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CHAPTER I
INTRODUCTION

1.1 Historical Sketch

In 1821, the French scieﬁtist Fresnel, established the
formulae for determining the intensities and directions of
reflected and refracted rays of.light incident on the plane
surface of a transparent body. These formulae were based on
the "Elastic Theory"™ of light which assumes the existence of
infinitely elastic medium ether, now of only historical in-
terest. However, the formulae themselves had brilliant ex-
perimental justification and were used for the verification
of every theory of light which was proposed there-after
including the Electromagnetic Theory of light developed by
Maxwell in 1865.

For electromagnetic waves, the Fresnel reflection laws
can be deduced from Maxwell's equations and the appropriate
boundary conditions. If a wave, travelling in free space,
is incident on the plane surfaée of a medium of relative
dielectric constant K, then, for the horizontal and the
vertical polarizations, the respective reflection coeffici-

ents R, & R, are given by (Harrington, 1961):

Cos®; _~/K? - Sin?e;
R, = : :
CosBy +/K< - 5in?8;

(1.1.1)



K2 Cos@l -Q{K2 - SindGl
B, = - > s (1.1.2)
k? Cosé, -;/K - sin?e,

where ©4 is the angle of reflection {equal to the angle of

incidence).

1.2 Reflection From A Rough Surface

If the reflecting surface becomes rough, the electro-
magnetic energy is scattered in various directions, though
certain privileged directions may receive more energy than
others (Beckmann & Spizzichino, 1963). It becomes impossible
to apply the boundary conditions imposed by the rough sur-
face for determining the scattered field. With the advent
of radar, the study of scattering of electromagnetic waves
from rough surfaces, particularly from terrains, has achieved
special importance. Also the back scattered field is ré-
quired to calculate the radar cross section of targets of
general shapes.

A number of simplifying assumptions are required to
determine rough surface scatter. Some of the important ones
are (Beckmann & Spizzichino, 1963):

1. The dimensions of the'scattering elements of the
rough surface are either much smaller or much greater than
the wave length of the incident radiation.

2. The radius of curvature of the scattering elements
is much greater than the wave length of the incident radia-

tion.



3. Shadowing and multiple scattering effects of the
scattering elements are negligible.

4. The rough surface is assumed to have specific types
of roughness e.g. sinusoidal, sawtooth, random ﬁariations in
height, with respect to a "mean" surface, describable by
their statistical distributions.

5. Only the far field is calculated.

In spite of all these and several other assumptions, it
is still not possible to obtain a general solution for a
rough surface. By far the largest number of rough surface
scatter theories is based on the Kirchhoff approximations
of the boundary conditions which are required to evaluate the
Helmholtz integral for calculating the scattered field. This
evaluation requires that the total field distribution on the
scattering surface be known. Based on the assumption number
2 above, the field at any point of the surface is approxi;
mated by the one that would be present on the "tangent plane”
at that point. This field is then the sum of the incident
and reflected fields at that point. The reflected field is
assumed to be given by the Fresnel coefficients.

The angle Ql, now, is no longer constant but, as shown
in Fig. 1, is a function of the angle 8 which is called ‘the

generalized angle of reflection (or angle of incidence).

1.3. Hough Sphere

Obviously, the functional relationship between 91, and @
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Fig. 1. Scattering geometry of & rough surface.



depends on the type of "mean" surface chosen. One particu-
lar surface of both theoretical and practical interest and
of great importance is the statistically rough sphere with
gaussian roughness. In this section the coordinate system
necessary for describing reflection from a rough sphere is
described and the functional relationship between 91, and @
is derived (Lenhert, 1966).

Let the rough sphere be of average radius a. and the
variation in the radius at a péint (8,8) ve H(e,@). If
T=r '3;, is the vector from the origin (Fig. 2) to a

point on'the reflecting surface, then the equation for the

rough surface is:

W=r —[a + H (e,;é )] =0 (1.3.1)

—
The unit outward surface normal a_ is then given by:

n

. LW . - (1.3.2)
|v yl

From (1.3.1),

-5
VY- % -131 () 2
1 O0H (e, .
vhme a2t W (2.3

If the sphere has gaussian roughnes§'H (8,95) can be
generated by a normal random process and its partial deriva-

tives are therefore also normal (Middleton, 1960).
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Fig. 2. Ccordinate system for rough sphere scatter.



T | JH(8,¢) | ' A
Let X - Sing '2)53 (1.3.4)
and Y =1 -'-"»iaﬂ—-—lg ¢ (1.3.5)

X and Y are therefore normal random variables.

Let 7;% denote the direction of the receiver at the point
(r, e,¢ ) on the rough sphere and the angle between '3% and
‘3; be 8 (local angle of reflection). Assuming that only

the far field is of interest, we have:

- = s
ap = a, = a_ Cos® - a, Sind (1.3.6)

Taking the dot product,_gé -'g; to get Cosel and substituting

from the above equations, we get:

Cos 8. = CosB + ¥ Sine - (1.3.7)

: N/i + X2 + Y7

1., Problem Defined

In this report an attempt is made to obtain the pro-
bability density function of Cose1 and from this to estimate
the distributions of Rh and Rv‘ Because of the complexity
of Cos@l, its distribution cannot be determined analytigally.
The "Monte Carlo" and "numerical integration" techniques are
therefore used with the IBM 360/50 computer and the results

are then compared.



