

in Eq. (1.5)-(1.7). Though formally different from Eq. (3.21), Eq. (3.28) nevertheless features

a series of log-periodic oscillations in K3, which is essentially the same as in Eq. (3.21).

In Fig. 3.15, we show the J=0 three-body recombination rates calculated with the multi-

channel model with only the lowest three-body continuum channel included. The features

resemble those in Fig. 3.10, with the difference in the period for both scattering length and

energy since the present result is for identical bosons. There are some small unphysical

structures in the plot near the region E ≈ 1/2µ3a
2, which are due to the discontinuous

behavior of the potentials and the couplings used in our model. But these small defects do

not change the features in the rates.
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Figure 3.15: The J=0 recombination rate K3 at finite energies calculated by using the multi-
channel model (a > 0). Only the lowest three-body continuum channel is included. The rate is
scaled as K3E

2/a4 to emphasize the Efimov oscillations.

By including more continuum channels in the multi-channel model, we have calculated

more accurate recombination rates than the two-channel approximations Eq. (3.21) and

(3.28). In Fig. 3.16, we show the J=0 recombination rates calculated with the lowest three

continuum channels. Compared with the energy-dependent oscillatory features in Fig. 3.15,

the minima in the oscillations shown in Fig. 3.16 are less pronounced. This difference comes

from the contributions from the higher continuum channels included in the multi-channel

model.

Finally, it is easy to apply the model for higher partial waves once the constants in the

couplings are extracted from the numerical potentials. The converged universal recombina-

tion rates at finite energy can then be calculated including all the necessary partial waves.

In addition to their value in the theoretical study of universal physics, the results will be

greatly helpful for the prediction of the losses in the quantum thermal gas experiments at
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Figure 3.16: The J=0 recombination rate K3 at finite energies calculated by using the multi-
channel model (a > 0). The rate is scaled as K3E

2/a4 to emphasize the Efimov oscillations.

finite temperatures.

3.2.5 Summary

To summarize, we have identified a powerful new manifestation of the Efimov effect in the

energy dependence of the three-body recombination rate. These features can be understood

by either simple pathway analysis or more rigorous multi-channel formalism. They can be

used to confirm the geometric scaling of Efimov physics — a property not experimentally

seen so far due to the difficulty of changing the scattering length over many orders of

magnitude. To take advantage of this new prediction, we proposed to utilize a novel new

tool: the ability to controllably collide two Bose-Einstein condensates. This technique has

promise for the study of few-body collisions at low energies beyond the ultracold regime.
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3.3 Universal three-body physics at finite energy near

Feshbach resonances

In Sec. 3.2, we have presented the manifestations of Efimov effect in the energy-dependence

of K3 for a > 0. It is natural to ask if such phenomena also persist for a < 0. Further,

recalling that the scaling of K3 for a < 0 near zero energy in Eq. (3.9) is modified near a

narrow Feshbach resonance, one interesting question is that if and how this modification

will show up in the energy dependence.

In Sec. 3.1, the adiabatic hyperspherical potentials are divided into the following uni-

versal scaling regions: the Coulomb-like region (r0 � R � |reff |), the Efimov region

(|reff | � R � |a|) and the asymptotic region (R � |a|). For three-body recombination,

these regions become classically allowed at different ranges of collisional energies. Specif-

ically, beyond the energy E2b = 1/µ3a
2, the Efimov region is classically allowed; beyond

the energy Eeff = 1/µ3|αreff |2 where α ≈ 0.28 is the constant appearing in Eq. (3.5)-(3.8),

the Coulomb-like region becomes classically allowed. Since the adiabatic potentials and the

non-adiabatic couplings have different scaling behavior in different regions, we expect that

these scaling behavior will be reflected in the three-body recombination at different energy

ranges.

In this section, we will show that for three-body recombination B + B + B → B2 + B

at fixed a (a < 0), universal scalings with the characteristics of Efimov physics show up

in “Efimov” energy range, where the scattering energy E changes from E2b to a higher

“cut-off” energy, which is the short-range energy Es=1/2µ3r
2
0 for a broad resonance and

the effective-range energy Eeff for a narrow Feshbach resonance. Here µ3 is the three-body

reduced mass and r0 is the characteristic range for the pair interactions. We also show

that in the presence of a narrow Feshbach resonance, the unusual energy scaling for the

recombination rates (a < 0) and the rates for vibrational relaxation of the weakly-bound

dimer B∗2 + B → B2 + B (a > 0) in the effective-range energy region E2b < E < Eeff can

be traced back to be the suppression of the inelastic processes near zero energy as shown in
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Sec. 3.1.2.

Similar to the study on the energy dependence of K3 for a > 0, we will perform both

full numerical studies by solving the three-body Schrödinger equation exactly and analytical

analysis based on the scaling of the adiabatic hyperspherical potentials. In the numerical

calculations, we use a pair-wise sum of single-channel two-body potentials. In particular,

we use Eq. (3.23) as the two-body potentials for a broad resonance, and use Eq. (3.3) for a

narrow resonance.

To facilitate the discussion below, we introduce the recombination probability P , which

is related to K3 by [49, 50]

K3 =
192π2

µ3k4
P, (3.31)

where k =
√

2µ3E is the three-body wavenumber. Beyond the threshold collisional energy,

the higher partial wave (J > 0) contributions to the inelastic rates are not suppressed by the

Wigner threshold law [178]. However, we will show later that for a < 0 these contributions

are still negligible in the energy range we are considering. In the following we discuss first

the dominant contribution from the J = 0+ symmetry.

3.3.1 Three-body Efimov resonance at finite energy

As has been shown in Eq. (1.6) from Sec. 1.2, when a < 0, the three-body recombination rate

K3 near zero energy features a series of logarithmically-separated resonance peaks on top

of the overall a4 scaling. The series of peaks appearing in K3 manifest that as |a| increases,

consecutive Efimov states move across three-body break-up threshold (E=0) and become

bound [179, 180]. When an Efimov state exists as a shape resonance at finite energy above

the three-body break-up threshold, increasing the collisional energy across the resonant

energy will lead to a resonant peak in K3 [50]. This process is illustrated in Fig. 3.17.

Near the resonant energy the amplitude of the hyperradial wavefunction of the incident

channel behind the barrier is greatly enhanced, the three-body system thus has much larger

probability to stay in the short-range region. The enhanced recombination then occurs by
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the coupling between the incident channel and the deeply-bound atom-dimer channel at

short range. One should be aware, however, that the height of the barrier in Fig. 3.17 is

∼ 1/2µ3a
2, indicating that the resonant behavior in K3 can only be observed for the energies

below 1/2µ3a
2. Below this energy, the barrier can only confine a resonant Efimov state with

size on the order of |a|, which implies that at most one Efimov resonance can be observed

for a fixed scattering length.

Figure 3.17: Three-body Efimov resonance at finite energy manifested in the adiabatic hyper-
spherical potentials.

The Wigner threshold law for three-body system [178] shows that P ∝ k4 when E � Eres

where Eres ≤ E2b is the resonance energy of the Efimov state. The resonant behavior can

thus be observed at finite energy when E ≤ E2b. In Fig. 3.18, we show the evolution of a

resonance peak from finite energy to zero energy as |a| increases. When a peak moves below

zero energy, an oscillatory structure appears in the recombination probability P beyond the
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threshold energy E > E2b,

Figure 3.18: The evolution of an Efimov resonance with a in the three-body recombination
probability P (a<0)(E) for three identical Cs atoms when a resonant Efimov trimer state is above
the three-body break-up threshold. As the scattering length increases the resonant peak moves
towards the break-up threshold and finally disappears, while an oscillatory structure is formed
instead.

In the ultracold experiments to observe the Efimov effect by three-body recombina-

tions [54, 56, 57], the losses of the atoms for different scattering lengths are typically mea-

sured at the same temperature. For the measurements at large scattering lengths such

that the recombination is no longer in the zero-energy threshold regime, the measured Efi-

mov features may deviate from the zero-energy prediction in Eq. (1.6). In particular, the

positions of the peaks will be shifted to smaller |a| [53] and the peak structure will be

smoothed. These effects have been addressed in Refs. [53, 138–140] particularly for the first

experimental evidence of Efimov effect in the Innsbruck experiment [54].

By extending the single-channel analysis for recombination for a < 0 introduced in

Sec. 2.5 to finite energies6, we are able to calculate the recombination rate analytically. For

low energies, our result in Fig. 3.19 shows that the recombination rate is characterized by

6For a detailed derivation please refer to Appendix B.

78



3.3. Universal three-body physics at finite energy near Feshbach resonances

resonant peaks, but they are shifted to small scattering lengths when the energy is increased.

Figure 3.19: The resonance structures in J=0 recombination rate K3 at finite energies (a < 0).
The rate is scaled as K3E

2/a4 to better show the traces of the resonant peaks.

3.3.2 Energy-dependent oscillations in K3 for a < 0

In the energy range E2b � E � Es, the recombination rate have the following simple form:

P (a<0) =
2 sinh(πs0) sinh(2η)

cosh(πs0) + sin[−2s0 ln(kr0) + 2Φ− 2ϕ0]
, (3.32)

where the constant phase ϕ0 is determined by

tanϕ0 =
Re[Γ(is0)]− Im[Γ(is0)]

Re[Γ(is0)] + Im[Γ(is0)]
. (3.33)

In the energy range we are considering the change in the short-range scattering wavefunction

is small. The energy dependence in the short-range phase Φ and the parameter η is negligible

so that they both reduce to those defined in Eqs. (1.5)-(1.7).
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The log-periodic oscillations in Eq. (3.32) manifests the formation of Efimov states as

|a| is increased. Like the energy-dependent oscillation observed for a > 0, the overall

phase of the oscillations only depends on the short-range physics so when |a| is increased

more oscillations will appear towards zero-energy limit while those have already appeared

in E � E2b will keep unchanged. As mentioned in Sec. 3.2, in the ultracold experiments

for measuring the zero-energy recombination rates the temperature is required to be lower

as |a| increases. These requirements make the observation of multiple Efimov features quite

challenging. Measuring the Efimov features via the energy-dependent oscillations instead

can make the experimental requirement less demanding. As in Eq. (3.21) and (3.28) for

a > 0, where the energy-dependent oscillations are independent of the scattering length a,

the independence of a in Eq. (3.32) also provides the convenience of measuring the energy-

dependent oscillations by sections at different a, provided that |a| ≥ 1/k. One should

note that if there is an Efimov resonance present at finite energy, the oscillations at higher

energies may be destroyed by thermal averaging. Therefore, the scattering length a where

the measurements are carried out should be chosen to be far away from resonant peaks.

Equation (3.32) also applies to three-body systems with two identical bosons. In such

systems, the Efimov effect is generally more favorable if the two identical bosons are much

heavier than the distinguishable one [169], in the sense that the universal constant s0 can

be larger as the mass ratio increases so that the period of the logarithmic oscillations in

the collisional rates decreases. For the energy-dependent oscillations, however, increasing

s0 also makes the oscillatory modulations smaller. In Fig. 3.20(a), we show the mass ratio

effect for some typical three-body atomic systems. For three identical Cs atoms, the ratio

of the modulation to the background is about 0.18; for two identical Cs atoms with one Cs

atom in different spin state, the ratio is about 2.1; and for two identical Cs atoms with one

Li atom, the ratio is about 0.0079.

Though in the zero-energy limit the features of the relaxation rates Vrel(a > 0) resemble

those of the recombination rates (a < 0), they differ dramatically at higher energies. The

80



3.3. Universal three-body physics at finite energy near Feshbach resonances

Figure 3.20: Three-body recombination probability for a < 0 near broad Feshbach resonances
at finite energies. (a) The energy-dependent three-body recombination probability P (a<0)(E) for
three identical Cs atoms, two identical Cs atoms with one Cs atom in a different spin state (Cs′)
and two identical Cs atoms with one Li atom. The symbols are numerical results and the black
solid lines are from Eq. 3.32. The scattering length for the numerical calculations are 2× 105 a.u.,
6× 105 a.u. and 105 a.u., respectively. (b) The recombination probability after thermal averaging.
To make a clear comparison between the three different systems, P (a<0) for CsCsCs′ and CsCsLi
has been multiplied by 3 and 2, respectively.

zero scattering energy is referred as the atom-dimer break-up threshold for relaxation and

as the three-body break-up threshold for recombination. Applying the Wigner threshold

law for atom-dimer collision leads to constant Vrel below the energy Eth where Vrel shows the

zero-energy behavior as given in Eq. (1.7). Generally Eth ≈ E2b except Vrel(E → 0) is near

a resonant peak where the atom-dimer scattering length |aad| � |a|. In this case Eth is close

to the least bound Efimov trimer binding energy 1/2µada
2
ad, where µad is the atom-dimer

reduced mass. Beyond Eth and below the short-range energy Es, Vrel scales like

Vrel = Ck−1 (3.34)

except in a small energy range E ≈ E2b, due to the non-analytic behavior near the three-
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body break-up threshold. The constant C depends on the short-range physics and is related

to the η parameter in Eq. (1.7). Unlike the three-body recombination rate, the relaxation

rate does not show the Efimov-like oscillations.

As presented in Sec. 3.1, near a narrow Feshbach resonance, the behavior of the effective

hyperspherical potential Wνν(R) in the region |reff | � R � |a| is replaced by a weak

Coulomb behavior instead of the attractive 1/R2 form. The observable effect is that for

identical bosons, when |a| � |reff | the weak Coulomb potential leads to 1/|reff | suppression

in the inelastic rates leading to deeply-bound states. Using the same modeling technique

for a narrow Feshbach resonance in Sec. 3.1 to model a three-body system near a narrow

Feshbach resonance by using pairwise potentials in Eq. (3.3), we have calculated K3 for

a < 0 up to the short-range energy scale Es.

Figure 3.21: The energy-dependent three-body recombination probability for a < 0 near narrow
Feshbach resonances. (a) The energy-dependent recombination probability P (a<0)(E) near narrow
Feshbach resonances with reff=–20 a.u., –200 a.u. and –2000 a.u.. The symbols are the numerical
results and the back solid lines are from Eq 3.32. The parameter α is fitted as 0.25, consistent
with the result in Ref. [2]. (b) The recombination probability from numerical calculations after
thermal averaging.
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We have found that without looking at the effective-range dependence in the inelastic

rates, the 1/|reff | suppression is manifested in the energy dependence of the inelastic rates

for a fixed effective range. As shown in Fig. 3.21(a), the recombination probability P (a<0)

in the short-range energy scale E ≈ Es has a similar magnitude for different reff , since the

short-range behavior of the three-body system has only small changes. In the effective-

range energy region Eeff < E < Es instead, P (a<0) ∝ k. Thus as the energy gets smaller,

the recombination probability decreases monotonically until the energy reaches E ≈ Eeff ,

where oscillatory behavior similar to Eq. (3.32) takes place. Compared with the situation

near a broad resonance, P is suppressed by a factor of 1/|reff | around E ≈ Eeff before it

connects to the oscillatory behavior at lower energy. Consequently, the recombination rates

at lower energies are all suppressed by 1/|reff |. Following the similar procedure for deriving

the recombination rate for small |reff |, P (a<0) for large |reff | acquires the same form in the

Efimov energy range as Eq. 3.32, with r0 replaced by α|reff | and the parameters Φ and η

connected to the real and imaginary part of the three-body short-range scattering length

ReA and ImA:

tan Φ = 2s0
α− ReA/|reff |
α + ReA/|reff |

, sinh η = 2

∣∣∣∣ImAαreff

sin 2Φ

∣∣∣∣ , (3.35)

where the parameter α comes from the uncertainty in defining the boundary of the Coulomb-

like region and is fitted to be α = 0.25 from our numerical results. In the effective-range

energy range, P takes the following simple analytical form:

P = 4k|ImA|. (3.36)

The behavior of P near a narrow Feshbach resonance leads to the the change of the energy

scaling k−4 in the “Efimov” energy range (E2b ≤ E ≤ Eeff) to k−3 in the effective-range

energy region (Eeff ≤ E ≤ Es). The 1/|reff | suppression can thus be observed experimentally

through the change of the energy scaling.

A similar change in scaling also occurs in the same energy range for relaxation. As

shown in Fig. 3.22, As |reff | increases, instead of k−1 scaling for broad Feshbach resonances
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3.3. Universal three-body physics at finite energy near Feshbach resonances

as shown in Eq. (3.34), a plateau region shows up in Vrel, extending from short-range energy

down to the effective-range energy. Similar to recombination, this change also connects to

the 1/|reff | suppression of the rates near zero energy and can be used for observing the

effective-range effect near narrow Feshbach resonances.

Figure 3.22: The three-body relaxation rates for a > 0 near narrow Feshbach resonances with
reff=–200 a.u., –1000 a.u. and –2000 a.u.. The scattering length is 104 a.u. for all cases. The rates
are shown for the collisional energy beyond the three-body break-up threshold, where no resonant
peaks are present so that the energy scaling behavior is easy to be seen. The symbols are the
numerical results and the black solid lines are thermally-averaged results.

Next we will discuss how the higher partial waves contribute to the total inelastic rates.

For three-body recombination at a < 0 and relaxation at a > 0, the inelastic processes

require transitions at short-range R ≤ r0. For J > 0, in the three-body systems where

the Efimov effect does not occur for J > 0 [169], the effective hyperspherical potentials are

all repulsive for R > r0, leading to great suppression when E < Es. Specifically, using a

WKB analysis [66] we can show that the probability for such inelastic transitions scales

like (kr0)2p0 , where the universal constant p0 > 2 for identical bosons and increases with J

in general. Our numerical calculations also show that for E < Es, K
(J>0)
3 is smaller than

K
(J=0)
3 by many orders of magnitude.
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3.3. Universal three-body physics at finite energy near Feshbach resonances

Finally we address the thermal effect on the inelastic rates in the quantum gas experi-

ments. By assuming a Boltzmann distribution of the thermal energy, we have performed a

thermal average on the energy-dependent inelastic rates we have calculated. The results are

shown in Fig. 3.20(b) and 3.22(b) for recombination and are shown together with the energy-

dependent rates in Fig. 3.22 for relaxation. In the “Efimov” energy range, the oscillatory

structures in P (a<0) generally become less clear after thermal average. In presence of an Efi-

mov resonance near the three-body break-up threshold, the observability of the oscillatory

structures in the Efimov energy region can be further reduced. For the three-body systems

of two identical bosons and one distinguishable atom with a small value of s0, the oscillatory

structures are well-preserved after thermal average, with the trade-off that the oscillatory

periods are spanning a larger energy range. In the effective-range energy region, however,

the thermal average does not change the observability of the specific energy scalings near

the narrow resonances for recombination or relaxation processes.

