Student and Professional Onderstandability of Software Design Methodologies
by

PAOLA V. DANIELS
BS in Computer Science, Ransas state University, 1984

A MASTER'S THESIS

subaitted in partial fulfillment of the requirements for the degree

MASTER OP SCIENCE

Department of Computing and Information Sciences
KANSAS STATE UEIVERSITY
Manhattan, Ransas

Approved by:

Table of Contents

Page
List of Figures iv
List of Diagrams ∇
Chapter 1
Introduction 1
Chapter 2
Experiment Design 5
Design Methods 5
Diagran Systems 9
Questionnaires 11
Training 13
Subjects 15
Experiment 17
Test System 20
Chapter 3
Results 23
Organization 23
Mean Times 23
Mean Errors 29
Percent Wrong for
question Types 34
Ratings and
Selection 44
Effects of
Experience 48
Student ∇ s.
Professi onal 53
Chapter 4
Conclusion 57
Discussion 60
Purther Research 62
Appendix A
System Descriptions and Questionnalres A-1
Savings Account System A-2
Advising system A-7
Country Club System A-12
Profect Manager System A-16 A-16
Appendix BDesign Method Descriptions
and Training Questions E-1
HOS Design Method B-2
Jackson Design Method B-5
Warnier-Orr
Design Method B-8
Yourdon-Constantine
Design Method B-11
Appendix C
Example Shell Prograns C-1
Intro C-3
Hos.tr C-10
Hos.ad C-1 4
Appendix D
Diagrane D-1
Othello Diagrans D-2 D-2
HOS Di agrams D-6
Jackson Diagrams D-10
Warnier-Orr Diagrans D-14
Yourdon-Constantine Diagrans. D-18
Appendix E
Spreadsheet Data B-1
Combined Results $\mathrm{B}-2$
Professional Results $\mathrm{B}-4$
Student Results B-6
Student Spreadsheet Data B-8
Professional Spreadsheet Data B-17
References R-1

List of Figures

Figure 1Distribution of Diagramsto Subject:18
Figure 2
Combined ResultsDesign Method Selections45
Figure 3Professional Results
Design Method Selections 47
FigureStudent Results
Design Method Selections 49
Figure 5Mean Number of Errors forProfessionals who 日aveseen the design methods 50
Figure 6
Mean Number of Errors forProfessionals who BAVE NOTseen the design methods........................... 50
Pigure 7Mean Number of Errors forStudents who HAVEseen the design methods 50
Pigure 8Mean Number of Errors forStudentes who Have NOTseen the design methods 50

List of Diagram

Page
Diagran 1
Mean Time - Training Combined Results 24
Diagram 2
Mean Time - Questions Combined Results 24
Diagram 3
Mean Time - Training
Professional Results 26
Diagran
Mean Time - Questions Professional Results 26
Diagram 5
Mean Time - Training Student Results 28
Diagram 6Mean Time - QuestionsStudent Results28
Diagran 7
Mean Number Wrong Combined Results 30
Diagram 8
Mean Number Wrong Professional Results 30
Diagram 9
Mean Number Wrong Student Results 32
Diagram 10
Percent Wrong for Question Types Combined Results 35
Diagram 11Percent Wrong for Question Typesby Design MethodCombined Results37
Diagram 12
Percent Wrong for Question Types by systen Combined Results 37
Diagram 13
Percent Wrong for Queation Types Professional Results 39
Diagram 14
Percent Wrong for Question Types by Design Method Professional Results 40
Diagran 15Percent Wrong for Question Typesby systemProfessional Results40
Diagram 16Percent Wrong for Question TypesStudent Results42
Diagram 17Percent Wrong for Question Typesby Design MethodStudent Results43
Diagram 18
Percent Wrong for Question Typesby System
student Results 43
Diagram 19Mean RateCombined Results45
Diagram 20
Mean Rate
Professional Results 47
Diagram 21Mean RateStudent Results49

There are many software design methodologies and every designer claims their methodology is the best, i.e. easiest to use or the easiest to understand. Yet with all of these methods there seems to be no general agreement as to which is best. There exists a need to investigate these software design methods. One way of determining the best methodology is by the ease of use or understandability of the designs.

There has been research on the understandability of code and specifications but none on the understandability of specific design methods. Tom Love[6] has researched the program structure's effect on comprehension within code. The subjects were asked to reconstruct the code. Woodfield, Dunsmore, and Shen[ll] have done research on the effect of modularization and comments on program understanding. In this study the participants were to answer questions about the accompanying code. Sheppard and Kruesi[9] had subjects modify and debug code basedon the associated specifications. The specifications were represented in different symbologies and spatial arrangements. Sheppard, Kruesi and Curtis[l0] again examined the symbology and spatial arrangement of specifications. Instead of having the participants perform a coding task, they answered questions about the specifications.

Although these are important areas of research, it becomes pointless to investigate the understandability of code if that code is derived from a faulty design. The purpose of this study is to examine the understandability of software design methods. The participants were asked to answer questions about system structure diagrams which were produced using four software design methods.

The initial design of a system is an important phase of the software life cycle. Most software engineers would agree that if the system's design is faulty then the code is also going to be incorrect. If the designer does not understand the design method that they are working with then it is highly unlikely that they will produce a correct system design.

The hypothesis for this work is that of the four design methods tested, one will be understood better than the other three. Understandability is measured by the speed and accuracy with which the subjects respond to the questions. The design method that is tested to be best understood by the professional test group may not be the same as the method that the student participants understood best. The null hypothesis will be that all four design methods have equal understandability for both test groups.

As mentioned above two independent groups, students and professionals, were tested for their understandability of the design methods. The groups were selected as being representative of the personnel who use software design methods in industry. The professionals represent programmers that might use these methods on daily basis. The students represent future users, who do not have a working knowledge of them. In industry users may be managers or end-users, anyone who needs the system and its functions communicated to them.

The reason for testing two groups is that, in indusery, the software design methods have two uses. First, it is used as an aid by the programmer represented by the professional test group, in constructing a system design. By using a well understood design method, the programmers will tend to produce correct system designs, cutting down on expensive modifications. Second, the design method is used to help the programmer communicate their system design and its functions to the user represented by the student test group. If the user does not understand the design method then they might either approve an incorrect system design or continually reject correct designs. If a software design method can be determined as being well understood by both test groups then it can serve the programmer as a design tool as well as being an effective communication tool.

In this research, understandability is measured by speed and accuracy. One important factor in designing software is to produce it as quickly as possible. It could be argued that anyone could understand any design method if given enough time. The design method is not of much use if it takes a long time to understand it. In the experiment, speed is measured by the time that it takes the subject to answer the questions. The most important factor, however, is to produce quality software. This is more important than speed because of the high cost of maintenance and debugging. Accurate software, taking much longer to produce, would be better than quickly produced faulty software. Accuracy is measured in this study by the number of correct answers.

DESIGN MRTHODOLOGIES

The software methodologies that were tested are：Bigher Order Software（HOS），Jackson＇s structured design，Warnier－ Orr，and Yourdon－Constantine．These are all diagram－oriencea methodologies．

HIGEER ORDER SOFTWARE（HOS）
An BOS diagram is a decomposition tree，that is，a tree of boxes where each box can be decomposed or divided into moresub－boxes．There aretwo posifbletypes of decomposition：composition and partition．Composition is an ＇and＇function．All of the sub－boxes are performed．They are executed from right to left．Partition is an or＇ function．This is indicated by conditions associated with the arcs coming out of the decomposed box．The conditions are shown in brackets \｛\}. Only the one box for which the condition holds true is executed．In order for an $⿴ 囗 ⿱ 一 一 \quad$ ． diagram to show iteration，a recursive call to a module at a higher level is performed［3］，［4］．

JACRSON（JACR）
The Jackson method is based on the structure of the inputs and the structure of the outputs．Each is described
in terms of a series of boxes. The structures are then combined to form the software structure of the whole system. There are three possible types of structures within a Jackson diagram: sequence, condition and repetition. A sequence is a box that contains no special symbol and has more than one box below it i.e. a sequence of boxes are executed. This sequence of boxes is performed from left to right.
A condition structure is designated by the ' O ' symbol in the upper right corner of the box. The box is executed basedon some condition. This can also be calleda selection. One of the sub-trees is selected based on some condition.

A repetition structure is designated by the '*' symbol. This indicates iteration, the sub-tree below this box will be performed multiple times. This looping is continued until the end of some iteration condition. A structure may also be referred to as a module [8].

WARNIER-ORR (W-O)
A Warnier-Orr diagram structure is described using brace notation. Each brace has a name that labels the brace; the name appears to the left of the brace. To the right of the brace is a list of entries that comprise the body of the brace. Each entry can be further expanded with
another brace. The brace can be interpreted as a call to the body of the brace. A brace can also be referred to as a module.

A notation below a brace name or entry indicates the number of times that particular brace or entry will be performed. This notation can indicate repetition by ' $(1, n)$? l^{\prime}, which means that it is executed 1 to n times. The '?l' is a footnote reference which gives the condition that ends the repetition. An exclusive or relationship is indicated by two notations. First, there will be a notation under each name or entry, that is to be ORed. This will be in the form of $(0,1) 32^{\prime}$, it will be executed 0 or 1 times based on the condition referenced by '?2'. Second, there will be a ' θ ' symbol between the names or entries that are to be ORed. One of the two or more modules will be executed based on the referenced conditions.

If an exclusive or relationship is not represented then an and relationship is assumed. These names or entries are executed from top to bottom [3].[5].

YOURDON-CONSTANTINE (Y-C)

The Yourdon-Constantine diagram is produced from a data flow diagram. The data flow diagram is transformed into a hierarchy diagram. The reaulting hierarchy diagram represents the flow of the data through the system. Data is
indicated on the arcs, between the boxes, with an arrow showing the direction of flow.

The top box is called "MAIN". There are possibly three sections below the main, these are: afferent, efferent and transform sections. They can be thought of as input, outpur and processing, respectively. Each can be represented as one box or many boxes.

The leftmost section is the afterent. These boxes can usually be identified by the term "GET". There is often one box for each major input. Dsers can be indicated by a box with a slash in the bottom right corner. A users box means that interaction with the user occurs here.

The middle section is the transform. These boxes perform the main action or processing within the system. One type of transform module can be identified by the term "CONTROLLER". Based on some data, it controls or selects which of the sub-modules should be performed.

The rightmost section, if it exists, is the efferenc. These boxes can usually be identified by the term "POT". There is often one box for each major output. Again, user boxes can be indicated here.

The three sections of afferent, transform and efferent can be continued recursively down the tree. That is, a
transform module can have below it an afferent, transform and efferent section. An afferent module below any module can be grouped with the afterent on the far left. Also an efferent module below any module can be grouped with the efferent on the far right.

The Yourdon-Constantine design method described here is the transformational type. There is also a transactional type of diagram that was not used in this study. For more information on the transactional type of Yourdon-Constantine diagram see "Structured Design: Fundamentals of a Discipline of Computer Program and Systems Design"[12].

DIAGRAM SYSTBHS

Each subject will be tested on all four methods; therefore, four different systems were needed. The systems that are being used are as follows: Savings Account Montnly Report System, Student Advisory System, Country Club system, and a Project Manager System.

SAVINGS ACCOUNT (SA)

The Savings Account System is designed to run at the end of each month. It reads infiles for each savings accounts does the appropriate bookkeeping for month-end transactions, such as interest payments and finance charges. Then it produces a Monthly Savings Account Report to be sent to each account holder. This is a report type system [5].

ADVISING (AD)
The advising system is designed to aid in advising a student of which classes they should take. The files it accesses are an Arts \& Sciences requirements file, a core requirements file, a suggested four year progression file and a technical elective options file. There are also files on what the student is taking or has taken, these include an Arts \& Siences courses file, Core courges file and technical electives file. The student can make various additions, deletions, and changes to their own files. They can also print out various reports using their own files or the system files. This is a menu driven system with some file management.

COUNTRY CLUB (CC)
The Country Club System is designed to maintain the members' file. This includes adding transactions to a member's record, adding, changing and deleting a member's record. Other items this system does, but are not detailed on the diagrams here, are produce billing statements, list members, and produce a sales report. This system does processing of interactive transactions. It is a menu driven system with some file management.

The Project Manager System is designed to allow the manager of a project team to enter components (tasks) of a project and then see various management reports. The components contain an id, keyword and data. They can be added, deleted or changed in an editor. The system then runs a trace of the project and if it succeeds, the manager can select several management reports to be printed. This system is a combination of the above three systems. It is menu driven with an interactive editor. It also performs a trace and reports the trace results.

QUESTIOMAATRES

The questionnaires consisted of ten questions. Each question has three to four multiple choice answers. The ten questions are the same for each system, some of the multiple choice answers vary for the particular design method. When writing the questionnaires the main goal was to test the subjects on the diagrams. The subjects should have to refer to the diagrams in order to answer the questions correctly. It was determined that there were four types of questions that could be asked.

EXTERNAL BEEAVIOR (EB)
External behavior questions would ask general questions about what the overall behavior of the system would be like.

To answer this type of question correctly the subject would have to read and understand the system as a whole, from the design diagram. Most of these questions not only were the same for each system, but the answers were the same for all design methods. The overall behavior of a system does not change because of the design method used to show that system.

LOCATION OF ACTION/DECISION (LOC)

There are questions on the location of where some action is performed or where a decision is made. These questions will test the subject's ability to trace the design method. The subject will have to locate one section or module within the design in order to answer this type of question correctly.

CONTENTS OF FILES/OUTPUT (CON)
Questions on the contents of files or output, will also test the subject's ability to follow the design method. This question type also allows insight as to which design method clearly gives the subject an understanding of the files that the system uses or of the output that the system produces.

MODIFICATIONS (MOD)
For the subject to have a complete understanding of a
design method they must be able to change or add to the diagram. This is the last type of question to be asked which is where or how modification should be made. Modifications are somewhat a judgment decision. For a particular modification to a system there is never one absolutely correct solution. The subject's ability to make this type of judgment decision was not what was to be tested. Because of these reasons, the answers to the modification type questions were constructed in such a way that only one of the answers could be correct. The incorrect answers would cause either the system or the modification to be incorrect.

TRAIAIIG

Before each subject was tested over a particular method they were given a brief training session. The training session consists of a design method description, an example diagram and training questions. The system which was used for all of the example diagrams, is the game Othello. It was selected in the hope that the complexity of the training would not affect the results of the actual test.

OTEELLO (OT)
The system was designed to atomate the Gabriel Industries, Inc. version of the game Othello. The object of Othello is to have more pieces on the board than your
opponent. Players take turns placing their pieces on an 8 8 game board. When a player puts his piece down in such a way that one or more of his opponents pieces are touched on both ends by the first player's pieces, the opponents pieces are then captured. Capturing can be done in one or more of the following directions, up, down, left, right or at any four diagonals. The captured pieces are flipped to the opposite color. Only the plays which capture opposing pieces are legal moves. Play is continued until neither player can move [1].

TRAINING QOESTIONS

Four training questions are given in each design metnod training session. The questions were written to accomplish two goals. First, the questions reiterate the main characteristics of the particular design method, explained in the design method description. Second, the questions were designed to familiarize the subject with the form and types of questions that are on the actual questionnaires. Only three of the four types of questions are presented. The question types included are an external behavior type question, two location of an action or decision type questions and a modification type question. There is not a contents of files or output type question because the Othello system does not contain files or report output. This is why there are two location type questions given,
this type of question is the closest in form to the missing contents type question. The subjects are not asked to answer the training questions, instead they are given the correct answer with an explanation. The subjects are given the option of repeating the training questions as many times as they wish. The whole training session, however, is timed.

SUBJECTS

The subjects were students and professionals. The students were undergraduate and graduate level computer science students, who may or may not have seen any of the design methodologies before the experiment. Even though the students may have seen the design methods before, they have not worked with them extensively.

Nineteen of the student subjects were from the same undergraduate computer science course, CMPSC 420 Operating Systems. The packets were given to these subjects as an assignment to be completed in a week. When completing the test, they were given points for the course. The subjects knew that the instructor would not be given the results, he was only told if they completed the test or not. They were told to try to answer the questions as best as they could but not to panic if they did not know the design method because that was why they were being tested.

Three of the student subjects were from a different
undergraduate computer science course, CMPSC 300 Algorithmic Processes. The instructor for this course made an announcement to the class asking for volunteers. These subjects were not rewarded for completing the test, they did it on a voluntary basis only. They were not given any time restraints, only asked to complete it as soon as possible. These three subjects were also told that the reason they were being tested was because they did not know the design methods but to try to answer the questions as best as they could.

There were still two more subjects needed to complete the twenty-four student subjects required. These were graduate students who were approached individually and asked to helpout. These subjects were not rewarded for participating in the test. They were not given any time limit only asked to do the test in their spare time. These two participants were only told how to start the system, the test does have an introduction explaining the importance of speed and accuracy.

The professionals were programers who work in the computer science field. The professionals also may or may not have seen all of the design methods before, but they have probably seen or used at least one of the methods through work experience. All of the professional subjects were currently working on graduate degrees. These subjects
were approached individually and asked to participate as volunteers. The professionals were not rewarded in any way for participating in this work. They were told nothing about the test beforehand.

EXPPERIMENTT

Twenty-four subjects from each test group were needed. This was to ensure that the order, in which the subjects saw the designs, was not a factor. Combining the systems ana design methods created sixteen different diagrams. Each subject saw all four systems and all four design metnods. Every possible combination of the four methodologies was done, as shown in figure 1.

The systems were always presented in the same order so that the order of systems was not a factor. The order in which they were always presented was Savings Account, Advising, Country Club and Project Manager. This particular order was selected because of their probable familiarity to the subjects. Most anyone would be familiar with a Savings Account. Since the subjects were currently students, they would be somewhat familiar with the Advising system. The Country Club system was a typical file management system with which computer science students should be at least vaguely familiar. Probably few of the subjects were familiar with the Project Manager system.

Subject Number	Savings Account				Advisin?				Country Club				Proiect Manager			
	HOS	Jack	W-O	Y-C	HOS	Jack	W-O	Y-C	Hos	S.Jack	W-0]	Y-C	HOS	Ps.anck	W-O	Y-C
1	1					2					3					4
2	1					2						3			4	
3	1						2			3						4
4	1						2					3		4		
6	1							2		3					1	
6	1							2			3			4		
7		1			2						3					4
8		1			2							3			4	
9		1					2		3							4
10		1					2					3	4			
11		1						2	3						1	
12		1						2			3		4			
13			1		2					3						4
14			1		2							3		4		
15			1			2			3							4
18			1			2						3	4			
17			1					2	3					1		
18			1					2		3			4			
19				1	2					3					4	
20				1	2						3			4		
21				1		2			3						4	
22				1		2					3		4			
22				1			2		3					4		
24				1			2			3			4			

FIGURE 1

Each diagram was tested by six different subjects. Each method appeared in the first position, second position, third position and fourth position six times. The training for each methodology was done immediately before that method was tested. Since all four of the diagrams that the subject had, were over different systems and different design methods there was no possibility of training from one diagram to the next. The subject could not learn anything from previous diagrams that would help them on the current diagram.

Understandability, as mentioned earlier, was measured by speed and accuracy. There were two mean times associated with each diagram, these were training and questionnaire time. The training time is the sum of the time spent on the Othello system description, the design method description, the training questions and the system description. The training time is a sum of these individual times. The time that the shell program takes to display the descriptions to the screen is not included. The timing begins when the description is completely displayed and timing stops when the subject hits return to continue.

The questionnaire time is the sum of the ten response times for each questionnaire. Timing begins after a question is scrolled onto the screen and the timing stops when the subject enters a letter representing one of the
multiple choice answers. The subject may type a letter, backspace and change that letter as many times as they wish, the answer is not entered until they hit return. The next question is then scrolled onto the screen and timing begins again. This is continued for all ten questions on the questionnaire.

Accuracy was measured by the mean number wrong. The number missed on each questionnaire were totaled. These totals were then used to calculate means for each of the sixteen diagrams, each of the four systems and each of the four design methods. Each of the sixteen diagram means are the average of six totals. The four mean numbers for the systems are an average of twenty-four totals, as are the four mean numbers for the design methods.

TEST STSTEH

The diagrams, questionnaires and training all fit together to make up the test system. The test system was implemented as a shell program. This was done for several reasons. The main reason being that it would ensure that all subjects were treated the same way. Also the shell program could easily time the response and collect the data. The data from the shell programs could be manipulated and analyzed easily. Finally, with the test system automated, the subjects could take it at any time.

