
SCALABLE AND ACCURATE APPROACHES FOR PROGRAM

DEPENDENCE ANALYSIS, SLICING, AND VERIFICATION OF

CONCURRENT OBJECT ORIENTED PROGRAMS

by

VENKATESH PRASAD RANGANATH

B.E., Bangalore University, 1997

M.S., Kansas State University, 2002

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Science

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2006

ABSTRACT
With the advent of multi-core processors and rich language support for concurrency, the paradigm

of concurrent programming has arrived; however, the cost of developing and maintaining concurrent
programs is still high. Simultaneously, the increase in social ubiquity of computing is reducing
the “time-to-market” factor while demanding stronger correctness requirements. These effects are
amplified with ever-growing size of software systems. Consequently, there is (will be) a rise in
the demand for scalable and accurate techniques to enable faster development and maintenance of
correct large scale concurrent software.

This dissertation presents a collection of scalable and accurate approaches to tackle the above
situation. Primarily, the approaches are focused on discovering dependences (relations) between
various parts of the software/program and leveraging the dependences to improve maintenance and
development tasks via program slicing (comprehension) and verification.

Briefly, the proposed approaches are embodied in the following specific contributions:

1. New trace-based foundation for control dependences.

2. An equivalence class based analysis to efficiently and accurately calculate escape information
and intra- and inter-thread dependences.

3. A new parametric data flow style slicing algorithm with various extensions to uniformly and
easily realize and reason about most existing forms of static sequential and concurrent slicing.

4. A new generic notion of property/trace sensitivity to represent and reason about richer forms
of context sensitivity.

5. Program dependence based partial order reduction techniques to enable efficient and accurate
state space exploration in both static and dynamic mode.

In an attempt to simplify the approaches, they have been based on the basic concepts/ideas of
the affected techniques (e.g. program slicing is a rooted transitive closure of dependence relation).
As trace-based reasoning is well suited for concurrent systems, an attempt has been made to explore
trace-based reasoning wherever possible.

While providing a rigorous theoretical presentation of these techniques, this effort also vali-
dates the techniques by implementing them in a robust tool framework called Indus (available from
http://indus.projects.cis.ksu.edu) and then providing experimental results that demonstrate the ef-
fectiveness of the techniques on various concurrent applications.

Given the current trend towards concurrent programming and social ubiquity of computing, the
approaches proposed in this dissertation provide a foundation for collectively attacking scalability,
accuracy, and soundness challenges in current and emerging systems.

SCALABLE AND ACCURATE APPROACHES FOR PROGRAM

DEPENDENCE ANALYSIS, SLICING, AND VERIFICATION OF

CONCURRENT OBJECT ORIENTED PROGRAMS

by

VENKATESH PRASAD RANGANATH

B.E., Bangalore University, 1997

M.S., Kansas State University, 2002

A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Science

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2006

Approved by:

Major Professor

John Hatcliff

COPYRIGHT

Venkatesh Prasad Ranganath
(venkateshprasad.ranganath@gmail.com)

2006

ABSTRACT
With the advent of multi-core processors and rich language support for concurrency, the paradigm

of concurrent programming has arrived; however, the cost of developing and maintaining concurrent
programs is still high. Simultaneously, the increase in social ubiquity of computing is reducing
the “time-to-market” factor while demanding stronger correctness requirements. These effects are
amplified with ever-growing size of software systems. Consequently, there is (will be) a rise in
the demand for scalable and accurate techniques to enable faster development and maintenance of
correct large scale concurrent software.

This dissertation presents a collection of scalable and accurate approaches to tackle the above
situation. Primarily, the approaches are focused on discovering dependences (relations) between
various parts of the software/program and leveraging the dependences to improve maintenance and
development tasks via program slicing (comprehension) and verification.

Briefly, the proposed approaches are embodied in the following specific contributions:

1. New trace-based foundation for control dependences.

2. An equivalence class based analysis to efficiently and accurately calculate escape information
and intra- and inter-thread dependences.

3. A new parametric data flow style slicing algorithm with various extensions to uniformly and
easily realize and reason about most existing forms of static sequential and concurrent slicing.

4. A new generic notion of property/trace sensitivity to represent and reason about richer forms
of context sensitivity.

5. Program dependence based partial order reduction techniques to enable efficient and accurate
state space exploration in both static and dynamic mode.

In an attempt to simplify the approaches, they have been based on the basic concepts/ideas of
the affected techniques (e.g. program slicing is a rooted transitive closure of dependence relation).
As trace-based reasoning is well suited for concurrent systems, an attempt has been made to explore
trace-based reasoning wherever possible.

While providing a rigorous theoretical presentation of these techniques, this effort also vali-
dates the techniques by implementing them in a robust tool framework called Indus (available from
http://indus.projects.cis.ksu.edu) and then providing experimental results that demonstrate the ef-
fectiveness of the techniques on various concurrent applications.

Given the current trend towards concurrent programming and social ubiquity of computing, the
approaches proposed in this dissertation provide a foundation for collectively attacking scalability,
accuracy, and soundness challenges in current and emerging systems.

TABLE OF CONTENTS

List of Figures xii

List of Tables xv

Acknowledgments xix

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Organization . 4

2 Control Dependence 5

2.1 Basic Definitions . 5

2.1.1 Control Flow Graphs . 5

2.1.2 Program Execution . 7

2.1.3 Notions of Dependence and Slicing . 7

2.2 Assessment of Existing Definitions . 8

2.2.1 Variations in Existing Control Dependence Definitions 8

2.2.2 Unique End node restriction on CFG . 10

2.3 New Dependence Definitions . 11

2.3.1 Examples . 16

2.3.2 Properties of the Dependence Relations . 18

2.4 Slicing . 25

2.4.1 Correctness Properties . 25

2.5 Algorithms . 29

vi

2.5.1 Non-Termination Sensitive Control Dependence (NTSCD) 29

2.5.2 Non-Termination Insensitive Control Dependence (NTICD) 32

2.5.3 Decisive Control Dependence (DCD) . 34

2.5.4 Decisive Order Dependence (DOD) . 36

2.6 Related Work . 39

3 Data-based Dependence 41

3.1 Background . 41

3.1.1 Identifier-based Data Dependence (IBDD) . 41

3.1.2 Effects of Aliasing . 42

3.2 Motivation . 45

3.2.1 Data flow across threads in Java . 45

3.2.2 Interference Dependence . 46

3.2.3 Ready Dependence . 48

3.3 Equivalence-based Escape Analysis . 49

3.3.1 Alias sets . 50

3.3.2 Alias Context . 51

3.3.3 Algorithm . 51

3.3.4 Complexity . 55

3.3.5 Example . 55

3.3.6 In Comparison with Ruf’s analysis . 58

3.4 Extensions . 59

3.4.1 Aliasing . 59

3.4.2 Lock Coupling . 60

3.4.3 Side-Effect Analysis . 60

3.4.4 Generalization . 61

3.5 Optimizations . 62

3.5.1 Multiple Executions of Thread Creation Sites 62

3.5.2 Static Field Access . 63

3.5.3 Type Filtering . 64

vii

3.6 Applications . 65

3.6.1 Using Escape Information . 65

3.6.2 Accurate Ready Dependence via Ready Entities 66

3.6.3 Accurate Interference Dependence via Read-Write Entities 67

3.6.4 Aliasing-based Data Dependence . 68

3.6.5 Atomicity and Independence . 68

3.6.6 Property-sensitive Program Slicing . 69

3.6.7 Partial Order Reductions . 69

3.7 Empirical Evaluation . 69

3.7.1 Implementation . 70

3.7.2 Experimental Setup . 70

3.7.3 Escape Analysis . 71

3.7.4 Alias Analysis . 74

3.7.5 Interference Dependences . 76

3.7.6 Ready Dependences . 79

3.7.7 Aliasing-based Data Dependences (ABDD) 79

3.7.8 Type Filtering . 83

3.8 Related Work . 85

4 Constrained Java 87

4.1 Structural Constraints in CJava . 88

4.1.1 Assignment Constraints . 88

4.1.2 Array/Field Access Constraints . 88

4.1.3 Invocation Constraints . 88

4.1.4 Statement Constraints . 89

4.1.5 Method Constraints . 89

4.1.6 Class Constraints . 90

4.2 Semantics of Field Resolution . 90

5 Program Slicing 93

5.1 Motivation . 94

viii

5.1.1 Basics . 94

5.1.2 Inter-procedural Slicing . 95

5.1.3 Concurrency . 98

5.1.4 Summary . 98

5.2 Inter-Procedural Slicing Algorithm . 98

5.2.1 Premises . 99

5.2.2 Parametric Slicing Algorithm (PSA) . 102

5.2.3 Backward Slicing Algorithm (BSA) . 104

5.2.4 Backward Control Slicing Algorithm (BCSA) 107

5.2.5 Forward Slicing Algorithm (FSA) . 108

5.3 Calling Context Sensitivity . 112

5.3.1 Premises . 112

5.3.2 Calling Context Sensitive Backward Slicing Algorithm (CCSBSA) 112

5.3.3 Correctness Argument . 113

5.3.4 Complexity Analysis . 115

5.3.5 Optimization (CCSBSA+) . 116

5.4 Property Sensitivity . 118

5.4.1 Motivation . 118

5.4.2 Parametric Property Aware Calling Context Sensitive Backward Slicing Algo-
rithm (PS-CCSBSA) . 120

5.4.3 Control Flow-based Property Aware Calling Context Sensitive Backward Slic-
ing Algorithm (C-PS-CCSBSA) . 123

5.4.4 Data-based Property Sensitive Calling Context Sensitive Slicing Algorithm
(D-PS-CCSSA) . 125

5.4.5 Trace Sensitivity . 131

5.5 Empirical Evaluation . 132

5.5.1 Implementation . 132

5.5.2 Experimental Setup . 132

5.5.3 Experimental Results . 135

5.6 Extensions . 138

5.6.1 Scoping . 138

ix

5.6.2 Context Restriction . 141

5.6.3 Executability . 142

5.7 Handling Exceptions . 144

5.8 Related Work . 144

6 Partial Order Reduction 146

6.1 Background . 146

6.2 Static Program Dependence-based Conditional Stubborn Sets (SPD-CSS) 148

6.2.1 Conditional Stubborn Sets (CSS) . 148

6.2.2 Transition Dependences . 149

6.2.3 The Approach . 150

6.3 Stateful Dynamic POR (SDPOR) . 152

6.3.1 The Algorithm . 152

6.3.2 Full Enabled Set Coverage (FESC) . 154

6.3.3 Pure Dynamic Dependence (PDD) . 154

6.3.4 Pseudo Dynamic Dependences (SDD) . 155

6.3.5 Dependence-based Equivalence Classes (DEC) 156

6.4 Empirical Evaluation . 156

6.4.1 Implementation . 156

6.4.2 Experimental Setup . 156

6.4.3 System Level Experimental Results . 158

6.4.4 State Level Experimental Results . 169

6.5 Related Work . 169

7 Conclusion 171

7.1 Summary . 171

7.2 Future Work . 172

A Data From Slicing Experiments 174

A.1 Experimental Setup . 174

A.2 Experimental Data . 177

x

B Data From POR Experiments 200

B.1 Data Description . 200

B.2 Completed Configurations . 201

B.3 Terminated Configurations . 228

Bibliography 245

xi

LIST OF FIGURES

2.1 Control flow graphs of various forms. 9

2.2 More control flow graphs. 14

2.3 Control flow graphs specific to order dependence. 17

2.4 Algorithm to calculate non-termination sensitive control dependence 31

2.5 Algorithm to calculate non-termination insensitive control dependence 33

2.6 Algorithm to calculate decisive control dependence 35

2.7 Algorithm to calculate decisively strong order dependence 37

3.1 A trivial example to illustrate data dependence. 42

3.2 An example to illustrate the effects of aliasing on data dependence in an intra-
procedural setting. 43

3.3 An example to illustrate the effects of aliasing on data dependence in an inter-
procedural setting. 44

3.4 A simple Java program illustrating object sharing and synchronization between threads. 45

3.5 Algorithm to calculate the approximate interference dependence and ready depen-
dence based on conditions 3 and 4 given in Section 3.2.3. 47

3.6 Domains, mappings, and rules used in intra-procedural analysis. 53

3.7 The call graph for the program in Figure 3.4. 56

3.8 Graphical illustration of the alias set and alias context unification during intra- and
inter-procedural processing in the second phase of the analysis. 57

3.9 Additions/Changes to the domains and rules presented in Figure 3.6 used in intra-
procedural phase of the analysis. 64

3.10 Summary of data calculated by equivalence-based escape analysis in various experi-
ments. 72

3.11 Summary of time and memory required by iterative object-flow analysis and by
equivalence-based escape analysis in various experiments. 74

xii

3.12 Summary of interference dependences calculated based on type, escape, and entity
information. 76

3.13 Details of interference dependences calculated based on type, escape, and entity in-
formation and along with other optimizations. 77

3.14 Summary of ready dependences calculated based on type, escape, and entity informa-
tion. 79

3.15 Details of ready dependences calculated based on type, escape, and entity information. 80

3.16 Summary of aliasing-based data dependences calculated based on type, OFA, and
entity (opt1+2) information. 82

4.1 Java programs that illustrate field resolution semantics in Java version ≤1.1 and
version ≥1.2. 91

5.1 A trivial example to illustrate graph based program slicing. 94

5.2 PDG and slices of the program in Figure 5.1. 95

5.3 A simple stripped-down concurrent Java program containing intra- and inter-thread
and intra- and inter-procedural dependences. 96

5.4 A parametric inter-procedural slicing algorithm. remove function removes and returns
an element from the given workset. 102

5.5 Backward slice generating parameters for the inter-procedural slicing algorithm in
Figure 5.4. 105

5.6 Backward control slice generating parameters for the inter-procedural slicing algo-
rithm in Figure 5.4. 107

5.7 Forward slice generating parameters for the inter-procedural slicing algorithm in Fig-
ure 5.4. 109

5.8 Calling context sensitive backward slice generating parameters for the inter-procedural
slicing algorithm in Figure 5.4. 114

5.9 An illustration of the setting that warrants property sensitivity. 118

5.10 Property Aware extension to CCSBSA (presented in Figure 5.8). 121

5.11 The parametric PropertyAwareContextConstructor algorithm that can be
parametrized by AcceptContext and ExtendContext algorithms. 122

5.12 A call graph containing recursive call paths. 122

5.13 An example program to illustrate the benefits of D-PS-CCSBSA over C-PS-CCSBSA. 126

5.14 A program to illustrate situations not handled by 1D-PS-CCSBSA. 129

5.15 The graph of normalized slice sizes (in terms of compressed residualized bytecodes)
Java Grande benchmark programs obtained by slicing via the proposed algorithms. . 135

xiii

5.16 Graphical representation of the data in Table 5.3. 140

5.17 Example to illustrate calling context restrictive slicing. 141

5.18 Example to illustrate the effect of non-inclusion of break/continue in backward slices.143

6.1 Independent transitions. 148

6.2 The parametric selective search algorithm. 149

6.3 A conditional stubborn set calculating parameter of the selective search algorithm. . 151

6.4 An extended version of the selective search algorithm (Figure 6.2). 153

6.5 A stateful dynamic POR/CSS realizing parameter of the extended selective search
algorithm. 153

6.6 State spaces that warrant FESC corrections. The nodes represent the states, the solid
edges represent transitions, the dashed edges represent the current path between the
represented states, the dotted edges and nodes represent unexplored transition and
states, and the shaded area represents the ignored part of the state space. 155

A.1 Graphical representation of the data (Table A.1) from slicing Bar benchmark program
from the Java Grande suite. 179

A.2 Graphical representation of the data (Table A.2) from slicing Crp benchmark program
from the Java Grande suite. 181

A.3 Graphical representation of the data (Table A.3) from slicing FJ benchmark program
from the Java Grande suite. 183

A.4 Graphical representation of the data (Table A.4) from slicing LUF benchmark pro-
gram from the Java Grande suite. 185

A.5 Graphical representation of the data (Table A.5) from slicing MC benchmark program
from the Java Grande suite. 187

A.6 Graphical representation of the data (Table A.6) from slicing MD benchmark program
from the Java Grande suite. 189

A.7 Graphical representation of the data (Table A.7) from slicing RT benchmark program
from the Java Grande suite. 191

A.8 Graphical representation of the data (Table A.8) from slicing Ser benchmark program
from the Java Grande suite. 193

A.9 Graphical representation of the data (Table A.9) from slicing SMM benchmark pro-
gram from the Java Grande suite. 195

A.10 Graphical representation of the data (Table A.10) from slicing SOR benchmark pro-
gram from the Java Grande suite. 197

A.11 Graphical representation of the data (Table A.11) from slicing Syn benchmark pro-
gram from the Java Grande suite. 199

xiv

LIST OF TABLES

2.1 Various control dependences existing in the graph in Figure 2.1 (a). 10

2.2 Various control dependences (based on new definitions) existing in the graph in Fig-
ure 2.1 (c). 17

3.1 Rules to unify rdEntities. 51

3.2 Rules to unify lkEntities. 60

3.3 Summary of various realized refinements of the generalization described in Section 3.4.4. 62

3.4 Rules to unify rwEntities. 67

3.5 The size of the benchmarks. 71

3.6 Data calculated by equivalence-based escape analysis in various experiments. 73

3.7 Time and memory required by iterative object-flow analysis (OFA) [Ran02] and
equivalence-based escape analysis (EBEA) in various experiments. 75

3.8 Number of interference dependences calculated based on type, escape, and entity
information and along with other optimizations. 78

3.9 Number of ready dependences calculated based on type, escape, and entity informa-
tion and along with other optimizations. 81

3.10 Number of aliasing-based data dependences calculated based on type, OFA, and entity
(opt1+2) information. 82

3.11 Data from the escape analysis of JReversePro and JEdit with various optimizations. 84

4.1 Examples of Java fragments and their equivalent CJava fragments. 92

5.1 The normalized slice sizes (in terms of compressed residualized bytecodes) of Java
Grande benchmark programs obtained by slicing via the proposed algorithms. 136

5.2 The maximum and minimum of normalized time and space data for various algorithms.137

5.3 Data from generating sequential executable slices of JReversePro. 140

xv

6.1 Total time (in seconds) taken to execute various configuration on various input programs.159

6.2 Maximum memory (in MB) consumed to execute in various configuration on various
input programs. 161

6.3 The count of encountered states in various configuration on various input programs. 162

6.4 The E configuration relative count of encountered states in various configuration on
various input programs. 163

6.5 The count of encountered matched states in various configuration on various input
programs. 164

6.6 The E configuration relative count of encountered matched states in various configu-
ration on various input programs. 165

6.7 The count of executed transitions in various configuration on various input programs. 166

6.8 The E configuration relative count of executed transitions in various configuration on
various input programs. 167

6.9 The count of errors detected in various configuration on various input programs. . . 168

A.1 Data from slicing Bar benchmark program from the Java Grande suite. 178

A.2 Data from slicing Crp benchmark program from the Java Grande suite. 180

A.3 Data from slicing FJ benchmark program from the Java Grande suite. 182

A.4 Data from slicing LUF benchmark program from the Java Grande suite. 184

A.5 Data from slicing MC benchmark program from the Java Grande suite. 186

A.6 Data from slicing MD benchmark program from the Java Grande suite. 188

A.7 Data from slicing RT benchmark program from the Java Grande suite. 190

A.8 Data from slicing Ser benchmark program from the Java Grande suite. 192

A.9 Data from slicing SMM benchmark program from the Java Grande suite. 194

A.10 Data from slicing SOR benchmark program from the Java Grande suite. 196

A.11 Data from slicing Syn benchmark program from the Java Grande suite. 198

B.1 The raw and EPOR-relative exploration data and reduction data from alarm clock
AC1 input program. 202

B.2 The raw and EPOR-relative exploration data and reduction data from alarm clock
AC2 input program. 203

B.3 The raw and EPOR-relative exploration data and reduction data from alarm clock
AC3 input program. 204

B.4 The raw and EPOR-relative exploration data and reduction data from bounded buffer
BB1 input program. 205

xvi

B.5 The raw and EPOR-relative exploration data and reduction data from bounded buffer
BB4 input program. 206

B.6 The raw and EPOR-relative exploration data and reduction data from bounded buffer
BB8 input program. 207

B.7 The raw and EPOR-relative exploration data and reduction data from deadlock DL1
input program. 208

B.8 The raw and EPOR-relative exploration data and reduction data from deadlock DL2
input program. 209

B.9 The raw and EPOR-relative exploration data and reduction data from deadlock DL3
input program. 210

B.10 The raw and EPOR-relative exploration data and reduction data from dining philoso-
phers DP1 input program. 211

B.11 The raw and EPOR-relative exploration data and reduction data from dining philoso-
phers DP2 input program. 212

B.12 The raw and EPOR-relative exploration data and reduction data from dining philoso-
phers DP3 input program. 213

B.13 The raw and EPOR-relative exploration data and reduction data from dining philoso-
phers DP4 input program. 214

B.14 The raw and EPOR-relative exploration data and reduction data from dining philoso-
phers DP5 input program. 215

B.15 The raw and EPOR-relative exploration data and reduction data from dining philoso-
phers DP6 input program. 216

B.16 The raw and EPOR-relative exploration data and reduction data from molecular
dynamics MD3 input program. 217

B.17 The raw and EPOR-relative exploration data and reduction data from ray tracer RT3
input program. 218

B.18 The raw and EPOR-relative exploration data and reduction data from pipeline PL1
input program. 219

B.19 The raw and EPOR-relative exploration data and reduction data from producer-
consumer PC3 input program. 220

B.20 The raw and EPOR-relative exploration data and reduction data from producer-
consumer PC4 input program. 221

B.21 The raw and EPOR-relative exploration data and reduction data from readers-writers
RW1 input program. 222

B.22 The raw and EPOR-relative exploration data and reduction data from readers-writers
RW2 input program. 223

B.23 The raw and EPOR-relative exploration data and reduction data from readers-writers
RW3 input program. 224

xvii

B.24 The raw and EPOR-relative exploration data and reduction data from readers-writers
RW4 input program. 225

B.25 The raw and EPOR-relative exploration data and reduction data from readers-writers
RW5 input program. 226

B.26 The raw and EPOR-relative exploration data and reduction data from replicated
workers RP13 input program. 227

B.27 The raw and EPOR-relative exploration data and reduction data from replicated
workers RP15 input program. 229

B.28 The raw and EPOR-relative exploration data and reduction data from replicated
workers RP18 input program. 230

B.29 The raw and EPOR-relative exploration data and reduction data from sleeping bar-
bers SB1 input program. 231

B.30 The raw and EPOR-relative exploration data and reduction data from sleeping bar-
bers SB4 input program. 232

B.31 The raw and EPOR-relative exploration data and reduction data from disk scheduler
DS1 input program. 233

B.32 The raw and EPOR-relative exploration data and reduction data from disk scheduler
DS2 input program. 234

B.33 The raw and EPOR-relative exploration data and reduction data from disk scheduler
DS4 input program. 235

B.34 The raw and EPOR-relative exploration data and reduction data from disk scheduler
DS7 input program. 236

B.35 The raw and EPOR-relative exploration data and reduction data from replicated
workers RP12 input program. 237

B.36 The raw and EPOR-relative exploration data and reduction data from replicated
workers RP14 input program. 238

B.37 The raw and EPOR-relative exploration data and reduction data from sleeping bar-
bers SB2 input program. 239

xviii

ACKNOWLEDGMENTS

I am thankful to Dr. John M. Hatcliff for providing excellent academic support and advice during
the doctoral program. I really appreciate and cherish his confidence in allowing me to conduct
independent research. Further, his constant coaxing and support to participate in various research
activities and gatherings led to a cherishable learning experience.

Although Dr. Daniel Andresen was not directly involved in my research work, he was accom-
modative to indulge me in a tangential line of research along with his students. I am thankful for
this enriching opportunity.

I am thankful to Dr. Torben Amtoft, Dr. Anindya Banerjee, Dr. Matthew B. Dwyer, and Dr.
Robby for providing their valuable time to discuss various aspects of my research and for providing
me the opportunity to be part of the research community through various professional activities.

I am grateful to the support of the departmental staff in dealing with adminstrativia and the
department in providing excellent computing resources.

Georg Jung (aka Zee-German), Matt Hossier, and others in the Santos group made the grey (the
walls of our offices are literally painted grey!) and dense workdays/weeks bearable with engaging
lunches and useful insights pertaining to work and other obtuse yet interesting topics (such as beer
production and tamagotchis). So, thanks guys!

Without the users of Indus, the project would have remained a rather boring academic exercise.
I really appreciated their inputs and interest in making Indus an interesting, fun, and useful project.

Although I partially agree with the saying “Behind every successful man, there is a woman”, I
am grateful to my wife for her company and support during my graduate studies. Without her, my
graduate school years in a foreign country would have certainly seemed longer.

Saving the best for last, I would like to thank my mother, father, and sister for advising me in
the ways of life and being patient and supportive during my rather long pursuit of higher studies.

“Home is the first school” is a popular adage in Kannada, my native language. As I am a
staunch believer in foundations, I am forever indebted to my family for providing an excellent first
school.

xix

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Motivation

As the social ubiquity of software-based systems increases, the demand for new software and en-
hancements to existing software increases. In case of the former demand, new techniques to design,
develop, and deliver correct new software are required; in case of the latter demand, new techniques
to understand, reason, design, and implement correct enhancements to existing software are re-
quired. Independent of the demand, social ubiquity requires the software to be safe. Consequently,
the correctness requirements of a software increases.

This situation can be addressed by employing program specification and automated program
analysis in software development. The success of this approach hinges on the following features of
program analyses.

Scalability Automated approaches are more relevant in large scale software development and main-
tenance as the complexity of software is usually proportional to its size. Hence, to aid software
development, automated approaches should efficiently scale to handle large scale software.

Accuracy If the information provided by automated approaches is inaccurate, then the developers
will need to spend time in identifying inaccuracies (false positives). This task can be time
consuming and result in high usability overhead. To counter this effect, automated approaches
should be highly accurate.

Soundness The task of checking if a software correctly satisfies a specification involves considering
every possibility affecting the specification. Hence, automated approaches should be sound
and consider all necessary possibilities (not miss any necessary possibility).1

The above approach is slowly making its way into everyday development cycle in the various
forms such as simplification of code refactoring and trivial program comprehension tasks,2 detection
of common and/or subtle programming errors,3 reporting of useful metrics4, and generation of

1More possibilities may be considered at the cost of inaccuracy.
2Most widely available integrated development environments (IDEs) such as Eclipse, NetBeans, and IntelliJ support

such features.
3Various standalone and IDE-based tools such as Checkstyle, PMD, FindBugs, and EscJava2 provide this feature.
4Metrics calculation features are supported by tools such as JDepend, Metrics, and CAP.

1

CHAPTER 1. INTRODUCTION

glue/framework code and data.5

The main reason for the availability and success of these solutions is the nominal time, resource,
and developer effort required to use these solutions and the existence of various approaches to prove
the soundness and accuracy of these solutions.

These solutions exhibit a common trait — the cost of the solution is directly dependent on the size
of the aspect of the software/program processed by the solutions and the accuracy of the information
catered by the solution. For example, the cost of calculating abstractness index (as done in JDepend)
for a program is proportional to the size of the class hierarchy (aspect) of the program. Similarly,
the cost of “inline a local variable” refactoring is proportional to the size of the data and control
flow web involving the local variable.

In most cases the size of static aspects of programs such as class hierarchy, nesting levels of
conditionals, and occurrences of identifiers are linearly related to the size/measure of the (static)
representation of the program such as the number of classes, statements, and expressions. Hence,
solutions that process static aspects of programs can be readily used with large scale software with
good scalability and high level of accuracy and soundness.

This is not true in case of solutions based on dynamic aspects of programs. Typically, the size of
dynamic aspects of programs such as aliasing, side effects, and virtual method dispatch are linearly
related to the size/measure of the (dynamic) behavior of programs such as the number of inter-
procedural control flow paths, reachable objects, and number of distinct assignments to a variable.
As the size of the behavior of a program is significantly larger than the size of its representation,
solutions based on dynamic aspects of programs can be intractable. Although abstraction techniques
can be used to trim down the size of the behavior and address intractability, the information provided
by such abstraction based solutions will often be inaccurate despite being sound.

These observations apply equally in the context of sequential and concurrent programs. Further,
most often the size of the dynamic behavior of concurrent programs (such as thread interleaving)
is directly dependent on the degree of concurrency of the program. Hence, the cost of solutions
that depend on dynamic aspects based on such dynamic behavior increases rapidly; the increase
is usually either exponentially or combinatorially in terms of the size of the representation of the
program. As a result, most solutions fail to be useful (comparably accurate) and scalable.

Two good examples of solutions that fit the above description are

Program Slicing is a solution to statically identify program parts that may dynamically depend
(influence) a set of given program points. Over two decades of research illustrates that program
slicing can aid in program comprehension, debugging, maintenance, testing, and specialization.

Model checking is a solution to statically verify properties of an input program by verifying the
same properties on a representative abstract model of the program. Similar to program slicing,
numerous research efforts suggest that model checking can aid in the hard task of verifying
properties of concurrent and/or distributed software.

Clearly, both of the above solutions operate on both static and dynamic aspects of the input
program; hence, they share the same drawbacks as most other dynamic aspect based solutions.

Given the obvious usefulness of these solutions and the increase in software ubiquity, there is a
pressing need to develop techniques/approaches that enable existing realizations of these solutions
to be scalable, accurate, and sound.

5Frameworks used in Architecture-based (CORBA, SOAP) application development support such features.

2

CHAPTER 1. INTRODUCTION

1.2 Contributions

This dissertation will focus on a collection of approaches that address correctness/soundness, accu-
racy, and scalability issues in the realm of understanding and reasoning about software. Specifically,
the dissertation will describe the following contributions in the context of program slicing and model
checking of concurrent Java programs.

• “Execution in an infinite event processing loop until terminated” is a common trait of reactive
systems. As the programs of such systems have not exit points, the existing notions of control
dependences cannot be directly applied to such programs. Further, such applications can lead
to incorrect results.

This situation has been addressed via new definitions of control dependence that are applicable
to (such) programs with zero or more exit points without modifying the program structure and
loss of accuracy. These notions were proven to be correct in the realm of behavior preservation
in program slices. Various coincidence properties between the new notions and the existing
notions of control dependences were also proven. As for feasibility, polynomial time algorithms
to calculate these new control dependences were proposed and realized.

• Efficient calculation of precise slices of concurrent programs is challenging as it is difficult to
statically reason about the dependences that arise when multiple threads perform interfering
reads/writes on shared data. The use of heap-allocated data in such programs makes the
task even more difficult due to complexity stemming from aliasing. Existing presentations
of slicing of concurrent object-oriented programs have made worse case aliasing assumptions
when generating edges in program dependence graphs for situations where objects are accessed
by different threads.

As a solution, a scalable equivalence class based escape analysis that is focused on improving
the accuracy of interference and ready dependences in concurrent Java programs was proposed.
At a nominal cost, this analysis was extended to accurately calculate side effect information,
write-write and locking-based coupling, and aliasing based data dependence. Further, the
analysis was generalized to be applicable in the calculation of other inter-thread data relations.

• Program slicing was initially proposed as a data flow style analysis involving a set of de-
pendence relation with its correctness reasoning based on projections of program behavior.
Although various efforts [RAB+05, HDD+03] have leveraged projection based reasoning to
prove correctness of slicing in different settings, there has been no effort to realize slicing as a
data flow style analysis or justify the drawbacks of data flow style program slicing algorithms.

In an attempt to understand and demystify data flow style program slicing, a simple non-graph
based (data flow style) parametric program slicing algorithm that is applicable to both sequen-
tial and concurrent programs was proposed. This algorithm was successfully parametrized to
calculate backward, backward control, and forward slices in both calling context sensitive and
insensitive modes.

Along with other extensions, a novel and general notion of property sensitivity to efficiently
improve the accuracy of calling context sensitive slicing of concurrent programs and to reason
about various forms of context sensitivity was also proposed.

• Despite the existence of advanced program analysis and possible runtime cost benefits, existing
partial order reduction techniques for model checking do not leverage information from analysis
of the model under scrutiny.

As an exploratory first step, a simple and efficient approach to improve the scalability of
model checking of concurrent Java programs by leveraging statically calculated dependence

3

CHAPTER 1. INTRODUCTION

information in both offline and on-line (dynamic) mode of operation was proposed. As a
by-product, the first stateful dynamic partial order reduction (based on static dependence
information) algorithm was also proposed.

In the past decade, program slicing has been extended to concurrent programs. Despite these
efforts, program slicing features were not provided by any publicly available commercial or free
tools. As part of this dissertation, I have created the first publicly available batteries-included6 Java
program slicing framework as part of the Indus project (http://indus.projects.cis.ksu.edu).
This project provides software artifacts that embody the approaches/techniques described in this
dissertation.

1.3 Organization

The dissertation is organized as follows. The details about the new trace-based definitions of control
dependences along with the correctness proof in the context of program slicing are described in
Chapter 2. This is followed by the exposition about equivalence class based escape analysis and its
application to improve interference and ready dependence in Chapter 3. This chapter also contains
description about various extensions and applications of the analysis along with the experimental
results. In Chapter 4, a constrained version of Java language that is later used in the description
of the slicing algorithms is introduced. The parametric slicing algorithm along with various instan-
tiations is presented in Chapter 5. Various optimizations to the slicing algorithm(s), the details of
property sensitivity, and an empirical evaluation of the algorithms is also presented in this chapter.
Chapter 6 contains the description of stateful algorithms that leverage static program dependence
based static and dynamic partial order reduction techniques along with an analysis of preliminary
experimental data. The last chapter concludes the dissertation by summarizing the contributions
and listing possible future efforts.

6Every analysis required to create a program slicer is provided with the framework.

4

CHAPTER 2. CONTROL DEPENDENCE

Chapter 2

Control Dependence

Control dependence is a notion that relates program points based their mutual effect on the control
flow reachability, and it is heavily used in compiler optimization, testing, and other applications.
Although this notion has studied for over two decades, I discovered that existing notions of control
dependence could not be directly applied to systems with multiple exit points and applied, either
directly or indirectly, to systems with zero exit points. Along with other researchers1, I explored
these shortcomings and proposed new remedial definitions of control dependence, specifically in the
context of sequential intra-procedural program slicing. In particular, I identified the shortcomings,
proposed and honed the remedial definitions for control dependences, participated in setting up and
proving the correctness of the definitions in the context of slicing, and designed proof-of-concept
algorithms. The results from this effort were published under the title A New Foundation For
Control-Dependence and Slicing for Modern Program Structures [RAB+05] at European Symposium
On Programming (ESOP) held as part of ETAPS 2005 conference.

This chapter describes the contributions from the above mentioned effort and their extensions
along with proof-of-concept algorithms and correctness proofs as described in the 2004 tech re-
port [RAB+04] titled A New Foundation For Control-Dependence and Slicing for Modern Program
Structures.

2.1 Basic Definitions

2.1.1 Control Flow Graphs

When dealing with foundational issues of control dependence, researchers often cast their work in
terms of a simple imperative language phrased in terms of control flow graphs. We follow that
practice here and base our presentation on a definition of control-flow graph adapted from Ball and
Horwitz [BH93].

Definition 1 (Control Flow Graphs)
A control-flow graph G = (N,E,n0) is a labeled directed graph in which

1The other researchers were Torben Amtoft, Anindya Banerjee, Matthew Dwyer, and John Hatcliff. As it was a
collaborative effort, I use “we” instead of “I” while referring to the authors.

5

CHAPTER 2. CONTROL DEPENDENCE

• N is a set of nodes that represent statements in a program,

• N is partitioned into two subsets NS, NP, where NS are statement nodes with each ns ∈ NS

having at most one successor, where NP are predicate nodes with each np ∈ NP having two
distinct successors, and NE ⊆ NS contains all nodes of NS that have no successors, i.e. , NE

contains all end nodes of G,

• E is a set of labeled edges that represent the control flow between graph nodes, and

• the start node n0 has no incoming edges and all nodes in N are reachable from n0. 2

As stated earlier, existing presentations of slicing require that each CFG G satisfies the unique
end node property : there is exactly one element in NE = {ne} and ne is reachable from all other
nodes of G. The definition above does not require this property of CFGs, but we will consider CFGs
with the unique end node property when comparing our work to previous work.

To relate a CFG with the program that it represents, we use the function code to map a CFG node
n to the code for the program statement that corresponds to that node. Specifically, for ns ∈ NS,
code(ns) yields the code for an assignment statement, and for np ∈ NP, code(np) the code for the
test of a conditional statement. The function def maps each node to the set of variables defined
(i.e. , assigned to) at that node (always a singleton or empty set), and ref maps each node to the
set of variables referenced at that node.

A CFG path π from ni to nk is a sequence of nodes ni,ni+1, . . . ,nk such that for every consecutive
pair of nodes (nj ,nj+1) in the path there is an edge from nj to nj+1. A path between nodes ni and
nk can also be denoted as [ni..nk]. When the meaning is clear from the context, we will use π to
denote the set of nodes contained in π and we write n ∈ π when n occurs in the sequence π. Path π
is non-trivial if it contains at least two nodes. A path is maximal if it is infinite or if it terminates
in an end node.

The following definitions describe relationships between graph nodes and the distinguished start
and end nodes [Muc97]. Node n dominates node m in G (written dom(n,m)) if every path from
the start node s to m passes through n (note that this makes the dominates relation reflexive).
Node n post-dominates node m in G (written post-dom(n,m)) if every path from node m to the end
node ne passes through n. (Note that for graphs that do not have the unique end node property,
the domination relation is well-defined but the post-domination relation is not well-defined.) Node
n strictly post-dominates node m in G if post-dom(n,m) and n 6= m. Node n is the immediate
post-dominator of node m if n 6= m and n is the first post-dominator on every path from m to
the end node ne. Node n strongly post-dominates node m in G if n post-dominates m and there is
an integer k ≥ 1 such that every path from node m of length ≥ k passes through n [PC90]. The
difference between strong post-domination and the simple definition of post-domination above is
that even though node n occurs on every path from m to ne (and thus n post-dominates m), it may
be the case that n does not strongly post-dominate m due to a loop in the CFG between m and n
that admits an infinite path beginning at m and not containing n. Hence, strong post-domination
is sensitive to the possibility of non-termination along paths from m to n.

A CFG G of the form (N,E,n0) is reducible if E can be partitioned into disjoint sets Ef (the
forward edge set) and Eb (the back edge set) such that (N,Ef) forms a DAG in which each node
can be reached from the entry node n0 and for all edges e ∈ Eb, the target of e dominates the source
of e. All “well-structured” programs, including Java programs, give rise to reducible control-flow
graphs. A CFG that is not reducible is referred to as an irreducible CFG. The Java virtual machine
bytecode language allows for the construction of programs whose corresponding control flow graphs

6

CHAPTER 2. CONTROL DEPENDENCE

are irreducible. Our definitions and correctness results apply to both reducible and irreducible
control flow graphs.

2.1.2 Program Execution

The execution semantics of program CFGs is phrased in terms of transitions on program states (n, σ)
where n is a CFG node and σ is a store mapping the corresponding program’s variables to values.
A series of transitions gives an execution trace through p’s statement-level control flow graph. It
is important to note that when execution is in state (ni, σi), the code at node ni has not yet been
executed. Intuitively, the code at ni is executed on the transition from (ni, σi) to successor state
(ni+1, σi+1). Execution begins at the state node (n0, σo), and the execution of each node possibly
updates the store and transfers control to an appropriate successor node. Execution of a node
ne ∈ NE produces a final state (halt, σ) where the control point is indicated by a special label halt –
this indicates a normal termination of program execution. The presentation of slicing in Section 2.4
involves arbitrary finite and infinite non-empty sequences of states written Π = s1 , s2,

2.1.3 Notions of Dependence and Slicing

A program slice consists of the parts of a program p that (potentially) affect the variable values
that are referenced at some program points of interest [Tip95]. Traditionally, the “program points
of interest” are called the slicing criterion. A slicing criterion C for a program p is a non-empty set
of nodes {n1, . . . , nk} where each ni is a node in p’s CFG.

The definitions below are the classic ones of the two basic notions of dependence that appear in
slicing of sequential programs: data dependence and control dependence [Tip95].

Data dependence captures the notion that a variable reference is dependent upon any variable
definition that “reaches” the reference.

Definition 2 (data dependence) Node n is data-dependent on m (written m
dd→ n – the arrow

pointing in the direction of data flow) if there is a variable v such that

1. there exists a non-trivial path π in p’s CFG from m to n such that for every node m′ ∈
π − {m,n}, v /∈ def(m′), and

2. v ∈ def(m) ∩ ref(n). 2

Control dependence information identifies the conditionals that may affect execution of a node
in the slice. Intuitively, node n is control-dependent on a predicate node m if m directly determines
whether n is executed or “bypassed”.

Definition 3 (control dependence) Node n is control-dependent on m in program p (written

m
cd→ n) if

1. there exists a non-trivial path π from m to n in p’s CFG such that every node m′ ∈ π−{m,n}
is post-dominated by n, and

2. m is not strictly post-dominated by n. 2

7

CHAPTER 2. CONTROL DEPENDENCE

For a node n to be control-dependent on predicate m, there must be two paths that connect m with
the unique end node ne such that one contains n and the other does not. There are several slightly
different notions of control-dependence appearing in the literature, and we will consider several of
these variants and relations between them in the rest of the exposition. Here we simply note that
the above definition is standard and widely used (e.g., see [Muc97]).

We write m
d→ n when either m

dd→ n or m
cd→ n. The algorithm for constructing a program

slice proceeds by finding the set of CFG nodes SC (called the slice set) from which the nodes in C

are reachable via
d→.

Definition 4 (slice set) Let C be a slicing criterion for program p. Then the slice set SC of p with
respect to C is defined as follows:

SC = {m | ∃n . n ∈ C and m
d

→∗ n}. 2

The notion of slicing described above is referred to as “backward static slicing” because the
algorithm starts at the criterion nodes and looks backward through the program’s control-flow graph
to find other program statements that influence the execution at the criterion nodes.

In many cases in the slicing literature, the desired correspondence between the source program
and the slice is not formalized because the emphasis is often on applications rather than foundations,
and this also leads to subtle differences between presentations.

When a notion of “correct slice” is given, it is often stated using the notion of projection [Wei84].
Informally, given an arbitrary trace Π of p and an analogous trace Πs of ps, ps is a correct slice of p
if projecting out the nodes in criterion C (and the variables referenced at those nodes) for both Π
and Πs yields identical state sequences. We will consider slicing correctness requirements in greater
detail in Section 2.4.1.

2.2 Assessment of Existing Definitions

2.2.1 Variations in Existing Control Dependence Definitions

Although the definition of control dependence that we stated in Section 2.1 is widely used, there are
a number of (sometimes subtle) variations appearing in the literature. One dimension of variation
is whether the particular definition captures only direct control dependence or also admits indirect
control dependences. For example, using the definition of control dependence in Definition 3, for

Figure 2.1 (a), we can conclude that a
cd→ f and f

cd→ g, but a
cd→ g does not hold because g does

not post-dominate f. The fact that a and g are indirectly related (a does play a role in determining
if g is executed or bypassed) is not captured in the definition of control dependence itself but in
the transitive closure used in the slice set construction (Definition 4). However, as we will illustrate
later, some definitions of control dependence [PC90] incorporate this notion of transitivity directly
into the definition of control dependence.

Another dimension of variation is whether the particular definition is sensitive to non-termination
or not. Consider Figure 2.1 (a) where node c represents a post-test that controls a loop – which may

be infinite (one cannot tell by simply looking at the CFG). According to Definition 3, a
cd→ d holds

8

CHAPTER 2. CONTROL DEPENDENCE

(a)

a

e

b

c

d

f

g

h

(c)

a

e

b

c

f

g

h

j

d

i

e

a

c f

d

b

a

b

c

d

e

(b)

AugmentedUnaugmented

Figure 2.1: (a) is a simple CFG. (b) illustrates how a CFG that does not have a unique exit node
reachable from all nodes can be augmented to have unique exit node reachable from all nodes. (c)
is a CFG with multiple control sinks of different sorts.

but c
cd→ d does not hold (because d post-dominates c) even though c may determine whether d

executes or never gets to execute due to an infinite loop that postpones d forever. Thus, Definition 3
is non-termination insensitive.

We now further illustrate these dimensions by recalling definitions of strong and weak control
dependence given by Podgurski and Clarke [PC90] and used in numerous efforts, including the study
of control dependence by Bilardi and Pingali [BP96].

Definition 5 (Podgurski-Clarke Strong Control Dependence) n2 is strongly control depen-

dent on n1 (n1
scd→ n2) if there is a path from n1 to n2 that does not contain the immediate post

dominator of n1. 2

The notion of strong control dependence is almost identical to control dependence in Definition 3
except that strong control dependence is indirect whereas control dependence in Definition 3 is

direct. For example, in Figure 2.1 (a), in contrast to Definition 3, we have a
scd→ g because there is a

path afg which does not contain e, the immediate post-dominator of a. However, given the difference
between these variants based on directness, it is not surprising that when used in the context of
Definition 4 (which computes the transitive closure of dependences), the two definitions give rise to
the same slices.

Definition 6 (Podgurski-Clarke Weak Control Dependence) n2 is weakly control dependent

on n1 (n1
wcd→ n2) if n2 strongly post dominates n′1, a successor of n1, but does not strongly post

dominate n′′1 , another successor of n1. 2

The notion of weak control dependence captures dependences between nodes induced by non-

termination, hence, it is non-termination sensitive. Note that for Figure 2.1 (a), c
wcd→ d because

d is a successor of c and strongly post dominates itself, and d does not strongly post-dominate b:
the presence of the loop controlled by c guarantees that there does not exist a k such that every
path from node b of length ≥ k passes through d. Also, in contrast to the notion of strong control

9

CHAPTER 2. CONTROL DEPENDENCE

dependence, the notion of weak control dependence is direct. Hence, n1
scd→ n2 does not imply

n1
wcd→ n2 but n1

scd→ n2 does imply n1
wcd→
∗

n2.

In assessing the above variants of control dependence in the context of program slicing, it is
important to note that slicing based on Definition 3 or the strong control dependence above can
transform a non-terminating program into a terminating one (i.e., non-termination is not preserved
in the slice). In Figure 2.1 (a), assume that the loop controlled by c is an infinite loop. Using the
slice criterion C = {d}, slicing using strong control dependence would generate a slice that includes
a but not b and c (we assume no data dependence between d and b or c). Thus, in the sliced
program, one would be able to observe an execution of d, but such an observation is not possible
in the original program because execution diverges before d is reached. In contrast, the difference
between direct and indirect statements of control dependence seems to amount to a largely technical
stylistic decision in how the definitions are stated. Table 2.1 shows the control dependences that
arise in the CFG of Figure 2.1 (a) for various notions of control dependence that we are considering
in this work.

Very few efforts consider the non-termination sensitive notion of weak control dependence above.
We conjecture that there are at least two reasons for this. First, although it bears the qualifier
“weak”, weak control dependence is actually a larger relation2 and will thus include more nodes
in the slice3. Second, many applications of slicing focus on debugging and program visualization
and understanding, and in these applications having slices that preserve non-termination is less
important than having smaller slices. However, slicing is increasingly used in security applications
and as a model-reduction technique for software model checking. In these applications, it is quite
important to consider variants of control dependence that preserve non-termination properties, since
failure to do so could allow inferences to be made that compromise security policies, for instance
invalidate checks of liveness properties [HDZ00]. This motivates our careful consideration of non-
terminating program behaviors in the definitions of control dependence and slicing that we provide
later in the chapter.

Nodes
cd→ scd→ wcd→ ntscd→ nticd→

a b, c, d, f, h b, c, d, f, g, h b, c, f, h, e b, c, f, h, e b, c, d, f, h
c b b b, d, e b, d, e b
f g g g g g

Table 2.1: Various control dependences existing in the graph in Figure 2.1 (a).Control dependences

denoted by
ntscd→ and

nticd→ will be introduced in the following pages.