Before concluding, we discuss the possible application of the energy-dependent Efimov

features identified for both a > 0 and a < 0 cases to studies in nuclear physics. Though the

scattering length-dependent predictions for the three-body inelastic rates have been success-

fully applied to the ultracold experiments for the observation of the Efimov effect, they are

less helpful in the context of nuclear physics where the discussions on the Efimov effect first

originated. The reason is simple: the nuclear interactions are predetermined by nature and

there is no known way to experimentally control these interactions. The scattering length

a between the nucleons is thus not tunable and the scattering length dependent Efimov

features are generally not observable. As we have extended Efimov physics into the energy

domain from the three-body collisions, the information of the three-body Efimov state can

be obtained without tuning the interactions. In particular, if the recombination is difficult

to realize in some systems, one can always look at the three-body dissociation signals in the

collisional process B∗2 +B → B+B+B, the time reversal of the three-body recombination.

The energy-dependent Efimov features are expected to show up in exactly the same way as
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3.3. Universal three-body physics at finite energy near Feshbach resonances

for the recombinations.

3.3.3 Summary

To summarize, we have studied the three-body collisions at incident energies up to the short-

range energy regime near both broad and narrow Feshbach resonances. We have identified

the universal energy dependence as a manifestation of Efimov effect in three-body recombi-

nation probability in the Efimov energy range when a<0. Near narrow Feshbach resonances,

we have also found the universal energy scaling in the effective-range energy region for re-

combination rates (a<0) and relaxation rates (a>0), which have a close relationship to

the 1/|reff | suppression in those rates near zero-energy [2]. By understanding the physical

processes in hyperspherical representation, we derived simple analytical expressions for the

universal energy-dependent features, supported by the results from solving the Schrodinger

equation numerically. These energy-dependent features can be conveniently used for the

experimental observation of the Efimov effect and the suppression effect near narrow Fes-

hbach resonances. Our study brings the universal three-body physics from the ultracold

quantum degenerate regime to the cold atoms regime, where richer universal physics can be

discovered both theoretically and experimentally.
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Chapter 4

Universal Efimov physics in
four-body systems

In the quest for exploring universal physics in few-body systems, three-body Efimov physics

has been regarded as the key to obtaining universal scaling behavior in the three-body

systems. Since the ultimate goal for the study of universal physics is to build connections

between few-body systems and many-body systems, the natural next step is to study univer-

sal physics in a four-body system. The addition of only one particle to a three-body system

causes fundamental changes. First of all, it has been proven that the Efimov effect does

not exist for N identical bosons when N ≥ 4. Some fundamental questions then arise for a

four-body system: Are there still some universal behaviors? If there are, do they originate

from the three-body Efimov physics or from some new mechanism? Studies on these topics

have shown fruitful progress in recent years [10][59, 62, 63, 68, 181–183]. Furthermore, there

will be more few-body scattering processes in a four-body system, including recombinations,

relaxations and reactive processes. Each of these processes may have unique universal scal-

ing behavior, which provides broad applications in controlled chemistry. In this chapter,

the material for Sec. 4.1 and 4.2 is adapted from a published paper [10] and a preprint [7],

respectively. We discuss how the three-body Efimov effect appears in four-body systems

and how to use the four-body consequences of this effect to gain control over four-body

scattering processes. The material for Sec. 4.3 is also adapted from a preprint [4], in which
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4.1. Efimov trimer production via four-body recombination

we discuss universal four-body physics in a one dimensional system where the Efimov effect

does not show up for any number of particles.

4.1 Efimov trimer production via four-body recombi-

nation

The exquisite experimental control on the interactions in an ultracold quantum gas has

opened the era of controlled quantum chemistry. In particular, both weakly-bound [40,

41, 184] and ground state diatomic molecules [64, 64, 65] have been produced by using

magnetic Feshbach resonance [42, 43] and STIRAP [185, 186]. Experimental observations

of the three-body Efimov effect [54–57, 60, 144–148] give hope for quantum chemistry on

triatomic molecules. Predictions and proposals on this topic have appeared recently, such

as four-body recombination for identical bosons [59] and the conversion of dimers into an

Efimov trimer by tuning their relative energies [68]. When producing Efimov trimers by

collisional means, one extra atom or molecule needs to be involved to carry away the extra

energy released from the binding, which pushes theoretical studies on this topic to be at

least a four-body problem.

Our goal is to explore the possibility of producing Efimov trimers via four-body recom-

bination. A scheme for doing this in the tight confinement of an optical lattice has been

proposed [187] which takes advantage of the magnetic field dependence of Efimov trimer

energy levels near a Feshbach resonance. Here we investigate the possibility for produc-

ing them in free space with four-body recombination. Our approach is similar to one of

the experimental techniques used for producing weakly-bound dimers by three-body recom-

bination, where an atomic gas sample is held at a fixed magnetic field near a Feshbach

resonance [176, 188]. In such experiments the three-body recombination does not directly

lead to trap loss because the energy released from the binding of the weakly-bound dimer

does not exceed the height of the trapping potential.

Besides the intrinsic interest of Efimov states, it is also important to develop a theory
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4.1. Efimov trimer production via four-body recombination

of the fundamental process of four-body recombination quantum mechanically. Compared

with three-body collisions, our knowledge of ultracold four-body collisions is still quite rudi-

mentary. The reason is clear: solving the Schrödinger equation with three additional degrees

of freedom is a much more difficult task. There have, of course, been many studies of four-

body systems, and some which have relevance to ultracold quantum gases have appeared

recently [59, 62, 63, 68, 181–183, 189]. In particular, in Ref. [59] four-body recombination of

four identical bosons has been addressed and a class of universal four-body states has been

predicted. This theoretical prediction was later confirmed by experiments [60].

The system we consider here is an ultracold mixture of atoms A and B. We take A to be

bosons distinguishable from B. Our goal is to produce Efimov trimers A3 via the four-body

recombination process

A+ A+ A+B −→ A3 +B. (4.1)

To this end, we will assume that the two-body s-wave scattering length among A atoms

aAA is infinite to give the most favorable case for Efimov states. We will also assume that

the interspecies scattering length aAB is finite and that any dimer states, which are likely

for real systems, lie much deeper than the Efimov trimer states. As we will show below,

monitoring the loss of B atoms provides a convenient indicator for the formation of A3 with

many advantages over alternative schemes.

4.1.1 Four-body hyperspherical coordinates

Our treatment of this process is asymmetrical in A and B, mirroring the differences in

aAA and aAB. The two-body interactions for the A3 subsystem are well-described by the

zero-range model [13] which has been discussed to some extent in Sec. 2.5. The advantage

of this model is that the three-body solutions are especially simple in the |aAA| → ∞

limit [12, 106, 107]. This simplicity partially comes from the simple connection between

the two-body zero-range boundary conditions and the boundary condition for the adiabatic

hyperangular wavefunction in Eq. (2.38). Extending this model to four-body systems is not
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4.1. Efimov trimer production via four-body recombination

straightforward, however. Our analysis has shown that in the four-body case, the zero-range

boundary conditions need to be imposed along complicated trajectories on the hyperangular

surface and there is hardly any hope for them to reduce to simple expressions. Instead, we

borrow an idea from Rydberg physics [190] — and from many-body theories of Bose-Einstein

condensates [31–33] — to model the AB interaction. In the ultracold regime, the kinetic

energies of the A atoms are near zero when they are free, so that the wavelength of the

A atoms will be much larger than the size of atom B. If the A atoms are bound in an

Efimov molecule, they will still have tiny kinetic energies since the Efimov molecules are so

weakly-bound. In any case, the AB interactions can be regarded as point interactions and

when aAB is not dramatically larger than the size of the short-range interaction r0. These

interactions can be approximated by the Fermi contact potential [191] instead of using the

zero-range boundary conditions as were used for treating the A+ A interactions:

VAB(ri4) =
2πaAB
µAB

δ(ri4), i = 1, 2, 3, (4.2)

where µAB is the two-body reduced mass and ri4 is one of the AB interparticle distances.

Given the success of the adiabatic hyperspherical representation in describing the three-

body continuum [49, 50], we will use it here to treat the four-body continuum as well. Since

we want to use known solutions for the A3 subsystem, we build the four-body hyperspherical

coordinates from the three-body ones. In particular, as shown in Fig. 4.1 we set up the

coordinates by using the “K”-type Jacobi vectors. The four-body hyperradius R4 and

hyperangle α4 are thus defined as

µ4R
2
4 = µ3,4ρ

2
3 + µ3R

2
3 (4.3)

tanα4 =

√
µ3

µ3,4

R3

ρ3

. (4.4)

Here, µ3=mA/
√

3 is the three-body reduced mass, µ3,4=3mAmB/(3mA+mB) is the reduced

mass between the AAA trimer and the B atom, and µ4=
√
µ3µ3,4 is the four-body reduced

mass. Finally, ρ3 denotes the distance from the A3 center of mass to B; R3, the three-body

hyperradius; and α3, the three-body Delves’ hyperangle as introduced in Sec. 2.2.1.
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Figure 4.1: The “K”-type Jacobi vectors for A+A+A+B system.

4.1.2 Four-body adiabatic potentials

To properly treat the strong interactions between the A atoms and the weak interactions

between A and B atoms, we will not use exactly the same representation introduced in

Sec. 2.3. Since the Efimov trimer states are the result of the resonant A+A interactions and

recombination is driven by the A+B interactions, we will use a representation which treats

the A+A interactions separately from the A+B interactions. Specifically, our representation

is not fully adiabatic where we do not include VAB in the adiabatic Hamiltonian Had. Rather,

we will include them later as coupling between channels in the representation where atom

B has been treated as free. This choice, together with our definition of coordinates, permits

separation of variables in the adiabatic equation, utilizing the known solutions for the A3

subsystem. Mathematically, this procedure begins with the four-body Schrödinger equation

[TR4 + VAB(r14) + VAB(r24) + VAB(r34) +Had] Ψ = EΨ,

where TR4 is the hyperradial kinetic energy and

Had = TΩ4 + TΩ3 + V123, (4.5)

which includes the hyperangular kinetic energies TΩi and all of the interactions among A

atoms in V123. The notation Ω3 denotes collectively all of the three-body hyperangles; Ω4

includes the four-body hyperangle α4 and the two spatial angles for the Jacobi vector ~ρ3
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shown in Fig. 4.1. For four-body recombination in the ultracold limit, we know from the

generalized Wigner threshold law [178] that only the zero total orbital angular momentum

solution is relevant and all the higher partial wave contributions are suppressed by the low

collisional energy. And, since for identical bosons the three-body Efimov states only exist

for zero orbital angular momentum, the angular momentum of B relative to A3 must also

be zero by the addition rule of the angular momentum. The channels for the four-body

problem are thus defined from

HadΦ(4)
ν = Uν(R4)Φ(4)

ν . (4.6)

Since we are using the zero-range model for the three A atoms, the four-body adiabatic

wavefunction Φ
(4)
ν is required to satisfy the zero-range boundary condition in Eq. (2.71)

and (2.72) when the distance between the A atoms rij (i, j = 1, 2, 3) goes zero. When a is

infinite, Eq. (2.71) only depends on the three-body hyperangles Ω3, we can thus separate

the variables and write Φ
(4)
ν in the following form:

Φ(4)
ν (R4; Ω4,Ω3) = uβn(R4; Ω4)Φ

(3)
β (Ω3), (4.7)

where the channel index ν represents the combination of indices {β, n}.

In our study of four-body recombination into trimer states, we will solve for both of the

A3 + B bound channels and the four-body continuum channels A + A + A + B separately.

Under the condition aAA → ∞ and aAB ≈ r0, no weakly-bound dimer channels exist, and

all the other channels involving deeply-bound dimers — which exist in a real system — can

be neglected since they lie much deeper than the atom-Efimov trimer channels.

For the A3 + B channels (β=0), the solutions for the three-body hyperangular motion

is analytically known as [106]

Φ
(3)
0 (Ω3) = N3

3∑
l=1

2 sinh(s0α
(l)
3 )

sin(2α
(l)
3 )

, (4.8)

where s0 ≈ 1.00624 is determined by Eq. (2.73), replacing sν with is0. The normalization
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factor N3 is calculated numerically. Equation (4.8) solves

(TΩ3 + V123)Φ
(3)
0 = −

s2
0 + 1

4

2µ3R2
3

Φ
(3)
0 . (4.9)

The summation in Eq. (4.8) is over the three possible three-body Jacobi sets as shown in

Fig. 2.1, each with its own Delves’ hyperangle α
(l)
3 . Substituting Eq. (4.8) into Eq. (4.7),

and the result into Eq. (4.6), we obtain the following equation for the A3 +B channels:(
− d2

dα2
4

−
s2

0 + 1
4

sin2 α4

)
u0n = λ2

0nu0n. (4.10)

The physically acceptable solution of Eq. (4.10) which is regular at ρ3 = 0 is

u0n(R4;α4) = N4 cosα4 sin
1
2

+is0(α4) 2F1(
3

4
+
is0

2
− λ0n

2
,
3

4
+
is0

2
+
λ0n

2
;
3

2
; cos2 α4) (4.11)

where 2F1 is the hypergeometric function and the normalization constant N4 is determined

by

N2
4 =

∣∣∣∣π2 Γ(
3

2
)2 Ψ(b) + Ψ(c)−Ψ(g)−Ψ(h)

λ0nΓ(b)Γ(c)Γ(g)Γ(h) sinh(λ0nπ)

∣∣∣∣−1

, (4.12)

where

b = 3
4

+ 1
2
is0 − 1

2
λ0n, c = 3

4
− 1

2
is0 + 1

2
λ0n,

g = 3
4

+ 1
2
is0 + 1

2
λ0n, h = 3

4
− 1

2
is0 − 1

2
λ0n. (4.13)

The Γ(z) is the Gamma function and Ψ(z) is the Digamma function d ln Γ(z)/dz. The

adiabatic potentials defined in Eq. (4.6) are connected to the eigenvalues λ0n by:

U0n =
λ2

0n − 1
4

2µ4R2
4

. (4.14)

Note that U0n goes below zero when λ0n is purely imaginary.

The solution in Eq. (4.11) has no restriction on the eigenvalue λ0n. This seems bizarre at

first glance since it implies that the adiabatic potential Uν(R4) can take any value from −∞

to ∞. In fact, this is exactly the manifestation of Thomas collapse. This collapse comes

from the the zero-range model description of the A+A+A subsystem, as indicated by the
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three-body adiabatic potential in Eq. (2.75) which is singular when the size of the A+A+A

subsystem is zero. This collapse is then manifested in the A3 + B system. To avoid this,

we simply require that the three-body hyperradial wave functions vanish for R36R0 where

R0 roughly represents the size of the ground Efimov state and determines the ground state

energy E0 in Eq. (1.2). This effectively regularizes the singular behavior of the A3 subsystem

at small distance and leads to a transcendental equation for λ0n:

2F1(
3

4
+
is0

2
− λ0n

2
,
3

4
+
is0

2
+
λ0n

2
;
3

2
; cos2 α4,0) = 0, (4.15)

where cos2 α4,0 = 1−R2
0/R

2
4. Through the asymptotic behavior of transcendental equation,

the Efimov trimer energies are recovered from U0n in the limit R4→∞:

Uν(R4) ' − 2

µ3R2
0

e
− 2
s0

(nπ+γ) − c2

2µ4R2
4

+O(
1

R3
4

), (4.16)

where c2 ≈ 0.667 is fitted from the potential obtained by solving the root of Eq. (4.15). The

constant γ is

γ = tan−1

[
1

ArgΓ(is0)

]
≈ 0.30103. (4.17)

The attractive 1/R2 behavior in the potentials Uν is cancelled by the leading order term

from the diagonal coupling Qνν=
〈〈

dΦν
dR4

∣∣dΦν
dR4

〉〉
when we look at the more physical effective

potential Wν(R4) = Uν(R4)− 1
2µ4
Qνν(R4).

For R4 � r0 but Wν > 0, the effective potentials behave like

Wν(R4) ≈
[

2(n+ γ)− s0

π
+

1

2
− s0

π
ln

(
µ4R

2
4

µ3R2
0

)]
1

2µ4R2
4

. (4.18)

As will be shown later, this behavior determines the structure of the crossings between the

A3 +B channels and the A+A+A+B channels, which is crucial for the inelastic transitions

in four-body recombination.

We follow the same logic for the A+A+A+B channels. The only difference is that Φ
(3)
β

is now a three-body continuum function, but still for |aAA|→∞. This is done by replacing
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sβ m λβm
4.465 0 5.965
4.465 1 7.965
6.818 0 8.318
4.465 2 9.965
6.818 1 10.318
9.324 0 10.824

Table 4.1: The lowest few asymptotic eigenvalues λβm for the A+A+A+B channels.

s0 by isβ (β>0) so that the three-body hyperangular solutions are

Φ
(3)
0 (Ω3) = N3

3∑
l=1

2 sin(sβα
(l)
3 )

sin(2α
(l)
3 )

, (4.19)

which give the counterpart of Eq. (4.10) for A+ A+ A+B channels:(
− d2

dα2
4

+
s2
β − 1

4

sin2 α4

)
uβm = λ2

βmuβm. (4.20)

The universal constants sβ are real numbers determined by Eq. (2.73) in the limit a→∞.

The four-body hyperangular solution uβm takes the same form as Eq. (4.11) with s0 replaced

by isβ. The boundary condition for uβm is obtained after replacing s0 by isβ in Eq. (4.15).

After solving the eigenvalues λβm, we get the four-body adiabatic potentials for A+A+A+B

channels

Uβm =
λ2
βm − 1

4

2µ4R2
4

. (4.21)

Asymptotically, λβm→sβ+2m+ 3
2

with m=0,1,2,. . . labeling the four-body continuum states

possible for each β. The four-body continuum potentials thus behave as

Uβm =
(sβ + 2m+ 3

2
)2 − 1

4

2µ4R2
4

(4.22)

for R4 � R0. We list the lowest few asymptotic eigenvalues λβm in Table 4.1.

4.1.3 Four-body recombination

If we expand the total four-body wave function as

Ψ(R4,Ω4,Ω3) =
∑
ν

Fν(R4)Φ(4)
ν (R4; Ω4,Ω3), (4.23)
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Figure 4.2: The lowest four-body adiabatic hyperspherical potentials Wν multiplied by 2µ4R
2
4 to

better show their behavior. Black solid lines denote atom-trimer potentials for β=0 and n=1,2,3,4;
blue dashed lines, four-body continuum potentials for β=1 (s1=4.465) and m=0,1,2; and the red
dotted line, the four-body continuum potential with β=2 (s2=6.818) andm=0. We takeR0=10 a.u.
for all curves. Figure is adapted from Ref. [10].

then the non-adiabatic couplings

Pνν′ =

〈〈
Φν

∣∣ d

dR4

∣∣Φ′ν〉〉 , Qνν′ =

〈〈
dΦν

dR4

∣∣dΦ′ν
dR4

〉〉
(4.24)

between four-body continuum and atom-trimer channels vanish since Φ
(3)
β are independent

of R3 and form an orthonormal set. Recombination is thus driven only by the diabatic

couplings

Vν′ν = 〈ν ′|VAB(r14) + VAB(r24) + VAB(r34)|ν〉 (4.25)

and occurs predominantly at the crossings in Fig. 4.2 which shows the lowest atom-trimer

and four-body continuum potentials multiplied by R2
4 for clarity. In the vicinity of the

crossings, the coupling Vν′ν behaves as ζaAB/R
3
4 to a good approximation. The unitless

constant ζ which originates from the numerical evaluation of Vν′ν , has a weak dependence

on the channel numbers, and is on the order of 10−3. While the two sets of potentials in

Fig. 4.2 cross in several places, the lowest two A3+B potentials do not cross a continuum
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channel. In our model then, the lowest two Efimov trimers can only be populated by weak

non-adiabatic transitions between atom-trimer channels. This conclusion is independent of

R0, but for more realistic, finite range two-body potentials all the channels will likely be

coupled at small R4.