The shell program asks for the user＇s subject number（l－ 24）and from this number it determines the proper order that this particular subject should receive the design methods．

Each subject was given eight packets labeled＂TRAINING ONE＂，＂DIAGRAM ONE＂，＂TRAINING TWO＂，＂DIAGRAM TWO＂， ＂TRAINING THREE＂，＂DIAGRAM THREE＂，＂TRAINING FOUR＂，and ＂DIAGRAM FOOR＂．The training packets contained a brief description of the Othello system，a brief description of that particular design method and the Othello system drawn with that design method．The diagram packets contained a brief description of the particular system and the diagram that they were tested over．

When the shell program begins，a brief explanation of the experiment is given．All subjects were then asked background questions．Items that were asked，are＂List the computer classes that you are taking．＂，＂Bave you seen an HOS diagram before？＂，＂Have you seen a Jackion diagram before？＂，＂⿴⿱冂一⿱一一厶儿，you seen a Warnier－Orr diagram before？＂， ＂Have you seen a Yourdon－Constantine diagram before？＂

After the introduction，the subject was asked to examine the packet labeled＂TRAINING ONE＂．The shel program then displays the system and diagram descriptions，these are both included in the training packet but they were displayed to ensure that the subjects would read them．The descriptions are followed by sample questions with accompanying
explanations of the correct answer. The subjects were given an option to go through the sample questions as many times as they like and the entire training session was timed.

Following the training, the subjects were asked to examine the packet labeled "DIAGRAM ONE". The shell program then displays the system description on the screen followed by the actual questionnaire. Each question on the questionnaire was timed and graded. It is assumed that speed and accuracy imply understandability. At the end of the questionnaire they were asked to rank the ease of use of this method on acale of one to five, ranging from excellent to terrible, respectively.

When they finished with the first design method, the shell program asks them to examine the packet labeled "TRAINING TwO". The descriptions, sample questions, examine packet labeled "DIAGRAM TWO", and questionnaire are repeated the same as for design method one. They are also repeated for methods three and four. At the completion of all four design methods the subjects were asked which design metnod they preferred.

Organization

The results include mean times, mean errors, percent wrong, design method ratings and design method selection. The combined results are the combined numbers for both test groups, all forty-eight participants. The two test groups results will also be presented separately, twenty-four professionals and twenty-four students.

Hean Times

The mean times, for the training and for the questionnaire, are indications of the understanding of the diagram. Trends for both test groups can be seen in the combined results of the mean training and questionnaire times. Diagrams l and 2 show the mean training and questionnaire times for the combined results. The order in which the all-methods times decrease is Savings Account, Advising, Country Club and Project Manager. This is the same order in which the systems were presented. There are three possible reason for this trend. First, they may have learned from previous diagrams, but since each diagram seen by a subject was different in both system and design method, this was not possible. Second, the subjects may have gotten tired as the test progressed and began entering answers

Mean Time - Questions Combined Results

DIAGRAM 2
randomly. Third, the systems were presented in order from the familiar to not familiar. The subjects may have interjected their own assumptions about how the more familiar systems should run. The reason this would give them longer times is what the subject thought was correct would not match the question or the multiple choice answers. These assumptions would block the subjects ability to understand the diagram as it was presented. We will show that this third possible reason is probably correct when we examine the trends in the mean number of errors in the next section.

The design method's training times decrease in the order of HOS, Warnier-Orr, Yourdon-Constantine and Jackson as seen in diagram for all-systems. The descending order for questionnaire times is Warnier-Orr, HOS, YourdonConstantine and Jackson.

The mean times for the professionals show slight differences from the combined results. The trend by system for the professional's training and questionnalre times is similar to that of the combined results, as can be seen in diagrams 3 and 4. The system times decrease in the order as which they were presented. Again, the possible reasons for this trend is that either the professionals tired while taking the test or they interjected their own assumptions, as discussed above. By design methods the times for both

DIAGRAM 4
training and questionnaire decrease in the same order which is HOS, Warnier-Orr, Yourdon-Constantine and Jackson. Most of the professional times are lower than the combined by less than minute. A few of the professional times were higher than the combined. These are Yourdon-Constantine Savings Account, Jackson Advising, and Warnier-Orr Country Club in the training times. For the questionnaire times they are Yourdon-Constantine Advising, Jackson Advising, and Warnier-Orr Country Club.

The student results of mean times have differences from both the combined and professional results. The student results for training and questionnaire times are displayed in diagrams 5 and 6 , respectively. The mean times by system do not decrease in the same order as that the systems were presented. This is a distinct difference from the combined and professional results. Looking back at the possible reasons for the professionals' times we could see possible reasons for the students' trends. First, the student subjects may not have tired as easily but there is nothing to support this and it is highly unlikely. Second, the programmers were making assumptions about the more familiar systems, the students may not have assumed as much about the systems since they were not as familiar with the design methods. The order in which the training times decrease by design method is HOS, Warnier-Orr, Yourdon-

DIAGRAM 6

Constantine, and Jackson. The decreasing order of the questionnaire times for the student is different than that for the professional; it is Warnier-Orr, HOS, YourdonConstantine and Jackson.

Mean Errors

Another indication of the understanding of the diagram is the mean number of errors per questionnaire. The combined results reflect the overall mean number of errors for all forty-eight test participants. The mean number of errors for the combined results are shown in diagram 7. By system, the mean number wrong decrease sharply in the same order that the systems were presented, Savings Account, Advising, Country Club, and Project Manager. This shows that the subjects did not get tired but instead made assumptions. The subjects jumped to conclusions when they thought they knew the system, making the questions more difficult to answer. The mean number of errors by design method decreases in the order of Yourdon-Constantine, Warnier-Orr, Jackson and HOS.

Professional results for the mean number of errors show similar trends as the combined results with slight variations. The professional results in diagram 8 show that the mean number wrong by system, decrease again in the same order that the systems were presented. The decreasing order by design method is Yourdon-Constantine, Warnier-Orr,

DIAGRAM 8

Jackson and HOS. An interesting point here is that HOS has the least wrong and it had the longest questionnaire time. Yourdon-Constantine was consistently high in all systems especially in the Savings Account system where it tied for the highest mean number wrong over all of the diagrams. The Warnier-Orr design method varied the most. In the Savings Account system, it tied with Yourdon-Constantine for the highest mean number wrong over all of the diagrams. The Project Manager Warnier-Orr diagram had the lowest number wrong over all of the diagrams. The systems in the Jackson method were between 1.5 and 2.0 mean number of errors with the exception of the Savings Account system which was above 3.0 errors. This was a very interesting result because the Savings Account system was a report type system. Jackson was designed specifically for report type systems. For HOS the mean number wrong was fairly low for all systems with the exception of the Advising system.

The mean number of errors on the diagram systems, for students, are similar to the combined and professional results but the trends for the mean number of errors on the design methods show differences. As seen in diagram 9, the mean number wrong by system decreases in the same order as presented, again. The systems do not decrease sharply however, Savings Account and Advising are even tied at 3.083333 mean number wrong. This supports the possibility

that the students made some assumptions but since they were not as familiar with any of the systemsas the professionals, their assumptions did not carry as much of an impact. The systems were basically equally familiar to the student subjects. The design methods are not in the same order of number of errors for the students as they were for the professionals. Yourdon-Constantine, Jackson and BOS are in the same order with Warnier-Orr moving up to the least mean number of errors. The design method with the least wrong, Warnier-Orr is also the design method with the longest questionnaire time. Breaking the design methods out by system we can see the following results. The YourdonConstantine method again was consistently high in all of the systems. The Yourdon-Constantine for the Advising System tied for the highest mean number wrong. Jackson tied for both the highest and the lowest mean number wrong, for the Savings Account and Country $C l u b$ systems, respectively. Jackson again did the worst on a report type system. The highest system for the HOS design method was Savings Account. The lowest number wrong was tied: the BOS Project Manager diagram and the Jackson Country Club. The WarnierOrr method was second lowest in all systems which made it the most consistent and the lowest design method over all systems.

Percent Wrong for Question TYpes

The percent wrong for question types, is an area of interest that can give insight as to where the lack of understandability lies within a design method. The four question types on the questionnaires (external behavior, contents of files or output, location of an action or decision, and modification) are measured for the percent wrong of each type of question. The percentages are represented on diagrams 10 through 18. Each result group, combined, professional and student, has the percentages represented by three different diagrams. On the first diagram, "Percent Wrong for Question Types" there is a three way break out, these are by system, design method and question type. The second diagram, "Percent Wrong for Question Types by Design Method" has a two way break out, by design method and question type. The third diagram, "Percent Wrong for Question Types by System" also has a two way break out, by system and question type.

Combined results show what type of questions are the most difficult to answer correctly. The three diagrams for the combined results are diagrams 10 through 12. The All Methods" for "All Systems" totals can show which type of questions were most difficult to answer. The subjects had the most difficulty on external behavior type questions. They did not understand the overall behavior of any of the diagrams. The second most difficult type of question for

the subjects was modification. Third and fourth in difficulty were the contents of files or output and location of action or decision type questions, respectively. This shows that the subjects could trace most of the diagrams but did not understand them as a whole.

On diagram 12, external behavior and contents of files or output decrease in the order that the systems were presented. Modifications decrease in this order with the exception of Savings Account. Location of action or decision decreases in the order of project Manager, Advising, Savings Account and Country Club. This indicates that the areas which the subjects made assumptions on was the external behavior and contents of files or output.

On diagram ll, the problem areas within each design method can be seen. All of the design methods did worst on external behavior type questions and best on location of action or decision type questions. HOS had the lowest percentages for external behavior and modification type questions. Warnier-Orr was best on location of action or decision type questions. The lowest percentage for contents of files or output type questions was the Jackson method. Yourdon-Constantine had fifty percent wrong on external behavior type questions. This indicates that when it came to the overall behavior of a system done using YourdonConstantine the subjects guessed at how it worked.

DIAGRAM 11

Percent Wrong for Question Types by System Combined Results.

DIAGRAM 12

The professional results reflect the areas in which a design method is not understood and which design method is understood best for each particular question type. The professional results are shown on diagrams 13 through 15. The professional subjects again had the most difficulty on external behavior and modification type questions.

By system, diagram l5, the external behavior and contents of files or output decrease in the order of Savings Account, Advising, Country $\mathrm{Cl} u \mathrm{~b}$ and Project Manager. The modification type questions were extremely high for the Advising system as was the external behavior type questions for the Savings Account system. None of the professionals missed any location of action or decision type questions on the Country Club system diagrams.

Diagram l4, shows the trends for the design metnuas. HOS did the best on external behavior and modification type questions. Warnier-Orr had the lowest percent wrong for location of action or decision type questions and the highest for contents of files or output. The Jackson method did best on contents of files or output type questions. Yourdon-Constantine did the worst on external behavior, modification and location of action or decision.

Looking at more detail on diagram 13 we can see what caused Jackson to do worst on the report type system.

Professional Results		
on of Rentents of Necision	Codification Files/Output	

DIAGRAM 14

DIAGRAM 15

Savings Account within Jackson is high for external behavior as are the other systems within Jackson. Contents of files or output and modification type questions is where there is a difference between the Savings Account system and the other systems in Jackson. Particularly modification type questions, Savings Account missed fifty percent of these questions while the other three systems in Jackson were at 16.6667 percent wrong for modification type questions.

There are many similarities between the professional and student results but there are differences in which design method is best understood within the particular question types. Diagrams 16 through 18 show the student results for percent wrong for question types. The decreasing order for the question types was external behavior, modification, contents of files or output and location of action or decision.

The students only had one area in which they made assumptions, this was external behavior as seen on diagram 18. Modification and contents of file or output type questions decrease in the order that the systems were presented with the exception of savings account.

The student results by design method are different from the professional results as seen on diagram 17. The lowest percentages for external behavior and location of action or

DIAGRAM 17

Percent Wrong for Question Types by System Student Results

DIAGRAM 18
decision type questions is on the $⿴ 囗 十 一$ design method． Warnier－Orr did the best on contents of files or output with the lowest percentage wrong．Surprisingly，Yourdon－ Constantine did the best on modification type questions but it had the highest percentages on the other three question types．

Ratings and Selection
The rating and selection of the design methods by the subject indicates their own opinion of ease of use，but not their actual understandability．On the combined level the subjects ratings closely reflected how well they did on the diagrams．The ratings for the combined results are shown on diagram 19．The rate scale that the subjects were to select from was as follows： 1 －easy， 2 －fair， 3 －moderate， 4 － fairly difficult，and 5 －impossible．The subjects did not rate the systems in the same order as they understood them． The decreasing order for the mean ratings is project Manager，Advising，Savings Account and Country Club．All four of the system mean ratings were between 2.48 and 2.89 ． The decreasing order by design method was Yourdon－ Constantine，Warnier－Orr，HOS and Jackson．With the exception of $H O S$ this is the order in which they pertormed on the methods．The diagram＇s ratings varied between 2 and 3．667．The selection of the sixteen diagrams by the forty－ eight combined subject is shown in figure 2．A majority of

Mean Rate
Combined Results

DIAGRAM 19

Times Selected	SA	AD	CC	PM	ALL SYSTEMS
HOS	4	4	4	6	18
JACKSON	3	5	7	5	20
W-O	0	1	2	3	6
Y-C	0	2	0	0	2
ALL METHODS	7	12	13	14	46

FIGURE 2
the subjects selected $B O S$ and Jackson as the design method that they preferred．The total on the figure is forty－six because two subjects replied that they did not care for any of the design methods presented．

The professionals rated the diagrams around the moderate（3）rating and were not able to accurately reflect how well they actually understood the diagrams．The mean rates for the professional subjects are shown in diagram 20. The systems were rated in an order similar to how the subjects did on them，with the exception of the project Manager System．The decreasing order by system was project Manager，Savings Account，Advising and Country Club．The system ratings went from 2.625 to 3.125 ．The design method＇s ratings did not match the profesional＇s understandability of the methods．The decreasing order in which the subject rated the design methods was Warnier－Orr， Yourdon－Constantine，HOS and Jackson．The design method ratings went from 2.458333 to 3.458333 ．Figure 3 shows the number of subjects who selected each diagram．Most of the professionals selected either $⿴ 囗 十 一$ or Jackson as the preferred design method．Two of the professionals answered that they would not select any of the four design methods presented．

The students rated the diagrams between fair（2）and moderate（3），they also were not able to reflect their

Mean Rate
Professional Results

Times Selected	SA	AD	CC	PM	ALL SYSTEMS
HOS	3	1	3	3	10
JACKSON	2	2	5	2	11
W-O	0	0	0	0	0
Y-C	0	1	0	0	1
ALL METHODS	5	4	8	5	22

FIGURE 3
performance through the ratings. The stuaents results of the mean ratings are given in diagram 2l. The ratings for the systems did not reflect the students understandability of the systems. The order in which the rates decreased was Project Manager, Advising, Savings Account and Country Club. The system ratings went from 2.333 to 2.666. The design method's ratings also did not reflect the students understandability. The decreasing order in which they rated the design methods was Yourdon-Constantine, Warnier-Orr, HOS and Jackson. The design method ratings went from 2.041666 to 3.041666 . The number of student subjects who selected each diagram is given in figure 4. The students were spread fairly even across $H O S$, Jackson and warnier-Orr. The systems were not selected evenly. Al though the students did not show much of a difference on the understanability of the systems, they did show quite a difference on how easy they perceived the systems to be.

Effects of Experience
Dividing the test groups into those who had seen the design methods before and those who had not seen the design methods before shows the effects of the subject's experience on the performance. The mean errors for these four groups are given in figures 5 through 8. The professionals who had seen the design methods, figure 5 , did better than the professionals who had not seen the design metnods, figure 6 ,

Times Selected	SA	AD	CC	PM	ALL SYSTEMS
HOS	1	3	1	3	8
JACKSON	1	3	2	3	9
W-O	0	1	2	3	6
Y-C	0	1	0	0	1
ALL METHODS	2	8	5	9	24

FIGURE 4

Mean Number of Errors for
 Professionals who HAVE seen the design methods

Mean Errors	Eavines Acrue	Arvisiar	Conatry cmi	Prolent	All grsilis
MP9	2,186966868697	35	9,78		1.765714295714
dackeen	C		16		1593833888388
Veralep-Orr		2*s3838ะ	2.4	9.	
Feurden-Censtantins	4.4	8.8	28	2.eserseresen	3.4
ALL METHODS	2.868686686067	2.714265714266	769390769231		2.2321423571

FIGURE 5

Mean Number of Errors for
Professionals who HADE NOT seen the design methods

Mean Errore	Savines Acoeum	Advidng	Coumtry Cup	Proleet Manecer	ALL greteme
H0\%	...NA...	18.			24
dackaon	4.75	1.5	?		2.86escescest 7
Wernler-Orr	4	3,2838383838388	8		3.222922222328
Yeurden-Genstantine	2.	2	5		2.7777777777
ALL METHODS	4.111111111111	2.2	2.545454545455	1.6	2.78

FIGURE 6

Mean Number of Errors for
 Students who HAVE seen the design methods

Mean Errore	Savinos Acepum	Advialn	Gountry Chb	Prolegt Manaser	ALL SYMTEMS
H0\%		- M -	0	- M	18
deakren	,	?	- M - -		2.6e96esecesk
Varnler-Orr			0.sxassassassess	$2 \cdot$	
Yeurlen-Constanting	- MA -	2.5	8.8		
ALL METHODS	3.26	2.5	1.8333838383338	2.8	.

FIGURE 7

Mean Number of Errors for Students who HADE NOT seen the design methods

Mean Errors	Savinga Acoeum	Advielna	Country Chas	Proleet Manacer	ALL SYSTEM
	3.8	2:83838383883		0.833833833838	2.363636363586
deckeen	3.	36	2.9xs3ssass3s		2.423671423571
Wharnler-Orr	28	9.838383238383		0.75	2.215714285714
Yeurdon-Constentine	$2{ }^{2}$	4.26		28	
ALL METHODS	3.95:	3.277777777778	2.27777777778	1.85	2.526315789474

FIGURE 8
on seven of the diagrams. These diagrams were Jackson Savings Account and Country Club, Warnier-Orr Advising and Project Manager, Yourdon-Constantine Country Club and Project Manager, and HOS Country Club. Five of the diagrams had a lower mean number of errors if the professionals had not seen the design method before, Jackson Advising and Project Manager, Yourdon-Constantine Savings Account and Advising, and Warnier-Orr Country Club. Three diagrams, HOS Advising and Project Manager and Warnier-Orr Savings Account, had the same mean number of errors for both the professionals who had seen the design methods and those who had not seen them previously. All four of the system for all-methods had a lower mean number wrong if the professionals had seen the design methods before the actual test. Three of the design methods for all-systems, HOS, Jackson, and Warnier-Orr, also had lower means for the professionals who had seen them before. Yourdon-Constantine however, had a lower mean number of errors if the subjects had not seen this design method prior to the test.

The student subjects who had seen the design methods, figure 7, had lower means than the students who had not seen the design methods, figure 8 , on the six following diagrams: Jackson Advising, Yourdon-Constantine Advising, HOS Savings Account and Country Club , and Warnier-Orr Advising and Country club. There were five diagrams for which the opposite was true, the subjects who had not seen the design
method did better. These diagrams were Warnier-Orr Savings Account and Project Manager, Yourdon-Constantine Country Club and Project Manager, and Jackson Savings Account. Only one diagram, Jackson Project Manager, had the same mean number of errors for both subgroups of student subjects. By system for all-methods Savings Account and Project Manager had lower mean number of errors if the students had not seen the design methods previously. While by design methods, for all-systems the subjects did better on the Jackson design method if they had not seen this design method prior to the test. Yourdon-Constantine for all-systems had an equal number of errors for both students who had and had not seen this method before taking the test.

The difference between the total mean number wrong, all-methods and all-systems, for the two subdivisions of the students is a little more than two tenths of a point. While the difference in the totals for the two professional groups is almost half an point. Also there were four diagrams for which none of the students had seen the particular design method these were Jackson Country Club, Yourdon-Constantine Savings Account and HOS Advising and Project Manager. The professionals had one diagram, HOS Savings Account, on which all of them had seen the design method previous to testing.