2.2.2 Unique End node restriction on CFG

All definitions of control dependences that we are aware of require that CFGs satisfy the unique end
node requirement – but many software systems fail to satisfy this property. Existing works simply
require that CFGs have this property, or they suggest that CFGs can be augmented to achieve this
property, e.g., using the following steps: (1) insert a new node e into the CFG, (2) add an edge from
each exit node (other than e) to e, (3) pick an arbitrary node n in each non-terminating loop and add
an edge from n to e. In our experience, such augmentations complicate the system being analyzed
in several ways. Non-destructive augmentation performed by cloning the CFG and augmenting the

2In Figure 2.1 (a), the size of
wcd→ relation is 9 whereas the size of

scd→ relation is 8.
3In Figure 2.1 (a), the transitive closure of strong and weak control dependence starting from d are {a} and {a, c},

respectively.

10

CHAPTER 2. CONTROL DEPENDENCE

clone would cost time and space. Destructive augmentation performed by directly augmenting the
CFG may clash with the requirements of other clients of the CFG, thus necessitating the reversal
of the augmentation before subsequent clients use the CFG. If augmentation is not reversed, the
graph algorithms and analyses algorithms should be made intelligent to operate on the actual CFG
embedded in the augmented CFG.

Many systems have threads where the main control loop has no exit – the loop is “exited” by
simply killing the thread. For example, in the Xt library, most applications create widgets, register
callbacks, and call XtAppMainLoop() to enter an infinite loop that manages the dispatching of events
to the widgets in the application. In PalmOS, applications are designed such that they start upon
receiving a start code, execute a loop, and terminate upon receiving a stop code. However, the
application may choose to ignore the stop code during execution. Hence, the application may not
terminate except when explicitly killed. In such cases, a node in the loop must be picked as the
loop exit node for the purpose of augmenting the CFG of the application. But this can disrupt the
control dependence calculations. In Figure 2.1 (b), we would intuitively expect e,b,c, and d to be

control dependent on a in the unaugmented CFG. However, a
wcd→ {e, b, c} and c

wcd→ {b, c, d, f} n
the augmented CFG. It is trivial to prune dependences involving f. However, now there are new

dependences c
wcd→ {b, c, d} which did not exist in the unaugmented CFG. Although a suggestion to

delete any dependence on c may work for the given CFG, it fails if there exists a node g that is a

successor of c and a predecessor of d. Also, a
wcd→ d exists in the unaugmented CFG but not in the

augmented CFG, and it is not obvious how to recover this dependence.

We address these issues head-on by considering alternate definitions of control-dependence that
do not impose the unique end-node restriction.

2.3 New Dependence Definitions

In previous definitions, a control dependence relationship where nj is dependent on ni is specified
by considering paths from ni and nj to a unique CFG end node – essentially ni and the end node
delimit the path segments that are considered. Since we aim for definitions that apply when CFGs
do not have an end node or have more than one end node, we aim to instead specify that nj is
control dependent on ni by focusing on paths between ni and nj . Specifically, we focus on path
segments that are delimited by ni at both ends – intuitively corresponding to the situation in a
reactive program where instead of reaching an end node, a program’s behavior begins to repeat
itself by returning again to ni. At a high level, the intuition behind control dependence remains the
same as in, e.g., Definition 3 – executing one branch of ni always leads to nj , whereas executing
another branch of ni can cause nj to be bypassed. The additional constraints that are added (e.g.,
nj always occurs before any occurrence of ni) limits the region in which nj is seen or bypassed to
segments leading up to the next occurrence of ni – ensuring that ni is indeed controlling nj . The
definition below considers maximal paths (which includes infinite paths) and thus is sensitive to
non-termination.

Definition 7 (ni
ntscd→ nj) In a CFG, nj is (directly) non-termination sensitive control de-

pendent on node ni iff ni has at least two successors, nk and nl, such that

1. for all maximal paths from nk, nj always occurs and either ni = nj or nj strictly (nj 6= ni)
precedes any occurrence of ni;

2. there exists a maximal path from nl on which either nj does not occur, or ni strictly precedes

11

CHAPTER 2. CONTROL DEPENDENCE

any occurrence of nj . 2

Remark 1 When we, as above, write “ni strictly precedes any occurrence of nj in π” we mean that
(a) ni occurs in π; and either (b1) nj does not occur in π, or (b2) the first occurrence of ni in π is
earlier than the first occurrence of nj in π. 2

We supplement a traditional presentation of dependence definitions with definitions given as
formulae in computation tree logic (CTL) [EMCGP99]. CTL is a logic for describing the structure of
sets of paths in a graph, making it a natural language for expressing control dependences. Informally,
CTL includes two path quantifiers, E and A, which indicate if a path from a given node with a given
structure exists or if all paths from that node have the given structure. The structure of a path
is defined using one of five modal operators (we refer to a node satisfying the CTL formula φ as
a φ-node): Xφ states that the successor node is a φ-node, Fφ states the existence of a φ-node in
the path, Gφ states that a path consists entirely of φ-nodes, φUψ states the existence of a ψ-node
and that the sub-path leading up to that node consists of φ-nodes; finally, the φWψ operator is a
variation on U that relaxes the requirement that a ψ-node exists (if not, all nodes in the path must
be φ-nodes). In a CTL formula, path quantifiers and modal operators occur in pairs, e.g., AFφ
says that on all paths from a node, a φ node occurs. A formal definition of CTL can be found in
[EMCGP99].

The following CTL formula captures the definition of control dependence above.

ni
ntscd→ nj = (G,ni) |= EX(A[¬niUnj]) ∧ EX(E[¬njW(¬nj ∧ ni)]).

Here, (G,ni) |= expresses the fact that the CTL formula is checked against the graph G at node ni.
The two conjuncts are essentially a direct transliteration of the natural language above.

We have formulated the definition above to apply to execution traces instead of CFG paths.
In this setting, one needs to bound relevant segments by ni, as discussed above. However, when
working on CFG paths, the conditions in Definition 7 can actually be simplified to read as follows:
(1) for all maximal paths from nk, nj always occurs, and (2) there exists a maximal path from nl on
which nj does not occur. The corresponding CTL formula would be

ni
ntscd→ nj = (G,ni) |= EX(AF(nj) ∧ EX(EG(¬nj)).

See Section 2.3.2 for the proof that Definition 7 and its simplification are equivalent on CFGs.

To see that Definition 7 is non-termination sensitive, note that c
ntscd→ d in Figure 2.1 (a) since

there exists a maximal path (an infinite loop between b and c) where d never occurs. Moreover,
the definition corresponds to our intuition in Section 2.2.2 in that, in Figure 2.1 (b unaugmented)

a
ntscd→ e because there is an infinite loop through b, c, d and a

ntscd→ {b, c, d} because there is maximal

path ending in e that does not contain b, c, or d. In Figure 2.1 (c), note that d
ntscd→ i because there

is an infinite path from j (cycle on jdj) on which i does not occur.

We now turn to constructing a non-termination insensitive version of control dependence. The
above non-termination sensitive definition considered all paths leading out of a conditional. Now, we
need to limit the reasoning to finite paths that reach a terminal region of the graph. To handle this
in the context of CFGs that do not have the unique end-node property, we generalize the concept
of end node to control sink – a set of nodes such that each node in the set is reachable from every

12

CHAPTER 2. CONTROL DEPENDENCE

other node in the set and there is no path leading out of the set. More precisely:

Definition 8 (Control sink) A control sink κ is a set of CFG nodes that form a strongly connected
component such that for each n ∈ κ each successor of n is also in κ. 2

Observe that each end node forms a control sink and each loop without any exit edges in the graph
forms a control sink. For example, {e} and {b, c, d} are control sinks in Figure 2.1 (b unaugmented),
and {e} and {d, i, j} are control sinks in Figure 2.1 (c).

Definition 9 (Sink-bounded path) The set of sink-bounded paths from nk (denoted SinkPaths(nk))
contains all maximal paths π from nk with the property that there exists a control sink κ such that

• π contains a node ns from κ (hence, all nodes following ns in π will also belong to κ);

• if π is infinite, then all nodes in κ will occur in π infinitely often. 2

The latter requirement expresses “fairness”. Note that if π1 is a suffix of π2, then π1 is sink-
bounded iff π2 is sink-bounded. Also observe that in a CFG with a unique end node ne, a path is
sink-bounded iff it ends in ne.

Given a control flow graph, the minor formed by contracting the strongly connected components
of the control flow graph will be a DAG with the control sinks being contracted into leaf nodes. This
shows:

Lemma 1 All finite paths can be extended into sink-bounded paths. 2

Existing definitions [BH93, PC90, BP96] of non-termination insensitive control dependence rely
on reasoning about paths from the conditional to the end node. We generalize this to reason about
paths from a conditional to control sinks.

Definition 10 (ni
nticd→ nj) In a CFG, nj is (directly) non-termination insensitive control

dependent on ni iff ni has at least two successors, nk and nl, such that

1. for all paths π ∈ SinkPaths(nk), nj ∈ π;

2. there exists a path π ∈ SinkPaths(nl) such that nj 6∈ π. 2

This definition is expressed in CTL as

ni
nticd→ nj = (G,ni) |= EX(ÂF(nj)) ∧ EX(ÊG(¬nj))

where Â and Ê represent quantification over sink-bounded paths only; note the similarity to the

simplified formula for
ntscd→ mentioned earlier.

13

CHAPTER 2. CONTROL DEPENDENCE

(a)

e

d c

b

a

(b)

b

a

c d

b

a

e

c

e’

c

e"

d

b

a

<=>

(c)

(d)

b

a

c

Figure 2.2: More control flow graphs.

To see that this definition is non-termination insensitive, note that c 6nticd→ d in Figure 2.1 (a) since
there does not exist a path from b to a control sink ({e} is the only control sink) that does not

contain d. Again, in Figure 2.1 (b unaugmented) a
nticd→ e because there is a path from b to the

control sink {b, c, d} and neither the path nor the sink contain e, and a
nticd→ {b, c, d} because there

is a path ending in control sink {e} that does not contain b, c, or d. It is interesting to note that

in Figure 2.1 (c), our definition concludes that d 6nticd→ i because although {d, i, j} is a control sink
and there is a maximal path from d that avoids i (by choosing j over i each time), this path is not
sink-bounded thanks to the “fairness” requirement. The consequence of this property is that even
though there may be control structures inside of a control sink, they will not give rise to any control
dependences. In applications where one desires to detect such dependences, one may apply the
definition to control sinks in isolation with back edges removed or use order dependence (described
below in Definition 14).

In languages like Java, exception-based control flow paths give rise to control flow graphs with

shapes similar to that in Figure 2.2 (a). In this CFG, b
cd→ c, b

cd→ d, and c
cd→ d. In case of b

cd→ d,
it is possible for the control to reach d even if the control flows along b → c. Hence, b does not

decisively decide if control can bypass d. However, in case of c
cd→ d, c does decisively decide if

control can bypass d. The decisiveness stems from the fact that the choice at the control point (c)
that prevents the control from reaching the given program point (d) is final. Hence, the decisive
control dependence relation can be defined as follows.

Definition 11 (ni
dcd→ nj) In a CFG, nj is (directly) decisively control dependent on node

ni iff ni has at least two successors, nk and nl, such that

1. for all maximal paths from nk, nj always occurs and either nj = ni or nj strictly precedes ni;

2. for all maximal paths from nl, nj does not occur, or nj is strictly preceded by ni. 2

Although the above definition and Definition 7 are almost identical, they differ in the quantifi-
cation in the second clause. Hence, the above definition implies Definition 7.

Decisive control dependence is useful to answer the question - “Which is the control point beyond
which the control cannot reach the given program point?” This information is useful when trying
to understand procedures with multiple exit points that are embedded in nested control structure
and when trying to find the program point to begin backtracking to discover possible control flow

14

CHAPTER 2. CONTROL DEPENDENCE

divergence points.

Programs written in unstructured languages such as JVM bytecodes can give rise to irreducible
CFGs for which previous definitions prove to be insufficient to capture dependences. For example,
in Figure 2.2 (b), b and c cannot be related to a by any of the above dependences as, given the
shape of the CFG, the control will reach b and c once it enters the control sink {b, c}. However, a
does influence if b or c will be executed first when the control does enter the control sink {b, c}. In
other words, the order in which b and c are executed within the control sink is determined by a. To
capture ordering relationships between nodes such as a, b, and c in irreducible regions of a CFG,
we propose a new notion of dependence called order dependence.

Definition 12 (ni
dod→ nj � nk) Let n1, n2, n3 be distinct nodes. n2 and n3 are decisively order-

dependent on n1, written n1
dod→ n2 � n3, if

1. all maximal paths from n1 contain both n2 and n3,

2. n1 has a successor from which all maximal paths4 contain n2 before any occurrence of n3, and

3. n1 has a successor from which all maximal paths contain n3 before any occurrence of n2. 2

We shall use decisive order dependence in our exposition about slicing and associated correctness
proofs.

Observe that the above definition is decisive as it requires that n1 be the final control point to
decide the execution order between n2 and n3. By relaxing this requirement, we can arrive at a
relatively weaker relation. We refer to this relation as strong order dependence. As given in the
following definition, the universal quantification on the maximal paths is required for one of n2 and
n3, successor nodes of n1.

Definition 13 (ni
sod→ nj � nk) Let n1, n2, n3 be distinct nodes. n2 and n3 are strongly order-

dependent on n1, written n1
sod→ n2 � n3, if

1. all maximal paths from n1 contain both n2 and n3,

2. there exists a maximal path from n1 where n2 occurs before any occurrence of n3

3. there exists a maximal path from n1 where n3 occurs before any occurrence of n2,

4. n1 has a successor n4, such that either

(a) all maximal paths from n4 contain n2 before any occurrence of n3, or

(b) all maximal paths from n4 contain n3 before any occurrence of n2. 2

Strong order dependence definition can be further generalized to capture control dependence,
hence, be applicable to reducible regions of the CFG. The generalization is achieved by removing
clause (1) from Definition 13 as done in the following definition.

4which will contain both n2 and n3, thanks to clause (1).

15

CHAPTER 2. CONTROL DEPENDENCE

Definition 14 (ni
wod→ nj � nk) In a CFG, nodes nj and nk (nj 6= nk) are weakly order dependent

on ni iff

• there exists a maximal path from ni where nj strictly precedes any occurrence of nk,

• there exists a maximal path from ni where nk strictly precedes any occurrence of nj , and

• ni has a successor nl such that either

– on all maximal paths from nl, nj strictly precedes any occurrence of nk, or

– on all maximal paths from nl, nk strictly precedes any occurrence of nj . 2

Given the definition of various forms of order dependences and the property5 of reducible CFG –
every cycle in a reducible CFG has one node that dominates other nodes of the cycle – it is possible
to naively conclude that there can be no order dependences of any form between ni,nj , and nk
provided they are distinct and occur in a reducible CFG. This is true in case of decisive (as proved
in Lemma 3) and strong variants of order dependence. However, this is not true in case of weak order

dependence. As an example, observe that b and c are weakly order dependent on a (a
wod→ b � c)

in the reducible graph in Figure 2.2 (d) while b and c are neither strongly nor decisively order
dependent on a. Further, one can observe and prove (although not done in this effort) that, in a

reducible CFG, a
wod→ b� c =⇒ a

ntscd→ b ∨ a ntscd→ c.

Although order dependence captures the ordering on nodes imposed by control flow, it is overly
conservative in cases where such an ordering is required only to preserve the data values observed
during execution. In other words, if there is no variable that is used(defined) in b and defined(used)
in c, then the data values observed during execution of b and c are independent of the order in which
b and c are executed. In such cases, the execution order imposed by a on b and c is uninteresting
if the order is observed only by the changes to variables used in a and b and not by the order
of program points encountered during execution. This data-sensitive order relation is captured by
data-sensitive order dependence, a stronger form of order dependence.

Definition 15 (ni
dsod→ nj � nk) In a CFG, nodes nj and nk (nj 6= nk) are data-sensitive order

dependent on ni iff

1. ni
sod→ nj � nk;

2. either nj
dd→ nk or nk

dd→ nj . 2

2.3.1 Examples

Consider Figure 2.1 (c). According to Definition 7, a
ntscd→ b as the first execution of b depends on

the choice made at a. Likewise, a
ntscd→ c and a

ntscd→ f . Similarly, f
ntscd→ g. Independent of the

choice made at f, the control will always reach h. Hence, f 6ntscd→ h but a
ntscd→ h. Similarly, a

ntscd→ e,

and c
ntscd→ b. If b → c → b is an infinite loop, control will never reach d ; the length of the loop is

5Definition (f) in the abstract of [HU74]

16

CHAPTER 2. CONTROL DEPENDENCE

���
�

���
�

���
�

���
�

�	�	��	�	��	�	��	�	��	�	��	�	��	�	��	�	��	�	�

	

	

	

	

	

	

	

	

	

�	�	��	�	��	�	��	�	��	�	��	�	��	�	��	�	��	�	�

�	��	�
�	��	�
�	��	�
�	��	�
�	�

																																																			

�	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	� a

b

dc

(a)

���
�

���
�

���
�

���
�

���
�

�	��	�
�	��	�
�	��	�
�	��	�
�	�

�	��	�
�	��	�
�	��	�
�	��	�
�	� �	��	�

�	��	�
�	��	�
�	��	�
�	�

�	��	�
�	��	�
�	��	�
�	��	�
�	�

�	��	�
�	��	�
�	��	�
�	��	�
�	�

�	��	�
�	��	�
�	��	�
�	��	�
�	��	��	�

�	��	�
�	��	�
�	��	�
�	�

 	 	
 	 	
 	 	
 	 	
 	

(b)

c

b’

a

b

d

Figure 2.3: Control flow graphs specific to order dependence.

dependent on the choice made at c. Hence, c
ntscd→ d. In the loop starting at d, it is possible that

the control will bypass i in an iteration while it reaches i in a subsequent iteration depending on

the choice made at d.6 Hence, d
ntscd→ i.

In a non-termination insensitive setting, loops are assumed to be terminating (provided the loop
has an exit node). Hence, in Figure 2.1 (c), the loop b→ c→ b is assumed terminating as it has an
exit edge c → d. This implies that the loop cannot indefinitely delay the control from reaching d.

Hence, c 6nticd→ d. As for other non-termination sensitive control dependences for the same graph, most

of them hold also in the non-termination insensitive case, except we have d 6nticd→ i, and also c 6nticd→ j as
j belongs to the control sink that terminates all sink-bounded paths from c. As for decisive control

dependence, in Figure 2.2 (a), c
dcd→ d and b 6dcd→ d.

Nodes
ntscd→ nticd→

a b, c, f, h, e b, c, d, i, j, f, h, e
c b, d, j b
d i −
f g g

Table 2.2: Various control dependences (based on new definitions) existing in the graph in Fig-
ure 2.1 (c).

In Figure 2.2 (b), b and c are decisively order dependent on a (a
dod→ b � c), hence, b

dd→ c or

c
dd→ b implies a

dsod→ b � c. This result also holds for strong and weak order dependence. On the
other hand, b and c are weakly order dependent on a in Figure 2.2 (d) but they are neither related

by decisive nor strong order dependence. Also, i and j are weakly order dependent on d (d
sod→ i� j)

in Figure 2.1 (c).

Focusing only on order dependences, in Figure 2.3 (a), c and d are strongly and weakly order
dependent on both b and a. However, c and d are decisively order dependence only on b.

Unlike in Figure 2.3 (a), c and d are neither strongly nor decisively order dependent on b, b’,
and a in Figure 2.3 (b). The reason for this is the absence of edges c → d and d → c. However, c
and d are weakly order dependent on b and b’ in Figure 2.3 (b).

6Observe that the loop starting at d can be split into two loops as done in Figure 2.2 (c).

17

CHAPTER 2. CONTROL DEPENDENCE

2.3.2 Properties of the Dependence Relations

Conservative extension. We begin by showing that the new definitions of control dependence
conservatively extend classic definitions: when we consider our definitions in the original setting
with CFGs with unique end nodes, the definitions coincide with the classic definitions (as already
suggested by the examples in Table 2.1).

Theorem 1 (Coincidence Properties, I) For all CFGs with the unique end node property, and

for all nodes ni, nj ∈ N , ni
cd→ nj if and only if ni

nticd→ nj . 2

Proof First notice that for any n and m, m post-dominates n if and only if every sink-bounded
path from n contains m.

We shall first prove “only if”: so let ni
cd→ nj . There thus exists a non-trivial path π from ni to

nj such that every node in π except ni is post-dominated by nj . Let π take the form ni, nk, . . . , nj ;
we can assume that if nj 6= ni then nk 6= ni. Here nk may equal nj , but in any case it will hold that
nk is post-dominated by nj .

Also, we know from ni
cd→ nj that ni is not strictly post-dominated by nj . Therefore either

ni = nj , or ni is not post-dominated by nj . In either case, since the end node is reachable from all
nodes, we infer that ni has a successor nl which is not post-dominated by nj .

We have thus found nk and nl, such that all sink-bounded paths from nk contain nj , and such

that there exists a sink-bounded path from nl not containing nj . This shows ni
nticd→ nj .

Next we prove “if”: so let ni
nticd→ nj . Thus ni has (at least) two successors, nk and nl, such

that (i) all sink-bounded paths from nk contain nj ; and (ii) there exists a sink-bounded path from
nl not containing nj . From (ii) we infer that either ni = nj or ni is not post-dominated by nj ; in
either case, ni is not strictly post-dominated by nj .

Since the end node ne is reachable from all nodes, we know from (i) that there exists a path from

nk to nj ; let π be a shortest such path. In order to show that ni
cd→ nj , it suffices to show that all

nodes in π are post-dominated by nj . But this clearly follows from (i). �

Before we prove coincidence property between weak control dependence and the non-termination
sensitive control dependence, we prove the equivalence between the original and the simplified def-
inition of non-termination sensitive control dependence. For readability, we restate the simplified
definition of non-termination sensitive control dependence.

Definition 16 In a CFG, nj is non-termination sensitive control dependent on ni iff

(a) ni has two successors nk and nl;

(b) on all maximal paths from nk, nj occurs;

(c) there exists a maximal path from nl on which nj does not occur.

Lemma 2 For a CFG, Definition 16 is equivalent to the original definition of non-termination

18

CHAPTER 2. CONTROL DEPENDENCE

sensitive control dependence (Definition 7). 2

Proof First, we restate the definition of directly non-termination sensitive control dependence

(Definition 7); we have ni
ntscd→ nj iff:

ntscd(i) ni has at least two successors, nk and nl.

ntscd(ii) For all maximal paths from nk, nj always occurs and either it equals ni or it occurs before
any occurrence of ni.

ntscd(iii) There exists a maximal path from nl on which either nj does not occur, or nj is strictly
preceded by ni.

Since ntscd(ii) implies (b), and (c) implies ntscd(iii), we are left with showing two implications:

• First, we show that (b) implies ntscd(ii): Let π be a maximal path from nk. By (b), nj
occurs there. Now assume, towards a contradiction, that in π, ni occurs strictly before any
occurrence of nj . Since there is an edge from ni to nk, this means that the graph has a cycle
containing nk but not containing nj . But then we can find a maximal path from nk where nj
does not occur, contradicting (b).

• Next, we show ntscd(iii) implies (c): Let π be a maximal path from nl on which ni occurs
strictly before the first (if any) occurrence of nj . If π does not contain nj , we are done. So
assume that π does contain nj , but that ni occurs strictly before. But since there is an edge
from ni to nl, this means that the graph has a cycle containing nl but not containing nj . Then
we can find a maximal path from nl where nj does not occur, as desired.

This concludes the proof of Lemma 2. Note that we have not assumed the “unique end node”
property. �

As could be expected, we have a similar result relating the corresponding CTL formulae:

Theorem 2 (Simplified NTSCD CTL Equivalence) The expression of NTSCD as a CTL for-
mula over CFG paths (φCFG):

ni
ntscd→ nj = (G,ni) |= EX(AF(nj) ∧ EX(EG(¬nj)).

is equivalent to the CTL formula over execution traces (φtrace):

ni
ntscd→ nj = (G,ni) |= EX(A[¬niUnj]) ∧ EX(E[¬njW(¬nj ∧ ni)]).

Proof It suffices to prove that the pairs of sub-formulae under the EX operators in the two formulae
are equivalent.

We prove that φCFG implies φtrace in two steps:

1. EG(¬nj) implies E[¬njW(¬nj ∧ ni)]:
The definition of EW requires its left operand to be true until the right operand holds. Thus

19

CHAPTER 2. CONTROL DEPENDENCE

if the left operand holds throughout the trace, by the definition of EG(¬nj), then ¬nj must
hold until ¬nj ∧ ni).

2. AF(nj) implies A[¬niUnj]):
The AU operator requires that a nj state is reached, which holds by the definition of AF(nj),
and that all prefixes of traces ending in nj must be free of ni states.

In the following, we use regular expressions over CFG node names, nj , to describe the structure
of CFG paths. In this context, negation, ¬nj , is used to denote the absence of a particular
control point, nj .

Every path from a CFG node ni either has a prefix that is cyclic in ni, ni(¬ni)
∗ni, or is a path

that is acyclic in ni, ni(¬ni)
∗. All proper suffixes of paths that are acyclic in ni are free of ni

by definition. If there exists a path with a prefix that is cyclic in ni, then there must exist a
CFG path of the form (ni(¬ni)

∗ni)∗. If AF(nj) holds on such a path then it must be the case
that nj appears in the body of the cycle, (¬ni)

∗. Thus, all paths that satisfy AF(nj) and begin
with a prefix that is cyclic in ni must begin with a prefix of the form ni(¬ni)

∗nj .

Thus φCFG implies φtrace.

We prove that φtrace implies φCFG in two steps:

1. A[¬niUnj]) implies AF(nj):
The AU operator requires that eventually its right operand nj becomes true which is the
definition of AF(nj).

2. E[¬njW(¬nj ∧ ni)] implies EG(¬nj):
If the right operand of the EW never becomes true in a trace then ¬nj must hold throughout
the trace which is equivalent to enforcing EG(¬nj).

The EW operator, however, only requires ¬nj to hold up along the trace to the point where
ni holds. For the implication to hold we must show that that ¬nj will persist through the rest
of the path.

Consider a CFG path from ni that is free of nj up to the first occurrence of ni; this satisfies
the above EW. This path has a prefix of the form ni(¬nj)

∗ni and by iterating that prefix we
can construct a path (ni(¬nj)

∗ni)∗ that satisfies EG(¬nj).

Thus φtrace implies φCFG. �

Theorem 3 (Coincidence Properties, II) For all CFGs with the unique end node property, and

for all nodes ni, nj ∈ N , ni
wcd→ nj if and only if ni

ntscd→ nj . 2

Proof By Lemma 2, we can prove the equivalence by showing that Podgurski-Clarke’s weak control
dependence from Definition 6 is equivalent to Definition 16.

For readability, we restate Podgurski-Clarke’s definition of weak control dependence; we have

ni
wcd→ nj iff:

pcwcd(i) ni has at least two successors, nk and nl.

pcwcd(ii) nj strongly post-dominates nk.

pcwcd(iii) nj does not strongly post-dominate nl.

20

CHAPTER 2. CONTROL DEPENDENCE

There are four steps.

1. pcwcd(ii) implies (b): Let π be a maximal path from nk. We must show that nj occurs in
π. There are two possibilities:
π is finite: The last node of π must be an end node. Since nj post-dominates nk, this shows
that nj occurs in π.
π is infinite: We know that there exists q such that all paths from nk longer than q contain
nj ; in particular, π will contain nj since π is infinite, hence longer than q.

2. (b) implies pcwcd(ii): First let us show that nj post-dominates nk; so let π be a path from
nk to an end node. We must show that π contains nj , but this follows from (b) since π is
maximal.

Next we must find a q such that all paths from nk longer than q contain nj ; we claim that
we can choose q to be one more than the number of nodes in the CFG. For let π be a path
from nk longer than q: it contains a repetition, so if nj does not occur in π we can construct
a maximal path from nk with nj not occurring, yielding a contradiction.

3. pcwcd(iii) implies (c): Here we have two cases.
nj does not post-dominate nl: Then there exists a path π from nl to an end node such that nj
does not occur in π. The claim now follows since π is maximal.
For all q, there exists a path from nl longer than q where nj does not occur : With q the number
of nodes in the CFG, we infer that there exists a path from nl containing repetitions but not
containing nj ; this shows that we can construct a maximal (infinite) path from nl on which
nj does not occur.

4. (c) implies pcwcd(iii): Our assumption is that there exists a maximal path π from nl with
nj not occurring in π. Now there are two cases:
π is finite, with the last node being an end node: But then nj does not post-dominate nl, in
particular nj does not strongly post-dominate nl.
π is infinite: But then for any q, π will be a path from nl of length q not containing nj , again
showing that nj does not strongly post-dominate nl.

This concludes the proof of Theorem 3. �

Non-termination sensitivity relates more nodes. For an arbitrary CFG, direct non-termination
insensitive control dependence (Definition 10) implies the transitive closure of direct non-termination
sensitive control dependence.

Theorem 4 For all nodes ni, nj ∈ N , ni
nticd→ nj implies ni

ntscd→
∗
nj . 2

Note that this result is supported by the examples in Tables 2.1 and 2.2. For example, in Figure 2.1

(a), a
nticd→ d holds but a

ntscd→ d does not. But a
ntscd→

∗
d holds as both a

ntscd→ c and c
ntscd→ d hold.

Proof Our assumption is that ni has successors nk, nl such that (i) nj occurs on all sink-bounded
paths from nk and (ii) there exists a sink-bounded path from nl on which nj does not occur.

Now consider a sink-bounded path π from ni via nk (there exists such a path, by Lemma 1). We
can write π = [u0, u1, . . . , um, . . .] where m ≥ 1, u0 = ni, u1 = nk, um = nj , up 6= nj for 1 ≤ p < m.

21

CHAPTER 2. CONTROL DEPENDENCE

Observe that for all i = 1 . . .m, nj occurs on all sink-bounded paths from ui (otherwise (i) would
be contradicted). So, if all sink-bounded paths from nl would contain ui, all sink-bounded paths
from nl would contain nj , contradicting (ii). Thus for all i = 1 . . .m, there exists a sink-bounded
path from nl not containing ui.

Now define predicates Qp such that Qp(i) holds iff 0 ≤ i ≤ p ≤ m and all maximal paths

from ui contain up. Observe that if Qp(i) does not hold but Qp(i + 1) holds, then ui
ntscd→ up (cf.

Definition 16). Also observe that Qp(p) holds for all p ≤ m, but if up 6= u0 then Qp(0) does not hold
(for if all maximal paths from u0 contain up then all maximal paths from nl contain up so also all
sink-bounded paths from nl contains up, contradicting the above).

Now we are ready for the construction: if um = u0, we are done. Otherwise, we can find j1 such

that Qm(j1) does not hold but Qm(j1 + 1) holds, showing that uj1
ntscd→ um. If uj1 = u0, we are

done. Otherwise, since Qj1(j1) holds but Qj1(0) does not hold, we can find j2 such that Qj1(j2)

does not hold but Qj1(j2 + 1) holds, showing that uj2
ntscd→ uj1 . Now we can repeat as desired. �

Order dependency is relevant for irreducible graphs only.

Lemma 3 For a reducible CFG, the relations
dod→ and

sod→ are empty. 2

Proof Assume that n1
sod→ n2 � n3 or n1

dod→ n2 � n3. Thus n1,n2,n3 are distinct, and

od(i) all maximal paths from n1 contain both n2 and n3, and

od(ii) in one maximal path from n1, n2 occurs before the first occurrence of n3, and

od(iii) in one maximal path from n1, n3 occurs before the first occurrence of n2.

We shall show that from these assumptions, a contradiction can be derived when the CFG is
reducible. First observe that

n1 is reachable from neither n2 nor n3. (*1)

For otherwise, we could wlog. assume that there is a path from n2 to n1 not containing n3, which
by od(ii) entails that there exists a maximal path from n1 not containing n3, contradicting od(i).

Since the CFG is assumed reducible, its edges E can be partitioned into forward edges Ef and
back edges Eb. Here Ef forms an acyclic graph, so wlog. we can assume that n2 is not reachable in
Ef from n3. Since by od(iii) and od(i), n2 is reachable in E from n3, there exists a node n4 and

in Ef , a path [n3..n4] not containing n2 (*2)

and a back edge

n4 → n5 where n5 dominates n4. (*3)

With n0 the start node of the CFG, due to (*1) there exists

22

CHAPTER 2. CONTROL DEPENDENCE

a path [n0..n1] not containing n2. (*4)

Also, by assumption od(iii), there exists

a path [n1..n3] not containing n2. (*5)

From (*4), (*5), (*2) we see that there is

a path [n0..n4] containing n1 but not containing n2.

By (*3) we infer that n5 is on that path, and that there is a path from n4 to n4 not containing n2.
Thus we can construct a maximal path from n1 not containing n2, contradicting od(i). �

Observables. For the (bisimulation-based) correctness proof in Section 2.4.1, we shall need a few
results about slice sets, members of which are termed “observable”. Typically, these results require

slice sets Ξ to be closed under non-termination sensitive control dependency, i.e., if n1
ntscd→ n2 and

n2 ∈ Ξ then also n1 ∈ Ξ. For certain weaker results, it is sufficient to demand that Ξ is closed

under non-termination insensitive control dependency, i.e., if n1
nticd→ n2 and n2 ∈ Ξ then also

n1 ∈ Ξ. (By Theorem 4, the latter closedness property is weaker than the former.) For the main
result (Theorem 5), we shall also demand Ξ to be closed under (decisive) order dependency, i.e., if

ni
dod→ nj � nk with nj ,nk ∈ Ξ then also ni ∈ Ξ.

A key feature of our development is the notion of “first observable”, where we now present a
“may” definition:

Definition 17 For a node n, obs1
may(n) is the set of nodes n′ ∈ Ξ with the property that there

exists a path [n..n′] where all nodes except n′ are not in Ξ. 2

Clearly, if n ∈ Ξ then obs1
may(n) = {n}. Next, a “must” definition of “subsequent observable”:

Definition 18 For a node n, obs∗must (n) is the set of nodes n′ ∈ Ξ with the property that all
maximal paths from n contain n′. 2

A crucial property of a slice set is that “may” implies “must”, i.e., the first observable on any path
will be encountered sooner or later on all other paths:

Lemma 4 Assume the node set Ξ is closed under non-termination sensitive control dependency.
Then for all nodes n, obs1

may(n) ⊆ obs∗must(n). 2

Proof Assume, in order to arrive at a contradiction, that there exists a node n0 such that obs1
may(n0)

is not a subset of obs∗must(n0); thus there exists n1 ∈ Ξ with n1 ∈ obs1
may(n0) but n1 /∈ obs∗must(n0).

The situation is that there is a path π from n0 to n1 where all nodes except n1 do not belong to
Ξ. We infer that n0 /∈ Ξ, as otherwise we would have n1 = n0, contradicting n1 /∈ obs∗must (n0). We
define a predicate Q such that

23

CHAPTER 2. CONTROL DEPENDENCE

Q(n) holds iff n1 ∈ obs∗must(n).

By our assumption, Q(n0) does not hold; clearly, Q(n1) holds. Therefore, π can be written as
[n0..n2n3..n1] where Q(n2) does not hold but Q(n3) holds (that is, there is an edge from n2 to n3;
note that n2 may equal n0 and that n3 may equal n1 but we know that n1 6= n2).

We shall show that n2
ntscd→ n1; then from n1 ∈ Ξ and from Ξ being closed under

ntscd→ we get
n2 ∈ Ξ which contradicts n1 being the only node in π which is also in Ξ.

Since Q(n2) does not hold, there exists a maximal path starting at n2 not containing n1; that
path has to have at least two elements (since n2 has an outgoing edge) and the second element cannot
be n3 (as Q(n3) holds). Therefore, the second element is some node n4 with n3 6= n4, and there
exists a maximal path from n4 which does not contain n1. Our final obligation (cf. Definition 16) is
to prove that all maximal paths from n3 contain n1, which follows since Q(n3) holds. �

In a similar way we can show:

Lemma 5 Assume Ξ is closed under
nticd→ . Assume n1 ∈ obs1

may(n0). Then all sink-bounded paths
from n0 will contain n1. 2

As a consequence we have the following result, giving conditions to preclude the existence of infinite
un-observable paths:

Lemma 6 Assume that n0 /∈ Ξ, but that there is a path π starting at n0 which contains a node in
Ξ.

• If Ξ is closed under non-termination insensitive control dependency, then all sink-bounded
paths starting at n0 will reach Ξ.

• If Ξ is also closed under non-termination sensitive control dependency, then all maximal paths
starting at n0 will reach Ξ. 2

Our main result, Theorem 5 given below, states that from a given node there is a unique first observ-
able. This does not hold without extra assumptions, however, as demonstrated by the (irreducible)
CFG in Figure 2.2(b) where Ξ = {b, c} is closed under non-termination sensitive control dependency

(since a 6ntscd→ b and a 6ntscd→ c) and provides a with two possible first observables. Our remedy is to
demand that the slice set Ξ is closed under decisive order dependency, as defined in Definition 12.
Recall (Lemma 3) that a reducible graph is vacuously closed under decisive order dependency.

Theorem 5 If Ξ is closed under
ntscd→ and

dod→ , then for all nodes n it holds that obs1
may(n) is at

most a singleton. 2

Proof Assume the contrary, and let n0 be such that |obs1
may(n0)| > 1, implying (by Lemma 4) that

|obs∗must (n0)| > 1. Then there cannot exist a maximal path π from n0 such that |obs1
may(n)| > 1

holds for all n occurring in π, for then π would contain no nodes in Ξ, contradicting obs∗must (n0)
being non-empty. Thus there exists a node n1 such that |obs1

may(n1)| > 1, and thus n1 /∈ Ξ, but for

all n which are successors of n1, obs1
may(n) is (at most) a singleton. Since |obs1

may(n1)| > 1, we can

24

CHAPTER 2. CONTROL DEPENDENCE

find n2,n3 ∈ obs1
may(n1) with n2 6= n3. Clearly, n1 has a successor u2 with obs1

may(u2) = {n2}, and

a successor u3 with obs1
may(u3) = {n3}.

We shall now argue that n1
dod→ n2 � n3, which since Ξ is closed under

dod→ and since n2,n3 ∈ Ξ
will imply n1 ∈ Ξ, yielding the desired contradiction. Looking at Definition 12, we see that for
reasons of symmetry, it is sufficient to show the following items:

from n1, all maximal paths contain n2: this follows since n2 ∈ obs1
may(n1) ⊆ obs∗must(n1).

from a successor of n1, all maximal paths contain n2 before n3: u2 is a successor of n1 where
obs1

may(u2) = {n2} so there is no way that a path from u2 can contain n3 before n2. �

Note: Theorem 5 will not hold if we assume only that Ξ is closed under non-termination
insensitive control dependency. To see this, consider the following reducible graph: in Ef , there
is an edge from n2 to n1 and an edge from n1 to n3 and also a direct edge from n2 to n3; in Eb,
there is an edge from n1 to n2 and an edge from n3 to n2. The only control sink is thus the whole

graph, so the relation
nticd→ is empty; also the relation

dod→ is empty (by Lemma 3). All node sets

are thus vacuously closed under
nticd→ and

dod→ . Assume Ξ is such that n2,n3 ∈ Ξ but n1 /∈ Ξ. Then
obs1

may(n1) contains two elements: n2 and n3. (On the other hand, n3 is non-termination sensitive
dependent on n1, so Ξ is not closed under non-termination sensitive control dependency, and the
scenario is thus not a counterexample to the actual Theorem 5.)

2.4 Slicing

We now describe how to slice a CFG G wrt. a slice set SC , the smallest set containing C which is

closed under data dependence
dd→ and also under

ntscd→ and under
dod→ .

Definition 19 (Slicing Transformation) The result of slicing is a program with the same CFG
as the original one, but with the code map code1 replaced by code2. Here for n ∈ SC we have
code2(n) = code1(n), and for n /∈ SC we have

• if n is a statement node then code2(n) is the statement skip;

• if n is a predicate node then code2(n) is cskip, the semantics of which is that it non-
deterministically chooses one of its successors. 2

The above definition is conceptually simple, so as to facilitate the correctness proofs. Of course,
one would want to do some post-processing, like eliminating skip commands and eliminating cskip

commands where the two successor nodes are equal; we shall not address this issue further but
remark that most such transformations are trivially meaning preserving.

2.4.1 Correctness Properties

The main intuition behind our notion of slicing correctness is that the nodes in a slicing criterion
C represent “observations” that one is making about a CFG G under consideration. Specifically,

25

CHAPTER 2. CONTROL DEPENDENCE

for an n ∈ C, one can observe that n has been executed and also observe the values of any vari-
ables referenced at n. Execution of nodes not in C correspond to silent moves or non-observable
actions. The slicing transformation should preserve the behavior of the program with respect to C-
observations, but parts of the program that are irrelevant with respect to computing C observations
can be “sliced away”. The slice set SC built according to Definition 4 represents the nodes that
are relevant for maintaining the observations C. Thus, to prove the correctness of slicing we will
establish the stronger result that G will have the same SC observations wrt. the original code map
code1 as wrt. the sliced code map code2, and this will imply that they have the same C observations.

The discussion above suggests that appropriate notions of correctness for slicing reactive programs
can be derived from the notion of weak bisimulation found in concurrency theory, where a transition
may include a number of τ -moves [Mil89]. Recall from Section 2.1.2 that a state s is a pair (n, σ)
where σ is a store mapping variables into values.

Definition 20 For i = 1, 2 we write

• i ` s→ s′ to denote that wrt. code map codei, the program state s rewrites in one step to s′,

• i ` s n7−→ s′ if i ` s→ s′ and n ∈ Ξ where s = (n, σ),

• i ` s τ7−→ s′ if i ` s→ s′ and n /∈ Ξ where s = (n, σ),

• τ
=⇒ for the reflexive transitive closure of

τ7−→, and

• i ` s n
=⇒ s′ if there exists s1 such that s

τ
=⇒ s1 and s1

n7−→ s′. 2

Definition 21 A binary relation φ is a weak bisimulation if for all i ∈ {1, 2}, we have the following
properties where j = 3− i.

1. If s1 φ s2 and i ` si τ7−→ s′i then there exists s′j such that j ` sj τ
=⇒ s′j and s′1 φ s

′
2.

2. If s1 φ s2 and i ` si n7−→ s′i then there exists s′j such that j ` sj n
=⇒ s′j and s′1 φ s

′
2. 2

Remark 2 The notion of weak bisimulation just defined is slightly different from what is mostly
seen in the literature, in that

n
=⇒ does not allow silent moves after the observable action. 2

Remark 3 If Ξ is closed under
ntscd→ and

dod→ , we know from Theorem 5 that for any node n,
obs1

may(n) is either a singleton set or empty. With abuse of notation, we shall write obs1
may(n) = n1

for obs1
may(n) = {n1}. Also, we know from Lemma 4 that if obs1

may(n) = n1 then all maximal paths
from n will contain n1. 2

Definition 22 For each node n in G, we define relv(n), the set of relevant variables at n, by
stipulating that x in relv (n) iff there exists a node nk ∈ Ξ and a path π from n to nk such that
x ∈ ref(nk), but for all nodes nj occurring before nk ∈ π, x /∈ def(nj). 2

Strictly speaking, we should have defined (for i = 1,2) functions refi(n) to return the variables
referenced at node n wrt. code map codei, functions defi(n) to return the variables defined at node n

26

CHAPTER 2. CONTROL DEPENDENCE

wrt. code map codei, and functions relv i(n) and relation
dd→i parametrized wrt. refi and defi. However,

the following result shows that we can safely ignore the subscripts since the slicing transformation
applied to SC yields a node set that is also closed under data dependence and has the same set of
relevant variables for each node.

Lemma 7 Assume, with
dd→i etc. as defined just above, that Ξ is closed under

dd→1. Then

1. Ξ is closed also under
dd→2;

2. for all n, relv1(n) = relv2(n). 2

Proof To show (1), assume the contrary; then there exists a path π from nj /∈ Ξ to nk ∈ Ξ such
that x ∈ ref2(nk) and x ∈ def2(nj), but for all n′ interior in π: x /∈ def2(n′). Observing that all
variables in code2 also occur in code1, we see that x ∈ ref1(nk) and x ∈ def1(nj). Since Ξ is closed

under
dd→1, we can infer that there exists a node n′ interior in π with x ∈ def1(n′); let n1 be the last

such n′. Then n1 ∈ Ξ and x ∈ def1(n1) and (cf. above) x /∈ def2(n1). But since n1 ∈ Ξ we have
code1(n1) = code2(n1) which yields the desired contradiction.

To show (2), assume that x ∈ relv i(n) with i ∈ {1, 2}; we must prove that x ∈ relv j(n) where
j = 3− i. Our assumptions are that there exists a path π from n to nk ∈ Ξ such that x ∈ refi(nk),
but for all nodes n′ occurring before nk in π, x /∈ defi(n

′). Now, since nk ∈ Ξ, codei(nk) = codej(nk),
so x ∈ refj(nk). We are done if we can prove that x /∈ defj(n

′) for all nodes n′ occurring before nk
in π. In order to arrive at a contradiction, assume that this is not the case. Let n1 be the last node

n′ occurring before nk in π with x ∈ defj(n
′). Then n1

dd→j nk; since nk ∈ Ξ which by (1) is closed

under
dd→j , this implies n1 ∈ Ξ. But then codej(n1) = codei(n1) which gives the desired contradiction

since x ∈ defj(n1) but x /∈ defi(n1). �

After this digression, we return the the main development, where a key property is that the set
of relevant variables is determined by the first observable.

Lemma 8 Assume that Ξ is closed under
ntscd→ ,

dod→ , and
dd→. Assume that n1 and n2 are such that

obs1
may(n1) = obs1

may(n2). Then relv(n1) = relv(n2). 2

Proof If obs1
may(n1) and obs1

may(n2) are both empty, no node in Ξ is reachable from n1 nor from
n2, and therefore relv(n1) = relv (n2) = ∅.

Otherwise, let n3 = obs1
may(n1) = obs1

may (n2); for reasons of symmetry, it is sufficient to prove
that relv(n1) ⊆ relv (n2). So let x ∈ relv (n1) be given, we must prove x ∈ relv (n2). There exists
a path π from n1 to nk ∈ Ξ such that x ∈ ref(nk), but x /∈ def(nj) for any node nj occurring
before nk in π. Since n3 = obs1

may(n1), we can split π into π1 = [n1..n3] and π0 = [n3..nk]. Since

n3 = obs1
may(n2), there exists a repetition-free path π2 = [n2..n3], and thus a path π′ = π2π0 from

n2 to nk. Towards proving our goal x ∈ relv (n2), we are left with showing that x /∈ def(nj) for all
nodes nj occurring before nk in π′. Assume the contrary, and let n′ be the last node in π′ serving as

a counterexample. Since Ξ is closed under
dd→, we infer that n′ ∈ Ξ; also, due to the properties of π,

we infer that n′ does not occur in π0, and therefore, n′ occurs before n3 in π2. But this contradicts
n3 = obs1

may(n2). �

27

CHAPTER 2. CONTROL DEPENDENCE

We need one more auxiliary result.

Lemma 9 Assume that Ξ is closed under
ntscd→ ,

dod→ , and
dd→. If i ` s1

τ7−→ s2 where s1 = (n1, σ1),
s2 = (n2, σ2), and i ∈ {1, 2} then

1. obs1
may(n1) = obs1

may(n2) and

2. there exists V such that

(a) V = relv(n1) = relv(n2) and

(b) σ1 =V σ2. 2

Here we write σ1 =V σ2 when for all x ∈ V , σ1(x) = σ2(x).

Proof First observe that n1 /∈ Ξ. For (1), clearly obs1
may(n2) ⊆ obs1

may(n1), so by Theorem 5 it is

sufficient to prove that it cannot be the case that obs1
may(n2) = ∅ while obs1

may(n1) is a singleton
{n3}. But if so, Lemma 4 would tell us that n3 ∈ Ξ occurs on all maximal paths from n1, and thus
also on all maximal paths from n2, contradicting obs1

may(n2) = ∅.