(&

1.5 Summary of Chapter Development

Chapter I contains the statement of the problem and the
necessary derivations. Chapter II presents the analytical
technique for determining the distribution of Gosel. In
Chapter III, two methods of evaluating the distribution of
Cosel by numerical techniques are discussed and the resﬁlts
are compared in the following chapter. The distribution of
Ry and Rv are determined in Chapter V and the report is con-
cluded with recommendations for further investigations ih

the last chapter.



CHAPTER II

PROBABILITY DENSITY OF FUNCTIONGS
0F RANDOM VARIABLES

2.1 Introduction

The distribution of a random variable which is a func-
tion of other random variables can be calculated only if the
joint density of the constituent random variables is known
(Papoulis, 1965). The joint density of normally distributed
random variables is assumed to be also normal. Based on
this, the density of a function which is the sum of several
normal variables can easily be calculated. If the function,
however, is not just the sum of random variables but incor-
porates other functional relationships, the problem becomes

very difficult and an analytical solution is often impossible.

2.2 Density Function of Cosel

let Z = Cosel (2.2.1)

Cos® + Y Sin® (2.2.2)
\/1+X2+Y2

o L=

If X and Y are assumed to be normally distributed with
zero mean and equal standard deviation g , then their joint

probebility density f(U) is given by:

£(u) = 1 o~ (x%y2-28x7) /2 (1-37)

] 2MAL - §2 2

(2.2.3)
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where § is the correlation coefficient (Papoulis, 1965).

Let A = L (2.2:4]
2“.”1--?20“2

and B = 1 (2.2.5)
(1 -°)

e £(U) = A omB(XRHyR-28xy) (2.2.6)

The problem therefore reduces to the determination of
the density function f(Z), knowing equation (2.2.3). The
most general method is to determine the distribution function

F(Z) and then evaluate f(Z) using the relationship:

£(z) = E’%izﬁ)— (2.2.7)

Solving (2.2.2) for x, (X is the random variable and x is

the value it takes)

x =+ [_(0059 Y S1m0)2 - (1 + y2)]'% (2.2.8)
Lot o _____[(COSG +zy Sing)2 _ (1 4 ygﬂ% (2.2.9)
Sox =+ ool | (2.2.10)

S F(2)

#

S ( [A B(x* + y° -5’2xy]dxdy

where RX and Ry are regions of integration for x and y re-

s

spectively. From (2.2.2}, it is clear that:
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ZL0 for -w<Y¥Y{ - cotB

and Z3>0 for - cotb{Y <=0

s« For Z negative,

- cotdpr .0 2
AS SQHB (32 + y° 82 x ¥y,

F(Z) =
- o0 -'d
+°{-B(x2+y2-2f’xy)
S e dx{ d y (2.2.12)
O i

and for Z positive,

-l
F(Z) = A Sw Se'B %+ v% - 2y
- cotB| =~ oo
o0
+ 5 o~B (x* + y2 -2 8x y)dx dy (2.2.13)
ol
From (2.2.9)
’BOL - _ (Cosg + v Sin9)2 (2.2.14)
Dz oA 23 '

Using equations (2.2.7), (2.2.14) and Leibnitz rule for dif-

ferentiation under the integral, we get:



-cot8 .
£{z) = A -{Cos8 + v SinG)ZLe-BQ,LE-%yZ-%zS’o{.y)
- A z3
P
+ o-Blo(*ty -23‘13{1 dy (2.2.15)
for Z negative, and:
00 - .
£(z) = AS (Cos8 + v Sin@)dLe-B(Q +y2+25el y)
3
-cot® A z '

for Z positive.
The integration indicated in the last two equations can-
not be performed analytically and therefore an exact expres-

sion for f{(Z) cannot be obtained.



CHAPTER III
METHODS OF EVALUATING £(Z)

3.1 Introduction

As f(Z) cannot be determined exactly, numerical inte-
gration or Monte Carloc technicue is used to get approximate
density function of Cos®;. Both utilise the IBM 360/50
computer and the accuracy of the results depends upon the

computer time that can be economically used.

3.2 Monte Carlo Technicue

In the Monte Carlo method (IBM Mﬁnual}Shrieder; 19663
-Cheng, 1970) two sets of uniformly distributed random numbers
in the interval (0,1) are first generated. These numbers
are then transformed into normally distributed random numbers
with zero mean and unit standard deviation using the fol-

lowing relationships:

1
Zl = ( -2 log, Rl)2 Cos 2ME, (3.2.1)

]

1
Zy = ( - 2 log, Ry}* Sin ZRR, (3:2.2)

where Zl, 22 give the normally distributed set corresponding

to the uniformly distributed set Rl and R2.
These normal "random pairs" are then converted into X

and Y with the appropriate correlation coefficient‘?, standard

deviation g~ and mean zero. The relationships used are:



X = g% (3.2+5)

]

Y= o (2,8 + 2,41 - 97) (3.2.4)

For each pair of values of X and Y and given €, Z is evaluated

using

7 = CosB + ¥ S5ind : {3+2:5)
AL+ X2+ Y2

Since Z (i.e. Cos@l) can take values between -1 and +1, the
interval (-1,1) is divided into subintervals and the nuﬁber
of values of Z which lie in eaﬁh subinterval is calculated.
After normalizing this number with the total number of gen-
erated random numbers, we get the density function f{Z).