Student vs. Professional

A comparison of students and professionals indicates some differences but many similarities in their performance. The trend for the mean times, training and questionnaire, were similar for both test groups. The professional's times were approximately forty-five seconds to over a minute faster than the student's times. The questionnaire time's ranges for the design methods were fifty-four seconds for the professionals and a minute twenty-three seconds for the students. The professional questionnaire times ranged from 7:53 for Jackson to 8:47 for HOS. The student questionnaire times ranged from 8:38 for Jackson to 10:01 for Warnier-Orr. The students had faster questionnaire times than the professionals on some of the diagrams. The students had faster questionnaire times on the following diagrams: Yourdon-Constantine Savings Account and Advising, Jackson Advising and Warnier-Orr Country Club. This result is not surprising however, because Moher and Schneider [7] proved that on short reading tasks such as this, there is not much of a performance difference between professional and student. The questionnaire times did not weigh heavily on the understandability of the design methods in this stuay because the times were so close together.

The professionals had a lower mean number of errors than the students on the HOS and Jackson diagrams while the
students did better than the professionals on the WarnierOrr and Yourdon-Constantine diagrams. By examining diagrams 8 and 9, we can see differences in the trends between the two test groups. Warnier-Orr varied the most for the professionals by having both the high and the low, while it was the most consistent for the students. Jackson was just the opposite, it was the most consistent for the professionals but had both the high and the low for the students. The students had a lower mean number wrong than the professionals on some of the diagrams. The diagrams on which the students performed better than the professionals are the following: Yourdon-Constantine Savings Account and Project Manager, Warnier-Orr Savings Account and Country Club, HOS Project Manager and Advising, and Jackson Country Club. These are not all of the same diagrams for which the students had faster times than the professionals. The mean number wrong by design method shows that the students looked at the methods equally while the professionals did not. The mean number of errors for the professionals had a difference, between the high and low, of more than one point. The student's range, between the high and low mean number wrong, was less than one point. The mean number wrong by system also shows that the professionals made more assumptions than the students. The professional's mean ranged from 1.5416667 for Project Manager to 3.3333333 for Savings Account, more than one and three-quarters points
difference. The range of the student's mean was from 1.708333 for Project Manager to 3.083333 for both Savings Account and Advising, less than one and a half points difference.

The total percent wrong for question types were similar for both test groups. A comparison of diagrams 13 and 16 shows where the differences in the two groups lie. The highest percent wrong for the students was in HOS and Jackson while the highs for the professionals were in Yourdon-Constantine. Third high was Warnier-orr and Yourdon-Constantine for the students while for the professional it was in Warnier-Orr. The percent wrong was spread more evenly across all four design methods for the students while the professionals have a steady rise in the order of HOS, Jackson, Warnier-Orr and Yourdon-Constantine.

The students rated the design methods nearly a half of a point easier than what the professionals rated them. The professional's overall mean rate was 2.958333 while the student's overall mean rate was 2.53125. The range between the ratings of the design method was exactly one point for both professionals and students. The range for the students went from 2.04166667 for Jackson to 3.04166667 for YourdonConstantine. The range for the professionals went from 2.4583333 for Jackson to 3.4583333 for Yourdon-Constantine. The student's selection of the design methods was divided
fairly even among HOS, Jackson and Warnier-Orr, while the professionals selected $H O S$ and Jackson and none selected Warnier-Orr.

Result l:
The subjects interjected their own assumptions into the diagrams for which they thought they knew the system or the design method instead of actually reading the diagram. This is indicated by the trend of the systems on the questionnaire times and mean number wrong. They both decrease in the order that the systems were presented. The professional results decreased sharply. This indicates that the professionals made more assumptions than the students.

Result 2:

The subjects were able to trace the diagrams but had difficulty understanding the diagrams as a whole system. They did well on the contents of files or output and location of action or decision type questions, which required tracing of the diagram. The subjects performed badly on the external behavior and modification type questions, which required overall understandability.

Result 3:

The subjects made more assumptions about external behavior. The percent wrong for external behavior and contents of files or output type questions decreased in the
same order that the systems were presented. This shows that these two areas were the types of questions in which the subjects made assumptions.

Result 4:

Through the ratings, none of the subjects were able to accurately reflect their performance on the diagrams. Neither test group's ratings matched their performance by system or by design method.

Result 5:

The students rated the diagrams as easier than the professionals rated them. This also supports result l; in that the professionals made more assumptions making the diagrams more difficult than they actually were.

Results 6:

The design method for each test group, HOS for professionals and Warnier-Orr for students, that had the least mean number wrong also had the longest questionnaire time.

Result 7:

Yourdon-Constantine did the worst overall. For both test groups, it had the highest mean number wrong as well as the highest percent wrong for external behavior type
questions. The students did best on modification type questions using Yourdon-Constantine and this method had the second fastest times. Though these times are fair, the accuracy was very bad and accuracy is a more important factor than speed.

Result 8:

Warnier-Orr had both the highest and the lowest mean number of errors for the professionals while it had the lowest overall mean number of errors for the students. It also consistently, had a low percent wrong on location of action or decision question type. The times for Warnier-Orr were always either the longest or second longest.

Result 9:

Jackson did the worst on the report type system which was what this method was designed to be used for. It did particularly bad on the modification type questions for the report type system. It had the second lowest mean number of errors for the students. Overall, however, Jackson did well on contents of files or output type questions and it had the lowest mean number of errors for the professionals. In all of the times Jackson was the fastest.

Result 10:
HOS did the best overall. It had the lowest mean
number wrong for the professionals and the second lowest mean number wrong for the students. This makes HOS effective as both a design and a communication tool. HOS had the lowest percent wrong for external behavior and modification type questions. These two types of questions were the most difficult for the subjects to understand yet HOS did best in these areas. The subjects understood the systems in general terms best when it was designed using HOS but they had difficulty tracing the Hos diagrams. The possible reason for this is that HOS diagrams tend to get large quickly and the subjects may have been overwhelmed by its size. HOS always had either the longest or second longest times but as mentioned earlier accuracy is much more important than speed. Also the times for all of the design methods were so close together that they did not have much of an impact on this study.

Discussion

The conclusion of which design method is the best relies heavily on a speed/accuracy tradeoff. As mentioned earlier the accuracy of a software design should be more important than speed in doing the design. The question is how much of a tradeoff is there. In this study Jackson had the fastest times and HOS had the longest times but there was less than a minute and a half difference between the two. HOS had the lowest mean number wrong and Jackson had
the second lowest mean number wrong. So which design method is best? Jackson did bad on report type systems which is what Jackson is supposed to be used for. HOS however, did the best in the two areas where the subjects had the most difficulty. This is a very important point, because the two areas were external behavior and modification. These two areas were themost important when it came to understandability, being able to trace a diagram is not of much use when the overall behavior is not understood.

The result, that the subjects made assumptions on diagrams for which they thought they knew the system or design method, shows a significant conclusion. No matter what the design method, stick to the rules for that particular design method. Also read the diagram with no biases or assumptions that could deter the understandability of that diagram.

Aside from the major points presented here. There are many other very interesting points that could be concluded. But it is the feeling of this author that in order to positively make conclusions on these other aspects further research is warranted. It is the hope that this research may show insights to areas of design understandability that need further investigation.

Further Research

As mentioned above this research indicates that further research is warranted. Some suggestions of possible research is given here. A larger test should be given. This should include larger diagrams and longer tasks as well as larger test groups. The larger diagrams may show that the difference in the design methods may be related to diagram size. Having a longer task may give a clearer picture of the speed that each design method requires. It could give wider variations between the times for each method. Finally, a larger test group will remove any extremes in the scores.

Another suggestion for modifying this test is to add to the possible answers. It could either be kept multiple choice and add a "None of the above" option, or allow the subjects to enter their own answer. The second suggestion however, would make the grading more subjective.

A final suggestion is to trace the thought process more carefully. This could be done by having the subjects vocalize what they were thinking. This could be either tape recorded or video taped. The test system could also be a more controlled test instead of allowing the subjects to take the test on their own free time.

Appendix A

System Descriptions and Questionnaires

The Savings Account System is designed to run at the end of each month. It reads in files for each savings account; does the appropriate bookkeeping for month end transactions, such as interest payments and finance charges. Then it produces a Monthly Savings Account Report to be sent to each account holder.

1. Which file contains the date and amount of a deposit?
A. Account Balance File
\Rightarrow B. Transaction File
C. Daily File
2. Which is the correct form for the headings?
$\Rightarrow=\Rightarrow$ A. ACCOUNT \ddagger -
ACTIVITY month-name
BALANCE FORWARD OF \$--.-
DATE ACTION DR CR BALANCE
B. ACCOUNT \ddagger.... ACTIVITY month-name BALANCE FORWARD OF \$--.

DATE
ACTION
DR
CR
balance
C. DATE ACTION DR CR BALANCE

BALANCE FORWARD OF \$--:-
ACTIVITY month-name
ACCOUNT - -
3. Which of the following does the Monthly Savings Account Report contain?
A. Finance Charge and Interest
$==>$ B. Finance Charge or Interest
C. Neither finance Charge nor Interest
D. Always Interest only
4. When is the balance reported?
A. After each transaction
B. At the end of the report
C. Before all transactions
$\Rightarrow=$ D. All of the above
5. The bank does not want to have a finance charge for dependent's accounts, no matter how low the average balance is. What should be changed?

HOS
A. All average balance calculations should be deleted
$=\Rightarrow$ B. The tests out of 'CALCULATE ADJUSTMENTS' need to be changed
C. Remove the 'PROCESS FINANCE CHARGE' module

JACKSON

A. 'CONSUME AVE. BALANCE, PRODUCE ADJOSTMENT' needs to be changed to 'PRODUCE ADJOSTMENT'
$==>$ B. The tests out of 'CONSUME AVE. BALANCE, PRODOCE ADJUSTMENT need to be changed
C. Remove the 'CONSUME FINANCE CHARGE, PRODUCE FINANCE LINE ${ }^{\prime}$ module

WO
A. All average balance calculations should be deleted
$==>$ B. The tests ' 34 ' and ' $? 5$ ' need to be changed
C. Remove the 'FINANCE' module

YC
A. All average balance calculations should be deleted
==> B. The tests within 'ADJOSTMENTS CONTROLLER' need to be changed
C. Remove the 'PROCESS MONTH END' module
6. The bank wants to add a bulletin, about special services they have to offer, at the bottom of the report. Where would you add this to the system?

HOS
A. Add the module to the right of 'PROCESS TOTALS' and below "PRODECE MONTHLY SAVINGS ACCOUNT REPORT"
$==>$ B. Add the module to the left of "PROCESS TOTALS' and below 'PRODUCE MONTHLY SAVINGS ACCOUNT REPORT'
C. Add the module below 'PROCESS TOTALS'

JACRSON

A. Add the module to the left of 'PRODOCE TOTAL LINE' and below 'PRODOCE MONTHLY SAVINGS ACCOUNT REPORT ${ }^{\prime}$
$==>$ B. Add the module to the right 'PRODOCE TOTAL LINE' and below "PRODUCE MONTHLY SAVINGS ACCOUNT REPORT"
C. Add the module below 'PRODOCE TOTAL LINE'

WO
A. Add to the 'TOTALS' module
$==>$ B. Add a module between the 'TOTALS' and '.END' modules
C. Add to the '.END' module

YC
$=m$ A. Add the module to the right of 'FORMAT TOTALS"
B. Add the module to the left of 'GET ACCOUNT BALANCE FILE \& TRANSACTON FILE ${ }^{\prime}$
C. Add the module below 'FORMAT TOTALS"
7. When is it decided if there is a finance charge or if interest should be paid?
A. After each transaction
B. After the totals are printed
$=\equiv \quad$ C. After all of the transactions
8. What is done after a deposit is reported?
A. The totals are reported
$\Rightarrow \quad$. Checks if there are any more transactions to process
C. Withdrawals are processed
D. Interest is calculated and reported
9. When is the average balance calculated?

HOS, JACRSON, WO
A. After the totals are printed
$=\equiv \quad$ B. After all transactions are reported and before totals are reported
C. Immediately after the headings are printed

YC
A. Within "TRANSACTION CONTROLLER'
$=m \quad$ B. Within 'ADJUSTMENT CONTROLLER'
C. Within 'PROCESS MONTH END'
10. What module prints the account number of the customer that the report is being printed for?

HOS
A. PROCESS TOTALS
B. PROCESS MONTH END CALCULATIONS
$=m \quad$ C. PROCESS HEADINGS
JACRSON
A. PRODUCE TOTAL LINE
B. PRODUCE ADJUSTMEAT
$=\Longrightarrow \quad$ C. PRODUCE HEADING

```
    wo
A. TOTALS
B. ADJUSTMENTS
\(\Rightarrow\) C. HEADING
YC
A. FORMAT TOTALS
B. PROCESS MONTH END
\(==>\) C. FORMAT HEADINGS
```


ADVISTIG SYSHEM

This system is designed to aid in advising a student of a classes they should take. The file it accesses are an Arts \& Siences requirements file, a core requirements file, a suggested four year progression file and a technical elective options file. There are also files on what the student is taking or has taken, these include an Arts \& Sciences courses file, Core courses file and technical electives file. The student can make various additions, deletions, and changes to their own files. They can also print out various reports using their own file or the system files.

1. What is displayed after an Arts \& Sciences course is deleted?

HOS, JACRSON, WO
A. Advising menu
B. Maintain menu
==
C. Update menu

YC
A. Advising menu
B. Maintain menu
$\Rightarrow=$ C. A\&S menu
2. What is displayed after the printflag is set to false?
A. Report menu
$==>$ B. Advising menu
C. Maintain menu
3. Which report contains the core courses that the student is taking or has taken?
A. FOUR YEAR PROGRESSION REPORT
$=\Rightarrow$ B. STUDENT CORE REPORT
C. CORE REPORT
4. Which reports would be the same for all students?
$==\Rightarrow$ A. FOUR YEAR PROGRESSION REPORT, CORE REPORT, TECH ELECT REPORT
B. STUDENT TECE ELECT REPORT, STUDENT CORE REPORT, STUDENT A\&S REPORT
C. FOUR YEAR PROGRESSION REPORT, STUDENT CORE REPORT, STUDENT A\&S REPORT
5. After a report is printed to the printer, what is displayed?
A. Advising menu
$==>$ B. Report menu
C. Maintain menu
6. What module would you select, from the Advising menu module, if you wanted to delete an A\&S course that you have since dropped?

HOS
$\Rightarrow=A$. MAINTAIN STUDENT INFORMATION
B. OBTAIN STUDENT INFORMATION
C. GENERAL REPORTS

JACRSON
= $=>$ A. CONSUME STUDENT FILE, MAINTAIN STUDENT INFORMATION
B. CREATE STUDENT FILE
C. GENERAL REPORTS
wo
\Rightarrow A. MAINTAIN STUDENT INFORMATION CHOICE
B. OBTAIN STUDENT INFORMATION CHOICE
C. GENERAL REPORTS CHOICE

YC
\Rightarrow A. MAINTAIN STUDENT INFORMATION
B. GET STUDENT INFORMATION, CREATE FILES
C. GENERAL REPORTS
7. Which module initially sets up the students files, by creating them?

HOS
A. UPDATE AdS
B. UPDATE CORE
$==>$ C. OBTAIN STUDENT INFORMATION
JACRSON
A. CONSUME A\&S RECORD, UPDATE A\&S
b. CONSUME CORE RECORD, UPDATE CORE
\Rightarrow C. CREATE STUDENT FILE
wo
A. UPDATE A\&S CHOICE
B. UPDATE CORE CHOICE
$=$ => C. OBTAIN STUDENT INFORMATION CHOICE
YC
A. UPDATE A\&S
B. UPDATE CORE
\Rightarrow C. GET STUDENT INFORMATION
8. The school wants to add a module that will compare courses that have already been taken, A\&S, core and tech. elect., with the four year progression file. From this comparison the module will give 'advice' as to which courses should be taken the following semester. On which menu should the option be placed to select such a module?
A. Maintain menu
B. Report menu
== $=>$ C. Advising menu
9. Which module determines if a report is to be output or not?

HOS, WO
A. PROCESS MAINTAIN MENU CHOICE
\Rightarrow me CHECK PRINT FLAG
C. REPORT MENU

JACKSON
A. DISPLAY MAINTAIN MENO, PROCESS CHOICE
$=m=B$. CHECR PRINT FLAG
C. DISPLAY REPORT MENU, PROCESS CHOICE

YC
A. MAINTAIN CONTROLLER
\Rightarrow B. FORMAT REPORT
C. REPORT CONTROLLER
10. If you were changing some technical elective courses and wanted to quit what item(s) would you select from which menu(s)?

HOS
$=m$ A. Select 'MAINTAIN STUDENT INFORMATION' from the 'UPDATE TECH ELECT MENU', Select 'ADVISING' from the 'MAINTAIN MEND', and Select 'EXIT PROGRAM' from the 'ADVISING MEND"
B. Select "EXIT PROGRAM" from the "ADVISING MENU"
C. Select 'PRINTFLAG = FALSE' from the 'REPORT MENU", Select' $E X I T$ PROGRAM" from the "ADVISING MEND'
$==$ A. Select 'RETURN TO MAINTAIN MENU' from the 'UPDATE TECH ELECT MENO'; Select 'RETURN TO ADVISING' from the 'MAINTAIN MENO', and Select 'EXIT PROGRAM' from the "ADVISING MENU'
B. Select 'EXIT PROGRAM' from the "ADVISING MEND'
C. Select 'PRINTFLAG = FALSE' from the 'REPORT MEND', Select 'EXIT PROGRAM' from the 'ADVISING MENJ ${ }^{\prime}$
wo
$=\Rightarrow=>$ A. Select 'SET END OF UPDATE TO TRUE' from the 'UPDATE MENU', Select 'EXIT MAINTAIN CHOICE' from the 'MaIntain MENO', and Select 'exit Program CHOICE' from the "ADVISING MENU"
B. Select 'EXIT PROGRAM CHOICE' from the 'ADVISING MENU"
C. Select 'EXIT REPORT CHOICE' from the 'REPORT MENO', Select 'EXIT PROGRAM CHOICE' from the 'ADVIS ING MENU'

YC
10. What data items does MAINTAIN CONTROLLER use?
$\Rightarrow=>$ A. STUDENT A\&S, STUDENT CORE, and STUDENT TECH ELECT
B. STUDENT A\&S, STUDENT CORE, STUDENT TECH ELECT and CHOICE
C. STUDENT A\&S, STUDENT CORE, STUDENT TECH ELECT and SYSTEM FILES

This Country Club System is designed to maintain the member's file. This includes adding transactions to a member's record, adding, changing and deleting a member's record. Other items this system does, but are not detailed on this diagram, are produce billing statements, list members, and produce a sales report.

1. What is displayed after a member's record is deleted?
=- A. Opdate Menu
B. Delete prompt
C. Modify Menu
2. If you are beginning to add a transaction, what isdisplayed after an invalid name is entered?
A. Opdate Menu
= $=>$ B. Main MenuC. Modify Menu
3. What is the basic information in a new member's record?A. Name, Account Number, and Office Phone
==">C. Name, Account Number, and Occupation
4. What information must be entered for adding atransaction?
A. Amount, Code, Date, and Type
B. Account Number, Name and Amount
$==>$ C. Account Number, Name, Type, Date, Code, andAmount
5. If a member no longer had a phone number which modulewould you enter to update this member's record?
HOS, YC
A. 'DELETE MEMBER RECORD'
B. 'ADD MEMBER RECORD'
$==>$ C. 'MODIFY MEMBER RECORD'
JACRSON
A. 'CONSUME ACCOUNT NUMBER, PROCESS ACCOUNT"
B. 'ADD MEMBER RECORD'
==> C. 'MODIFY MEMBER RECORD'
woA. 'CONSUME ACCOUNT NUMBER, PROCESS ACCOUNT"B. 'ADD MEMBER RECORD'
$==>$ C. 'MODIFY MEMBER RECORD CHOICE'
6. What must be entered before a member's record can be modified?
$\Rightarrow=\Rightarrow$ A. Account number only
B. Member name only
C. Account number and member name
7. When a new member is added to the system, where does the account number come from?
A. Whoever is entering the record makes it up
$\Rightarrow=>$. The system generates it
C. The member's phone number is entered as their account number
8. The country club wants to modify the system so that a
member, who s account is delinquent can not perform a
transaction until their bill has been paid. Where would
you add this module?