Now (a) follows from Lemma 8. For (b), in order to arrive at a contradiction, we assume that
σ1 =V σ2 does not hold. For this to be the case, there must exist x ∈ V with x ∈ def(n1). Since
x ∈ relv (n1), there exists a path from n1 to a node nk ∈ Ξ with x ∈ ref(nk), along which x is not
defined. But since x is defined at n1, this yields the desired contradiction. �

We now stipulate when a program state in the original program is related to a program state in
the sliced program.

Definition 23 For Ξ closed under
ntscd→ ,

dod→ , and
dd→, we define a relation R : s1R s2 iff

• obs1
may(n1) = obs1

may(n2) and

• σ1 =V σ2

where s1 = (n1, σ1) and s2 = (n2, σ2) and V = relv(n1) = relv (n2). 2

By Lemma 8, this is well-defined. We now state the key part of the correctness result:

Theorem 6 If Ξ is closed under
ntscd→ ,

dod→ , and
dd→, then the relation R from Definition 23 is a weak

bisimulation (cf. Definition 21). 2

Proof For i ∈ {1, 2} and j = 3− i, we must show

1. If s1R s2 and i ` si τ7−→ s′i then there exists s′j such that j ` sj τ
=⇒ s′j and s′1R s′2.

2. If s1R s2 and i ` si n7−→ s′i then there exists s′j such that j ` sj n
=⇒ s′j and s′1R s′2.

28

CHAPTER 2. CONTROL DEPENDENCE

For (1), assume that i ` si
τ7−→ s′i. Choose s′j = sj . The claim then trivially follows from

Lemma 9.

For (2), assume that i ` si n7−→ s′i. Thus si is of the form (n, σi); also let sj = (nj , σj) and
s′i = (n′, σ′i). We have n = obs1

may(n) = obs1
may(nj); let V = relv(n) = relv(nj). Since by Lemma 4,

n ∈ obs∗must(nj), any execution sequence starting from nj will sooner or later hit n; also, since n
is the only node in obs1

may(nj), that execution sequence will contain no other nodes in Ξ. All this

shows that there exists s′′j = (n, σ′′j) such that j ` sj τ
=⇒ s′′j . By repeated application of Lemma 9

we infer σ′′j =V σj and since σi =V σj thus also σi =V σ′′j . In particular,

σi and σ′′j agree on ref(n). (*)

Therefore, s′′j will choose the same branch as si (if n is a predicate node, otherwise vacuously).

That is, there exists s′j of the form (n′, σ′j) such that j ` s′′j
n7−→ s′j and thus j ` sj n

=⇒ s′j . We
are left with showing that with V ′ = relv(n′) we have σ′i =V ′ σ

′
j . So let x ∈ V ′, we must prove

σ′i(x) = σ′j(x). If x ∈ def(n) (and n is thus a statement node) then the claim clearly follows from
(*). Otherwise, if x /∈ def(n), then x ∈ relv(n) = V and the claim follows from σi =V σ′′j since
σ′i(x) = σi(x) = σ′′j (x) = σ′j(x). �

Observe that R is reflexive. Therefore, by Theorem 6, the initial state of the original CFG is
weakly bisimilar to the initial state of the sliced CFG. Also, since two states that are related by R
produce the same “output”, and since bisimulation generalizes Weiser’s notion of projection [Wei84]
to infinite traces, this demonstrates that

Theorem 7 If Ξ is closed under
ntscd→ ,

dod→ , and
dd→, then the sliced program has the same “observable

behavior” as the original program. 2

2.5 Algorithms

In this section we present algorithms to calculate various forms of control and order dependences
that were presented earlier. Each algorithm is accompanied by an overview, a proof of correctness,
and the complexity analysis of the worst-case time requirement. The algorithms are presented to
suggest that the proposed dependences can be calculated by algorithms with time complexity that
is polynomial in the number of nodes/edges. We conjecture that more optimal algorithms can be
designed to calculate the same information.

2.5.1 Non-Termination Sensitive Control Dependence (NTSCD)

We adopt an approach similar to symbolic data-flow analysis to calculate control dependences.
Basically, control dependences are determined by reasoning about properties of sets of CFG paths;
those sets are represented symbolically in our algorithm. Specifically, for each node n with more
than one successor in G, the set of all maximal paths that start with n → m is represented by a
symbol tnm. The algorithm propagates these symbols to collect the effects of particular control flow
choices at program points in the CFG. For each node p, a set of symbols Spn is maintained for every
node n in the CFG that has more than one successor; these sets record the maximal paths that

29

CHAPTER 2. CONTROL DEPENDENCE

originate from n and contain p. Hence, based on the interpretation, tnm ∈ Spn indicates that all
maximal paths starting with n→ m contain p. We shall use Tn to denote the number of successors
(|succs(n,G)|) of node n in G. Also, condNodes(G) denotes the set of nodes in G that have multiple
successors. The algorithm is presented in Figure 2.4.

Proof of correctness

The correctness of the algorithm (Figure 2.4) is presented as the following theorem.

Theorem 8 Upon the termination of phase (2) of the algorithm, tnm ∈ Spn iff all maximal paths
starting with n→ m contain p. 2

Proof We shall use “only-if” direction as an invariant on the loops in phase (2). We shall then
prove the “if” direction via contradiction.

“only-if” direction The finiteness of N ensures the termination of phase (1). Upon the comple-
tion of phase (1), the invariant is trivially established at the beginning of phase (2). If n has only
one successor m then all maximal paths containing n will contain m. Hence, the assignment at line
21 establishes the invariant at the end of the loop at line 19 (and conditional at line 17). If n has
multiple successors and all maximal paths through the successors contain m then all maximal paths
containing n will also contain m. This is captured by the assignment at line 29 and the invariant is
established at the end of the loops at line 25 and 27.

As the graph has finite number of nodes, the number of successors of a node is finite. Hence,
the total number of symbols (tnm) in the G is finite as well. This implies that the size of Snm has a
finite bound for every pair of nodes, n and m. In each iteration of the while loop at line 14, either
a symbol set Snm increases in size or all of the symbol sets remain unchanged. The former case
contributes an iteration (line 22 and line 30). As the size of the symbol set is finitely bound, the
while loop in line 14 will terminate establishing the “only-if” direction.

“if” direction Suppose there are nodes n,m, and p such that all maximal paths starting with
n → m contain p but tnm /∈ Spn. This implies that, in every maximal path starting with n → m,
ending with p, and containing nodes q and r (in the given order), tnm ∈ Sin for every node from m
to q and tnm /∈ Sjn for every node from r to p. We consider two cases.

• r is the only successor of q. In this case, when tnm is injected into Sqn, q will be marked for
processing (line 21). Upon processing, tnm will be injected into Srn. Hence, the supposition
cannot be true.

• q has multiple successors. By the supposition, there should be a node that is the first common
node to occur on all maximal paths originating from the successors of q. Let r be this common
node. Also assume there are no conditional nodes in the paths from q to r. From the previous
results and non-branching property of the paths between q and r, |Srq| = Tq. This implies
Sqn ⊆ Srn, hence, the supposition is falsified. Similar reasoning can be applied inside-out when
conditional nodes occur on the paths from q to r.

The above reasoning can be applied inductively when r is not the immediate successor of q or
when r is not the first common node to occur on all maximal paths originating from the successors

30

CHAPTER 2. CONTROL DEPENDENCE

Non-Termination-Sensitive-Control-Dependence(G)
1 G(N,E,n0) : a control flow graph
2 S[|N|, |N|] : a matrix of sets where S[p,n] represents Spn

3 CD[|N|] : a sequence of sets
4 workbag : a set of nodes
5
6 # (1) Initialize
7 workbag ← ∅
8 for each n in condNodes(G)
9 do for each m in succs(n,G)

10 do S[m,n]← {tnm}
11 workbag ← workbag ∪ {m}
12
13 # (2) Calculate all-path reachability
14 while workbag 6= ∅
15 do n← remove(workbag)
16 # (2.1) One successor case
17 if Tn = 1 and n /∈ succs(n,G)
18 then m← select(succs(n,G))
19 for p in condNodes(G)
20 do if S[n, p]\S[m, p] 6= ∅
21 then S[m, p]← S[m, p] ∪ S[n, p]
22 workbag ← workbag ∪ {m}
23 # (2.2) Multiple successors case
24 if |succs(n,G)| > 1
25 then for m in N
26 do if |S[m,n]| = Tn

27 then for p ∈ condNodes(G)\{n}
28 do if S[n, p]\S[m, p] 6= ∅
29 then S[m, p]← S[m, p] ∪ S[n, p]
30 workbag ← workbag ∪ {m}
31 # (3) Calculate non-termination sensitive control dependence
32 for each n in N
33 do for each m in condNodes(G)
34 do if 0 < |S[n,m]| < Tm

35 then CD[m]← CD[m] ∪ {n}
36
37 return CD

Figure 2.4: Algorithm to calculate non-termination sensitive control dependence

31

CHAPTER 2. CONTROL DEPENDENCE

of q. �

Based on the interpretation attached to tmn and Spn and Theorem 8, it is trivial to see that
phase (3) correctly calculates non-termination sensitive control dependence.

Complexity analysis

Phases (1) and (3) of the algorithm (Figure 2.4) have a worst case complexity of O(|N|2×lg |N|) where
lg |N| is the complexity of set operations. The complexity of the loop at line 25 is O(|N|2 × lg |N|)
and it dominates the complexity of the loop at line 14. In the worst case in phase (2), for a node p,
all token sets S[p, i] of p will stabilize in

∑
Tn iterations. Hence, the overall complexity of phase (2)

will be O(
∑
Tn × |N|3 × lg(|N|). This will also be the overall complexity of the algorithm.

2.5.2 Non-Termination Insensitive Control Dependence (NTICD)

The proposed algorithm (Figure 2.5) to calculate non-termination insensitive control dependence is
very similar to the NTSCD algorithm. The only differences being the presence of phase (2.3) and
the interpretation attached to tnm. In the NTSCD algorithm, any token tnm injected into Snn is
not propagated to non-m successors of n, hence, preserving non-termination sensitivity. Phase (2.3)
in NTICD algorithm induces non-termination insensitivity by undoing this preservation. Also, tnm

represents all extensible finite paths starting with n→ m in NTICD algorithm.

Proof of correctness

Given the similarity of NTSCD and NTICD algorithms, we prove the correctness of NTICD al-
gorithm by proving that phase (3) along with the interpretation attached to tnm calculates non-
termination insensitive control dependence.

The key observation being that phase (2.3) induces non-termination insensitivity. Succinctly, if
tnm ∈ Snn then tnm is added to Spn where p is a successor of n. Thus establishing that all finite
paths that start with n → m and that reach n can be finitely extended to reach p, hence, inducing
non-termination insensitivity.

Lemma 10 If tnm ∈ Spn and p belongs to a control sink then for all nodes q ∈ c-sink(p).tnm ∈ Sqn2

Proof If |c-sink(p)| ≤ 1 then we are done. If |c-sink(p)| > 1, then let q be a node such that
q ∈ c-sink(p) and tnm /∈ Sqn. Since q and p belong to the same control sink, all finite paths from p
can be extended to q. Hence, Spn ⊆ Sqn. Similarly, we can prove Sqn ⊆ Spn. Hence, Spn = Sqn. �

Theorem 9 Phase (3) of NTICD calculates non-termination insensitive control dependence. 2

Proof tnm ∈ Spn implies that all finite paths starting with n → m can be extended to p. Hence,
0 < |Smn| < Tn implies that there are some successors m of n for which all finite paths starting at m
can be extended to p while, for some successors q, not all finite paths starting at q can be extended

to p. Hence, n
ntscd→ p.

32

CHAPTER 2. CONTROL DEPENDENCE

Non-Termination-Insensitive-Control-Dependence(G)
1 G(N,E,n0) : a control flow graph
2 S[|N|, |N|] : a matrix of sets where S[p,n] represents Spn

3 CD[|N|] : a sequence of sets
4 workbag : a set of nodes
5
6 # (1) Initialize
7 workbag ← ∅
8 for each n in condNodes(G)
9 do for each m in succs(n,G)

10 do S[m,n]← {tnm}
11 workbag ← workbag ∪ {m}
12
13 # (2) Calculate all-path reachability
14 while workbag 6= ∅
15 do n← remove(workbag)
16 # (2.1) One successor case
17 if Tn = 1 and n /∈ succs(n,G)
18 then m← select(succs(n,G))
19 for p in condNodes(G)
20 do if S[n, p]\S[m, p] 6= ∅
21 then S[m, p]← S[m, p] ∪ S[n, p]
22 workbag ← workbag ∪ {m}
23 # (2.2) Multiple successors case
24 if |succs(n,G)| > 1
25 then for m in N
26 do if |S[m,n]| = Tn

27 then for p in condNodes(G)\{n}
28 do if S[n, p]\S[m, p] 6= ∅
29 then S[m, p]← S[m, p] ∪ S[n, p]
30 workbag ← workbag ∪ {m}
31 # (2.3) Erase non-termination sensitivity
32 if |S[n,n]| > 0
33 then for m in succs(n,G)\n
34 do if S[n,n]\S[m,n] 6= ∅
35 then S[m,n]← S[m,n] ∪ S[n,n]
36 workbag ← workbag ∪ {m}
37
38 # (3) Calculate non-termination insensitive control dependence
39 for each n in N
40 do for each m in condNodes(G)
41 do if 0 < |S[n,m]| < Tm

42 then CD[m]← CD[m] ∪ {n}
43
44 return CD

Figure 2.5: Algorithm to calculate non-termination insensitive control dependence

33

CHAPTER 2. CONTROL DEPENDENCE

When |Spn| = 0 or |Spn| = Tn, it implies that for all successors of n either none or all finite paths

can be extended to contain p. Hence, n 6ntscd→ p. Also, by Lemma 10, |Spn| = Tn for all conditional

nodes n in the control sink of p, hence, n 6ntscd→ p.

So, phase (3) correctly calculates non-termination insensitive control dependence. �

Complexity analysis

Phase (2.3) of NTICD algorithm contributes O(
∑
Tn × |N| × lg(|N|)) to the overall complexity of

phase (2) of NTSCD algorithm. As O(
∑
Tn × |N|3 × lg(|N|) dominates O(

∑
Tn × |N| × lg(|N|), the

overall complexity of NTICD algorithm is identical as that of NTSCD algorithm.

2.5.3 Decisive Control Dependence (DCD)

As Definition 11 implies Definition 7, we calculate decisive control dependence by pruning non-
termination sensitive control dependence. It is evident that clause (2) in Definition 11 is a stronger
than that in Definition 7. Hence, we use the negative form of clause (2) in Definition 11 – for all
successors nl of ni, there exists a maximal path such that nj occurs before any occurrence of ni –
to prune non-termination sensitive control dependence to calculate decisive control dependence.

In the algorithm (Figure 2.6), tnm represents a path π that starts with n→ m and is maximal or
terminates with n while tnm ∈ Spn represents that a path starting with n→ m that can be extended
to contain p. In phase (2) of the algorithm, tokens are propagated to calculate reachability between
conditional nodes and other nodes of the G. This information is later used in phase (3) to calculate
decisive control dependence.

Proof of correctness

To prove the correctness of the DCD algorithm, it is sufficient to prove that phase (2) of the algorithm
calculates reachability between the successors of the conditional nodes and the other nodes of G.

Theorem 10 At the end of phase(2) in the DCD algorithm, tnm ∈ Spn iff there exists a path starting
with n→ m that can be extended to p. 2

Proof We shall use the “only-if” direction as an invariant on the loop in phase (2). We shall then
prove the “if” direction via contradiction.

“only-if” direction As the number of edges in the G is finite, phases (1) will terminate. The
invariant is trivially established at the beginning of phase (2). The loops at line 18 and 19 extend
a path starting with n → m and leading to p to every successor q of p, if it has not already been
extended. Also, q is queued for processing at line 22. Hence, at the end of the loop, the invariant is
established.

Each iteration of the outer while loop at line 16 in phase (2) will either result in the increase in
size of a symbol set while contributing an iteration or there will be no change in the data. The size

34

CHAPTER 2. CONTROL DEPENDENCE

Decisive-Control-Dependence(G)
1 G(N,E,n0) : a control flow graph
2 S[|N|, |N|] : a matrix of sets where S[n1,n2] represents Sn1n2

3 T [|N|] : a sequence of integers where T [n1] denotes Tn1

4 CD[|N|] : a sequence of sets
5 workbag : a set of nodes
6
7 # (1) Initialize
8 workbag ← ∅
9 for each n in condNodes(G)

10 do succs ← succs(n,G)
11 for each m in succs
12 do workbag ← workbag ∪ {m}
13 S[m,n]← {tnm}
14
15 # (2) Calculate exists-a-path reachability
16 while workbag 6= ∅
17 do n← remove(workbag)
18 for each m in succs(n,G)
19 do for each p in condNodes(G)
20 do if S[n, p]\S[m, p] 6= ∅
21 then S[m, p]← S[m, p] ∪ S[n, p]
22 workbag ← workbag ∪m
23
24 # (3) Calculate decisive control dependence
25 CD ← Non-Termination-Sensitive-Control-Dependence(G)
26 for each n in N
27 do for each m in CD[n]
28 do if |S[n,m]| = Tm

29 then CD[n]← CD[n]\{m}
30
31 return CD

Figure 2.6: Algorithm to calculate decisive control dependence

35

CHAPTER 2. CONTROL DEPENDENCE

of the symbol sets are finite as the tokens/symbols in the G are finite. Hence, the outer while loop
in phase (2) will terminate.

“if” direction Upon termination of phase (2), suppose that there are nodes n,m, and p such that
there exists a path starting with n → m that contains p but tnm /∈ Spn. This implies that, along a
path starting with n → m and containing p, there should be two consecutive nodes q and r, in the
given order, such that tnm ∈ Sqn and tnm /∈ Srn. However, this leads to a contradiction as, upon
termination of phase (2), the condition on line 20 will evaluate to false for all nodes in the G. Hence,
the supposition cannot be true. �

Complexity analysis

Based on the structure of phase (2), it is trivial to see that the complexity of DCD algorithm is
identical to that of NTSCD algorithm.

2.5.4 Decisive Order Dependence (DOD)

Given nodes n = n1,m = n2, and p = n3, we need to check if the three clauses in the definition of
decisive order dependence7 are satisfied. We can use information from graph reachability algorithm
to check if m and p satisfy first clause in Definition 12 (as done in the first and second conjuncts on
line 6 of order-dependence()).

As for the second and third clauses, we encode the order dependence calculation as a problem of
constructing colored bound directed acyclic graph (DAG). The bounding condition is that out-going
edges of m and p are not explored. The coloring condition contains three parts: (1) m and p are
assigned colors white and black, respectively; (2) Every node in the DAG is colored white(black) iff
only if all its children are colored white(black); and (3) Nodes with children of different colors, all
uncolored children, and/or nodes that are sources of back edges are uncolored.

Given such a colored bound DAG rooted at n, it is trivial to observe that, for an acyclic graph,
a node q will be colored white(black) only if all of its successors are colored white(black). Given the
encoding, this implies all maximal paths from q contain m(p) before any occurrence of p(m). Hence,
we can conclude that m and p are decisively order dependent on any node n that has at least one
black child and at least one white child.

In case of a cyclic graph, the source q of a back edge is uncolored indicating the existence of a
maximal path that does not contain m(p). In such cases, given the coloring condition, every ancestor
of q will be uncolored, hence, falsifying clauses (2) and (3) of Definition 12.

Proof of correctness

Based on the above description/intuition, we need to prove that the coloring and bounding of the

DAG does indeed capture the information required to decide if n
dod→ m � p. We shall prove the

correctness of the algorithm by proving the following theorems.

7In this subsection, we shall refer to decisive order dependence as order dependence.

36

CHAPTER 2. CONTROL DEPENDENCE

Order-Dependence()
1 OD[|N|][|N|] : a matrix that captures order dependence
2 G(N,E,n0) : a control flow graph
3 for each n in condNodes(G)
4 do for each m in N
5 do for each p in N\{m}
6 do if reachable(m, p,G) ∧ reachable(p,m,G) ∧ dependence(n, p,m,G)
7 then OD[m][p] = OD[m][p] ∪ {n}
8 return OD

dependence(n,m, p,G)
1 color[|N|] : a sequence of values ranging over {unknown, white, black}
2 for each q in N
3 do color[q]← uncolored
4 color[m] = white
5 color[p] = black
6 visited← {m, p}
7 colored-dag(G,n, color, visited)
8 whiteChild← false
9 blackChild← false

10 for each q in succs(n,G)
11 do if color[q] = white
12 then whiteChild← true
13 if color[q] = black
14 then blackChild← true
15 return whiteChild ∧ blackChild

colored-dag(G,n, color, visited)
1 if n /∈ visited
2 then visited← visited ∪ {n}
3 for each q in succs(n,G)
4 do colored-dag(G, q, color, visited)
5 c← color[select(succs(n,G))]
6 for each q in succs(n,G)
7 do if color[q] 6= c
8 then c← uncolored
9 break

10 color[n]← c
11 return

Figure 2.7: Algorithm to calculate decisively strong order dependence

37

CHAPTER 2. CONTROL DEPENDENCE

Theorem 11 Given a CFG G, a white node, and a black node, colored-dag() creates a colored
bound DAG such that

1. a node is colored white if all its immediate successors are colored white,

2. a node is colored black if all its immediate successors are colored black,

3. a node is uncolored if (1) all its immediate successors are uncolored, it has at least two children
of different colors, or it is the source of a back edge in G. 2

Proof It is trivial to see (by induction) that colored-dag() will visit all unvisited nodes reachable
from the given node n as in a depth-first search. As each visited node is recorded in visited,
the bounding condition is established by the addition of m and p to visited at line 4 and 5 of
dependence() and maintained by the check at line 1 of colored-dag(). This record keeping along
with the finiteness of nodes in the CFG ensures the termination of colored-dag().

After every child of node n has been fully explored in the loop at line 3 in colored-dag(),
the color of n is determined by the loop at line 6 in the same procedure. The loop will terminate
normally only when the color of every child of n is the same as the color of an arbitrarily chosen
child at line 5. The abnormal termination of the same loop (via break) indicates that there are at
least two children of the node that have different colors. In situations where one of the successor q is
a visited but partially explored node, the color of q will be uncolored due to initialization at line 3.
Hence, either the loop at line 6 will terminate abnormally or terminate normally (when every child
of n was uncolored) and color n as uncolored. �

Lemma 11 In the colored bound DAG constructed by colored-dag(), a node n is white(black) iff
all nodes reachable from n in the DAG are white(black). 2

Theorem 12 Given a colored bound DAG created by colored-dag() from CFG G, dependence()
returns true iff clauses (2) and (3) of Definition 12 are satisfied in G. 2

Proof At the beginning of dependence(), m and p are designated as the white and black nodes,
respectively. After colored-dag() returns on line 7 of dependence(), let q and r be immediate
successors of n such that q is white and r be black.

“only-if” direction From Lemma 11, on all paths in the DAG from q(r), m(p) will be encoun-
tered before any p(m) is encountered. The absence of uncolored nodes on such paths rules out the
possibility of an infinite path from q(r) that does not contain the m(p). Hence, for all maximal
paths from q(r) in G, m(p) will be encountered before any m(p) is encountered. Thus q and r satisfy
clauses (2) and (3) of Definition 12, respectively, when dependence() returns true.

“if” direction Suppose all maximal paths from q(r) contain m(p) before any occurrence of p(m).
This implies that there can be no node ni on any path between q(r) (inclusive) and m(p) (exclusive)
such that ni has an out-going edge that can lead to a cycle not containing m(p). Hence, all nodes on
these paths can be colored white(black). As a DAG rooted at n will not contain back-edges leading
to infinite paths and as no such edges emanate from nodes on the paths between q(r) (inclusive) and
m(p) (exclusive), colored-dag() will achieve the coloring as described above. Hence, dependent()
will return true when q and r satisfy clauses (2) and (3) of Definition 12. �

38

CHAPTER 2. CONTROL DEPENDENCE

Complexity analysis

colored-dag()will be executed at least for every edge in the graph. As line 7 in colored-dag() can
be executed |N| times for each execution of colored-dag(), the worst-case complexity of colored-
dag() will be O(|E| × |N| × lg(N)).

The conditional at line 11 in dependence() can execute |N| times for each execution of dependence().
By factoring in the complexity of colored-dag(), the worst-case complexity of dependence() will
be O(|N|+ |E| × |N| × lg(N)) = O(|E| × |N| × lg(N)).

The worst-case complexity of graph reachability algorithm is O(|N|3). The loops at line 3, 4,
and 5 in order-dependence() will contribute |N|3 iterations. Hence, the worst-case complexity of
order-dependence() will be O(|N|3 + |N|3 × |E| × |N| × lg(N)) = O(|N|4 × |E| × lg(N)).

2.6 Related Work

Fifteen years ago, control dependence was rigorously explored by Podgurski and Clarke [PC90]. Since
then there has been a variety of work related to calculation and application of control dependence
in the setting of CFGs that satisfy the unique end node property.

In the realm of calculating control dependence, Johnson et al.[JP93] proposed an algorithm that
could be used to calculate control dependence in time linear in the number of edges. Later, Bilardi
et al.[BP96] proposed new concepts related to control dependence along with algorithms based on
these concepts to efficiently calculate weak control dependence. In comparison, in this chapter we
sketch a feasible algorithm in a more general setting.

In the context of slicing, Horwitz, Reps, and Binkley [HRB90] presented what has now become
the standard approach to inter-procedural slicing via dependence graphs. However, in the last
decade, C++, Java, and other languages that support semantically different exit points (exceptional
and normal) to a procedure have become prominent. Hence, the work of Horwitz et al.cannot
be applied directly as data dependence changes due to the semantic differences between the exit
points/statements. This issue was recently addressed by Allen and Horwitz [AH03]. In their effort,
they extend the previous work [HRB90] to handle exception-based inter-procedural control flow. In
their work, they inject normal exit nodes and exceptional exit nodes in the CFG, but then preserve
the unique exit node property by connecting the normal and exceptional exit node to the unique
exit node. They also consider the first statements of try and catch blocks and throw statements as
predicate statements. In contrast, our approach is simpler as the CFG is unaltered even in case of
exceptional exit nodes and/or multiple normal exit nodes.

As for control dependence across procedure boundaries, the naive approach of considering the
invocation site as a predicate (Soot 8 and [AH03]) and relating the catch statement with the
corresponding throw statement via data dependence would suffice. If more accuracy is required,
then our definitions can be trivially applied to a collection of CFGs by tweaking the proposed
algorithms to utilize the information about the connectivity between the nodes of different CFGs
being considered.

In relevant efforts concerning slicing correctness, Horwitz et al.[HPR89] use a semantics based
multi-layered approach to reason about the correctness of slicing in the realm of data dependence.
Alternatively, Ball et al.[BH93] used a program point specific history based approach to prove the

8http://www.sable.mcgill.ca/soot/

39

CHAPTER 2. CONTROL DEPENDENCE

correctness of slicing for arbitrary control flow. We build off of that work to consider arbitrary control
flow without the unique end-node restriction. Their correctness property is a weaker property than
bi-simulation – it does not require ordering to be maintained between observable nodes if there is
no dependence between these nodes – and it holds for irreducible CFGs. For irreducible graphs, we
need the extra notion of “order-dependency” to achieve the stronger correctness property.

In terms of handling dependences in a concurrent setting, Krinke [Kri98] considered static slicing
of multi-threaded programs with shared variables, and focused on issues associated with inter-thread
data dependence but did not consider non-termination sensitive forms of control dependence. Millett
and Teitelbaum [IT98] studied static slicing of Promela (the model description language for the
model-checker SPIN) and its application to model checking, simulation, and protocol understanding.
They reused existing notions of slicing that, as we argue in this chapter, do not account for the
subtleties of multi-threaded execution. They did not discuss the appropriateness of those notions
for an inherently multi-threaded language like Promela, nor did they formalize a notion of correct
slice for their applications. Hatcliff et al.[HCD+99] presented notions of dependence for concurrent
CFGs to capture Java-like synchronization primitives. They proposed a notion of bi-simulation as
the correctness property, but they did not provide a detailed definition or proof of correctness as
has been done in this chapter.

40

CHAPTER 3. DATA-BASED DEPENDENCE

Chapter 3

Data-based Dependence

Data dependence is a notion that relates program points based on the data defined and used in them.
This notion is also referred to as def-use relation, and it has been studied for over three decades by
the program analysis community. Data dependence has been heavily used in compiler optimization,
testing, refactoring, and other program analysis enabled applications.

As computer languages have evolved, the focus of the program analysis community has shifted
from purely scalar-based sequential programs to scalar- and heap-based sequential programs. One
such specific focus that is relevant in the context of this dissertation is the design of a scalable
and accurate static alias analysis for heap allocated data — calculate if two variables may refer to
the same run- time object. Over the past decade, the same focus has been extended to concurrent
programs as well. In this pursuit, various efforts have proposed escape analysis — detect if objects
escape their creation scope in concurrent programs — that can be leveraged in the calculation of
aliasing information in concurrent programs.

This chapter describes an escape analysis that is focused on capturing inter-thread interactions
that are based on shared data; hence, the title of the chapter. The chapter also presents details of
how the escape analysis can be leveraged to improve the accuracy of data dependence in concurrent
inter-procedural programs in the presence of dynamically allocated data. Various optimizations and
extensions to the analysis are also presented. The scalability and accuracy of the analysis and its
optimization and extensions are empirically illustrated.

An preliminary exposition about the analysis presented in this chapter was published under the
title Pruning Interference and Ready Dependence for Slicing Concurrent Java Programs – Venkatesh
Prasad Ranganath and John Hatcliff [RH04] at the 13th International Conference on Compiler
Construction (CC) held as part of ETAPS 2004.

3.1 Background

3.1.1 Identifier-based Data Dependence (IBDD)

Compiler optimizations such as constant propagation rely on def-use information. Consider the
program in Figure 3.1 as an example. The variable c is defined upon entering the procedure

41

CHAPTER 3. DATA-BASED DEPENDENCE

1 public class Example1 {
2 void tempConv(int c) {
3 float f = c ∗ 9 / 5 + 32;
4 if (f < 100) {
5 System.out.println (‘‘ Good Weather ’’ + f);
6 } else {
7 System.out.println (‘‘ Hot Weather ’’ + c);
8 }
9 c = 20;

10 }
11 }

Figure 3.1: A trivial example to illustrate data dependence.

tempConv(int). The definition of c at procedure entry will be used/accessed in the definition
of f at line 2 as it will be executed immediately upon entering the procedure. In other words, the
use of c at line 2 is dependent on the definition of c at procedure entry. Similarly, the use of f

at line 3, 4, and 6 is dependent on the definition of f at line 2. However, none of the uses of the
variable f depends on the definition of f at line 7 due to the lack of a control flow path along which
this definition can reach any of these use sites.

As mentioned in Definition 2 in Chapter 2, a program point e2 is data dependent on program

point e1 (e1
dd→ e2) if e1 defines a variable v, e2 uses the variable v, and there exists a control flow

path in the program from e1 to e2 such that none of the intermediate program points on this path
define variable v.

In terms of implementation, data dependence analysis will need to verify the existence of a control
flow path without any “killing” definitions of the variable of interest. However, this approach can be
simplified if a program can be represented in single static assignment (SSA) form – every variable is
defined utmost once [Muc97]. In this form, every use of variable v depends on the only definition of
variable v. In cases where φ-nodes1 occur in the SSA form of a program, the use nodes dependent
on the phi-node can be made to depend on the source nodes of the φ-node without loss of accuracy.

In the presence of procedures, data dependence can get complicated as a procedure may be
invoked at multiple locations. However, the above approach to analysis will suffice if the call graph
of the program and the variable renaming across procedure boundaries is available and leveraged by
the analysis. The accuracy of such an approach will depend on the accuracy of the call graph while
its complexity will depend on the number of inter-procedural control flow paths to be evaluated.

Independent of the procedural-ness of the program, the approach primarily relies on the identifiers
of the variables occurring in various definitions and use sites. Hence, such data dependence is referred
to as identifier-based data dependence.

3.1.2 Effects of Aliasing

In object oriented languages, aliasing is the situation when more than one variable refers to an
object. In the presence of aliasing, the changes made to an object o through a variable v can be

1A φ-node represents the merging of two version of a variable at control flow join points, e.g. at the end of if-else
statements.

42

CHAPTER 3. DATA-BASED DEPENDENCE

1 class Name {
2 String first ;
3 String last ;
4 }
5
6 public class Example2 {
7 public static void main(String[] s) {
8 Name n = new Name();
9 Name a = name;

10 n. first = ‘‘John’’ ;
11 n.second = ‘‘Doe’’;
12 System.out.println(a.last + ‘‘, ’ ’ + a.first);
13 }
14 }

Figure 3.2: An example to illustrate the effects of aliasing on data dependence in an intra-procedural
setting.

“viewed” via an alias a to o.

For example, in the program in Figure 3.2, the changes to the field first of the object referred to
by variable n at Line 12 is “visible” via the alias a (via a.first) at line 12.

In the presence of aliasing, data dependence analysis cannot be based on the above the approach
used for IBDD involving scalar variables. Instead, the approach should be extended to consider
all definitions via identifiers of equivalent (based on aliasing) variables, e.g. n.first and a.first
should be considered as equivalent variables. However, unlike in the case of IBDD involving scalar
variables, aliasing can cause the violation of the single static assignment (SSA) property required
by the approach. Hence, to be accurate, the data dependence analysis will need to resort to an
expensive control flow path based approach. Even this approach will suffer from the common
inaccuracies stemming from the combination of the abstraction of run time objects and multiple
execution (e.g. being embedded in a loop, being executed by multiple invocations of the enclosing
method) of object allocation sites.

In the rest of this chapter, we shall refer to the aliasing based data dependence in sequential
contexts as aliasing-based data dependence (ABDD).

In Inter-procedural Contexts

In the presence of procedures, aliasing may span across procedural boundaries. For example, in Fig-
ure 3.3, the variable n/m in the method setName(Name)/printName(Name) is an alias to the variable
name in the method main(String[]). Consequently, the variable m in the method printName(Name)

will be an alias to the variable n in the method setName(Name). The former form of alias (e.g. be-
tween name and n/m) is referred to as vertical alias as it occurs along the length of a call stack while
the latter form of alias (e.g. between n and m) is referred to as horizontal alias as it spans across two
call stacks.2

Suppose setName(Name) was inlined Figure 3.3. Now vertical aliasing exists between the inlined
code and code in printName(Name) and, hence, the resulting data dependence could be detected

2Defining these aliases using the relationship captured in a call graph can be complicated and/or ambiguous.

43

CHAPTER 3. DATA-BASED DEPENDENCE

1 public class Example3 {
2 public static void main(String[] s) {
3 Name name = new Name();
4 setName(name);
5 printName(name);
6 }
7
8 void setName(Name n) {
9 n. first = ‘‘John’’ ;

10 n.second = ‘‘Doe’’;
11 }
12
13 void printName(Name m) {
14 System.out.println(m.last + ‘‘, ’ ’ + m.first);
15 }
16 }

Figure 3.3: An example to illustrate the effects of aliasing on data dependence in an inter-procedural
setting.

by tracking the variable renaming across procedure boundaries. However, this approach will suffer
from the same drawbacks as in the intra-procedural context.

In the absence of such inlining (dealing with the unmodified program), the above approach fails to
handle horizontal aliasing. The main issue being the disconnect of variable renaming across different
procedure boundaries. This can be addressed by maintaining the history of variable renamings at
various procedure invocation sites along a inter-procedural control flow path during the analysis.
For example, in Figure 3.3, the analysis will need to record that the fields of object referred to by
variable name in the method main(String[]) are vertically aliased by variable n in the method
setName(Name) during the definition of first and name field at lines 9 and 10. The analysis will
then need to combine the recorded information along with a valid control flow path to establish the
data dependence of m.last and m.first at line 14 in the method printName(Name) on lines 9 and
10.

The accuracy of the above approach will be proportional to the accuracy of the information
used to statically determine if variables involved at def-use sites are aliases. The accuracy of the
call graph information will affect the number of inter-procedural control flow paths considered to
calculate data dependence and, hence, the complexity of the approach.

In Concurrent Contexts

In concurrent programs, data dependence that spans across process/thread boundaries is referred
to as interference dependence (ID) [Kri98]. These dependences occur due to the sharing of data
between processes/threads via aliasing. Although an approach similar to that used in sequential
inter-procedural contexts can be used in concurrent inter-procedural contexts, the accuracy and the
complexity of such an approach will depend on the cost of calculating information about features
such as aliasing, dynamic process creation, and process-specific call graphs.

Another form of dependence occurs in concurrent contexts due to aliasing, shared data, and
locking and conditional waiting based synchronization. This form of dependence is referred to as

44

CHAPTER 3. DATA-BASED DEPENDENCE

1 class Acct {
2 protected int balance;
3 Acct() {
4 balance = 100;
5 }
6 } // End of class Acct
7
8 class Husband extends Thread {
9 protected Acct savings;

10 protected Acct checking;
11 Husband(Acct act) {
12 this.savings = act;
13 checking = new Acct();
14 }
15 public void run() {
16 savings.balance += 20;
17 synchronized(savings) {
18 savings. notify ();
19 }
20 checking.balance += 10;
21 }
22 } // End of class Husband
23
24 public class Home {
25 public static void main(String[] s) {
26 Acct savings = new Acct();
27 Thread wife, husband;
28 wife = new Wife(savings);
29 husband = new Husband(savings);
30 wife . start ();
31 husband.start();
32 }
33

34 public static void mainAlt(String[] s) {
35 Acct savings = new Acct();
36 Thread wife, husband;
37 wife = new Wife(savings);
38 husband = new Husband(savings);
39 for(int i = 2; i <= 3; i++) {
40 if (i % 2 == 0)
41 wife . start ();
42 if (i % 3 == 0)
43 husband.start();
44 }
45 }
46 } // End of class Home
47
48 class Wife extends Thread {
49 protected Acct savings;
50 protected Acct checking;
51 Wife(Acct act) {
52 this.savings = act;
53 checking = new Acct();
54 }
55 public void run() {
56 Acct newAcct = new Acct();
57 synchronized(savings) {
58 savings.wait();
59 }
60 savings.balance −= 20;
61 synchronized(checking) {
62 checking.wait();
63 }
64 checking.balance −= 10;
65 newAcct.balance += 10;
66 }
67 } // End of class Wife

Figure 3.4: A simple Java program illustrating object sharing and synchronization between threads.

ready dependence and it was introduced by Hatcliff et al. [HCD+99] in the context of Java.

3.2 Motivation

3.2.1 Data flow across threads in Java

Interference dependences can only arise when an update is made to a data item that is “shared”
between two or more threads. Thus, let us begin by considering how an object can become shared
by flowing from one thread to another using the simple program given in Figure 3.4 (ignore the
mainAlt(String[]) method for now). Java[GJS00] supports threads via java.lang.Thread ob-
jects.3 The example program has three threads: the main thread which executes the method

3The term thread indicates an execution entity and the term thread object indicates an instance of
java.lang.Thread or any of it’s subclasses.

45

CHAPTER 3. DATA-BASED DEPENDENCE

main(String[]) in class Home, a thread associated with an instance of Husband, and a thread associ-
ated with an instance of Wife. In Java, a thread comes into existence when java.lang.Thread.start()

is executed on the associated Thread object (e.g. the calls to start() at line 30 and line 31). This
dispatch results in the invocation of run() on the receiver of the start() method (e.g. the call to
start() at line 31 causes the newly created thread to execute the run() method at line 15).

Let us now consider all possible ways in which a heap object o created by a thread t can be
communicated to a newly created thread t′. Java disallows any arguments to run() or start()

methods of java.lang.Thread. Thus, the only way to provide data to the run method of t′ is to
make the data reachable4 from the this variable of the Thread instance of t′ (e.g. from the instance
of Husband/Wife class) or to have it be reachable from static fields (in essence, global variables).
Note also that there are only two ways to assign data/values to instance fields of an object. One
is via direct assignments to reachable fields. The other is via invocation of an method in which the
fields reachable via the arguments (including the receiver in instance methods) will be assigned data
reachable from the arguments to the method. For instance, in the example program, the main thread
communicates the savings account object to the run() method of the Wife thread by invoking the
constructor of Wife with the savings account as an argument. The constructor performs the actual
communication by assigning the account argument to the savings field reachable from this. The
main properties of this example that we will use to describe the analysis are: (a) an escaping savings
account object ends up being shared between Husband and Wife threads and (b) a newAcct account
object is created and used only in the Wife.run() method.

3.2.2 Interference Dependence

Definition 24 (interference dependence) Let P be a program, o be an object with field f , and
t1 and t2 be threads such that t1 6= t2. If there exists an execution trace of P such that f is written
at trace state sm by a statement at program point em executed by t1 and read at state sn by a
statement at program point en executed by t2 when sn occurs after sm and no write to o.f occurs
between sm and sn, then n is interference dependent on m. 2

Given the above definition of interference dependence in terms of traces of concurrent programs,
it is obvious that accurate static calculation of interference dependence is infeasible due to the
possible exponential number of interleaved execution traces. Therefore, we need to resort to safe yet
cheap approximations such as the one given below.

If a field f of object o is being written and read at program points em and en, respectively,
and em and en occur in different threads tm and tn, then en is interference dependent on
em.

The accuracy of such safe approximations can then be improved at additional cost by checking
if m and n may “execute in parallel” according to some static approximation, i.e. as computed by
may-happen-in-parallel analysis [ACSE99, NAC98].

By referring to the example of Figure 3.4, we now explain (1) how interference dependences
are detected in previous presentations of slicing [HCD+99, Zha99], (2) how our modification of
Ruf’s escape analysis (introduced later in Section 3.3) can be used to safely reduce the number of
dependences, and (3) how simple extensions to track aliasing gives even further reduction. We shall

4From hereon, “reachable” will signify reachability by following references held in accessible fields.

46

CHAPTER 3. DATA-BASED DEPENDENCE

Interference dependence

D : set of all field/array definition sites.
U : set of all field/array use sites.
I : empty set of interference dependences.
for all u ∈ U do

for all d ∈ D do
if (Γ(u) ≡ Γ(d))∗ then

I = I ∪ {(u,d)}

ReadyDA dependence

W : set of all wait() call sites.
N : set of all notify()/notifyAll() call sites.
R : set of ready dependences.
for all n ∈ N do

for all w ∈ W do
if (Γ(n) ≡ Γ(w))† then

R = R ∪ {(w,n)}

Figure 3.5: Algorithm to calculate the approximate interference dependence and ready dependence
based on conditions 3 and 4 given in Section 3.2.3. Γ maps a given definition/use site to a property
of the variable being defined or used, and ≡ represents a test for equality between the property.

illustrate how existing approaches and our approach can be seamlessly enabled in the algorithm
given in Figure 3.5 by choosing an appropriate property to be associated with variables via Γ and
suitably defining ≡.

Type-based approach

A simple approach is to classify field/array read/writes as interfering if em represents a read of an
expression such as a1.f, en is a write to a2.f, and a1.f and a2.f have identical signature (i.e. both
instances of f represent the same field of a class) then em is interference dependent on en. While this
approximation of interference dependence is easy to compute, it includes inference dependences even
for objects that are not shared. Hence, it leads to spurious interference dependence dependences
such as ones between line 20 and both line 60 and line 65 and between line 60 and line 65.

This approach can be realized by the algorithm in Figure 3.5 by defining Γ as the mapping
def/use sites to type of the field being defined/used and ≡ as the type equality test.

Prior to Java 1.2, field resolution was based on the static type of the primary in the field access
expression, i.e. the static type of the expression a in a.f. However, in Java 1.2 and above, field
resolution was based on the dynamic type of the primary. Type based approach can be directly
applied to programs written in 1.1 or prior versions of Java. In case of programs written in 1.2
or later version of Java, the approach needs to consider all possible field signatures that could fit
the field access expression in the def/use sites (i.e. use a static approximation of the possible object
types the primary can refer to at runtime and consider the fields with matching signatures in these
types).

In the rest of this chapter, for simplicity, we shall assume the input programs were written in
Java 1.1.

Leveraging escape analysis

Objects that are accessible outside the scope of their creation context are referred to as escaping.
If the thread in which objects are created is considered as the creation context, then an object
“escapes” the creating thread if it is accessible in a different thread.

In terms of escape information, the definition of interference dependence implies that only es-

47

CHAPTER 3. DATA-BASED DEPENDENCE

caping objects induce interference dependences. Escape analyses (such as the one proposed by Ruf
[Ruf00]) can determine which objects are accessed by at most one thread, and such objects can be
excluded from the calculation of interference dependence. In Figure 3.4, typical escape analyses
will mark the local variable newAcct in Wife.run() as referring only to thread-local/non-escaping
objects. This allows the elimination of a spurious dependence between line 20 and line 65 that
generated by the type based approach. However, simple escape analysis would mark checking and
savings in Wife.run() as escaping since they are both accessed in the constructor for Wife which
is executed by the main thread – not the wife thread. This means that the dependence between
line 20 and line 60 cannot be removed.

In terms of the algorithm, Γ can be defined as mapping from def/use sites to a boolean value.
If a site is mapped to true then it indicates that the primary of the field/array access expression at
that site is shared; false, otherwise. ≡ is defined as simple boolean equality test.

Leveraging alias information

Although checking.balance and savings.balance involve escaping objects (accessed in the main
thread and its children threads), checking and savings will never refer to the same object. In
other words, they will never be aliases. Hence, alias information can be used to prune dependences
relating checking.balance and saving.balance. For example, the knowledge that the primaries
in the expressions at line 20 and line 60 are not aliases can be used to remove the interference
dependence between these lines.

In terms of the algorithm, Γ can be defined as a mapping from a pair of def-use site to a boolean
value such that a def-use site pair will be mapped to true only if the primaries in the sites may
be aliases at runtime.5 The accuracy of the information returned by Γ is dependent on the points-
to/alias analysis but nevertheless it can lead to more accurate dependences.

3.2.3 Ready Dependence

In simple words, a statement m is ready-dependent on a statement n if the execution of m can be in-
finitely delayed due to the fact that n fails to complete its execution and n is a synchronization related
construct. This notion of dependence is relevant when using slicing to generate reduced program
models for purposes of temporal property verification(specifically, liveness properties) [HCD+99].

Although we can perceive ready dependence as a form of control dependence and question its
discussion in this chapter, we think ready dependence is a form of data-based dependence. The
rational being that intra-procedural control dependence stems from the control flow of the program
as encoded in the static structure of the program and not the data elements of the program while
ready dependence stems from the influence of shared data (e.g. objects on which synchronization
operations are performed) on the control flow of the program and not the static structure of the
program. Further, we think other interesting concurrency specific dependences in the context of
dynamic memory allocation and aliasing will be data-based as opposed being control-based.

We shall use notify() to denote both notify() and notifyAll()methods in java.lang.Object

and wait() to denote all overloaded versions of wait() in java.lang.Object.

Definition 25 If m and n are program points in a given Java program then m is ready dependent

5This will change the signature of Γ in Figure 3.5.

48

CHAPTER 3. DATA-BASED DEPENDENCE

on n if any one of the following is true.

1. m and n occur in the same thread and m is reachable from n and n is the start of a synchronized
statement.

2. m and n occur in the same thread and m is reachable from n and n is an invocation of wait().

3. m and n occur in different threads and m is the start of a synchronized statement on object
o and n is the finish of a synchronized statement on object o.

4. m and n occur in different threads and n is an invocation of notify() on object o and m is
an invocation of wait() on object o. 2

In Java, a synchronized statement is statement block adorned with the keyword synchronized

along with a variable referring to the lock object. Hence, by start of a synchronized statement, we
mean the point in the statement block where a monitor corresponding to the lock object is entered
by the executing thread. Similarly, by finish of a synchronized statement, we meant the point in
the statement block where the monitor corresponding to the lock object is exited by the executing
thread.

Condition 1 and 2 are uninteresting in the context of this chapter as they can be handled via
a simple intra-thread analysis of the control flow graph of the methods. However, condition 3 and
4 provide interesting cases as they relate entities that occur in different threads. From hereon, by
“ready dependence” we mean “ready dependence resulting from conditions 3 or 4 only”. Techniques
proposed to prune interference dependence can also be used to prune ready dependence (e.g. if an
object o is not shared then it cannot generate a ready dependence via conditions 3 or 4).