Knowing the behavior of the potentials allows us to address a fundamental question in

few-body scattering about the existence of a four-body parameter [182, 183]. This question

can be described as: with all the low-energy scattering properties we know for a (N−1)-body

system, can we describe the N -body low-energy scattering without additional information?

For N = 3, this question becomes if low-energy three-body scattering can be fully described

by the two-body scattering length. In the presence of the three-body Efimov effect, the

short-range three-body potential needs to be regularized by a three-body parameter, which

can be, for instance, R0 in Eq. (4.15) or the short-range phase Φ in Eq. (1.5)-(1.7). For

N = 4, as in the present case, the relevant question is if the two-body scattering length aAB

and the three-body cutoff parameter R0 are sufficient to describe four-body scattering. The

scattering length aAA is not counted since we have taken the limit aAA → ∞. Note that

because all of the states of interest here display strongly repulsive potentials at small R4 (as

seen in Fig. 4.2) and the potentials beyond the repulsive region are universally determined

by the R0 and the universal constants s0 and sβ, no four-body parameter is required in the

description of four-body recombination to Efimov trimers.

The four-body recombination rate K4 is related to the recombination probability |Tfi|2

by K4∝|Tfi|2/k7 where k=
√

2µ4E is the incident four-body wave vector and the unknown

proportionality constant is a number that depends on the number of identical particles.

By using the Landau-Zener approximation, we expect that peaks of |Tfi|2 will occur at

E≈Wν(Rc),

Wν(Rc) ≈
(
sβ + 2m+ 3

2

)2

2µ3,4R2
0

e
− π
s0

(2n−sβ−2m+
2γ−s0
π
−1). (4.26)

where

Rc ≈ R0

√
µ3

µ4

e
π
s0

(n− 1
2
λcν+

2γ−s0
2π

+1
4) (4.27)
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4.1. Efimov trimer production via four-body recombination

is the value of R4 at the crossing determined by the universal behavior of the A+A+A+B

channels in Eq. (4.22) and the A+ A+ A+B channels in Eq. (4.18) and

λcν ≈
√

(sβ + 2m+
3

2
)2 − 1

4
(4.28)

is the eigenvalue of Eq. (4.10) evaluated at the crossing. We can estimate the transition

probability using the Landau-Zener approximation if E>Wν(R
c
4), In this approximation,

the recombination probability is given by PLZ = 4T (1− T ) cos2∆φ. The relative phase ∆φ

is approximately zero since the potentials are nearly parallel near the crossings, and T is

T = exp

[
−
√
µ3

µ4

(
µ3

µAB

aAB
Rc

)2
ζ2

kR0

2π

(2 s0
π
λcν+ 1

4
)

]
, (4.29)

This expression shows that for a given initial channel (sβ,m) there is a geometrically spaced

sequence of peaks in energy for recombination to Efimov trimers n. This characteristic

feature of three-body Efimov physics is thus evident in four-body physics as well. Moreover,

the spacing of the features is exp(−2π/s0) just as one would predict from the three-body

physics.

To illustrate this point, we show in Fig. 4.3 P=|Tfi|2 for several transitions from different

initial channels by numerically solving the hyperradial equation. Specifically, we calculated

|Tfi|2 for recombination from the lowest continuum channel (s1, 0) into the n=4 and 5 states

including only these three channels in the Schrödinger equation. These numerical solutions

show that the recombination probability does indeed peak at the crossings, thus showing

the expected log-periodic spacing of peaks. Since this calculation confirmed our predictions

and a full calculation is prohibitively expensive, we estimate the other peaks in Fig. 4.3 by

shifting the peaks from the three-channel calculation based on the crossing energy (4.26)

and scaling them taking into account the difference in the peak magnitude.

Up to this point, our analysis has assumed |aAA| = ∞. If we let it be finite instead,

then the above analysis applies in the regime |aAA| � |aAB|. We further require aAA<0 so

that there are no weakly-bound dimers and thus no three-body recombination of A atoms

to compete with four-body recombination. Under these conditions, the four-body adiabatic
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4.1. Efimov trimer production via four-body recombination

Figure 4.3: The recombination probability for several transitions; (sβ,m) labels the initial
continuum channel and n labels the final state of the Efimov trimer. The probabilities must be
multiplied by the factors indicated. We have taken R0=10 a.u. and aAB=100 a.u.. Figure is
adapted from Ref. [10].

potentials behave as described above for |aAB|�R4�|aAA|. For R4�|aAA|, the A+A+A+B

potentials approach the four-body hyperspherical harmonic potentials

Wν ≈
λ(λ+ 7) + 12

2µ4R2
4

(4.30)

where λ a non-negative integer, and the A3+B potentials approach the trimer bound ener-

gies. It follows that at energies a−1
AA�k�a

−1
AB K4 keeps the structure described above.

In analogy to three-body recombination, the effects of finite aAA are most easily shown in

the zero energy limit. When E→0, recombination into the most weakly-bound Efimov trimer

dominates. Since the size of this trimer is on the order of |aAA|, we expect recombination to

occur at R4≈|aAA|. So, by employing a WKB analysis similar to that described in Ref. [66],

we find that the recombination probability is

P = C(aAB)(k|aAA|)7 sin2(kn|aAA|+ Φ), (4.31)

where C is a proportionality constant, Φ is a constant phase determined by the universal
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4.1. Efimov trimer production via four-body recombination

shape of the A3 +B potentials but is independent of aAA, and kn= 2
R0

µ4

µ3
exp[−(nπ + γ)/s0]

is the wave number for the final trimer state n at E=0. When |aAA| increases by a factor of

22.7, a new atom-trimer channel appears and kn changes to kn+1 which, in turn, changes the

period of the aAA-dependent oscillations. It turns out that recombination into a particular

atom-trimer state will show about seven full oscillations in K4 as a function of aAA. From the

relation K4∝P/k7, Eq. (4.31) also shows that K4 will be constant in the threshold regime,

kaAA.1, and proportional to |aAA|7. This scaling will apply to K4 for any system without

identical fermions.

4.1.4 Experimental issues

If the trimers cannot be experimentally observed directly, then their production can be

measured through the loss of either A or B atoms. In an ultracold mixture of the two, it

is much better to observe the B atoms, however, as other few-body processes will lead to

loss of A atoms and thus mask the effects we predict. The best choice is to make the B

atoms spin-polarized fermions. In this case, A+A+A+B recombination is unaffected, but

the competing loss processes involving two or more B atoms can be avoided as they will

be suppressed near threshold [178]. There remains the possibility for loss of B atoms in

A+A+B collisions, but for |aAA|=∞ or aAA finite but negative, the three-body potentials

are all repulsive [61] and only deeply-bound dimer channels are available. The various loss

rates for this system are thus small [61]. Measuring the loss of B atoms should then provide

a signature of Efimov trimer formation.

The primary processes competing with A+A+A+B recombination for |aAA|→∞ are

three- and four-body recombination of A atoms since they will deplete the A atoms. If,

as we have assumed, there are no A2 bound states, then there is no A+A+A recombina-

tion. For realistic systems with A2 states, however, we can consider the effect of A+A+A

recombination via the rate equations. From the three-body rate equation Eq. (1.4) and the
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4.1. Efimov trimer production via four-body recombination

four-body rate equation:

dnA
dt

= − 3

3!
K4n

3
AnB, (4.32)

dnB
dt

= − 1

3!
K4n

3
AnB, (4.33)

we conclude that A+A+A+B recombination can be made dominant by increasing the den-

sity nB of B atoms. To estimate the required nB, we require that the rate of depletion of A

atoms is dominated by four-body recombination, or K4nB>K3. The density nB required for

observing the three sets of peaks shown in Fig. 4.3 can thus be estimated by by assuming

that the overall constants in K3 and K4 are of similar magnitude. By using |Tfi|2=10−7,

10−4, and 10−1 from Fig. 4.3 for the three sets of peaks in order of increasing energy of the

peaks, the density nB is estimated to be on the order of 1015, 1015, and 1017 atoms/cm3,

respectively. For the three-body recombination probability, we use 10−3 [50]. These prob-

abilities, however, are not expected to be universal as they depend on short range physics.

Consequently, our density estimates can change — assuming equal three- and four-body

probabilities, for instance, gives nB of 1011, 1014, and 1019 atoms/cm3. So, with this level of

uncertainty, there is hope that the first two peaks might be within experimental reach. The

competing A+A+A+A recombination process can be estimated by the theoretical work in

Ref. [59] and experimental observations [57, 60], and the conclusion is that the loss from

A+A+A+A recombination is at most the same order of magnitude as A+A+A recombi-

nation for the densities considered here. By making nB�nA, though, this process might

be made less important than A+A+A+B recombination. These two processes can also be

separated by the dependence of the latter on aAB [192].

4.1.5 Fermi contact potential in adiabatic hyperspherical repre-
sentation

Before concluding, we will show the validity of the Fermi contact potential Eq. (4.2) in an

adiabatic hyperspherical representation. For simplicity, we discuss the effect on three-body

adiabatic potentials, and the conclusion on its validity is expected to hold for four-body
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4.1. Efimov trimer production via four-body recombination

potentials. We consider two atoms (mA) which are identical bosons and in resonance(a →

∞), and another atom (mB) which is a different species having scattering length a0 with

each of the bosons.

First, we solve the potentials by treating the interactions between the third atom and the

bosons as a perturbation. We get the unperturbed three-body potential by assuming that the

third atom does not interact with the others. Using ZRP model, the only boundary condition

on three-body wave function is from the identical bosons. The potential is determined as

U(R3) =
n2 − 1

4

2µ3R2
3

, (4.34)

where n = 1, 3, 5, ... is an odd integer. The diagonal corrections are 0 for these potentials.

The perturbation to the adiabatic potential is calculated by using a Fermi contact po-

tential,

U (1)(R3) =
4

π

√
µAB
µ3

3

(
2 cosnα(12)

sin 2α(12)

)2
a0

R3
3

(4.35)

where α(12) and α(13) are constants for kinematic rotations between Jacobi sets

α(12) =
mA

mA +mB

, α(13) =

√
mB

2(mA +mB)
. (4.36)

If we attribute all the interactions between three pairs of atoms to the three boundary

conditions in ZRP model, the adiabatic potential U(R3) =
s2− 1

4

2µ3R2
3

is determined by the

transcendental equation

cos(
π

2
s)s

[
cos(

π

2
s)s− sin(sα(12))

sin
3
2 α(12) cos

1
2 α(12)

−
√

µ3

µ13

R3

a0

sin(
π

2
s)

]
= 8

[
sin s(π

2
− α(13))

sin 2α(13)

]2

(4.37)

The asymptotic expansion s(R3) = C0+ C1
R3

+O( 1
R2

3
) gives the first two terms of the potential:

U(R3) =
n2 − 1

4

2µ3R2
3

+
4

π

√
µAB
µ3

3

(
2 cosnα(12)

sin 2α(12)

)2
a0

R3
3

(4.38)
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where n is a positive integer. The even n solutions here correspond to trivial solutions when

the atom B is treated as free. The odd n solutions give the potentials which have one-to-one

correspondence to those in Eq. (4.34). By asymptotic expansion we have found the diagonal

corrections for these channels is of higher order: Qnn ∼ O( 1
R4

3
). Thus the result from the

ZRP model and from perturbation agree exactly in the leading order in the asymptotic

region(R3 � a0). This gives the same result as in many-body theory, where the adoption

of Fermi contact potential gives the answer exact in the lowest order.

4.1.6 Summary

To summarize, we have taken the first steps in understanding ultracold four-body recombi-

nation into Efimov trimers. By setting up the problem in a mixed diabatic and adiabatic

representation, we were able to obtain largely analytical results. In the process, we showed

that the four-body recombination should show prominent, geometrically spaced energy-

dependent peaks that reflect the three-body Efimov physics. In fact, these peaks are sepa-

rated by precisely the factor one expects from the three-body physics. Further, we proposed

a potentially useful scheme using the spectator B atoms to detect these trimer-forming

events. Observing the four-body recombination loss is only the first step — studying the

trimers produced is the real goal.
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4.2 Four-body Efimov physics induced by three-body

Efimov effect

For systems with four identical particles, remnants of the three-body Efimov effect have

been predicted and observed [59, 60, 181, 183], extending universal physics from three-body

to four-body systems. In particular, they have found that there are two universal four-body

resonance states attaching each of the atom-trimer break-up channel. The Efimov effect

in a heteronuclear atomic system near overlapping Feshbach resonances has recently been

of both theoretical and experimental interest [67, 144–146, 148, 193, 194], where the mass

ratio and the scattering lengths between the atoms from different species provide additional

knobs for the studies of Efimov physics. However, the experimental studies suffer from the

fact that the magnetic field dependence of the scattering lengths are determined by the

nature of atomic interactions and thus cannot be tuned independently.

Here we propose studying Efimov physics in a heteronuclear atomic system with large

mass ratio mH/mL, where mH and mL are the masses of the heavy and light atoms, respec-

tively. In such a system, the motion of the light atom interacting with the heavy ones can

be treated by the Born-Oppenheimer approximation, which mediate effective interactions

between the heavy ones even if they do not interact by themselves.

As will be shown below, the ratio of the scattering length between heavy and light atoms

aHL and the effective scattering length between the heavy atoms a∗HH can be tuned at will

with the help of a Feshbach resonance between the heavy and light atoms. Here we study a

four-body system with three heavy identical bosons and one light atom, where we show the

embedded three- and four-body Efimov physics in ultracold collisions and the production of

Efimov triatomics with non-zero angular momenta. In particular, we show that these novel

Efimov features are manifested in the recombination process

HL+H +H → HHL+H, (4.39)

where a collisional process determines the stability of the Feshbach molecule HL formed in
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4.2. Four-body Efimov physics induced by three-body Efimov effect

a bath of H atoms.

One may notice that the above process also produces an Efimov molecule, but there are

some differences between this process and the four-body recombination process A+A+A+

B → A3 +B we have introduced in Sec. 4.1, making them appropriate for different purposes.

First, the process we introduce here produces a heteronuclear Efimov molecule while the

process of four-body recombination gives a homonuclear Efimov trimer. Second, the process

we introduce here is essentially a three-body recombination process, which typically has a

higher rate than a four-body recombination process in the ultracold experiments, but it

requires one more step of producing a sample of HL diatomic molecules. For the four-body

recombination process, however, this step is not required. We will also address the question

of the four-body Efimov effect, where contrary to the conventional wisdom that no true

four-body Efimov effect is possible, we verify the existence of the four-body Efimov effect

in the previously mentioned four-body system with very large mass ratios.

4.2.1 Efimov effect with Born-Oppenheimer approximation

To facilitate our discussion, in HHHL system, we first review the Efimov effect in a three-

body system with two heavy and one light particles. The origin of the Efimov effect can be

easily demonstrated using the Born-Oppenheimer (BO) approximation [23, 195]. Though

mostly used in molecular systems with Coulomb interactions, the BO approximation works

perfectly well for treating the motions of the light particles in a neutral heteronuclear system

with short-range interactions. When the scattering length between the heavy and light

particles aHL becomes much larger than their characteristic interaction range r0, the Born-

Oppenheimer potential U(ρ) induced by exchange of the light particle has the universal

long-range behavior [195]

U(ρ) = −χ2
0/2mρ

2, (r0 � ρ� |aHL|) (4.40)

where m is the mass of the light particle, ρ is the distance between the heavy particles and

χ0 ≈ 0.567143 [195].
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A procedure for deriving Eq. (4.40) has been shown in Ref. [195], but here we just

give a simple summary. Since solving the two-body Schrödinger equation with a separable

potential is very simple in the momentum space, we take a s-wave separable potential as

the interaction between the H and L:

v = |g〉λ〈g|, (4.41)

where λ determines the strength of the interaction and the ket |g〉 determines the actual

shape of the potential when a particular representation is chosen. For the convenience of

analytical derivation, here we take the Yamaguchi [196] form in the momentum space

〈~p|g〉 =
1

p2 + p2
0

, (4.42)

where ~p is the momentum vector and p0 is the low-energy cut-off which is related to the

range of the potential by r0 = 3/p0. Note that there is at most one bound state for a

separable potential. Writing the two-body Schrödinger equation in the momentum space

for solving the bound states gives

p2

2µ2

ψ(~p) +
λ

p2 + p2
0

∫
ψ(~p′)

p′2 + p2
0

dp′
3

= − κ2b

2µ2

ψ(~p). (4.43)

where κ2b is the two-body binding wave number. Noticing that

N =

∫
ψ(~p′)

p′2 + p2
0

dp′
3

(4.44)

is just a number, Eq. (4.43) can be solved algebraically as

ψ(~p) = N
−λ

p2 + p2
0

2µ2

p2 + κ2
2b

. (4.45)

Consistency of Eq. (4.45) with Eq. (4.44) then gives

κ2b = π
√

(−λ)µ2/p0 − p0, (4.46)

where µ2 is the two-body reduced mass.
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Efimov physics in the HHL system

For the HHL system, with the BO approximation the Schrödinger equation for the light

particle is

(
p2 +O|g〉λ〈g|O−1 +O−1|g〉λ〈g|O

)
|Φ〉 = U(ρ)|Φ〉, (4.47)

where O = eipρ/2 is the translation operator. Solving Eq. (4.47) in the momentum space

leads to a transcendental equation

1− J(0)− ΛJ(ρ) = 0, (4.48)

where Λ = ±1 represents the symmetry of the wavefunction for L under the exchange of

the two identical H’s.

J(ρ) = −4λmπ2

ρ

[
e−sρ − e−p0ρ

(p2
0 − s2)2

− e−p0ρp0ρ

2p2
0(p2

0 − s2)

]
. (4.49)

The the BO potential is then determined by

U = −s2/2m. (4.50)

When |aHL| � r0, Eq. (4.50) reduces to the BO potential in Eq. (4.40).