The accuracy of the Monte Carlo method depends mainly
upon the sample size M, that is, the total number of random
numbers generated and the validity of randomness. The sample
size used for this work was 10000 (Ry and R, each) numbers
because of economic considerations of computer running time
and the limitations of the memory of IBM 360/50. As for the
validity of randomness, a chi-square test (Wadsworth and
Bryan, 1960) was used (with all its limitations). Obviously, -
the random numbers generated by the computer are not purely

random but are completely determined by the starting data.

3.3 Numerical Integration

In this method (Conte, 1965) f{Z) is evaluated using the
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equations (2.2.15) and (2.2.16). The integration has to be

carried out in several steps because of the factor {(COSG :

2—

y Sin®) (1 «+ yz)} which has to be greater than zero for

real values of x in equation (2.2.8). This implies:

Sin® COoe) z2 (1 - z°)
+
(y S:Ln29 > (Sln28-22)2 | (3.2.1)
Step 1.
For the region
- 1L z - Siné

as the minimum value Z can take is -Sin6 when Y becomes -~ oo

(this has zero probability by definition).

Step 2.

In the region

- Sine<z O
sin%e - z2%0

Therefore {3.3.1) is satisfied if y does not take values

between (-m -n} and(-m +n) where

m = Sin® Cos® _ (3-3.3)
Since -z<
_ 23
and n = —= (1 - 27) (33 k)

]Sin29 - 22l



Subject to these restrictions, from (2.2.15),

-Cot&
£(2) = A " (Cos® + ¥y Sin@)zge_B(&z-;-yz-sz’dy)
z 3 CXL
- og
+e~B(o¢2+y2-29oLyff dy (3.3.5)
Step 3.
For
0 z < sinse,

&ll arguments under Step 2 hold except that Z is now positive.

. 00 o
(Cos® + v Siné) _ 2 2
C.of(zZ) = :‘i.B_ f { / \ o-Blof ty=+25ely)

~Cot®

2
+ e By +Y2-2§’oty)] dy  (3.3.6)
Step L. _ ‘
Ifz= Sin®, to make x real in equation (2.2.8),

yj} -Cot23,.

With this restriction on y, £(Z) is given by (3.3.6).

Step 5.

Finally, in the region

sind < z 1,

sin®e - 2% <O0.
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Therefore, to satisfy (3.3.1), vy should take values only
between (-m -n) and(-m +n) and subject to this, f(Z) is given
by {3.3.6).

From the above discussion it is clear that determination
.cf f£(Z) finally boils down to the evaluation of the integral

of the general form:

A _ {(Cose + v Sin0)2 [e-B(OL2+y2+25€,Ly) + e-B(d2+‘y'2—2§de |

d -
}dy.

Simpson's rule was used to evaluate the above integral.

Additional simplifications of the integration limits result

from comparing m2 with -Cot® in different regions. The
Sin<@ :
accuracy of this method depends mainly on the computer running
time. Because of the presence of factors like ;g ,‘% and
Z

the exponentials in the integrzsl, the contribution of these
integrals to f(Z) gets restricted to only a small range of
values of y. It is very hard to determine this range for
each value of Z, It was found that for satisfactory results,
the number of steps used for integration should be at leést

1000. The asctual number used was 2000,
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CHAPTER IV
COMPARISON OF THE TWO METHODS

L.l Introduction

The Monte Carlo method is a very general one and the
same program can be adapted to get the density of any func-
tion with minor modifications (Cheng, 1970). The numerical
integration method, though equally general, requires a dif-
ferent program for each function. However, as the results
show, this method has better accuracy and can be made as

exact as desired at the expense of computing time.

L.2 Results Compared

Fig. 3 shows the density function f(Z) for o= 100,

& = 60° and £= 0.4, obtained by integration. TFig. L gives
same £(Z) by Monte Carlo method. Table-l gives a comparison
between the values obtained for £(Z) by the two methods and
also when different values of random numbers are used in the
Monte Carlo method.

Yhen the chi-square test is applied for determining the
randomness of a set of 10000 random numbers and the first
1000 of these numbers, the two sets will differ as regards
to their acceptability. Therefore to get reasonably "accept-
able" chi-square values for the two sets, M = 10000 and
M = 1000, they must be generated by changing the initial
data. For example, the M = 10000 set used in Fig. L was

generated using the initizl numbers 129140163 and 787972333



19

‘uotawadoqur Teotgsunu £q ( - ‘ = 3 £

B . OO R OOH - n»w. I&nv SO

. 9 8 I3 0 gson yo Aqrsusp £q9TT192q

8.0 ﬁwwo ¢..O T -0 Q'Q ) { -0 ’ pHHﬂ o
) : } -4 - - T .rU.O'.