In Figure 3.4, a naive type-based ready dependence analysis will report ready dependence depen-
dences between line 18 and both line 58 and line 62. However, the latter dependence is a spurious
one which cannot be eliminated by escape information. However, it can eliminated using alias
information computed using ready entities as described in Section 3.3.

3.3 Equivalence-based Escape Analysis

Instead of starting from scratch, we adapted an existing escape analysis. We choose to work with
Ruf’s escape analysis [Ruf00] because of its implementation simplicity, ease of comprehension, scal-
ability, and accuracy in comparison with other approaches (see [Ruf00] for details).

Our adaptation of Ruf’s analysis calculates information required to answer the following ques-
tions.

• Given a field/array read expression em and a field/array write expression en, is m interference
dependent on n?

• Given a entermonitor statement em and a exitmonitor statement en, is em ready dependent
on en under condition 3 in the definition of ready dependence?

• Given a wait() call-site em and a notify() call site en, is em ready dependent on en under
condition 4 in the definition of ready dependence?

49

CHAPTER 3. DATA-BASED DEPENDENCE

The analysis proceeds in three phases. The first phase collects information about the system
to be used by the later phases. The second phase summarizes information both inter-procedurally
and intra-procedurally in a bottom-up fashion. In phase three, the summarized information is
disseminated to the methods in a top-down fashion. After presenting the details of the analysis, we
summarize how it differs from Ruf’s original version.

3.3.1 Alias sets

Each program variable v is associated with an alias set – an abstract object that summarizes
properties of concrete objects that v may reference at runtime. Contrary to intuition, an alias set
is structurally not a set of aliased variables on which membership operation can be performed to
determine aliasing. However, conceptually an alias set is a set of aliased variables as an alias set can
be constructed by identifying variables associated with the alias set.

An alias set for v is either ⊥ (indicating that only null reference values are assigned to v at
runtime, or that v is of non-reference type) or a tuple of properties as given below.

aliasSet ::= ⊥ | 〈fieldMap, escapes, waits, notifies, rdEntities〉.

fieldMap associates each field f of an abstract object with an alias set abstracting the concrete
objects that may be referenced by f at run-time, i.e. it maps fully quantified field names to
alias sets. $ELT is a special field used to represent all cells in a dimension of an array.

escapes is a boolean that when true indicates that the abstract object is visible in multiple threads.

waits is a boolean that when true indicates that the abstract object received a wait().

notifies is a boolean value that when true indicates that the abstract object received a notify().

rdEntities is a set of abstract object tokens drawn from a domain E which we call entities. An entity
represents an equivalent set of alias sets that represent concrete objects that could participate
in a wait/notify relationship (leading to a ready dependence). Specifically, if the intersection of
the ready entities for some alias sets a1 bound to variable v1 and a2 bound to v2 is non-empty,
then invocations of wait/notify on v1 and v2 can lead to a ready dependence.

The significance of waits, notifies, and rdEntities will be explained in Section 3.6.

Upon creation of an alias set, all boolean elements of the alias set are set to false, rdEntities is
set to ∅, and fieldMap is empty. Alias sets of fields are created on demand. The following operations
operate on alias sets.

clone operation creates a new alias set isomorphic to input alias set.

markAsEscapes operation sets the escapes element of all alias sets reachable (inclusive) from the
input alias set to true.

unify (θ) operation merges the information represented by elements of the given pair of alias sets
(except for rdEntities as explained below). The unification of the boolean and map values
is defined as the join under the boolean lattice (with true as the top element) and function
lattice, respectively. The domain of the resulting fieldMaps is the union of the domains of the
maps being unified. The alias sets of the field names occurring in the domains of both the
maps are also (recursively) unified.

50

CHAPTER 3. DATA-BASED DEPENDENCE

θ(arg1, arg2).escapes arg1.waits arg2.notifies θ(arg1, arg2).rdEntities
true true true arg1 .rdEntities ∪ arg2 .rdEntities

∪ {newEntity}
false - - arg1 .rdEntities ∪ arg2 .rdEntities

- false - arg1 .rdEntities ∪ arg2 .rdEntities
- - false arg1 .rdEntities ∪ arg2 .rdEntities

Table 3.1: Rules to unify rdEntities.

The rdEntities of the alias sets being unified is modified only when the waits element of one alias
set is true and the notifies element of the other alias set is true. In such cases, the rdEntities set
of the unification will be the union of the rdEntities sets of the argument alias sets and a singleton
set containing a fresh distinct entity (as given by Table 3.1). In all other cases, the unification of
rdEntities set is defined as the set union operation.

3.3.2 Alias Context

An alias context is an aggregate data structure that summarizes aliasing based information at
method interface. An alias context is a tuple of alias sets corresponding to this (in case of instance
methods), method arguments (a1, a2, a3, . . .), return value (r), and the exceptions thrown by the
method (e).

aliasContext ::= 〈this, 〈a1, a2, a3, . . .〉, r, e〉

Like alias sets, alias contexts support the following operations.

clone operation creates a new alias context isomorphic to input alias context.

markAsEscapes operation sets the escapes element of all alias alias sets reachable (inclusive) from
the input alias context to true.

unify operation is a point-wise extension of alias set unification to alias contexts tuples. In other
words, this operation merely unifies corresponding (according to structural isomorphism) alias
sets (as explained earlier) in the given pair of alias contexts.

For the sake of simplicity, we use the the term method context to indicate the alias context of a
method at its entry point and the term site context to indicate the alias context at a call-site.

Both alias set and alias context can be implemented using union-find data structures [VSD86]
(as done in Indus) for the purpose of fast unification.

3.3.3 Algorithm

Phase One

In the first phase, the analysis constructs a call graph that presents a unified view of all the threads
in the system. Specifically, besides the syntactically and semantically explicit caller-callee edges,

51

CHAPTER 3. DATA-BASED DEPENDENCE

there is path in the call graph from the parent thread to the child thread via the call site that
creates the child thread by invoking java.lang.Thread.start().6 A reasonably accurate approach
to build such a call graph would be to rely to use the result from a points-to analysis such as object
flow analysis [Ran02] or rapid-type analysis [BS96].

Phase Two

This phase operates in inter-procedural mode by processing each method in each strongly connected
component (SCC) in a bottom-up fashion on the call graph. The processing of the methods includes
the creation of the method context and performing flow-insensitive intra-procedural analysis on the
method as described below. The effect of this phase is to accumulate information about object
accesses in a method and its callees, calculate new information (such as ready entities) based on the
accumulated information, and continue this process by bubbling up this information along the edges
of the call-graph of threads and the program.

Intra-procedural analysis The rules for processing the statements of a method during intra-
procedural analysis are given in Figure 3.6.

Before describing the rules, a brief description of the mappings is given below.

AS returns the alias set associated with the given variable.

MC returns the method (alias) context associated with the given method.

CALLEES returns the callees (invoked methods) that will be invoked at the call site involving the
given receiver variable in the given method.

SCC returns the methods in the strongly connected component (SCC) of the call graph that contains
the given method.

MULTI EXEC returns true if the given call site may be executed multiple times via looping or
execution of the enclosing method.

The rules ensure that the aliasing of data inside a method is represented appropriately in its
method context. During processing, if an alias set for a variable/field does not exist, a new instance
is created.

The interesting rule is the one for method invocation. At a call-site, if the caller and the callee
exist in the different strongly connected components in the call graph then the method context of
the callee is cloned and the clone is unified with the site context to achieve context sensitivity. When
both caller and callee occur in the same SCC, the method context of the callee is unified with the
site context to achieve an effect similar to simple fixed-point iteration. Using the method context
instead of its clone in the unification is an optimization to avoid repetitive unification along the
paths of the SCC until a fixed point is reached. Depending on the callee methods, waits and notifies
elements of the alias set associated with the receiver variable are updated. Similarly, the escapes
element of the alias sets reachable from the alias sets in the method context are also updated.

If the method being invoked is the start() method, then all the references being accessed in the
child thread may escape as they may be reachable from the reference to the thread object. Hence,

6There are no separate call graphs for each thread in the system.

52

CHAPTER 3. DATA-BASED DEPENDENCE

Domain
v ∈ V set of variables
f ∈ F set of fields

m, p ∈M set of methods
a, r, e ∈ A set of alias sets
mc, sc ∈ C set of alias contexts

s ∈ CS set of call sites

Mappings
AS : V → A alias set lookup

MC : M → C method context lookup
CALLEES : M × V → ℘(M) callee lookup

SCC : M × ℘(M) SCC lookup
MULTI EXEC : CS → {true, false} multiply executed call-site lookup

Rules
statement action
v1 = (t)v2 θ(AS(v1), AS(v2))

v1 = v2.f θ(AS(v1), AS(v2).fieldMap(f))
v2.f = v1

v1[] = v2 θ(AS(v1).fieldMap($ELT), AS(v2))
v = v1[]

return v θ(AS(v), AS(r))

throw t θ(AS(t), AS(e))

vr = vt.m(a1, . . . an) let sc← 〈AS(vt), 〈AS(a1), . . . AS(an)〉, AS(vr), e〉
∀p ∈ CALLEES (m, vt).

let mc←MC(p)
if p = java.lang.Object.wait then
AS(vt).waits← true

if p = java.lang.Object.notify then
AS(vt).notifies← true

if p = java.lang.Thread.start then
markAsEscapes(mc)

if p ∈ SCC(m) then
θ(sc,mc)

else
θ(sc, clone(mc))

if MULTI EXEC (vt.m(a1, . . . an))∧
m = java.lang.Thread.start then

θ(sc, sc)

Figure 3.6: Domains, mappings, and rules used in intra-procedural analysis. In these rules, m
represents the method in which the rules are being applied, e represents the alias set corresponding
to the exceptions thrown in m, and r represents the alias set corresponding to the return value of
m.

53

CHAPTER 3. DATA-BASED DEPENDENCE

the markAsEscapes operation is used to mark all alias sets reachable from the method context as
escaping. However, this is done before unification to affect the unification of elements sensitive to
multiple threads.

If the call-site invokes start() and is determined to be executed multiple times, the site con-
text is unified with itself via unify to account for the effect of multiple executions as described in
Section 3.5.1.

Handling Static fields Unlike instance fields, static field (global variables) are associated with
classes (types) and not with objects. Hence, the information propagation as described above will
result in incorrect information pertaining global variables. This is addressed by using canonical
representative alias sets for global variables, i.e. every occurrence of a global variable is associated
with the same alias set. In terms of realization, a new boolean element global is injected into alias
sets. The containing alias sets are marked as global by setting the global elements to true when the
containing alias sets are associated with a global variable. As data reachable from a global variable
can be accessed without traversing an object exposed via interfacial elements such as parameter
variables, the alias sets reachable from global alias sets7 are also marked as global. As for the
unification of the global element, it is defined as the join operation under the boolean lattice (with
true as the top element). The cloning of global alias set is defined as the identity operation, i.e. the
input global alias set (not a copy) is returned as the clone. This simulates the effect of instance
independent access to static fields/global variables as the same alias set is accessed across different
methods.

It is possible that a static field may be accessed in a method but the alias set associated with
that static field may not reachable from the alias context of the method. This can occur when the
references reachable from static field are only assigned to local variables to the method. In such
cases, the rules for phase one will fail to record such access as contributing to inter-thread data
sharing. To address this issue, for each static field, the representative alias set is marked as escaping
via markAsEscapes and unified with itself at the end of phase two. The marking and unification
will force any marking and unification sensitive processing that was skipped as a result of these alias
sets not being exposed at call-sites.

In Ruf’s analysis, alias sets corresponding to static fields are pessimistically marked as escaping
as they are accessible from all threads. However, doing so may result in inaccuracies, e.g. some static
fields may not be accessed in multiple threads. Hence, in our analysis, we rely on self unification
to trigger the calculation of information according to the rules and improve the accuracy of the
analysis.

Phase Three

In this phase, the call graph is traversed in a top-down fashion by disseminating the calculated
information from the caller methods/creator threads to callee methods/created threads.

Call-sites are the only points of processing in this phase. At each call-site encountered in the
top-down traversal of the call graph, each alias set in the site context is visited recursively. On
visiting an alias set of a site context, the escapes element of the alias set is joined with the escapes
element of the alias set’s counterpart in the method context. As for rdEntities, the sets are not
union-ed (which would destroy context sensitivity), but rather elements from the rdEntities set in
the site context alias sets are injected into the rdEntities of method context alias sets.

7We shall refer to alias sets with global element set to true as global alias sets.

54

CHAPTER 3. DATA-BASED DEPENDENCE

3.3.4 Complexity

The algorithm visits each node in the call graph twice and at each node it visits the statements of the
methods once. The worst case processing time for unification is dictated by the recursive nature of
the data structures used in the program, in particular when propagating information across method
boundaries. Hence, the worst case time complexity for the analysis is in the order of O(N+S) where
N is the number of nodes in the call graph and S is the total number of statements in the system
if time complexity of object construction and alias set processing is considered as a constant.

A recursive data structure with m fields being passed along n call chains of length l can lead to
alias sets whose accumulated size is in the order of O(n ∗ml). However, in reality, large recursive
data structures are also processed and constructed recursively rather than a single big chunk. Hence,
reaching worst case space complexity would be a rarity.

3.3.5 Example

In this section, we shall walk through the application of the analysis to the program in Figure 3.4.

Phase One

The analysis calculates the call graph (as depicted in Figure 3.7) for the program. The call graph has
two important aspects not discussed earlier. The first aspect is that the invocations/calls inside non-
Java/native methods are not captured by the call graph. This approach to call graph construction
is common, but it can lead to inaccurate results. We assume that the number of method calls from
native methods that can result in call graph edges is low. If this is not the case, the call graph
should be augmented to account for such edges. The second aspect is that one such augmentation
is necessary and should be performed in case of java.lang.Thread.start() method. Despite
start() being a native method, the call graph is augmented with outgoing edges from start() to
invoked methods.

Phase Two

Given the call graph of the system, the bottom-up processing of the methods will start with the
class initializers (written as <clinit>) and Acct.Acct(). The methods wait() and notify() are
not processed as they are native methods and lack Java method bodies; however, method contexts
are created for these methods for the purpose of unification at call sites.

On processing Acct.Acct(), a method context ρ1 = 〈α0, 〈〉, α0,⊥〉 is created where and α0 =
〈〈〉, false, false, false, ∅〉 is a newly created alias set representing the this variable in Acct.Acct().
We use the term newly created alias set to indicate an alias set unaltered after creation. α0 occurs
in the position of the return value alias set to capture the information that the new object created
by the invocation of the constructor is also returned.

The method context at the start of the processing of Wife.Wife(Acct)will be ρ2 = 〈α1, 〈α2〉, α1,⊥〉
where α1 and α2 are newly created alias sets corresponding to this variable and the argument Acct
object. While processing the method, new alias sets α3 and α4 corresponding to savings and
checking fields, respectively, are created. The assignment of the act to savings leads to the uni-
fication of α2 and α3 (α5 = θ(α2, α3)) and the result of this unification will be identical to α2

55

CHAPTER 3. DATA-BASED DEPENDENCE

Wife.run()

Home.mainAlt(String[])Home.main(String[])

java.lang.Thread.start()

Husband.run()

Home.<clinit>()

Acct.<clinit>()

Husband.<clinit>()

Wife.<clinit>()

Husband.Husband(Acct)

Wife.Wife(Acct)

Acct.Acct() java.lang.Object.wait()

java.lang.Object.notify()

Figure 3.7: The call graph for the program in Figure 3.4. The solid lines represent an invocation
via a particular call site in the direction of the arrow. The dashed lines represent invocations that
may be executed multiple times in the direction of the arrow. Boxes represent the named methods.
Shaded boxes represent named native methods.

and α3. After processing the method, α1 = 〈{savings → α5, checking → α4}, false, false, false, ∅〉
and ρ2 = 〈α1, 〈α5〉, α1,⊥〉. A similar method context ρ3 = 〈α6, 〈α7〉, α6,⊥〉 is generated for
Husband.Husband(Acct) where α6 = 〈{savings → α7, checking → α8}, false, false, false, ∅〉. This
operation is illustrated in Figure 3.8.

Upon processing Wife.run(), its method context will be ρ4 = 〈α9, 〈〉,⊥,⊥〉 where α9 = 〈false, {savings→
α10, checking → α11}, false, false, false, ∅〉 and α10/11 = 〈〈〉, false, true, false, ∅〉. A similar method
context ρ5 is created for Husband.run() except that the notifies element in the alias sets of savings
and checking fields is set to true and false, respectively.

Although the local variable newAcct in Wife.run() will be associated with an alias set, the alias
set is not visible from the method context as the data in the local variable is never exposed beyond
the method via assignment to fields in the arguments or the receiver or those reachable from static
fields.

Next, the processing of the line 26 in Home.main(String[]) creates a new alias set, α12, associ-
ated with the local variable savings. As the line also contains a method invocation, Acct.Acct(),
a site context ρ6 is created and unified with the alias context ρ′1, a clone of ρ1,8 resulting in
〈α′0, 〈〉, α′0,⊥〉.

While processing the constructor Wife.Wife(Acct) invocation at line 28, a site context ρ5 =
〈α13, 〈α′0〉, α14,⊥〉 is created. Upon unifying it with ρ′2, a clone of ρ2, the result will be 〈α′1, 〈α′0〉, α′1,⊥〉.
As α′1 is used in positions corresponding to α13 and α14, the context unification results in the unifi-
cation of α13 and α14 via α′1. Further, α′1 = 〈{savings→ α′0, checkings→ α′4}, false, false, false, ∅〉.
The processing of line 29 will result in a site context ρ6 = 〈α′6, 〈α′0〉, α′6,⊥〉 where α′6 = 〈{savings→

8We shall use α′/ρ′ to denote the clone of α/ρ.

56

CHAPTER 3. DATA-BASED DEPENDENCE

ρ2

α1 α2 ⊥

α4 α3

checking savings

ρ2

α1 ⊥

α4 α5 = θ(α2, α3)

checking savings

ρ′2

α′1

α′4 α′5
checking savings

⊥

ρ5

α13 α14 ⊥
α′0

ρ5

α′4 θ(α′0, α
′
5)

checking savings

⊥θ(θ(α13 , α′1), α14)

inter-procedural processing

unifying alias contexts

unifying α2 and α3

CloneWife.Wife(Acct)

wife = new Wife(savings)

intra-procedural processing

Figure 3.8: Graphical illustration of the alias set and alias context unification during intra- and
inter-procedural processing in the second phase of the analysis. The dotted line denotes the boundary
of the method.

57

CHAPTER 3. DATA-BASED DEPENDENCE

α′0, checkings→ α′8}, false, false, false, ∅〉.

The processing of line 30 will start with the creation of the site context ρ7 = 〈α′1, 〈α′0〉, α′1,⊥〉
followed by its unification with the clone of the method context of java.lang.Thread.start()

method resulting in 〈α′1, 〈α′0〉, α′1,⊥〉 where α′0 = 〈〈〉, true, true, false, ∅〉. The important results of
this unification are the propagation of the information about the waiting on the object referred to
by Wife.savings field into main(String[]) and the marking of the object referred to by the same
field as escaping.

Similar processing occurs while handling line 31. However, in this case, the notifies element of
the alias set corresponding to the savings field in the clone of the participating method context is
set to true. Hence, according to the rules in Table 3.1, a new entity is injected into the rdEntities
set of α′0. Hence, α′0 = 〈〈〉, true, true, true, {newEntity1}〉.

Phase Three

In the last phase, information is propagated in the top-down direction. Specifically, escapes and
rdEntities of alias sets α0, α5, α7, α10, and corresponding counterparts in the method context of
Wife.run() and Wife.Wife(Acct) are updated with the values from α′0.

3.3.6 In Comparison with Ruf’s analysis

We now summarize how our escape analysis differs from the original version proposed by Ruf.

• Ruf’s analysis is geared towards the removal of unnecessary synchronization operations. Hence,
Ruf’s alias sets have elements synchronized and syncThreads to capture information indicat-
ing whether or not objects represented by the alias set are used in synchronization and the
number of threads that synchronize on the objects, respectively. However, the alias sets in
our analysis have other fields geared towards general escape information and interference and
ready dependence instead of the above mentioned fields.

• The unification rules in Ruf’s analysis mark an alias set as synchronized only at synchronization
expressions. However, in our analysis, the decision to mark the alias set as escaping is deferred
to the unification operation.

• Our analysis provides more accurate information as required by interference/ready dependence
(explained in sections 3.6.2 and 3.6.3) as it maintains ready/share entities that account for
dependence-specific sharing while being calling contexts sensitive.

• Thread creating call sites are handled conservatively in Ruf’s analysis by marking every alias
set reachable from such a site context as escaping. In contrast, our analysis employs an
optimization to improve the accuracy (see Section 3.5.1).

• As mentioned in Section 3.3.3, our analysis unifies these alias sets with themselves to capture
the effect of multi-thread access and computing data sharing information based on the rules
instead of pessimistically marking these alias sets and reachable alias sets as escaping as done
in Ruf’s analysis.

58

CHAPTER 3. DATA-BASED DEPENDENCE

3.4 Extensions

In this section, we shall describe three extensions to the analysis to calculate aliasing, lock cou-
pling, and side-effect information. These extensions are not directly related to program dependence
calculation.

3.4.1 Aliasing

A simple extension to our analysis can calculate if two reference variables are aliases. The extension
is required for two reasons.

1. The algorithm does not unify alias sets across method boundaries, neither in phase two nor
in phase three. Hence, a trivial query such as “do the concerned reference variables have the
same corresponding representative alias set?” will fail except in cases of mutually recursive
methods.

2. The data structures used in the analysis do not store any information pertaining to aliasing.

Based on the above reasons, we extend the data structures and the operations to capture aliasing
information and extend the algorithm to calculate the aliasing information.

The extension to the data structure is the addition of intraThreadEntities set to the alias set.
This elements of this set will be used to check if two alias sets indeed correspond to aliasing variables.

As for the unify operation, the unification of intraThreadEntities sets is defined as the set union
operation followed by the injection of a new distinct element into the union. Hence, new entities
injected at unification are propagated to the call sites via the unify operation. As for the clone
operation, the clones of non-global alias sets will have empty intraThreadEntities sets.

Given a vertical alias, the extension to unify captures vertical aliasing information and exposes
it in the context of caller method, but not in the context of the callee methods. It also captures hori-
zontal aliasing information in the caller, but it does not expose this information to either of the callee
methods in which the aliasing occurs. The missing exposure is achieved in phase three by injecting
the elements of intraThreadEntities sets of the site context alias sets into the intraThreadEntities
sets of the corresponding method context alias sets.

Uncontrolled unification at thread creation sites can pollute the intra-thread aliasing information
with inter-thread aliasing information. To prevent such pollution, the intraThreadEntities sets in
clone of the method context (or in the method context) alias sets are emptied before the unification
at thread creation sites. Unlike rdEntities, in phase three, the analysis does not inject the elements
in intraThreadEntities sets in site context alias sets into the intraThreadEntities sets of the cor-
responding method context alias sets at thread creation sites. Once again, this is to prevent the
pollution of intra-thread aliasing information with inter-thread aliasing information.

Interestingly, this approach of calculating aliasing information provides accurate results that
comparable to that provided by relatively expensive iterative flow analysis based approaches [Ran02,
LH03] provided the call graph used for the analysis is accurate.

59

CHAPTER 3. DATA-BASED DEPENDENCE

θ(arg1, arg2).escapes arg1.locked arg2.locked θ(arg1, arg2).lkEntities
true true true arg1 .lkEntities ∪ arg2 .lkEntities

∪ {newEntity}
false - - arg1 .lkEntities ∪ arg2 .lkEntities

- false - arg1 .lkEntities ∪ arg2 .lkEntities
- - false arg1 .lkEntities ∪ arg2 .lkEntities

Table 3.2: Rules to unify lkEntities.

3.4.2 Lock Coupling

Ruf’s analysis targeted the detection of synchronized blocks involving uncontested locks. As our
analysis is an extension of Ruf’s analysis, similar information can be calculated along with the
information required to answer the lock-coupling question – do the given two synchronized blocks
contend for the same lock?

As in the previous extension, we extend the data structures and the operations to capture
locking information and extend the algorithm to leverage and propagate the locking information
and, consequently, calculate lock-coupling information.

Following suite from the previous extension, we extend the alias set with a new boolean element
named locked. When locked element of an alias set is true, the object referred to by the corresponding
variables is involved as a lock object in a synchronization block. Hence, during phase two, the locked
element of the alias set corresponding to variable providing the lock object in a synchronization
block is set to true.

Another extension to alias set is the addition of a new set element named lkEntities. The
elements of lkEntities set are used alike intraThreadEntities to represent lock coupling. However,
the unification of lkEntities is defined by the rules given in Table 3.2.

As for the processing of lkEntities in the algorithm, the proposed unification rules are used in
phase two and the entities are propagated as in case of intraThreadEntities in phase three.

Given these modifications and two variables, the lock coupling question can be answered by
checking if the lkEntities set in corresponding alias sets have a common element.

3.4.3 Side-Effect Analysis

Our analysis maintains method contexts that summarize access information about various data
reachable via the arguments to and the receiver of the method. Further, as the access information
is accumulatively propagated bottom-up in the second phase, the method contexts summarize the
access information about data reachable via the arguments and receiver in the corresponding method
and the methods called, directly or indirectly, from the corresponding method. Hence, the algorithm
and the data structure provide an ideal setup to calculate side-effect information – detect if data
reachable from the arguments or the receiver is written by a method.

Given method m and an argument/receiver a/r to the method, specific questions that can be
answered by side-effect information are:

1. Does m modify the state of a/r, i.e. write to any field reachable from a/r?

60

CHAPTER 3. DATA-BASED DEPENDENCE

2. Does m depend on the state of a/r, i.e. read any fields reachable from a/r?

3. Does m modify the global state of the system, i.e. write to any static fields (global variables)?

4. Does m depend on the global state of the system, i.e. read any static fields (global variables)?

5. Does m write to the field at the end of a given access path that is a chain of fields and that is
rooted at a/r?

6. Does m read the field at the end of a given access path that is a chain of fields and that is
rooted at a/r?

The answers to the first four of the above questions can be used to optimize method invocations
without exploring the programs points that may be executed as a result of the invocation. For
example, if the analysis indicates that the method does not write to any static fields or to any fields
reachable from any of the arguments/receiver to the method, then the method can be considered as
pure – a code block that does not modify the state of the system that existed immediately prior to the
execution of the code block. The last two questions can be used in driver and stub generation in the
context of program testing and program verification9.

To calculate the required information, the analysis needs to record the fields read and written
via every variable in a method and propagate it to every caller of that method. This can be achieved
by extending the alias sets with new entity sets readFields and writeFields.

As for processing, upon reading or writing a field, the signature of the field is added to the read-
Fields and writeFields sets, respectively, of the alias set corresponding to primary of the processed
field access expression. The unification of these sets is defined as set union. Also, in phase three,
the elements from these sets in the site context alias sets are not propagated into the corresponding
sets in the corresponding method context alias sets. This prevents the read-write information of the
caller method from polluting the read-write information of the callee method.

3.4.4 Generalization

Given the number of extensions that can be layered on top of the vanilla version of the analysis,
we believe other interesting analysis can be layered as well. For this purpose, we generalize the
approach to layer extensions on top of the analysis.

For each dimension of the information, the extension should inject a scalar element (e.g. escapes
in case of uni-dimensional information, read and write in case of multi-dimensional information)
into the alias set along with appropriate rules for modifying the element during intra- and inter-
procedural processing and during alias set/context unification. Depending on the direction of the
information (e.g. vertical in case of side-effect analysis, horizontal in case of escape analysis), the
extension may choose to restrict or allow the propagation of the information in the third phase. In
cases such as read-write coupling, the extension should introduce an element for each of the two
dimension of the information and appropriately affect the processing rules.

To calculate inter-procedural call-path sensitive information, the extension should introduce an
entity set (e.g. rdEntities) and provide rules that govern how and when the entity sets should be
modified either independently or based on the elements introduced to track associated dimensions
of the information. The extension can also provide unification rules and propagation constraints

9http://beg.projects.cis.ksu.edu

61

CHAPTER 3. DATA-BASED DEPENDENCE

Information Dim Elements Entity Sets Call Path
Sensitive

Escape 1 escapse - N
Aliasing 1 - intraThreadEntities Y

Interference 2 read, written rwEntities Y
Ready 2 waits, notifies rdEntities Y

Locking Coupling 1 locked lkEntities Y
Side Effect 2 readFields, - N

writeFields
Write Coupling 2 readFields, signatureOfWWFields Y

writeFields
Field-based Sharing 2 readFields, signatureOfRWFields Y

writeFields

Table 3.3: Summary of various realized refinements of the generalization described in Section 3.4.4.

to control the influence of intra- and inter-procedural processing and information direction on the
calculated information, respectively.

Various refinements of this generalization realized in this effort is summarized in Table 3.3. Some
of the mentioned realizations are explained later in the chapter.

3.5 Optimizations

In this section, we describe three optimizations to the analysis: two to improve accuracy and one to
improve performance.

3.5.1 Multiple Executions of Thread Creation Sites

Thread creating call-sites that are executed multiple times pose obstacles to the accuracy of static
analyses such as escape analysis.

For example, if Home.mainAlt() was considered as the entry point to the system, then the
abstract thread corresponding to the thread allocation site in the loop at lines 41 and 43 in Fig-
ure 3.4 represents more than one runtime thread. If unification at such thread creation call sites are
processed only once, then the analysis fails to correctly calculate information based on the sharing
of objects between the threads created at such call sites. Ruf’s analysis handles this situation by
marking all alias sets reachable from such site contexts as escaping. Although correct, this approach
is conservative – what if the threads created at such thread creating call sites do not share data?

To address this pessimism, consider unrolling the enclosing loop once. Upon analyzing the
resulting program using the rules given earlier, each alias set reachable from the site context will be
unified with itself if the variable names are reused in the loop unrolling. Hence, in our analysis, we
rely on this observation in Phase 2 to unify the site context with itself via unify operation when the
method invoked at the call-site is java.lang.Thread.start() and the call-site is executed multiple
times (note that due to the definition of unification on escape and ready information, unifying an
alias set with itself does not necessarily correspond to the identity function). This captures the effect
of the loop on the flow of information.

62

CHAPTER 3. DATA-BASED DEPENDENCE

This optimization is already encoded in the rules described in Figure 3.6.

Thread Allocation Sites Another similar situation arises due to multiple execution of thread
allocation sites. Although similar, the allocated threads need to be created via thread creating call
sites – either through multiple executions of thread creation sites or execution of separate thread
creation sites involving the allocated Thread objects. Previously described optimization handles the
former case while the rules of the analysis handles the latter case. Hence, thread allocation sites
that are executed multiple times do not require special handling.

3.5.2 Static Field Access

Although our analysis takes extra steps to improve the accuracy of information involving static
fields, the resulting accuracy can be less than the expected accuracy: self unification of global alias
sets at the end of phase two calculates information that is independent of the different threads and
methods in which the associated global variables are accessed.

This oversight is addressed by capturing and exposing the access to static fields via the alias
contexts in a thread sensitive manner. For this purpose, the alias contexts are extended with an
alias set g that corresponds to an abstract variable that is a constant and refers to an abstract object
that contains every static field in the program as its member. We shall overload the term global
alias set and use it to refer to g.

aliasContext ::= 〈this, 〈a1, a2, a3, . . .〉, r, e, g〉

The analysis will process global alias sets as any other member alias sets of alias contexts with
the following changes:

• The rules given in Figure 3.9 are used process static fields during intra-procedural processing.

• Unlike the handling of static fields as described in Section 3.3.3, none of the alias sets are
marked as global in phase two. As a consequence, clones of alias sets reachable from global
alias sets are created (as opposed to using canonical representatives) when containing alias
contexts are cloned.10

• At the end of the intra-procedural processing of a method m in phase two, for every site
context occurring in m, the contained global alias sets is unified with the global alias set with
the method context of m. This ensures the propagation of static field access information to
the caller.

• At the end of phase two, the global alias sets are processed on a per thread basis. Specifically,
methods that serve as the entry point for threads in the given program are identified (i.e. class
initializers, implementations of java.lang.Runnable.run(), and methods with the signature
public static void main(String[])), global alias sets in the alias contexts of these meth-
ods are marked as escaping via markAsEscapes11, and unified with each other. Unlike in the

10To facilitate the calculation of side-effect information, global elements of alias sets reachable from global alias sets
can be set to true before processing the methods in phase three.

11The alias sets exposed via the method contexts of class initializers are marked as escaping because 1) they
represent escaping entities and 2) they would not have been marked as escaping at the (implicit) thread creation sites
corresponding class initialization threads.

63

CHAPTER 3. DATA-BASED DEPENDENCE

Domain
f, fg ∈ F set of fields

a, r, e, g ∈ A set of alias sets

Rules
statements action
v1 = fg θ(AS(v1), g.fieldMap(fg))
fg = v1

Figure 3.9: Additions/Changes to the domains and rules presented in Figure 3.6 used in intra-
procedural phase of the analysis.fg denotes a static field.

approach described in Section 3.3.3, global alias sets are not unified with themselves as the
exposure of global alias sets in the alias context would have subjected them to marking and
unification sensitive processing.

• As the canonical representative is not used for global alias sets, the information pertaining to
static fields is propagated in phase three. Specifically, the value of global element is propagated
from the caller-side alias sets to the callee-side alias sets via the join operation. The other
parts of the alias sets are handled as in the unoptimized case.

To preserve space, the reference to global alias sets can be dropped from the alias context after
the corresponding method has been processed in phase three as the information pertaining to static
field access is captured by the alias sets corresponding to the local variables.

In summary, the optimization partitions the call graph into overlapping maximal sub-graphs
rooted at nodes corresponding to the each non-invoked methods (no incoming edges). The data
structures are modified such that escape information is maintained local to each of these sub-graphs
in phase two. At the end of phase two, the global alias sets exposed at class initializers are marked
as escaping and then unified with a common alias set that summarizes escape information for all
static fields in the program.

3.5.3 Type Filtering

In the Java class library, String.valueOf(o) is commonly used to construct string constants
like in expressions "Error : param1=" + p1. Internally, String.valueOf(Object) returns the
string constant "null" if the input argument is null; otherwise, it returns the result of invoking
toString() on the input argument. Hence, many toString() methods will occur in the same
strongly connected component (SCC) in the call graph as most toString() implementation use the
string concatenation operation to construct the string representation of the receiver object. Hence,
many fields belonging to different classes are confounded into a large alias set corresponding to
the input argument of toString(). Due to non-cloning of method contexts when caller and callee
belong to the same SCC, this large alias set will be cloned at the edges of the containing SCCs.
Further, if such an SCC occurs lower/earlier in the bottom-up topological ordered list of SCCs in
the call graph, then such large computation and resource intensive cloning can occur repetitively.
This can cause major time and space bottleneck.

A similar situation can also occur in applications that use AWT/Swing event framework. Specifi-
cally, the situation stems from the use of java.lang.Object as a “general” type for the event source

64

CHAPTER 3. DATA-BASED DEPENDENCE

in the constructor of java.awt.Event/java.awt.AWTEvent and the deep class hierarchy spanning
AWT and Swing classes.

These bottlenecks can be addressed by relying on the covariance property of the Java type system
– given the type τ of a parameter position of a method, only instances of subtypes of τ can occur
as arguments in that position.. In other words, the types of the arguments limit the features of
the argument objects that are accessed in the methods. Hence, while propagating the information
from the callees to the callers in phase two, only information pertaining to fields determined to be
accessible by the declared static type of the concerned parameter position is propagated. Accessible
fields of a static type include the fields declared in the super-types and the sub-types of the static
type. The former inclusion follows from the support for inheritance in Java while the latter inclusion
follows from the support for downcasting (i.e. cast from a super-type to a sub-type).

The specific change to the algorithm is that, while propagating the values from callee to caller at
a call site, the field map of the alias sets corresponding to the parameters (including the receiver) to
the callee are trimmed/filtered based on the accessible fields of the static type of the corresponding
parameters. This notion of reducing the size of the alias set is known as type filtering.

In cases where the callee and the caller occur in the same SCC in the call graph, it is likely that
parameters/variables of sibling types may be associated with the same alias sets due to flow through
a variable of a common super-type and direct unification (without cloning) of alias contexts. In such
cases, type filtering can incorrectly eliminate valid accessible fields belonging to the subtypes and
retain only the fields declared in common super-types. To avoid such issues, type filtering is only
applied (to the clone of method contexts) when the callee and caller occur in different SCCs in the
call graph.

Although rare, this issue can also occur in cases where the caller and the callee occur in different
strongly connected components. Hence, this optimization should be considered to be unsound and
applied with care.

In most general situations, we strongly believe that the optimization will be sound due to type
correctness of Java programs, single implementation inheritance in Java, and cloning of alias contexts
before type filtering. The cloning requirement implies that it more likely for this optimization to yield
unsound results when used with the static field access handling approach described in Section 3.3.3
as opposed to with the approach described in Section 3.5.2.

As the optimization does improve the performance by manifold on medium- to large-scale pro-
grams (as demonstrated in Section 3.7.8), we propose that this optimization be applied only when
the proposed optimizations fail to scale.

3.6 Applications

We now describe how the information computed by our escape analysis can be used to calculate
interference and ready dependence.

3.6.1 Using Escape Information

As each variable and field of reference type in the program is associated with an alias set, each such
variable and field is also associated with escape information. Hence, as mentioned in Section 3.2.2,

65

CHAPTER 3. DATA-BASED DEPENDENCE

during the calculation of interference dependence, the dependence analysis can check if the primaries
of the expressions involved in the candidate dependence refer to escaping objects by checking if the
escapes element of corresponding alias sets is set to true. If so, the candidate dependence is retained;
otherwise, it is discarded. By candidate dependence, we mean the pair of program entities that are
considered by the dependence analysis as leading to dependence (e.g. by starting from type-based
information).

Similarly, for ready dependence, the same check is performed on the receiver variables involved
in the wait() and notify() invocations involved in the candidate dependence.

3.6.2 Accurate Ready Dependence via Ready Entities

As mentioned in Section 3.2.2, escaping information can be used to detect spurious dependences
involving non-escaping objects; however, there are cases where aliasing information can be used to
detect spurious dependences involving different escaping objects, i.e. two variables that may refer to
escaping object but are not aliases. This situation can be addressed by leveraging an alias analysis.
Nevertheless, this can be imprecise in cases where the concerned variables are aliases and refer to
escaping objects, but occur in the same thread. This case cannot be addressed even by alias analysis.
However, this can be achieved by leveraging waits, notifies, and rdEntities elements of the alias sets.

For two expressions to be related by ready dependence according to rule 4 in the definition of
ready dependence, one of the expression should invoke wait() while the other expression invokes
notify() and both invocations should be on the same receiver object in different threads. The
last requirement can be approximated as both invocations should involve receiver variables that are
mutual aliases occurring in different threads.

The wait-notify coupling implied by the first two requirements is captured by the waits and
notifies elements of the alias set along with the rules to set them during the second phase of the
analysis. As for the calculation of mutual aliasing, we can rely on the fact that unified alias sets
corresponding to aliasing variables. However, we need to record this unification as proof of aliasing.
For this, we can rely on using entities. Specifically, if two alias sets correspond to variables that are
mutual aliases, then there should be a entity common to both alias sets. However, the question in
case of ready dependence – “how to capture inter-thread aliasing?”

Observe that, given two alias sets that are to be unified, the aliasing spans thread boundaries if
the escapes element of either of the alias sets is set to true.

Hence, given two alias sets that are to be unified with waits element set to true in one and notifies
element set to true in the other, the corresponding variables can contribute a ready dependence via
wait-notify coupling if the escapes element of either of the alias sets is set to true. This is the
knowledge encoded in the unification rules in Table 3.1. Once this information is calculated in the
second phase of the analysis, it is disseminated to the call sites that participate in ready dependence
in the last phase of the analysis.

The benefits of this approach is empirically illustrated in Section 3.7.

Optimizing Rule 3 based Ready Dependence Similarly, the information about lock coupling
(see Section 3.4.2) can be used detect and eliminate candidate ready dependences based on rule 3 if
two escaping but non-aliasing variables provide the object to be locked/unlocked while entering/ex-
iting synchronized blocks.

66

CHAPTER 3. DATA-BASED DEPENDENCE

θ(arg1, arg2).escapes arg1.read arg2.written θ(arg1, arg2).rwEntities
true true true arg1 .rwEntities ∪ arg2 .rwEntities

∪ {newEntity}
false - - arg1 .rwEntities ∪ arg2 .rwEntities

- false - arg1 .rwEntities ∪ arg2 .rwEntities
- - false arg1 .rwEntities ∪ arg2 .rwEntities

Table 3.4: Rules to unify rwEntities.

3.6.3 Accurate Interference Dependence via Read-Write Entities

Similar to ready dependence, detection of interference based on escape information can be further
improved to prune out dependences stemming from non-aliasing escaping primaries. As in case of
ready dependence, the alias set is extended with the following three elements.

read is a boolean that when true indicates that a field of the variable/object was read,

written is a boolean that when true indicates that a field of the variable/object was written, and

rwEntities is a set of object entities that represent read-write coupling between the enclosing alias
set and other alias sets. It is similar to rdEntities in meaning. From the nature of interference
dependence, rwEntities 6= ∅ ⇒ escapes = true.

Similar to the unification rule of rdEntities, the result of unifying rwEntities is determined by
the read and written elements of the alias sets being unified. The rwEntities of the alias sets being
unified is modified only when read element of one alias set is true and the written element of the
other alias set is true. In this case, a fresh entity is injected into the rwEntities set. In all other
cases, rwEntities set is unmodified in the result of unification.

With this information, access expressions can be considered for interference dependence only
when the intersection of rwEntities sets of the alias sets corresponding to the primaries is non-
empty. We refer to this notion of variables being related by possible concurrent read and write of a
common field as read-write coupling.

Field-based Sharing Information

In the above extension, the fields that cause read-write coupling are not captured. This information
may be useful to answer the questions – does the object referred to by the given variable participate
in the read-write coupling via the given field? and what fields of the object referred to by the given
variable lead to read-write coupling?

This information can be captured by adding new entity sets readFields, writeFields, and signa-
tureOfRWFields to alias sets.

As for processing, upon reading or writing a field, the signature of the field is added to the read-
Fields and writeFields sets, respectively, of the alias set corresponding to primary of the processed
field access expression. Upon unifying an alias set a1 with its read element set to true with an alias
set a2 with its written element set to true, the result of unification θ(a1, a2).signatureOfRWFields
will be a1.readFields ∩ a2.writeFields if θ(a1, a2).escapes = true.

67

CHAPTER 3. DATA-BASED DEPENDENCE

As in case of side-effect information calculation (see Section 3.4.3), in phase three, the elements
from these sets in the site context alias sets are not propagated into the corresponding sets in the
corresponding method context alias sets. This prevents the read-write information of the caller
method from polluting the read-write information of the callee method.

The elements of signatureOfRWFields of the alias set corresponding to the given variable can
then be used to answer the above questions.

Write-Write Coupling Information

While the previous two extensions capture read-write coupling between objects, it may be useful
to detect write-write coupling – the notion of relating variables via possible concurrent writes to
common fields. This information can enable client analysis to easily identify an optimal collection of
related concurrent writes for purposes such as synchronization injection, synchronization sensitive
refactoring, calculation of may-happen-in-parallel (MHP) information, etc.

The extension to capture the required information is the addition of a new entity set signa-
tureOfWWFields to alias sets that is similar to signatureRWFields. Drawing from the similar-
ity, upon unifying an alias set a1 with its written element set to true with an alias set a2 with
its written element set to true, the result of unification θ(a1, a2).signatureOfWWFields will be
a1.writeFields ∩ a2.writeFields if θ(a1, a2).escapes = true. The elements of this entity set can be
used by the above mentioned purposes.

3.6.4 Aliasing-based Data Dependence

Another trivial application of the equivalence class based analysis is in the calculation of (intra-
thread) aliasing-based data dependence. Basically, the dependence calculation can use the aliasing
information calculated by the extension (Section 3.4.1) instead of the information calculated by an
iterative flow analysis based alias/points-to analysis [Ran02, LH03, And94]. This approach will be
cost efficient in the context of sizable input programs as the extension has linear time complexity
while the iterative flow analysis based approach generally have cubic time complexity.

However, as the core escape analysis relies on a pre-computed call graph, the accuracy of the
aliasing information provided by the extension will be directly dependent on the accuracy of the call
graph. Hence, inaccurate call graphs (such as call graphs based on rapid type analysis (RTA) [BS96]
as opposed to call graph based on points-to (object flow) analysis [Ran02]) can lead to inaccurate
aliasing information.

So, depending on the accuracy of the available call graph and the desired accuracy for alias-
ing information, the proposed extension can be trivially leveraged to compute aliasing-based data
dependence.

3.6.5 Atomicity and Independence

While analyzing concurrent systems, recent analysis try to optimize the processing by not analyzing
atomic methods — no shared data is accessed upon entering the method and until exiting the method.
It is hard to detect this information as an object that is not shared till the method exits may
subsequently become shared. A dynamic analysis or an expensive path- and context sensitive static

68

CHAPTER 3. DATA-BASED DEPENDENCE

analysis can detect such situation by keeping track of the accurate variable to object mappings.
A path insensitive and flow insensitive analysis such as our escape analysis cannot provide highly
accurate information.

As our escape analysis calculates may-sharing information — a escaping variable may refer to a
shared object, we can leverage the negation of this information — an non-escaping variable will not
refer to a shared object. Specifically, for any given method, we can explore every alias sets reachable
(inclusive) from the corresponding alias context and check if any of them are marked as shared. If
not, then the method can be safely flagged as atomic.

We can extend this technique to statements as well. For a given statement, we can explore alias
sets reachable (inclusive) from the alias sets corresponding to the variables occurring in the given
statement and check if any of them are marked as shared. If not, then the statement is independent
— the execution of the statement neither depends on nor influences the concurrent execution of
statements. This information can be used in program verification and similar contexts where the
behavior of concurrent programs is analyzed by exploring all possible interleaved execution traces
of the programs. Specifically, independent statements can be executed atomically with either their
predecessor (or successor) and avoid an interleaving of concurrent threads between independent
statement and it’s predecessor (or successor).

As sharing of objects in Java leads to interaction between threads via locking-unlocking and
reading-writing, we could leverage more accurate information pertaining to various couplings to
further improve the accuracy of atomicity and independence information.

3.6.6 Property-sensitive Program Slicing

As the described analysis maintains contextual information pertaining to call paths, the maintained
information is also used in property-sensitive program slicing. Details about this new form of slicing
and how the information from the analysis is leveraged is explained in Chapter 5.

3.6.7 Partial Order Reductions

Read-write, wait-notify, and locking coupling are the only forms of inter-process communications via
shared objects in Java programs. Hence, this information can be leveraged in various contexts to
detect possible interaction points between threads of concurrent Java programs. One such context is
using partial order reductions to reduce the number of interleavings considered while exploring the
behavioral space of a Java program in applications such as program verification via model checking.
The details of how the information from the analysis can be used to achieve partial order reduction
is explained in Chapter 6.

3.7 Empirical Evaluation

In this section, we shall describe the experiments conducted to evaluate the analysis along with a
discussion of the results from the experiments.

69

CHAPTER 3. DATA-BASED DEPENDENCE

3.7.1 Implementation

All variants of the analysis described in the previous sections were implemented as part of the
StaticAnalyses module of Indus, a project aimed at providing a program analysis and transformation
toolkit for Java12, and exercised in realizing a full-featured Java Slicer also provided by Indus.
Deviating from the descriptions in the previous chapters, Indus operates on the Jimple representation
of the Java programs and not directly on Java programs. As Jimple [VR00] is a 3-address based
intermediate representation that supports OO features, Java programs can be translated into an
equivalent Jimple program; hence, the results of the experiments apply directly to the subject Java
programs.