For the heavy particles H moving in the BO potential of Eq. (4.40), the bound state

energies then satisfy the structure of an Efimov spectrum:

En+1/En = e−2π/s0 , (n = 0, 1, 2, ...) (4.51)

for states below the HL + H break-up threshold such that |En| ≤ χ2
0/2ma

2
HL, where s2

0 =

χ2
0M/m with M being the mass of the heavy particle. The Efimov effect, i.e., an infinite

number of states, thus occurs in the limit |aHL| → ∞, corresponding to a zero-energy HL

bound state. In general, the heavy particles H also interact among themselves. But since

the H-H interaction is short-range, it can only change the short-range behavior of the BO

potential and will keep the long-range behavior in Eq. (4.40) unchanged. Addition of any
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H-H interaction will then change the position of the ground Efimov state energy E0, but the

scaling behavior Eq. (4.51) and all the resulting Efimov features in scattering observables

will not be changed.

The low-energy scattering properties of the heavy particles are thus closely connected

to the HHL Efimov state: whenever an Efimov state appears at finite |aHL|, the effective

scattering length a∗HH goes through a pole. For the Borromean case where aHL < 0, the BO

approximation has difficulty when ρ is beyond the distance where HL becomes unbound

so that Eq. (4.48) does not have a solution. Special treatment should be made for this

situation. For aHL > 0, no special attention is required since HL remains bound for all

value of ρ, and Eq. (4.48) always has solutions. In the following we will discuss the two

cases separately.

Efimov physics in the HHHL system

For simplicity, we will assume that the H’s do not interact directly. Our analysis, however,

will apply so long as the scattering length from direct interactions between H’s is small

so that H-H interactions will change only the short-range physics of the HHHL system

without modifying the long-range behavior. Then neglecting such interactions will have

negligible effect on the scattering processes in which we are interested. Following the similar

procedure for obtaining the BO potential for HHL system, for aHL > 0, we integrate out

the light particle motion, producing the interaction potential surface for three the H’s [23].

The motion of the H’s is then solved in hyperspherical coordinates [109, 110] (see Secs. 2.2,

2.3 and 2.4).

As for three-body systems, the universal behavior of the four-body system can be learned

from the scaling of the adiabatic hyperspherical potentials. The effective adiabatic poten-

tials Wν(R) = Uν(R) − Qνν(R)/2µ3 asymptotically connect to all the possible break-up

configurations such as the HHL + H two-body break-up and HL + H + H three-body

break-up, where µ3 = M/
√

3, R is the hyperradius for three H particles. Their scaling be-

havior with R is the most significant in determining the scattering length scaling properties
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of various collisional rates in the few-body systems. For the HHHL problem, Uν(R) are

obtained from solving the hyperangular equation:[
Λ2

2µ3R2
+ V (R,Ω)

]
Φ(R; Ω) = Uν(R)Φ(R; Ω), (4.52)

where Λ is the grand angular momentum operator Eq. (2.34) for the three H’s, V is the

Born-Oppenheimer potential, and Ω denotes all the hyperangles.

We tune aHL such that a HHL bound state is weakly-bound. As mentioned above,

this tuning can be characterized by the effective scattering length a∗HH . The numerical

calculations show that the lowest adiabatic hyperspherical potential has a long-range form

W0 = −g
2
0 + 1/4

2µ3R2
, (aHL � R� |a∗HH |) (4.53)

where the universal constant g0 is numerically determined to be g0 ≈ 1.006. This is expected

from the argument of three-body Efimov effect, since here we have effectively a HHH three-

body system with large scattering lengths from the short-range interactions mediated by the

L. When aHL is tuned to some value ãHL where a∗HH → +∞, the long-range behavior in

the effective adiabatic potential in Eq. (4.53) extends to R = ∞ and an infinite series

of four-body bound states accumulate in the long-range potential with the energy scaling

En+1/En = e−2π/g0 ≈ 1/515. Note that the emergence of such states are not regarded as

four-body Efimov effect, since their existence depends on the HL subsystem being bound.

4.2.2 HL+H +H recombination

The long-range scaling in Eq. (4.53) for the HHH hyperspherical potential leads to universal

scaling for the recombination process HL + H + H → HHL + H. We have calculated

HL+H +H recombination rates by numerically solving the coupled hyperradial equation

Eq. (2.40) for three H’s. Fig. 4.4 shows sequence of overlapping resonant features in the

recombination rates K3 as aHL increases when the mass ratio mH/mL = 30. The main

resonant features (two major peaks) correspond to the emergence of the lowest two HHL
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Figure 4.4: The recombination rates K3 for the process HL + H + H → HHL + H when
M/m = 30. The major peaks occur near the region where a∗HH diverges. The sequences of
sub-peaks and sub-minima indicate the formation of the four-body bound states. The universal
three-body Efimov physics of the HHL subsystem is manifested by the separation between the
major peaks. Figure is adapted from Ref. [7].

Efimov states. Their separation is determined by the universal constant s0 from the three-

body Efimov effect in the HHL system. The value of s0 is determined by Eq. (3.18) and

gives a
(2)
HL/a

(1)
HL = eπ/s0 ≈ 3.96. The observed separation is 5.5 due to the fact that the

criterion for universal physics aHL � r0 is not well satisfied for the first two peaks. The

features on top of a major peak are seen as sub-peaks and local minima on the a∗HH < 0

and a∗HH > 0 ridges, respectively. These features come from the formation of the series of

the four-body bound states mentioned above and is the consequence of the universal scaling

of the hyperspherical potential in Eq. (4.53).

Near the major peaks where |a∗HH | � aHL � r0, the behavior of the effective hyperspher-

ical potentials are schematically shown in Fig. 4.5. The universal behavior of the potentials
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Figure 4.5: The effective hyperspherical adiabatic potentials Wν for three heavy atoms when
a∗HH � aHL � r0. The deeply-bound channels are not considered in our model, and their effects
are expected to be small since they lie much deeper than the atom-Efimov trimer channels.

gives the following universal formula for the rates by WKB analysis [66]:

K
(a∗HH>0)
3 =

C

µ
sin2[g0 ln(a∗HH/aHL) + Φ]a∗HH

4, (4.54)

K
(a∗HH<0)
3 =

C ′

µ

sinh(2η)|a∗HH |4

sin2[g0 ln(|a∗HH |/aHL) + Φ′] + sinh2(η)
(4.55)

where C is a universal constant while C ′, Φ, Φ′ and η depend on the property of the

recombined weakly-bound HHL triatomic states. These expressions have the same form

as those for three-body recombination Eq. (1.5) and (1.6), with the short-range distance r0

changed to aHL, which determines the range of H+L interaction. Also, as will be shown later

from the numerical calculation, the phases Φ and Φ′ are universal since recombined HHL

triatomic states have universal properties. Similar to the atom-dimer scattering length in

case of three-body Efimov effect [52], the relationship between a∗HH and aHL can be derived
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to be:

a∗HH ≈ D cot[s0 ln(aHL/r0 + Φ0)]aHL, (4.56)

where D is a universal constant and Φ0 depends on the short-range detail of the interaction

between H and L when their distance is about r0. The effective scattering length between

the heavy particles can thus be tuned across a huge range through small changes of aHL.

Considering the experimental limit in obtaining the large scattering length aHL via the

tuning of magnetic field, this level of magnification can greatly improve the attainable value

of the two-body scattering length, which gives access to much larger space in the study of

many-body physics under unitarity limit [197, 198].

More interestingly, by tuning the mass ratio, HHL Efimov states with non-zero angular

momentum can be formed. When the mass ratio is large enough, the attractive interaction

induced by the light particle can overcome the centrifugal barrier between the two heavy

particles, which gives the three-body Efimov effect in high angular momentum states. The

scaling of the bound state energies also follows Eq (4.51), but the scaling constant s0 will

depend on the angular momentum of the HHL Efimov state j. These higher angular

momentum Efimov states have not been observed because experiments thus far have mostly

focused on identical particles which have no such states.

In contrast to the zero angular momentum HHL Efimov states, the emergence of these

nonzero angular momentum states near the threshold does not lead to long-range scaling of

the hyperspherical potentials. In particular, the long-range attractive 1/R2 potential does

not show up in the HHL(j > 0) + H channel when the HHL(j > 0) states are weakly-

bound. An infinite number of four-body bound states is thus not expected, however, the

universal scaling feature is nevertheless marked in the separation between the simple peaks

of the recombination rates, as shown in Fig. 4.6. For the mass ratio M/m=50, HHL Efimov

states with j = 2 also appear, while the j = 1 states do not exist due to the identical particle

symmetry of the heavy particles. The separation for the j = 0 major peaks is expected to

change to a
(N+1)
HL /aNHL ≈ 2.94698. In Fig. 4.6, the separations between the first three major
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peaks are 4.7 and 3.4, which are not very close to the expected universal value. The reason

is that aHL is not dramatically larger than r0. For j = 2, the separation between the peaks is

expected to be a
(N+1)
HL /aNHL ≈ 9.46665. The finite range effect is more dramatic in this case,

resulting a separation of 17.5 for the first two peaks. Near a major peak, the separation

of the sub-peaks and minima carry the scaling signature of the universal four-body states

with an expected value |a∗HH
(n+1)/a∗HH

(n)| = eπ/g0 ≈ 22.7 (a∗HH � aHL and a∗HH � r0).

The finite-range effect changes separations of the first two sub-peak and minima to 19.3 and

14.6, respectively.

Another interesting observation is about the phases Φ and Φ′ in Eqs. (4.54) and (4.55).

Though they typically depend on the mass ratio, but as shown in Fig. 4.6, they are inde-

pendent of aHL and stay unchanged across the major peaks. As mentioned above, this

universal behavior can be understood by the fact that the short-range physics for the

HL + H + H → HHL + H recombination process is determined near R ≈ aHL � r0,

where the potentials are still universal.

4.2.3 Four-body Efimov effect

For aHL < 0, we focus on the existence of the four-body Efimov effect. We will follow a

definition of the N -body Efimov effect from Ref. [22, 23]. Analogous to the three-body

case, for a four-body Efimov effect to exist, the four-body system must possess an infinite

number of stable bound states when there is a zero-energy three-body bound state (and

also no two-body bound states) [23]. Under these conditions, the four-body Efimov effect is

completely independent of any three-body Efimov effect, so that it is fundamentally different

from the universal four-body states discussed in the previous section and those discussed

in Refs. [59, 181, 183]. Since it has been shown [22] that no Efimov effect occurs for four

identical particles, we consider instead an HHHL system. One of the previous works on

such a system [23] was based only on analyzing the BO potential surface, and it concluded

that there was no such effect. Another work [24] also based on BO approximation used
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4.2. Four-body Efimov physics induced by three-body Efimov effect

Figure 4.6: The recombination rates K3 for the process HL + H + H → HHL + H with
M/m=50. The effective scattering length a∗HH is also plotted as one axis to show the universal
four-body scalings. The sharp simple peaks indicate the formation of j=2 HHL Efimov states. The
sub-peak (minima) structure can be seen from projection on the K3− a∗HH plane. The separation
between the sub-peaks (minima) shows the scaling character of the universal four-body Efimov
physics. Figure is adapted from Ref. [7].

general criteria for the Efimov effect and concluded that there was an effect. Though this

disagreement has been overlooked and the four-body Efimov effect is generally regarded

impossible, here we reaffirm the conclusion in Ref. [24] that argues that such an effect exists

by numerically solving the three-body Schrödinger equation of the H particles and further

giving qualitative arguments on how the non-BO effect modifies the result.

The difficulty in handling the L particle with the BO approximation for aHL < 0 comes

from the fact that L become unbound when the distance between two H particle exceeds

|aHL|. A non-rigorous way to deal with this situation is simply to set the BO potential to

be zero. Then an effective scattering length a∗HH can still be defined as for aHL > 0, and
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4.2. Four-body Efimov physics induced by three-body Efimov effect

the long-range hyperspherical potential Eq. (4.53) appears when a∗HH → ∞. This implies

that an infinite series of four-body bound states will show up as the manifestation of the

four-body Efimov effect. However, after some discussion with von Stecher and Greene [199]

about the connection of a BO potential to a hyperspherical potential, we have investigated

the connection further and have found that setting the BO potential as zero is inappropriate

since a zero-energy HHL bound state is actually confined within a long-range barrier in

the view of the adiabatic hyperspherical potential for HHL system. On the other hand, as

the mass ratio increases, the height of the barrier decreases, and the barrier is pushed to a

larger distance, R ∼ |aHL|(M/m)1/4, as shown in Fig. 4.7. From this argument, in the BO

Figure 4.7: The lowest three-body continuum adibatic hyperspherical potential for HHL with
different mass ratios.

limit M/m → ∞ it is valid to set the BO potential to be zero when L becomes unbound.

However, this limit is very slowly approached for a finite value of M/m. Particularly, the

maximum possible number of four-body Efimov states can be estimated by the largest size

of such states determined by the position of the barrier as:

n ≈

⌊
g0

π
ln

[(
M

m

)1/4
]⌋

. (4.57)
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aHL is canceled in the expression because the value of aHL at which the first HHL zero-

energy state appears is comparable to the size of short-range interactions r0.

In Fig. 4.8, we show a schematic four-body Efimov energy spectrum. The four-body

Efimov bound states appear in the upper-left corner of the diagram, where the lowest three-

body bound state passes across the four-body break-up threshold. The four-body states

which persist across the zero of 1/|aHL| are the those sitting in the lower atom-Efimov

trimer channels (green potential curves shown in Fig. 4.5). They are attached to the HHL

three-body Efimov states and are not Efimov states. These states are of the same nature as

the universal four-body states in Ref. [59, 60, 181, 183].

Nevertheless, the requirement for a large mass ratio reveals the class of exotic four-body

Efimov states constituted by one electron and three atoms. We demonstrate the formation

of the four-body Efimov states with the atoms being 133Cs where n = 1 excited four-body

Efimov state can be formed. Since the interaction between the atoms can be tuned more

easily in ultracold experiments than the Cs+e− interaction, we keep the Cs+e− interaction

fixed with fixed aHL=−22 a.u. [200] and tune the Cs+Cs interaction instead. For studying

the universal physics for this system, we can use model short-range potentials for both

Cs+e− and Cs+Cs interactions without loss of generality. For (Cs−2 )∗ anion where Cs+Cs

is in the highest vibrational state, a bound state with zero binding energy is obtained when

a∗HH →∞, which can be achieved by tuning the Cs+Cs direct interaction with a scattering

length aHH < 0.

If (Cs−2 )∗ anions coexist with ultracold Cs atoms, the four-body Efimov effect can be

manifested through the vibrational relaxation process

(Cs−2 )∗ + Cs→ Cs−2 + Cs, (4.58)

analogous to the resonant atom-dimer relaxation due to the three-body Efimov effect [107,

138, 201]. Experimentally, the resonant relaxation can be detected by the loss of Cs atoms.

One may also look at the four-body recombination process Cs + Cs + Cs + e− → Cs−2 + Cs,

but this requires ultracold electron gas which is very difficult to be realized experimen-
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Figure 4.8: Schematic Efimov energy spectrum for HHHL four-body system. The blue-colored
region is the H+H+H+L four-body break-up continuum; the green-colored region is HL+H+H
three-body break-up continuum. The red lines indicate the energy of HHL three-body states, and
the four-body states corresponding to these lines are the HHL + H scattering states. When
1/aHL → 0, these three-body states are the Efimov states having universal properties. The light
black lines under the three-body bound energies are the energies of four-body bound states (solid
lines) or resonance states (dashed lines). The four-body states (resonances) whose energies do not
merge into the three-body states are not considered as four-body Efimov states.

tally [202].

We calculate the rates for the above relaxation process without including relaxation

channels containing the two-body bound states Cs2 and Cs− in our model. Their effects,

however, can be neglected since they are much deeper than the energy scale considered here.

As shown in Fig. 4.9, the resonant peaks in the relaxation rates Vrel indicate the formation

of the four-body Efimov states Cs−3 near the (Cs−2 )∗+Cs threshold, where the collisional

relaxation of the excited (Cs−2 )∗ anions is greatly enhanced. Though the relationship be-
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4.2. Four-body Efimov physics induced by three-body Efimov effect

Figure 4.9: The collisional relaxation rates Vrel for (Cs−2 )∗+Cs→Cs−2 +Cs for different (Cs−2 )∗

Borromean states in (a) and (b). The Cs-Cs interaction is tuned such that a weakly-bound (Cs−2 )∗

state is below the four-body break-up threshold. The rates surge up to large value when a∗HH is
large, and the peaks occur when a four-body Efimov state Cs−3 is near the (Cs−2 )∗+Cs threshold.
Figure is adapted from Ref. [7].

tween aHH and a∗HH is generally non-universal, for a∗HH � |aHL| > 0 the four-body Efimov

effect leads to universal scaling behavior of Vrel with a∗HH , which can be obtained by WKB

analysis [66] as

V
(a∗HH>0)

rel =
Aη sinh(2η)

sin2[s0 ln(a∗HH/r0) + Φ] + sinh2(η)
a∗HH , (4.59)

where Aη, η and Φ all depend on the short-range detail of the relaxed Cs−2 bound state.

4.2.4 Conclusion

To conclude, we have studied the four-body Efimov physics in a heteronuclear atomic system

HHHL. In such a system the ratio of the scattering lengths from the distinct pairs can

be tuned to an arbitrary value, making such a system an ideal testbed for the study of the

universal physics near overlapping resonances. For aHL > 0, we have studied the three-body
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recombination of the weakly-bound HL molecule with two H atoms, where the embedded

three- and four-body features are observed as a particular effect for overlapping resonances.

Our study also shows that this process can be used as an efficient way for producing Efimov

molecules [10] (see Sec. 4.1). For aHL < 0, we have confirmed the existence of the four-body

Efimov effect and have given the qualitative condition for its existence. An experimental

approach is further proposed for observing the effect.
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4.3. Universal four-body physics in one dimension

4.3 Universal four-body physics in one dimension

The rapid development of optical techniques in recent years has realized various trapping

geometries for ultracold quantum gases. For instance, toriodal traps have been used for the

study of superfluity for quantum degenerate gases [203, 204] and more importantly, optical

lattices have been realized to mimic the lattice structures in condensed matter systems by

superposing counter-propagating laser beams [205]. In contrast to the real lattices in the

condensed matter world, the structure and the dimensionality of the optical lattices can be

tuned very easily.

In low dimensional systems, the physical properties of the quantum systems are usually

quite different from their 3D properties. For instance, Bose gases can behave like Fermi

gases [206, 207] when the 1D coupling constant [208] becomes large, and such gases are

called the Tonks-Girardeau gas and have been realized experimentally [209]. It has also

been shown that inelastic transitions are forbidden in 1D — in the zero-range limit of the

interactions — which is a good example of a bizarre physical law when the system becomes

integrable [210, 211]. The 1D few-body and many-body systems thus become the frontier

for looking for novel phenomena. Furthermore, the solutions for many physical problems

can be written down in general form in 1D. One of most brilliant examples is the general

N -body solutions with contact potential V = gδ(xi−xj) [207], where xi, xj are the position

of the particles. The coupling constant g is related to the 1D scattering length a by

g = − 1

µ2a
. (4.60)

Based on this general solution, a lot of studies have been performed on the energy spectra and

thermodynamical properties of the general N -body system in 1D or quasi-1D confinement.