B O e RSN S ——

‘¢ ‘314
Q Q0
0




N "poygzew oTae) d3uoy £q (,09 =8 ‘00T =070 nmuﬁmmoo Jo Aqrsuep £91TTqRqoxy v -Fiyg

b W B0 90  T9- - 90~ G-

s —i s

o

e S




TABLE I

Density of Cos8;

£(2)
(#= 0.4, o = 100, 8 = 60°)

By Monte Carlo Method
By Integration

M=10000 M=1000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.00C0 0.0600
3.9181 L5375 1.8500
1.2002 12275 1wl 750
0.8918 0.9200 0.9500
0.7597 0.7700 0.6500
0.6807 0.6325 0.6500
0.6247 0.6450 0.6000
0.5808 0.6175 (7280
Q.hL 42 0.5800 0.5250
0.5125 Uxbles 0.5000
0.484L6 0.5075 0.3500
0.4599 0.5050 0.4750
044380 0.4050 0.3500
0.4186 0.3650 0.3750
0.4016 0.435C 0.5000
0.3869 0.4100 0.3500
0.3742 0.3600 0.3750
0.3635 0.3875 0.4250



TABLLE I CONTINUID

A

Density of Cos@l

| £(z)

(§= 0.4, ¢ =100, o = 60°

’ By Monte Carlo Method
5 SRR }M=10000 =1000
-0.18 0.3548 0.3550 0.3000
~0.14 0.3478 0.3325 0.5000
-0.10 0.34,26 0.3275 0.2250
-0.06 0.3391 0.3450 0.5000
_0.02 0.3373 0.3325 0.2500
0.02 0.3371 0.3025 0.3000
0.06 0.3386 0.3750 0.3000
0.10 0.3417 0.3400 0.4500
0.1 0.3465 0.3625 0.3500
0.18 0.3530 0.3050 0.4500
0.22 0.361L 0.3775 0.2250
0.26 0.3716 0.3500 0.2750
0.30 0.3838 0.3850 0.3000
0.34 0.3980 0.4275 0.4500
0.38 0. 4141 0.3800 0.2000
0.42 0.433 0.4125 0.4500
0.46 0.L542 0.5250 0.5000
0.50 0.4779 0.4800 0.4000



TABLI I CONTINULD

oD

LR

Density of Cos8;

| £(z)

(= 0.4, o = 100, 8 = 60°

‘ By Monte Carlo Method

By Integration

1%=10000 14=1000
0.5, 0.5046 0.5075 0.6250
0.58 0.5346 0.5750 0.5000
0.62 0.5690 0.5150 0..4,500
0.66 0.6095 0..4875 0.5250
0.70 0.6598 0.6500 0.5000
0.74 0.7282 0.7550 06250
0.78 0.8353 0.9025 0.7500
0.82 1.5400 11075 Lxd 250
0.86 2.1185 1.8825 2.5250
0.90 0.0306 0.0750 s 1250
0. 94, 0.0042 0.0075 0.0000
0.98 0.0013 0.0025 0.0000
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and showed a chi-scuare value of 53.02 and 35.15 (for the two
normal number pair sets) for the whole sample and 72.15 and
48.40 respectively for the first 1000 numbers of this semple.
The M = 1000 set used in Table-l were therefore obtained
using the initial numbers 2143588l and 776179721 and had a
chi-square value of 53.34 and 44.9L respectively.

The disadvantages of the Monte Carlo method is otvious
from a comparison of Figs. 3 and 4. The density function
shows abrupt variations (Cheng, 1970) when Z changes by small
emount and does not show a smooth variation as given by the
integration method which is short of being exact only due to
the limitations set by the economic considerations of the
computer time. Moreover, different values are obtained as
shown in, Table~l for different number of random numbers used.
There is no way of getting consistant results because of this.
A detailed study based on Monte Carlo techniques is given
elsewhere (Cheng, 1970).

A close study of Figs. 3 and L4 reveals a very striking
difference between the peak values obtained by the two methods.
This is because of the essential difference in evaluating
f(Z) in the two methods. In Monte Carlo techniques, we
actually get the probability of Z taking a value z4 between

AzZq

1~ and z24 +zi%; and hence corresponds to the area

o

f(z1)A 2z under the density curve. Ve then calculate f(zq)

and consider this to be the value of f(Z) at Z = z7. In the
integration method, we calculzste directly f(Z) at Z = zqp.



hS
Vn

YWhen sharp peaks occur in f(Z), these two methodszs will
therefore differ in the values obtained.