HOS, JACKSON, WO
$==\Rightarrow$ A. Add another level after the member's name has been validated
B. Add another level after 'UPDATE TRANSACTION' has been selected
C. After everything else for a transaction has been entered

```
        YC
==>> A. After the member's name has been validated
    B. After 'UPDATE TRANSACTION' has been selected
    C. After everything else for a transaction has been
        entered
```

9. The country club wants their Vice President in charge of membership to be the only person who can delete a member's record. They have decided to have the security be a password that only he knows. Where would you place the prompt and test for the password?
A. After the member's account number is entered before the delete prompt
$m=>$ B. After delete has been selected from "UPDATE MENO"
C. Before the 'UPDATE MENO' is displayed
10. A member has three transactions, in entering those how many times would you see the main menu?
A. Three
B. Two
$\Rightarrow=>$ C. One

PROJECT MAIAGER SYSTEM

The Project Manager System is designed to allow the manager of a project team to enter components [tasks] of a project and then see various management reports. The components contain an id, keyword and data. They can be added, deleted or changed in an editor. The system then runs a trace of the project and if it traces, the manager can select several management report to be printed.

1. What is displayed after a component is deleted?
A. 'MAIN MENU'
B. 'OUTPUT MENU'
manc
C. 'EDITOR MENU'
2. What is displayed after a trace fails?
$=\Rightarrow$ A. An error message
B. 'OUTPUT MENU'
C. 'MAIN MENU'
3. What module allows you to see the components in a component file?

HOS, WO
A. 'PRODUCE OUTPUTS'
B. 'ADD COMPONENT'
=-=> C. 'PROCESS EDITOR MENU CHOICE'
JACRSON
A. 'PRODUCE OUTPUTS'
B. "ADD COMPONENT"
man>
C. 'DISPLAY EDITOR MENO, PROCESS CHOICE'

YC
A. ${ }^{\prime}$ PRODUCE OUTPUTS'
B. 'ADD COMPONENT"
=mm C. 'EDITOR CONTROLLER'
4. What does a component consist of?
A. A keyword
$==>$ B. An id, keyword and data
C. An id and data
5. After entering the editor, what is in the 'TEMP FILE'?
==-> A. The component file to be edited
B. The trace of a component file
C. The keywords from the component file to be edited
6. What is displayed after a report is printed?

HOS, JACKSON, WO
A. 'MAIN MENO"
==E> B. 'OUTPUT MENO"
C. 'EDITOR MENO'

YC
A. 'MAIN MENO'
==E> B. 'REPORT MENO'
C. 'EDITOR MENO'
7. Where would you add a module which would save the comp file under a different name?

HOS, JACRSON, WO
$=\Rightarrow$ A. As another option on the editor menu
B. As another option on the main menu
C. As another option on the output menu

YC
$\Rightarrow=$ A. As another option on the editor menu
B. As another option on the main menu
C. As another option on the report menu
8. Where would you add a module which would reassign an existing id to an existing keyword and data?

HOS, JACKSON, WO
$==>$ A. As another option on the editor menu
B. As another option on the main menu
C. As another option on the output menu

YC
$\Rightarrow=A$ As another option on the editor menu
B. As another option on the main menu
C. As another option on the report menu
9. On the editor menu, what is the difference between the quit and abort options?
A. Quit does NOT save the edited changes, abort does $\Rightarrow=>$. Quit does save the edited changes, abort does NOT
C. There are no differences
10. Which modules are repeated until the exit from the module is chosen?

HOS

A. PROCESS TRACE, TRACE COMP FILE and EDIT COMP FILE
B. EDIT VALID COMP FILE and TRACE VALID COMP FILE
=me> C. PROJECT MANAGER SYSTEM, COMPONENT EDITOR, EDIT TEMP FILE, and PRODUCE OUTPUTS

JACRSON

A. PROCESS TRACE, COMPONENT EDITOR and EXIT PROGRAM
B. PROCESS VALID COMP FILE and PERFORM TRACE, PROCESS RETURN CODE
$=m$ C. DISPLAY MAIN MENU, DISPLAY EDITOR MENU, DISPLAY NAME PROMPT, and DISPLAY OUTPUT MENU

W0
A. PROCESS TRACE, PROCESS COMP FILE NAME and EDIT COMP FILE
B. EDIT VALID COMP FILE and TRACE VALID COMP FILE
$=\Rightarrow$ C. PROJECT MANAGER, EDITOR, EDIT TEMP FILE, and PRODUCE OUTPUTS

YC
10. What data elements are used by the editor controller?
A. COMP FILE and CHOICE
B. TEMP FILE and CHOICE
$=\Rightarrow$ C. COMP FILE, TEMP FILE and CHOICE

Appendix B

Design Method Descriptions and Training Questions

This is an Higher Order Software [HOS] diagram. It is a decomposition tree, that is, a tree of boxes where each box can be decomposed or divided into more sub-boxes. There are two possible types of decomposition: composition and partition. Composition is an 'and function. All of the sub-boxes are performed. They are executed from right to left. Partition is an "or" function. This is indicated by conditions associated with arcs coming out of the decomposed box. The conditions are shown in brackets \{\}. Only the one box for which the condition holds true is executed.

A module refers to either a single box or a group of boxes. If a single box is referred to as a module it should be on the lowest level i.e. no other boxes below it. In this diagram 'DISPLAY BOARD' could be called a module. If a group of boxes is referred to as module, the box on the highest level of the group is referenced, the module then includes that box and non-module sub-boxes. When 'CONTINOE PLAY' is referred to as a module it includes 'SWITCH PLAYER AND OPP' and ' PLAY'.

In order for an HOS diagram to show iteration, a recursive call to a module at a higher level is performed. For example, this is used to allow players to take turns. After the first player has moved and captured, the module 'CONTINOE PLAY' is executed. Within this module there is a recursive call to 'PLAY'. To trace this you would move up the tree to the box labeled 'PLAY' and start back down the tree with the new player and opp.

1. What happens after it is discovered that the current player ' $\mathrm{CAN}^{\prime} \mathrm{T}$ MOVE'?
A. The OPP moves
B. The OPP wins
C. The PLAYER must try to move again
hit return when ready for an explanation
The correct answer is A. After 'CAN'T MOVE' is displayed the variable 'CAN'T.MOVE' is incremented, the 'PLAYER' and "OPP' are switched and then a recursive call to 'Play'. Again, to trace this you would move back up the tree to the box labeled 'PLAY' then start back down from here. If the variable 'CAN' T. MOVE' is equal to two at this point the game would be over, but with the information given it can't be assumed the OPP would win.
2. Which modules are performed as part of 'PROCESS SEARCH RESULTS'?
A. 'PROCESS NO POSSIBLE MOVE' then 'PROCESS POSSIBLE MOVE'
B. 'PROCESS POSSIBLE MOVE' then 'PROCESS NO POSSIBLE MOVE'
C. Either 'PROCESS NO POSSIBLE MOVE' or "PROCESS POSSIBLE MOVE ${ }^{\prime}$
hit return when ready for an explanation
The correct answer is C. The module 'PROCESS SEARCH RESULTS' is decomposed conditionally. This means that only ONE of the submodules are performed. The one that is performed is the module with the true condition.
3. Which module are performed as part of 'GAME OVER'?
A. 'OTHELLO' then "DISPLAY WINNER'
B. 'DISPLAY WINNER' then ${ }^{\prime}$ OTHELLO'
C. 'OTHELLO', 'PLAY' and 'DISPLAY WINNER'

HIT RETURN WHEN READY FOR AN EXPLANATION
The correct answer is B. The module 'GAME OVER' is an 'and' decomposition. This means that the sub-modules are performed from right to left. It first executes 'DISPLAY WINNER' and then it performs a recursive call to 'OTHELLO'.
4. Where would you add a module that would allow a player to ask for the computer's advice on where he should move next?
A. Add the module as another conditional out of 'PROCESS MOVE POSITION"
B. Add the module below 'SETUP"
C. Add the module as a prompt out of "GAME OVER'

HIT RETURN WHEN READY FOR AN EXPLANATION
The correct answer is A. You wouldn't want B because this would limit the player to asking for advice at the beginning of the game only. Similarly with C, the player could only ask at the end of a game. A, would allow the user to ask for advice before they moved.

Jackson Design Method

This is a Jackson diagram. It is based on the structure of the inputs and the structure of the outputs. Each are described in terms of a series of boxes. The structures are then combined to form the software structure of the whole system. There are three possible types of structures within a Jackson diagram: sequence, condition and repetition. A sequence is a box that contains no special symbol and has more than one box below it i.e. a sequence of boxes are executed. This sequence of boxes is performed from left to right. 'SETUP' is an example of a sequence structure.

A condition structure is designated by the " 0 " symbol in the upper right corner of the box. The box is executed based on some condition. This can also be called a selection. One of the sub-trees is selected based on some condition. 'MOVE' and 'GAME OVER' is a condition structure. One, of these two, is selected based on some condition.

A repetition structure is designated by the '*' symbol. This indicates iteration, the sub-tree below this box will be performed multiple times. 'PLAY' is an example of an repetition structure. After the sub-tree below it is executed, you would return to 'PLAY' and execute the sub-tree again. This looping is continued until the end of some iteration condition.

A structure may also be referred to as a module.

1. Which module or structure actually shows the move and the capture?
A. 'SETUP'
B. 'PROCESS LEGAL MOVE'
C. 'GAME OVER'
hit return when ready for an explanation
The correct answer is B. Within the condition structure the boxes 'PLACE PLAYER...' and 'FLIP OPP[S]' are executed. These show the move and capture, respectively.
2. What modules are performed during the execution of 'PROCESS MOVE POSITION ${ }^{-}$?
A. 'PROCESS LEGAL MOVE' then 'PROCESS ILLEGAL MOVE'
B. 'PROCESS ILLEGAL MOVE' then 'PROCESS LEGAL MOVE'
C. Either 'PROCESS LEGAL MOVE' or 'Process Illegal MOVE'
hit return when ready for an explanation
The correct answer is C. 'PROCESS LEGAL MOVE' and 'PROCESS ILLEGAL MOVE' is a conditional structure, which means that only ONE of the two are selected based on some condition. The condition is probably whether it was a legal move or not.
3. Which structure is executed after a game is over?
A. 'othelló
B. 'PLAY'
C. none
hit return hien ready for an explanation
The correct answer is A. After one game is over and 'GAME OVER' is executed you would move up the tree to check for iterations. There is an iteration at 'PLAY' and then 'OTHELLO'. Since the game is over you would assume that a new game would be started, therefore a second iteration of 'OTHELLO' would be assumed.
4. Where would you add a module that would allow a players to choose who 'PLAYS' first, DARR or LIGHT?
A. Below the module 'MOVE'
B. Below the module 'SETUP'
C. Below the module 'GAME OVER'
hit return when ready for an explanation

The correct answer is B. Because you would want to choose before a game begins. More specifically, before 'PLAYER' and 'OPP' are assigned DARR and LIGHT the first time.

Warnier-Orr Design Method

This is a Warnier-Orr diagram. The structure is described using brace notation. Each brace has a name that labels the brace. The name appears to the left of the brace. To the right of the brace is a list of entries that comprise the body of that brace into its parts. Each entry [part] can be further expanded into another brace. The brace can be interpreted as a call to the body of the brace. A brace can also be referred to as a module.

A notation below a brace name or entry indicates the number of times that the particular brace or entry will be performed. This notation can indicate repetition by " $1, n]$ ", which means that it is executed 1 to n times. The "?1' is a footnote reference which gives the condition that ends the repetition. The module "PLAY' has the notation '[1, p]?1' which means that the body of "PLAY' will be executed many time. If you look up the footnote '?1', you can see that 'PLAY' will stop looping when "END OF PLAY IS TRUE'.

An exclusive or relationship is indicated by two notations. First, there will be a notation under each name or entry, that is to be ORed. This will be in the form of '[0,1] $\mathbf{2 月 '}^{\prime}$, it will be executed 0 or 1 times based on the condition referenced by ' 22 '. Second, there will be a " $[+]^{\prime}$ symbol between the names or entries that are to be ORed. In this diagram, 'MOVE' and 'GANE OVER' are examples of an exclusive or relationship. One or the other of these two modules will be executed based on the conditions '?2' and '?3'.

If an exclusive or relationship is not represented then and and relationship is assumed. These names or entries are executed from top to bottom.

1. Which module would you return to after a legal move is processed?
A. 'PROCESS LEGAL MOVE'
B. 'MOVE"
C. 'PLAY"

HIT RETURN WHEN READY. FOR AN EXPLANATION
The correct answer is C. After to last statement in the body of 'PROCESS LEGAL MOVE' is executed you would move back out of the brackets until an iteration, that has not completed, is encountered. In this case 'PLAY' is the first iteration encountered. Since 'END OF PLAY' is still set to false you would again execute its body.
2. Which modules are performed during the execution of "PROCESS WINNER'?
A. 'DISPLAY PLAYER 'WINS"' "DISPLAY 'TIE"' and "DISPLAY OPP 'WINS"
B. Either "DISPLAY PLAYER "WINS" or "DISPLAY "TIE" or "DISPLAY OPP "WINS"
C. 'DISPLAY 'TIE"

HIT RETURN WHEN READY FOR AN EXPLANATION
The correct answer is B. The three entries 'DISPLAY PLAYER "WINS", "DISPLAY "TIE", "DISPLAY OPP 'WINS" all have an exclusive or relationship. This means, that based on their conditions [?6, ?7, ?8] only ONE of them is executed.
3. Where are the variables PLAYER, OPP, PLAYER.CNT, OPP.CNT and CAN'T. MOVE initialized?
A. 'SETUP'
B. 'SETUP' and 'PROCESS LEGAL MOVE'
C. 'SETUP' and 'PROCESS MOVE POSITION'

HIT RETURN WHEN READY.FOR AN EXPLANATION

The correct answer is A. "Initialized" is the first time that a variable is given a value. For these variables this is done in the module 'SETUP'.
4. Where would you add a module that would allow a player to quit in the middle of a game?
A. Add the another exclusive or module in the body of 'PROCESS MOVE POSITION'
B. Add the module in the body of "SETUP"
C. Add the module in the body of 'GAME OVER'

HIT RETURN WHEN READY FOR AN EXPLANATION
The correct answer is A. If it were in "PLAY' or "GAME OVER' then the player could only quit at the beginning or end of a game. To allow each player a chance to quit before they move you would place the module in ${ }^{\prime}$ PROCESS MOVE POSITION'.

This is a Yourdon-Constantine diagram. It is produced from a data flow diagram. The resulting system represents the flow of the data through the system. Data is indicated on the arcs, between the boxes, with an arrow showing the direction of flow.

The top box is called 'MAIN'. There are possibly three sections below the main, these are: afferent, efferent and transform sections. They can be thought of as input, output and processing, respectively. Each can be represented as one box or many boxes.

The leftmost section is the afferent. These boxes can usually be identified by the term "GET". There is often one box for each major input. Users can be indicated by a box with a slash in the bottom right corner. A users box means that interaction with the user occurs here.

The middle section is the transform. These bozes perform the main action or processing within the system. One type of transform module can be identified by the term 'CONTROLLER'. Based on some data, it controls or selects which ONE of the sub-modules should be performed.

The rightmost section, if it exists, is the efferent. These boxes can usually be identified by the term 'PUT'. There is often one box for each major output. Again, user boxes can be indicated here.

The three sections of afferent, transform and efferent can be continued recursively down the tree. That is, a transform module can have below it an afferent, transform and efferent section. An afferent module below any module can be grouped with the afferent on the far left.

1. Where is it decided if the current game is over or not?
A. GAME OVER CONTROLLER
B. GAME CONTROLLER
C. PLAY

HIT RETURN WEEN READY FOR AN EXPLANATION
The correct answer is B. The decision needs to be made before control is given to either PLAY or GAME OVER CONTROLLER. Once the decision is made that the game is over then GAME OVER CONTROLLER does receive control.
2. Where does the turn change players?
A. SET UP
B. PLAY
C. PROCESS LEGAL MOVES
hit return when ready for an explanation

The correct answer is C. Of the three possible answers it would be the correct one. PROCESS NO POSSIBLE MOVES also switches the player and opp. SETUP initialize them the first time but PROCESS LEGAL MOVE switches them after every move.
3. What data items does GAME CONTROLLER use to 'control' the game?
A. PLAYER and OPP
B. PLAYER.CNT, OPP.CNT and CAN'T.MOVE
C. BOARD
hit return when ready for an explanation
The correct answer is B. GAME CONTROLLER checks to see if the counts add up to the number of possible positions. It also checks to see if both can't move.
4. Where would you add a prompt and decision that would ask a player if he wanted to play or not?
A. POSITION CONTROLLER
B. SETUP
C. GAME OVER

HIT RETURN WHEN READY.FOR AN EXPLANATION

The correct answer is B. If it were in GAME OVER then the player could only choose not to play after he already played a game. Instead, it would be better to prompt first and then play.

Appendix C

Example Shell Programs

This appendix is examples of the test system shell programs. All of the shell programs are not presented here. The example programs included are intro, hos.tr and hos.ad. Intrc starts the system and coordinates the order that the particular subject goes through the design methods. Hos.tr is the training session for the HOS design method. The shell commands in the training prograns are the same only the particular descriptions and questions vary from program to program. Hos.ad is the test progral for the HOS design of the Advising System. Again, the shell commands in the test programs do not vary only the particular questions change. All of the questions and descriptions are given in Appendices A and B. Following is a list of all of the test system shell programs.

Test Syster Shell Prograns
 intro

Training Programs
hos.tr
jack.tr
wo.tr
yc.tr
Test Prograls
hos.sa
hos.ad
hos.ce
hos. ple
jack. 8 a
jack.ad
jack.cc
jack. pm
wo.sa
wo.ad
wo.cc
wo.pm
yc.sa
yc.ad
yc.ce
yc.pm

```
intro
cd /usrb/daniels
echo "
```

WELCOME TO

NOVICE PROGRAMMER UNDERSTANDABILITY
OF SOFTWARE DESIGN METHODOLOGIES
RESEARCH PROJECT

PLEASE ENTER YOUR SUBJECT NOMBER
the number on the top of your packet
"
ok"no
while test \$ok = no do
read subnum
case \$subnum in
1) ok"yes
first"hos
second=jack
third=wo
fourth=yc; ;
2) ok=yes
first=hos
second=jack
third=yc
fourth=wo; ;
3) ok=yes
first=hos
second=wo
third=jack
fourth=yc; ;
4) ok=yes
first=hos
second=wothird=ycfourth=jack; ;
5) ok=yes
first=hos
second=yc
third=jack
fourth=wo;
6) ok=yes
first=hos
second=yc
third=wo
fourth=jack; ;
7) ok=yes
first=jack
second=hos
third=wo
fourth=yc;
8) ok=yes
first=jack
second=hos
third=yc
fourth=wo; ;
9) ok=yes
first=jack
second=wo
third=hos
fourth=yc;
10) ok=yes
first=jack
second=wo
third=yc
fourth=hos; ;
11) ok=yes
first=jack
second=ycthird=hos
fourth=wo;
12) ok=yes
first=jack
second=yc
third=wo
fourth=hos; ;
13) ok=yesfirst=wosecond=hos
third=jack
fourth=yc;
14) ok=yes
first=wo
second=hos
third=yc
fourth=jack; ;
15) ok=yes
first=wo
second=jack
third=hos
fourth=yc; ;
16) ok=yes
first=wo
second=jack
third=yc
fourth=hos; ;
17) ok=yes
first=wo
second=yc
third=hos
fourth=jack;
18) ok=yes
first=wosecond=ycthird=jackfourth=hos; ;
19) ok=yes
first=yc
second=hos
third=jack
fourth-wo; ;
20) ok=yes
first=yc
second=hos
third=wo
fourth=jack; ;
21) ok=yes
first=yc
second=jack
third=hos
fourth=wo; ;
22) ok=yesfirst=yc
second=jack
third=wo
fourth=hos; ;
23) ok=yes
first=yc
second=wo
third=hos
fourth=jack; ;
24) ok=yes
first=yc
second=wo
third=jack
fourth=hos; ;