In particular, for g < 0 there is always one N -body bound state. For a system of identical

bosons, the bound state energy is given by [212]

EN = −N(N2 − 1)

6ma2
, (4.61)
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where m is the atomic mass. In a 1D model with the contact potential, the connection to

the fermionization of bosons is made when g →∞, where a→ 0. Here we are interested in

the other extreme where a is large. In the low energy limit where the two-body scattering

behavior is universally determined by a, we expect that the four-body low energy scattering

also shows universal scaling behavior.

The Efimov effect is known to exist only in 3D space [21]. For few-body systems in lower

dimensions, however, the inelastic scattering rates may still be universal when the scattering

length is large. In particular, for the atoms confined in an elongated quasi-1D trap, the 1D

scattering length can be tuned essentially at will with CIR. It is thus important to study

the universal behavior of the few-body system in one dimension near a CIR.

Generally speaking, treating a few-body system more realistically in a quasi-1D trap

requires taking into account the finite size of the transverse confinement, which is highly

demanding in either analytical or numerical studies. The reason that calculations for quasi-

1D geometries are more demanding than for fully 3D geometries is that there are fewer

conserved quantities, requiring the calculations to treat more degrees of freedom explicitly.

For instance, for three identical particles in a quasi-1D trap the dimensionality of the problem

is five compared to three for particles in 3D free space because total angular momentum

is no longer conserved. One strategy to simplify the problem is to study the systems in

pure 1D which has a much lower dimensionality. This has the following advantages: first,

these studies may give the limiting results for systems under tight transverse confinement.

Second, solutions for a quasi-1D system can be built on the solutions for a pure 1D system

which can, sometimes give more physical insight like the solutions for a two-body system

in quasi-1D confinement [208]. Finally, some fundamental few-body questions which show

up both in 1D and higher dimensions can get a more focused investigation in 1D where the

situation is usually simpler.

Three-body recombination in one dimension has been studied in detail in Ref. [123],

where the universal threshold laws and the scattering length scaling laws are given for both
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bosons and fermions. In the following we will study the universal properties for four identical

bosons in one dimension.

4.3.1 Definitions for two-body scattering in 1D

To avoid the possible ambiguity in the definitions used in 1D scattering, we will first give

the definitions used in our study.

For symmetric interactions [v(x)=v(−x)] in one dimension, there exist only two “partial

waves”, corresponding to the even and odd parities. We define that the even and odd parity

states take the following asymptotic form:

ψe ' cos(k|x|+ δe), ψo ' sign(x) sin(k|x|+ δo), (4.62)

so that the phase shifts δe and δo are both zero for the non-interacting case. Two-body

scattering in one dimension has a significant distinction from 3D scattering near zero energy.

In 3D scattering, the scattering phase shifts approach nπ near zero energy unless there

exists a zero-energy bound state; for 1D scattering, however, the phase shift for even parity

approaches nπ + π/2 with our definition regardless the existence of a zero-energy bound

state. The definition for the 1D scattering length, which is determined from the low energy

expansion of the phase shift, becomes ambiguous. For the study of universal physics in few-

body systems, the more relevant quantity is the size of the low-energy wavefunction instead

of the mathematical expression. Considering the connection of the scattering length to the

low-energy wavefunction in 3D, we define the scattering length 1D in the same fashion and

obtain the following relationship between the scattering length a and the even phase shift:

lim
k→0

k tan δe(k) = −1/a. (4.63)

With this definition, the connection between the scattering length and the binding energy

of the two-body weakly-bound state is the same as for the 3D case: E2b ≈ −1/2µ2a
2 when

a� r0.
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4.3.2 Four-body hyperspherical coordinates in one dimension

For four particles moving in one dimension with coordinates {xi (i = 1, 2, 3, 4)}, the center

of mass motion is separated from the internal motion when we transform the coordinates

to Jacobi vectors as introduced in Sec. 2.1. Since the definition of the hyperspherical co-

ordinates is formally independent of the type of the Jacobi set, we will call the three 1D

Jacobi vectors ρ1, ρ2 and ρ3, from either “K-type” or “H-type” Jacobi set. The value of

these Jacobi coordinates can take from −∞ to ∞. To simplify the operations of identical

particle permutations, we want to define a set of democratic hyperspherical coordinates. In

the following, we use a formal method for defining the democratic hyperspherical coordi-

nates used in Refs. [111–113, 116, 117]. However, from the discussion in Sec. 2.2.2 we know

that only one independent moment of inertia implies there is only one invariant coordinate

in 1D systems: the hyperradius R. We will show in the following that the 1D democratic

hyperspherical coordinates are the same as the Delves’ coordinates. For a four-body system

in 1D, the lab-frame coordinate tensor for the mass-scaled Jacobi vectors is a 1 × 3 ma-

trix (ρ1,ρ2,ρ3), which can be written as the product of the transformation matrices as the

following [111–113, 116, 117]:

(ρ1, ρ2, ρ3) = D̃ΛK, (4.64)

where the transpose of the 1D spatial rotational matrix D̃ =1 and the diagonal matrix

Λ = R1 is connected to the trace of the inertia tensor and is invariant under permutation

of the particles. Finally, the 1× 3 matrix K is

K = (1, 0, 0)K̄, (4.65)

where K̄ is the kinematic rotational matrix in the two hyperangles φ1, φ2 and is defined as

K̄ =

 cos(π/2− φ2) 0 sin(π/2− φ2)
0 1 0

− sin(π/2− φ2) 0 cos(π/2− φ2)

 cosφ1 sinφ1 0
− sinφ1 cosφ1 0

0 0 1

 . (4.66)
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The mass-scaled Jacobi coordinates are then expressed in terms of the hyperspherical coor-

dinates as

ρ1 = R sinφ2 cosφ1, ρ2 = R sinφ2 sinφ1, ρ3 = R cosφ2, (4.67)

where the ranges for φ1 and φ2 are [0, 2π] and [0, π], respectively. This definition is exactly

the same if one follows the procedure for defining a Delves’ coordinates.

The form of the 1D four-body Schrödinger equation in the hyperspherical coordinates

we just defined takes exactly the same form as that for one particle in 3D:

− 1

2µ4

(
∂2

∂R2
+

2

R

∂

∂R
+

Λ2

R2

)
ψ +

∑
i<j

v(rij)ψ = Eψ. (4.68)

where

Λ2 =
1

sinφ2

∂

∂φ2

sinφ2
∂

∂φ2

+
1

sinφ2
2

∂2

∂φ2
1

. (4.69)

Since we are essentially working with the Delves’ hyperspherical coordinates, both of the

interparticle distances rij and the permutation operations will depend critically on the choice

of the Jacobi vectors. We want more particles to be connected directly with the Jacobi

vectors so that the permutation of the particles can be easier. We thus use the “H-type”

Jacobi set, as shown in Fig. 4.10.

Figure 4.10: The “H-type” Jacobi vectors in one dimension.

The interparticle distances rij can be written in terms of the hyperspherical coordinates
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via the following expressions:

r12 = A1|ρ1|, r34 = A2|ρ2|,

r13 = |C1ρ1 − C2ρ2 + C3ρ3|, r23 = |C1ρ1 + C2ρ2 − C3ρ3|,

r14 = |C1ρ1 − C2ρ2 − C3ρ3|, r24 = |C1ρ1 + C2ρ2 + C3ρ3|, (4.70)

where the mass factors Ai and Ci are

A1 =

√
µ4

µ12

, A2 =

√
µ4

µ34

,

C1 =

√
µ4m2

m1(m1 +m2)
, C2 =

√
µ4m4

m3(m3 +m4)
, C3 =

√
µ4(m1 +m2 +m3 +m4)

(m1 +m2)(m3 +m4)
.

(4.71)

The permutations of the particles which are connected directly by the Jacobi vectors give

simple transformation of the hyperangles:

P12

(
φ1

φ2

)
→
(
π − φ1

φ2

)
, P34

(
φ1

φ2

)
→
(

2π − φ1

φ2

)
. (4.72)

The permutations of the particles not connected by a Jacobi vector, however, mix up the

hyperangles. For instance, the permutation operator P24 gives the following transformation:

P24

(
φ1

φ2

)
→

 tan−1

[
sinφ2 sin(φ1 + π/4)− cosφ2

sinφ2 sin(φ1 + π/4) + cosφ2

]
cos−1[sinφ2 sin(π/4− φ1)]

 . (4.73)

The quadrant for φ1 after the transformation is determined by the signs of the numerator and

the denominator in the argument of the inverse tangent function. Since the effect of P24 on

the hyperangles is not independent of each of the hyperangles, the permutation symmetries

for these operations can not be satisfied by simply imposing the boundary conditions along

the coordinates lines, as has been discussed in Sec. 2.3. For four identical particles, the

permutation symmetry from P13 and P24 can be partially imposed by the using operator

P13P24, which gives a simple transformation of the hyperangles:

P13P24

(
φ1

φ2

)
→
(
π/2− φ1

π − φ2

)
. (4.74)
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Finally, the total parity operator Π transforms the hyperangles as the following:

Π

(
φ1

φ2

)
→
(
π + φ1

π − φ2

)
. (4.75)

These permutation operations can be understood qualitatively by looking at the two-body

coalescence lines (rij = 0) on the hyperangular plane, as shown in Fig. 4.11. Since the

permutation of two particles will keep their coalescence lines unchanged, the permutation

symmetry then requires that the adiabatic wavefunction Φ(R, φ1, φ2) is symmetric or anti-

symmetric with respect to the coalescence lines. These symmetries are easily imposed if the

coalescence lines are parallel to the coordinate lines, as the coalescence lines with r12 = 0

and r34 = 0, but are difficult to impose if they are curves, as the coalescence lines for the

other pairs.

4.3.3 Four-body adiabatic hyperspherical potentials in 1D

Solving the adiabatic equation

To study the universal behavior of a system of four identical bosons, we calculate the

adiabatic hyperspherical potentials by solving the adiabatic equation

Λ2

2µ4R2
Φν(R;φ1, φ2) = Uν(R)Φν(R;φ1, φ2). (4.76)

We impose the symmetry of the total parity and permutation operators P12, P34 and P13P24

by restricting the range of the hyperangles φ1 and φ2 to [0, π/4] and [0, π/2] then imposing

the following boundary conditions:

∂Φ(R;φ1, φ2)

∂φ1

∣∣∣∣
φ1=0

= 0,
∂Φ(R;φ1, φ2)

∂φ1

∣∣∣∣
φ1=π/4

= 0,
∂Φ(R;φ1, φ2)

∂φ2

∣∣∣∣
φ2=π/2

= 0, (4.77)

for even parity Π = +1 and

∂Φ(R;φ1, φ2)

∂φ1

∣∣∣∣
φ1=0

= 0, Φ(R; π/4, φ2) = 0, Φ(R;φ1, π/2) = 0, (4.78)

for odd parity Π = −1. This restriction on the range of the hyperangles gives a factor of 16

reduction in our calculations. Note that when each time a two-body permutation symmetry
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Figure 4.11: The two-body coalescence lines (rij = 0) on the hyperangular plane for four parti-
cles in 1D. The coalescence lines for particles connected directly by Jacobi vectors are straight lines
parallel to the coordinate lines, which implies simple transformation of the hyperangles under per-
mutation of the two particles. The coalescence lines for particles not connected directly by Jacobi
vectors are more complicated and imply complicated transformation on the hyperangles under the
permutations. The shaded region indicates the range of the hyperangles in our calculations for
identical bosons.

is imposed to restrict the range of the hyperangles, it does not always reduce the range by

a factor of 2. The adiabatic wavefunctions Φν satisfying the above boundary conditions are

not all fully symmetrized, and we identify those which have correct symmetry by calculating

the expectation value for one of the permutation operator 〈〈Φν |P24|Φν〉〉.

We use two types of two-body potentials in our calculations. The first one is purely

attractive :

Vsech(r) = −Dsech2(r/r0), (4.79)

where r is the interparticle distance. For 1D application however, this potential is incon-
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4.3. Universal four-body physics in one dimension

venient for getting an infinite scattering length with only a single bound state, since the

infinite scattering length with a single bound state for the potential in Eq. (4.79) occurs

in the limit of D → 0 where the interactions vanish. This is because a purely attractive

potential in 1D always has a bound state for any non-zero potential depth [213]. The univer-

sality of the scaling behavior extracted in this limit is also questionable. Thus, we also use

another potential shown in Eq. (4.80), which is characterized by a repulsive barrier for small

interparticle distances, and an attractive 1/r6 van der Waals [214] tail for large interparticle

distances.

VvdW(r) = −D (r/r0)2

1 + (r/r0)8
+B

1

1 + (r/r0)8
. (4.80)

The existence of the repulsive barrier in Eq. (4.80) makes the pole of the 1D scattering

length occur only at finite potential depths. We take r0 = 15 a.u. for all our following

numerical calculations.

Three- and four-body continuum potentials

A four-body system can break up into various configurations. When the two-body bound

subsystems can form bound states, the four-body system can break up into A2 + A + A

configurations. A three-body continuum is associated to each of such configurations, which

is manifested by infinite number of adiabatic hyperspherical continuum channels for each of

the A2 +A+A break-up thresholds. The four-body system can also break up into four free

particles which leads to infinite number of adiabatic channels associated with the four-body

break-up threshold.

As shown in Fig. 4.12, since the three- and four-body break-ups have different thresh-

olds, asymptotically the three- and four-body continuum has an infinite number of avoided

crossings. These crossings become sharper when the hyperradius R increases. This indi-

cates the adiabatic potentials for three- and four-body continuum channels should better be

traced “diabatically” by treating the avoided crossings as real crossings. In the adiabatic

representation, even though the inelastic transitions between the three-body continuum and
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the four-body continuum are expected to be negligible asymptotically, sharp peaks occur

in the non-adiabatic couplings Pν,ν′ and Qν,ν′ near those sharp avoided crossings which are

very difficult to be traced out accurately in numerical calculations. The sharp structure

in the non-adiabatic couplings lead to strong transitions in the adiabatic channels which

are physically unnecessary since these transitions are just from the labeling change of an

adiabatic channel from one group of continuum to another. A diabatic representation is

thus necessary for a simpler treatment of the three- and four-body continuum. For total

scattering energies well below the four-body break-up threshold, however, the four-body

continuum channels are energetically forbidden so that the effects from sharp crossings be-

tween the three- and four-body continuum are not expected to be significant. In our present

study, we will focus on the scattering processes where the four-body continuum does not

play an important role.

Figure 4.12: Avoided crossings in the four-body adiabatic hyperspherical potentials of the three-
and four-body continuum channels. The potentials are calculated with the two-body potential
Vsech. There is only one two-body bound state in the two-body subsystems.
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Universal scaling for dimer-dimer relaxation

If the ultracold weakly-bound dimers are produced in an quasi-one dimensional atomic trap,

an important question arises on the collisional stability of these molecules. If the atoms are

converted to weakly-bound dimers with high efficiency so that few free atoms are left, the

dominant collisional decay will be from the inelastic collisions between the two weakly-bound

dimers. In the following we will discuss the universal scaling behavior of such collisional

processes near zero-energy with large 1D scattering length.

Since the scaling of the inelastic rates depends crucially on the behavior of the adiabatic

potentials in the initial and final channels, we will first discuss the behavior of the weakly-

bound dimer-dimer potential and the lower lying atom-trimer potentials. In Fig. 4.13, we

show the four-body adiabatic potentials with only a single two-body bound state. The adi-

abatic potentials calculated by using two-body potential Vsech and VvdW are shown together

to demonstrate the universality. The dimer-dimer potential behaves universally like 1/R2

for hyerradius R . a and goes to the asymptotic value −1/ma2 for hyerradius R & a. For

low-energy dimer-dimer collisions, the strong repulsive behavior in the R . a region leads

to a small probability for the system to be at short-range distances. All the inelastic dimer-

dimer collisional processes require transitions at short-range region, will thus be strongly

suppressed.

As shown in Fig. 4.13, the adiabatic potential for the atom-trimer channel with diagonal

coupling Q0,0/2µ4 included, behaves like:

W0(R) = − c0

2µ4aR
(4.81)

in the region R . a. The coefficient c0 ≈ 8. Though the potential in Eq. (4.81) is Coulomb-

like which decreases slowly with R, it is not expected to have physical significance due to the

smallness of the effective charge, which makes the potential in this region much smaller than

the free particle energy scale, 1/R2. This is the same situation as the Coulomb-like potential

discussed in Sec. 3.1.2. By using the same argument for atom-dimer relaxation in Sec. 3.1.2,
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4.3. Universal four-body physics in one dimension

Figure 4.13: Four-body adiabatic potentials Wν,ν for the dimer-dimer and the atom-trimer
channels with one two-body bound state. The potentials in panel (a) are calculated with two-body
potentials in Eq. (4.79) and those in panel (b) are calculated with two-body potentials in Eq. (4.80).
The potentials and the hyperradius are scaled to show their universal behavior. In the insets, the
dimer-dimer potential and the atom-trimer potential are scaled differently by multiplying 2µ4R

2

and 2µ4aR, respectively, to show the universal coefficients in their scaling behavior. Figure is
adapted from Ref. [4].
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we expect any short-range inelastic transition from the atom-trimer channel to lower lying

channels, if any, will be suppressed by the existence of the Coulomb region, compared to

a small scattering length case. Asymptotically (R & a), the atom-trimer potential goes to

the three-body bound state energy, which is approximately −4/ma2 for a� r0 as expected

from Eq. (4.61). To examine the effects of finite-range two-body interactions on the energies

of the weakly-bound states, we compare the numerical two- and three-body bound state

energies with the analytical result from Eq. (4.61). To give a clear comparison, we define

κn = [6ma∆En/N(N2 − 1)]1/2. (4.82)

The analytical result from Eq. (4.61) then gives κn = 1/a. The fractional difference between

numerical and analytical energies can be viewed from κna − 1, which is shown Fig. 4.14.

It can be seen that the numerical energies approach the analytical prediction in the limit

1/a → 0, except for the three- and four-body bound state energies with VvdW interactions.

Though the deviation is still small (about 10−2 for relative difference), the break down of

the zero-range prediction requires further investigation. In other cases, deviation of the

numerical energies from the zero-range results becomes negligible when a is about one order

of magnitude larger than the range of the interactions r0.

As seen in the previous chapters, the behavior of the couplings between the initial and the

final channels determines over what range of hyperradii the inelastic transitions will occur.