The results of integration performed in the close
neighborhood of the two peaks is shown in Figs. 5 and 6.
The approximate areas evaluated with these figures for Z =
-.80 and Z = +,86 are respectively .065 and .065. The
corresponding areas by the Monte Carlo method with M = 10000
are 0,053 and .073 and with M = 1000 are .073 and .101.
These compare favorably well. It should however be noted,

that the areas obtained with Monte Carloc method are bound
to differ for different sets of random numbers employed with

the larger number sets giving better accuracy.
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CHAPTLER V
DENSITY FUNCTIONS OF FRESNEL COEFFICIENTS

5.1 Introduction

Both the Monte Carlo and the numerical integration
methods can be applied to determine the distribution of Rh
and R, . The first one is simpler and the computer program
requires only minor modifications. The latter method, as
mentioned earlier, requires elaborate study of the functions
and entirely new programs. Therefore a histogram technique
(Wadsworth & Bryan, 1960) has been used to determine the

density of Ry and R, after obtaining i 3

5.2 By Monte Carlo Method

In calculating the Fresnel coefficients, the angle ©y
must be restricted to the range 0§:el§;ﬂ72. Angles greater
than 7{/2 will imply the propagation of energy away from
receiver which may give rise to multiple scattering and hence
the tangentrplane approximations discussed in sections 1.2
cannot be justified. Therefore the density of Z for -1z O
has to be discarded and this factor must be taken into
account in calculating the densities f (Rh) and f (Rv) for
0% z 1. In Monte Carlo method, the number N of random
numbers which give rise to £(Z) in -1gz 0 is counted and
the £ (Ry) and £ (R ) curves corresponding to 0g z {1 are

normalized by dividing the ordinates with (1 - %).



The program used i1s given in Appendix A. The results

are plotted in Fig. 7 and 8.

5.3 By Histogram Method

Here again, the negative values of Z are not acceptable.
Therefore the area A under the distribution curve f£(Z) for
negative Z is evaluated (using trapezoidzsl rule).

We have:

= . 2
Cos8. -4/ K* - 3in"B
_ 1 f o (5.2.1)

2 .
Cos@l +1/K - Sln291

h

Y . 2(K%-1) (5.2.2)

(Cose- ) 1
AL (K2-5in?8, )% (Cose, +4/ K2-5ine, )*

a b
Therefore for 0z (1, ;%;—h remains positive and hence Rh

increases monotonically over this range.
For this reason, the probability of Z taking values

between 2y and Z5 with 22f7-zl, is the same as Rh taking

hl and rh2 with rhé>'rhl' Therefore the

area under the curve £{Z) between z, and z, and the cor-

values between r

responding Iy and ry, are calculated. This area is divided
by Cyo = Ty to get the average height of the density curve
£ (Ry) at the point (rh2 + rhl)/2.0. To account for the

negative values of Z, this height is further divided by
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Do

(1L - A) (A is the area as discussed above).

In case of Ry, we have:

_ K°Cos€y - A/K? - Sin?eq

K%Cos8y + 4/K? - 5in6,

(5.2.2)

Ry

and

"9 By _ 2KR (K*-1) (8.5 k)
-3 (Cosey) 2 1.0 5 ST \2 vE
(K<-51n?8, )2 (K*Cos@y+y K<-Sin?6y )

2 Ry
24
creases monotonically over this range. The same procedure

remains positive over Oz {1 and hence R, also in-

as in the case of Ry is therefore applied to Rv also.

The density curves are plotted in Figs. 9 and lO,-and
the computer progrem is given in Appendix B.

A set of density curves for selected values of §, &
and © are given in Appendix C for comparison purposes. These
curves were obtained by numerical integrationz. The dotted
portion in some of these curves shows the expected variation
of £(Z) over the interval 0.98<Z 1.0 since Z = 0.98 is the
last point where the computer will evaluate f(Z) as per the
method used to increment Z in the computer program given in

Appendix B.
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5.4 Computing Time

The computing time required to evaluate £{Z) is 0.061
hours by Monte Carlo method {with M = 10000} and 0.1,43 hours
by numerical integration. However, a comparison of Pigs.

3 and 4 shows that the curve obtained with Monte Carloc method
is not sufficiently smooth and is in very large error near
the sharp peaks of f(Z). OCne way to get better accuracy

near the peaks is to evaluate f(Z) at smaller increments of
Z. In this work increments of Z used were 0.04 as indicated
in Table-1. If the increment is made 0.02, the time for
Monte Carlo method will be considerably increased.

For evaluating Fresnel coefficients, for five values
of dielectric constant numerical integration requires O.145
hours whereas Monte Carlo method requires 0.149 hours. 'Again,
a comparison of Figs. 7 and 8 with 9 and 10 shows the large
error near sharp peaks when Monte Carlo method is used
(incidentally, f(Ry) and £(R,) in Figs. 7 and 8 were
evaluated by incrementing Ry and Ry by 0.02 and 0.04 respec-
tively. The marked difference in peak values of these
curves compared to their numerical integration counterparts
in Figs. 9 and 10 clearly indicate the effect of evaluating
the density functions at smaller increments in the respective
random variables.), though both methods need almost the same

computing time.
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Exact analytical expression cannot be obtained for
density of Cos@lt Monte Carlo or numerical integration
method has therefore to be used for determining the densities
of CostB

R, and R, . From the set of curves obtained using

1¥ N
various ¥, o, 6 and K, the following conclusions are made:
1. Cos@y takes values only in the range ( -Sin6, 1).
2. If ¢ is such that the 3¢ points cannot make Y
exceed Cotd, then the area under the density curve of Cos®q
in region —IQCOSQJ_QO is almost zero. Otherwise Cos8; is
distributed with two peaks, one in the positive region and
the other in negative region. It is to be noted that if

g = 90°, CosB, is symmetricallyrdistributed about the f(Z)
1

axis irrespective of the value of ¢, since:

- Y
Cosel .