Ruf’s analysis was based on a SSA representation. Instead we achieve a similar effect by using
local variable splitting transformation of Soot. This transformation ensures that variables are defined
only once along every non-cyclic path beginning from the start node in the intra-procedural control
flow graph of the containing method.

3.7.2 Experimental Setup

All experiments were conducted on a 1.1GHz Linux box with 1GBs of RAM using Sun JDK1.5.0 07
with a maximum heap-size of 512MB.

The timing data is not presented as all of the experiments completed in one wall-clock minute
(inclusive of parsing, object-flow analysis, escape analysis, various dependence analysis, and serial-
ization of calculated information).

The time and memory measurements were collected by instrumenting the code via AspectJ13.

The programs from Java Grande14 benchmark suite were used as the input/subject programs in
the experiments. A Grande application is an application which has large requirements for any or all
of: memory, bandwidth, and processing power. Java Grande suite is divided into three sections:

Low-level operations This class of benchmarks measure low-level operations such as thread creation,
fork/join (FJ), barrier (Bar), and synchronization (Syn).

Kernels This class of benchmarks encompass specific operations (Ser, LUF, SOR, Crp, SMM) that
are frequently used in Grande applications.

Large Scale Applications This class of benchmarks are representative of Grande applications (MD,
MC, RT).

The number of classes and methods (both application and library) that make up the benchmarks
in each section is given in Table 3.5.

Due to constraints of the presentation medium in displaying the names on the graphs, we shall
use abbreviations to identify the programs while presenting the data.

In each experiment, each method with the signature public static void main(String[]) as
representing a possible entry point into the program.

12http://indus.projects.cis.ksu.edu
13http://www.eclipse.org/aspectj
14http://www.epcc.ed.ac.uk/javagrande/

70

CHAPTER 3. DATA-BASED DEPENDENCE

Benchmark Classes Methods
Bar 121 301
Crp 133 336
FJ 117 299

LUF 121 316
MD 123 324
MC 250 776
RT 132 363
Ser 119 313

SOR 133 335
SMM 133 337
Syn 119 297

Table 3.5: The size of the benchmarks.

As for the steps in the experiments, object flow analysis was first performed in object-sensitive
mode [Ran02] to calculate accurate value flow information to aid the construction of an accurate call
graph. The call graph was then used to perform the escape analysis exercising various optimizations.
Based on the calculated information, various dependence analysis were executed in different accuracy
modes.

3.7.3 Escape Analysis

For each of the benchmarks, escape analysis was executed in two modes: opt1 escape analysis was
executed with only the optimization described in Section 3.5.1, and opt1+opt2 escape analysis was
executed with optimizations described in Section 3.5.1 and Section 3.5.2.15

The data from these experiments, both raw numbers and graphical representation, is available
in Table 3.6 and Figure 3.10. The data indicates the number of reference type variables in the
benchmarks that were flagged as referring to escaping, read-write coupled, write-write coupled, and
locking coupled objects by the analysis.

The data from the experiments indicates that the static field access optimization described in
Section 3.5.2 provides interesting improvement (ranging from 5% upto 90% reduction in various
cases) of the escape, read-write coupling, write-write coupling, and locking information in comparison
with the unoptimized mode. The extent of improvement will only increase if compared with the
purely unoptimized mode of escape analysis (that would be very close to Ruf’s analysis).

The data for method atomicity also follows the cue of the data for other aspects of the analysis and
indicates improvement in accuracy. However, the improvement is not emphatic as escape information
was used to determine atomicity as opposed to various coupling information.

As opposed to the reduction in the numbers, we see the number of methods flagged as atomic
increases. This is consistent with the usage of the negation of the information as described in
Section 3.6.5.

The only immediately disturbing data corresponds to wait-notify coupling. The data indicates
that the analysis detects wait-notify coupling in only Bar benchmark. This is due to the fact that
only Bar benchmark uses wait-notify pattern of synchronization.

15We shall present empirical data for the type filtering optimization in Section 3.7.8.

71

CHAPTER 3. DATA-BASED DEPENDENCE

 1000

 10000

RTMCMDSMMSerSORLUFCrpFJBarSyn

E
sc

ap
e

In
fo

Opt1
Opt1+Opt2

 100

 1000

 10000

R
ea

d-
W

rit
e

C
ou

pl
in

g

Opt1
Opt1+Opt2

 100

 1000

 10000

W
rit

e-
W

rit
e

C
ou

pl
in

g

Opt1
Opt1+Opt2

 100

 1000

 10000

Lo
ck

in
g

C
ou

pl
in

g Opt1
Opt1+Opt2

 10

 100

 1000

M
et

ho
d

A
to

m
ic

ity Opt1
Opt1+Opt2

Figure 3.10: Summary of data calculated by equivalence-based escape analysis in various experi-
ments. The raw data is available in Table 3.6. Logarithmic scale is used for data on the y-axis.

72

C
H

A
P

T
E

R
3
.

D
A

T
A

-B
A

S
E

D
D

E
P

E
N

D
E

N
C

E

Benchmark Escapes Read-Write Write-Write Locking Wait-Notify Atomicity
opt1 opt1+2 opt1 opt1+2 opt1 opt1+2 opt1 opt1+2 opt1 opt1+2 opt1 opt1+2

Syn 1132 1134 625 463 1022 393 304 150 0 0 78 77
Bar 1133 1131 628 470 1025 400 293 136 0 0 78 77
FJ 1106 1135 581 447 992 391 288 120 0 0 84 79
Crp 1306 1310 754 545 1166 475 330 117 0 0 98 97
LUF 1224 1214 697 492 1094 422 310 125 0 0 82 81
SOR 1232 1229 660 452 1072 382 312 114 0 0 105 105
Ser 1163 1168 644 449 1041 379 315 125 0 0 89 90

SMM 1257 1270 707 515 1067 373 310 114 0 0 105 101
MD 1393 1385 827 627 1224 557 311 114 0 0 93 93
MC 2958 2958 2204 1792 2685 1658 1064 700 0 0 259 259
RT 1422 1410 943 732 1332 664 366 166 0 0 97 98

Table 3.6: Data calculated by equivalence-based escape analysis in various experiments.

7
3

CHAPTER 3. DATA-BASED DEPENDENCE

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

T
im

e
&

 M
em

or
y

OFA (ms)
EBEA (ms)

OFA (KB)
EBEA (KB)

Figure 3.11: Summary of time and memory required by iterative object-flow analysis and by
equivalence-based escape analysis in various experiments. The raw data is available in Table 3.7.
Logarithmic scale is used for data on the y-axis.

3.7.4 Alias Analysis

As mentioned in the earlier sections, our escape analysis can be extended to provide aliasing infor-
mation. The data collected in our experiments (Figure 3.11 and Table 3.7) support the claim (not
the complexity analysis result) that the time and memory required by the escape analysis (hence,
the alias analysis) is small in comparison with that of an iterative object sensitive and flow sensitive
flow analysis.

During object flow analysis, every string literal in the input program was abstracted into a single
abstract string literal to speed up the execution of the analysis. This inaccurate setting leads to
lower/better performance numbers for object flow analysis. Hence, the timing and/or space data
pertaining to object flow analysis will only worsen in comparison with escape analysis in more
accurate settings.

On more close examination of the data, the processing time required by both the analyses
increased rather linearly with the size of the reachable methods in the input programs. Although
this observation may not agree with the worst case cubic time complexity of the flow analysis, it
agrees with the worst case linear time complexity of our analysis. Comparatively, the time required
by our analysis was in the range of 9-20% of the time taken by the object flow analysis.

74

CHAPTER 3. DATA-BASED DEPENDENCE

OFA (ms) EBEA (ms) OFA (KB) EBEA (KB)
9458 1051 15773 4218
8956 979 15774 4189
9263 1002 15773 4218
10209 1141 17879 4731
10177 1144 17879 4731
10223 1139 17879 4731
9412 1060 15719 4089
9363 1026 15719 4089
9387 1020 15719 4089
10061 1142 17533 4369
10049 1141 17533 4369
10041 1155 17533 4350
12867 1269 21488 4809
12844 1232 21488 4820
12852 1232 21488 4820
19387 3690 36991 18955
19421 3657 36991 18961
19370 3723 36991 18955
10148 1254 18534 5275
10108 1268 18536 5277
10136 1265 18534 5305
9545 1103 16194 4182
9532 1132 16194 4167
9533 1114 16194 4182
9869 1182 16754 4617
9888 1167 16754 4617
9373 1136 16754 4617
9938 1248 16975 5168
9942 1243 16975 5168
9988 1278 16975 5168
9483 1070 15684 4265
10370 1080 15684 4273
9534 1053 15684 4273

Table 3.7: Time and memory required by iterative object-flow analysis (OFA) [Ran02] and
equivalence-based escape analysis (EBEA) in various experiments.

75

CHAPTER 3. DATA-BASED DEPENDENCE

 1000

 10000

RTMCMDSMMSerSORLUFCrpFJBarSyn

In
te

rf
er

en
ce

Type-based
Escape-based

Entity-based

Figure 3.12: Summary of interference dependences calculated based on type, escape, and entity
information. Raw data is available in Table 3.8. Logarithmic scale is used for data on the y-axis.

In case of memory requirement, data indicates that the analyses requires memory rather linear
in the number of the reachable methods in the input programs. The memory requirement for our
analysis increases rather rapidly with the size of the input program. However, this is still below the
predicted worst case complexity. Comparatively, the memory required by our analysis was in the
range of 23-66% of the memory taken by the object flow analysis.

More interesting data pertaining to memory requirement is presented in Section 3.7.8 in the
context of large programs.

Although the data supports our complexity predictions, we believe more empirical study is
required to predict costs in general scenarios.

3.7.5 Interference Dependences

In the experiments pertaining to interference dependences, we exercised the algorithm described in
Figure 3.5 with three different instantiations of the Γ function.

Type-based This instance used type information to detect if the primaries of field access expressions
could lead to interferences.

Escape-based This instance used escape information from our analysis to detect primaries leading
to interferences.

Entity-based This instance used relied on entity information (read-write coupling) to detect inter-
ference.

We combined these instances with the combination of two modes of escape analysis (opt1 and
opt1+opt2 (as described in Section 3.7.3) and with the aliasing information calculated based on
object flow analysis (OFA) (as described in Section 3.2.2). In case of type-based version of Γ, escape
analysis and its optimizations do not affect the result; hence, they are not presented in the detailed
graph (Figure 3.13).

The interference dependence data in unoptimized mode (given in Figure 3.12) supports our claim
that escape information can improves the accuracy of the interference dependence calculation and
entity information can contribute further improvements.

76

CHAPTER 3. DATA-BASED DEPENDENCE

 1000

 10000

 100000

T
yp

e-
ba

se
d

No OFA
OFA

 1000

 10000

 100000

E
sc

ap
e-

ba
se

d

Opt1
Opt1+OFA
Opt1+Opt2

Opt1+Opt2+OFA

 1000

 10000

RTMCMDSMMSerSORLUFCrpFJBarSyn

E
nt

ity
-b

as
ed

Opt1
Opt1+OFA
Opt1+Opt2

Opt1+Opt2+OFA

Figure 3.13: Details of interference dependences calculated based on type, escape, and entity
information and along with other optimizations. Logarithmic scale is used for data on the y-axis.

77

C
H

A
P

T
E

R
3
.

D
A

T
A

-B
A

S
E

D
D

E
P

E
N

D
E

N
C

E

Benchmark Type-based Escape-based Entity-based
unopt ofa opt ofa+opt unopt ofa opt ofa+opt unopt ofa opt ofa+opt

Syn 20581 2278 20581 2278 17409 1423 14987 1416 1555 1423 1421 1329
Bar 20582 2285 20582 2285 16184 1435 16184 1442 1536 1435 1442 1349
FJ 20633 2330 20633 2330 16144 1402 17382 1395 1496 1402 1452 1314
Crp 24664 2967 24664 2967 18989 1854 18420 1877 2351 1854 2266 1786
LUF 24113 2723 24113 2723 16294 1459 15110 1471 1787 1459 1704 1397
SOR 22027 2412 22027 2412 16609 1462 15992 1455 1679 1462 1568 1356
Ser 21037 2378 21037 2378 16240 1426 16240 1419 1526 1426 1437 1331

SMM 25469 2541 25469 2541 17743 1516 18929 1516 1622 1516 1538 1427
MD 27993 7591 27993 7591 21992 6648 23794 6648 6823 6648 6735 6535
MC 82114 4783 82114 4783 67976 2766 68695 2744 3198 2747 3048 2497
RT 22021 2894 22021 2894 16815 1796 15631 1796 1927 1796 1838 1718

Table 3.8: Number of interference dependences calculated based on type, escape, and entity information and along with other optimizations.

7
8

CHAPTER 3. DATA-BASED DEPENDENCE

 100

 1000

RTMCMDSMMSerSORLUFCrpFJBarSyn

R
ea

dy
Type-based

Escape-based
Entity-based

Figure 3.14: Summary of ready dependences calculated based on type, escape, and entity infor-
mation. Raw data is available in Table 3.9. Logarithmic scale is used for data on the y-axis.

By examining the data in detail (type-based and escape-based) Figure 3.13 and Table 3.8), we find
that using aliasing information based on OFA produces a huge improvement that is better than the
improvement achieved by only using escape information. However, read-write coupling information
based on entities yields greater reduction than that obtained by leveraging OFA information.

3.7.6 Ready Dependences

We conducted ready dependence related experiments in a manner identical to interference depen-
dence related experiments. The data indicates that an improvement in accuracy of ready dependence
between escape information based approach and type-based approach.

However, despite using the same techniques and optimization, entity information based approach
did not provide extra improvements over the escape information based approach. We believe this
could be due to the relatively low number of synchronization statements in the benchmarks.

Interestingly, the improvement in accuracy of ready dependence was the largest when aliasing
information from OFA was combined with the entity information from the escape analysis. However,
given the restrictive nature of the benchmarks, we cannot conclude that this combination will work
the best in all cases.

In short, the data supports our claim that leveraging escape and entity information improves the
accuracy of ready dependence, but requires more empirical evaluation to predict expected gains in
general scenarios.

3.7.7 Aliasing-based Data Dependences (ABDD)

In our experiments, we used an algorithm similar to the one described in Figure 3.5 to calculate
aliasing based data dependence. We ran this algorithm with three different instantiations: type-
based, escape-based, and entity-based, of the Γ function as described in Section 3.7.5. However,
unlike in case of interference and ready dependence, we only executed entity-based mode of the
experiment in the most optimal mode as the proposed optimizations do not affect the accuracy of
the calculated aliasing information.

The results from the experiments (Figure 3.16 and Table 3.10) clearly indicate that ABDD based
on aliasing information from OFA is more accurate than the ABDD based on type information.

79

CHAPTER 3. DATA-BASED DEPENDENCE

 100

 1000

 10000

T
yp

e-
ba

se
d

No OFA
OFA

 100

 1000

 10000

E
sc

ap
e-

ba
se

d

Opt1
Opt1+OFA
Opt1+Opt2

Opt1+Opt2+OFA

 100

 1000

 10000

RTMCMDSMMSerSORLUFCrpFJBarSyn

E
nt

ity
-b

as
ed

Opt1
OFA+Opt1
Opt1+Opt2

Opt1+Opt2+OFA

Figure 3.15: Details of ready dependences calculated based on type, escape, and entity information.
Logarithmic scale is used for data on the y-axis.

80

C
H

A
P

T
E

R
3
.

D
A

T
A

-B
A

S
E

D
D

E
P

E
N

D
E

N
C

E

Benchmark Type-based Escape-based Entity-based
unopt ofa opt ofa+opt unopt ofa opt ofa+opt unopt ofa opt ofa+opt

Syn 449 328 449 328 431 324 431 324 429 324 381 276
Bar 460 348 460 348 442 344 442 344 442 344 394 296
FJ 450 331 450 331 432 327 372 327 432 327 348 264
Crp 449 302 449 302 405 261 405 293 405 261 325 213
LUF 399 280 399 280 321 276 381 276 321 276 318 213
SOR 449 302 449 302 405 293 405 293 405 293 325 213
Ser 399 280 399 280 381 276 381 276 381 276 318 213

SMM 449 302 449 302 405 276 405 261 405 276 325 213
MD 399 280 399 280 381 276 381 276 381 276 318 213
MC 1650 688 1650 688 1065 672 1065 653 1061 672 962 573
RT 453 313 453 313 405 300 405 300 405 300 342 237

Table 3.9: Number of ready dependences calculated based on type, escape, and entity information and along with other optimizations.

8
1

CHAPTER 3. DATA-BASED DEPENDENCE

 1000

 10000

RTMCMDSMMSerSORLUFCrpFJBarSyn

A
lia

se
d-

ba
se

d
D

at
a

D
ep

en
de

nc
e

Type-based
OFA-based

Entity-based

Figure 3.16: Summary of aliasing-based data dependences calculated based on type, OFA, and
entity (opt1+2) information. Raw data is available in Table 3.10. Logarithmic scale is used for data
on the y-axis.

Benchmark Type-based OFA-based Entity-based
Syn 2320 1281 1020
Bar 2327 1285 1001
FJ 2380 1339 1078
Crp 3228 2015 1219
LUF 2775 1640 1186
SOR 2472 1421 1151
Ser 2427 1380 1100

SMM 2602 1551 1199
MD 5858 4819 4503
MC 5509 4312 3798
RT 2932 1893 1616

Table 3.10: Number of aliasing-based data dependences calculated based on type, OFA, and entity
(opt1+2) information.

82

CHAPTER 3. DATA-BASED DEPENDENCE

Further, they indicate that ABDD based on entity information is either equally accurate or more
accurate than ABDD based on aliasing information from OFA. Hence, this suggest that aliasing
information based on our efficient escape analysis can be used in place of flow analysis based aliasing
information with minimal loss of accuracy.16

3.7.8 Type Filtering

In the previous experiments, our analysis with and without various optimizations other than type
filtering scaled well as the input programs were small. Hence, we did not include the data to
illustrating the effect of type filtering (which was minimal).

To illustrate the effect of type filtering, we considered two non-trivial Java applications – JRe-
versePro 1.4.117, a Java Classfile Decompiler/Disassembler, and JEdit 4.118, a full-featured (multi-
threaded) editor. JReversePro is composed of 90 classes, 745 methods, 347 fields, and 216KB of
application class bytecodes while JEdit is composed of 808 classes, 4954 methods, 1967 fields, and
2165KB of application class bytecodes.

The data from the experiments is presented in Table 3.11. We analyzed JReversePro and JEdit
in four different modes:

vanilla modes exercised the optimization described in Section 3.5.1.

staticField mode exercised the optimizations described in Sections 3.5.1 and 3.5.2.

typeFiltering mode exercised the optimizations described in Sections 3.5.1 and 3.5.3.

both mode exercised the optimizations described in Sections 3.5.1, 3.5.2, and 3.5.3.

The time and memory required by the escape analysis are given column 2 and 3. The number
of variables marked as escaping and as participating in concurrent/shared read-write, write-write,
lock-unlock, and wait-notify couplings are given in columns 4, 5, 6, 7, and 8, respectively. The
number of methods marked as atomic is given in columns 9.

The data from the experiment indicate that the improvement in the accuracy of various in-
formation calculated by the analysis with each optimization independently is only marginally in
comparison with the information when minimal optimizations is used. We suspect that this might
be due to the sequential nature of JReversePro.

However, the data indicates remarkable improvement (ranging from 10% to 24%) at nominal
increase in cost when the optimizations are combined. This validates the optimizations, but it does
not validate the correctness of the optimization. Upon random examination of the data, the data did
seem to be valid. Further, this improvement indicates that the marginal improvement in accuracy
when optimizations are applied independently may be due to the requirement of not subjecting
global alias sets (with global element set to true) to type filtering in typeFiltering mode and not
using type filtering optimization (specifically while processing global alias sets) in staticField mode.

In summary, it would be beneficial to apply the proposed optimizations to improve the accuracy
at a nominal cost; however, techniques and approaches to easily detect if the result is unsound need
to be further explored.

16Please refer to Section 5.4.1 for information about a simple yet powerful optimization used in the calculation of
ABDD in these experiments.

17http://jrevpro.sourceforge.net
18http://www.jedit.org

83

C
H

A
P

T
E

R
3
.

D
A

T
A

-B
A

S
E

D
D

E
P

E
N

D
E

N
C

E

Mode Time Memory Escapes Read-Write Write-Write Locking Wait-Notify Atomic
(s) (MB)

vanilla 48669(113457) 195(303) 28379 25626 26611 21289 20342 477
staticField 154092(145697) 723(306) 28397 25583 25491 21380 20469 476
typeFiltering 50098(153665) 190(302) 27882 25112 26059 21192 20269 518
both 81950(140091) 242(299) 23831 20962 20663 19442 18772 801

JReversePro v1.4.1

Mode Time Memory Escapes Read-Write Write-Write Locking Wait-Notify Atomic
(s) (MB)

vanilla 82786(377718) 266(528) 41069 38421 39028 30790 28974 578
staticField 155171(363511) 613(521) 41055 38373 38271 30741 28947 576
typeFiltering 78466(365857) 266(520) 40878 38228 38831 30650 28846 585
both 105884(379307) 310(519) 34340 31669 31435 28979 27890 823

JEdit v4.1

Table 3.11: Data from the escape analysis of JReversePro and JEdit with various optimizations. The numbers within parentheses in columns
2 and 3 are time and memory data corresponding to object flow analysis. These experiments were conducted by using JVM in Sun JDK 1.5
with 1.7GB of maximum allowed heap space on 2GHz Linux Box with 2GB of RAM.

8
4

CHAPTER 3. DATA-BASED DEPENDENCE

3.8 Related Work

Numerous escape analyses have been proposed to calculate if an object escapes (i.e. can be accessed
outside of) a particular method m and/or thread t. Ruf’s equivalence-class-based analysis [Ruf00]
for calculating if an object is only accessed in a single thread and Choi et al. fixed-point-based
analysis [CGS+99] to calculate if an object escapes a method or a thread are two well-known escape
analyses. Aldrich et al. [ACSE99], Blanchet [Bla99], and Bogda and Hölzle [BH99] also proposed
similar analyses to improve the runtime performance of Java programs by removing unnecessary
synchronization and to enable stack allocation of objects.

Similarly, numerous data-race detection algorithms have been proposed. Choi et al. propose an
on-the-fly technique [CLL+02] to detect data-race conditions (i.e. situations where accesses to shared
objects are not protected by locks). Unlike our approach, this approach requires instrumentation
and various optimizations such as static data-race detection analysis as a pre-phase to the dynamic
analysis [CLS01]. Flanagan and Freund proposed an annotated type-based technique [FF00] along
with an annotation inference mechanism which is similar to escape analysis [FF01] for the purpose
of detecting race-condition by ensuring objects annotated/marked as thread-local are indeed thread-
local (i.e. through the entire execution, they are only reachable from a particular thread t). A similar
sort of analysis by Boyapati and Rinard [BR01] required extensions to Concurrent Java [FF00] and
used the auxiliary information to deduce escape information. In comparison, the proposed approach
is fully automatic and requires no user intervention. In terms of scalability, the complexity of
these approaches were not described analytically; hence, an analytical comparison of the proposed
approach and these previous approaches is not available.

Most of the efforts related to aliasing information has been based on points-to analysis. Numer-
ous iterative [And94, Ste96, Das00, Ran02, LH03, MRR02] and equivalence class based [LH99, LH01]
points-to analysis have been proposed. These efforts have been focused on modularity, parameteri-
zation, scalability, accuracy, and various forms of sensitivities in the context of sequential programs.
Sălcianu and Rinard [SR01] proposed a combined iterative algorithm to calculate points-to and
escape information in the context of concurrent programs.

There is a wide body of literature on slicing sequential programs, beginning with Weiser’s orig-
inal paper on slicing [Wei84]. Horwitz et al. [HRB88] proposed a inter-procedural program slicing
algorithm which has been extended by others to handle various features such as exceptions and
unconditional jumps. There has been effort ([LH96, HPR89, LR94, LH98]) in addressing issues in-
volved in slicing program written in object oriented languages with features such as pointers and/or
references.

In 2004, Hammer et al. [HS04] independently proposed an approach to improve the accuracy
of Java program slicing by addressing the inaccuracies stemming from aliasing between nodes in
the object graphs of method parameters in a sequential setting. In contrast, my effort focuses on
the calculation and use of accurate object escape information to improve the accuracy of data (and
control) dependences in both sequential and concurrent setting.

Krinke [Kri98] considered intra-procedural slicing for a simple while-language with co-begin/co-
end statements and proposed a form of symbolic execution to prune interference dependences
starting from the observation that considering interference dependences to be transitive is overly
conservative. Nanda [Nan01] proposed algorithms for context-sensitive algorithms for slicing con-
current programs. However, these algorithms rely on symbolic execution and/or may-happen-in-
parallel(MHP) [ACSE99, NAC98] information to prune interference dependences. However, in the
absence of synchronization operations, the use of MHP algorithms will not provide large reductions
in the dependences as it is harder to detect instruction execution ordering. Also, these techniques

85

CHAPTER 3. DATA-BASED DEPENDENCE

does not address pruning of interference dependences arising from language features such as dy-
namically created objects and threads. As the justification for pruning interference dependences
are independent (thread locality of objects vs instruction execution ordering), orthogonal pruning
techniques such as ours and those mentioned above can be combined to obtain further reductions.

Specifically in the context of ready dependence, Hatcliff et al. [HCD+99] proposed safe locks based
optimization to improve accuracy. A lock is deemed as safe if the lock will not be held indefinitely at
runtime. We have implemented an analysis to calculate safe locks and have found that it provides
good accuracy improvements independently and even better accuracy improvements along with the
optimization proposed in this chapter.

86

CHAPTER 4. CONSTRAINED JAVA

Chapter 4

Constrained Java

Although the approaches/techniques described in this dissertation are applicable to Java program-
ming language, they are described in the context of a Constrained Java language to simplify their
exposition.

Constrained Java (CJava) language is the Java programming language along with few structural
constraints and one semantic alteration.

CJava is based on Java language as described in the second edition of the Java Language speci-
fication [GJS00] with the underlying execution semantics as described in the second edition of Java
Virtual Machine (JVM) specification [LY99]. The structural constraints restrict the usage of certain
grammar rules defined in the Java language specification and mandate the use of certain Java coding
patterns. Hence, every valid CJava program is also a valid Java program.

The basic purpose of the constraints is to simplify the structure of CJava programs to reproduce
the basic property of three-address form code — there are at most three addresses in a statement
with at most one assignment and at most one operation. The reasons for using CJava instead of
using a three-address form based intermediate language are

• to describe the approaches/techniques in a language with well defined and documented syntax
and semantics (not mere representation),

• to describe the approaches/techniques in Java (the intended target language) as opposed to
three-address code based intermediate languages and, consequently,

• to ease the transition of the proposed approaches/techniques into the Java application domain.

As CJava merely removes most of the existing syntactic sugaring in Java and enforces certain
rules to explicate existing implicit syntactic interpretation of Java programs, the proposed techniques
can be directly applied to Java programs.

87

CHAPTER 4. CONSTRAINED JAVA

4.1 Structural Constraints in CJava

4.1.1 Assignment Constraints

In Java, an assignment statement is also an expression that evaluates to the assigned value. Hence,
it is possible to chain assignment statements, e.g. a = b = c;. Such constructions complicate the
description of algorithms that refer to variable defining sub-expressions. To avoid complications,
such constructions are disallowed in CJava programs.

Constraint 1 An expression can have at most one assignment operator.

Hence, the Java expression a = b = c; should be written as b = c; a = b; in CJava.

A situation similar to assignment chaining occurs when prefix/postfix increment/decrement ex-
pressions (--x/x--) (involving a hidden assignment to the involved prefix/postfix expression (x))
are used with the assignment operator. Hence, such constructions are disallowed in CJava programs
as well.

Constraint 2 Pre/Post increment/decrement operators are not supported.

Java expressions such as a = b++; should be written as a = b; b = b + 1; in CJava.

4.1.2 Array/Field Access Constraints

While accessing a field in Java, the array reference/field (a/b) of the array/field access expression
(a[i]/b.f) is read first and then the index/field expression (i/f) is accessed in the read object.
As each array/field access expression accesses two address locations (the array reference/primary
and the cell/field), multiple array/field access expressions in a statement will violate the desired
three-address code form of CJava programs. Hence, such constructions are disallowed in CJava
programs.

Constraint 3 Array/Field access expressions can only occur in assignment statements, and
only one array/field access expression can occur in an assignment statement.

Java statements such as a = b.f + c.g; should be written as f1 = b.f; g1 = c.g; a = f1

+ g1;.

4.1.3 Invocation Constraints

Java allows chaining of method invocations (e.g. o = foo().bar()) and embedding method invoca-
tions within method invocations (e.g. o = foo(bar())). These features complicate expositions that
need to refer to a particular method invocation in an expression. To alleviate the confusion, CJava
disallows the use of these features.

88

CHAPTER 4. CONSTRAINED JAVA

Constraint 4 Utmost one method invocation can occur in an expression.

Hence, the Java expression o = foo().bar(); should be written as t = foo(); o = t.bar();

in CJava. Similarly, o = foo(bar()); in Java should be written as t = bar(); o = foo(t); in
CJava.

4.1.4 Statement Constraints

As opposed to complicating the presentation by handling the syntactic sugar added to the language,
the syntactic sugar statements: for and switch, are disallowed in CJava programs.

Constraint 5 for and switch statements are not supported.

Java statements such as for(int i = 0; i < 10; i++) { ... } will be written as int i = 0;

while (i < 10) { ... i++} in CJava. Similarly, switch (i) { case 1: ... ; case 2: ...

} should be written as if (i == 1) { ... } else if (i == 2) { ... }.

4.1.5 Method Constraints

Java allows assignment to formal parameters of methods, i.e. erase the binding between the parame-
ter of the method to its argument. As parameters capture the data available at the method interfaces,
overriding definitions can complicate the presentation of certain ideas. Hence, such definitions are
disallowed in CJava by the following constraint.

Constraint 6 All formal parameters of methods should be declared as final.

A Java method void conv(int temp) { ... } should be written as void conv(final int

temp) { ... } in CJava.

In Java methods, when a statement has no successor, the implicit semantics is for the enclosing
method to return after executing this statement. In CJava, this implicit semantics is not assumed;
hence, the exit/return points of methods should be explicitly provided.

Constraint 7 Every maximal non-repetitive intra-procedural control flow path should be
terminated by a return statement.

Observe that this constraint allows methods without return points in CJava programs; however,
in such methods, there can be no maximal finite intra-procedural control flow path. Hence, this
constraint does not in any way limit the expressiveness of CJava in comparison with Java. Instead,
it merely explicates the return points in methods.

synchronized methods in Java provide syntactic sugar to execute the method within a syn-
chronized statement in which the this variable of the method (the Class object in case of static
methods) is used as the lock expression. Unlike the synchronized statement, there is no explicit

89

CHAPTER 4. CONSTRAINED JAVA

executable program point that can be associated with such synchronization/locking operation in
synchronized methods. For these reasons, synchronized methods are disallowed in CJava.

Constraint 8 synchronized methods are not supported.

Instead, Java synchronized methods should be written in CJava by wrapping the entire body
of the method in a synchronized statement on the this variable in case of instance methods and
the Class object in case of static methods.

4.1.6 Class Constraints

Java supports static fields and blocks to initialize static fields either when declaring them or in a
static block. The initialization-at-declaration option is a syntactic sugar that is usually realized
initialization-in-static-block option by a Java compiler. For simplicity, CJava only supports the
initialization-in-static-block initialization option for static fields.

Constraint 9 Each class can have utmost one static block; static fields can only be initialized
within a static block.

In the rest of this dissertation, (in the spirit of the Java Virtual Machine specification) the
static initialization block is assumed to be executed as a method. This method is referred to as
class initializer method. It has the Java signature public synchronized static void <clinit>()

which in turn should rewritten according to the method constraint 8.

When inner classes or anonymous classes are used, the method scope needs to be considered
to differentiate program points occurring in inner/anonymous classes from those occurring in the
containing classes. For this purposes, these features are not supported in CJava.

Constraint 10 Anonymous classes and Inner classes are not supported.

Each of the proposed structural constraints are illustrated in Table 4.1.

4.2 Semantics of Field Resolution

Constraint 11 Contrary to Java, field resolution occurs at compile time in CJava.

To elaborate, consider the programs in figure 4.1. Upon executing the program in the left column
as a Java program, the field x is resolved at runtime. Hence, the signature of the field x accessed
in C.foo() will be dynamically calculated to be <int B.x>. If the same program is executed as a
CJava program, then the signature of the field x is calculated to be <int B.x> at compile time and
this information is used at runtime to access field x.

This alteration simplifies the presentation of various approaches by removing a source of variance,
namely, accounting for runtime field resolution at analysis time.

90

CHAPTER 4. CONSTRAINED JAVA

class A {}

class B extends A {
int x;
}

class C extends B {
void foo() {

this.x = 10;
}
}

class A {
int x;
}

class B extends A {}

Figure 4.1: Java programs that illustrate field resolution semantics in Java version≤1.1 and version
≥1.2.

However, this alteration has a serious flaw. For example, consider the Java program in Figure 4.1.
Suppose class C is compiled against classes B and A occurring in the left column but is executed with
classes B and A occurring in the right column. The execution of this combination of classes will fail
with a NoSuchFieldError exception as the referenced field with the signature <int B.x> does not
exist (instead field with signature <int A.x> exists). On the other hand, such an execution will
succeed if runtime field resolution is used (as done in Java programs).

Hence, to address this flaw and to apply the approaches described in this dissertation to Java
programs, this semantic alteration should be disregarded. Instead, a static approximation of the
runtime field resolution information (calculated possibly by leveraging results of a points-to analysis)
should be considered while handling analysis/data pertaining to field access.

As a side note, this altered semantics was an issue in earlier versions (< 1.2) of Java. Specifically,
the Java language specification required field resolution to occur at runtime (see Section 8.3.3.2 in
[GJS96]) while the Java virtual machined specification only supported compile time field resolution
(see Section 5.2 in [LY96]). This discrepancy was later addressed in the Java 1.2 (see Section 5.4.3.2
in [LY99]).

91

CHAPTER 4. CONSTRAINED JAVA

Java CJava
a = b = c; b = c;

a = b;

a += b = c b = c;

a = a + b

a = b++; a = b;

b = b + 1;

m = o.f + p.g; int f1 = o.f;

int g1 = p.g;

m = f1 + g1;

o = foo().bar(); t = foo();

o = t.bar();

o = foo(bar()); t = bar();

o = foo(t);

for (int i = 0; i < 10; i++) { ... } int i = 0;

while (i < 10) {
...

i++;

}
switch (i) { if (i = 1) {
case 1: ...

... } else if (i == 2) {
break; ...

case 2: }
...

}
int conv(int f) { ... } int conv(final int f) { ... }
void foo() { void foo() {
System.out.println("Hello"); System.out.println("Hello");

} return;

}
void foo() { void foo() {
while(true); while(true);

} }
synchronized void foo() { void foo() {
... synchronized(this) {

} ...

}
}

synchronized static void foo() { static void foo() {
... synchronized(Foo.class) {

} ...

}
}

Table 4.1: Examples of Java fragments and their equivalent CJava fragments.

92

CHAPTER 5. PROGRAM SLICING

Chapter 5

Program Slicing

Program Slicing is a program analysis calculates the parts of a given program that influence (or are
influenced by) the program points of interest. Since its invention by Weiser [Wei84] in the early
1980s, various researchers [HRB90, AH90, Ven91, CCL98] have explored techniques, variations, and
applications of program slicing for over two decades in sequential contexts. Over this period, the
primary applications of program slicing has been in maintenance, debugging, comprehension, and
testing of programs.

In the past decade, few efforts [Zha99, HCD+99, CB01, Nan01, Kri03a] have explored program
slicing in the presence of aliasing and concurrency. The proposed algorithms have been mostly
based on dependence graphs. Further, all algorithms, except Krinke’s and Nanda’s, have been
calling context insensitive.

Although the application domain of program slicing has been expanded to include program
verification and program security, program slicing as a technique is not yet widely used. Based on
my personal experience from implementing a program slicing framework for Java, I conjecture that
this may be due to the lack of simpler slicing algorithms that are scalable, accurate, and flexible
(customizable), and the lack of an accessible implementation to experiment with program slicing.

As a novel contribution, I have independently proposed a parametric program slicing algorithm
that is based on dependence information in relational form (not based on dependence graphs), is
efficiently calling context sensitive, and leverages property sensitivity to efficiently improve accuracy
in the presence aliasing in both sequential and concurrent programs. Further, as it is parametric,
it can be used to realize and reason about different forms of slicing. In the spirit of the theme of
the dissertation, I have layered few extensions on top of the algorithm to improve scalability and
accuracy in an application/context specific manner. These contributions have been implemented in
a publicly available program slicing framework for Java in the Indus project1.

This chapter contains the description of these contributions along with preliminary empirical
evaluation of the contributions based on their realization in the Indus project.

1http://indus.projects.cis.ksu.edu

93

CHAPTER 5. PROGRAM SLICING

1 public class Example1 {
2 void tempConv(int c) {
3 float f = c ∗ 9 / 5 + 32;
4 if (f < 100) {
5 System.out.println (‘‘ Good Weather ’’ + f);
6 } else {
7 System.out.println (‘‘ Hot Weather ’’ + c);
8 }
9 }

10 }

Figure 5.1: A trivial example to illustrate graph based program slicing.

5.1 Motivation

5.1.1 Basics

Formally, program slicing is an analysis that accepts a program P along with a collection of program
points C and provides a collection of program points S such that either S influences the behavior
of P at C 2 or C influences the behavior of P at S . The collection of input program points C are
referred to as slice criteria while the collection of output program points S are referred to as a
program slice of P . In many literature, the criteria is also accompanied by a collection of variables
that determine the subset of the behavior, i.e. the values of the variables, that should be preserved
at the criteria in the slice. I consider this to be an engineering/implementation detail; hence, it is
not addressed in this dissertation.

Program slices in which the slice influences the criteria is referred to as backward slices whereas
the slices in which the criteria influences the slice is referred to as forward slices. I refer to this
aspect of the slice as the direction of the slice.3

Independent of the direction, to construct a slice, the analysis explores various relations between
the criteria and other programs points in the program to determine which of the other program
points to include in the slice. As the definition of a variable influences the use of a variable, data
dependence relation is considered during slicing. Similarly, as the execution of (control flow to) a
program point can be decided by a decision at another program point, control dependence relation
is also considered during slicing. Further, as the influence may be indirect (e.g. program point e1

may influence the control flow to program point e2 which in turn may influence the data accessed
at program point e3 ∈ C), the analysis will also need to consider the relation between the slice and
other program points in the program. Hence, the slice is expanded till a fixed point is reached.

Mathematically, program slicing can perceived as the transitive closure of the union of a collection
of dependence relations. Given this perception, if the dependence relations are represented in a
directed graph (i.e. program points as nodes and dependence relations as edges), then the algorithm
to calculate a program slice is merely a graph search algorithm for a non-existent node starting
from the criteria nodes in the appropriate direction (for forward/backward slices). Such graphs that
represent the dependence relations of a program are referred to as program dependence graph (PDG).

2A influences B is to be read as the program points in A influence the program points in B when A and B are
collections of program points.

3In the rest of this chapter, unless specified, program slice/slicing implies backward program slice/slicing.

94

CHAPTER 5. PROGRAM SLICING

1

2

3

75

(a)

1

2

3

5 7

(b)

5 7

3

2

1

(c)

Figure 5.2: PDG and slices of the program in Figure 5.1. Solid lines represent identifier based
data dependences while dashed lines represent control dependences. (a) is the PDG of the program,
(b) is the forward slice based on the criteria {line 3}, and (c) is the backward slice based on the
criteria {line 7}. In this example, a line in the program is considered as a program point.

For the program in Figure 5.1, identifier-based data dependence and control dependence could be
used to construct a PDG as shown in Figure 5.2 (a)) with edges directed from the dependee program
point to the dependent program point. Given the PDG and the slice criteria as line 3, the forward
slice can be calculated (as shown in Figure 5.2 (b)) by following the edges along their direction.
Given the slice criteria as line 7, the backward slice can be calculated (as shown in Figure 5.2 (c))
by following the edges in the reverse direction.

5.1.2 Inter-procedural Slicing

Accuracy

In a program composed of procedures/methods along with corresponding invocations, each procedure
can be sliced according the previous technique whenever a program point enclosed by the procedure
is a criteria or is included into the slice. Although simple, it can be complicated in terms of achieving
accuracy when dependences vertically span procedural boundaries via parameter-argument bindings
and procedure invocations in multiple calling contexts.

For example, consider the method Acct.transfer(Acct,Acct,int) in a sequential context. If
{line 22} is the criteria, then lines 21 and 16 should be included in the slice. However, not all
parameters in line 16 need to be included in the slice. Advancing the slice calculation beyond the
boundary of Acct.transfer(Acct,Acct,int), the first argument in line 67 need not be included.
Hence, the slice calculation needs to handle the program at finer and varying level of granularity to
achieve accuracy, and this is done by the proposed algorithm.

This issue was the primary concern identified in Weiser’s slicing algorithm and addressed via
a graph based inter-procedural slicing algorithm by Horwitz et al. [HRB90]. The solution was
based on a dependence graph (system dependence graph (SDG)) composed of dependence graphs of

95

CHAPTER 5. PROGRAM SLICING

1 class Acct {
2 protected int balance;
3 Acct() {
4 balance = 100;
5 }
6 synchronized void deposit(int amt) {
7 int temp = balance;
8 balance = temp + amt;
9

10 }
11 synchronized void withdraw(int amt) {
12 int temp = balance;
13 balance = temp − amt;
14 }
15 static void transfer(Acct src,
16 Acct dest, int amt) {
17 synchronized(src) {
18 synchronized(dest) {
19 int temp = src;
20 src = temp − amt;
21 temp = dest;
22 dest = temp + amt;
23 }
24 }
25 }
26 } // End of class Acct
27
28 public class Home {
29 public static void main(String[] s) {
30 Acct savings = new Acct();
31 Thread wife, husband;
32 wife = new Wife(savings);
33 husband = new Husband(savings);
34 wife . start ();
35 husband.start();
36 }
37 } // End of class Home

38 class Husband extends Thread {
39 protected Acct savings;
40 protected Acct checking;
41 Husband(Acct act) {
42 this.savings = act;
43 checking = new Acct();
44 }
45 public void run() {
46 checking.deposit (5);
47 savings.deposit(20);
48 synchronized(savings) {
49 savings. notify ();
50 }
51 savings.withdraw(10);
52 checking.deposit(10);
53 }
54 } // End of class Husband
55
56 class Wife extends Thread {
57 protected Acct savings;
58 protected Acct checking;
59 Wife(Acct act) {
60 this.savings = act;
61 checking = new Acct();
62 }
63 public void run() {
64 synchronized(savings) {
65 savings.wait();
66 }
67 Acct.transfer(savings, checking, 10);
68 }
69 } // End of class Wife

Figure 5.3: A simple stripped-down concurrent Java program containing intra- and inter-thread
and intra- and inter-procedural dependences.

various procedures extended with additional nodes at procedure boundaries to summarize the data
dependences induced by the procedure between the arguments to the procedure. This extension
disables the direct use of dependence graphs for purposes other the program slicing. This drawback
is addressed by the proposed algorithm by relying on dependence relations and not their graph-based
representation.

Calling Context Sensitivity

Further, suppose {line 52} is the slice criteria. The slice algorithm should descend into Acct.deposit(int)
to include any parts of the method that may affect behavior of the program at line 52. As
checking.balance is changed in Acct.deposit(int), the entire body of the method is added
to the slice. However, while ascending from Acct.deposit(int), the slicing algorithm has two

96

CHAPTER 5. PROGRAM SLICING

options:

• ascend along all call paths/invocations leading to the current method/procedure or

• ascend along the call path/invocation that initially triggered the descent into the current
method/procedure.

Comparing the options, the first option is clearly inaccurate as it may lead to the inclusion of
unnecessary parts of the program in the slice while the second option is accurate as it will only
trigger the inclusion of the necessary parts of the program in the slice. In terms of cost, the second
option seems to be more expensive (both in terms of time and space) than the first option as the
algorithm has to record, process, and forget calling contexts. However, this conjecture may be false
as the second option processes smaller parts of the program [Kri02].

This issue pertaining to calling context sensitive inter-procedural slicing was first identified and
addressed via a graph based solution by Reps [RR95]. The issue was later revisited by Krinke [Kri02].
However, neither of these efforts addressed calling context sensitivity in the presence of aliasing.

Aliasing

Given the slice criteria {line 51}, a calling context sensitive slicing algorithm will descend into the
method Acct.deposit(int), include the entire body of the method, and ascend into the invocation
site line 51. As line 12 in Acct.deposit(int) is included into the slice, to be correct the algorithm
will need to include updates to balance field of the object referred to by this.

In a sequential context, as an effect of aliasing, the definition of balance at line 8 resulting from
the invocation at line 47 is used at line 12. By merely relying on the intra-procedural identifier based
data dependence, the slicing algorithm will fail to include line 8 in the slice. However, this can be
rectified by leveraging aliasing based data dependence (ABDD) defined in Chapter 3.

Although the use of ABDD addresses the correctness issue, it introduces a crucial issue that
affect the accuracy of slicing — unavailability of valid/realizable calling context information at the
destination site. In the above example, there will be no associated calling context while processing
line 8 as result of following ABDD from line 12.

Even if a calling context can be constructed, to be accurate there should be a valid inter-
procedural control flow path from the destination site to the triggering site involving the associated
calling contexts. In other words, there should be an execution path from the destination site to the
triggering site that ascends (returns) along the destination calling context and eventually descends
(calls) down the triggering calling context. This novel notion of relating calling contexts via connec-
tivity based on valid inter-procedural control flow paths is referred to as control-based calling context
coupling.

In the above example, the calling context σ1 = line 51→ line 12 can be coupled with the calling
context σ2 = line 47→ line 8 but not with the calling context σ3 = line 52→ line 8 (as it is based
on an invalid control flow path).

A combination of call graph reachability and control flow graph reachability (explained later in
the chapter) can be used to detect such spurious calling context couplings. This technique can be
applied while calculating ABDD to achieve the same effect. However, independent of its application,
this technique cannot detect a form of spurious calling contexts coupling based on data (un)coupling.

97

CHAPTER 5. PROGRAM SLICING

Consider the calling contexts σ4 and σ1 starting from line 46 and line 51, respectively. These
calling contexts can be declared as being coupled as there is a valid inter-procedural control flow path
from line 8 to line 12 involving these calling contexts. However, the object referred by the receiver
at line 46 (the primary at line 8) in context σ4 is not the same object referred by the receiver at
line 51 (the primary at line 12). Hence, σ4 and σ1 cannot be coupled.

Digressing, this detail is correctly unobserved during (calling context insensitive) aliasing based
data dependence calculation for this example as withdraw(int) and deposit(int) are invoked on
savings (a common receiver) in Husband.run().

This form of calling context coupling that requires the calling contexts to agree on a given data
coupling at each call point is referred to as data-based calling context coupling, and there are no know
techniques to calculate this information and leverage it during slicing and other program analysis.

5.1.3 Concurrency

For concurrent programs, program slicing needs to consider interference dependence and ready
dependence to account for inter-thread dependences. However, issues similar to those in case of
aliasing and inter-procedural slicing occur.

In particular, calling context coupling needs to be leverage to generate accurate slices. However,
the calculation of coupling based on call graph and control flow graph reachability in concurrent
programs proves to be harder due to interleaving of threads (dually, valid interleaved inter-procedural
control flow paths may be marked as invalid). Although it seems that concurrency sensitive versions
of call graphs can be leveraged to address the issue, there are no known accurate and efficient
algorithms to calculate such call graphs.

Similar issues plague the calculation data sensitive calling context coupling as well.

As for calling context sensitive concurrent slicing algorithms, Krinke [Kri03c] and Nanda [Nan01]
have independently proposed such algorithms to perform calling context sensitive slicing of concur-
rent programs. These algorithms are based on dependence graphs, and they have exponential time
complexity.