*) ok=no

```
        echo "That is an incorrect subject number
        PLEASE enter then number on your packet";;
esac
done
echo "SUBJECT NUNBER" $subnum >> out/${subnum}.out
echo "
    In this experiment you will be given four different designs and
questionaires. You are to use the design to answer the accompanying
questions. We are testing how easily you understand the designs.
Each question will be timed and graded, so that we are looking at
speed and accuracy of each answer. Once you enter an answer you will
not be given a chance to change. Be sure that you have typed the
answer you want before you hit return. If you type a wrong letter you
can correct it, before you hit return, by backspacing and retyping the
answer you want. Before each design, you will be given an example
design with an explanation of that type of design and some sample
questions. You will not answer the sample questions, instead the
correct answer will be explained to you. On the actual questionaires
an explanation will not be given. Please follow the instructions
carefully so that our data will be as accurate as possible.
PLEASE HIT RETURN WHEN YOU ARE READY TO BEGIN
#
read temp
echo "
First, we would like to get some information about your background.
Please enter your name"
read name
echo "NAME" $name >> out/${subnum}.out
echo "USER" $user >> out/${subnum}.out
echo "Have you ever seen or used an HOS diagram? (y/n)"
read hos
echo "SEEN HOS" $hos >> out/${subnum}.out
echo "Have you ever seen or used a JACKSON diagram? (y/n)"
read jack
echo "SEEN JACK" $jack >> out/${subnum}.out
echo "Have you ever seen or used a WARNIER-ORR diagram? (y/n)"
read wo
echo "SEEN WO" $wo >> out/${subnum}.out
```

```
echo "
Have you ever seen or used a YOURDON-CONSTANTINE diagram? (y/a)"
read yc
echo "SEEN YC" $yc >> out/${subnum}.out
echo "What computer science courses are you currently taking?
    PLEASE type the word 'END', on a line by itself, when
    you have finished entering your classes"
echo "COURSES TARING" >> out/${subnum}.out
read class
while test ($class!=END)-o($class!=End)-o($class!=end)
do
    echo $class >> out/${subnum}.out
    read class
done
echo "PLEASE EXAMINE THE DRAWING LABELED TRAINING ONE"
echo "OTHELLO DESCRIPTION" >> out/${subnum}.out
date >> out/${subnum}.out
    . des.tr
date >> out/{{subnum}.out
echo $first "TRAINING" >> out/${subnum}.out
date >> out/${subnum}.out
    . ${first}.tr
date >> out/${subnum}.out
echo "PLEASE EXAMINE tHE DRAWING LabELED DIAGRAM ONE"
echo "
SAVINGS ACCOUNT DESCRIPTION
" >> out/${subnum}.out
date >> out/${subnum}.out
    . des.sa
date >> out/${subnum}.out
    . ${first}.sa
echo "Rate the ease of use for this diagram.
        1-excellent
        2-fair
        3-moderate
        4-poor
        5-terrible."
read rate
echo $first "RATE" $rate >> out/${subnum}.out
echo "PLEASE EXAMINE THE DRAWING LABELED TRAINING TWO"
echo "OTHELLO DESCRIPTION" >> out/${subnum}.out
```

```
date >> out/${subnum}.out
    . des.tr
date >> out/${subnum}.out
echo $second "TRAINING" >> out/${subnum}.out
date >> out/${subnum}.out
    ${second}.tr
date >> out/${subnum}.out
echo "Please examine the drawING Labeled diagram two"
echo "
ADVISING DESCRIPTION
" >> out/${subnum}.out
date >> out/${subnum}.out
    . des.ad
date >> out/${subnum}.out
    . ${second}.ad
echo "Rate the ease of use for this diagram.
        1-excellent
        2-fair
        3-moderate
        4-poor
        5-terrible."
read rate
echo $second "RATE" $rate >> out/${subnum}.out
echo "PLEASE examiNe tHE DRAWING LAbELED TRAINING THREE"
echo "OTHELLO DESCRIPTION" >> out/${subnum}.out
date >> out/${subnum}.out
    . des.tr
date >> out/${subnum}.out
echo $third "TRAINING" >> out/${subnum}.out
date >> out/${subnum}.out
    . ${third}.tr
date >> out/${subnum}.out
echo "PLEASE EXAMINE tHE DRAWING LABELED DIAGRAM THREE"
echo "
COUNTRY CLUB DESCRIPTION
" >> out/${subnum}.out
date >> out/${subnum}.out
    . des.cc
date >> out/${subnum}.out
    . ${third}.cc
echo "Rate the ease of use for this diagram.
        1-excellent
```

```
    2-fair
    3-moderate
    4-poor
    5-terrible."
read rate
echo $third "RATE" $rate >> out/${subnum}.out
echo "PLEASE EXAMINE THE DRAWING LABELED TRAINING FOUR"
echo "OTHELLO DESCRIPTION" >> out/${subnum}.out
date >> out/${subnum}.out
    . des.tr
date >> out/${subnum}.out
echo $fourth "TRAINING" >> out/${subnum}.out
date >> out/${subnum}.out
    . ${fourth}.tr
date >> out/${subnum}.out
echo "PLEASE EXAMINE THE DRAWING LABELED DIAGRAM FOUR"
echo "
PROJECT MANAGER DESCRIPTION
" >> out/${subnum}.out
date >> out/${subnum}.out
    . des.pm
date >> out/${subnum}.out
    ${fourth}.pm
echo "Rate the ease of use for this diagram.
        1-excellent
        2-fair
        3-moderate
        4-poor
        5-terrible."
read rate
echo $fourth "RATE" $rate >> out/${subnum}.out
echo "Which design diagram did you like the best, HOS, JACRSON,
        WARNIER-ORR, or YOURDON-CONSTANTINE?"
read choice
echo "DIAGRAM CHOICE" $choice >> out/${subnum}.out
echo "
```

hos.tr
echo " This is an Higher Order Software [HOS] diagram. It is a decomposition tree, that is, a tree of hoxes where each box can be decomposed or divided into more sub-boxes. There are two possible types of decomposition: composition and partition. Composition is an 'and' function. All of the sub-boxes are performed. They are executed from right to left. Partition is an "or" function. This is indicated by conditions associated with arcs coming out of the decomposed box. The conditions are shown in brackets \{\}. Only the one box for which the condition holds true is executed.

A module refers to either a single box or a group of boxes. If a single box is referred to as a module it should be on the lowest level i.e. no other boxes below it. In this diagram 'DISPLAY BOARD' could be called a module. If a group of bozes is referred to as a module, the box on the highest level of the group is referenced, the module then includes that box and non-module sub-boxes. When 'CONTINUE PLAY' is referred to as a module it includes 'SWITCH PLAYER AND OPP' and ' PLAY^{\prime}.

In order for an HOS diagram to show iteration, a recursive call to a module at a higher level is performed. For example, this is used to allow players to take turns. After the first player has moved and captured, the module 'CONTINUE PLAY' is executed. Within this module there is a recursive call to 'PLAY'. To trace this you would move up the tree to the box labeled 'PLAY' and start back down the tree with the new player and opp.

PLease hit return when ready to continue"
read again
while test \$again != n
do
echo "

1. What happens after it is discovered that the current player ' CAN^{\prime} ' T MOVE'?
A. The OPP moves
B. The OPP wins
C. The PlAYER must try to move again
read temp
echo " The correct answer is A. After 'CAN'T MOVE' is displayed the variable 'CAN'T.MOVE' is incremented, the 'PLAYER' and 'OPP' are switched and then a recursive call to 'PLAY". Again, to trace this you would move back up the tree to the box labeled "PLAY" then start back down from here. If the variable 'CAN'T.MOVE' is equal to two at this point the game would be over, but with the information given it can't be assumed the OPP would win.

HIT RETURN
"
read temp
echo "
2. Which modules are performed as part of 'PROCESS SEARCH RESULTS'?
A. 'PROCESS NO POSSIBLE MOVE' then 'PROCESS POSSIBLE MOVE'
B. 'PROCESS POSSIBLE MOVE' then 'PROCESS NO POSSIBLE MOVE'
C. Either 'PROCESS NO POSSIBLE MOVE' or 'PROCESS POSSIBLE MOVE ${ }^{-}$

HIT RETURN WHEN READY FOR AN EXPLANATION
"
read temp
echo " The correct answer is C. The module PROCESS SEARCH RESULTS is decomposed conditionally. This means that only ONE of the sub-modules are performed. The one that is performed is the module with the true condition.

HIT RETURN

"
read temp
echo "
3. Which module are performed as part of 'GAME OVER'?
A. 'OTHELLO' then 'DISPLAY WINNER'
B. 'DISPLAY WINNER' then 'OTHELLO'
C. 'OTHELLO', 'PLAY' and 'DISPLAY WINNER'
hit return when ready for an explanation
"
read temp
echo " The correct answer is B. The module 'GAME OVER' is an 'and' decomposition. This means that the sub-modules are performed from right to left. It first executes "DISPLAY WINNER" and then it performs a recursive call to 'OTHELLO'.

HIT RETURN
"
read temp
echo "
4. Where would you add a module that would allow a player to ask for the computer's advice on where he should move next?
A. Add the module as another conditional out of "PROCESS MOVE POSITION
B. Add the module below 'SETUP'
C. Add the module as a prompt out of 'GAME OVER'

HIT RETURN WHEN READY FOR AN EXPLANATION
"
read temp
echo " The correct answer is A. You wouldn't want B because this would limit the player to asking for advice at the beginning of the game only. Similarly with C, the player could only ask at the end of a game. A, would allow the user to ask for advice before they moved.

"

echo "Would you like to go through the example questions again?[y/n]" read again
done

```
hos.ad
echo "
ADVISING HOS" >> out/${subnum}.out
echo "
    ADVISING SYSTEM
"
echo "
1. What is displayed after an Arts & Sciences course is deleted?
    A. Advising menu
    B. Maintain menu
    C. Dpdate menu
SELECT
"
echo "NUMBER 1" >> out/${subnum}.out
date >> out/${subnum}.out
read choice
date >> out/${subnum}.out
echo "C " $choice >> out/${subnum}.out
echo "
2. What is displayed after the printflag is set to false?
A. Report menu
B. Advising menu
C. Maintain menu
SELECT
```

"
echo "NUMBER 2" >> out/\$\{subnum\}. out
date \gg out/\$\{subnum\}.out
read choice
date >> out/\$\{subnum\}.out
echo "B " \$choice \gg out/\$\{subnum\}.out
echo "
3. Which report contains the core courses that the student is taking or has taken?
A. FOUR YEAR PROGRESSION REPORT
B. STUDENT CORE REPORT
C. CORE REPORT

SELECT
"
echo "NOMBER 3" >> out/\$\{subnum\}. out
date >> out/\$\{subnum\}.out
read choice
date >> out/\$\{subnum\}. out
echo "B " \$choice >> out/\$\{subnum\}.out
echo "
4. Which reports would be the same for all students?
A. FOUR YEAR PROGRESSION REPORT, CORE REPORT, TECH ELECT REPORT
B. STUDENT TECH ELECT REPORT, STUDENT CORE REPORT, STUDENT A\&S REPORT
C. FOUR YEAR PROGRESSION REPORT, STUDENT CORE REPORT, STUDENT A\&S REPORT

SELECT

```
"
echo "NUMBER 4" >> out/${subnum}.out
date >> out/${subnum}.out
read choice
date >> out/${subnum}.out
echo "A " $choice >> out/${subnum}.out
echo "
```

5. After a report is printed to the printer, what is displayed?
A. Advising menu
B. Report menu
C. Maintain menu

SELECT
echo "NUMBER 5" >> out/\$\{subnum\}.out
date >> out/\$\{subnum\}.out
read choice
date \gg out/\$\{subnum\}.out
echo "B "\$choice >> out/\$\{subnum\}.out
echo "
6. What module would you select, from the Advising menu module, if you wanted to delete an A\&S course that you have since dropped?
A. MAINTAIN STUDENT INFORMATION
B. OBTAIN STUDENT INFORMATION
C. GENERAL REPORTS

SELECT

"

echo "NUMBER 6" >> out/\$\{subnum\}.out date \gg out/\$\{subnum\}.out read choice date \gg out/\$\{subnum\} .out echo "A " \$choice >> out/\$\{subnum\}.out
echo "
7. Which module initially sets up the students files, by creating them?
A. UPDATE A\&S
B. UPDATE CORE
C. OBTAIN STUDENT INFORMATION

SELECT

"

echo "NOMBER 7" >> out/\$\{subnum\}.out
date >> out/\$\{subnum\}.out
read choice
date >> out/\$\{subnum\}.out
echo "C " \$choice >> out/\$\{subnum\}.out
echo "
8. The school wants to add a module that will compare courses that have already been taken, A\&S, core and tech. elect., with the four year progression file. From this comparison the module will give 'advice" as to which courses should be taken the following semester. On which menu should the option be placed to select such a module?
A. Maintain menu
B. Report menu
C. Advising menu

SELECT
"
echo "NUNBER 8" >> out/\$\{subnum\}. out
date \gg out/\$\{subnum\}.out
read choice
date >> out/\$\{subnum\}. out
echo "C " \$choice >> out/\$\{subnum\}.out
echo "
9. Which module determines if a report is to be output or not?
A. PROCESS MAINTAIN MENU CHOICE
B. CEECK PRINT FLAG
C. REPORT MENU

SELECT

"
echo "NUMBER 9" >> out/\$\{subnum\}.out
date >> out/\$\{subnum\}.out
read choice
date \gg out/\$\{subnum\}.out
echo "B " \$choice >> out/\$\{subnum\}.out
echo "
10. If you were changing some technical elective courses and wanted to quit what item(s) would you select from which menu(s)?
A. Select "MAINTAIN STUDENT INFORMATION" from the "OPDATE TECH ELECT MENU", Select'ADVISING" from the "MAINTAIN MENU", and Select "EXIT PROGRAM" from the "ADVISING MENU"
B. Select "EXIT PROGRAM' from the "ADVISING MENU'
C. Select "PRINTFLAG = FALSE' from the "REPORT MENU", Select 'EXIT PROGRAM' from the "ADVISING MENU'

SELECT

"
echo "NUMBER 10 " >> out/\$\{subnum\}. out
date \gg out/\$\{subnum\}.out
read choice
date \gg out/\$\{subnum\}.out
echo "A " \$choice"
" >> out/\$\{subnum\}.out

Appendix D

Diagrams

HOS Othello

Jackson Othello

Warnier-Orr Othello

90-systen is shut off
il - eme of play is true
p2-CAN T. MOVE < 2 AND
mlayer. CNT * opp.cnt < 54
73 - CRNT T. HOVE $=20 \mathrm{OR}$
MLAYER.CNT + OPP.CNT - G 4
p4 - MOVE HOLL CAPTURE
TS - hove hould net capture
76 - PLAYER.CNT) OPP.CNT
P7 - player. CNT - opp.CNT
70 - Player.cnt < opp.CNT
is - player can moue
p10 - mlayer can mot hove

Yourdon-Constantine

 Othello

i
i
i
i

D-10. 2

D-11

Jackson Country Club

D-13

Warnier-Orr Savings Account

[^0]

115 REPRRT MENU CHOTCE : 1 P16 REPORT HENU CHOICE : 2 ?19 REPORT HENU CHOICE : S 119 REPORT HENU CHOTCE $=4$ 719 REPORT MENU CHOTCE : 5 P2O REPORT MENU CHOICE : 6 721 REPORT MENU CHOTCE : ? 722 PRINT MENU CHOICE = 1 1223 PRINT MENU CHOICE • 2 ?24 UPORTE MENU CHOICE : 1 pes uporte hemu choice : e 726 UPDATE NENU CHOLCE : a


```
71 - END OF SYSTEM
p2 - main menu choice - l
T3 - MAIN MENU CHOICE = 2
P4 - MAIN MENU CHOTCE = 3
75 - main menu choice = 4
?6 - MAIN MENU CHOICE = 5
?? - MAIN MENU CHOICE = 6
pB - END OF TRANSACTIONS
79 - END OF members
PIO - VALIO ACCOUNT NUMBER
PlI - INVALIO ACCOUNT NUMBER
pla - UPDATE MENU CHOICE = 1
PIG - UPDATE MENU CHOICE = 2
7L4 - UPDATE MENU CHOICE = 3
PIS - UPDATE MENU CHOICE - 4
P1G - END OF MOOIFY
P1? - valid name
pI8 - invalid name
?19 - PROMPT RESPONSE = YES
?2& - PROMPT RESPONSE - NO
P21 - END OF PrOCESS
722 - MODIFY MENU CHOICE = 0
723 - MODIFY MENU CHOICE = 1
P24 - MOOIFY MENU CHOICE - 2
```

?25 - MODIFY RENU CHOICE : 3
?26 - MODIFY MENU CHOICE = 4
727 - MODIFY MENU CHOICE $=5$
229 - MODIFY MENU CHOICE = 6
?2פ - MODIFY HENU CHOICE $=$?

5 mor ar motacer
MRIM MEMU CHITEE

mitn afme choice :
fun or entror
Chi to revif FILE hRTE
I WuAt jo cenf rII:E uane
(90) or EDII 1f HP
leare hol ojk
roace nk
EmC or oulpyis
editior menu choice. a
EDITOP RENY CHOICE : I

- editar menu choice ;
EDIIDR HENU CHIIEE
EDITRR MENU CHOICE
EDITIR MENH CHOICE
EDITVR HENH CHOICE - g
fDitar menu choice :
outpui menu choice :
outpit menu choice :
- outpyi meno choice.
outpur meni chotce :
gutput menu cholce : g
\therefore : 10 10
: 1ustare 10

```
71 - ENG OF tanager
pz - main menu choice = 1
?3 - mAIN mENU ChDICE * 2
74 - main menu choice : 3
p5 - End df EDITOR
36 - valio camp flle hame
?7 - invaljo comp file name
78 - END OF EDIT TEMP
79 - trace mot OK
710 - trACE OK
711 - END OF OUTPUTS
PI2 - EDITAR MENJ CHOICE - 0
P13 - EDITOR MENU CHOICE = 1
p14 - EDITGR MEHU CHOICE = &
715 - EDITOR MEHU ChOICE = a
?16 - EOITOR MENU CHOICE - 4
?17 - EDITOR MENU CHOICE : 5
P18 - EDITOR MENU CHOICE : G
719 - output menu chaICE : 1
?20 - OUTPUT MENU CHOLCE : a
?21 - cutput menu ChOICE - 3
pez - output menu choice : 4
T23 - OUTPUT MENU CHOICE : S
224 - VALID ID
P25 - INUAl.ID 10
```


ACC. NUMBER, AC. BALANCE
DAILY BAL.
DAILY BAL

GET ACCOUNT
BALANCE FILE
\& TRANSACTION
FILE

transactions
SUMBA SUMBA

Yourdon-Constantine
Aduising

Yourdon-Constantine

Appendix :

Spreadsheet Data

Combined Resuits

Mean Time - Training	SA	AD	CC	PM	ALL SYSTEMS
HOS	$0: 09: 27$	$0: 07: 30$	$0: 07: 04$	$0: 07: 29$	$0: 07: 52$
JACKSON	$0: 06: 45$	$0: 06: 00$	$0: 05: 19$	$0: 05: 03$	$0: 05: 47$
W-O	$0: 08: 40$	$0: 07: 12$	$0: 06: 51$	$0: 06: 05$	$0: 07: 12$
Y-C	$0: 06: 56$	$0: 07: 50$	$0: 06: 19$	$0: 06: 11$	$0: 06: 49$
ALLMETHODS	$0: 07: 57$	$0: 07: 08$	$0: 06: 23$	$0: 06: 12$	$0: 06: 55$

Spreadsheet Data for Diagram 1

Mean TIme - Questions	SA	AD	C	PM	ALL SYSTEMS
HOS	$0: 11: 30$	$0: 09: 15$	$0: 07: 58$	$0: 08: 33$	$0: 09: 19$
JACKSON	$0: 08: 54$	$0: 07: 51$	$0: 08: 32$	$0: 07: 45$	$0: 08: 15$
W-O	$0: 11: 11$	$0: 08: 47$	$0: 09: 28$	$0: 08: 06$	$0: 09: 23$
Y-C	$0: 08: 14$	$0: 10: 43$	$0: 09: 26$	$0: 08: 17$	$0: 09: 10$
ALI MEIHODS	$0: 09: 57$	$0: 09: 09$	$0: 08: 51$	$0: 08: 10$	$0: 09: 02$

Spreadsheet Data for Diagram 2

Mean Number Wrong	SA	AD	C	PM	ALL SYSTEMS
HOS	2.83333333	2.91666667	2.0 .91666667	2.16666667	
JACKSON	3.41666667	2.58333333	1.33333333	1.83333333	2.29166667
W-O	3.33333333	2.91666667	2	1	2.3125
Y-C	3.25	3.33333333	3	2.75	3.08333333
ALL MEIHODS	3.20833333	2.9375	2.08333333	1.625	2.46354167

Mean Rate	SA	AD	C	PM	ALL SYSTEMS
HOS	2.41666667	2.58333333	2.16666667	2.5	2.41666667
JACKSON	2.66666667	2.08333333	2.25	2.25	
W-O	3.25	3.16666667	2	3.16666667	3.14583333
Y-C	2.83333333	3.41666667	2.75	3.66666667	3.1666667
ALL METHODS	2.79166667	2.8125	2.47916667	2.89583333	2.74479167