Y1+ 32+ ¥<

3. The correlation coefficient § has less effect on the

density of Cos6., compared to that of ¢ and 8 as shown by the

g
density curves given in Appendix C.

L. DMonte Carlo techniques are satisfactory only if a
rough estimate of the density is needed. For high accuracy

the numerical integration method must be used.



o
~J

5. As the dielectric constant becomes large the range.,

over which Rh and R, have significant spread decreases.

6.2 lecommendations

Once the densities of Cos® Rh and Rv are known, it

1’
will be interesting to estimate the density of radar cross-
section of the rough sphere. It is hoped that this will not
get tied up with very complex integrals.

The Monte Carlo method must be studied in greater de-
tails to find out how to overcome its inaccuracies. The
larger the number of random numbers used, the better will
be the accuracy. This will increase the required computa-
tional time proportionately. If this method can be made to
give as high an accuracy as that obtained by numerical inte-
gration, and the random numbers used can be kept less than
10000, the computer time needed will be much less.

When o’ is small compared to unity; £(Z) has significant
spreed over only a small range of values of Z-For example,
if &= 0.1, £(Z) is spread over 0.4{Zg0.9 as per Figs. 1l
and 12. VWhen f(Z) is evaluated by numerical integration,
the integration has to be performed over the complete range
-SinBS\;Z'\(\l which is more than 3 times the range 0.4\ £g£0.9.
This suggests that a large saving in computer time can be
achieved if the range over which f(Z) has significant spread
is determined before actuzal integration. A hybrid method

incorporating both Monte Carlo and numerical integration



ANS ]
o

techniques is therefore worth studying. This method may use
1000 random numbers to predetermine roughly, the significant
spread of f(Z). Numerical integration is then performea
only over this range. This will give better accuracy at

lesser compution time.
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APPENDIX A

IMPLICIT REAL#*B(A-H,0~2), INTEGER(I-N]}
NIMENSION B(50,2)4C(50,10) ,HH(2,2}4R{10000,2},RHV{1C)
=10000

N 1% K=1,2

READ (1,5} IX

FORMATL(IL10)

WRITE (3506)K,IX

FORMAT (10X, *VALUE OF IX*',11,%'=',110//)
DO 15 J=1L,M

[Y=1X*565539

IF{IY)Y10,11,11

1¥Y=1Y+2147483647+1}

YFL=1Y

YFL=YFL*¥0.4656613E~9

IX=1Y

R{JyKI=YFL

P=2,0%3.1415927

Lo 16 J=1,M
X=(=2,0%DLOGIR{Js 1)) 1 %%0.5
Y=PER(Jy2)

R{Jy1)=X:DCOSA(Y)

Ri{Jy 2 =XxDSIN(Y)

N=50

B0 25 K=l,2 :

READ (1+24) HH{L12K) gHHI2,K) B (1,K)
FORMAT[3F10.3)

DG 25 I=2,N
B{IyK)I=B{I=1,K)+HH(2,K)

D0 36 K=1,10

D0 30 I=1,N

Cli,K}I=0.0
READ(L,;3L)RHG,SIGMA, THETA

FORMATI(3F1C.2)

2=DSQRT 1Y JO=RHD*%2)
T=P*THETA/360.0
CT=DCOSIT)

ST=DSINI(T)

L=0

DU 41 J=1,M

X=SIGMA*R (Js1)
Y=SIGMA={R(Jy LIFRHO+R(J,2) %)
FI=DSQRT{ 10+ XF&2+YX%E2}
F={CT+Y%ST)/F1
[FIF.GE.0.0)G0O TO 32
L=L+1

41



32

33

34

35
40

41

50
60
65

70

75

80

GO 70 41

L1=F

K=l

DC=2.0

DC2=DC*%2

Z2=(DC2-( L 0-Z1%%2) ) %%0.5

I3=DC2%71

RHVIK)=(Z1-Z2}/(Z1+22)
RHVI{K+5)}={723-22)/(23+12)

CC=DC+2.0

K=K+1

IF{DC.LE.10.06)G0 TO 33

KK=1

K=1

H=HH{1,KK}

BU 35 I=1:N

IF(RHVIK) .LE.H)GO TO 4Q

H=H+HH( 2, KK}

ClI,K¥=ClI+K)+1.0

K=k+1

[IF(K.LELSIGU TO 34

KK=2

I+ (KLLELLO)IGO TO 34

CONTINUE

BN=M—-L ;