5.1.4 Summary

Despite the various existing algorithms and techniques to perform inter-procedural sequential and/or
concurrent program slicing, there is no scalable algorithm that can be tuned to address aliasing and
concurrency with varying level of accuracy. The contents of this chapter try to address this void.

5.2 Inter-Procedural Slicing Algorithm

In simple words, the proposed slicing algorithm merely calculates the transitive closure of the union
of a given set of dependence relations while handling vertical inter-procedural data flow (across
invocation sites) differently. Although this seems similar to the algorithm proposed by Horwitz et
al., the proposed algorithm is distinct as it encompasses every detail specific to slice construction as
opposed to relying on special representation of dependence relations that encompass these details.

98

CHAPTER 5. PROGRAM SLICING

By its iterative nature and reliance on dependence relation, the algorithm is similar to Weiser’s
slicing algorithm.

The algorithm processes the input programs written in the CJava language introduced in the
previous chapter. This restriction is merely to simplify the exposition and does not hinder the
application of the algorithm to programs written in Java and other languages.

5.2.1 Premises

Various notations, representation of dependence information, domains, and functions relevant and
used in the description of the algorithm are described in this section.

Notations

As mentioned earlier, program slicing is an analysis that identifies the program points of the input
program that constitute a slice. In this spirit, the slice S is represented as a set of program points
e ∈ P . Despite this representation, the syntactic structure of the slice can be reconstructed by
leveraging the structure of the program and the position of the slice program points in the program.

The slice criteria C is a set of slice criterion c = 〈e〉 where e is a program point that occurs in
the input program P .4 〈. . . 〉#i denotes the i-th element in the given tuple (with the index of the
first element being 1).

Each program point in the program is unique.

Given a program point e that corresponds to a procedure invocation expression, e↑i denotes the
program point of the i-th argument in the invocation expression.

As for dependences, 〈µ, ν〉 (µ
d→ ν) shall denote a dependence in which µ is the source of the

dependence and ν is the destination of the dependence. For example, in case of identifier based data
dependence, the definition site shall be the dependee µ and the use site shall be the dependent ν.

A dependence relation is denoted by
d→ and a set of dependence relations is denoted by D .

Dependences

In the rest of this chapter, only the following five forms of dependences are considered.

• Identifier Based Data Dependence (IBDD) is the intra-procedural data dependence involving
simple variable names.

• Aliasing Based Data Dependence (ABDD) is the inter-procedural data dependence involving
array or field access expressions.

• Interference Dependence (ID) is the inter-procedural inter-thread data dependence involving
array or field access expressions.

• Control Dependence (CD) is the intra-procedural control dependence.

4The use of a tuple as opposed to just the lone element will be evident during the discussion of calling context
sensitivity in Section 5.3.

99

CHAPTER 5. PROGRAM SLICING

• Ready Dependence (RD) is the intra- and inter-procedural control dependence stemming from
synchronization constructs.

I assume that at least IBDD, ABDD, and CD relations are used during slicing.

For simplicity, dependees and dependents are represented as program points. The program points
usually represent expressions. This representation may seem to be insufficient in the context of some
dependences. However, as explained below, this representation is indeed sufficient.

Program points represent expressions This representation suffices in case of identifier based
data dependences (IBDD), aliasing based data dependences (ABDD), and interference dependences
(ID) because due to the assignment constraints and array/field access constraints of CJava.

Specifically, the dependee (definition) program points correspond to defining assignment expres-
sion/statement and the dependent (use) program points correspond to the atomic expression that
contains the use variable or procedure invocation expressions. For example, the program point cor-
responding to the assignment in line 3 in Figure 5.1 is a valid dependee program point while the
program point corresponding to the expression f in line 5 of the same figure is a valid dependent
program point. The invocation expression on line 5 is an invalid dependent program point. In
case of array/field access expression such as a.f, the program point corresponding to a.f is a valid
dependent program point.

The same representation suffices for control dependences (CD) as well except for the special
handling of two corner cases: 1) the program point of an if statement is the program point of the
controlling expression, and 2) the program point of a synchronized statement is the program point
of the lock expression of the statement.

What about synchronized methods? synchronized methods in Java provide syntactic sugar
to execute the method within a synchronized statement in which the this variable of the method
(the Class object in case of static methods) is used as the lock expression.

Unlike the synchronized statement, there is no explicit executable program point that can be as-
sociated with such synchronization/locking operation. This can become an issue with synchronized

methods and ready dependence (RD) based on rule 3 — program points m and n occur in different
threads and m is the start of a synchronized statement on object o and n is the finish of a syn-
chronized statement on object o. However, this is a non-issue in CJava programs due to the lack of
support for synchronized methods (Constraint 8).

Domains and Functions

Various domains used in the description of the algorithm are introduced below.

I the domain of positive integers including zero.

P the domain of programs.

E the domain of program points in a given program.

V the domain of program variables in a given program.

100

CHAPTER 5. PROGRAM SLICING

M the domain of procedures in a given program.

D the domain of dependence relations.

Various functions used in the description of the algorithm are introduced below.

ArgIndex: E × P → I⊥ returns the position of the given program point in the argument list of
the enclosing invocation expression in the given program. If the program point does not occur
in an invocation expression, then the function returns ⊥.

CallSites: M×P → ℘(E)⊥ returns the call sites program point at which the given procedure is
invoked in the given program. If the given procedure does not occur in the given program,
then the function returns ⊥.

Callees: E × P → ℘(M) returns the set of procedures that may be executed at the call site in the
given program point in the given program. If the given program point does not occur in the
given program, then the function returns ⊥.

ContainsCallSite: E × P → {true, false} returns true if the given program point in the given
program contains a call site; false, otherwise. This function is irreflexive, i.e. a call site program
point is not considered to contain a call site.

ControlBasedDependenceRelation: D → {true, false} returns true if the given dependence
relation is a control based dependence (if it is either control or ready dependence); false,
otherwise.

ControlIndependents: M×P → ℘E returns the program points in the given procedure in the
given program that are control independent, i.e. do not participate in control dependence
relation.

EnclosingCallSite: E × P → E⊥ returns the program point corresponding to the immediately
enclosing invocation expression that contains the given program point in the given program.
If the given program point does not occur in the given program, then the function returns ⊥.

ExitPoints: M×P → ℘(E)⊥ returns the set of exit program points (expressions in return state-
ments) in the given procedure in the given program. If the procedure has no exit points, then
the function returns the set of program points at which a search algorithm on the control flow
graph of the procedure backtracks. These program points are referred to as pseudo exit points.
If the given procedure does not occur in the given program, then the function returns ⊥.

GetLValue: E × P → E⊥ returns the program point corresponding to the expression occurring in
the l-position of the assignment statement in which the given program point corresponds to
the expression in r-position in the given program. If OccursAsRValue returns false for the
given program point and program, then this function will return ⊥.

IsACallSite: E × P → {true, false} return true if the given program point corresponds to an in-
vocation expression in the given program; false, otherwise.

IsAnArgument: E × P → {true, false} returns true if the given program point corresponds to an
argument expression in an invocation expression in the given program; false, otherwise.

IsAnExitPoint: E × P → {true, false} returns true if the given program point occurs in return

statements; false, otherwise.

101

CHAPTER 5. PROGRAM SLICING

Slice(P ,C ,D , seedCritGenerator,depHandler, procAscHandler, procDscHandler)
1 workset : a set of program point and method pairs.
2 S : the set of program points in the slice.
3
4 S ← ∅
5 processed ← ∅
6 workset ← seedCritGenerator(C)
7 while workset 6= ∅
8 do c ← remove(workset)
9 S ← S ∪ {c#1}

10 processed ← processed ∪ {c}
11 for each

d→ ∈ D
12 do workset ← workset ∪ depHandler(c,

d→)\processed
13 for each cn ∈ procAscHandler(c,P) ∪ procDscHandler(c,P)
14 do if cn /∈ processed
15 then workset ← workset ∪ {cn}
16 return S

Figure 5.4: A parametric inter-procedural slicing algorithm. remove function removes and returns
an element from the given workset.

OccurringProcedure: E × P →M returns the procedure in which the given program point
occurs in the program.

OccursAsRValue: E × P → {true, false} returns true if the given program point in the given
program occurs in the r-position in an assignment expression.

UseSites: I ×M→ E⊥ returns the program points at which the parameter at the given position
(specified by an integer) in the given procedure are used. If the parameter position is invalid,
then the function returns ⊥. The zero-th parameter is the receiver (this variable).

UsedParameters: E × P → I returns the index of the parameters used in the given program
point in the given program.

5.2.2 Parametric Slicing Algorithm (PSA)

The algorithm is presented in Figure 5.4. It accepts a program along with the slice criteria and
the set of dependence relations to be consider during the slice construction. This initial set of slice
criteria is referred to as seed slice criteria. In other words, the algorithm calculates the slice as fixed
point of the function involving the slice criteria and the slice and starting from the seed slice criteria
and an empty slice.

The slice generated by the algorithm is controlled by four parameters:

seedCritGenerator: E ×D ×P → ℘(E) parameter function accepts a slice criteria and returns
a slice criteria.5 It functions as a transformer that can add, delete, and/or modify the input
slice criteria. This parameter is only used in conjunction with the seed slice criteria.

5Recap: A slice criteria is a set of slice criterion.

102

CHAPTER 5. PROGRAM SLICING

depHandler: E ×D → ℘(E) parameter function processes the given criterion against the given set
of dependence relations and provides a new slice criteria to consider. The algorithm includes
the program points in the returned criteria into the slice, if they previously did not occur in
the slice.

procAscHandler: E × P → ℘(E) parameter function identifies vertical inter-procedural depen-
dences. More specifically, it provides the program points in the caller (calling) procedure that
should be processed to capture the influence/dependence on the given program point. The
program points are provided as criteria and they are included in the slice by the algorithm.

procDscHandler: E × P → ℘(E) parameter function identifies vertical inter-procedural influences.
More specifically, provides the program points in the callee (called) procedure that should be
processed to capture the influence/dependence on the given program point. The program
points are provided as criteria and they are included in the slice by the algorithm.

Three instances of the algorithm parametrized by various functions are provided in the following
sub-sections.

Correctness Argument

Independent of the parameter functions, it is trivial to see that the algorithm will terminate on
programs composed of finite number of program points.

As for the correctness of the slice, provided the last three parameter functions correctly identify
the relevant dependences involving the given program point (criterion) and the dependence infor-
mation is correct (sound), it is trivial to see that the algorithm identifies a correct (sound) slice for
the given seed criteria and program.

Complexity Analysis

The algorithm processes each program point utmost once. During each such processing, depHan-
dler parameter function is executed for each dependence relation and the procAscHandler and
procDscHandler functions are executed once. Also, seedCritGenerator function is executed
once at the beginning of the algorithm. Hence, the worst-case time complexity of the algorithm is

Ot(PSA) = O(SCG + |E| × ((|D | ×DH) + PAH + PDH))

where |E| is the number of program points in the input program, |D | is the number of dependence
relations, SCG is the complexity of seedCritGenerator function, DH is the complexity of de-
pHandler function, PAH is the complexity of the procAscHandler function, and PDH is the
complexity of the procDscHandler function.

The number of dependence relations used is usually a small constant c1. Hence, the worst-case
time complexity can be rewritten as

Ot(PSA) = O(SCG + |E| × ((c1 ×DH) + PAH + PDH))

As for the worst-case space complexity, the algorithm stores utmost each program point in the

103

CHAPTER 5. PROGRAM SLICING

program. Hence, the worst case space complexity will be

Os(PSA) = O(|E|)

5.2.3 Backward Slicing Algorithm (BSA)

The parametric slicing algorithm can be customized generated backward slice by providing appropri-
ate parameter functions. These functions are presented in Figure 5.5. The functions are explained
below in isolation followed by a comprehensive explanation of the entire algorithm.

Backward-SeedCritGenerator returns the seed slice criteria without any modification. Hence,
this function has no influence on the correctness or complexity of the slicing algorithm.

Backward-DepHandler identifies the dependee program points that influence the criteria pro-
gram points according to the given dependence relation and returns the dependee program
points as new slice criteria.

Backward-procAscHandler identifies the caller side program points that transfer the control
to and influence the data at the program points in the given criteria and returns these caller
side program points as new criteria to be processed. Given a program point in a procedure, the
execution of the program point depends on the invocation of the procedure.6 Similarly, if the
program point is associated with a parameter variable, then the value of the parameter variable
depends on the argument provided to the invocation of the procedure. These dependences are
exposed by this function.

Backward-procDscHandler identifies the callee side program points that transfer the control
out of the callee procedures. Given an invocation program point, the completion of execution
of this program point depends on the completion of the exit program points in the called
procedure. These dependences is exposed by this function.

Given a set of seed criteria in a program, the backward slicing algorithm transitively identi-
fies the dependee program points that influence the program points in the seed criteria via the
Backward-depHandler function. However, the dependence of a procedure on the call site and
the dependence of the parameters on the arguments at the call site are not captured by any depen-
dence relation; hence, these dependences are explicitly identified for processing by the Backward-
procAscHandler.

Similarly, a variable can depend on the return value at a call site (e.g. a depends on the value
returned by b.foo() in a = b.foo()). This dependence can be broken down into two dependences:
1) the exit points in the invoked procedure, and 2) the dependence on the the invocation of the proce-
dure to facilitate the execution of the relevant exit points. Backward-procDscHandler identifies
the first dependence for processing. The second dependence is not identified as it will be done as a
result of subsequent processing of the identified exit point by Backward-procAscHandler.

Correctness Argument

For a given set of dependence relations, the Backward-depHandler correctly identifies all relevant
program points that need to be included in the slice with respect to the input criteria and any

6To elaborate, if the call site was control dependent on program point e, then the the control independent program
points in the callee will be control dependent on e when the callee is inlined at the call site.

104

CHAPTER 5. PROGRAM SLICING

Backward-SeedCritGenerator(C ,D)
1 return C

Backward-DepHandler(c,
d→)

1 result ← ∅
2 for each 〈µ, c〉 ∈ d→
3 do result ← result ∪ {〈µ〉}
4 return result

Backward-ProcAscHandler(c,P)
1 result ← ∅
2 e ← c#1
3 m ← OccurringProcedure(e,P)
4 for each v ∈ CallSites(m,P)
5 do for each i ∈ UsedParameters(e,P)
6 do result ← result ∪ {〈v↑i〉}
7 result ← result ∪ {〈v〉}
8 result ← result ∪ {〈v↑0〉} //In case of virtual method dispatch
9 return result

Backward-ProcDescHandler(c,P)
1 result ← ∅
2 v ← c#1
3 if ContainsCallSite(v ,P)
4 then for each m ∈ Callees(v ,P)
5 do for each r ∈ ExitPoints(m,P)
6 do result ← result ∪ {〈r〉}
7 return result

Figure 5.5: Backward slice generating parameters for the inter-procedural slicing algorithm in
Figure 5.4.

105

CHAPTER 5. PROGRAM SLICING

program point included in the slice.

For the given criteria, Backward-procAscHandler correctly identifies the vertical inter-
procedural data dependence when parameter variables are involved in the criteria and inter-procedural
control dependence for the program points occurring in the criteria. Hence, the inter-procedural de-
pendence stemming from control and data flow into procedures included in the slice is correctly
captured.

Similarly, the inter-procedural dependence of a variable on the return value of an invoked pro-
cedure is identified by Backward-procDscHandler. Hence, the inter-procedural dependence
stemming from the data flow out of procedures (via return statements) is also correctly captured.

As for the correctness of inclusion of call sites and exit points, observe that all call sites of a
procedure are considered when a program point from that procedure is processed. This observation
implies that, once any program point in a procedure m is processed, every call site of m will be
included in the slice. Hence, the algorithm will correctly and safely not process any call sites of m
when subsequently processing a program point in m.

In short, the given algorithm correctly calculates the backward transitive closure of the given
dependence relations along with inter-procedural dependences and, hence, correctly calculates the
backward slice.

Accuracy The accuracy of the backward slice depends on the accuracy of the call graph informa-
tion and the dependence relations used by the algorithm. Nevertheless, the algorithm will include all
call sites of a procedure (in Backward-procAscHandler) even when the algorithm descends into
a procedure (in Backward-procDscHandler) from a particular call site. Hence, the algorithm
is calling context insensitive.

Complexity Analysis

The worst-case time complexity can be constructed based on the time complexity of the the param-
eter functions. In the worst case,

Backward-DepHandler considers every dependence for the given program point in the program
and as a program point can be dependent on every other program point in the program,
Ot(DH) = O(|E|).

Backward-ProcAscHandler considers every call site of the procedure m in which the given
program point occurs the program. As every program point in the program can be a call site
invoking m, there can be |E| call sites. However, as there can be only one procedure associated
as the occurring procedure for a program point, Ot(PAH) = O(ca × |E|) when the maximum
number of arguments to procedure is limited by a small constant ca.

Backward-ProcDscHandler considers every procedure invoked at a call site and every exit
point in each procedure. Assuming every call site can invoke every procedure, Ot(PDH) =
O(ce × |M|) where the maximum number of exit points in any procedure is limited to a small
constant ce.

Plugging in the above complexities into the complexity formula for parametric slicing algorithm,
the worst-case time complexity will be

106

CHAPTER 5. PROGRAM SLICING

Backward-Control-SeedCritGenerator(C ,D)
1 result ← ∅
2 for each c ∈ C
3 do e ← c#1

4 for each
d→ ∈ D

5 do if ControlBasedDependenceRelation(
d→)

6 then for each 〈µ, e〉 ∈ d→
7 do result ← result ∪ {〈e〉}
8 m ← OccurringProcedure(e,P)
9 for each v ∈ CallSites(m,P)

10 do result ← result ∪ {〈v〉}
11 return result

Figure 5.6: Backward control slice generating parameters for the inter-procedural slicing algorithm
in Figure 5.4.

Ot(BSA) = O(SCG + |E| × (|D | ×DH + PAH + PDH))

= O(SCG + |E| × (c1 × |E|+ ca × |E|+ ce × |M|))
= O(SCG + |E|2 × (c1 + ca) + |E| × ce × |M|)
= O(SCG + |E|2 + |E| × ce × |M|)
= O(|E|2 + |E| × ce × |M|)
= O(|E|2)

when Ot(SCG) ≤ Ot(|E|2) and ce × |M| ≤ |E|.

The worst-case space complexity of the algorithm is identical to that of the parametric slicing
algorithm (Section 5.2.2).

5.2.4 Backward Control Slicing Algorithm (BCSA)

A backward control slice is the set of program points that merely influence the control flow to the
seed slice criteria. Control slices do not capture the program points that influence the value of the
variables used at seed slice criteria. In terms of data slices (discussed until now), a backward control
slice is the backward data slice with respect to the program points that control influence the program
points in the seed slice criteria.

Given the relation between control slices and data slices, the parametric slicing algorithm can
be used to calculate backward control slices by using Backward-Control-SeedCritGenerator
function (given in Figure 5.6) and the other parameter functions from backward slicing algorithm.

For each of the seed criterion program point7, Backward-Control-SeedCritGenerator
determines the dependees program points based on control-based dependences (control dependence,
ready dependence, and synchronization dependence) and provides them as the resulting criteria.
As the control can only reach the seed criterion program points via the invocation of the enclosing

7I shall use the term criterion program point to denote the program point of a criterion.

107

CHAPTER 5. PROGRAM SLICING

procedure, the call sites of the enclosing procedure needs to be included as well. This is done in the
second half of the generator.

Correctness Argument

Based on the relation between control slices and data slices, the correctness of the algorithm trivially
follows.

Accuracy As the parameter functions from backward slicing algorithm is used as is and the
generated criteria are not extended to capture any sort of context information, the algorithm is
calling context insensitive.

Complexity Analysis

Due to the reuse of parameter functions from backward slicing algorithm, the worst-case time com-
plexity will be

Ot(BCSA) = O(SCG + |E|2 × (c1 + ca) + |E| × ce × |M|)

In the worst case, for each seed criterion, the generator function may explore every dependence
in every dependence relation. There may be |E| dependences for each seed criterion program point.
It may also explore every program point in the program as a possible invocation site for the method
containing each seed criterion program point. Hence,

Ot(SCG) = O(c2 × (c1 × |E|+ |E|)) = O(|E| × (c2c1 + c2))

where c1 = |D | and c2 is the size of the seed criteria.

Substituting Ot(SCG) in the above formula, the worst-case time complexity will be

Ot(BCSA) = O(SCG + |E|2 × (c1 + ca) + |E| × ce × |M|)
= O(|E| × (c2c1 + c2) + |E|2 × (c1 + ca) + |E| × ce × |M|)
= O(|E|2 × (c1 + ca) + |E| × (c2c1 + c2 + ce × |M|))
= O(|E|2)

The worst-case space complexity of the algorithm is identical to that of the parametric slicing
algorithm (Section 5.2.2).

5.2.5 Forward Slicing Algorithm (FSA)

Forward slices can be calculated as the forward transitive closure of a set of dependence relation
starting from a given set of program points (the slice criteria). Hence, the parametric slicing algo-
rithm can be customized to generate forward slices by using appropriate parameter functions.

108

CHAPTER 5. PROGRAM SLICING

Forward-SeedCritGenerator(C ,D)
1 return C

Forward-DepHandler(c,
d→)

1 result ← ∅
2 for each 〈c, ν〉 ∈ d→
3 do result ← result ∪ {ν}
4 return result

Forward-ProcAscHandler(c,P)
1 result ← ∅
2 e ← c#1
3 if IsAnExitPoint(e,P)
4 then m ← OccurringProcedure(e,P)
5 for each v ∈ CallSites(m,P)
6 do if OccursAsRValue(v ,P)
7 then result ← result ∪ {〈GetLValue(v ,P)〉}return result

Forward-ProcDscHandler(c,P)
1 result ← ∅
2 e ← c#i
3 if IsAnArgument(e,P)
4 then i← ArgIndex(e,P)
5 v ← EnclosingCallSite(e,P)
6 for each m ∈ Callees(v ,P)
7 do for each eu ∈ UseSites(i,m)
8 do result ← result ∪ {〈eu〉}
9 if IsACallSite(e,P)

10 then for each m ∈ Callees(e,P)
11 do for each ed ∈ ControlIndependents(m)
12 do result ← result ∪ {〈ed〉}
13 return result

Figure 5.7: Forward slice generating parameters for the inter-procedural slicing algorithm in Fig-
ure 5.4.

109

CHAPTER 5. PROGRAM SLICING

Forward-SeedCritGenerator is identical to Backward-SeedCritGenerator. It returns
seed slice criteria without any modification.

Forward-DepHandler is similar to Backward-DepHandler as it identifies the dependent (as
opposed to dependee) program points that depend on the input criteria program points ac-
cording to the given dependence relation and returns them as the new slice criteria.

Forward-ProcAscHandler identifies the program point on the caller side of an invocation that
will be affected by the data flowing out of the procedure enclosing the criterion program point.
The program points are returned as the new slice criteria. In case of data emitting return

statements, this function identifies the program point on the caller end that corresponds to
the variable that receives the returned data.

Forward-ProcDscHandler identifies the callee side program points that are affected by the flow
of data into the callee procedure at the given call sites. Specifically, the program points that
use the values bound to parameters of the callee procedure. It also identifies the callee side
program points that are influenced by the flow of control into the callee. However, this only
happens when the call site is included in the slice due to control dependence in the caller
procedure.89 The identified program points are returned as the new slice criteria.

The algorithm is similar to backward slicing algorithm with Forward-ProcAscHandler and
Forward-ProcDscHandler performing operations similar to Backward-ProcDscHandler
and Backward-ProcAscHandler.

While calculating the forward slice, an argument at an invocation site may be identified as a
dependent. As the argument may influence computation within the invoked procedure, the influ-
enced (dependent) computation should be included in the slice. This captures the data influence
of the slice on parts not yet included in the slice. As none of the dependence relations capture
this form of inter-procedural dependence, this dependence is identified and captured in Forward-
ProcDscHandler.

Similarly, a computation in a procedure may be included in the slice and it may influence the
return value of the procedure. If this return value is assigned to a variable at the call sites, then
the assigned variable should be included in the slice along with the program point influenced by the
assignment to the variable. This dependence (not captured by dependence relations) is identified
and captured in Forward-ProcAscHandler.

Correctness Argument

Forward-DepHandler correctly identified the dependents for each program point included in the
slice. Such dependents are subsequently included in the slice if they are not already included in the
slice. Hence, the PSA algorithm with this parameter function correctly calculates forward transitive
closure of given dependence relations.

The inter-procedural forward data influence due to arguments passed to procedures and included
in the slice is captured by Forward-ProcDscHandler. Similarly, the inter-procedural forward

8Suppose the call site is control dependent on program point e. If the callee procedure is inlined at the call site,
then the control independent program points in the callee will be control dependent on e. Hence, if e is included in a
forward slice, then all control independent statements in procedures invoked at call sites that are control dependent
on e should also be included.

9Observe that the forward transitive closure of control influences rooted at control independent program points
in a procedure will include every program point in the procedure. Hence, the algorithm handles inter-procedural
(vertical) data influences and control influences separately.

110

CHAPTER 5. PROGRAM SLICING

data influence due to values returned from procedures and included in the slice is captured by
Forward-ProcAscHandler.

Hence, the algorithm correctly calculates the forward transitive closure with respect to to the
input criteria by combining the dependence information provided from the relations and the inter-
procedural dependences.

Accuracy As in case of BSA, none of parameter functions either record or process calling context
information. Hence, the algorithm and the generated slice is calling context insensitive.

Complexity Analysis

The worst-case time complexity can be constructed based on the time complexity of the the param-
eter functions. In the worst case,

Forward-depHandler is identical to Backward-DepHandler, hence, Ot(DH) = O(|E|).

Forward-procAscHandler considers every call site of the procedure m in which the given pro-
gram point occurs the program. As every program point in the program can be a call site
invoking m, there can be |E| call sites. However, as there can be only one procedure associated
as the occurring procedure for a program point, Ot(PAH) = O(|E|).

Forward-procDscHandler has two parts. The first part considers every procedure invoked at
a call site and every program point at which an parameter of a procedure is used. As every
program point in the program can be a call site invoking m, there can be |E| call sites. Assuming
every call site can invoke every procedure, the complexity of the first part will be O(|E|×|M|).
The second part again considers every procedure invoked at a call site and also considers the
every control independent program point in the invoked procedures. In the worst case, the
complexity of this part will be the same as the first part. Hence, Ot(PDH) = O(2×|E|×|M|).

Plugging in the above complexities into the complexity formula for parametric slicing algorithm,
the worst-case time complexity will be

Ot(FSA) = O(SCG + |E| × (|D | ×DH + PAH + PDH))

= O(SCG + |E| × (c1 × |E|+ |E|+ 2× |E| × |M|))
= O(SCG + |E|2 × (c1 + 1 + 2× |M|))
= O(|E|2)

when Ot(SCG) ≤ Ot(|E|2) and (c1 + 1 + 2× |M|) ≤ |E|.

The worst-case space complexity of the algorithm is identical to that of the parametric slicing
algorithm (Section 5.2.2).

111

CHAPTER 5. PROGRAM SLICING

5.3 Calling Context Sensitivity

Given a call site v that should be included in the slice along with the invoked procedures, all of
the above algorithms will include the call site and the required parts of the invoked procedures.
However, when the algorithms ascend from each of invoked procedure, they ascend into every call
site that can invoke the invoked procedure instead of ascending only into the call site v that triggered
the descent into the invoked procedure. Hence, the resulting slice will be inaccurate.

A simple solution to address this problem is to record the call sites that trigger the descent
into procedures and then use this information to ascend into the descend triggering call sites. This
solution was first proposed by Reps et al. [RR95] and was based on the solution to the problem of
matching/balanced parentheses.

In the rest of this section, I shall extend the backward slicing algorithm to illustrate how the
above algorithms can be extended to be calling context sensitive. I shall also provide the correctness
argument and the complexity analysis for the calling context sensitive BSA.

5.3.1 Premises

To facilitate calling context sensitivity in the above algorithms, the slice criterion tuple will be
extended with a new call stack element σ to record the descend triggering call sites.

Definition 26 A call context(stack) σ is a stack that stores either call site program points or
program points containing call sites. An empty call stack is denoted by ⊥. 2

The usual pop and push operations are supported on stacks. In case of an empty calling context,
pop operations returns ⊥. Two additional operations copyOf that creates a copy of the given stack
and contains that checks if the given element exists in the given stack are also supported on stacks.

In addition to the functions listed in Section 5.2.1, a new function is defined for the purpose of
this algorithm.

IsIntraProcDepRelation: D → {true, false} returns true if the given dependence relation is
captures intra-procedural dependences; false, otherwise. This function will return true only
for IBDD and CD relations.

5.3.2 Calling Context Sensitive Backward Slicing Algorithm (CCSBSA)

The algorithm is presented in Figure 5.8. Basically, it is an extension of the backward slicing
algorithm presented in Section 5.2.3. The extensions occur in three parameter functions as described
below.

CCSBSA-DepHanlder extends Backward-DepHandler by propagating the calling context
(call stack) of the depedent program point to the dependee program point when the dependence
is due to intra-procedural dependence relations, i.e. CD or IBDD. In other cases (e.g. ABDD),
the calling context of the dependee program point with respect to the dependence being con-

112

CHAPTER 5. PROGRAM SLICING

sidered cannot be determined; hence, any empty calling context (call stack) is associated with
the dependent program point when creating new slice criterion.

CCSBSA-ProcAscHandler extends Backward-ProcAscHandler to ascend only into the de-
scend triggering call site available at the top of the call stack associated with the criterion being
processed. The extension also modifies a copy of the call stack and injects it into the new slice
criteria corresponding to the program points at the call site.

CCSBSA-ProcDscHandler extends Backward-ProcDscHandler to record calling context
information by pushing the descend triggering call site onto the call stack associated with the
new slice criterion corresponding to the callee program points. The extension avoids descending
into a procedure due to recursion because multiple processing of the procedure along a calling
context does not increase the accuracy of the slice. (The proposed approach of descending
into procedure was chosen to simplify exposition. However, it should be possible to adapt a
relatively optimal approach of ascending into procedures (Section 5.4.2).)

In operation, when a call site is encountered, the algorithm records the call site in the call stack
associated with the new callee side slice criteria. This information is extended upon further descents
in the callee procedure. Upon processing any intra-procedural dependence, the algorithm propagates
the call stack of the dependent to the dependee as they both will execute in the same calling context.
Upon ascending from a procedure, the algorithm forgets the call site at the top of the call stack
to make the caller procedure the current procedure. In other words, the algorithm achieves calling
context sensitivity by simulating the method execution semantics of the language.

5.3.3 Correctness Argument

Ignoring the parts of the algorithm pertaining to calling context sensitivity, the correctness argument
from Section 5.2.3 holds.

As for the correctness of calling context sensitivity, it is trivial to see that the algorithm correctly
records, uses, and forgets calling context information when it descends into and ascends out of
procedures. Further, the algorithm also propagates the calling context information across intra-
procedural dependences and correctly captures the approximation that program points related by
intra-procedural dependence will be executed in the same calling context.10

The non-trivial parts of the correctness argument are the following:

Termination Unlike in BSA, the criterion is composed of a program point and a call stack. Although
the number of program points in a program is finite, the number of call stacks in a program
can be infinite (due to recursion); hence, the algorithm may not terminate. However, this is
not the case as the algorithm safely avoids the processing of recursive call stacks, i.e. a call
site that already occurs on the call stack is not pushed on the call stack to generate a new call
stack to be associated with the newly generated criteria. Hence, the number of considered call
stacks is finite. Consequently, the number of program point and call stack pairs are limited.
As a result, the algorithm will terminate as it will process each program point and call stack
pair utmost once.

Recursion Being calling context sensitive, is it correct to consider limited calling contexts? Observe
that intra-procedural dependence relations are used in a calling context insensitive manner,

10Observe that it is possible that certain intra-procedural dependences may not hold in certain calling contexts.
Such dependence relations are calling context sensitive and are prohibitive to calculate.

113

CHAPTER 5. PROGRAM SLICING

CCSBSA-DepHandler(c,
d→)

1 result ← ∅
2 for each 〈µ, c#1〉 ∈ d→
3 do if IsIntraProcDepRelation(

d→)
4 then σ ← CopyOf(c#2)
5 else σ ← ⊥
6 result ← result ∪ {〈µ, σ〉}
7 return result

CCSBSA-ProcAscHandler(c,P)
1 result ← ∅
2 e ← c#1
3 m ← OccurringProcedure(e,P)
4 σ ← CopyOf(c#2)
5 if σ 6= ⊥
6 then callsites← {pop(v)}
7 else callsites← CallSites(m,P)
8 for each v ∈ callsites
9 do for each i ∈ UsedParameters(e,P)

10 do result ← result ∪ {〈v↑i, σ〉}
11 result ← result ∪ {〈v , σ〉}
12 result ← result ∪ {〈v↑0, σ〉} //In case of virtual method dispatch
13 return result

CCSBSA-ProcDescHandler(c,P)
1 result ← ∅
2 v ← c#1
3 if ContainsCallSite(v ,P)
4 then σ ← CopyOf(c#2)
5 if ¬contains(σ, v)
6 then push(σ, v)
7 for each m ∈ Callees(v ,P)
8 do for each r ∈ ExitPoints(m,P)
9 do result ← result ∪ {〈r ,CopyOf(σ)〉}

10 return result

Figure 5.8: Calling context sensitive backward slice generating parameters for the inter-procedural
slicing algorithm in Figure 5.4. The extensions to the algorithm are presented in blue. CopyOf is
a simple operation that creates a copy of a given object/entity.

114

CHAPTER 5. PROGRAM SLICING

i.e. the algorithm does not query for dependence in a particular calling context. This implies
that the slice of a procedure is independent of the number of times the procedure is analyzed
in a calling context. Hence, it is correct to consider maximal non-recursive finite prefixes of
recursive calling contexts.

Closure Due to calling context insensitivity in BSA, when procedure m is processed at two call sites
v1 and v2, the slice of m generated for v1 will include the required parts of v2 as well. It may
seem that this will not happen in CCSBSA as the program points in m will be processed in the
context of v1 and then rejected as “processed” in the context of v2. However, this is untrue as
the calling contexts associated with the program points in the criterion will force the program
points in m to be processed for each m invoking call sites in the slice. Hence, the algorithm
ensures closure of dependence across inter-procedural boundaries.

Collectively, these arguments imply the correctness of CCSBSA.

5.3.4 Complexity Analysis

The algorithm does not add new loops to the BSA algorithm, but it does remove one loop in
CCSBSA-ProcAscHandler and modify the shape of the slice criteria that indirectly governs the
external loop in Slice. The latter modification yields the following complexity formula

Ot(CCSBSA) = O(SCG + |E| × |Σ̂| × ((c1 ×DH) + PAH + PDH))

where Σ̂ is the domain of non-recursive finite call stacks in a program.

The former modification yields Ot(PAH) = ca. Plugging in this complexity and the complexity
of PDH and SCG from BSA, the worst-case time complexity of CCSBSA will be

Ot(CCSBSA) = O(SCG + |E| × |Σ̂| × ((c1 ×DH) + PAH + PDH))

= O(SCG + |E| × |Σ̂| × (c1 × |E|+ ca + ce × |M|))
= O(SCG + (|E|2 × |Σ̂| × c1) + (|E| × |Σ̂| × (ca + ce × |M|)))
= O(|E|2 × |Σ̂|)

when Ot(SCG) ≤ |E|2 × |Σ̂| and ca + ce × |M| ≤ |E|.

The worst-case space complexity of the algorithm also changes due to the injection of the call
stack into the criterion. Each program point can be paired and with every finite call stack in the
program. Hence, the worst-case complexity of the algorithm will be

Os(CCSBSA) = O(|E| × |Σ̂| × cl)

where cl is the length of the longest maximal non-recursive finite call stack in the given program.

115

CHAPTER 5. PROGRAM SLICING

5.3.5 Optimization (CCSBSA+)

As most often the number of call stacks in a program can be very large, the worst-case time com-
plexity of CCSBSA can be prohibitive. The main reasons for the prohibitive cost is the repetitive
processing of program points in root-identical calling contexts and the redundant processing for sub-
suming calling contexts independent of the accuracy of the proposed slicing algorithm.

Redundant Processing of Program Points in TOP-identical Calling Contexts

Consider a procedure m invoked at call sites v1 and v2 in two calling contexts σ1 and σ2, respectively.
Upon descending into m, the algorithm will include every exit point in m independent of the current
calling context. Hence, independent of σ1 and σ2, the slice of m with respect to to the exit points as
the slice criteria will be the identical.11 Such calling contexts with identical top of the stack elements
are referred to as TOP-identical.

Given a pair composed of a program point and a calling context rooted in m, it is sufficient

• to generate the slice of m based on the program point and the calling context if the program
point is not already included in the slice, and

• to generate slices of m based on its parameters and the given calling context if the program
point was already included in the slice.

This observation can be leveraged in the CCSBSA algorithm as described below.

1. For each procedure into which the algorithm descends, the descend triggering call sites is
recorded against the procedure.

2. For each procedure, the position of the parameters of the procedure that are included in the
slice are recorded against the procedure.

3. While descending into a procedure at a call site, if the exit points of the procedure is already
included in the slice, then new slice criteria based on the the arguments at the call site that
correspond to the recorded parameter positions of the procedure are generated.

4. When a parameter of a procedure is processed, new slice criteria based on the corresponding
argument at each recorded call sites for the procedure is generated.

Worst-case Time Complexity Step 3 will increase the time complexity of CCSBSA-ProcDscHandler
by a factor of a small constant ca, the largest number of parameters accepted by any procedure in
the program. Similarly, step 4 will increase the complexity of CCSBSA-ProcAscHandler by a
factor of |E| as a procedure may be called by all program points in the program. Hence,

Ot(CCSBSA+) = O(SCG + |E| × |Σ̂| × (c1 × |E|+ ca × |E|+ ce × |M| × ca))

= O(|E|2 × |Σ̂|)
11This is untrue if the slice information can be maintained in a calling context sensitive manner. Although this

option seems lucrative in terms of accuracy, I think it is highly unlikely that this option can be leveraged until the
fundamental scalability and usability issues are addressed.

116

CHAPTER 5. PROGRAM SLICING

This asymptotic time complexity is identical to that of CCSBSA. However, in practice, avoiding
redundant processing of root-identical calling context and program point pairs will lead to a reduction
in execution time.

Worst-case Space Complexity Step 1 will additively contribute |M| × |E| to the space com-
plexity as each procedure may be called at every program point. Similarly, step 2 will additively
contribute |M| × ca. Hence, as the new terms will be smaller than the other terms, the overall
asymptotic worst-case space complexity will be comparable to Os(CCSBSA).

Redundant Processing of Subsuming Calling Contexts

Assume that σ1 is a top prefix of σ2, i.e. 0 < i ≤ |σ1|.pop(σ1) = pop(σ2). Hence, upon ascending out
of a procedure ma into the call site vb in procedure mb and at the bottom of σ1, the algorithm will
consider every possible call site that invokes mb and, consequently, every possible call site leading to
the invocation of mb. In other words, the algorithm will consider the relevant program points along
every possible calling context leading to the invocation of mb. If σ3 is the resulting call stack by
popping |σ1| number of elements from σ2, then σ3 will be considered by the algorithm as a result of
processing σ2. If a program point was processed in conjunction with σ1 before being processed in
conjunction with σ2, then performance can be improved by not processing program points in m in
the context of σ2.

σ1 is said to subsume σ2(σ1 ≺ σ2) when σ1 is a top prefix of σ2. ⊥ subsumes every non-empty
call stack.

This observation can be leveraged in the CCSBSA algorithm as described below.

1. The call stack (calling context) in each processed criterion is recorded against the procedure
containing the criterion program point. When a call stack σn is recorded against a procedure,
then all the call stacks recorded against the procedure that are subsumed by σn are forgotten.

2. While descending into a procedure at a call site, if the descending call stack is subsumed by a
call stack recorded against the procedure, the descent is ignored.

Worst-case Time Complexity Step 1 will increase the complexity of CCSBSA-ProcDscHandler
by a factor of lg(|Σ̂|) when the call stacks are maintained against the procedures as a inverted rooted
tree. Hence,

Ot(CCSBSA+) = O(SCG + |E| × |Σ̂| × (c1 × |E|+ ca × lg(|Σ̂|) + ce × |M|))
= O(|E|2 × |Σ̂|)

Worst-case Space Complexity Due to step 1, there will be an increase by an additive term
of |E| × |M|; however, the overall asymptotic worst-case space complexity will be comparable to
Os(CCSBSA).

This optimization was also proposed by Krinke [Kri03c].

117

CHAPTER 5. PROGRAM SLICING

m1 m2

m3

m4

v3

v1 v2

σ1 σ2

Figure 5.9: An illustration of the setting that warrants property sensitivity. The solid lines denote
calling contexts (call stacks) while the dashed lines denote a call path from the methods denoted
by the nodes. The call sites are positioned at suggestive locations in the call path and the calling
contexts.

5.4 Property Sensitivity

The terms control-based calling context coupling and data-based calling context coupling that were
mentioned in Section 5.1 will be explained in this section along with the underlying concept of
property sensitivity and its application to improve the accuracy of program slicing.

5.4.1 Motivation

Issue

Most program analyses are realized by iteratively calculating the fixed point of a collection of con-
straints. This is true of most lattice-based analysis independent of the framework (i.e. constraint
based, abstract interpretation, type-effect, etc) used to present the program analysis.

In such realizations, new information is calculated in each iteration based on the information
calculated in the previous iterations. For example, in a points-to analysis, if the information that
x 7→ o (read as “x points to o”) is generated in the i-th iteration, then the information y 7→ o is
generated in j -th (j > i) iteration upon processing the assignment of x to y. To improve accuracy, the
information is maintained in a context sensitive manner. Continuing the previous example, a calling
context sensitive version of the points-to analysis can maintain the information as σ1 |= x 7→ o (read
as “x points to o in the calling context σ1”) and, hence, calculate relatively accurate information
σ2 |= y 7→ o where σ1 ≺ σ2 (read as σ1 can be extended into σ2) or σ2 ≺ σ1.12

It is obvious that the above approach works in an intra-procedural setting. It can also be easily
adapted for inter-procedural settings provided the context information can be altered (extended or
protracted) and related based on the results of such alterations (as done in the previous example).
However, this adaptation does not suffice for some analyses.

For example, consider the call graph in Figure 5.9. The nodes represent procedures, edges
represent call paths along the direction of the arrow, and the order of procedure invocations in a

12Alternatively, σ1 ≺ σ2 can be viewed as σ1 being the bottom suffix of σ2.

118

CHAPTER 5. PROGRAM SLICING

procedure is given by the order of the outgoing arrows from left to right. In the figure, procedure m3

has two call sites v1 and v2 that lead to the invocation of m1 and m2 (in that order) along disjoint
call paths. Further, x is assigned object o1 in m1 and y is assigned x in m2. Procedure m4 has a
call site that leads to the invocation of m3 at call site v3. Suppose σ1 |= x 7→ o and σ2 |= y 7→ o
when v3 and v1 occur in σ1 and v3 and v2 occur in σ2.

Given the above setting, an alias analysis can leverage points-to information and infer that x
and y are aliases as they may refer to a common object o. However, applying the same reasoning in
a slightly altered setting — the order of procedure invocation is given by the order of the outgoing
arrows from right to left — the alias analysis will still infer that x and y are aliases as they may
refer to a common object o. However, this information is inaccurate because o is assigned to x in
m1 after x is assigned to y in m2 and σ2 6|= y 7→ o (assuming that there is no control flow path from
v1 back to v2 in m3).

The key observation in the example being that points-to information is path insensitive, i.e. the
points-to analysis does not consider the effect of the control flow path on the calculation of points-
to information. Although this issue can addressed by tuning the points-to analysis to be path
sensitive, the cost of the resulting analysis is likely to be more expensive13 than its calling context
counterpart.14

Even if such a path sensitive analysis is tractable in the context of sequential programs, it would
be intractable in the context of many interesting concurrent programs as the analysis will need to
explore exponential number of interleaved control flow paths. Comparatively, the complexity of a
path sensitive analysis would be close to that of exploring the entire state space of a program.

Solution

A cheap solution to this issue can be devised based on the following observations:

• The calling contexts associated with the concerned alias sites have a common bottom suffix : In
the above example, the call path from m4 to m3 is common to both σ1 and σ2. This implies
that it is possible (independent of intra-procedural control flow paths) for the control to reach
at least one common procedure from which the aliasing occurring procedures can be reached.

• There is an intra-procedural control flow path between the first uncommon call sites of the
concerned calling contexts in the last common procedure: The intra-procedural control flow
paths between call sites v1 and v2 in σ1 and σ2 form such a path. This implies that there is a
possible control flow path from m1 to m2 in the former setting and not in the latter setting.

Interestingly, these two observations together imply that there is a valid/realizable inter-procedural
control flow path between the concerned alias sites — the primary property required to establish a
valid aliasing relation. The first observation contributes the inter-procedural control flow evidence re-
quired to establish the relation while the second observation contributes the essential intra-procedural
control flow evidence.15

13Although the cost of certain program analysis can be inversely proportional to accuracy in certain cases [Kri02],
there is no general mechanism or empirical evidence to prove that path sensitive points-to analysis will be cheaper
than the calling context sensitive points-to analysis.

14The latest and most accurate points-to analyses [WL04, Lho06] are only calling context sensitive.
15Interestingly, these two observation prove to be useless if considered independently. Based on the first observation

alone, it is not possible to correctly infer that x and y are not aliases when procedure invocations are ordered from
right to left. As for the second observation, the existence of a control flow path from m1 to m2 merely suggests that

119

CHAPTER 5. PROGRAM SLICING

Hence, instead of employing a relatively expensive path sensitive points-to analysis, a cheap
solution would be to combine a property captured in existing calling context sensitive points-to
analyses along with a property that can be trivially calculated from call graphs and control flow
graphs to inexpensively infer a stronger property to aid the calculation of aliasing information that
is comparable to path sensitive aliasing analysis in terms of accuracy.

The proposed property sensitivity based approach can be perceived as the generalization of
restriction/elimination based approach16 that can be applied to any piece of data (context, vari-
able/data type information, etc.) used, recorded, and calculated by the analysis.

Application This optimization can be trivially applied to the calculation of ABDD, and it has
been successfully applied in the calculation of ABDD in Indus project. The data pertaining to
ABDD presented in Chapter 3 is indeed based on property sensitivity optimization.

In the rest of this section, I will describe control-flow based and data based instances of property
sensitivity in the context of calling context sensitive backward program slicing.

5.4.2 Parametric Property Aware Calling Context Sensitive Backward
Slicing Algorithm (PS-CCSBSA)

Building on the previous example, suppose the program point e1 (source) in procedure m1 is the
slice criteria in the i-th step in CCSBSA, e1 depends on program point e2 (destination) in procedure
m2, and e2 is not included in the slice.

In this situation, an accurate variant of CCSBSA needs to construct calling contexts that lead to
e2 to be paired with e2 to generate new slicing criteria. The algorithm can pessimistically preserve
all possible (including some unrealizable) calling contexts leading to e2 by constructing slice criteria
composed of e2 and all possible calling contexts leading to m2. This effect is achieved in CCSBSA
by composing e2 with the empty calling context ⊥.

Instead, the algorithm can be property sensitive and construct only calling contexts that are most
likely to honor the properties enabling the dependence relation between e1 and e2 considered by the
algorithm. Such construction can be realized by incrementally constructing the calling contexts
while preserving the relevant properties in each increment.

This approach can be realized by extending the CCSBSA algorithm (Figure 5.8) with Prop-
ertyAwareContextConstructor algorithm that will be used to construct property sensitive
calling contexts while processing inter-procedural dependences in PS-CCSBSA-DepHandler. 17

The new auxiliary function used in the parametric extensions to CCSBSA (given in figures 5.10
and 5.11) are given below.

Callers: M→ ℘(E) returns the call sites at which the given procedure may be invoked. An empty
set is returned if the given procedure is not invoked in the system.

x and y may be aliases provided they refer to some common object; however, it does not assert the essential validity
of the control flow path in the current behavioral abstraction of the program.