Combined Results

External Bohavior					
	HOS	JACKSON	W-0	Y-C	ALL METHODS
Savinos Account	54.1666667	58.3333333	62.5	75	62.5
Advising	27.7777778	44.4444444.	41.6666667	50	40.97222222
Country Club	22.2222222	25	30.5555556	47.2222222	31.25
Project Manager	18.75	22.9166667	10.4166667	36.1111111	21.11111111
All Systems	27.7777778	34.7222222	31.9444444	50	35.81560284
Location of Action/Decision					
	HOS	JACKSON	W-0	Y-C	ALL METHODS
Savinas Account	5.55555556	13.8888889	2.77777778	11.1111111	8.333333333
Advising	22.9166667	10.4166667	16.6866667	5.55555556	18.333333333
Country Club	8.33333333	0		0	2.0833333333
Proiect Manager	0	33.3333333	12.5	41.6666667	21.875
All Systems	11.6666667	15.	10.	21,2962963	14.31623932
Contents of Files/Output					
	HOS	JACKSON	W-0	Y-C	ALL METHODS
Savinos Account	38.8888889	30,5555556	27.7777778	41.6666667	34.72222222
Advising	37.5	25	29.1666667	13.8888889	25
Country Club	12.5	4.16666667	18.75	27.0833333	15.625
Project Manaoger	8.33333333	4.16666667	8.33333333	16.6666667	10.18518519
All Systems	23.4848485	15.1515152	21.2121212	25	21.37681159
Modifleation					
	HOS	JACKSON	W-0	Y-C	ALL METHODS
Savinas Account	20.8333333	45.8333333	58.3333333	8.33333333	33.333333333
Advising	41.6666667	33.3333333	41.6666667	66.6666667	45.833333333
Country Club	37.5	20.8333383	16.6666667	25	25
Project Manager	0	8:33333333	8.33333333	16.6666667	8.3333333333
All Systems	22.6190476	26.1904762	29.7619048	23.8095238	25.5952381

Spreadsheet Data for Diegrams 10, 11812

Professional Results

Mean Time - Training	SA	AD	C	PM	ALL SYSTEMS
HOS	$0: 09: 25$	$0: 06: 50$	$0: 07: 03$	$0: 06: 45$	$0: 07: 31$
JACKSON	$0: 06: 20$	$0: 06: 22$	$0: 05: 02$	$0: 05: 02$	$0: 05: 41$
W-O	$0: 07: 07$	$0: 06: 54$	$0: 07: 25$	$0: 05: 31$	$0: 06: 44$
Y-C	$0: 07: 08$	$0: 06: 25$	$0: 06: 14$	$0: 06: 08$	$0: 06: 29$
ALL MEIHODS	$0: 07: 30$	$0: 06: 38$	$0: 06: 26$	$0: 05: 52$	$0: 06: 36$

Spreadsheet Data for Diagram 3

Mean Time - Questions	SA	AD	C	PM	ALL SYSTEMS
HOS	$0: 11: 20$	$0: 08: 18$	$0: 07: 54$	$0: 07: 38$	$0: 08: 47$
JACKSON	$0: 07: 57$	$0: 08: 31$	$0: 08: 00$	$0: 07: 04$	$0: 07: 53$
W-O	$0: 10: 15$	$0: 08: 00$	$0: 09: 38$	$0: 07: 05$	$0: 08: 45$
Y-C	$0: 09: 06$	$0: 10: 47$	$0: 07: 11$	$0: 07: 40$	$0: 08: 41$
ALI METHODS	$0: 09: 39$	$0: 08: 54$	$0: 08: 11$	$0: 07: 22$	$0: 08: 31$

Spreadsheet Data for Diagram 4

Mean Number Wrong	SA	AD	C C	PM	ALL SYSTEMS
HOS	2.16666667	3.5	1.5	1	2.04166667
JACKSON	3.16666667	1.83333333	1.83333333	1.66666667	2.125
W-O	4	2.83333333	2.33333333	0.66666667	2.45833333
Y-C	4	3	2.83333333	2.83333333	3.16666667
ALL METHODS	3.33333333	2.79166667	2.125	1.54166667	2.44791667

Spreadsheet Data for Diagram 8

Mean Rate	SA	AD	C	PM	ALI SYSTEMS
HOS	2.33333333	3.16666667	2.16666667	2.83333333	2.625
AACKSON	2.83333333	2.16666667	2.16666667	2.66666667	2.45833333
W-O	3.83333333	3.16666667	3.5	3.33333333	3.45833333
Y-C	3.33333333	3.5	2.66666667	3.66666667	3.29166667
ALL METHODS	3.08333333	3	2.625	3.125	2.95833333

$$
E-4
$$

Professional Results

External Behavior					
	HOS	JACKSON	W-0	Y-C	ALL METHODS
Savinos Account	33.3233333	41.6666667	66.6666667	91.6666667	58.333333333
Advising	27.7777778	44.4444444	38.8888889	44.4444444	38.88888889
Country Club	22.2222222	38.8888889	33.3333333	44.4444444	34.72222222
Proiect Mansaer	20.8333333	16.6666667	8.33333333	33.3333333	18.888888889
All Systoms	25	33.3333333	31.9444444	50	34.75177305
Location of Action/Decision					
	HOS	JACKSON	W-0	Y-C	ALL METHODS
Savinos Account	0	16.6666667	5.55555556	16.6866667	9.722222222
Advising	33.3333333	0	16.6666667	0	17.77777778
Country Cub	0	0	0	0	0
Proiect Manager	0	33.33233338	0	33.3333333	16.66668667
All Systems	13.33333333	11.6666667	8.33333333	20.3703704	13.24786325
Contents of Files/Output					
	HOS	JACKSON	W-0	Y-C	ALL METHODS
Savinos Account	38.8888889	27.7777778	38.8888889	55.5555556	40.27777778
Advising	41.6668667	16.6666667	25	5.55555556	20.37037037
Country Club	8.333333333	8.33333333	25	20.8333333	15.625
Proiect Manager	8.33333333		16.6666667	16.6666667	11.11111111
All Systems	22.7272727	13.6363636	27.2727273	24.3589744	22.10144928
Modification					
	HOS	JACKSON	W-0	Y-C	ALL METHODS
Savings Accoumt	16.6666667	50	66.6666667	0	33.333333333
Advising	50	16.6666657	50	83.33333333	50
Country Club	25	16.6666667	16.6666667	33.3333333	22.91666667
Proiect Mansoer	0	16.6666667		33.3333333	12.5
All Systoms	19.047619	26.1904762	30.952381	30.952381	26.78571429

Spreadsheet Data for Dlagrams 13, 14815

Student Results

Ma3n Time - Training	SA	AD	CC	PM	ALL SYSTEMS
HOS	$0: 09: 28$	$0: 08: 10$	$0: 07: 04$	$0: 08: 14$	$0: 08: 14$
JACKSON	$0: 07: 11$	$0: 05: 38$	$0: 05: 37$	$0: 05: 03$	$0: 05: 52$
W-O	$0: 10: 13$	$0: 07: 29$	$0: 06: 17$	$0: 06: 38$	$0: 07: 40$
Y-C	$0: 06: 45$	$0: 09: 15$	$0: 06: 25$	$0: 06: 14$	$0: 07: 10$
ALLMEIHODS	$0: 08: 24$	$0: 07: 38$	$0: 06: 21$	$0: 06: 32$	$0: 07: 14$

Spreadsheet Data for Diagram 5

Mean Time - Questions	SA	AD	C	PM	ALL SYSTEMS
HOS	$0: 11: 39$	$0: 10: 13$	$0: 08: 02$	$0: 09: 28$	$0: 09: 51$
HACKSON	$0: 09: 52$	$0: 07: 10$	$0: 09: 04$	$0: 08: 26$	$0: 08: 38$
W-O	$0: 12: 07$	$0: 09: 33$	$0: 09: 17$	$0: 09: 07$	$0: 10: 01$
Y-C	$0: 07: 23$	$0: 10: 39$	$0: 11: 41$	$0: 08: 54$	$0: 09: 39$
ALI METHODS	$0: 10: 15$	$0: 09: 24$	$0: 09: 31$	$0: 08: 59$	$0: 09: 32$

Spreadsheet Data for Diagram 6

Mean Number Wronq	SA	AD	C	PM	ALL SYSTEMS
HCS	3.5	2.33333333	2.5	0.83333333	2.29166667
JACKSON	3.66666667	3.33333333	0.83333333	2	2.45833333
W-O	2.66668667	3	1.68666667	1.33333333	2.16666667
Y-C	2.5	3.66666667	3.16666667	2.66666667	3
ALL MEIHODS	3.08333333	3.08333333	2.04166667	1.70833333	2.47916667

Spreadsheet Data for Diagram 9

Mean Rate	SA	AD	C	PM	ALL SYSTEMS
HOS	2.5	2	2.16666667	2.16666667	2.20833333
ACKSON	2.5	2	1.83333333	1.83333333	2.04166667
W-O	2.66666667	3.16666667	2.5	3	2.83333333
Y-C	2.3333333	3.33333333	2.83333333	3.66666667	3.04166667
ALLMETHODS	2.5	2.625	2.33333333	2.66666667	2.53125

Spreadsheet Date for Diagram 21

Student Results

Spreadsheet Data for Diagrams 16, 17018

Student Spreadsheet Data

	NUWIEER 7	NUMBEA	NuMPER	TNUMEER 10	NUMEER 11	CUMEEER 12
H0\％						
Catalo Pat．	0．00：39	0：02：35	0：00：36	0：00：55	0：00：23	0：06：24
HOStraing	0：04：20	0：07：36	0：08：01	0：05：56	0：07：32	0：02：57
Svatam Dest．	0：00：47	0：01：12	0：01：54	0：01：37	0：00：33	0：01：14
Total Training．	0：0．5：52	0：11：23	0：08：31	0：08：28	0：08：28	0：10：35
Sxtem．	AONSINS	ADVISIM	Cowniricule	PRaECTMANACER	COUNTEYCUS	PAONECT MANACER
Sematios	no	mo	m	n	no．	no
11 Tme	0：01：35	0：00：46	0：01：34	0：00；36	0：02；44	0：01：58
Acruer		C 8	A ${ }^{\text {a }}$	C．	A 3	C A
48 Time	0：00：10	0：01：29	0：01：14	0：00：42	0：01：05	0：00：58
Anmuer	B6	8 8	B 6	A＊	8．b	A A
63 Time	0：00：49	0：02：14	0：00：29	0：01：07	0：00：47	0：00：56
Antuer	8－	B 6	B	C e	日	1 C
A Tme	0：00：45	0：00：31	0：00：59	0：00：06	0：00：47	0：00：50
Anvint	A 8	A	$c \times$	B b	C	B 8
8 Trae	0：00：50］	2：01：10	0：01：09	0：01：089	0：00：49	0：01：25
Anver	81	B－1	C． 2	A．	c	A B
	0：00：35	0：01：07	－0：00：20	0：01：19	0：00：34	0：00：25
Anvuer	A．${ }^{\text {a }}$	A	A．	8 B	A ：	8 B
\％Tas	0：00：14	0：00：14．	0：00：25	0：00：54	0：01：31	0：00：41
Antuer	C－	6.	日	A 1	B－1	A A
－	0：01725	0：09\％59	0：09\％20	0：00：31	0：01：37	0：00：17
Anmun	6.6	c．	A b	A．	A． 0	A A
wo Tine	0：00：19	0：00：18	0：20：19	0：09：31	0：01：01	0：00：57
Answer	Qb	B	18	B 6	B	8 日
H10 The	0：02＋21	0：01：31	0：00\％${ }^{\text {a }}$ 安	0：01：14	0：00：57	0：02：23
Anvatir			c C	C 6	18	$c \mathrm{C}$
TRTAL Tine	0：09：02	0：09：47	0：07：27	9：08， 14	0：11：46	0：11：01
TgTAL Wene						
H88R	3					
	Mumise 7	HuHITM	numiens	［MUMITA 10		NUMSER 12.
Ctata Des．	2：00：53	0：04：3918	0：00：27	0：02：05	0：00：42	0：01：12
1ack minina	0：03：22	0：04：31	0：0722 ${ }^{\text {a }}$	0：03：19	0：08：10	0：08：28
Syesem Doxe．	0：00：35	0：01：09	0．00－26	0：00：39．	0：00：585	0：02：28
Totn Trainina	0：05：10	0：10：13］	0：09：39	0：00：02	0：07：49	0：10：15
Sxitam	SMWKSECCOUNT	SAMWPSACCOAM	SAMNESACCOUNT	SAMMESACCOUNT	SAVMESACCOINT	SAVINGS ACCOUNT
Sena Jack	0	mo	10	00	yen	no
61 Time	0：00：29	0：92：44	0：90：51	0：01：15	0：01：14	0：02：13
Anemer	Bb	86	B 6	B．b	B b	回 8
\％Time	0：01：09	0：01：53	0．00：20	0：00341	0：00：59	0：01：11
Anewer	A^{3}	A 1	A．	A b	A	A A
㐌 Thene	0：00：51	0：01：41	0：00：16	0：00：500	0：00：52	0：01：14
Anewar	12	日	B－b	8，	8－1	B A
eat The	0：00：57	0：00；24	9：00：11	0：00：07	0：00：57	0：01：10
Anewer	D 8	D ${ }^{\text {a }}$	0 C	$0 \times$	D 6	D A
65.1 ma	0：01：4	0：01：48	0：00：29	0：00：52	0：01：20	0：01：38
Anmer	81	目号	8－6	BC	1－b	日 4
	0：01：027	0：01：45	0：00：57	0：01：14	0：00：40	0：02：16
Anawer	BC	B1\％	B6	18，	日b	B 8
97 Time	0：00：32	0：02：11	0；00：13	0：00：04	0：00：37	0：01：40
An：uer	C e	C 6	C．	C	C．	$C \mathrm{C}$
唓 Time	0：01：10	0：01：29	0：00：13．	0：00：46	0：00：52	0：00：43
Antuer	B	B ${ }^{\text {a }}$	日	B	8 d	B A
$\square_{0} \mathrm{C}$ The	0：01：09	0：01：02	0：00：14	0：00：08	0：01：48	0：00：23
Anvexpr	日－b	Bb	18	8 b	B	8
A10 Time	0：00：16	0：00：38	0：00：07	0：01：06	0：00：39	0：00：31
Anverer	C 6	$c \cdot$	16	C．	c 6	c c
TOTA Time	0：09：20	0：15：41	0：04：10	0；07：03	2：09：57	－ $0: 12: 50$
TOTAL，Wrong					4	－
Hack Ane						2

	NUMBET 13	WUTITER 14	MUMPIER 15	Numera 15	NUMEER 17	NUMBER 18
Quatho Dent	0：00：58	0：00：411	0：00：29	0：00：24	0：09：28	0：05：36
Hos rainio．	0：05：32	0：09：51	0：05：38	0：07：37	0：05：12	0：04：03
Sxetion Cos．	0：01：16	0：01：28	0：00：15	0：00：41	0：01：10	0：01：03
Tetel Trinining	0：07：49	0：12：00	0：06：52	0：08：42	0：07：30	0：10：42
Sxetam	NOVISNG	ADVİin？	cowninyclia	Propectumincer	CoUnTrycul	PFONECT MANACER
EenHos	08	m	mal	mo	mo	190
11 Tme	0：00；4	0：01：26	0：00\％49	0：0120¢	0：01：37	0：01：08
Anveit	$c \cdot$	$\varepsilon \in$	A A	$c \cdot$	$A \quad b$	c
42 The	2000：54	0：00420	0：90；41	0：00\％47	0：01：29	0：00：568
Araver	日b	同	PB	A	R b	A 1
等 Tran	0：01：27	20：07＋57	0：09：44	0：01：38	0：00\％29	0：01：19
Actuer	8，	18	B日	$c 8$	B ${ }^{\text {b }}$	C c
4time	0：00：51	0．02＋85	9：00728	0：00：17	0：00：58	0：00：50
Aminer	A ：	A b	ce	Ab	c－	6 6
45 Time	0：01：11	0：01：41	0：00：23	0：92：09	0：00：90	0：00：43
Antury	81	B ${ }^{\text {b }}$	ce	A ${ }^{\text {a }}$	c	A
Estime	0：00：27	0：00：59	0：00：4．	0：00：22	0：01：02	0：00：20
Antmer	A	A．	A A	B 6	A．	86
10，time	0：00：09	0：00：14	0：00：59	0000：19	0：00：31	0：01；45
Anveser	co	10.	18	A	36	A
\％Time	0：00：12	0：07：13	0：00：44	0：00：35	0：00：50	0；01：21
Anmuet	C． 0	C．	A 4	A	A	A 2
\％That	$0: 00719$	0：01：37	0：00：30	0：00：11	0：00：18	0：02：10
Antuer	B6	B6	18	8 b	B	B
010 Tme	0：01：21	0：04：091	0：00：27	0：01：32	0：00：21	0：05：20
Ansuer	A．	A	16	C C	c a	c e
TOTA Tine	－0：07：16	0：1\％19	6：08：31	0：01：47	0：07：29	0：15：52
TOTA Wroas						$\square-1$
HCSA					4	$\square \longrightarrow$
		H0NTE日 14			Chumisf 17	NUMTE 19
JACKPOM						
Cratelo Pes．	0；00；2e	0：09：00	Q001：27	0：00＋37	0：01：49	0：02：56
JACK trining	0：02：51	0：05：14	0．04：11：	0：04：28	0：92：40	0：07：55
Svatem Dise	0：09724	0：90：43	0490．9\％	0：00：51	0；00］43	0：00：50
Total Trinina	0：03：59	0：08：57	9：08：97	0：05：54	0：05：12	0：06：41
Sxatem	Caninycya	PROLECT MANCER	AOVSNG	ACVISINS	PROKCT M NACFI	CONTEYCUB．
Sexpdacx	10	70	－	mo	72	1 m
\＃1．Tint	0：00：48	0：09：2］	0：00：24	0：02：03	0：00：30	0：02：20
Antur	A．	C	CS	C．	Co	A．
ntten	0：01：43	0：01：03	0×90418	0：00：25	0：01：06	0：01：38
Anmer	86	A	8 A	8 －	A 1	Ba
Das Time．	0：00：16	0：01：${ }^{\text {a }}$	9：01：27	0：00：2？	0：00：57	0：00：21
Anaver	B6	C．	18	B 6	c	180
ALAme	0：00：＊${ }^{1}$	0：09： 51	9：01：09	0：00\％ 2 ？	0：00：26	0；01：17
Anawer	C 2	B	A A	A	B6	6 c
Pr Time	0：00：220	0：07：12	9001：13	0：00：5	0：09：401	0：00：25
Anceref	C	A 8	8 ${ }^{\text {B }}$	B b	A	$1{ }^{\text {c }}$
\％stme	0：01：02	0：00：30	0：00：42	0：02：09	0：00：11	0：00：30
Antuer	A．	13＊	A．	A．A．	18，	A ${ }^{\text {a }}$
07 Trae	0000：19	0：01：25	0：00：01．	0：00：13	0：00：29	0：00：17
Antwer	8.6	A	$C \mathrm{C}$	c－	A	B ${ }^{\text {b }}$
6）Tane	0：00：41	0：01：20	2000\％41	0：00：24	0：00：17	0：02：01
Ancuen	A b	A－	C．C	C．	A．	A b
He Tres	0：00：32	0：01：50	－0；00：26	9：00：39	0：01：89	0：01：26
Antuer	日	Bue	BC	B6	18	18．6
tho Time	0：09：20	0：01：31	0：01：02	0：00：59	0：00：53	0：00：48
Anewer	C．	1.	A A	A	C b	C b
TOTA Tme	0008：37	0：13：293	0007：34	0：08：49	0：07：25	0：11：03
TOTAL Wrona					3.	
JACK R Rete					2	－2