This information typically gives the overall power law scaling of the inelastic rates on the

scattering length [66]. In Fig. 4.15, we show the behavior of the non-adiabatic couplings P0,1

between the dimer-dimer and the atom-trimer channels for different a with the two different

two-body potentials. The most striking feature of these couplings is the pronounced peaks

around R = 2a. The width of these peaks scale with a and the heights scale with 1/a,

which is similar to the scaling behavior of the non-adiabatic couplings between the lowest

three-body continuum channel and the weakly-bound atom-dimer channel in the case of

three-body recombination for a > 0 in 3D case. Beyond R ≈ 2a the couplings quickly

become negligible because of exponential decay. We can then directly conclude that the
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Figure 4.14: The comparison between numerically calculated two- and three-body binding ener-
gies and the analytical prediction from Eq. (4.61). The numerical energies En are scaled according
to Eq. (4.82) to remove the N dependence. The unitless quantity κa − 1 is plotted to show the
fractional difference between numerical and analytical energies. The lines through the numerical
data points are for eye guide.

relaxation in the dimer-dimer collision occurs dominantly around R = 2a.

The method required for deriving the scaling law for the relaxation rate is the same

for three-body recombination when a > 0. Here we follow the simple pathway analysis

introduced in Ref. [66] and used in Sec. 3.2.1. The zero-energy dimer-dimer relaxation

rate Vrel has the following simple scaling with a without modulations from resonance or

interference effect:

Vrel = Ca, (4.83)

where C is a universal constant and can be obtained by fitting Eq. (4.83) to numerical

results.

Equation (4.83) indicates the relaxation of weaky-bound dimers in 1D will be enhanced

for large scattering lengths. With the prediction of the universal two- and three-body bound
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Figure 4.15: The non-adiabatic couplings between the weakly-bound dimer-dimer and atom-
trimer channels. Both the hyperradius and and couplings are scaled to show the universal scaling.
Figure is adapted from Ref. [4].

state energies in Eq. (4.61), the energy release from each relaxation event is also universal:

∆E = 3/ma2. For moderate values of scattering length a < 104 a.u., the energy release is

large enough to kick the relaxed atom and trimer out of the trap for a typical experimental

setup. And thus, a sample of ultracold weakly-bound 1D dimers is expected to suffer

dramatic losses. Though this is unfortunate for experiments requiring stable dimers, it can

potentially provide a novel method for producing atomic or molecular beam collimated by

the 1D trap, if the depth of the trap in transversal direction can be made still deep enough

to hold the relaxation products.

Four-body adiabatic potentials with a deeply-bound two-body state

As mentioned previously, in four-body adiabatic hyperspherical potentials a set of three-

body continuum channels is associated to each of the distinct A2 +A+A three-body break-

up thresholds. Thus, for a four-body system with more than one two-body bound states,

the three-body continuum potentials going to different A2 +A+A break-up threshold will

cross and give an infinite number of avoided crossings. This is seen in Fig. 4.16, where

the adiabatic potentials are calculated by using the two-body potential Vsech with a weakly-

bound and a deeply-bound state. Due to the existence of multiple three-body continua,
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Figure 4.16: The four-body adiabatic potentials with both weakly-bound and a deeply-bound
two-body subsystems. The lower right panel shows the potentials near A2(n = 0) +A+A break-
up threshold, and the upper right panel shows the potentials near A2(n = 1) + A + A break-
up threshold, where the potentials cross with the three-body continuum potentials from A2(n =
0)+A+A break-up threshold. The green dotted curves are the weakly-bound atom-trimer and the
dimer-dimer potentials with the same scattering length calculated by using the two-body potential
Eq. (4.80). Here n is the vibrational quantum number for a dimer and the superscript ∗ indicates
a resonant state. The black lines in the zoom-in panels give the A2 + A + A break-up threshold.
Figure is adapted from Ref. [4].

it becomes increasingly difficult to get to the weakly-bound A2(n = 1) + A + A break-up

threshold for large hyperradius, since a large number of adiabatic potentials need to be

calculated. One need to note that the weakly-bound atom-trimer channel A∗3 + A in this

case is only a resonance state and does not correspond to a real scattering threshold, since

A∗3 can decay by itself into an atom and a more deeply-bound dimer.

In the right panels in Fig. 4.16, we zoom in on the regions near the A2 +A+A break-up
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thresholds. In particular, in the upper panel we show the potentials near the weakly-bound

A2(n = 1) + A + A break-up thresholds. To get a sense for universality, we have shown

the atom-trimer and dimer-dimer potentials for the same scattering length with a single

two-body bound state by using VvdW. For the atom-trimer channel, the positions of the

potential minima is different for the two cases. For R larger than the positions of the

potential minima, both potentials behave like Eq. (4.81). For the dimer-dimer channel with

deeply-bound two-body state, the potential still behaves like 1/R2 when R . a but has a

larger coefficient than that for the single two-body bound state case. The potenitals for the

two cases start to merge near R = a. Due to the tremendous number of avoided crossings

in the dimer-dimer and atom-trimer potentials in the presence of deeply-bound two-body

state, it is not practical the extract the coupling between these channels. However, since

the qualitative behavior of the potentials is not changed by having more two-body bound

states, we expect the coupling between them is qualitatively the same. The conclusion for

the scattering length scaling of the relaxation rate in Eq. (4.83) is thus expected to hold in

general.

4.3.4 Summary

To summarize, we have studied the universal scaling behavior of four identical bosons in one

dimension. The scaling of the potentials in the presence of multiple three-body continua is

shown and their effects are discussed. We have observed the complicated behavior of the

potentials when the different sets of continuum potentials cross with each other, implying

rich physics even for a one-dimensional system. By analyzing the scaling behavior of the

four-body adiabatic potentials and the non-adiabatic couplings, we predict a linear in a

enhancement of the vibrational relaxation involving two weakly-bound dimers. The weakly-

bound dimers in a 1D confinement are thus expected to be unstable due to collisional decay.

This enhancement, however, can be used to produce highly controllable collimated atomic

or molecular beams.
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hbach molecules and three-body recombination in 87Rb Bose-Einstein condensates,”

Phys. Rev. A 75, 020702 (2007).

152



[152] P. Massignan and H. T. C. Stoof, “Efimov states near a Feshbach resonance,” Phys.

Rev. A 78, 030701 (2008).

[153] N. P. Mehta, S. T. Rittenhouse, J. P. D’Incao, and C. H. Greene, “Efimov states

embedded in the three-body continuum,” Phys. Rev. A 78, 020701 (2008).

[154] S. D. Palo, M. L. Chiofalo, M. J. Holland, and S. J. J. M. F. Kokkelmans, “Resonance

effects on the crossover of bosonic to fermionic superfluidity,” Phys. Lett. A 327, 490

(2004).

[155] O. S. Sørensen, N. Nygaard, and P. B. Blakie, “Statistical mechanics of a Feshbach-

coupled Bose-Fermi gas in an optical lattice,” Phys. Rev. A 79, 053601 (2009).

[156] O. S. Sørensen, N. Nygaard, and P. B. Blakie, “Adiabatic cooling of a tunable Bose-

Fermi mixture in an optical lattice,” Phys. Rev. A 79, 063615 (2009).

[157] C. A. Stan, M. W. Zwierlein, C. H. Schunck, S. M. F. Raupach, and W. Ketterle,

“Observation of Feshbach resonances between two different atomic species,” Phys.

Rev. Lett. 93, 143001 (2004).

[158] E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl,

F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkel-

mans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture:

Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev.

Lett. 100, 053201 (2008).

[159] A.-C. Voigt, M. Taglieber, L. Costa, T. Aoki, W. Wieser, T. W. Hänsch, and K. Dieck-
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Appendix A

A diabatic picture generated by
freezing three-body geometry

Quantum mechanical calculations for realistic three-body systems have been pursued for

many years. In the field of quantum chemistry and ultracold quantum gases, the three-

body scattering processes are especially of interest because of their close relationship to the

molecular formations and stabilities of the quantum gases. Some precursory calculations

have been available, but they are mostly restricted to the systems where particles interact

very weakly, such as three He atoms [118, 126]. For the three-body systems involving

stronger interactions, like the alkali atoms which are widely used in the experiments on

ultracold quantum gases, exact three-body calculations are only available for the processes

involving a few of the lowest two-body channels [215–223].

Among the various numerical methods developed to perform three-body calculations, the

hyperspherical close coupling method has many advantages. In the hyperspherical coordi-

nates, the overall size of the three-body system is measured by the hyperradius R, while all

the other degrees of freedom are defined via two hyperangles. The three-body Schrödinger

equation is usually solved by treating the hyperradius as an adiabatic parameter. The adia-

batic hyperradial potentials and the non-adiabatic couplings for each R are then calculated

by solving the resulting hyperangular equation. The adiabatic hyperspherical potentials

have some similarity with the Born-Oppenheimer potentials. Especially, in the limit of one
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particle much lighter than the other two, the adiabatic hyperradial potentials reduces to the

Born-Oppenheimer potentials. But for the cases where all three particles have compara-

ble masses, unlike the Born-Oppenheimer potentials, the hyperradial potentials are still of

physical significance due to the fact that the hyperradius is generally a slowly varying vari-

able. Further, the three-body break-up continuum is rigorously discretized, which greatly

facilitates numerical calculations involving the three-body continuum. An exact solution of

the three-body equation can in principle be obtained by solving the hyperradial equation,

including all the adiabatic potentials and the non-adiabatic couplings. However, in most

three-body systems with realistic atomic interactions, the adiabatic hyperspherical potential

curves bearing different characteristics, such as different partial angular momenta or two-

body affinities, can have sharp avoided crossings. Near such crossings, the non-adiabatic

couplings exhibit δ-function like behavior. It is very challenging to either trace out such

sharp peaks or to use them to perform hyperradial calculations.

Due to these difficulties, much effort has been made to find a diabatic representation

which is also of physical significance [224–228]. Some of the schemes, called “diabatization”,

are based on post-processing the adiabatic potentials, trying to connect the sharp avoided

crossings as real ones, as called “diabatization”. However, it is hard to find a general

criterion to decide which avoided crossings should be connected a priori. Even if this can

be achieved, the coupling information is generally missing, making the picture incomplete.

Another useful diabatic picture, the “slow variable discretization” (SVD) [229], is an exact

representation. It is defined in a unified form which facilitates it applications. However, in

this representation the hyperradial and hyperangular motions are coupled, making it more

numerical rather than physical. This representation imposes the inconvenience of storing

the the hyperangular wave-function for consecutive steps.

In an adiabatic representation, the potential energy operator is made diagonal. However,

in a diabatic representation the potential energy operator is not diagonalized, which allows

great flexibility in defining a diabatic representation. [10]. As mentioned above, for a pair of
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adiabatic potentials bearing distinct characteristics, sharp avoided crossings may occur. This

usually implies the presence of some “nearly” good quantum numbers (from approximate

symmetries), or “flavors”, for the channels. A diabatic representation is most useful if

these “flavors” are used to label the channels [226]. However, the difficulty is that the

“flavors” usually have very different physical nature, and in most cases it is hard to define

an appropriate physical quantity to represent these “flavors” a priori.

In three-body systems, states with distinct “flavors” usually have different geometric

configurations. The emergence of the sharp avoided crossings can be understood by the fact

that the geometric configuration of the three-body system is not likely to change abruptly.

The shape of the system is then a slowly-varying characteristic which can be used to pro-

duce a diabatic representation with a unified form. Based on this idea, here we develop

a shape-diabatic representation. This representation is superior in the short and interme-

diate distances to treat the complicated three-body dynamical processes and can provide

more physical insights to the geometric changes. Combined with the adiabatic representa-

tion in the asymptotic region, this representation is complete provides an efficient method

for solving three-body problems of realistic systems with more complicated interactions.

Further, we find the adiabatic equation can be solved with better memory efficiency in

the shape-diabatic representation, making it an appealing numerical strategy for adiabatic

calculations.

A.1 Method

We set up our method in the Smith-Whitten hyperspherical coordinates as introduced in

Sec. 2.2.2. To build the information of the geometric configurations into the hyperangular

basis, we treat both R and θ as adiabatic parameters, since θ characterizes the geometrical

configuration of the three particles. The basis functions for shape-diabatic representation is

written as

Φν,λ(R; θ, ϕ) = Θ(R; θ)ν,λφλ(R, θ;ϕ), (A.1)
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where φλ solves

[Tϕ + V (R, θ;ϕ)]φλ(R, θ;ϕ) = uλ(R, θ)φλ(R, θ;ϕ), (A.2)

and Θν,λ is the solution of[
Tθ +

15

8µ3R2
+ uλ(R, θ)

]
Θν,λ(R; θ) = Uν,λ(R)Θν,λ(R; θ). (A.3)

Since the coordinate θ determines the three-body geometry, the functions Θν,λ then provide

an overall “envelope” of the geometric configurations, on top of the details given by the

ϕ-channel functions φλ. Expanding the total wave-function ψ in the shape-diabatic basis

Φν,λ,

ψ =
∑
ν,λ

Fν,λ(R)Φν,λ(R; θ, ϕ), (A.4)

we arrive at the hyperradial equation in the shape-diabatic basis:[
− 1

2µ

∂2

∂R2
+ Uν,λ(R)

]
Fν,λ(R)− 1

2µ

∑
ν′,λ′

[
2Pνλ,ν′λ′(R)

d

dR

+Qνλ,ν′λ′(R)+Wνλ,ν′λ′(R)

]
Fν′,λ′(R)=EFν,λ(R). (A.5)

The shape non-adiabatic couplings Pνλ,ν′λ′(R) and Qνλ,ν′λ′(R), involving derivatives with

respect to R, are defined similarly as the non-adiabatic couplings Pn,n′ and Qn,n′ in the

adiabatic picture (n and n′ are the adiabatic channel function indices) as

Pνλ,ν′λ′(R) =

〈〈
Φν,λ

∣∣∣∣ ddR
∣∣∣∣Φν′,λ′

〉〉
, Qνλ,ν′λ′(R) =

〈〈
Φν,λ

∣∣∣∣ d2

dR2

∣∣∣∣Φν′,λ′

〉〉
, (A.6)

where the double bracket indicates integration over the hyperangles θ and ϕ. The diabatic

couplings Wνλ,ν′λ′ arise from the non-adiabaticity in the θ coordinate, and are defined by

Wνλ,ν′λ′(R) =

〈
Θνλ,ν′λ′

∣∣∣∣4Pλ,λ′(θ) ∂∂θ + 2Qλ,λ′(θ) + 8 cot 2θPλ,λ′(θ)
∣∣∣∣Θνλ,ν′λ′

〉
θ

. (A.7)

Here the single bracket indicates integration over the hyperangle θ. The shape non-adiabatic

couplings Pλ,λ′(θ) and Qλ,λ′(θ) are defined similarly as their hyperradial counterparts:

Pλ,λ′(θ) =

〈
φλ

∣∣∣∣ ∂∂θ
∣∣∣∣φλ′〉

ϕ

, Qλ,λ′(θ) =

〈
φλ

∣∣∣∣ ∂2

∂θ2

∣∣∣∣φλ′〉
ϕ

, (A.8)

where the integration is over the hyperangle ϕ.
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A.2 Applications

A.2.1 Three identical particles

System with single s-wave bound channel

Without loss of generality, we assume that all the identical particles are bosons. We first

apply the shape-diabatic representation to a simple three-body system, where the two-body

subsystem has only one bound state. We use the following two-body model potential for

inter-particle interactions:

V (rij) = −D sech2(rij/r0) (A.9)

The diabatic potentials are shown in Fig. A.1. The adiabatic potentials are shown to-

gether for comparison. As seen in the figure, the diabatic potentials follow the adiabatic

potentials closely in the short-range region: R . 5r0. Similar to the adiabatic potentials,

the lowest diabatic potential asymptotically goes to a bound state energy, while the higher

ones go to the energy of hyperspherical harmonics. However, the energy of the lowest dia-

batic potential does not match the two-body bound state energy, implying strong couplings

between the channels even in the asymptotic region. We also see some of the continuum

potentials exchange their ordering asymptotically, for example, the channels ν = 3, λ = 1

(dark blue circles) and ν = 1, λ = 2 (light pink balls). We show the corresponding hyperan-

gular wave-functions for these two channels from ϕ = 0 to ϕ = 2π/3 in Fig. A.2 at different

hyperradii. Due to identical particle symmetry, the part of the wave-function shown is re-

peated on the rest of the hyperangular plane. As seen from the wave-functions, the exchange

of the ordering is direct result of the shrinking of one nodal line into the two-body potential

region for Φ3,1 and the emerging of a nodal line from the two-body potential region for Φ1,2

The diagonal couplings, Qνλ,νλ and Wνλ,νλ, which are important to make the potentials

more physical, are shown in Fig. A.3. It is seen that the diagonal term W1 1,1 1 for the two-

body bound channel approaches a constant value asymptotically. The coupling term Q1 1,1 1

behaves like 1/R2 asymptotically. But still the diagonal diabatic potential for the bound
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Figure A.1: The shape-diabatic potentials (lines with symbols) and the adiabatic ones (black
lines). (a) The potentials at small distances. (b) The potentials multiplied by 2µR2. Here,
m = 7292.3 a.u., r0 = 15 a.u. and D = 4.79× 10−6 a.u.

channel W1 1,1 1 = U1 1− 1
2µ

(Q1 1,1 1 +W1 1,1 1) does not go to the dimer energy asymptotically,

so that the diabatic bound channel potential can not represent the asymptotic A2 + A

configuration by itself. The diagonal couplings Wνλ,νλ for continuum channels have two

different asymptotic behaviors. The diagonal couplings Wν 1,ν 1 behave like ∼ 1/R2, while

other ones decrease like 1/R asymptotically. Since these couplings are of the same order or

lower order as the potential energies Uνλ themselves in 1/R, the diabatic continuum channels

do not approach the free particles configurations asymptotically. These diabatic channels

then will be coupled together to give the correct physical asymptotic configurations.
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Figure A.2: Hyperangular wave-functions Φ3,1 (left column) and Φ1,2 (right column) at R = 20
(top panel), 200 (middle panel) and 2000 a.u. (bottom panel).

For three-body recombination and dissociation processes, the couplings between the

bound channel and the continuum channels are the most important. As shown in Fig. A.4,

the couplings Wνλ,1 1 are generally dominant over the corresponding P and Q coupling

terms. The coupling terms Wν 1,1 1 have very slow decaying behavior as ∼ 1/R, indicating

long-range couplings from the continuum channels come from the same ϕ-channel φ1 as the

bound channel. As seen from the figure, though the other Wνλ,1 1 coupling terms decay

quicker as ∼ 1/R2, the terms for higher λ become dominant at larger R. This implies that

when R increases, higher continuum channels need to be included to get the correct A2 +A
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Figure A.3: The diagonal couplings −Qνλ,νλ and −Wνλ,νλ

configurations.