BXl=HH{Z2,1)%8N

BX2=HH{2, 2 %8N

B0 50 K=1,%

GO 50 I=14N

ClIsRKI=CLI,+K)/BXL

ClI,K+5)=C{I;K+5)/8X2
WRITE{3360}RHCsSIGMATRETA

FORMAT{ 10X, "RHO="yF 6.2y 10Xy YSIGMA= 3 F6. 2+ 10Xy YTHETA=Y,F6.2//77)
WRITE(3,65)

FORMAT(IO0X,*UENSITY OF R-HORTIZONTALYZ//)
WRITE{(3,701

FORMAT(12X,'DIELECTRIC CONSTANT 3 12X, 72.0"412X+%4.0',12X,'56.0",
112X '8.0":12X:'10.0%////)

WRITE(3 75V (B(I 1) s {CH{T+K)sK=145)31=1,N)
FURMAT{20X,6F15.4//)

WRITE{3,80)

FORMAT(// /710X, YDENSTTY OF R-VERTICALY////)
wRITE(3,70)

WRITE(3, 753 BT +2) 2 (ClI;K)sK=6,10)I=13N)
sSTap )

END
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APPENDIX 8

IMPLICIT REAL*B(A~Hs0-2), INTEGER(I-N)
DIMENSION FCLL00).RH(26),4RV(26)
P=3,.14159625

P2=P/2.0

Pl=-p2

N=1000

READ(L,10)IR,S,T

FORMAT(3FL1GC.3)

WRITE(3,15)R,S,T

FORMAT(LIOX s "RHO=" 4F5.3,10X s "SICMA="3F6.2, 10X, "THETA=",F5.1////}
A=l o0/ (2, 0%PE(SHk*2)XDSCRT (L. O~R%%2))
Balo0/(2,0%(S%%2)% {1 0-R%%2))
1=T*P/180.0

CT=0COS{T)

ST=DSINIT)

SS=ST#%2

G=P1+7

W=0Q+T

KRITE (3,20}
FORMATILIOX g Y2V, 19X, YFL2YY /177

K=1

I=-0.98

IF(Z.GT.-ST)G0 TO 25

F1=O-O

GO TU 42

1Z=2%%2

$I=558-11

IF(S2)26528,31

XM=ST+CT/SZ
XN=(2Z%({1.0-22)7S2%%2)%%0,.,5
X1=DATAN{=XNM=~XN)

X2=DATAN{=XM+XN)

IF(Q.GELX1)YGU TO 27

CALL INTEG{X1 ) X2sNyCToSTr24ZZsAyBsRyFZ1)
Fi=FZ1

GO TQ 42 ;

CALL INTEG{QaX2¢NyCTySTeZ+223AsBsR4FZ1)
FI=F21

GU TO 42

CALL INTEG{W,P2yNyCT,5T42,22Z:A4B3R4FZ2)
F1=F12

GO TO 42

AM=ST*LT/SZ
XN={22%(1.0-72)/SZ%%2)%%0.5
X1=DATAN{—=XM=XN)



33

36

37

42
50

55

60

75
77

80

85

X2=DATAN(—=XM+XN)

FZ3=0.0

IF(Z.GT.0.0)G0 7O 36
[F{X2.GE.Q)GUO TO 33 ;

44

CALL INTEG(X2+QsNyCToS5T4Z,2424A,B4R,FL3)

Fi=F13

CALL INTEGUIPL,XLaNyCTeSTolyl2AsByRyFI4)

FI=FI3+F14
GO TO 42
1F(X2.GE.Q)GD TO 37

CALL INTEGIQsP2yNyCTsS5Te2+ZZ+A8:RFL5)

FL=F15
cO0 TO 42

CALL INTEG{X2:P2yNeCT+STsZsZ22,4AyBsRyFZ6)

FI=FZ1&

WRITE(3,50)2,FZ
FORMAT(10X,F1044,10X+F10.4//)
FCIRK)=FLZ

K=K+1

I=71+C.04

IF{Z.LE.1.C)GO TO 22

K=0

K=K+1

IF{{FCIK) e LE.O«O)} . ANDS{K.LT.23)1G0 TO 55

FIS={FC(K)+FC(25))/2.0

CO 60 I=1+24

[F{I.LE.KIGO TO 60C
FIS=FZIS+FC{I)

CONT INUE

FIS=FLS%0.04

CL=2.0

WRITE(3,77)0C
FORMAT(10X»"DIELECTRIC CUNSTANT=
LY, 10X, 'RV " 10X, PRV ///Y7)
NC2=0DC**%2

21=0.0

0 80 (=1.26
22={DC2-{1.0-Z1%%2))%%0,.5
23=DC2%11

RHIT Y=(Z21-22)/(21+22)
RVITY=1(23-22)/123+12)
Z1=71+0.04

DO 85 [=1.+25
PAREA=FCI1+25}%0.04
PAREAN=PAREA/(1.0-FZS)
RlI={RH(I+L)I+RH{I1)1)}/2.0
PRH=PAREAN/(RH{I+1)-RH{I})
R2=[RV(I+1)+rRV({I})) /2.0
PRY=PAREAN/(RVII+L)-RVII))
WRITE{3490)}RL;PRH,R24PRV