	NUMIER 19	NUMOTEA 20	THUMEER 21	WUMEER 2？	NUMSER 28	NUWEB 24
Hos						
Catheto Dest	0：00：44	0：01：03	0：00：15	0：01：30	0：00：30	0：00：03
HOS truinha	0：08：07	0：02；33	0：04：53	0：02：38	0：04：39	0：04：35
Svetem Des．	0：00：58	2：00：37	0：00：13	0：00：52	0：00：32	0：01：17
Tefoll Trining	2：07：47	0：04：13	2005－21	0：05；00	0：05：41	0；05：55
Symam	APVEINS	ADMSINS	caniricus	PPOECT MAMKCER	COUNIFYCUP	PAOECT MANACER
Semitios	no	mo	1 m	no	no	10
01 Ime	0：01：24	0：00：49	0：01：21	0：01：081	0：00：43	0：00：46
Antuer	C 8	C \＆	A A	1 C	A a	C 8
42 Tims	0：00：13	0：00：42	0：01：09	0：01：15	0：01：28	0：00：53
Antwer	日b	18	1．	A a	18	A a
ns Time	0：00：4．9	0：00： 29	0：00：50	0：81：12	0：00：23	0：00：39
Ancuer	18	日b	18B	1 Ca	B b	$C^{\text {e }}$
atrme	0：00：59	0：00\％41	0：01：30	0：00；24	0：00：30	0：00：08
Answer		A ${ }^{\text {a }}$	C 6	B		B b
03 Tims	0：01：10	0：00：11	0：00：17	0：00：52	0：00：20	0：00：18
Anzwer	日b	日 6	$C \mathrm{C}$	A．	c．e	A．
\％s Time	0：00：588	0：00：27	0：00：59	0：00：16	0：00：18	0：00：30
Animer	A．	A	A A	B6	A 8	B a
17 Tres	0：00\％ 28	0：01423	0：00：51	0200417	0：00：12	0：00：25
Anveer	C O	16.	B A	A．	18 b	A
es Time	0：01：05	0：00；${ }^{218}$	0：00：32	0：00：21	0：01：02	0：00：19
Anavic	6	16	A 8	A 1	A．	A
00 Time	0：00：17	0：00：47	0：00：49	0：00：24．	0：00：28	0：00：42
Ansuer	B6	Be	日	B6	8 b	B b
\％10 Time	0：01：15	0：01：2．	0：00：28	0：01：098	0：00：33	0：00：51
Anveer	A－	A	C A	C 2	6 e	C 0
TOTA T Tine	0：P8：55	－0：00：00	9：01：47	0：07：23	0：08：12	0：05：31
TOTAL Wrene						
HOSR						
	WUATSH 11	W以17A 20	WITAIEM 21		［ NW	WUWER 24
TACKPOM						
	Qiepe2．	0：00：44	0：00：11	9：00；20	0：00：27	0：00：03
JAck trining	0：04：13	0：00：40	0：04：10	0：03：19．	0：03：28	0：03：49
Sutiem Das．	0：00：57	0：00\％29	0：00：35	0：00：58	0：00：52	0：00：40
Total Trimina	0：05：28	0：07：00	0：05：03	0：04：＊2	0：04：57	0：04：32
Syatiom．	counirycus		ADVISNG	ADVSNG	PROECTMAWACEP	COUNTIYCLIS
Seenjuck	no	no	10	ne	mo	no
\％1 Time	0：01：52	0：00：43	0：00：51	0：00：58	0：00：20	0：01：38
Ansuet	A ：	c． 9	$c \mathrm{C}$	c b	C c	A
2 Time	0：00：59	0：00：18	0：00：31	0：01：46	0：01：11	0：01：18
Anmer	86	A	18 A	日	A	目口
63	0：00；2e	0：00；46	0801：02	0：00：37	0：00：50	0：00：26
Anmuer	日b	C．	B 8	18	1 C	B 6
4 Time	0：00：29	0：01：04	－0：00：42	0：00：17	0：01：12	0：00：40
Anewer	C．	8 8	A	A 3	18	C 8
${ }^{6} 5$ Time	0：00：59	0：01：002	0：00：27	0：00917	0：00：29	0：00：12
Anweer	C C	A ．	B ${ }^{\text {日 }}$	18	A	C c
\％Time	0：00：23	0：00：14	0：00：591	0：00：44	0：00：34	0：01：27
Anexer	A ${ }^{\text {a }}$	B	A．${ }^{\text {a }}$	A	Bb	A．
7 Time	D：00：13	0：00：14	0：00：24	0：00：13	0：01：11	0：00：22
Anower	86	4	C． 6	C．	A	8 B
4 Time	0：01：20	0：00：25	0：00：29	0；00：32	0：00：12	0：00：51
Anvier	A．	A 1	CB	ce	A	A
mo Time	0：00：55	9：00：50	0：00：42	0：00：23	0：00：57	0：00：40
Anower	B．b	86	BC	B	日6	B b
010 Time	0：00：23	0：00：29	0：00：20	0：00；18	0：00：19	0：00：18
Annuer	C．	C	A A	A	C	C．
TOTA Tme．	0：08：01	0：08：09	0008：27	0\％06\％20	0：07：26	0：07：55
TOTAL Wrena					1	\bigcirc
JACK Rete					－ 2	1

Professional Spreadsheet Data

	Wuvera 1	RuMPa8？	WuMati3	Mumbifa 4	Nuwars． 5	NUMEER 6
HOP						
Cibalo Deen．	0：04：07	0：00：42	0：00：58	0：00：48	0；01：17	2：02：54
Hos trinina	0：05：52	0：08：29	0：01：25	0：04：05	0：05：21	0：10：02
Svatam Des．	0：01：21	0：01：08	0：00：43	0：01：06	0：00：49	0：00：31
Texal Trining	0：11：27	0：08：13	0：12：06	0：05：57	0：07：27	0：13：27
Systom．	SAVMOS ACCOUNT	SAYNOSACCOUNT	SAVMOSACCOUNT	SAVNGSACCOUNT	SAVMOSACCOUNT	SAVINSACCOUNT
Sen ${ }^{\text {H08 }}$	yex	yen	mes	yes	wea	ves
4 Time	0：04：05	0：07＊09	0：00\％48	0：01：13	0：01：44	0：03：42
Answer	1－	B	B6	B－0	8.8	8 B
42 Time	0：01：40	0：02：04	0；00：32	0：00：22	0：01：42	0：01：13
Anminer	A b	A b	A A．	A．	A A	A A
43 Time	0：02；43	0：01：13	0：01：00	0：00：40	0：01：10	0：01：13
Antuer	16	B	1 A	B b	8 B	B B
Hame	0：09：05	0：00：58	$0001: 101$	0：00：51	0：01：12	0：01：21
Anemer	D d	D b	D	D 1	D A	D 6
03.10 me	0：00：42	0：01：14	0：01：09	0：00：25	0：00：54	0：00：53
Arewer	86	B－9	B8	回口	日日	B8
－1／Time	0：01：03	0：01：26	0：00：57	0：00：37	0：02：09	0：01：48
Antmer	8 B	B b	18 C	8 B	B B	日
17 Tms	0：01：21	0：01：03	0：00：39	0：0829	0：00：22	0：00：47
AnTwer	C．	1 C	$C \mathrm{C}$	G 8	C 6	$C \mathrm{C}$
Whers	0：01：09	0：01：07	0：00：37	0：00：55	0：01：04	0：01：31
	B6	8－b	日	18	B 8	8日
09 Time	0：00：17	0：01：19	0：00：72	0：00：16	0：00：23	0：00：28
Armuer	B6	B 6	日	8 B	B 8	B8
\％10 Tima	0：90：4！	0：00：45	$0400 \cdot 22$	QR09：09：	0：00：12	0；00：28
Arwier	$c \cdot$	C	C C	C－	1 C	C C
TOTA Time	0：10：5］	0：13：18	0：07：30	0：05：51	0：10：53	2：13：31
TCTAL Wrona						
HCSET．．．		？			－ 3	
	NuITEA 1	WUMTER	WUWITR	Wurisi 4	MWMER	NUMEEA
Ofinalo Des．	0：03：11	0：02：42	0：00：37	0：02：01	0：00：35	0：00：20
Jeck metinina．	0：04：19	0：04：28	0：07：57	2：0320	0：03：39	0：03：32
Suxam Dat．	0：01：59	0：01：03	0：01：06	0：01：25	0：00723	0：00：19
Texal Trathine	0：09：39	0：93：21	0：04：40	0：05：45	0：04：37	0：04：11
Sxatem	AOVISINA	AOMSTME	Cunitycile	PROECTMMNCER	CONIIVCUR	PROLECTMANACER
Semadeck	Yes	0	nes	0	0	nex
\％1 Time	0：00：56	0；01：44	0：00：43	0：00：25	0：00：33	0：00：58
Antmer	C	18.	A	18	A A	C C
${ }^{2}$ Time	0，0：01：02	－0：02；45	－0：00724	0：00：32	－0：01：07	0：01：34
Anemer	B 6	B	B6	A 3	目	A C
Wis Time	0：01：47	0：02：17	0：00：285	0：00：50	0；00：21	0：00：37
Anwer	日b	8 b	B	C^{4}	8 8	C C
Het Time	0：00：25	0：00：39	0：00：39	0：00：27	0：00：30	0：02：06
Answat	A	A	6 C	B b	C．c	B B
8 \％Time	0：00：55	0：00：43	0：00：32	0：00：10	0：01：09	0：00：56
An¢．．．fr	18	B－b	$\mathrm{CBC}^{\text {c }}$	A ${ }^{\text {a }}$	6 C	A A
Est Time	0：00：42	0：01：19	0：00：15	0：00：23	0：00：40	0：00：51
Anmuer	A．	A．	A A	日b	A A	88
17 Time	0：00：16	0：00：50	0：00：24	0：00：16	0：00：14	0：00：34
An¢mer	$c 8$	18	B－1	A．	88	A A
EATme	0：01：08	0：01：10	0：00：37	0：00：12	0：01：07	0：00：33
Anawer	c．e	c．e	A A	A	A A	A B
\％Time	0：00：50	0：00：31	0：00：51	0：00：23	0：00：49	0：01：33
Anmer	日6	10	B A	B 6	B ${ }^{\text {B }}$	8 C
\％10 Time	0：01：03	0：00：56	0：00：26	0：00：27	0：00：38	0：00：53
Anmer	A．	A	C A	C C	c A	$C \mathrm{C}$
TOTA Trime	0：00：11	0：12：52	0：05：19	0：04：11	0：07：08	0：10：35
TOTAL Wiona					$\square 1$	
JACK Rate	2		1	\square	－ 2	2

	NUMBER 7	NUMBER 8	Numbern 9	NLMBER 10	NUWBER 11	NUMEER 12
WARNIER－ORR						
Othallo Den，	0：00：50	0：01：52	0：00：27	0：00：38	0：00：08	0：00：23
WO tralaing	0：05：45	0：01：26	0：02：39	0：03：06	0：05：41	0：05：34
Syetem Des．	0：00：39	0：01：21	0：01：08	0：00：35	0：00：37	0：00：32
Total Training	0：07：14	0：04：39	0：04：14	0：04：19	0：06：26	0：06：29
Systom	COUNITYCUS	FPROECGT MANACER	ADVISING	ADVISING	PROIECT MANAGEP	COUNTRYCLUB
Seen WO．	no	mo	no	no	yes	yoz
＊1 Time	0：01：09	0：00：48	0：00：18	0：01：10	0：00：57	0：01：16
Answer	A．${ }^{\text {l }}$	$1{ }^{\text {c }}$	C． 0	C．	C．	A A
\％2 Time	0：01：20	0：00：21	0：00：41	0：01：55	0：00：37	0：01：08
Anmerer	日	A 4	B ${ }^{1}$	日	A	B A
＊3 Time	0：00：21	0：01：44	0：00：42	0：00：38	0：00：34	0：00：47
Anmint	B	C 0	B C	8 B	C°	B B
44 Time	0：01：15	0：00：98	0：00：48	0：00：10	0：00：40	0：00：49
Anverer	c 0	B b	A	A．	B b	C C
W5 Time	0：00：23	0：00：28	0：00：13	0：00：13	0：01：14	0：00：15
Answer	C．	A b	B b	B b	A 1	$c \mathrm{C}$
H6 Time	0：00：23	0：00：17	0：00：소요	0；00：59	0：00：45	0：00：12
Answer	A	目	A b	A b	B b	A． C
67 Time	0：00：20	0：00：18	0：00：17	0：00：26	0：00；27	0：00：40
Answer	B	A	C－	C c	A	B A
＊8．Time	0：00：31	0：00：14	0：00：24	0：00：30	0：00：28	0：00：42
Anvery	A．a	A	c e	1 C －	A	A B
6 Cl Time	0：00：31	0：00：39	0：00：39	0：00：44	0：00：25	0：00：58
Anewer	B b	8 b	1b	日 b	B b	B 8
610 Time	0：00：37	0：00：28	0：00：40	0：00：38	0：01：40	0：00：35
Answer	C 0	C c	A b	A	C a	C C
TOTAL Time	0：08：50	0：05：45	0：05：12	0：07：15	0：07：47	0：07：22
TOTAL Wrong					0	
WORens	4			4		
	NUWBER 7	NUMBER	NUMBEA	RUMSER 10	NUMBER 11	NUWBER 12
YOURDON－COHSTANTINE						
Othallo Des．	0：00：31	0：02：09	0：00：36	0：00：16	0：00：28	0：00：39
YC training．	0：04：22	0：01：18．	0：02：07	0：02：27	0：04：28	0：04：57
Svitem Des．	0：00：49	0：00：35	0：00：45	0：09：26	0：00：51	0：00：45
Tota！Training	0：05：42	0：04：02	0：03：28	0：03：09	0：05：47	0：05：21
System	PROECT MWHCER	COANIFYCLUB	PPROECT MANEOFF	Cognityclub	ADVISNG	ADVISING
Saen YC	no	no	no	ves．	ves	yes
＊1 Time	0：00：47	0：00：36	0：00：47	0：00：29	0：01：44	0：04：40
Answer	C 6	A 0	C	A b	C e	C B
\％Time	0：00：40	0：00：37	0：00：12	0：00：25	0：00：51	0：00：45
Antwer	A	目	A 0	BA	8 A	B A
43 Time	0：00：24	0：00：39	0：00：19	0：00：39	0：02：30	0：00：58
Answer	C c	日 6	C．b	8．b	日	B． 8
64 Time	0：00：59	0：00：45	0：00：2 ${ }^{\text {s }}$	0：00：51	0：00：49	0：00：48
Answer	日	C b	B b	C b	A	A A
05 Time	0：00：41	0：00：25	0：00；28	0：00：11	0：00：42	0：00：14
Anmerer	A	C．	A	C．	日 6	日 B
\％Time	0：00：38	0：00：17	0：00：31	0：00：34	0：00：24	0：00：41
Anmuer	B．	A	日 6	A．a	A．	A A．
47 Time	0：00：32	0：00：11	0：00：32	0：00：04	0：09：10	0：00：34
Anmer	A b	B b	A	B b	18	C C
\％s The	0：00：17	0：00：33	0：00：23	0：00：23	0：00：50	0：00：47
Answar	A．	A	A	A	C b	C A
mo Time	0：00：25	0：00：19	0：00：51	0：00：24	0：00：21	0：00：48
Answer	Q 6	B ${ }^{\text {b }}$	18	B b	BC．	B B
\％10 Time	0：00：13	0：00：14	0：00：38	0：00：12	0：00：35	0：00：20
Anewer	c．	18	C．	C	A	A A
TOTAL TMe	0：05：37	0：04：38	0：05：15	0：04：12	0：08：58	0：10：38
TOTAL Wrona	3	，	，	\square		3
YCRzte				－ 3	4	\square
Diancram Choice	ieckiton	lackson	HOS	hos	han	HCS
Courses Taking	c：700	c8700	17？	？？？	C8700	C：700
	C3720	ca 761			e8720	［09320

	NUMSEP 13	NUMTEER 14	NUMIER 15	NUMBER 18	NUMBER 17	NUMBER 18
H08						
Othello Dent	0：01：06	0：00：21	0：00：39	0：02：05	0：01：33	0：03：09
HOS trining．	0：05：50	0：05：28	0：07：41	0：05：42	0：08：43	0：02：15
Syotem Des，	0：01：03	0：00：41	0：00：34	0：00：48	0：00：44	0：00：31
Total Trining	0：07：59	0：08\％ 28	$0 \cdot 0984$	0：08：35	2：11：00	0：05：55
Svatem	ADVISIM	ADVISINA	CONIIAYCIIS	PROQECT MANACEF	country	PAOIECT MAVMCER
Ematios	0	wen	yes	0	mo	m
61 Time	0：01：08	0：00：29	0：02：31	0：00：24	0：01：41	0：02：04
Anmer	16	6 －	A	6	A b	C 1
8 Time	0：00：＊23	0：01：04	0：01：31	0：01：37	0：02；1\％	0：01：22
Anmer	B6	8 B	日b	A．	日－	A 1
＊Time	0：01：29	0：00：20	0：00：48	0：01：43	0：00：22	0：01：02
Anwer	日b	86	16	$c \cdot$	日 6	C 8
44 Tine	0：00：28	0：00：009	0：00\％42	0：00：14．	0：01：20	0；00：42
Anmer	A e	A	C 8	B b	C 8	B b
＊5 Time	0：01：14	0：00：09	9：01：17	0：00：41	0：00：27	0：01：17
Ansuer	16	日	C．	A	C．	A．
－Time	0：02：03	0：00：29	0：00：21	0：01：19	0：00；28	0：00：45
Antwer	A b	A．	A	B	A 1	日 b
6．Tme	0：0022：	0：00249	0：00：20	0：00：23］	0：00：30	0：00：48
Anmmar	6 ¢	c	B6	A	8 b	A 3
通 Trme	0：00：22	Q：00：5？	0：00：48	0：01：26	0：01：19	0：00：20
Antuer	Cb	C．	A．	A ${ }^{\text {a }}$	A 1	A．${ }^{\text {a }}$
－a Time	0：00：326	0：00：39	0：00：48	0：00：24	0；00：32	0：00：24
Answer	180	18	日	1－b	B b	1 B
\％10 Ther	0：00：33	0：01：43	0：00：48	0：01：52	2：00：31	0：01：21
Anauer	A 1	A b	C．		C	C c
TOTAL The	0：08：47	0：08：39	0：10：01	0：10：13	0；09：23	0：10：05
TOTAL Whona						
HCSR	4	2		？	2	
	WUWIS成 13	NDITEA 14	WUMEA 1 I	WUMIEAR 15	NUMBER 17	NUMBER 18
JACK\％						
Othelo Def．	0：00：27	0：00：07	0：00：39	0：09：37	0：00：41	0：01：41
Jack training	0：03：56	0：03：57	0：04：20	0；04；43	0：03：54	0：03：30
Sustem Path	0：00：10	0：90：30	0：00：45	0：00：38	0：01：19	0：00：37
Total Trinina	0：04：41	0：04：34	0：05：44	0：05：51	0：05：54	0：05：48
Sxatem	Coxnlayclis	PROEGETM＊NACER	ADVISNB	ADVEING	PRQECTMANKESA	COUNTEYCLIS
Sath Jack	0	nom	man	09	ne	m
61 Time	0：01：35	0：00； 30	0：01：21	0：01：06	0：00：30	0：01：05
Anower	$A \quad b$	C O	C．	C 2	C c	A－
Hatime	0：01：28	0：00732	0：00：42	0：01：09	0：00：21］	0：00：58
Antuer．	18	A	B b	18	$4 \times$	8 \％
6 Time	0：00：2］	0：00：17	0：01：23	0：00：44	0：00：58	0：00：30
Ansemer	1－6	$c \cdot$	日b	B－b	6 C	B \quad b
es Time	0：00：23	0：02：318	0：00：50	0：00；20	0：01：11	0：00：40
Answer	C．	B6	A	A 1	B b	c a
Whtme	0：00：31	0：00：23	0：00；20：	0：01：04	0：00：26	0：00：25
Anmerr	ce	A 1	B b	B	A 1	C e
WS Time	0：01：11	0：00；37	0：01：23	0：00：50	0：00：14	0：00；41
Anower	A．	8.	A．	A．	日 b	A．
17．Time	0：00：18	0：00：11	0：00：15	0：00：10	0：00：29	0：00：08
Anower	86	A	C $¢$	$c 8$	A．	86
He Tme	0：01：00	0：00：14	0：00：43	0：01：46	0：00：22	0：02：28
Anouer	A	A	C．	C． 8	A	A ${ }^{3}$
We Trme	0：01：26	0：01：01	0：00：12	0：00：42	0：01：34	0：00：38
Anmer	18．	8 C	10	B 6	B．	B－b
610 Time	0：00：37	0：00：40	0：01：09	0：01：17	0：00：56	0：00：35
Anverit	C	C a	A	A	C c	C．
TOTALTIme	0：09：07	0：05：03	0：00：23	0：09：02	0：07：18	0：088：08
TOTAL Wrone				2.	1	0
JaCK Pate				2.	2	2