The asymptotic behavior of the off-diagonal couplings between the continuum channels

are shown in Fig. A.5. Here Pν 1,ν′ 1 behave like ∼ 1/R1.5, while other P coupling terms

behave like ∼ 1/R3. The Q couplings are of higher order as ∼ 1/R3.5. The W couplings

generally behave like O(1/R2).

As shown in this example, though the shape-diabatic representation is complete, it does

not treat the asymptotic behaviors of the three-body systems very well. To represent the

three-body physics correctly at large distances, lots of diabatic channels need to be coupled.

However, since the main objective to invoke a diabatic representation is to avoid sharp
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Figure A.4: The couplings between the bound channel and continuum channels. (a) |Pνλ,1 1|,
|Qνλ,1 1| and (b) |Wνλ,1 1|, where ν ′ = 1, λ′ = 1 is for the bound channel. The sharp dips comes
from the coupling terms passing through zero.

avoided crossings at short and intermediate distances, we will in the following demonstrate

how the shape-diabatic representation gets rid of the sharp avoided crossings appearing in

the adiabatic potentials.

System with high angular momentum bound channels

In the three-body systems where the two-body subsystems have high angular momentum

states, the adiabatic hyperspherical potentials usually have sharp avoided crossings between

the channels bearing different two-body angular momentum characteristics. In Fig. A.6, we
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Figure A.5: The off-diagonal couplings between the continuum channels. (a) |Pνλ,ν′λ′ |, |Qνλ,ν′λ′ |
and (b) |Wνλ,ν′λ′ |. The sharp dips comes from the coupling terms passing through zero.

show both the adiabatic potentials and the shape-diabatic potentials for such a three-body

system. For the adiabatic potentials, the second lowest channel (n=2), which is an asymp-

totic d-wave bound channel, has an avoided crossing with the third channel (n=3) which

is an asymptotic s-wave bound channel at R ≈ 24 a.u.. The diabatic potentials following

closely to these two adiabatic potentials (ν = 2, λ = 3 and ν = 1, λ = 2) cross smoothly

here. The corresponding non-adiabatic and diabatic couplings are shown in Fig. A.7.

The non-adiabatic couplings in the adiabatic representation P2,3 peaks sharply around

R ≈ 24 a.u., while the shape non-diabatic couplings P2 1,1 2, Q2 1,1 2 and the diabatic cou-
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Figure A.6: The shape-diabatic potentials (lines with symbols) and the adiabatic ones (black
lines). (a) The potentials at small distances. The inset shows the details in the region where the
adiabatic potentials have avoided crossings. (b) The potentials multiplied by 2µR2 to identify the
1/R2 tail region of the continuum channels. Here, m = 7292.3 a.u., r0 = 15 a.u. and D = 4×10−5

a.u.

pling W2 1,1 2 always exhibits smooth behavior. The avoided crossing between the adiabatic

channels n = 6 and n = 7 shows even sharper behavior near R ≈ 50 a.u. and R ≈ 72 a.u.

as shown in Fig. A.8(b). The couplings for the nearby diabatic potentials ν = 4, λ = 1 and
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Figure A.7: The couplings in the shape-diabatic representation (a) and adiabatic representation
(b) for the channels near the crossing shown in the inset (1) of Figure A.6(a). Note that to
show the couplings together, the shape non-adiabatic coupling Q2 3,1 2 is multiplied by 10 and the
non-adiabatic coupling Q2,3 is multiplied by 20 to make them comparable to other couplings.

ν = 2, λ = 2 still show smooth behavior.

Since the reason that the diabatic potentials trace through the avoided crossings is

because they usually carry the information of nearly conserved symmetry, we can get more

physical insight into the origin of the sharp avoided crossings in the adiabatic potentials by

looking at the diabatic channel functions. In Fig. A.9, we show the diabatic channel functions

Φ2 1 and Φ1 2 near the crossing point R ≈ 24 a.u.. For Φ1,2, the two nodal lines in ϕ direction

asymptotically shrink into the region where two particles are close together, forming a d-wave

172



Figure A.8: The diabatic (a) and adiabatic (b) couplings for the channels near the crossing shown
in the inset (2) of Fig. A.6(a). Note that the shape non-diabatic coupling Q4 1,2 2 is multiplied by
10 and the non-adiabatic coupling Q6,7 is multiplied by 300 to make them comparable to other
couplings.

like bound channel. The channel wave-function Φ2,1 though, shows an isotropic distribution

near the two-body coalescence region. This channel then naturally connects to an s-wave like

bound channel asymptotically. Both channel functions have large amplitudes for the linear

geometric configurations (θ = π/2), but their distinct structures in ϕ make the transition

between the two channels unlikely. Further, Φ1,2 has only negligible amplitude for equilateral

and isosceles triangle shapes, making transitions via these configurations unlikely either.

Through this example, we see that in the diabatic representation each channel pertains
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Figure A.9: Diabatic hyperangular wave-functions Φ2,1 (left column) and Φ1,2 (right column)
at R ≈ 24 a.u. where the potentials cross.

the same partial angular momentum characteristic at all hyperradii. This property helps

trace out the angular momentum related sharp avoided crossings appearing in the adia-

batic potentials diabatically, giving smooth behavior in both potentials and couplings. The

corresponding hyperradial channel functions Fν,λ are then expected to be free of drastic

changes.

Systems with large two-body scattering length

In three-body systems with large two-body scattering length a, Efimov physics shows up

through the long-range behavior of the adiabatic hyperradial potentials [12, 164, 230, 231].

Especially, the weakly-bound channel exhibits attractive 1/R2 scaling behavior when r0 �

R� a. We have calculated both adiabatic and diabatic potentials for the three-body system

with large a, but with only one s-wave two-body bound state. The depth of the two-body

potential D is tuned to give the specific scattering lengths. The diabatic potentials are

calculated for a = 500, 3000 a.u. and ∞. As shown in Fig. A.10, unlike the adiabatic

potentials, the diabatic potentials do not show attractive 1/R2 long-range behavior. The

long-range scaling is not observed in the couplings either, showing that the Efimov physics

can only be represented as a multi-channel phenomenon in the shape-diabatic representation.

This can be expected, though, as the manifestation of the Efimov physics depends crucially

on the exact binding energy of the two-body states; yet this information is not shown clearly
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as a single-channel property in the shape diabatic representation.

Figure A.10: The shape-diabatic potentials (lines with symbols) and the adiabatic ones (black
lines) for a=500 a.u. (red balls), a=3000 a.u. (blue circles) and a=∞ (purple triangles). The
potentials are multiplied by 2µR2 to show the long-range scaling behavior of the potentials. Here,
m = 7292.3 a.u., r0 = 15 a.u.

System with strong short-range repulsions

In three-body systems with strong inter-particle short-range repulsions, different geometric

configurations usually give a different energy scaling with the hyperradius for small or in-

termediate distances. The adiabatic potentials are then seen to be composed of families of

curves embedded within each other and characterized by distinct geometric configurations,

evolving a complicated structure and giving rise to some interesting features like double

wells [232–234]. Since it is difficult for a three-body system to change the geometric config-

urations drastically within a narrow range of distance, the crossings between the potentials

belonging to different families will usually give rise to sharp avoided crossings.

In the shape-diabatic representation, since each channel has its own “sense” of the ge-

ometric configuration, the diabatic potentials are expected to be more physical than the
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adiabatic ones at small and intermediate distances. To study the behavior of the shape-

diabatic potentials under such conditions, we use a Morse potential for the inter-particle

interaction:

V (rij) = D
[(

1− e−3(rij/r0−1)
)2 − 1

]
. (A.10)

The three-body potentials are shown in Fig. A.11

Figure A.11: The lowest few shape-diabatic potentials (lines with symbols) and the adiabatic
ones (black lines) for a three-body system interacting with a Morse potential. The family of
diabatic curves with λ = 1 are shown by red balls, the curves with λ = 2 are shown by blue
circles, the curve with λ = 3 is shown by green triangles. The inset shows the details in one of the
double-well region. Here, m = 7292.3 a.u., r0 = 10 a.u. and D = 10−4 a.u.

We see that the families of diabatic potential curves, labeled by λ, trace out a series

of real crossings where the adiabatic potentials have avoided crossings. The origin of the

double-well structure in the adiabatic potentials can be understood by the nearby diabatic

potentials. As seen in the inset of Fig. A.11, the double-well structure appearing in the

n = 5 adiabatic channel corresponds to single wells in the ν = 5, λ = 1 and ν = 2, λ =

2 diabatic channels at R ≈ 18.5 and 24 a.u., respectively. The corresponding channel

functions Φ5,1 and Φ2,2 near the double-well region are shown in Fig. A.12. In both of
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the channel functions, the “black hole” centered at the two-body coalescence position (θ =

π/2, ϕ = π/3) comes from the strong inter-particle repulsion. The channel function Φ2,2

has a large amplitude in the two-body potential well around the repulsive region, showing

that the geometric configuration of this channel corresponds to two particles close together.

Compared with Φ2,2, the channel function Φ5,1 has the most amplitude in the region where

all three particles are far apart. Clearly, at small hyperradius where all the particles are

within the repulsive interaction region, the configurations of Φ5,1 reduce the repulsion thus

give lower energy; at large hyperradius though, two particles close enough to be within the

attractive interaction range gives configurations of lower energy. These two sets of geometric

configurations generally have different equilibrium distances, leading to double-well structure

in the adiabatic potentials.

Figure A.12: Diabatic hyperangular wave-functions Φ5,1 (left column) and Φ2,2 (right column)
at R = 21 a.u.

The couplings in the adiabatic representation, due to the crossings between the families of

potentials, show drastic changes in small and intermediate distances. We make a comparison

of the couplings between the diabatic and adiabatic representations in Fig. A.13. The

couplings in the diabatic representation generally show slowly-varying behavior except in

the range of very small hyperradii where the three-body potentials are dominated by the

inter-particle repulsions. However, the peaks shown in this region are not expected to

cause numerical problems since they are deep inside the classically forbidden region of the

potentials.
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For the lowest two channels in Fig.. A.11, the diabatic and adiabatic potentials match

closely up to R ≈ 25 a.u., and the avoided crossings are seen in both diabatic and adiabatic

potentials. But the couplings in the diabatic representation between these two channels

behave a little smoother than the couplings in the adiabatic representation, as shown in

Fig. A.14.

Figure A.13: (a) The couplings in diabatic picture between channels ν = 4, λ = 1 and ν = 1, λ =
2. NoteW4 1,1 2 has been divided by 200 to make it have similar magnitude as other couplings. (b)
Couplings in the adiabatic picture between the channels n = 4 and n = 5.

The origin of the avoided crossing appearing in the lowest two diabatic channels can be

understood by the following arguments. Though generally the geometric configurations in

each diabatic channel do not change much for different hyperradius, due to the existence of
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Figure A.14: (a) The couplings in the diabatic picture between channels ν = 1, λ = 1 and
ν = 2, λ = 1. (b) Couplings in the adiabatic picture between the channels n = 1 and n = 2.

strong short-range inter-particle repulsions the geometric configurations in lowest diabatic

channels are forced to change across a small range of hyperradii. We show in Fig. A.15 the

diabatic channel function Φ1,1 near the potential minimum (R ≈ 14 a.u.) and the potential

shoulder (R ≈ 20 a.u.). Near the potential minimum, the geometric configuration of the

three particles are dominantly equilateral triangle, while near the potential shoulder the

particles change to mainly linear shapes.

The preceding examples show that the shape-diabatic representation is potentially nu-

merically superior to the adiabatic representation in the hyperradial region involving compli-
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Figure A.15: The diabatic hyperangular wave-functions Φ1,1 at R = 14 a.u. (left column) and
R = 20 a.u. (right column).

cated three-body dynamics. In the asymptotic region though, the adiabatic representation

is more advantageous since different channels decouple. Since both representation form

complete hyperangular basis, the solutions in the two representations can be transformed

into each other without loss of information. A practical scheme for solving the three-body

equation then would be combining the two representations in different hyperradial regions.

The solutions at the boundary can then be matched by unitary transformation between the

two representations.

A.2.2 Two identical particles

In the three-body systems where not all the particles are identical, the loss of complete

exchange symmetry introduces complications: different affinities between the particle pairs

can lead to drastic change in their geometric configurations. The behavior of the solutions

to Eq. A.2 is expected to have drastic changes, making the diabatic basis also suffer from

the difficulty of the sharp avoided crossings.

We demonstrate this effect by a system of two identical bosonic particles and one distin-

guishable particle. The inter-particle interactions are of the form of Eq. A.9, with different

parameters for distinct pairs. For some range of hyperradii, sharp avoided crossings show

up in the θ-potentials uλ(R, θ) from Eq. A.2, upon which the diabatic hyperradial potentials

and couplings are calculated. As shown in Fig. A.16, the avoided crossings appearing in
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the low-lying θ-potentials are extremely sharp. The corresponding diabatic hyperangular

channels function is shown in Fig. A.17(a). The abrupt change in the potentials and wave-

functions, on the other hand, provides convenience for simple diabatization. This can be

simply achieved by reordering the channel index λ at the boundary of the sharp avoided

crossings. The hyperangular channel function after diabatization is shown in Fig. A.17(b),

where we can see that the diabatized wave-function behave smoothly. The resulting diabatic

potentials and couplings are again free of sharp-varying structures.

Figure A.16: The “θ-potentials” uλ(R, θ) at R = 40 a.u.. Here we take D = 10−4 a.u., r0 = 10
a.u. for identical pair, and r0 = 20 a.u. for distinguishable pairs.

Figure A.17: The diabatic hyperangular channel function Φ1,1 at R = 40 a.u.. (a) The channel
function without diabatizing uλ(R, θ) in θ. (b) The channel function after diabatization.
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A.2.3 Calculating adiabatic potentials

In the shape-diabatic representation, the 2-D equation in θ and ϕ is solved consecutively

as 1-D equations. This dramatically increases the computational efficiency and reduces

the consumption of the computational resources. The diabatic representation can then be

adapted to calculating the three-body adiabatic potentials and couplings. One way for

applying this idea is to calculate the adiabatic Hamiltonian matrix in the diabatic represen-

tation; the adiabatic potentials and hyperangular wave-functions can then be obtained by

diagonalizing the matrix. An equivalent way is to expand the adiabatic wave-functions in

the ϕ-basis φλ obtained from Eq. A.2:

Φad,n =
∑
λ

ϑn,λ(R; θ)φλ(ϕ). (A.11)

The adiabatic equation then reduces to a set of coupled 1-D equations:[
− 2

µ

∂2

∂θ2
+ u(θ)ν,λ

]
ϑn,λ(R; θ)− 2

µ

∑
n′,λ′

[
Qλ,λ′(θ)

+2 (Pλ,λ′(θ) + cot 2θ)
d

dθ

]
ϑν′,λ′(R; θ)=Un(R)ϑn,λ(θ) (A.12)

In the following, we apply the two different methods to the three-body system in

Sec. A.2.1 as example to calculate the adiabatic potentials. We first calculate the potentials

by solving Eq. A.12 and compare them with the results calculated by solving the full 2-D

equations. We use fifth order B-spline as spatial basis in all the calculations. The memory

usage for 1-D calculations scales as (Nθ + Nϕ)Nc, where Nθ, Nϕ are the number of spline

functions in θ and ϕ directions and Nc is the number of ϕ-channels. For 2-D calculations

though, with our banded storage scheme, the memory usage grows as N2
θNϕ. In Table A.1,

we show the comparison of lowest three adiabatic potentials at R = 10 a.u.. In solving the

consecutive 1-D equations and 2-D calculation, we both use 10 B-spline functions in the ϕ

and θ directions. For the 1-D calculations the lowest two ϕ-channels are included in the

expansion A.11, giving 12 digits convergence for the lowest, 13 digits for the second and 10

digits for the third adiabatic potential energy. While in the 2-D calculation the potential
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1-D 2-D
U1 (10−6 a.u.) -6.90021495060(7) -6.90021495060(8)
U2 (10−5 a.u.) 3.108177885162 3.108177885162
U3 (10−5 a.u.) 6.425280473(911) 6.425280473(253)

Table A.1: The lowest three adiabatic potential energies calculated at R = 10 a.u. by Eq. A.12
and by solving the full 2-D equation directly.

1-D 2-D
U1 (10−6 a.u.) -1.122833546613 -1.12283354661(2)
U2 (10−8 a.u.) 6.235902031(769) 6.23590203(2121)
U3 (10−7 a.u.) 4.5162647094(78) 4.5162647094(10)

Table A.2: The lowest three adiabatic potential energies calculated at R = 100 a.u. by Eq. A.12
and by solving the full 2-D equation directly.

energies are converged to 12 digits, 13 digits and 10 digits, respectively. We performed the

calculations on a single core of a 2.4GHz Intel Core2 cpu. The cpu time and memory usage

for the 1-D calculation are 5.3 × 10−2 s and 1.3 MB, respectively. For the 2-D calculation

though, the calculation takes 2 × 10−2 s of cpu time and 1.9 MB of memory. In this case,

solving the 1-D equations does not show obvious advantages over solving the 2-D equation.

However, the resource usage changes quite a lot at larger hyperradii. We show the adia-

batic potentials energies calculated at R = 100 a.u. in Table A.2. For the 1-D calculation,

100 spline functions are used in ϕ direction and 50 spline functions are used in θ direc-

tion. The lowest 20 ϕ-channels are included, giving 13 digits convergence for the lowest,

10 digits for the second and 11 digits for the third adiabatic potential energy. While in

the 2-D calculation, 40 B-spline functions are used in θ and 30 spline functions are used

in ϕ directions. The potential energies are converged to 12 digits, 9 digits and 11 digits,

respectively. The cpu time and memory usage for the 1-D calculation are 6.8 s and 4.7 MB.

The 2-D calculation though, takes 0.6 s and 14 MB. Finally, we list the potential energies

calculated at R = 500 a.u. in Table A.3. For 1-D, we use 250 spline functions in both θ

and ϕ directions with 50 ϕ channels included to get 11, 9 and 10 digits convergence. For

183



1-D 2-D
U1 (10−6 a.u.) -1.1107884746(30) -1.1107884746(45)
U2 (10−9 a.u.) 1.92049209(5984) 1.92049209(3543)
U3 (10−8 a.u.) 1.738091016(859) 1.738091016(214)

Table A.3: The lowest three adiabatic potential energies calculated at R = 500 a.u. by Eq. A.12
and by solving the full 2-D equation directly.

the 2-D calculation, 100 spline functions are used in both θ and ϕ directions. The potential

energies are converged to 11 digits, 9 digits and 10 digits, respectively. The cpu time and

memory usage for the 1-D calculation are 412 s and 102 MB. The 2-D calculation though,

takes 117 s and 215 MB.

Generally, it is more difficult to obtain converged potentials at larger hyperradius. For

2-D calculations, more spline functions are required, while for 1-D calculations, both the

number of spline functions and ϕ channels need to be increased. From the above com-

parisons, we see that it takes more cpu time but less memory to calculate the adiabatic

potentials by solving the 1-D equations.