V. F5.2,10X,s'"RH* 310X, *PRH



90 FORMATEA0XsFLlO0aH 92X eF10e593X9F1l0u592X%+Fl0e5//)
NC=DC+2.0
IF{DC.LE.10.0)G0O TO 75

95  STOP
END

SUBROUTINE INTEG(QL Q2 eNyCT 45T Ly Z2sA4B4RyFL2)

IMPLICIT REAL¥B(A-H,0-2),INTEGER(I~-N)
DIMENSION X(2G601),Y(20C1)
N2=2%N
AMN=NZ+1
AN=NN
0X={Q2-Q1) /AN
X{Li=QLl+DX/2.0
DO 5 I=1,N2

5 X{I+1)=X(1)+LX
U0 34 TI=1,NN
U=DTANIX{I))
LU=Ux%2
D=CT+S5T*U
Cu=D#%2
¥=1.C+UU
CC=DD/21-V
C=CC*%*0.5
CU=B*{CC+UU)
RCU=2.0%B*R%#L*U
ARGL=CU+RCU
ARGZ=CU-RCU
Y{[}=0.0
FF{ARGL.GE.174.63)G0 TC 32
Y{L}=0EXP (—-ARGL)

32 IF(ARG2.GE.174.631G0 TC 34
Y(I)=DEXP{-ARG2)I+Y([}

34 Y{L)={VxUU/CI¥Y(I)

35 FIZ=YU{Ll}+Y{NN)+4.0%Y(2)
DO 40 I=34N2,y2

40 FI=FLZ+2.0%Y{1)+4.0%Y{I+1)
FI=(A/DABS(Z%%*3 ) )%FZ%DX/3.0
RETURN
END



APPENDIX C



(561 =8 ‘T°0 =2°T0°0 =g )Lgsog yo A3tsuep A31TTqRqOy

L7

-2




o

Ie

1

(oG =8 ‘T'0 =0'1°0 =§ )lgsop go Aqtsuep A3rrrqeqoag -zt '9tg

Q

*|

wao.

2

)

T-o

O-q

e

+




- -
™ (o§% =8 ‘0°T =0°T0°0 =§ ) Tesop Jo Katsusp Lar(Iqeqoad €T *S1d
X O“_ 29 9-0" Y0 T-0 0:0 70— .vwol. 90—
R . 1 % ] ! ] “ [t " O
\
1
i
1
i
|
i Tr
|
|
1
..vN




L

§-0

. b € e .
(o6 =8 ‘0°T =0°%1"0 =§) 8500 Jo Latsuep £ar1TIqRqORg 4T *9T4

inw 0 ¢‘.O C-0 0-+0 T -0~ oo~

- ——— — i . =

CRC
B




(o§T = 8 ‘0°T = ‘6670 = §) 8500 Jo A3tsuop Aarrrqeqorq ST "Fid
o 8:0 20 1% ..ol 4*0 900 2Py ¢.m1 .w.un.vl
TV
7T
o




(ST =86 ‘T'0 =0°%°0 uiﬁmmou Jo Larsuep Larrrqeqoag 9T 914

O 30 9 -0 -0 T-9 a.oo
| R
|
1
|
_

_ v

|

|

|

I

| + 9

I

!

|

|

i

_L T Cl
- Q_
<= Orﬂ




O

3 (ST =8 ‘0T =20 umv.ﬁmmoo Jo ALqrsusp Lqirrqeqoag AT 91z
SRS -0 9-0 ] 0 Q-0 T-o— .o—
4 —4 t—— + t ol S } — O
_.
]
!
!
|
' 1
€
TS
T
+5




A COMPARISON OF METHODS FOR OBTAINING THE
PROBABILITY DENSITY OF FUNCTICONS RELATED
TO RADAR BACKSCATTER

by

ABDUL LATEEF ABDUSSATTAR
B.E., University of Madras, 1957

M.E., Indian Institute of Science, 1959

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1970



ABSTRACT

The Iresnel reflection coefficients for a smooth surface

are given by:

 Cosé; JK? - sin%e

- 1
B 2 2
Cosel-h/K - Sin 81
2 2 s 2
- K Cosel mJE{ - Sin 91
v
2 Jz f
-+ -
K CosGl K Sin 91

where Gl is the angle between the normal to the surface and
the direction of the receiver. For a rough spherical sur-
face, this angle is & function of 8, the angle between the
direction of the receiver and_a "peneralized” normal to the
surface (equal to the angle of incidence for a plane surface)

and is given by:

Bl Cosg + Y Sing .

* J1 + %2 + ¥2

The determination of the probability density function of Cosel
with normally distributed X and Y is the main subject matter
of this report. Because of the complex relationship between
Coé@l and X and Y, analytical éxpressions cannot be obtained

for the density function. Among the available numerical



™y

methods, the Monte Carlo technique is the easiest to uce.
The accuracy achievable with this method is poor. Numerical
integration techniques were therefore tried with the IBM

360/50 computer. The density fuﬁctions of R, and R, were

h
determined using a "histogram" method after obtaining the
distribution of 00591.

A comparison of results obtained by the two methods
shows that the numerical integration technique is to be

preferred where high accuracy is desired.