	NUMBER 13	NUMBER 14	WUMBEA 15	NUMBER 16	NuMBER 17	NUMBER 18
Othello Dut，	0：01：07	0：00：38	0：01：50	0：01：07	0：01：10	0：00：44
Wo tratin．	0：08：05	0：04：31	0：05：23	0；05：09	0：05：43	0：05：26
Spetam Des．	0：00；29	0：00：26	0：01：10	0；00：29	0：00：38	0：00：26
Total Training	0：07：41	0：05：35	0：08：23	0：06：45	0：07：40	0：06：38
Svetem	SAVNGSACCOOUNT	SAVINOS ACCOUNT	SAVNESACCOUNT	SAVIGS ACCOUNT	SAVNBSACCOUNT	SAVINCS ACCOUNT
Soen WO	no	no	yes	no	yes	no
\％Time	0：09：18	0：00：47	0：01：28	0：00：23	0：01：37	0：04：15
Answar	目	8 a	B 0	B b	B．${ }^{\text {a }}$	日 b
\％2．Tlime	0：00：46	0：01：21	0：01：14	0：01：18	0：00：37	0：01：41
Answer	A．	$A \quad b$	A．	A	A	A b
\％Time	0：00：59	0：00：50	0：01：15	0：00：52	0：01：58	0：01：04
Answer	目	B b	B．b	B	P b	日 6
44．Time	0：00：13	0：00：43	0：00：35	0：01：32	0：01：04	0：01：44
Antamer	D d	D 1	D b	D	D b	0 d
05 Time	0：01：45	0：01：13	0：01：37	0：02：18	0：01：01	0：00：37
Anmuer	Ba	1 c	B 2	B C	B．	8 B
${ }^{5} 5$ Time	0：01：09	0：00：44	0；00：26	0：01：04	0：00：57	0：00：52
Anewer	B b	8 b	B 6	8 l	Bb	B
07 Tlime	0：00：40	0：00：44	0：00：17	0：00：22	0：00：56	0：01：07
Answer	10	C 0	C	C．	c． 0	c c
${ }^{4} 8$ Time	0：00：58．	0：00：21	0：01：42	0：00：42	0：02：29	0：03：26
Antimar	B． 2	86	18	Be	B＿	B 6
＊9．9．ime	0：00；45	0：00：13	0：00：38	0：00：43	0：00：30	0：00：16
Answer	$B 6$	8 b	日	B 6	B．b	日 6
＊10 Time	0：00：41	0：00：17	0：00：15	0：00：20	0：00：35	0：00：17
Answer	$c \cdot$	C C	C	c c	C 2	C 6
TOTAL The	0：08：12	0：07：19	0；09：28	0：09：32	0：11：44	0：15：19
TOTAL Wrona				5	4	．
WORte．		4	5	g		
	NUMBEE 13	NUMBER 14	NUWEFR 18	NUMPE日 18	NUMBER 17	NUMBER 18
YOURDON－CONSTANTINE						
Othello Des．	0：00：09	0：00：09	0：00：30	0：00：31	0：00：41	0：01：18
YC tralining．	0：05：29	0：03：09	0：07：40	0：06：04	0：06：07	7 0：03：44
Svetem Des．	0：00：34	0：00：24	0：01：51	0：00：57	0：00：46	0：00：40
Total Training	0：06：12	0：03：42	0：10：10	0：07：32	0：07：34	00：05：42
Syatom	PROAECT MANACER	CONNIFYCLA	PFANECT MANGEFR	Countirycus	ADVISNO	ADVISING
Seen YC	no	00	yen	no	mas	no
－1 Time	0：00：10	0：00：52	0：02：43	0：01：38	0：01：59	0：02：44
Angwer	C°	A.	C	A	C	c b
42.1 me	0：01：04	0：00：49	0：00：38	0：02：22	0：02：39	0：01：54
Annwer	A	B	A．8．	B 6	B b	B b
－3 Time	0：01：48	0；00：58	0：00：44	0：01：32	0：01：40	0：01：33
Anawer	C．	Bb	$1 c^{\circ}$	日 6	B．b	B6
44.10	0：00：49	0：00：48	0：00：58	0：00：23	0：00：37	0：00；34
Anyuer	B－2	C：	B．b	C	A	A
＊s Tme	0：00：41	0：00：15	0：00：27	0：00：29	0：00：28	0：01：53
Answer	A b	c 0	A．	16.	日b	B b
40 Tims	0：00：52	0：00：12	0：00：27	0：00：27	0：02：22	0：00：41
Anmwer	18．6	A	日 6	A	A 1	A．
177 Trme	0：00：28	0：00：12	0：00：28	0：00：20	0：00：18	0：00：08
Answis	A	B b	A	B b	c．e．	C． 0
\％Time	0：00：39	0：00：31	0：00：25	0：00：59	0：01：46	0：01：12
Anmer	A b	A 2	A b	A b	C．d	C b
${ }^{4} 8$ Time	0：01：17	0：00：35	0：02：26	0：90：38	0：00：21	0：00：31
Antwer	B b	日	B	B b	B 0	B b
＊10 Time	0：00：45	0：00：21	0：00：21	0：00：25	0：00；33	0：01：04
Antwer	c 0	C 0	c．	C°	A 2	A
TOTAL TIme	0：98：42	0：05：32	0：09：37	0：09：23	0：12：48	0：12：14
TOTAL Wrone				－${ }^{-}$	\square	
YCRate			5	－${ }^{\text {S }}$	3	4
Dararem Choion	lackson	HOS	nome	HOS	Finksoon	fackson
Courien Taking	7717	ca300	918330	es700	araphics	araohics
		Ca3720	201781	2an720		deatrbeste

	NUMBER 19	NUTBEE 20	NUMEIER 21	NUMPER 2 ？	WUMBER 23	NUMBER 24
Oithllo Des．	0：00737	0；00：57	0：00：21	0：00：38	0：00：17	0：00：28
HOS trining	0：04：27	9：08：18	0：08：55	0：04：17	0：03：40	0：07：38
Svetem Des．	0：00；35	0：00：08	0：00：24	0：00：27	0：00：40	0：00：38
Total Trainina	0：05：34	0：07：23	0：07：50	0705：20	0：04：37	0：08：44
Sutam	AOVSIMO	ADVISing	contirycils	PROTECTMANACEF	CONTAYCUB	PAOEETMANACER
Seentios	0	yen	mas	0	ves	ves
61 Tims	0：02：08	0：02＋11	0：00\％${ }^{\text {a }}$ ：	0200：58	0：00：55	0：00：53
Antuer	C．	C	A	1.	A	C C
42 Tims	0；00；29	0：00：27	0：00：28	0：00：11	0：00：49	0：01：30
Anawet．	81	18	B－	A	B 6	A－
03 Time	0：01：24	0：02：49	0：00：42	0：00：28	0：00：29	0：00：36
Antwer	B b	B	B	c	8	16
24．The	0：01：17	0：01：27	0：00\％4	0：90：49	0：00：49	0：00：58
Anmerer	A．	A d	6	日b	C－	B b
5 Tlane	0：01：15	0：00：07	0：00：27	0：00：40	0：00：21	0：00：57
Anamer	日b	16	C．	A．	C e	A．a
$0 \mathrm{Tm} \mathrm{m}^{\text {a }}$	0：00：42	0：00：25	0：00：20	0：00：30	0：00：39	0：00：42
Ancent	A	A	A	B6	A．	B b
W Time	0：00：30	0：00：10	0：00：12	0：00：11	0：00：16	0：00：19
Answer	C．	6.	8	A	B	A．
EATME	0：01：16	0：00：518	0：00：43	0：00：24	0：01：01	0：00：34
Antaen	$1 \cdot$	Cb	A．	A．	A．	A．
\％Time	0：00：48	0：00：19	0：01：05	0：00：38	0：00：11］	0：01：14
Anvent	日c	B b	日 b	B b	B	B b
H10 Time	9：02＊ 49	0：02：16	0：00749	0：01：18	0：00＊59	0：01：19
Anturt	A b	A	C．	C	C b	C^{C}
TOTH Time	0：12：35	0：11：09	0：06：13	0：08：13	0：06：38	0：09：02
TOTAL Wromp					2	\square
HOSE					，	
TACK\％						
Ghallo Des．	0：01：24	0：00：37	0：00：33］	0：00：29	0：00：20	0：00：29
JACK trinine	0：03：07	0：03：49	0：09：2］	0：02：33	0：03：42	0：04：33
Sutam Dath，	0：00：10	0：00781	0501：098	0：00：27	0：00：31	0：00：40
Total Triaino	0：04：41	0：05：17	0：05：09	0；03：2］	0：04：39	0：05：42
Svetem	CaxNayCus	PRAECTMWMCFA	ADVEINS	AOVISN：	PRCOECTMANACER	COUNITYCM8
Sath dack	0.	mas	－uas	vee	veat	we
01 Theo	0：01：09］	0：00：27	0：00：36	0：01：03］	0：00：44	0：01：21
Anveir	4 b	$C \mathrm{C}$	c b	Cb	C a	$A \times$
2 Tm	0：01724．	0200：5］	De0．0：19	0：00737	0：00：19	0：00：55
Anmer	B b	A	8	B	A－	8 8
mame．	0：02：05	0：01：14	0：00：45	0：00：30	0：00：29	0：00：17
Antuer	Bb	C e	18	Be	$C \mathrm{C}$	日b
44 Time	0：00：19	0：01：14	0：00：17	0：01：33	0：00：33	0：01：45
Anturef	C 8	B b	A	A b	B	C
${ }^{6} 5$ Time	0：00：11	0：00； 46	0：00：13	0：00：0，	0：00：33	0：00：44
Antwer	C 8	A	18	B	A．	$1{ }^{\circ} \mathrm{C}$
Es Time	0：00：13］	0：00：31	9：00：41	0：00：29	0：00：14	0：01：03
Antuer	A－8	B＿		A．	B＿b	A．a
6，Time	0：00：56	0：00：3？	0：00：14	0：00：07	0：00：11	0：00：27
Antuelf	B ${ }^{\text {b }}$	A b	C^{2}	C	A	B b
Ue Time	0：01：46	0：00\％49	0：09\％20	0：00：283	0：00：10	0：01：31
An\％uy	$A \quad 1$	A 3	C．	C．0	A．	A．${ }^{\text {a }}$
W Time	0：00：52	－0：02：03］	0：00：18	0：00：44	0：00：31	0：00：38
Anmen	18	B＿0	86	B\％	B．b	8．b
\％ 10 Time	0：00：11］	0：01：15	0：00：318	0：01：12	0：01：34	0：00：26
Anomer	C．		A	A．	C．	C
TOIALTme	0：09：14	0：012：3］	－0\％04：38	0\％06：Ca	0：05：18	0：02：07
TOTAL Wma					2	
JaCK Rate		2		2	\square	$\square 3$

	NUMBER 19	NUMBER 20	NUMBER 21	NUMBER 22	NUMBER 23	NUMBER 24
Othallo Deas.	0:00:39	0:03:08	0:00:24	0:01:07	0:00:21	0:00:39
WO training	0:02:23	0:03:32	0:03:48	0:02:31	0:04:10	0:07:51
Syatem Des.	0:01:49	0:00:57	0:00:30	0:01:49	0:00:52	0:01:15
Total Training	0:04:51	0:07:35	0:04:42	0:05:27	0:05:23	0:09:45
Syatem	PRQQECT MANAGER	CONTITYCUB	PRAGECT MANAGEA	COUNITYCLIP	ADVISNG	ADVISIMG
Seen Wo	yen	yen	yen	ves	ves	yes
th Time	0:00:27	0:01:42	0:00:41	0:01:25	0:01:58	0:01:47
Answer	C 2	A	C 6	A	C	c -
42. Time	0:01:43	0:01:27	0:00:48	0:01:38	0:01:05	0:00:53
Anquer	A. 1	B 6	A 2	B b	B b	8 B
$4{ }^{4}$ Time	0:00:35	0:01:03	0:00:26	0:00:27	0:00:25	0:02:47
Answer	C c	B b	C 0	B b	B 0	B b
Hetime	0:00:19	0:00:19	0:00:25	0:00:49	0:00:51	0:00:37
Answer	B b	c a	B b	C	A.	A a
*5 Time	0:00:12	0:00:48	0;00:12	0:00:11	0:00:21	0:00:41
Answer	A I	C.	A	c 0	$8 \times$	B b
\% 6 Time	0:00:39	0:00:26	0:00:32	0:00:25	0:00:51	0:01:02
Antwer	B b	A	B b	A	A 1	A
77 Time	0:00:32	0:00:39	0:00:09	0:00:18	0:00:20	0:00:17
Answer	A.	日	A I	B6	C 0	C c
㫼 Time	0:00:10	0:01:16	0:00:09	0:00:17	0:00:17	0:00:56
An*wer	A	A	A .	A -	6 c	C b
* Time	0:00:12	0:00:30	0:00:20	0:00:20	0:00:19	0:00:55
Answer	B b	B b	B b	B b	B b	B b
\%10 Time	0:00:25	0:00:34	0:00:57	0:00:23	0:00:51	0:01:52
Answer	c	6 -	C^{c}	c	A	A a
TOTAL Time	0:05:14	0:08:42	0:04:39	0:06:07	0:07:18	0:11:47
TOTAL Wrone					-	
WORate	4	3	S	4	3	
	NUMESR 19	NUMBER 20	NUMBER 21	NUHBER 22	NUMBER 23	NUMBER 24
YOURDON-CONSTANTINE						
Othello Det,	0:00:49	0:00:51	0:00:56	0:02:56	0:00:52	0:00:55
YC training	0:08:57	0:03:59	0:06:24	0:04:03	0:03:29	0:05:50
Svetem Dest.	0:00:35	0:00:54	0:00:50	0:00:51	0:00:34	0:01:01
Total Training	0:08:21	0:05:44	0:08:10	0:07:50	0:04:55	0:07:46
Syatom	SAVNGS ACCOUNT	SAVNSSACCOUNT	SAVINGSACCOUNT	SAVNGSACCOUNT	SAVMGS ACCOUNT	SAVINGS ACCOUNT
Sten YC	no	yen	mes	ves	,	yea
*1. Time	0:00:58	0:01:18	0:02:28	0:00:58	0:01:08	0:02:08
Anwer	B b	B b	B b	B 0	B 2	B a
- ${ }^{\text {che }}$ Time	0:00:58	0:01:19	0:01:01	0:00:44	0:00;48	0:03:07
Anvwer	A	A	A	A b	A 1	A
*3 Time	0:01:28	0:04:29	0:01:22	0:00:51	0:01:20	0:01:19
Anewar	$8 \times$	8 c	B. 0	18.	8 c	B 0
44 Time	0:00:49	0:00:23	0:00:35	0:00:18	0:00:18	0:02:04
Answer	D d	D	10	D	D	D
*5 Time	0:00:45	0:00:53	0:00:25	0:00:58	0:00:29	0:03:07
Anwer	B b	B b	B b	B b	B 6	B b
${ }^{46}$ Time	0:00:55	0;00:52	0:00:33	0:00:29	0:00:22	0:00:38
Answer	A.	A	A	A.	A.	A 1
47 Time	0:00:39	0:01:11	0:00:53	0:00:30	0:00:27	0:00:29
Answer	C 6	C 0	C	1 C	C 6	C. C
\% ${ }^{8}$ Time	0:00:22	0:00:22	0:00:20	0:00:27	0:00:28	0:00:34
Anmwer	B 4	B	8.	B C	8	$8 \times$
* Time	0:00:18	0:00:38	0:00:48	0:00:25	0:00:15	0:00:23
Answer	C. 6	C	C	C 8	c 8	C 6
*10 Time	0:00:15	0:00:15	0:00:17	0:00:33	0:00:15	0:00:35
Answer	C 8	c	$c \cdot$	C b	c 0	C.
TOTAL Tme	0:07:25	0:11:40	0:00:02	0:06:13	0:05:50	0:14:24
TOTAL, Wrond			4	6	4	
YCRate.	4	4	\square	9	2	$\square 3$
Diagram Choice	NONE	Inckton	lackson	lackson	hos	Packson
Covase: Teking	can 630	cal630	CS630	ea336	17??	cı761
	08636	c8780	CS890			208630

References

(1) Clarey, Jeffrey S., Automated Othello en Version 2.0, March 15, 1986.
(2) Curtis, B., Soloway, E.M., Brooks, R.E., Black, J.B., Ehrlich, K., and Ramsey, H.R., "Software Psychology: The Need for an Interdisciplinary Program", Proceedings of the IEEE, vol. 74, no. 8, August 1986, pp. 1092 - 1106.
(3) Gustafson, David A., "Class notes for CMPSC 740", Kansas State University, Manhattan, Kansas, 1986.
(4) Hamilton, M. and Zeldin, S., "The Funtional Life Cycle Model and Its Automation: USE. IT", The Journal of Systems apd Software, vol. 3, no. l, 1983, pp. 25 - 62.
(5) Higgins, David A., Program Design and Construction, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1979.
(6) Love, Tom, "An Experimental Investigation of the Effect of Program Structure on Program Understanding", proceedings of the $A C M$ conierence on Language Design for Reliable Software, March 1977, pp. 105 - 113.
(7) Moher, Thomas and Schneider, G. Michael, "Methods for Improving Controlled Experimentation in Software Engineering", Eifth International Conference on Software Engineering, San Diego, 1981, pp. 224 233.
(8) Pressman, R.S., Software Engineering: A Practitioner's Approach, McGraw-Hill, New York, N.Y., 1982.
(9) Sheppard, Sylvia B. and Kruesi, Elizabeth, "The Effects of the Symbology and Spatial Arrangement in a Coding Task", IEEE Proceedings of Trends and Applications l2gle Adyances in Software Technology, May 1981, pp. 7 - 13.
(10) Sheppard, Sylvia B., Kruesi, Elizabeth, and Curtis, Bill "The Effects of Symbology and Spatial Arrangement on the Comprehension of Software Specifications", Eifth International Conference on Software Engineering, San Diego, 1981, pp. 207 214.
(11) Woodfield, S. N., Dunsmore, H. E., and Shen, V. Y., "The Effect of Modularization and Comments of Program Comprehension", Eifth International Conference on Software Engineering, San Diego, 1981, pp. 215 223.
(12) Yourdon, E., and Constatine, L. L., Structured Design: Fundamentals of a Discipline of Computer program and Systems Design, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1979.
Student and Professional Understandabilityof Software Design Methodologies
by
PAULA V. DANIELS
BS in Computer Science, Kansas State University, 1984
AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the requirements for the degree
MASTER OF SCIENCE
Department of Computing and Information SciencesRANSAS STATE UNIVERSITYManhattan, Ransas

The initial design of a system is an important phase of the Software Life Cycle. This research examines the understandability of software design methods. Two independent groups, students and professionals, were asked to answer questions about system diagrams which were represented using four software design methods. These methods are Higher Order Software (HOS), Jackson, WarnierOrr and Yourdon-Constantine. Understandability is measured by the speed and accuracy with which the forty-eight subjects answered the questions.

Each subject was tested on all four methods; therefore, four different systems were needed. The systems are as follows: Savings Account Monthly Report System, Student Advisory System, Country Club system, and a Project Manager System. The questionnaires consist of ten questions. Each question has three to four multiple choice answers. The ten questions are the same for each system, some of the multiple choice answers vary for the particular design method. Before each subject is tested over a particular method, they are given a brief training session. The training session consists of a design method description, an Othello System example diagram and training questions.

The subjects interject their own assumptions into the diagrams for which they think they know the system or the design method instead of actually reading the diagram. They are able to trace the diagrams but have difficulty understanding the diagrams as a whole system. YourdonConstantine did the worst overall. For both test groups, it had the highest mean number wrong. Warnier-Orr had both the highest and the lowest mean number of errors for the professionals while it had the lowest overall mean number of errors for the students. Jackson did the worst on the report type system. HOS did the best overall. It had the lowest mean number wrong for the professionals and the second lowest mean number wrong for the students. The choice of which design method is the best depends on a speed/accuracy tradeoff; the accuracy of a software design should be more important than speed in doing the design. It is the hope that this research may show insights to areas of design understandability that need further investigation.

[^0]: PL - END OF OAYS
 12 - MEM DATE < © OLD OATE
 75 - NEM DATE 3 OLD OATE
 74 - OEPOSIT TRANSACTIUN
 95 - WITHORAWAL TRANSACTION
 TE - FINANCE - AVERACE BMANCE 6 S189. 08
 77 - 【NTEREST - AVERACE BMLANCE > : 5190.00