A.3 Summary

The sharp avoided crossings appearing in the adiabatic curves are an awkward problem

to handle: the sharp crossings imply the existence of nearly exact symmetry which can

be used to simplify the problem, but the loss of that symmetry information in adiabatic

representation makes solving the problem much harder. Though a diabatic representation

can generally by-pass the problem of sharp avoided crossings, it is unfortunately hard to

find a general-purposed representation that can be migrated from one system to another.

Further, if the diabatic channels do not build-in enough physical information from the

system, other numerical difficulties may occur instead.

In this paper, we have presented a method for generating a diabatic representation for any

three-body systems. Because the information of the particles’ geometric configurations is
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“built-in”, the potential curves in the shape-diabatic representation cross smoothly through

the sharp avoided crossings observed in the adiabatic representation. In the asymptotic

region though, the diabatic channels do not de-couple completely, making the representation

less suitable to describe the asymptotic behavior of the particles. This also make it hard

to represent the Efimov physics in the case of large two-body scattering length. But, by

applying the shape-diabatic representation and adiabatic representation separately in the

region of small and intermediate hyperradii and in the asymptotic region, the three-body

systems with complicated short-range dynamics can be solved with much less numerical

difficulty.

Computationally, the diabatic basis can be generated very efficiently since it is calculated

from two consecutive 1-D equations. We also apply the idea of reducing the 2-D adiabatic

equation into coupled 1-D equations for calculating adiabatic potentials. The convergence

tests show that the 1-D calculations take less memory, but more cpu time.
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Appendix B

Single-channel approach for deriving
three-body inelastic rates

For the three-body recombination and relaxation processes we are working on, the inelastic

transitions take place predominantly when the hyperradius is comparable with size of final

two-body bound state. For the cases where the final state is deeply bound, the size of the

three-body system needs to go down to the short-range distances to make the transition.

Near a Feshbach resonance the adiabatic hyperspherical potential for the initial channel–

either the lowest continuum channel for recombination at a < 0 or the weakly-bound atom-

dimer channel at a > 0 for relaxation–has long-range scaling with the increasing size of |a|.

The short-range behavior, for both the potentials and the couplings, has negligible change

because of the tiny changes in the interactions. For low scattering energies k � 1/r0, the de-

Broglie wave length in the initial channel is much large the size of the short-range distance,

the scaling of the inelastic rates is then determined by the amplitude of the wavefunction in

the initial channel. These three-body inelastic processes reduce to essentially single-channel

problems.

186



B.1 Zero-energy recombination (a < 0) and relaxation

(a > 0) for large effective-range

The three-body recombination and relaxation rates for small effective-range |reff | are given

in Eqs. (1.6) and (1.7). These expressions have been derived by using different methods

in the literature [52], here we derive the expressions for these rates for large |reff |. First

we work on identical bosons. In Fig. 3.5, we show the schematic scaling of the adiabatic

hyperspherical potentials for both a > 0 and a < 0. The only difference for the two cases

is the asymptotic behavior in the potentials. This difference can be simply characterized

by assigning effect angular momentum l for each of the asymptotic potential. In particular,

l = 0 for relaxation and l = 3/2 for recombination. We use a model which connects directly

different regions of the potentials, as the following:

W0(R) =



W0(r0) R = r0,
0 r0 < R < α|reff |,

−s
2
0 + 1/4

2µ3R2
α|reff | < R < β|a|,

Eth +
l(l + 1)

2µ3R2
R > β|a|

, (B.1)

where the threshold energy for the initial channel Eth is zero for recombination and−1/2µ2a
2

for relaxation. The parameters α and β, as mentioned in Sec. 3.1.2, are used to adjust the

boundaries of the hyperradial regions. The behavior of the potential for the final channel

is not shown since it does not scale with a. By neglecting the couplings between the initial

and the final channel for R > r0, the hyperradial wavefunction in the initial channel near

zero scattering energy can be written down by sectors:

F0R =


C1 sin[kR + δs(k)] r0 � R� α|reff |,
C2R

1/2{Jis0(kR) + tan[δ2(k)]Nis0(kR)} α|reff | � R� β|a|,
C3R

1/2{Jl+1/2(kR) + tan[δ(k)]Nl+1/2(kR)} R� β|a|,
(B.2)

For k → 0 and |a| � |reff | the short-range phase shift δs can be taken as

δs(k) = −Ak, (B.3)
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where A is the short-range scattering length. Due to the inelastic transitions at R ≤ r0, A

acquires an imaginary part which determines the strength of the transition. By matching

the hyperradial wavefunction F0(R) at α|reff | and β|a|, the asymptotic phase shift δ can

be expressed in terms of α|reff |, β|a| and A. The probability for elastic scattering R is the

reflection coefficient:

R =

∣∣∣∣1 + i tan δ

1− i tan δ

∣∣∣∣2 . (B.4)

The probability for inelastic transition is then determined as

1−R =
2π

Γ(l + 3
2
)Γ(l + 1

2
)

(
kβ|a|

2

)2l+1
sin 2ϕ0 sinh 2η

sinh2 η + sin2[s0 ln(|a/reff |) + Φ + ϕ]
, (B.5)

where the parameters Φ, η, ϕ and the constant phase ϕ0 are defined through Eq. (3.6)-

( 3.8). The recombination rate K3 and the relaxation rate Vrel are expressed by the inelastic

transition probability through

K3 =
192π2

µ3k2
(1−R), (B.6)

Vrel = π(1−R)/µk. (B.7)

For mixed-spin fermionic system FFF ′, we are interested in the three-body relaxation

process (FF ′)∗ + F → FF ′ + F , where (FF ′)∗ is a weakly-bound Feshbach molecule and

FF ′ is a deeply-bound molecule. The adiabatic hyperspherical potential for this system is

different from the potential for bosons only in the region α|reff | � R� β|a|, as

W0(R) =
p2

0 − 1/4

2µ3R2
, (B.8)

where p0 is determined by Eq. (3.11). The corresponding hyperradial wavefunction is thus

changed to

F0 = C2R
1/2{Jp0(kR) + tan[δ2(k)]Np0(kR)} α|reff | � R� β|a|. (B.9)

Following exactly the same analysis for identical bosons, we get the relaxation rate for FFF ′

system Eq. (3.12).
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B.2 Recombination at finite energies (a < 0)

Following essentially the same streamline in the previous section, we can derive the three-

body recombination rate K3 at finite energies for both small and large |reff |. For simplicity

we first derive K3 for small |reff |, the expression for large |reff | can be obtained by extending

the analysis for small |reff |. We model the adiabatic hyperspherical potential as the following:

W0(R) =


−s

2
0 + 1/4

2µ3R2
r0 < R < β|a|,

15/4

2µ3R2
R > β|a|.

, (B.10)

With the solutions Eq. (B.2) in these regions, we obtain

R = −

{
H

(2)
2

′
(kβ|a|)[Jis0(kβ|a|) + tan δ2(k)Nis0(kβ|a|)]

H
(2)
2 (kβ|a|)[J ′is0(kβ|a|) + tan δ2(k)N ′is0(kβ|a|)]

− 1

}
/{

H
(1)
2

′
(kβ|a|)[Jis0(kβ|a|) + tan δ2(k)Nis0(kβ|a|)]

H
(1)
2 (kβ|a|)[J ′is0(kβ|a|) + tan δ2(k)N ′is0(kβ|a|)]

− 1

}
, (B.11)

where H
(1)
l (x) and H

(2)
l (x) are the first and second kind of Hankel’s function of order l,

respectively. The derivatives are taken on the whole argument. When the scattering energy

satisfies k � 1/r0, tan δ2(k) is independent of k

tan δ2(k) ≈
cosh(π

2
s0) tan Φ− i sinh(π

2
s0)

i sinh(π
2
s0) tan Φ + cosh(π

2
s0)

, (B.12)

where Φ is the short-range phase. For energies such that k � 1/|a|, the recombination

probability simplifies to Eq. (3.32) which shows log-periodic oscillations.

Near narrow Feshbach resonances where |reff | is large, the adiabatic hyperspherical po-

tential behave as in Eq. (B.1) and the the hyperradial wavefunction is given in Eq. (B.2).

By matching the wavefunction at R = α|reff |, the recombination probability in the energy

range 1/|a| � k � 1/|reff | takes the same form as in Eq. (3.32), with the parameters Φ

and η written in terms of reff and the short-range scattering length A as in Eq. (3.35). For

energies kk � 1/|reff |, Eq. (B.11) reduces to

R = 1− 4k|ImA|. (B.13)
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Appendix C

A multi-channel approach for
deriving three-body inelastic rates

C.1 General formalism

Following the idea for solving the three-body hyperradial equation separately in each region,

we formulate a rigorous multi-channel approach for solving Eq. (2.40) and extracting the

scattering matrix. For simplicity we restrict our discussion to the case for small |reff |, the

generalization for large |reff | can be obtained by following the same streamline. Since a

multi-channel description is necessary for three-body recombination when a > 0, we will

formulate our method explicitly for this process. This method, however, can be applied

to other processes with only minor modifications. Based on the physical insight obtained

in Sec. 3.2.1 that the inelastic transitions occur predominantly near R ≈ a, we divide the

hyperradial regions as the following and we assume the couplings are non-zero only near

R ≈ a.

1. Short-range region (R ≤ r0). The solutions Fν in this region is non-universal, so we

parametrize the short-range solutions by a N × N R-matrix Rs at R = r0, where N

is the number of the adiabatic channels under consideration.

2. Efimov region (r0 ≤ R ≤ β1a). The coefficients β1 reflects the uncertainty in deter-

mining the right boundary. The universal adiabatic potentials for J = 0+ behave like
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the following :

Wν =


−s

2
0 + 1/4

2µ3R2
,

s2
ν − 1/4

2µ3R2
(ν > 0),

(C.1)

where s0 is determined by Eq. (2.73) and sν is determined by the same equation by

replacing s0 with isν . By neglecting the couplings in this region, we write the solutions

in this region by a N ×N matrix:

Fν,ν′(R) = uν,ν′ = (χ+ ξKs)ν,ν′ . (C.2)

where the regular and irregular solution matrices are

χν,ν′ = δν,ν′χν(R), (C.3)

ξν,ν′ = δν,ν′ξν(R). (C.4)

For the Efimov channel where the potential is attractive, we take the sin-like and

cos-like solutions as

χν =

√
π

2
R1/2

[
cosh(

π

2
s0)Jis0(kR)− i sinh(

π

2
s0)Nis0(kR)

]
, (C.5)

ξν =

√
π

2
R1/2

[
cosh(

π

2
s0)Jis0(kR)− i sinh(

π

2
s0)Nis0(kR)

]
, (C.6)

The short-range reactance matrix Ks is related to the R-matrix Rs by

Ks = (R−1
s ξ − ξ′)−1(R−1

s χ− χ′), (C.7)

where the derivative is taken respect to R.

3. Transitional region (β1a ≤ R ≤ β2a). The coefficients β2 reflects the uncertainty

in determining the right boundary. The adiabatic potentials in this region are also

universal, but they cannot be written down in an analytical form. Without matching

to solutions in other regions, there are 2N independent solutions in this region. For

the convenience of the derivation, we split the 2N solutions into two arbitrary solution
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matrices: M 1 and M 2. The N physical solutions Fν,ν′ are then written as the linear

combinations of the 2N solutions:

Fν,ν′(R) = (M 1B1 +M 2B2)ν,ν′ . (C.8)

The combination matrices B1 and B2 will finally be eliminated by matching the solu-

tions for all regions.

4. Asymptotic region (R > β2a). The adiabatic channels decouple and the behaviors

of the potentials for the continuum channels and the bound channels are given by

Eq. (2.69) and (2.70), respectively. We directly write the solutions in a N ×N matrix

form:

Fν,ν′(R) = (f + gK)ν,ν′ , (C.9)

where

fν,ν′ = δν,ν′fν(R), gν,ν′ = δν,ν′gν(R), (C.10)

and K is the reactance matrix, fν and gν are the energy normalized regular and

irregular solutions:

fν(R) =

√
π

2
R1/2J`eff+1/2(kνR), gν(R) =

√
π

2
R1/2N`eff+1/2(kνR), (C.11)

where the effective angular momentum `eff = λ+ 3/2 for the continuum channels and

`eff = l + 1/2 for the bound channels.

By matching the solution matrices and their derivatives at β1a and β2a, we obtain the

reactance matrix K in the asymptotic region:

K = −
{[
uu′

−1
(M ′

1)L − (M 1)L

]
(M−1

1 )R g +
[
uu′

−1
C −D

] [
g′ − (M ′

1)R(M−1
1 )R g

]}−1

{[
uu′

−1
(M ′

1)L − (M 1)L

]
(M−1

1 )R f +
[
uu′

−1
C −D

] [
f ′ − (M ′

1)R(M−1
1 )R f

]}
,

(C.12)
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where

C =
[
(M ′

2)L(M 2
−1)R − (M ′

1)L(M 1
−1)R

] [
(M ′

2)R(M 2
−1)R − (M ′

1)R(M 1
−1)R

]−1
,

(C.13)

D =
[
(M 2)L(M 2

−1)R − (M 1)L(M 1
−1)R

] [
(M ′

2)R(M 2
−1)R − (M ′

1)R(M 1
−1)R

]−1
.

(C.14)

In the above expressions, the subscript “L” and “R” indicate that the value or the derivative

of a matrix is taken at R = β1a or β2a, respectively. The value or derivative of the u related

matrices are evaluated at R = β1a, those of the f or g related matrices are evaluated at

R = β2a.

The three-body recombination rate K3 can finally be calculated after obtaining the

reactance matrix K. In particular, K3 can be calculated by using Eq. (2.67), where the

scattering matrix S is connected with K by:

S = (1 + iK)(1− iK)−1, (C.15)

where 1 is the unit matrix.

C.2 An analytical model

With the general formalism set up in the previous section for studying the Efimov physics ,

we can study the scaling of K3 at finite energies without numerically solving the three-body

Schrödinger equation. To implement this method, we want to find a simple model which

can facilitate the derivation or calculation but still have all necessary Efimov physics built

in. Within our formalism, the solutions in the Efimov region and the asymptotic region

are already known, the rest input will be from the short-range region and the transitional

region.

For the short-range region, the potentials and couplings are non-universal which leaves

a lot of freedom for parametrization. For instance, transitions to deeply-bound channels,

which has been parametrized through the η parameter in Eq. (1.5), can be build in the matrix

Rs or Ks in our formalism. For the purpose of studying universal behavior, however, we
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assume there is no deeply-bound channels. Further, for the energy range we are interested

in (k � 1/r0), the continuum channels are all classically forbidden so that the inelastic

transitions between the Efimov channel and the continuum channels are negligible. Without

losing generality, we construct the following Ks matrix:

(K)0,0 = − tanh
(π

2
s0

)
tan

[
Φ + γ − s0 ln

(
kr0

2

)]
, (C.16)

(K)ν,ν′ = 0 all other ν, ν ′. (C.17)

With this construction, the short-range scattering involving any the continuum channels is

forbidden. More importantly, the wavefunction in the Efimov channel at R = r0 is set by

the convention of the short-range phase Φ used in the previous studies. The constant γ is

defined in Eq. (3.30).

We next model the potentials and the couplings in the transitional region. From our

numerical calculations we have learned that the non-adiabatic couplings Pν,ν′ peak near

R ≈ a, with peak values scale like 1/a. The non-adiabatic couplings Qν,ν′ which have the

similar structure with peak values scale like 1/a2, which are negligible when a � r0. We

thus model the non-adiabatic couplings Pν,ν′ by step functions which are non-zero only in

the transitional region with constant values cν,ν′/a. The constants cν,ν′ are universal and

their values can be obtained from the numerical calculations. We also set the adiabatic

potentials in this region to be constants with values w2
ν/2µ3a

2, which between the values of

the potentials in the adjacent regions. The coupled hyperradial equations take the following

form:

−F ′′ν = k2
νFν +

∑
ν′ 6=ν

kν,ν′F
′
ν ν = 0, 1, ..., N − 1, (C.18)

where

k2
ν,nu = 2µ2E − w2

ν ,

kν,ν′ = 2cν,ν′/a ν 6= ν ′. (C.19)
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ν ′ c0,ν′ c1,ν′ c2,ν′ c3,ν′ c4,ν′

0 0 –0.17 -0.041 –0.035 –0.025
1 0.17 0 –0.068 -0.030 –0.022
2 0.041 0.068 0 –0.030 –0.019
3 0.035 0.030 0.030 0 –0.047
4 0.025 0.022 0.019 0.047 0

Table C.1: Universal coefficients cν,ν′ for non-adiabatic couplings Pν,ν′ (J = 0+).

Eq. (C.18) can be solved by transforming into a set of coupled first order differential

equations by defining FN+ν = F ′ν :{
−F ′N+ν = k2

νFν +
∑

ν′ 6=ν kν,ν′FN+ν′ ν = 0, 1, ..., N − 1,

F ′ν = FN+ν ν = 0, 1, ..., N − 1.

Writing the coupled equations in a matrix form ~F ′ = A~F , we can find a unitary transfor-

mation matrix U such that U †AU is diagonal. The transformed solution vector ~G = U † ~F

can be written explicitly as

Gν = bνe
aνR ν = 0, 1, ..., 2N − 1, (C.20)

where ai are the eigenvalues of A. All the 2N linearly independent solutions which make

up the solution matrices M 1 and M 2 can be obtained by letting bν = δν,ν′ with ν ′ =

0, 1, ..., 2N − 1.

In the full numerical results as shown in Sec. 3.2.2, we have found that for J = 0+ the

recombination rates are converged to 95% by including the lowest four continuum channels

in the calculations. The convergence for higher partial waves calculations is even quicker.

In Table C.1 we list the values of the cν,ν′ for the lowest five channels: We have calculated

the recombination rates K3 for J = 0+ by including the lowest five adiabatic channels where

we use w2
0 = −s2

0 − 1/4 and w2
ν = s2

ν − 1/4 (ν 6= 0). We notice that these results are not

sensitive to the choice of the values for w2
ν . The results are shown in Fig. 3.16.

To get a simple analytical expression for the energy-dependent oscillations seen in Sec. 3.2

by using a multi-channel approach, we include only the lowest two channels in our model.
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The solutions in the transitional region Eq. (C.20) is further simplified and in the energy

range of interest (1/a � k � 1/r0), the wνs drop off the expression and the scattering

matrix element (S)12 which determines the probability of the recombination reduces to

(S)12 =
eiπ/4(e4cβ1 − e4cβ2)

2ie2c(β1+β2) cot(φ0 + s1π/2) + e4cβ1 + e4cβ2
, (C.21)

where c = c12. This finally leads the expression for the three-body recombination rate in

Eq. (3.28).
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