16A good example is the use of variable type information to hone points-to information.
17PS-CCSBSA-DepHandler algorithm requires the input program as a parameter; hence, Slice algorithm (Fig-

ure 5.4) needs to be trivially modified to providing the input program as argument in the call to DepHandler.

120

CHAPTER 5. PROGRAM SLICING

PS-CCSBSA-DepHandler(c,
d→,P)

1 result ← ∅
2 for each 〈µ, c#1〉 ∈ d→
3 do if IsIntraProcDepRelation(

d→)
4 then Σ′ ← {CopyOf(c#2)}
5 else Σ′ ← PropertyAwareCallingContextConstructor(c, µ,

d→,P)
6 for each σ ∈ Σ′

7 do result ← result ∪ {〈µ, σ〉}
8 return result

Figure 5.10: Property Aware extension to CCSBSA (presented in Figure 5.8). The extension to
the CCSBSA algorithm is presented in blue.

Two additional operations top and reverse are supported on stacks. top returns the top element
of the stack. If the stack is empty, it returns ⊥. reverse flips the ordering of the elements in the
stack.

The parametric PropertyAwareCallingContextConstructor algorithm incrementally con-
structs calling contexts by exploring the call graph, in reverse, starting at the destination procedure.
For each explored path (calling context), the parameter AcceptContext is used to determine if
the explored calling context should be accepted as a context to be paired with the destination pro-
gram point. If so, the calling context is recorded and excluded from further processing. If not, the
parameter ExtendContext is used to determine if the explored calling context should be further
extended.

The outermost check for accepting an empty calling context handles the situation when the
source procedure is reachable from the destination program point via a reachable call site in the
destination procedure.

Recursion

Independent of AcceptContext parameter, the algorithm independently decides if an extensible
recursive calling context should be accepted or processed.

In the call graph in Figure 5.12, infinite calling contexts can be constructed starting from any
call site except v4. However, processing these infinite calling contexts will not improve the accuracy
of the slicing algorithm.

To understand, assume that AcceptContext will accept the reverse path from v1 to v2 but it
will reject the reverse path from v1 to v3. Hence, the algorithm will only generate infinite number of
calling contexts composed of v1, v2, and v4. As multiple processing of the segment [v1, v2] does not
contribute to the slice due to calling context insensitive dependence information, it would suffice to
accept the segment only once. In other words, it would suffice to accept only maximal non-recursive
or utmost once-recursive paths.

Suppose the reverse path from v1 to v3 is accepted. The segment [v1, v4] will be processed twice
as it is included in two maximal non-recursive reverse paths starting from v2 and v3. Once again,
such multiple processing can be avoided without loss of accuracy.

121

CHAPTER 5. PROGRAM SLICING

PropertyAwareCallingContextConstructor(c,µ,
d→,P)

1 result ← ∅
2 if AcceptContext(⊥, c, µ, d→)
3 then result ← {⊥}
4 else workset ← ∅
5 for each v ∈ Callers(OccurringProcedure(c#1,P))
6 do σ ← ⊥
7 push(σ, v)
8 workset ← workset ∪ {σ}
9

10 while workset 6= ∅
11 do σ ← remove(workset)

12 if AcceptContext(σ, c, µ,
d→)

13 then result ← result ∪ {σ}
14 else if ExtendContext(σ, c, µ,

d→)
15 then for each v ′ ∈ Callers(OccurringProcedure(top(σ),P))
16 do σ′ ← CopyOf(σ)
17 if v ′ ∈ σ
18 then push(σ′,>)
19 reverse(σ′)
20 result ← result ∪ {σ′}
21 else push(σ′, v ′)
22 workset ← workset ∪ {σ′}
23 return result

Figure 5.11: The parametric PropertyAwareContextConstructor algorithm that can be
parametrized by AcceptContext and ExtendContext algorithms.

v2

v4

v3

v1

Figure 5.12: A call graph containing recursive call paths. The nodes represent call sites while the
edges represent invocations leading from the source call site to the destination call site.

122

CHAPTER 5. PROGRAM SLICING

These optimizations can be trivially realized by processing maximal non-repetitive calling con-
texts. However, this realization can lead to suboptimal slicing

Suppose there was another call path from v5 to v1 that will be rejected by AcceptContext.
Upon ascending through [v2, v1], all call paths leading to v1 will be considered to be included in the
slice; hence, leading to suboptimal slicing. This can be fixed by identifying non-repetitive maximal
extensible calling context segments of recursive calling contexts and inhibiting the further processing
of such calling contexts after their bottom element has been processed. This fix is realized in the
algorithm by terminating such calling contexts by a special > symbol and extending the CCSBSA-
ProcAscHandler algorithm to handle this symbol appropriately.I shall refer to calling contexts
with a terminal element as terminal calling contexts.

Note that this optimization is applicable only when AcceptContext is insensitive to the current
contents of the calling context.

Correctness Argument

Like a graph search algorithm, the algorithm traces reverse paths over the call graph by exploring
incoming edges on the nodes of the graph. Hence, the algorithm correctly identifies calling contexts.
As the algorithm only traces finite segments of recursive paths, the algorithm will terminate; hence,
the algorithm will identify finite calling contexts. The correctness of the finite calling context depends
on the input parameters.

Complexity Analysis

In the worst case, the algorithm will traverse each finite call stack (context) in the call graph at least
once. Hence, the worst case complexity of the algorithm will be

Ot(PA-CCSBSA) = O(SCG + |E| × |Σ̂| × ((c1 ×DH) + PAH + PDH))

= O(SCG + |E| × |Σ̂| × (c1 × |E| × |Σ̂|+ ca + ce × |M|))
= O(SCG + (|E|2 × |Σ̂|2 × c1) + (|E| × |Σ̂| × (ca + ce × |M|)))
= O(|E|2 × |Σ̂|2)

when Ot(SCG) ≤ O(|E|2 × |Σ̂|2).

The algorithm may generate every possible finite calling contexts; hence, each program point may
be paired with every possible finite calling context. As a result, the worst case space complexity
would be identical to that of CCSBSA.

5.4.3 Control Flow-based Property Aware Calling Context Sensitive Back-
ward Slicing Algorithm (C-PS-CCSBSA)

As described in the example in Section 5.4.1, inter-procedural and intra-procedural control flow
reachability between two program points can be used to guide the construction of calling contexts
for the purpose of slicing. The processing is sensitive to and honors a control flow property, hence,

123

CHAPTER 5. PROGRAM SLICING

the term control flow-based property sensitivity

In terms of parameterizing PS-CCSBSA to realize a calling context sensitive backward slicing
algorithm, the existence/absence of the control flow reachability property can be encoded as the
verdict of ExtendContext and AcceptContext parameters.

The control flow reachability property required to validate inter-thread dependences differs from
that required to validate intra-thread dependences. Hence, the parameters are presented as two
separate compositional instances specific to the mode of dependence relation.

Intra-thread Dependence Relation

C-AcceptContext(σ, c, µ,
d→) returns true if

• there exists a call path from a call site v in procedure mt containing vt = top(σ) that
leads to the procedure mν containing ν = c#1 and

• there exists an intra-procedural path from the call site vt to v in mt.

C-ExtendContext(σ, c, µ,
d→) returns true if

• vt is not a thread creation site.

Inter-thread Dependence Relation

C-AcceptContext(σ, c, µ,
d→) returns true if

• the call site vt = top(σ) is a thread creation site and

C-ExtendContext(σ, c, µ,
d→) returns true if

• there are no intra-procedural paths from the call site vt to a call site vν in mt when
there is a call path from vν to procedure mν .

When dealing with intra-thread dependences, the control flow path from the destination program
point to the source program point needs to be confined to the same thread. In the case of inter-
thread dependences, the control flow path should contain a thread creation site. This property about
the control flow path is encoded in C-ExtendContext and C-AcceptContext in the context
of intra- and inter-thread dependences, respectively. Observe that in the context of inter-thread
dependences, this encoding proves to be suboptimal as every path from every thread creation site
to the ν will be captured.

In the context of intra-thread dependences, upon processing a calling context up to the connective
procedure that contains a call site that leads to the procedure containing the criterion program point,
the slicing algorithm will consider all possible extensions of the calling context beyond the connective
procedure. Hence, this property is encoded in C-AcceptContext in the context of intra-thread
dependences. A calling context satisfying this property does not facilitate inter-thread control flow
path. Hence, the inverse of this property is encoded in C-ExtendContext in the context of
inter-thread dependences.

Static Initializers In Java, the static initializers of the classes used in the program are invoked
implicitly by the virtual machine and not explicitly in the program. This disconnect between various
methods can be handled either by accepting calling context when the top element occurs in a static
initializer or by treating the program as a concurrent program in which each static initializer executes
in a different thread.

124

CHAPTER 5. PROGRAM SLICING

Optimization If the calling context σc is associated with c, then identifying the reachability from
vt to ν(c) via a call path not terminating (subsuming) in σc as witness for the property implies
that current dependence relation holds along an unrealizable path; hence, as an optimization, it will
suffice to identify the reachability from vt to top(σc)#1.

However, as a corner case and to be correct, calling contexts in which vt occurs in σc should be
accepted. This captures that situation that in a procedure m along the call path to c, µ would be
executed due to a call from m leading to mµ. To achieve this accuracy, the calling contexts can be
bottom extended with bottom suffix of σc terminating at vt.

Correctness Argument The correctness of the C-PS-CCSBSA algorithm with the above param-
eter definitions follows trivially.

Complexity Analysis The parameters rely on the connectivity information of the call graph
and a trivial check for the existence of thread creation site. Although a naive algorithm to calculate
connectivity information is O(E3), the information is calculated once and used multiple times. Hence,
there will be an additive increase of O(E3) in the cost of the analysis. The worst case time complexity
will beOt(C-PS-CCSBSA) = O(|E|2×|Σ̂|2+E3)) = O(|E|2×|Σ̂|2) as most often O(E2×|Σ̂|2) > O(E3).
Similarly, the maintenance of the connectivity information (the only extra information needed by
the algorithm) will contributed an additive cost of O(E2). Hence, the worst case space complexity
of C-PS-CCSBSA will be the same as that of PS-CCSBS.

Forward Slicing C-PS-CCSBSA can be converted into its forward counterpart by considering
the reachability from the source (criterion/dependee) program point to the destination (dependent)
program point.

Control flow-based Calling Context Coupling This notion of coupling an existing calling
context (at the dependent) with another calling context paired (at the dependee) by leveraging the
control flow relation between the call sites in the calling context is referred to as control flow-based
calling context coupling. Property sensitivity is an approach to achieve such coupling.

5.4.4 Data-based Property Sensitive Calling Context Sensitive Slicing Al-
gorithm (D-PS-CCSSA)

Issue

In Bandera [CDH+00, DHH+06], program slicing is used as a model reduction technique en route to
software verification of Java programs via model checking. By backward slicing the Java program
with respect to the property being verified before extracting the its model, parts of the program not
relevant to the property are eliminated leading to a smaller sized model; hence, reducing the cost of
model checking.

To detect the deadlocking property in programs in Bandera, the synchronization and wait/notify
program points in the programs are selected as seed slice criteria. Proceeding naively, every path
leading to the seed criteria will be included in the slice as relevant calling contexts are not associated
with the seed criteria.

125

CHAPTER 5. PROGRAM SLICING

1 public class Top extends Thread {
2 private Object f = new Object();
3
4 public static void main(String[] s) {
5 new Top().start(); //v1

6 }
7
8 public void run() {
9 Proc p = new Proc();

10 p.bar(f); //v2

11 }
12 }
13
14 class Proc {
15 void bar(Object n) {
16 foo(n); //v3

17 foo(new Object()); //v4

18 }
19
20 void foo(Object o) {
21 sync(o) { //e
22 . . .
23 }
24 }
25 }

Figure 5.13: An example program to illustrate the benefits of D-PS-CCSBSA over C-PS-CCSBSA.

The issue can be tackled by using an approach used in C-PS-CCSBSA. However, due to the lack
of a source program point, call paths from thread creation call sites to the seed criterion need to be
considered as calling contexts. Applying this approach to the program in Figure 5.13, the call paths
[v1, v2, v3] and [v1, v2, v4] would be considered.

Observe that the argument at callsite v4 is non-escaping, i.e. accessed only in a single thread;
hence, it cannot contribute to deadlocks involving program point e. The argument at callsite v3 is
escaping and it can possible contribute to a deadlock involving program point e. Hence, e needs to
be considered as a seed criteria18 along with one valid and another invalid calling context.

Solution

Suppose an analysis could provide escape information for the variable o in foo(Object) at each call
sites leading to foo(Object). Then using this information, the latter calling context can be inferred
to be invalid or only the valid former calling context could be constructed. The calling contexts
constructed via this approach is referred to as escaping calling contexts and this form of seed criteria
generation is referred to as calling context enriched seed criteria generation.

18The selection of synchronization and wait/notify statements involving escaping entities is a trivial optimization
in seed criteria generation for preserving deadlocking properties.

126

CHAPTER 5. PROGRAM SLICING

Data-based Property Sensitivity

The above approach is an example of data-based property sensitive calling context construction. As
in control flow-based property sensitivity, a data-based property drives the calling context construc-
tion in data-based property sensitive approach.

The key component to realize data-based property sensitivity is to identify data-based property
that is trace specific, i.e. specific to a control flow path and the sequence of value bindings of a set
of variables along the control flow path. 19

Although such properties are ideal for partitioning call paths into valid (property satisfying) and
invalid (property violating) sets, they are most likely to be computationally expensive. A cheaper
alternative are the calling context sensitive specific variants of such properties. For example, in the
previous example, the information that o escapes in the calling context [v1, v2, v3] but not in the
calling context [v1, v2, v4] is sufficient to facilitate the call path partitioning at the reasonable level
of accuracy. An equally powerful and cheaper variant of the escaping property is its method context
specific variant — the value bound to o in foo(Object) escapes at call sites v3, v2, and v1 but not
at v4.

Dimensions In the above example, given a program point e, the calling context was constructed
merely based on the property involving one program point, e. This approach to property sensitivity
is referred to as one-dimensional property sensitivity (1D-PS). If the calling context construction
relied on the property involving two program points, then such property sensitivity is referred to
as two-dimensional property sensitivity (2D-PS). An instance of each form of data-based property
sensitivity in the context of backward slicing algorithm follows.

Destination Specific Calling Context Construction (1D-PS-CCSSA)

Suppose the source program point e1(c) in procedure m1 is the slice criteria in the i-th step in
CCSBSA, e1 depends on destination program point e2(µ) in procedure m2, and e2 is not included
in the slice.

Based on the nature of the dependence relation
d→ (intra-thread vs inter-thread), either aliasing

or escaping can be used the property for data-based property sensitivity. The instances of Accept-
Context and ExtendContext can be defined as follows when v is the variable that causes the
dependence from c to µ.

Intra-thread Dependence Relation

1D-AcceptContext(σ, c, µ,
d→) returns true if the top(σ)-image of v is not alias of v at µ.

1D-ExtendContext(σ, c, µ,
d→) returns true if the top(σ)-image of v is an alias to v at µ.

Inter-thread Dependence Relation

1D-AcceptContext(σ, c, µ,
d→) returns true if top(σ) is a thread creation site.

1D-ExtendContext(σ, c, µ,
d→) returns true if the top(σ)-image of v is escaping (i.e. refers

to escaping data).

19More details about trace specificity and sensitivity is given in Section 5.4.5.

127

CHAPTER 5. PROGRAM SLICING

Given a variable v in a procedure mv is bound to a value l, it is possible that l is reachable in
the heap via reference chains rooted at objects accessible in another procedure mw that (directly or
indirectly) invokes procedure mv. In such cases, the reference chain leading to l in mw is referred
to as the mw-image of v relative to mv. In the above exposition, the relativeness is omitted as the
image is relative to procedure mµ.

In case of inter-thread dependences, 1D-ExtendContext is defined to include only calling
contexts along which the value of interest is escaping and 1D-AcceptContext is defined to accept
a calling context only upon reaching a thread creation site. Collectively, these parameters reject
intra-thread call paths that lead to the destination program point.

In the intra-thread case, 1D-ExtendContext is defined to preserve alias preserving calling
context and 1D-AcceptContext accepts any path that cannot be further extended to preserve
aliasing. The definition of 1D-AcceptContext is weak to (correctly) allow the inclusion of control
flow paths that lead to the aliasing triggering call sites. Depending on the accuracy of the analysis
used to check if the property holds in a specific method, it is possible that all call paths to dependees
involved in intra-thread dependence will be included in the slice. This situation can be remedied by
the below proposed optimization.

Static Fields Unlike in control flow-based property sensitivity, as visible static fields (data) are
accessible in every procedure, the above parameter definitions may pessimistically include all call
paths leading to the dependee involving a static field. This pessimism can be partially remedied by
the following optimization.

Optimization As the definitions of 1D-AcceptContext and 1D-ExtendContext are orthog-
onal to the definitions of 1C-AcceptContext and C-ExtendContext, these definitions can be
safely combined to further improve accuracy.

Implementation In the intra-thread case, aliasing information calculated by points-to analysis
[Ran02, Lho02] or by equivalence class analysis (as described in Chapter 3). In terms of realization,
the property verification translates into checking if the points-to sets of the images of the variable at
µ on both sides of the call site (caller and callee) have a common element. In the inter-thread case,
the equivalence class based escape analysis from Chapter 3 can be leveraged to verify the property
at a call site by checking if the images of the variable at µ on both sides of the call site is escaping.

If the equivalence class from Chapter 3 is used, then the property verification can be realized as
a check for the existence of common entity associated with the variable images on either side of the
call site. Depending on the dependence relation, either ready entities or read-write entities can be
used. In other words, the property being checked would be that the references are shared according
to an sharing aspect (e.g. data, lock, wait-notify).

Correctness Argument The correctness of the 1D-PS-CCSBSA algorithm with the above pa-
rameter definition follows trivially.

Complexity Analysis The time complexity of 1D-PS-CCSBSA will be the sum of the time
complexity of PS-CCSBSA and the analysis used by the parameters to verify the properties. The
same is true for space complexity.

128

CHAPTER 5. PROGRAM SLICING

1 class Container {
2 Object[] elements = new Object[10];
3 int count = 0;
4
5 void add(Object i) {
6 elements[count++] = i; //ea
7 }
8
9 Object get(int i) {

10 return elements[i]; //eg
11 }
12 }
13
14 public class Main {
15 public static void main(String[] s) {
16 english (); //ve
17 hindi (); //vh
18 }
19
20 void english() {
21 Container english = new Container(); //eec
22 english .add(‘‘Hello’ ’); //vea
23 Object o = english.elements [0]; //eea
24 }
25
26 void hindi() {
27 Container hindi = new Container(); //ehc
28 hindi .add(‘‘Hello’ ’); //vha
29 Object o = hindi.elements [0]; //eha
30 }
31 }

Figure 5.14: A program to illustrate situations not handled by 1D-PS-CCSBSA.

Forward Slicing 1D-PS-CCSBSA can be converted into its forward counterpart by considering
the reachability from the source (criterion/dependee) program point to the destination (dependent)
program point.

Data-based Calling Context Coupling This notion of coupling an existing calling context (at
the dependent) with another calling context paired (at the dependee) by leveraging the data-based
relation between the call sites in the calling context is referred to as data-based calling context
coupling. Property sensitivity is an approach to achieve such coupling.

Source and Destination Specific Calling Context Construction (2D-PS-CCSSA)

Consider the program in Figure 5.14. If line 29is the slice criterion, then the entire program ex-
cept the method Container.get(int) and line 23 will be included in a slice generate by 1D-PS-
CCSBSA. Although the invocation of Main.english() in Main.main(String[]) and the method
Main.english() do not contribute to the variable-value binding or the control flow to line 29, these
program parts are extraneously included in the slice.

129

CHAPTER 5. PROGRAM SLICING

To understand the cause of inaccuracy, let us trace the algorithm. After including the seed
criterion into the slice, the algorithm detects that line 6 needs to be included in the slice due to
ABDD. Upon including line 6, leveraging aliasing information, the algorithm property sensitively
constructs calling contexts [vea, ve] and [vha, vh] to ascend into from line 6.

Given that the algorithm selects all paths along which variable elements is aliased, both paths
along which elements variable is aliased are constructed. However, the aliasing along the former
calling context is invalid with respect to the aliasing at the criterion program point. In other words,
the algorithm does not consider the aliasing between the variable at the source (dependent) program
point and the image of the variable at the destination (dependee) program point at various points
in the call path.

This situation can be remedied by checking for aliasing between the variable vν at the source
program point, variable vµ at the destination program point, and the m-image of vµ in the top
procedure in the calling context being constructed, i.e. check if the same value may be accessed at
the three locations. In the example, this approach will detect the english-image of elements at
call site vea is an an alias of elements at line 6 but it is not an alias of elements at line 29; hence,
the former calling context will be discarded by the slicing algorithm and, consequently, exclude the
method english() and its invocation in main(String[]).

This property sensitivity approach that leverages properties involving two program points, source
and destination, is referred to as source and destination specific property sensitivity and it is an
instance of two-dimensional property sensitivity.

Parameters The parameters to realize 2D-PS-CCSBSA are similar to those in case of 1D-PS-
CCSBSA with the exception that the property check during intra-thread calling context extension
will include the variable at the criterion program point. In the inter-thread case, the escaping
information based calling context construction will suffice.

Intra-thread Dependence Relation

1D-AcceptContext(σ, c, µ,
d→) returns true if the top(σ)-image of v is not alias of v at µ.

1D-ExtendContext(σ, c, µ,
d→) returns true if the top(σ)-image of v is an alias to vµ at µ

and vc at c#1.

Inter-thread Dependence Relation

1D-AcceptContext(σ, c, µ,
d→) returns true if top(σ) is a thread creation site.

1D-ExtendContext(σ, c, µ,
d→) returns true if the top(σ)-image of v has a common entity

If available, stronger sharing aspect based information can be leveraged. For example, given an
interference dependence relation, the two variables and a variable’s image should be shared for read-
write purposes. As this sort of stronger information is provided by the equivalence class analysis
described in Chapter 3, the analysis can be leveraged to realize the property as a check for a common
entity (ready, lock, read-write) associated the variables and the image.

Correctness Argument The correctness argument for the algorithm follows trivially.

130

CHAPTER 5. PROGRAM SLICING

Complexity Analysis As in case of 1D-PS-CCSBSA, the time and space complexity of the anal-
yses used to check the property will contributed an additive factor the complexity of the algorithm.

5.4.5 Trace Sensitivity

Suppose in the program in Figure 5.14, Container.get(0)was invoked at lines 29 and 6. Depending
on the used alias analysis, 2D-PS-CCSBSA will most likely generate a slice that is identical to the
one generated by 1D-PS-CCSBSA because elements at line 29 will alias along both calling contexts
[vea, ve] and [vha, vh]. However, the cause for aliasing differs in the calling contexts. Specifically, the
aliasing along the former calling context is due to the Container object created at line 21 while the
latter calling context is due to the Container object created at line 27.

In this example, if the slicing algorithm considered the image of the element at line 29 while
establishing the property, then it will correctly identify a slice that does not include the method
english() along with its invocation. This can be perceived as as three dimensional data-based
property sensitivity (3D-PS).

From the above example, property sensitivity can be perceived as sensitivity to the control flow
paths and variable-to-value bindings for selected variables at various points in the control flow path.

If a trace is defined as a control flow path along with the variable-to-value bindings at every
program point in the control flow path, then a trace projection can be defined as a projection of a
control flow path along with a consistent projection of variable-to-value bindings with respect to a
set of variables at the program points in the path projection. By considering a dependence relation
as an abstraction of control flow path segments with consistent variable-to-value binding and the
aliasing/points-to information as an abstraction of variable-to-value binding across a control flow
path segment, the path constructed by property sensitivity can be coarsely perceived as a trace
projection.20 Hence, property sensitivity can be viewed as a general form of a new form of sensitivity
— trace sensitivity.

While path sensitivity deals with a control flow path and possibly some intrinsic variable-to-value
bindings required to realize the path, trace sensitivity deals with a trace/history (or its projection
relative to a set of variables) along with the complete (partial, in case of a projection) variable-to-
value bindings at all points in the trace. In other words, path sensitivity is a general (abstracted)
form of trace sensitivity in which the data at various program points are abstracted away.

Observe that control-flow based property sensitivity based on control flow reachability is path
sensitivity with respect to an abstraction of control flow paths. Such observations hint at equivalence
of property sensitivity and path sensitivity; however, the existence or absence of such equivalence
or the relation between property sensitivity and path sensitivity needs to be proven.

Based on the observations from property sensitive slicing, it is most likely that trace sensitive
information can be further improve the accuracy of the proposed slicing algorithms. However, the two
main challenges to be addressed to realize trace sensitive slicing is the complexity of bookkeeping to
ensure correctness of slicing and the cost of calculating trace sensitive information required for slicing.
The main challenges in reasoning about trace sensitivity is to define various properties/relations
(e.g. dependence) of/in programs in terms of traces. The work presented in Chapter 2 is a stride in
this direction.

20At a finer level, the constructed path is a splice of the trace segment projections.

131

CHAPTER 5. PROGRAM SLICING

5.5 Empirical Evaluation

In this section, I shall describe the experiments conducted to evaluate the resource requirement and
relative accuracy of the proposed algorithms along with a discussion about the results.

5.5.1 Implementation

Each of the proposed algorithms have been implemented as part of the Indus slicing framework. The
customizations have been realized as modules that can be plugged-in to realize the slicing algorithms
in a manner similar to the description. The deviations and implementation details of Indus are given
below.

• The program points that belong to the slice are identified by annotating the AST of the
program as opposed to maintaining a slice set.

• The optimizations proposed in C-PS-CCSBSA and D-PS-CCSBSA have not been implemented.

5.5.2 Experimental Setup

As in the experiments in Section 3.7, Java Grande Benchmark programs were considered as input
programs. For each program in the benchmark, 26 slices were generated using different algorithms
and different configurations to preserve the deadlocking behavior of the program. These 26 slices
comprised of three sets of slices.

The first set of 11 slices is used to evaluated various slicing algorithms in combination with
varying levels of accuracy of interference and ready dependence information. The legends are given
below.

BSA t Backward slice with type-based interference and ready dependence information.

BSA e Backward slice with escape-based interference and ready dependence information.

BSA Backward slice with entity-based interference and ready dependence information.

CCSBSA+ Optimized calling context sensitive backward slice with entity-based interference and
ready dependence information.

CCSBSA+ t Optimized calling context sensitive backward slice with type-based interference and
ready dependence information.

CCSBSA+ e Optimized calling context sensitive backward slice with escape-based interference and
ready dependence information.

CCSBSA+ 1D-PS Optimized calling context sensitive backward slice with entity-based interference
and ready dependence information and calling context enriched seed criteria generation with
the length of the seed calling context limited to 10.

2D-PSSA 4 Property sensitive calling context sensitive backward slice with entity-based interference
and ready dependence information and source and destination specific data-based property
sensitivity with the length of property sensitive calling contexts limited to 4.

132

CHAPTER 5. PROGRAM SLICING

2D-PSSA 16 Property sensitive calling context sensitive backward slice with entity-based interfer-
ence and ready dependence information and source and destination specific data-based prop-
erty sensitivity with the length of property sensitive calling contexts limited to 16.

2D-PSSA 256 Property sensitive calling context sensitive backward slice with entity-based interfer-
ence and ready dependence information and source and destination specific data-based prop-
erty sensitivity with the length of property sensitive calling contexts limited to 256.

2D-PSSA 10000 Property sensitive calling context sensitive backward slice with entity-based in-
terference and ready dependence information and source and destination specific data-based
property sensitivity with the length of property sensitive calling contexts limited to 10000.

The second set of 6 slices is used to evaluate the combination of accurate dependence calculation
as described in the previous chapter along with property sensitivity in the context of calling context
sensitive slicing.

1C-PSSA Property sensitive calling context sensitive backward slice with entity-based interference
and ready dependence information and control based property sensitivity with the length of
the property specific calling context limited to 256.

1D-PSSA Property sensitive calling context sensitive backward slice with entity-based interference
and ready dependence information and destination specific data-based property sensitivity
with the length of the property sensitive calling context limited to 256.

2D-PSSA Property sensitive calling context sensitive backward slice with entity-based interference
and ready dependence information and source and destination specific data-based property
sensitivity with the length of the property sensitive calling context limited to 256.

t 1C-PSSA Property sensitive calling context sensitive backward slice with type-based interference
and ready dependence information and control based property sensitivity with the length of
the property specific calling context limited to 256.

t 1D-PSSA Property sensitive calling context sensitive backward slice with type-based interference
and ready dependence information and destination specific data-based property sensitivity
with the length of the property sensitive calling context limited to 256.

t 2D-PSSA Property sensitive calling context sensitive backward slice with type-based interference
and ready dependence information and source and destination specific data-based property
sensitivity with the length of the property sensitive calling contexts limited to 256.

The third set of 9 slices is used evaluate the combination of various optimizations to equivalence
class analysis along with the proposed slicing algorithms.

BSA sf Backward slice with entity-based interference and ready dependence and static filtering
optimized equivalence class analysis.

BSA tf Backward slice with entity-based interference and ready dependence and type filtering op-
timized equivalence class analysis.

BSA both Backward slice with entity-based interference and ready dependence and both static and
type filtering optimized equivalence class analysis.

133

CHAPTER 5. PROGRAM SLICING

CCSBSA+ sf Optimized calling context sensitive backward slice with entity-based interference and
ready dependence and static filtering optimized equivalence class analysis.

CCSBSA+ tf Optimized calling context sensitive backward slice with entity-based interference and
ready dependence and type filtering optimized equivalence class analysis.

CCSBSA+ both Optimized calling context sensitive backward slice with entity-based interference
and ready dependence and both static and type filtering optimized equivalence class analysis.

2D-PSSA sf Property sensitive context sensitive backward slice with entity-based interference and
ready dependence, static filtering optimization for equivalence class analysis, and source and
destination specific data-based property sensitivity with the length of the property sensitive
calling contexts limited to 256.

2D-PSSA tf Property sensitive context sensitive backward slice with entity-based interference and
ready dependence, static filtering optimization for equivalence class analysis, and source and
destination specific data-based property sensitivity with the length of the property sensitive
calling contexts limited to 256.

2D-PSSA both Property sensitive context sensitive backward slice with entity-based interference and
ready dependence, static filtering optimization for equivalence class analysis, and source and
destination specific data-based property sensitivity with the length of the property sensitive
calling contexts limited to 256.

For each slice generation, the following data was collected.

Time Three time measures were taken in each experiment. The first was the measure of the time
taken to merely identify the slice. The second was the measure of the time taken to identify the
slice and inject executability into the slice. This subsumed the first measure. The third measure
accounted for the time taken by other analysis other than residualization and serialization.
These measures are presented as three slash separated values under the column Time.

Memory Two memory measures were taken in each experiment. The first was the measure of
memory consumed during slice identification and the second was the measure of memory
consumed during slicing and other analysis except residualization and serialization. These
measures are presented as two slash separated values under the column Memory.

Classes The number of classes in the slice.

Methods The number of methods in the slice.

Fields The number of fields in the slice.

Stmts The number of Jimple statements in the slice.

Exprs The number of Jimple expressions in the slice.

Bytecodes The number of compressed bytecodes in the slice.

The experiments were executed on an assertion enabled JVM available as part of JDK 1.6.0 b104
with 512MB of maximum heap space on a 1.4GHz and 1GB Linux box.

The time and memory measurements were collected by instrumenting the code via AspectJ21.

21http://www.eclipse.org/aspectj

134

CHAPTER 5. PROGRAM SLICING

 75

 80

 85

 90

 95

 100

2D
-P

S
S

A
_b

ot
h

2D
-P

S
S

A
_t

f

2D
-P

S
S

A
_s

f

C
C

S
B

S
A

+
_b

ot
h

C
C

S
B

S
A

+
_t

f

C
C

S
B

S
A

+
_s

f

B
S

A
_b

ot
h

B
S

A
_t

f

B
S

A
_s

f

t_
2D

-P
S

S
A

t_
1D

-P
S

S
A

t_
1C

-P
S

S
A

2D
-P

S
S

A

1D
-P

S
S

A

1C
-P

S
S

A

2D
-P

S
S

A
_1

00
00

2D
-P

S
S

A
_2

56

2D
-P

S
S

A
_1

6

2D
-P

S
S

A
_4

C
C

S
B

S
A

+
_1

D
-P

S

C
C

S
B

S
A

+
_e

C
C

S
B

S
A

+
_t

C
C

S
B

S
A

+

B
S

A

B
S

A
_e

B
S

A
_t

Bar
Crp
FJ

LUF
MD
MC
RT
Ser

SOR
SMM

Syn

Figure 5.15: The graph of normalized slice sizes (in terms of compressed residualized bytecodes)
Java Grande benchmark programs obtained by slicing via the proposed algorithms. For each pro-
gram, the data is normalized w.r.t to the largest slice. Please refer to Appendix A for detailed data
from the experiments.

5.5.3 Experimental Results

Each slice generation took approximate 2 minutes of wall clock time. This time included the cost
parsing, object flow analysis, monitor analysis, equivalence class analysis, five dependence analysis,
slice identification, injection of executability (refer to Section 5.6.3), residualization, and serialization
of the slice.

The detail data for each slice generated for each benchmark program is provided in Appendix A.

The overall results from the experiments are summarized in Figure 5.15 and Table 5.1. The
normalized data indicates that the algorithms behaved relatively similar in case of each program.

The following conclusions can be drawn from the data from the first set of slices.

• CCSBSA+ always performs better than BSA independent of the accuracy of the dependence
relations. Hence, given a slicing algorithm, merely increasing the accuracy of the dependence
information does not necessarily increase the accuracy of the generated slices. This result will
most likely hold for CCSBSA.

135

C
H

A
P

T
E

R
5
.

P
R

O
G

R
A

M
S

L
IC

IN
G

Bar Crp FJ LUF MD MC RT Ser SOR SMM Syn

BSA t 100 100 100 100 100 100 99.97 100 100 100 100
BSA e 100 99.98 100 99.94 100 99.98 99.98 100 100 100 100
BSA 100 99.98 100 99.94 100 99.98 100 100 100 100 100

CCSBSA+ 84.52 85.99 84.18 84.94 85.29 93.76 86.53 84.7 85.84 86.02 84.41
CCSBSA+ t 84.52 86.03 84.18 85.03 85.36 93.7 86.53 84.62 85.84 86.02 84.41
CCSBSA+ e 84.52 85.92 84.18 84.94 85.29 94.27 86.53 84.62 85.84 86.02 84.41

CCSBSA+ 1D-PS 78.64 80.69 78.14 79.3 79.82 93.5 81.45 78.79 80.47 80.71 78.47
2D-PSSA 4 78.3 79.88 77.71 78.9 79.44 88.93 81.09 78.35 80.03 79.91 78.13
2D-PSSA 16 78.3 80.32 77.7 78.89 79.42 90.12 81.07 78.34 80.02 79.89 78.13
2D-PSSA 256 78.3 80.32 77.7 78.89 79.42 90.12 81.07 78.34 80.02 79.89 78.13

2D-PSSA 10000 78.3 79.88 77.7 78.87 79.42 90.12 81.07 78.34 80.02 79.89 78.13
1C-PSSA 78.59 80.55 78.09 79.07 78.48 91.68 81.4 78.55 80.22 80.23 78.42
1D-PSSA 78.35 80.18 77.69 78.86 79.42 91.98 81.07 78.24 79.87 79.76 78.12
2D-PSSA 77.8 79.73 77.17 78.46 79.42 89.09 81.08 77.74 79.87 79.32 77.61

t 1C-PSSA 78.58 80.55 78.09 79.06 79.75 93.08 81.28 78.55 80.42 80.23 78.42
t 1D-PSSA 78.34 80.18 77.69 78.86 79.42 92.89 81.07 78.24 79.95 79.76 78.12
t 2D-PSSA 78.3 79.73 77.69 78.86 78.94 92.24 80.63 78.24 79.95 79.77 77.61

BSA sf 100 99.98 100 99.94 100 99.98 99.97 100 100 100 100
BSA tf 100 99.98 100 99.94 100 99.98 99.97 100 100 100 100

BSA both 100 99.98 100 99.94 100 99.98 99.97 100 100 100 100
CCSBSA+ sf 84.52 85.92 84.18 84.94 85.29 93.76 86.53 84.7 85.84 86.02 84.41
CCSBSA+ tf 84.52 85.92 84.18 84.94 85.29 94.35 86.53 84.62 85.84 86.02 84.41

CCSBSA+ both 84.52 85.92 84.18 84.94 85.29 93.76 86.53 84.7 85.84 86.02 84.41
2D-PSSA sf 77.8 79.73 77.69 78.46 78.94 91.7 81.07 77.74 79.94 79.77 77.61
2D-PSSA tf 77.8 80.32 77.7 78.89 79.42 90.12 80.64 78.34 80.02 79.89 78.13

2D-PSSA both 77.8 79.73 77.69 78.46 79.42 90.08 80.63 77.74 79.87 79.32 77.61

Table 5.1: The normalized slice sizes (in terms of compressed residualized bytecodes) of Java Grande benchmark programs obtained by
slicing via the proposed algorithms. For each program, the data is normalized w.r.t to the largest slice. Please refer to Appendix A for
detailed data from the experiments.

1
3
6

CHAPTER 5. PROGRAM SLICING

BSA CCSBSA+ PS-CCSBSA
Max Slicing Time 3.65 3.60 8.72
Min Slicing Time 1.18 1.17 1.31

Max Slicing Phase Time 20.0 19.42 24.16
Min Slicing Phase Time 16.45 16.21 14.28

Max Memory 16.95 17.24 20.97
Min Memory 10.71 9.52 9.09

Table 5.2: The maximum and minimum of normalized time and space data for various algorithms.
The sets were normalized with respect to to the largest value in the set.

• PS-CCSBSA always performs better than CCSBSA+ independent of the accuracy of the de-
pendence relations.

• CCSBSA+ 1D-PS performs better than CCSBSA+. The improvement can be attributed to
the injection of calling contexts into seed criterion; hence, calling contexts do matter and they
can improve accuracy if introduced earlier in processing and maintained during slicing.

However, there improvement is relatively low in case of MC. This may be due to the structure
of the program.

• Interestingly, the limit on the length of the property sensitive calling context does not seem to
affect the level of accuracy of PS-CCSBSA. This may be due to the shorter call graph depth
in the benchmark programs. This aspect of the result requires further examination.

• In most cases, PS-CCSBSA yields up to 22% improvement over BSA and 10% improvement
over CCSBSA+ in terms of the slice size.

• As the property sensitivity experiments did not leverage proposed optimizations to various
forms of property sensitivity, by projection, it is most likely that optimized property sensitivity
will result in increased accuracy.

The following conclusions can be drawn from the data from the second set of slices.

• Independent of the accuracy of interference and ready dependence, property sensitivity delivers
the same level of accuracy. This implies that, in the context of slicing for residualization, the
lack of accuracy in dependence information can be compensated via property sensitivity.

However, in context of program understanding, it would be cost effective to have accurate
dependence information instead of recovering the accuracy via post processing.

• As predicted, 2D-PS-CCSBSA performs better than 1D-PS-CCSBSA and 1D-PS-CCSBSA
performs better than 1C-PS-CCSBSA.

The data from the third set of slices indicates that the ordering of slicing algorithms in terms of
accuracy is independent of the sort of optimization applied to equivalence class analysis.

Beyond the quality-based results, the proposed slicing algorithms take 2-9% of the total execution
time. Along with the post-processing required to inject executability into the slice, 14-24% of the
total processing time and 9-20% of the total memory is used during execution.

The normalized maximum and minimum time and space numbers for BSA, CCSBSA+, and PS-
CCSBSA variants (as shown in Table 5.2) indicate that the cost of slicing does increase as predicted

137

CHAPTER 5. PROGRAM SLICING

by the complexity analysis. However, even in the worst cases, the cost contributed by the algorithms
is utmost one-fourth the total cost of calculating and generating a slice.

Based on the experimental result, there are few areas that need further empirical exploration
with possibilities for new extensions and optimizations to the proposed algorithms.

5.6 Extensions

This section presents extensions to the proposed algorithms to improve scalability, accuracy, and
enhance the generated slice to conform to certain properties such as executability. These extensions
also illustrate the customizability of the proposed algorithm.

5.6.1 Scoping

In some applications, it is known that some parts of the program may not contribute interestingly
to the slice, e.g. the classes corresponding to the AST nodes of a compiler infrastructure. In some
situations, the user may want to perform incremental slices to expedite slicing of large programs by
considering only parts relevant according to a particular static aspect of the program. In such cases,
analyses such as slicing can be made more efficient by not considering such parts of the program.
This notion of limiting the analysis to the specified scope (parts of the program) and analyzing
only specific parts of the program that occur within a specified scope is referred to as scoping. The
analysis that supports scoping is referred to as scope sensitive analysis.

Given a scope specification (e.g. regular expressions over on the names of various parts of the
program), the proposed slicing algorithms can be adapted to perform scoped slicing by merely
excluding slice criteria considered during slice construction. Specifically, by controlling the addition
of the criteria to the workset at lines 6, 12, and 15 in PSA (Figure 5.4) when the corresponding
program points are within the specified scope. This form of slicing is referred to as scope sensitive
slicing or just scoped slicing.

This notion of restrictive slicing was introduced as Barrier Slicing by Krinke [Kri03b]. In contrast
with my work, Krinke neither suggested nor explored the application of scoping to program analysis
in general.

As for the applications of scoping, it is useful for removing parts of the runtime library that are
used during application boot strapping and/or for user interface, hence, contribute unnecessarily
to the time required to calculate slices and the size of the slices pertaining to core functionality of
programs. Scoped slicing is also useful in checking for data confinement in the realm of security. For
example, one could define a secure scope, calculate a forward slice with respect to this scope, and
detect information flow based security breaches when the slice includes parts of the scope boundary.

Empirical Evaluation

To determine the effectiveness of scoped slicing, a simple experiment of slicing a non-trivial Java
application was conducted. JReversePro 1.4.122, a Java Decompiler/Disassembler was chosen as the
test input for this experiment for the following two reasons:

22http://jrevpro.sourceforge.net

138

CHAPTER 5. PROGRAM SLICING

• JReversePro consists of 90 classes, 745 methods, 786 fields, and 216KB of application class
bytecodes.

• JReversePro can be used in two modes: command line mode and GUI mode, and the usage
mode does not affect its core functionality.

Given the size of the application and the inherent complexity in identifying the separation of
functionalities (interface v/s core) in the web of dependences encoded in the program, JReversePro
was a good candidate for this experiment.

The experiment involved sequential slicing of JReversePro in four different settings: 1) no scoping
(none), 2) manually scoping (manual) by eliminating the part of the application via which the control
reaches the GUI part of the application, 3) automatic scoping during slicing (auto-slicing) and 4)
automatic scoping during analysis and slicing (auto-analysis). In each of these settings, a statement
that contributes to the core decompiler functionality was selected as the slice criterion.

The general scoping support provided by Indus was leveraged in this experiment. The scope was
specified as a regular expression over the fully qualified names/signatures of classes, methods, and
fields. The example regular expression appl.∗|Appl can be used to limit the analysis to consider only
parts of the program belonging to the class Appl or the classes with fully qualified name beginning
with appl., i.e. belonging to package appl. In this experiment, a scope specification equivalent to
(sun.awt |java.awt |javax .swing |JAwtFrame|JMainFrame).∗ was used.

The data pertaining to various forms of scoping (as given in Table 5.3) indicates that, in terms
of slice sizes and required time and memory to perform slicing,

• scoped slicing performs better than no scoping. Scoped slicing provides up to 50% reduction in
terms of the slice size. This is also true in case of the required time and memory to perform
slicing. However, the overall (inclusive of dependent analyses) required time and memory for
slicing only reduces by utmost 10%. This can be attributed to the analysis of the parts of the
application that lie outside the specified scope.

• scoped analysis performs better than scoped slicing. In contrast with the previous comparison,
scoped analysis (and slicing) provides a lower reduction (close to 30%) over scoped slicing in
terms of the slice size and the required time and memory to perform slicing. However, scoped
analysis provides 70% reduction in terms of overall required time and memory to perform
slicing as the dependent analyses (alike slicing) do not analyze parts of the application that
lie outside the specified scope.

• manual scoping performs slightly better than scoped analysis. In contrast with the above com-
parisons, the reductions in this case is utmost 9%. Further, there is negligible or no reduction
when required time and memory data is considered.

In terms of performance and relative merits, performing scoped analysis and slicing provides
accuracy and scalability that is very close to the combination of performing manual scoping followed
by unscoped slicing. The benefits of mere scoped slicing is strongly tied to the cost of dependent
analyses. As the cost these analyses will most likely nullify the benefits of scoped slicing, the
application of scoped slicing may be limited in the context of medium- and large-scale applications.
Further, as scoped slicing does not depend on information pertaining to program points outside the
given scope, based on the data it would be efficient to use scoped analysis and slicing together as
opposed to only using scoped slicing.

139

CHAPTER 5. PROGRAM SLICING

Scoping Class Method Fields Size Time Mem
(KB) (sec) (MB)

none 1198 6136 1973 972 117/539 64/607
auto-slicing 688 2881 879 485 67/462 31/568
auto-analysis 478 1902 597 334 33/142 21/164
manual 436 1856 590 318 30/129 20/150

Table 5.3: Data from generating sequential executable slices of JReversePro. The data was collected
on a Linux box (2GHz/2GB) running Java 1.5.0 with maximum heap space of 1700MB. In the data
of the form X/Y, X represents the data for slicing only and Y represents the (overall) data for slicing
and the dependent analyses (not transformations). The classes, methods, fields, and bytecode count
is inclusive of code pertaining to the application and the required libraries.

Figure 5.16: Graphical representation of the data in Table 5.3.

140

CHAPTER 5. PROGRAM SLICING

1 class CCSS {
2 public static void main(String[] s) {
3 int v = foo();
4 int u = bar();
5 int k = foo();
6 }
7
8 static int foo() {
9 return bar();

10 }
11
12 static int bar() {
13 Long l = new Long(10L);
14 return l.intValue();
15 }
16 }

Figure 5.17: Example to illustrate calling context restrictive slicing.

Correctness

Although scoped slicing is usually fast and cheap but it may be unsound (incorrect) – two program
points within the scope may be related by a chain of dependences that involves program points
outside the scope. However, such cases are trivially exposed by the inclusion of program points
belonging to scope boundary. In such cases, assuming the accumulated cost of successively gener-
ating incrementally sound scoped slices/analysis is less than the generation of one sound unscoped
slice/analysis, the user can amend the scope appropriately and incrementally obtain accurate and
sound slices/analysis.

Orthogonally, tools to efficiently detect and present information about the inclusion of out-of-
scope program parts in the slice/analysis may prove to be useful in the context of understanding
the security aspects of a program and automatically correcting the scope to generate sound slicing/-
analysis result.

5.6.2 Context Restriction

In the program in Figure 5.17, suppose an user is interested in determining the parts of the program
that are affected by the invocation at line 13 as a result of its execution due to the invocation at
line 3. In such cases, specifying line 14 as a criteria would result in an inaccurate slice containing
lines 3, 4 and 5. The reason being that the slicing algorithm will consider every calling context
leading out (into) from the method containing the slice criteria (line 13) and include every method
occurring in these calling contexts in the slice.

This shortcoming can be addressed by enriching the seed slice criteria with a calling context (call
stack) that can be specified by the user. For example, in the scenario described above, the call stack
[main():*, foo():3, bar():9]23 can be supplied as the calling context with the program point
associated with the assignment expression at line 13. This restricts the slicing algorithm ascent into
invocation sites (e.g. bar():9) to only those mentioned in the sequence from right to left. With this
extension, the calling context sensitive instances of PSA can trivially leverage auxiliary contextual

23An element x:y in the calling context is to be read as line y in method x.

141

CHAPTER 5. PROGRAM SLICING

information to provide accurate call chain specific slices.

This form of slicing is referred to as context restricted slicing and it was introduced by Krinke
[Kri04]. Unlike tailoring the slicing algorithm as in Krinke’s approach, my approach leverages
CCSBSA to realize context restriction.

This form of slicing can be useful for debugging an application based on an exception stack trace,
i.e. an user would like to calculate the slice that affects only the parts of the program occurring on an
exception stack trace. In security-related applications, this feature can be used to accurately identify
the parts of the programs that affect the data/control flow path between two modules, hence, easily
identify any insecure parts of the program.

5.6.3 Executability

In applications such program comprehension, it is not necessary for the slices to be syntactically
correct with respect to the structural requirements imposed by the execution infrastructure. In
other words, if class files were generated from a slice of a CJava program generated for program
comprehension purpose, then it is not necessary for the class files to be verifiable according to the
rules in section 4.8 and 4.0 in the JVM specification [LY99].

Such non-conformance to execution requirement will not suffice in applications such as model
reduction via program slicing [CDH+00] in which the slice is executed, either directly or indirectly.
This issue is also specific to backward slices.

The aspects of the slice that need to be considered to ensure executability are presented along
with the aspect-specific solutions to render the slice executable.

Class Hierarchy

Although the proposed algorithms will include relevant classes to render the slice class hierarchy
structurally valid, they will not explicitly include method declarations and implementations required
to render the slice class hierarchy semantically valid.

To understand, suppose interface A contains methods foo() and bar(), abstract class B imple-
ments A and defines foo(), and concrete class C extends B and defines bar(). If C.bar() is included
in the slice, then trivially A, B, and A.bar() should be included in the slice.24 The resulting slice
class hierarchy is valid in terms of its structure and semantics. However, if A.foo() is included in
the slice due to class D, a sibling of class B, then the slice class hierarchy is semantically invalid as C
is a concrete class that does not implement foo().

The solution would be to inject a dummy implementation of foo() in either B or C. Optimally,
such injection should occur as high as possible in the class hierarchy. As a fallout of such implemen-
tation injections, the number of methods in the slice of a program may be larger than the number
of methods reachable in a program. This effect is prevalent in the empirical data presented in the
previous section.

As for implementation, this transformation can be realized as an algorithm that accumulates
implemented methods and injects methods required for semantic correctness by performing a bottom-
up processing of the class hierarchy.

24Due to the semantics of invoking a method via a receiver variable of the interface type that declares the method.

142

CHAPTER 5. PROGRAM SLICING

1 while (i > 0) {
2 if (j < 5) {
3 break;
4 }
5 . . .
6 }
7 System.out.println(j);

1 while (i > 0) {
2 if (j < 5) {
3
4 }
5 . . .
6 }
7 System.out.println(j);

Figure 5.18: Example to illustrate the effect of non-inclusion of break/continue in backward
slices.

Method Expressions

During slicing, it is possible for an invocation site to be included in the slice but some of the
arguments at the site to be omitted from the slice. Before residualizing such a slice into an executable
program, dummy values based on the type of the arguments at corresponding positions need to be
injected into the invocation expression to render the residue program executable. Similar situation
can occur in case of return statements with expressions and throw statements.

This transformation can be trivially realized by visiting the invocation expressions, return state-
ments, and throw statements included in the slice and injecting the required dummy values.

Non-Sequential Control Flow

break and continue statements in CJava provide mechanisms to realize unstructured control flow
paths. As they can be treated as restricted forms of goto statements, it is obvious that they do not
affect any dependences. Hence, these statements will not be included in backward slices; however,
such omission leads to control flow paths in the slice that did not exist in the original program and
defeats the purpose of slicing.

To understand, consider the program in the left-hand column of Figure 5.18. According to the
definitions in Chapter 2, Line 7 will be control dependent on lines 1 and 2. Hence, a backward slice
based on the slice criteria {line 7} will be as shown in the right-hand column of Figure 5.18.

Interestingly, line 7 is not control dependent on line 2 in the slice as there is no alternative control
flow path from line 2 to line 7. Hence, the slice does not preserve the execution semantics of the
original program relevant to reproduce the behavior at line 7.

To avoid such unsoundness with respect to to executability, break and continue that occur
along control flow paths between program points included in a slice should also be included in the
slice. This transformation becomes essential while generating executable slices of programs written
in languages, such as Java bytecodes, that support unstructured control flow via goto statements.

As for implementation, this transformation can be phrased and solved as an instance of the graph
search problem.

Exit Points

While descending into a method at a call site during backward slicing, the algorithms include the
exit points of the method into the slice. Hence, all paths in such methods will terminate with an exit

143

CHAPTER 5. PROGRAM SLICING

program point (normal or exceptional) or an infinite loop. However, in cases where the algorithms
enter a method by following horizontal dependences such as ABDD, the exit points of the entered
method are not included in the slice. Hence, there will be control flow paths in the slice of such
methods that terminate neither with an exit program point nor an infinite loop. This violates the
structural requirements of a Java class file.

This issue can be addressed by including, for each program point in the slice, an exit point that is
reachable from the program point along with any unstructured goto statements required to facilitate
such reachability. For methods that are non-terminal, the transformation should include the goto
statements of the non-terminal loop that is reachable from the slice program points such that the
non-terminal loop is preserved in the slice.

As for implementation, this transformation can also be phrased and solved as an instance of the
graph search problem.

In terms of sequencing these transformations, as exit points aspect alters the slice, it would be
best to perform non-sequential control flow specific transformation after the required exit points
have been included into the slice.

5.7 Handling Exceptions

Alike Java, CJava supports exceptions. Rather than handling exceptions as an alternate control
flow construct, existing literature handles exceptions as conditional constructs. With such a percep-
tion, the control flow due to exceptions and the resulting dependences can be captured as control
dependences. Hence, the proposed algorithms can be used as is.

However, if extra information about the nature of the control flow is maintained along with
the control dependences, then this information can be leveraged to improve the accuracy of inter-
procedural slicing. Specifically, if a dependent call site was reached due to a control dependence
stemming from an normal (exceptional) control flow edge, then only normal (exceptional) exit points
need to be considered in the invoked procedures.

5.8 Related Work

Although program slicing has been studied for over two decades, very few efforts have explored and
tried to address the implications of aliasing and concurrency on efficient program slicing.

In 1998, Krinke [Kri98] first proposed the notion of interference dependence in the context of
slicing concurrent programs using program dependence graphs. In the following year, Hatcliff et al.
[HCD+99] identified that preservation of liveness due to synchronization was relevant in the context
of concurrent programs and proposed ready dependence to capture dependences relevant to liveness
preservation. Nanda et al. [NR00] identified implications of nested loops and parallelism on the
accuracy of concurrent program slicing and proposed alternative algorithms. In succession, Chen et
al. [CB01] proposed concurrent slicing algorithms for Java that were based on concurrent control flow
graphs and concurrent program dependence graphs and sensitive to the effect of synchronization.

Subsequently, Krinke performed an empirical evaluation of calling context sensitive slicing [Kri02]
and explored the implication of context sensitivity and calling contexts on the accuracy of slices
[Kri04]. However, none of these efforts explored the combined effect of calling context sensitivity

144

CHAPTER 5. PROGRAM SLICING

and aliasing on program slicing.

The first calling context sensitive program slicing algorithm for concurrent programs was pro-
posed by Nanda [Nan01] in 2001. This was followed by an alternative algorithm proposed by Krinke
[Kri03c] in 2003. These algorithms were based on similar extensions to program dependence graphs.
In contrast, the proposed algorithms are based on primitive dependence relations. Krinke’s and
Nanda’s algorithms use an approach in which information about the last node visited in a thread is
recorded and used later to determine if the next node visited in that thread should be added to the
slice. As the order of node visitation is crucial, these backward slicing algorithms would approxi-
mate to the reverse simulation of the programs; hence, the algorithms would be accurate and have
exponential worst-case time complexity. In comparison, as the proposed algorithms relax the order
of program point visitation, they are more scalable with polynomial worst-case time complexities
and they may also lead to relatively less accurate slices. However, given the absence of comparative
data for these algorithms, the drop in accuracy should be considered as a mere speculation.

In terms of similarity, the optimizations proposed for CCSBSA in Section 5.3.5 can be mapped
to similar optimizations (summary edges and subsumption) in Krinke’s and Nanda’s algorithms.
Similar to our approach, in the context of slicing Java programs, Nanda explored the issues stemming
from aliasing and ready dependences25 in a concurrent setting while Hammer et al. [HS04] explored
the effect of aliasing at procedural boundaries in a sequential setting.

Finally, to the best of my knowledge, the proposed algorithms is the first layered collection of
algorithms that can be seamlessly extended to achieve various forms of slicing. Further, this is
the first attempt to seamlessly leverage various properties (such as structure, domain/application-
sensitive, etc) of the program in a compositional manner to cost efficiently improve accuracy of
program slicing in both sequential and concurrent settings.

25Nanda refers to ready dependence as synchronization dependence.

145

CHAPTER 6. PARTIAL ORDER REDUCTION

Chapter 6

Partial Order Reduction

Partial Order Reduction (POR) or Partial Order Methods is an optimization technique to identify
behavioral paths of a system that are identical with respect to a given property defined over the sys-
tem. Following Patrice Godefroid’s proposal of POR as an approach to tackle state space explosion
in the context of concurrent program verification in 1995 [God95], there have been various efforts
[SUL00, Sto02, FG05] in proposing alternative partial order methods based on runtime information
and on high level coding (locking) patterns. However, there have been very few efforts [DHRR04]
focused on leveraging program analysis information as a means of realizing partial order reduction.

As partial order methods rely on dependence relation between various actions/statements of a
program, it seems natural to leverage information from static dependence analysis to calculate the
partial ordering. If the cost of static dependence analysis is low in comparison with the runtime
detection of dependence, then a static dependence analysis driven partial order reduction can provide
interesting cost benefits in either time or space or both.

In an attempt to leverage the information calculated by the equivalence class analysis proposed
in Chapter 3 beyond the realm of program slicing, I have successfully applied program dependences
to calculate conditional stubborn sets to efficiently optimize state space exploration. Also, I have
developed a stateful program dependence-based dynamic partial order reduction algorithm [FG05]
that can handle cyclic state space.1

A preliminary exposition of the above contributions along with supportive empirical evidence
gathered based on the implementations in Bandera, Bogor, and Indus projects are presented in this
chapter.

6.1 Background

In this chapter, I use and build on the foundations laid down by Dwyer et al.[DHRR04] for presenting
a partial order reduction technique for Java programs expressed as a state transition system.2

1Parts of this effort involved collaborations with John Hatcliff and Robby at the Department of Computing and
Information Sciences, Kansas State University.

2Some of the contents of this section is an adaptation of the contents from Background section of the FMSD article
from Dwyer et al.[DHRR04].

146

CHAPTER 6. PARTIAL ORDER REDUCTION

The foundation relies on the strategies used by Stoller [Sto02] to phrase Java systems as transition
systems; hence, the same strategies can be used to represent CJava programs with transitions
systems.

Definitions A state transition system [EMCGP99] Σ is a quadruple (S ,Ξ,S 0,L) consisting of a
set of states S , a set of transitions Ξ such that ∀α ∈ Ξ.α ⊆ S × S , a set of initial states S 0, and a
labeling function L that maps a state s to a set of primitive propositions that are true at s.

For CJava programs, each state holds the stack frame for each thread (program counters and
local variables for each stack frame), global variables (i.e. static fields), and a representation of the
heap. Intuitively, each α ∈ Ξ represents a statement or step (e.g. execution of a bytecode) that can
be taken by a particular thread t ∈ T . In general, α is defined on multiple “input states”, since the
transition may be carried out not only in a state s but also in another state s′ that only differs from
s in that it presents the result of another thread t ′ performing a transition on s.

For a transition α ∈ Ξ, we say that α is enabled in a state s if there is a state s′ such that α(s, s′)
holds. Otherwise, α is disable in s. Intuitively, a transition α for a thread t may be disabled if the
program counter for t is not at the statement represented by α, if α represents an synchronized

statement that is blocked waiting to acquire a lock, or if t is currently in the wait set of an object
(i.e. t has surrendered the lock of o and put itself to sleep by calling wait on o). The set of
transitions enabled in s is enabled(s), and the set of transitions enabled in s belonging to thread
t is enabled (s, t). pc(s, t) denotes the program counter of a thread t in a state s. current(s, t)
denotes the set of transitions associated with the current control point pc(s, t) of thread t (this set
will include enabled (s, t) as well as any transitions of t at pc(s, t) that may be disabled). Also,
current(s) represents the union of current transitions at s for all active threads.

A transition is deterministic if, for every state s, there is utmost one state s′ such that α(s, s′).
When α is deterministic, we write s′ = α(s) instead of α(s, s′). Following Clarke et al. [EMCGP99],
I will only consider deterministic transitions. Note that this does not eliminate non-determinism in
a thread (e.g. as might result from abstraction) — the non-determinism is simply represented by
multiple enabled transitions for a thread. For each transition α, we assume that we can determine,
among other things, a unique identifier for a thread t that executes α, and the set of variables and
fields that are read or written by α. A path π from a state s is a finite or infinite sequence such that
π = s0

α0→ s1
α0→ . . . such that s = s0 and ∀i.αi(si) = si+1.

Assumption At each control-point for a thread t and for any state s, every current transition of
t accesses utmost one field. This reflects the granularity of Java transitions at bytecode level.

Independence The notion of independent transition is usually expressed using an independence
relation I between transitions. Specifically, (α, β) ∈ I if, for all state s, the execution order of α and
β can be interchanged when they are both enabled in s. An independence relation is required to be
symmetric and anti-reflexive and to satisfy the below given two conditions.

• α, β ∈ enabled(s) =⇒ α ∈ enabled(β(s))

• α, β ∈ enabled(s) =⇒ α(β(s)) = β(α(s))

The first condition ensures that one transition does not disable the other while the second
condition ensures that the execution order of the transitions does not influence the resulting state
(i.e. they always lead to the same state). Figure 6.1 illustrates of the effect of independent transitions
on the shape of the state space.

147

CHAPTER 6. PARTIAL ORDER REDUCTION

s1 s2

sr

s

α

β

β

α

Figure 6.1: Independent transitions.

Selective Search Algorithm (SSA) Given a state transition system Σ, the parametric algorithm
in Figure 6.2 explores the state space of the system. The algorithm does depth first search on the state
space until it has visited every state. The parameter function Select can influence the search by
controlling/selecting a subset of transitions from the enabled set to be explored at a given state. The
set of selected transitions will be referred to as sufficient set. The sufficient set in state s is denoted by
sufficient(s). A correctness requirement of Select parameter is sufficient(s) = ∅ ⇔ enabled(s) = ∅.

The algorithm is generic in the sense that it does not handle corner cases (e.g. starvation due to
scheduling an infinite independent process). Instead, I assume that general techniques (e.g. bound
on successive scheduling of the same thread) will be employed in the Select argument to handle
various corner cases.

Exhaustive state space exploration can be done by instantiating SSA with Select returning the
enabled set enabled (). Various partial order reduction can be realized by appropriately instantiating
Select. One such instantiation is described in the next section.

6.2 Static Program Dependence-based Conditional Stubborn
Sets (SPD-CSS)

The term dependence was used in the context of programs and it is now being used in the context
of state space exploration (program behavior). Both forms of dependence represent a similar and
related aspect; hence, these forms can be leveraged across contexts. In this section, I shall describe
how the static program dependence can be leveraged in the context of calculating a reduced state
space that is representative of the full state space.

6.2.1 Conditional Stubborn Sets (CSS)

Given a concurrent system Σ and a selective search algorithm, Godefroid [God95] identified that
sufficient sets can be calculated by leveraging persistence property of enabled transitions. A sufficient
set based on persistence is referred to as a Persistent Set.

148

CHAPTER 6. PARTIAL ORDER REDUCTION

SelectiveSearch(s0)
1 visited ← {s0}
2 stack ← ⊥
3 push(stack, s0)
4 DFS(s0, visited , stack)
5 return

DFS(s, visited , stack)
1 sufficient(s)← Select(s)
2 while sufficient(s) 6= ∅
3 do α← remove(sufficient(s))
4 s′ ← α(s)
5 if s′ /∈ visited
6 then visited ← visited ∪ {s′}
7 push(stack, s′)
8 visited ← DFS(s′, visited , stack)
9 pop(stack)

10
11 return visited

Figure 6.2: The parametric selective search algorithm.

The notion of persistent sets is in a state s, the subset T of the enabled transition set E is
persistent in s if every transition in E − T and every transition reachable from s via transitions in
E − T are independent of the transitions in T.

In his dissertation, Godefroid described three algorithms to calculate different realizations of
persistent sets based on the notions of conflicting transitions and stubborn sets. He then proposed
a weaker fourth realization of persistent sets known as conditional stubborn sets3 — in a state
s, a conditional stubborn set is a non-empty subset of the enabled transitions such that each stub-
born transition depends on either another stubborn transition or on a transition reachable from s
through a stubborn transition. This realization subsumed the previous three realizations, i.e. yielded
smaller persistent sets. Although an accurate realization, Godefroid acknowledged that it was purely
theoretical due to the lack of a practical algorithm to predict the future transitions from a given
state.

Godefroid also proved that the reduced state space resulting from the application of persistent
sets (in all four forms) was equivalent to the full state space in terms of safety properties (i.e. safety
properties are preserved in the reduced state space).

6.2.2 Transition Dependences

Program dependences introduced in previous chapters capture the relation between program points
in terms of reproducing the observed behavior at program points. These program dependences
partially/indirectly capture the scheduling choice that lead to the observed behavior. On the other
hand, the notion of dependence introduced in this chapter captures the relation between program

3This notion is similar to the notion of detecting conditional dependences using collapses proposed by Katz and
Peled [KP92]

149

CHAPTER 6. PARTIAL ORDER REDUCTION

points that lead to scheduling choices that affect the observed behavior. For clarity, the new notion
of dependence is referred to as transition dependence.

Given the above definitions and distinctions, in a concurrent CJava program, transition depen-
dence can occur only in the following four cases.

• When two threads contend to acquire the lock on a shared object. In this situation, given the
locking semantics of CJava4, only one of the threads will arbitrarily succeed. Hence, concurrent
lock acquisition operations on a shared object are transition dependent.

• When two threads concurrently write to the same field (cell) of a shared object (array). Similar
to the previous case, the memory model semantics of CJava5 will impose an arbitrary ordering
of the operation. Hence, concurrent write operations to a common field (cell) of a shared object
are transition dependent.

• When a thread writes a field (cell) of a shared object (array) from which another thread con-
currently reads the same field (cell). By following a reasoning similar to the previous case,
concurrent read and write operations on a field (cell) of a shared object is transition depen-
dent.

• When a thread notifies the threads waiting on a lock. Depending on if the notification operation
happens before (lost notification) or after the wait operation, the blocking period of the waiting
thread may change and this may affect the observed behavior of the system. Hence, wait and
notify operations on a shared object are mutually transition dependent.

6.2.3 The Approach

Given the above definitions of CSS and transition dependence, the techniques from the previous
chapters can be combined to realize a simple algorithm to construct conditional stubborn sets. The
realization is broken down into two phases.

Phase 1 The transition dependence for a given CJava program can be calculated by leveraging the
lock coupling (Section 3.4.2), read-write and write-write coupling (Section 3.6.3), and wait-notify
coupling (Section 3.6.2) information from the equivalence class analysis. Similarly, the escape infor-
mation from the same analysis can be used to statically calculate independent transitions/statements
in the program. Further, by considering a call graph of the system that subsumes the call graph
for each thread in the system, a may-follow relation between program points of the system can be
trivially calculated by combining the call graph information with intra-procedural control flow graph
information.

As all of the program analysis information is execution context independent, the information
over-approximates the actual runtime coupling/relations; hence, the information can be used to
construct a possibly reduced yet safe state space of the system.

Phase 2 Using the above information, a CSS calculating Select parameter can be instantiated
as done in Figure 6.3. The helper functions used in the algorithm are defined below.

4The locking semantics of CJava is that same as that of Java.
5The memory model semantics of CJava is the same as that of Java.

150

CHAPTER 6. PARTIAL ORDER REDUCTION

CSS-Select(s)
1 result ← {choose(enabled (s))}
2 for each α ∈ enabled(s)
3 do if IsIndependent(α)
4 then result ← {α}
5 return result
6 else for each β ∈ result
7 do if IsDependentOn(α, β) ∨ IsDependentOnSuccessors(α, β)
8 then result ← result ∪ {α}
9 return result

Figure 6.3: A conditional stubborn set calculating parameter of the selective search algorithm.
choose function selects an element of the given set.

IsIndependent: Ξ→ {true, false} This function checks if the given transition is globally indepen-
dent based on static transition dependence information.

IsDependentOn: Ξ× Ξ→ {true, false} This function checks if transitions are mutually dependent
based on static transition dependence information.

IsDependentOnSuccessors: Ξ× Ξ→ {true, false} This function checks if the first transition is
dependent on any of the successors of the second transition based on static transition depen-
dence information. The successors of a transition α are transitions executed subsequently in
the thread that is executing α. Given that the dependence information is static, the verdict
provided by this function is not state specific.6

Comparatively, IsIndependent classifies a transition as independent only if the (command
assocaited with the) transition is independent of all transitions in all state while I classifies a
transition as independent with respect to another transition only if two transitions are mutually
independent. Although the globalness of independence information provided by IsIndependent fails
to capture the mutual independence, the loss of accuracy is compensated by the mutual dependence
information provided IsDependentOn and IsDependentOnSuccessors functions.

Correctness The correctness of the approach trivially follows from the proofs established by
Godefroid and the safe over-approximation of 1) the execution time dependences by static program
dependence and 2) the execution time will-follow relation by call graph based may-follow relation.

Complexity This approach will contribute additional cost for processing each state in the state
space. If cs is the cost of processing a sufficient set of size S (the worst case size of sufficient sets)
and M is the number of states in the reduced state space, the Ot(SPD-CCS) = cs ×M . If ce is the
cost of processing the enabled set of size E (the worst case size of enabled sets) and N is the number
of states in the full state space, then the time complexity of the naive exploration algorithm will
be Ot(SelectiveSearch) = ce ×N . As M ≤ N and cs ≥ ce, SPD-CSS will be effective in situations
where M � N and/or cs ≈ ce. As for space complexity, it is identical to that of SSA.

6If either IsIndependent, IsDependentOn, or IsDependentOnSuccessors uses dynamic information, then the
provided dependence information would be conditional (in)dependence.

151

CHAPTER 6. PARTIAL ORDER REDUCTION

6.3 Stateful Dynamic POR (SDPOR)

Assuming the entire state space for a program is available, the calculation of CSS would only
consider transitions that are mutually dependent in the concrete domain of execution as opposed
to considering transitions that are possibly mutually dependent in an abstract domain of analysis.
Due to the abstraction, the calculation for CSS based on static/abstraction information will be
sub-optimal in comparison with the calculation based on dynamic/concrete information.

This issue was first addressed by Flanagan and Godefroid [FG05] by proposing a partial order
reduction technique that was dynamic, i.e. relied on the information calculated during (as opposed
to being calculated prior to) state space exploration.

The basic idea of the technique was to aggressively construct the most optimal (a singleton)
sufficient set and then to expand the sufficient set as deemed necessary by the dynamically discovered
dependence information. The dynamic discovery relied on the maintenance of the path from the
initial state s0 to the current state s. For each explored transition α, the dependence on previously
explored transition β in the current path is calculated. Upon inferring dependence, the sufficient set
at the predecessor state sj is expanded to include the enabled transition (if any) from the thread
executing α in s. The expanded transitions are processed when the exploration backtracks to sj .
Flanagan and Godefroid realized the technique as a stateless state space exploration algorithm that
worked on acyclic state space.

A simple stateful counterpart to their algorithm that is based on static program dependence,
optimized based on equivalence classes, and capable of handling cyclic state space is described in
this section.

6.3.1 The Algorithm

An extended version of the selective search algorithm and the parameter to realize stateful dynamic
POR-based selection are given in Figure 6.4 and Figure 6.5, respectively.

Implication of Statefulness In stateless state space exploration, fully explored states may be
revisited as explored states are forgotten. Hence, the re-visitation will correctly force the dynamic
expansion of the alias sets. However, in stateful state space exploration, every state is fully ex-
plored only once by remembering fully explored states. Hence, in a naive realization of stateful
DPOR algorithm, upon arriving at a fully explored state, the mutual dependence between transi-
tions reachable from the state and the transitions leading to the state is not considered; hence, it
can lead to incorrect and over-aggressive reduction of state space.

To address this, at each explored state, the stateful DPOR algorithm remembers the transitions
reachable from a state along with their executing threads. Upon arriving at a fully explored state,
the algorithm considers the reachable transitions (that will not be re-explored) to discover dynamic
dependences to expand sufficient sets at predecessor states; hence, the algorithm will provide correct
reductions as it mimics the behavior of stateless DPOR algorithm.

This observation is encoded in line three of Figure 6.5.

Correctness Argument Building on the correctness of the stateless DPOR algorithm, the cor-
rectness above the algorithm relies on the correctness of discovering dynamic dependences involving

152

CHAPTER 6. PARTIAL ORDER REDUCTION

E-SelectiveSearch(s0)
1 visited ← {s0}
2 stack ← ⊥
3 push(stack, s0)
4 E-DFS(s0, visited , stack)
5 return

E-DFS(s, visited , stack)
1 sufficient(s)← Select(s)
2 while sufficient(s) 6= ∅
3 do α← remove(sufficient(s))
4 ExpandSufficientSet(α, s, stack)
5 s′ ← α(s)
6 if s′ /∈ visited
7 then visited ← visited ∪ {s′}
8 push(stack, 〈s′, sufficient(s′)〉)
9 visited ← E-DFS(s′, visited , stack)

10 pop(stack)
11 return visited

Figure 6.4: An extended version of the selective search algorithm (Figure 6.2). The changes to the
original algorithm are presented in blue.

DPOR-Select(s)
1 return {choose(enabled(s))}

DPOR-ExpandSufficientSet(α, s, stack)
1 s′ ← α(s)
2 if s′ ∈ visited ∧ 〈s′, 〉 /∈ stack
3 then temp← getReachableTransitions(s′)
4 else temp← {〈α, s〉}
5 for each 〈β, si〉 ∈ temp
6 do st ← si
7 for each 〈sj , sufficient(sj)〉 ∈ stack
8 do d← getTransitionFor (getThreadFor (β, si), sj)
9 if γ(sj , st) ∧ IsDependentOn(β, γ) ∧ d 6= ∅

10 then sufficient(sj)← sufficient(sj) ∪ d
11 else st ← sj

Figure 6.5: A stateful dynamic POR/CSS realizing parameter of the extended selective search
algorithm. getReachableTransitions(s) returns the reachable transitions from the fully explored state
s; empty set is returned if s is not fully explored. getThreadFor(α, s) returns the thread executing
transition α in state s and getTransitionFor(t, s) returns the set of enabled transitions of thread t
in state s, if any.

153

CHAPTER 6. PARTIAL ORDER REDUCTION

transitions between fully explored states. As the transitions and states reachable from a fully ex-
plored state s is fixed independent of the path leading to s, it is safe and correct to consider reachable
transitions to discover the dynamic dependences. Hence, the correctness of SDPOR follows from its
simulation of DPOR in a stateful setting.

Complexity Depending on the system under exploration, the worst case time complexity of SD-
POR can be similar or worse than that of full state space exploration algorithm due to the additional
costs of dependence discovery. In terms of space, the maintenance of reachable transition-thread
pairs at each state will contribute an additive cost of O(|S |); hence, the worst case space complexity
of SDPR will be more expensive that the worst case space complexiy of full state space exploration
algorithm by a multiplicative factor of |S |.

Although worst case time/space complexity is greater than that of full state space exploration
algorithm, the empirical data (presented later in the chapter) indicates that complexity in real situ-
ations are better than or comparable to that of other POR-based state space exploration algorithms.

6.3.2 Full Enabled Set Coverage (FESC)

Consider the state space in Figure 6.6 (a). There is a path from s to si where si is on the current
path to s. The transitions reachable from states si in the shaded area and those on the current
path to s will not be considered to expand the sufficient sets at states in the cycle involving si and
s. This can lead to incorrect/unsound reductions. The issue can be addressed by ensuring that
every enabled transitions at a state is reached from that state. To accomplish this, the algorithm
maintains a set of non-sufficient enabled transitions at each state being explored. Upon backtracking
into a state by exhausting the sufficient set, the algorithm checks if all of the non-sufficient enabled
transitions were reached from the state. If not, then an arbitrary non-sufficient enabled transition is
selected as a sufficient transition and the reachable state space is explored. This process is repeated
till all of the enabled transitions at a state are explored. Hence, a state is marked as fully explored
(visited) only after every enabled transition at that state is explored.

In case of cyclic state space (as illustrated in Figure 6.6 (b)), suppose α and β were dependent.
If they were being executed in different threads and {β} was chosen as the sufficient set at s, then
this sufficient set should be expanded to explore the state space represented by the shaded area.
However, due to the cycle at sj , α is never executed and the sufficient set at s is incorrectly not
expanded. A similar situation can occur in acyclic state space when all paths from a state via the
sufficient transitions end in errors. This situation can be remedied by employing this technique to
ensure full exploration/coverage of every enabled transition.

6.3.3 Pure Dynamic Dependence (PDD)

As the exact state of the system is available at each state, a purely dynamic approach based on
the state information can be used to accurately calculate dependence. The approach would rely on
comparing the appropriate parts of the transition to detect dependences.

Locking If the transitions involve lock acquisition operations, then the dependence is triggered if
both transitions are attempting to acquire the lock on the same object.

Array Access If one of the transition is writing into an array cell while the other transition is reading

154

CHAPTER 6. PARTIAL ORDER REDUCTION

(a) (b)

si

s

sj

si

sk

s

β

α

Figure 6.6: State spaces that warrant FESC corrections. The nodes represent the states, the solid
edges represent transitions, the dashed edges represent the current path between the represented
states, the dotted edges and nodes represent unexplored transition and states, and the shaded area
represents the ignored part of the state space.

from an array cell, then the dependence is triggered if the transitions are accessing the same
cell within the same array.

Field Access If one of the transition is writing into a field while the other transition is reading from
the field, then the dependence is triggered if the transitions are accessing the same field of the
same object.

To enable the above detection, the algorithm maintains the variable to value binding for variables
in transitions involving field and array access, and lock acquisition operations. Similar to reachable
transitions maintained to be statefully correct, the variable to value binding is maintained for each
reachable transition at each fully explored state. While this provides high level accuracy, the space
required to maintain variable to value binding information is proportional to the size of the state
space; hence, this approach will be memory intensive in case of systems with large state space.

As for the correctness of the algorithm based on this approach, it trivially follows as all of the
dependences leading to alternative behaviors (as discussed in Section 6.2.2) are preserved.

As an optimization, SDD (introduced in the next section) can be leveraged to detect dynamic
dependence guided by static program dependence information and then validate the dynamic de-
pendence based on dynamic information.

6.3.4 Pseudo Dynamic Dependences (SDD)

An alternative to PDD is to use static program dependence information. In this approach, de-
pendence is triggered when the transitions are mutually statically dependent. As the number of
transitions is finite, the space requirement to maintain dependence information for these transitions
will be finite and independent of the size state space; hence, the approach will scale well even in the
case of systems with large state space.

However, as the triggered dependences are based on static information, they may lead to false

155

CHAPTER 6. PARTIAL ORDER REDUCTION

positives. Hence, the accuracy of this approach will be lower than that of the purely dynamic
approach.

As for the correctness of the algorithm based on this approach, it will trivially follow provided
the static program dependences are a sound abstraction of the runtime dynamic dependences.

6.3.5 Dependence-based Equivalence Classes (DEC)

In SDPOR, the current transition is processed along with every preceding transition in the current
execution path. This is sub-optimal as it is possible that an array access operation is checked against
a lock operation for dependence. As these operations are incompatible in terms of dependence, we can
resort to incompatibility detection to avoid such unnecessary comparisons. Even this optimization
will be sub-optimal as the the entire execution path is still traversed. To address this issue, the
transitions can be partitioned into equivalence classes based on dependences they participate in and
the execution path projections based on these equivalence classes can be traversed. Although this
reduces the complexity by a constant factor, this optimization will reduce the overall cost in large
state spaces and in case of long execution paths.

6.4 Empirical Evaluation

6.4.1 Implementation

The proposed POR techniques was realized by implementing the sufficient set selection algorithm
as a scheduling strategist in Bogor7 model checker. Additional strategists to combine the proposed
techniques with other POR techniques was also implemented. The static dependence information
calculation has been layered on top of the equivalence class implementation available in the Indus8

project. These implementations have been composed in Bandera9 to realize a pipeline that accepts
Java class files as inputs, performs slicing to preserve deadlocks, generates Bogor compatible model
of the slice, and checks model for property violation.

6.4.2 Experimental Setup

Various examples from the Bandera project were used as test inputs to evaluate the proposed
techniques. Brief descriptions of these examples are given below.

Alarm Clock (AC) A clock continually updates time and notifies clients registered for alarms. AC1,
AC2, and AC3 are three variations of this example.

Bounded Buffer (BB) Two clients exchange data via add and remove operations through a bounded
buffer. BB1, BB4, and BB8 are three variations of this example.

Deadlock (DL) The classic deadlock example involving two locks being obtained in different order.
DL1, DL2, and DL3 are three variations of this example.

7http://bogor.projects.cis.ksu.edu
8http://indus.projects.cis.ksu.edu
9http://bandera.projects.cis.ksu.edu

156

CHAPTER 6. PARTIAL ORDER REDUCTION

Dining Philosopers (DP) The classic problem of dining philosophers. DP1, DP2, DP3, DP4, DP5,
and DP6 are six variations of this example.

Disk Scheduler (DS) A disk scheduler is shared by a few disk Readers to concurrent read various
cylinders on a disk. DS1, DS2, DS4, and DS7 are four variations of this example.

Molecular Dynamic (MD) A parallelized simulation of molecular dynamics (available as part of Java
Grande benchmark). MD3 is a variation of this example.

Ray Tracing (RT) A parallelized 3D ray tracing program. RT3 is a variation of this example.

Pipeline (PL) A simulation of a work pipeline in which each stage is handled by a different thread.
PL1 is a variation of this example.

Producer-Consumer (PC) Producers communicate data to consumers via a common buffer. Unlike
in the bounded buffer program, the data flow is unidirectional. PC3 and PC4 are two variations
of this example.

Readers-Writers (RW) The classic problem of concurrent readers and writers. RW1, RW2, RW3,
RW4, and RW5 are five variations of this example.

Replicated Workers (RP) A realization of the common replicated workers pattern. RP12, RP13,
RP14, RP15, and RP18 are five variations of this example.

Sleeping Barbers (SB) The classic problem of sleeping barbers. SB1, SB2, and SB4 are three vari-
ations of this example.

In terms of complexity, the code base of the examples is small (in the order of few KB of
application class bytecodes), but they are inherently complex as each example involves at least three
concurrent threads. More than one variant is considered for all but one example.

For each variant, nine experiments were conducted. These experiments were identical in terms of
the input program and the generated slice and model. They differed in the kind of POR technique
employed during model checking. The nine different POR configurations are given below.

E The POR technique (EPOR) that relies on dynamic detection of independent transitions based
on the non-reachability of shared objects [DHRR04] was applied.

SC Conditional stubborn set (SPD-CSS) based on static program dependence information was
applied.

SC+E SPD-CSS and EPOR techniques were applied in order.

SD Stateful dynamic POR technique (SDPOR) based on PDD was applied along with DEC opti-
mizations.

E+SD EPOR and SDPOR (as in SD configuration) were applied in order.

SC+F SPD-CSS was applied with full enabled set coverage.

SC+E+F SPD-CSS and EPOR were applied in order with FESC.

SD+F SDPOR (as in SD configuration) was applied with FESC.

E+SD+F EPOR and SDPOR (as in E+SD configuration) were applied with FESC.

157

CHAPTER 6. PARTIAL ORDER REDUCTION

In all of the nine configurations, heap and process symmetry reductions [RDHI03] and collapse
compression optimizations were applied along with the technique to aggregate transitions involving
local variables.

All experiments were executed on the JVM available as part of Sun JDK 1.5.0 08 with 15GB
of maximum heap space on multi-processor Linux boxes. As the pipeline and its components were
single threaded, only one processor was used for computation. All experiments were allowed to run
for up to 10 hours (36,000 seconds). Experiments that did not finish within the allotted time were
terminated.

6.4.3 System Level Experimental Results

For each input program and each configuration, the raw exploration data was collected in terms
(aspects) of the number of explored states (States), matched states (Matched), explored transitions
(Transitions) and uncovered errors (Errors). The total time and maximum memory required to
execute the entire analysis and model checking pipeline (Time) was also recored.

The data for each aspect of each input program and configuration combination is given in the
tables Table 6.1 thru Table 6.9. The data for each aspect is split into two tables: a) the data
corresponding to completing executions and b) the data corresponding to terminated executions
(due to time limit).

Time The data in Table 6.1 corresponds to the total time taken to execute the entire pipeline
on each input program in different configurations. There were a few input programs that were
terminated after 10 hours of execution, and these are not presented in the table.

The data indicates that the proposed approaches require time comparable to that required by
EPOR-based approach. In case of long running model checks, the combination of EPOR and SD-
POR based on pure dynamic approach (SD+E) affects 96-69% and 99-80% reduction in state space
exploration time with and without FESC, respectively. SDPOR approach without EPOR provides
comparable reductions as well. In many examples, the time taken by SPD-CSS (SC) approach is
comparable to that of EPOR (E) approach.

In terms of time, in non-FESC setting, the proposed approaches are comparable or better than
the most optimal EPOR approach (available in Bogor).

Space The data in Table 6.2 corresponds to the maximum memory required to execute the entire
pipeline on each input program in different configurations. The data was collected by sampling the
JVM at 5 second interval for the maximum allocated memory. Allocated memory is the memory
procured by the JVM from the OS, and not all of the allocated memory is used by the heap. Hence,
the data may be inaccurate.

In case of completed configurations with non-trivial state space, while there are cases where the
proposed approaches fair better than E configuration and vice versa, the memory consumption of the
proposed approaches are comparable to that of the EPOR approach. In case of FESC configurations,
the configurations follow the complexity analysis and consume more memory as they cover larger
state space.

In almost all terminated FESC configurations, the maximum allowed heap space is consumed.
Hence, it is safe to conclude that FESC configurations on programs with non-trivial state space will

158

CHAPTER 6. PARTIAL ORDER REDUCTION

Conf SC SD SC+E E+SD E SC+F SD+F SC+F+E E+SD+F
AC1 10128 1574 7351 588 36013 36052 36065 36049 11151
AC2 684 474 442 147 476 1182 830 691 297
AC3 844 566 425 138 424 966 622 443 152
BB1 69 56 45 46 42 49 49 52 49
BB4 66 60 51 50 67 158 157 90 76
BB8 60 58 50 48 52 44 48 44 50
DL1 52 52 53 48 50 39 53 39 43
DL2 75 48 44 53 40 47 37 37 37
DL3 64 47 46 54 41 40 39 39 50
DP1 54 57 39 50 47 40 50 42 41
DP2 57 57 49 49 37 45 43 49 51
DP3 64 52 50 38 33 54 52 56 51
DP4 65 58 45 47 53 46 41 50 52
DP5 69 51 47 50 49 65 59 56 54
DP6 64 40 41 44 34 64 65 55 53
MD3 36019 36247 5469 1564 36012 36081 36288 5497 1629
RT3 36011 13314 36014 1830 24263 36034 13287 36027 1827
PL1 1446 128 714 55 119 1746 126 748 53
PC3 75 53 47 49 36 45 42 40 43
PC4 61 60 52 49 46 62 41 43 45
RW1 53 48 41 49 36 65 53 50 49
RW2 123 131 94 95 60 113 151 82 95
RW3 69 50 45 43 40 46 46 53 40
RW4 70 57 51 51 49 63 53 51 49
RW5 78 73 60 57 62 78 69 63 59
RP13 337 162 325 338 619 317 156 338 332
RP15 14357 5956 16302 2619 13515 19593 6816 18419 2654
RP18 629 377 621 478 506 628 364 640 474
SB1 63 48 41 34 64 42 34 39 33
SB4 151 201 135 130 2415 142 210 139 135

Table 6.1: Total time (in seconds) taken to execute various configuration on various input programs.
All unmentioned input programs ran for the entire 10 hours.

159

CHAPTER 6. PARTIAL ORDER REDUCTION

be heavily memory intensive. In other terminated non-FESC configurations, SDPOR configurations
are more memory intensive than the other configurations; this follows the complexity analysis of
SDPOR. Interestingly, every terminated non-FESC SC configurations require less memory in com-
parison with the non-FESC E configuration. Hence, SC configurations may be better suited for
memory-scarce environments.

States and Transitions The data in Table 6.3 corresponds to the number of visited states while
model checking the input programs in various configurations. The data relative to E configuration
is given in Table 6.4. Similarly, the number of matched states (revisited fully explored states) and
number of executed transitions while model checking are given in Table 6.5 (Table 6.6) and Table 6.7
(Table 6.8), respectively.

In case of completed configurations, from the data in Table 6.4a, more states are explored in
SC and SC+F configurations due to the inaccuracies in the static program dependence. This is
also true for SD and SD+F configurations in the context of programs with trivial state space. The
configurations that combine EPOR and the proposed approaches almost always perform better than
the E configuration.

In case of terminated configurations, the above observations hold in the allotted execution time
(Table 6.4b). Hence, it is most likely, by projection, the above observations will hold if these
configurations are executed to completion.

In case of input programs with zero errors, as expected, the state count in non-FESC configuration
are very close or identical to that of their FESC counterpart.

All of the above observations also hold for matched states and transition data as well.

Errors The data in Table 6.9 corresponds to the number of errors uncovered in the input programs
in various configurations. There were a few input programs with zero errors, and these are not
presented in the table.

From the data corresponding to the completely executed configurations (in Table 6.9a), when
FESC is not used, the number of errors detected by the proposed approaches is always less than or
equal to those detected by EPOR approach. When FESC is used, the number of errors detected
by the proposed approaches is lower than those detected by EPOR approach for AC1 but higher
for BB4. This clearly indicates that there are programs for which either approaches can perform
relatively better.

In the case of terminated configurations, the data indicates that SPD-CSS (SC) approach quickly
uncovers errors in the input programs; SPD-CSS uncovers errors quicker than the more optimal SD-
POR (SD) approach. This behavior may be due to the non-determinism in the construction of the
sufficient sets (the data for DS4 supports this observation). In cases (DS7) where all configurations
detect errors, more errors are detected in the SC configuration in comparison with the E configu-
ration. However, due to incompletion and based on the previous results, it is possible that the E
configuration will detect more errors than the other configuration upon completion.

Based on the preliminary data and theoretical reasoning, I conjecture that the proposed ap-
proaches will uncover errors quickly with lower number of false positives in comparison with the
optimal EPOR-based approach. However, given the small sample space and incomplete experiments
(in terms of execution), more experimentation is required to empirical prove the above conjecture.

160

CHAPTER 6. PARTIAL ORDER REDUCTION

Conf SC SD SC+E E+SD E SC+F SD+F SC+F+E E+SD+F
AC1 2163 2228 3103 3124 4209 6178 6280 6905 7414
AC2 2079 1016 1009 516 769 6311 7184 7243 7113
AC3 1013 1419 779 578 495 1774 1865 1859 1698
BB1 594 934 1197 1144 94 1252 98 1252 1148
BB4 60 73 93 93 92 100 98 100 100
BB8 59 72 91 91 91 92 92 92 92
DL1 60 72 92 91 91 92 92 92 92
DL2 59 71 91 91 90 91 91 91 91
DL3 59 71 91 91 90 91 91 91 91
DP1 533 71 91 91 91 117 117 117 117
DP2 615 72 91 91 91 128 128 128 128
DP3 533 72 91 91 91 128 128 128 128
DP4 903 92 92 92 92 867 194 194 194
DP5 596 92 93 93 92 820 152 153 153
DP6 515 92 93 93 92 692 151 151 151
MD3 5937 14842 6135 5932 5890 10539 14407 6207 5966
RT3 5526 6381 5960 5607 5783 6942 6640 6666 5652
PL1 1358 1151 829 232 799 1641 1269 1481 248
PC3 430 73 93 93 92 95 95 95 95
PC4 1046 1143 1352 1351 95 1356 1356 1460 1356
RW1 654 1022 106 106 106 1283 1152 107 107
RW2 1422 981 563 717 505 1182 826 475 628
RW3 144 92 93 93 93 94 94 94 94
RW4 987 1039 94 94 93 1353 1143 95 95
RW5 1019 625 60 61 59 693 630 64 65
RP13 2227 2074 1322 1286 872 1409 1347 1631 1956
RP15 5119 13922 6405 7468 6382 12220 14390 10279 7954
RP18 2736 1480 1486 2151 2306 2971 3126 3612 4041
SB1 392 74 96 95 3314 632 715 129 127
SB4 1150 604 851 1015 628 830 760 849 824

(a)

Conf SC SD SC+E E+SD E SC+F SD+F SC+F+E E+SD+F
DS1 3075 12172 6221 14043 6579 8462 14268 13351 14300
DS2 2033 12356 6665 14247 5549 10150 14252 13792 14293
DS4 4447 10549 7910 13811 7261 12701 14272 13918 14315
DS7 2618 8645 4969 7226 3599 7247 7967 7358 7282

RP12 7325 9671 7541 14613 8189 14940 11424 14495 14735
RP14 6378 9378 6990 9033 7357 12882 12178 11224 11003
SB2 7284 11667 8253 10583 8723 12376 14894 12529 12682

(b)

Table 6.2: Maximum memory (in MB) consumed to execute in various configuration on various
input programs. (a) is the memory consumption for input programs on which the end-to-end exe-
cution completed within 10 hours for at least one configuration. (b) is the memory consumption for
input programs on which the end-to-end execution was terminated for all configurations.

161

CHAPTER 6. PARTIAL ORDER REDUCTION

Conf SC SD SC+E E+SD E SC+F SD+F SC+F+E E+SD+F
AC1 161172 47522 78869 9240 256479 35922 35478 18928 8248
AC2 18051 12766 5568 1857 11889 18051 12766 5568 1857
AC3 27470 16053 6815 1946 11030 27470 16053 6815 1946
BB1 1586 929 794 644 90 1586 929 794 644
BB4 46 44 7 5 122 257 255 109 50
BB8 152 149 21 23 28 152 149 21 23
DL1 173 113 115 89 178 173 135 115 111
DL2 47 34 8 8 8 47 34 8 8
DL3 61 43 7 4 7 61 46 7 7
DP1 746 304 30 16 30 746 304 30 16
DP2 798 311 51 18 51 798 325 51 28
DP3 798 311 51 18 51 798 325 51 28
DP4 1618 373 30 16 30 1621 376 30 16
DP5 1910 442 8 9 153 1930 448 8 9
DP6 1910 442 8 9 153 1930 448 8 9
MD3 11908 9150 4419 2478 200622 10383 8463 4419 2478
RT3 1831 22909 2298 171 4616 1812 22909 2186 171
PL1 301293 12710 69682 82 7379 301293 12710 69682 82
PC3 291 287 48 48 57 291 287 48 48
PC4 1007 582 88 88 103 1007 582 88 88
RW1 1403 861 102 72 124 1415 875 104 72
RW2 13338 9100 5186 2880 1214 13342 10335 4947 4215
RW3 1403 861 102 72 124 1415 875 104 72
RW4 1661 979 121 88 134 1671 984 121 89
RW5 5113 2616 173 177 58 5161 2625 180 183
RP13 5760 1619 1788 1587 6577 5760 1619 1788 1587
RP15 1043247 251698 568928 95657 612954 1043247 251698 568928 95657
RP18 48232 20550 23408 14497 26854 48232 20550 23408 14497
SB1 1870 743 442 54 11205 1870 803 442 114
SB4 31343 22866 19349 11167 213865 31346 23298 19353 11599

(a)

Conf SC SD SC+E E+SD E SC+F SD+F SC+F+E E+SD+F
DS1 484320 280717 245323 154538 318652 107674 186871 170504 110420
DS2 586207 312253 302288 175784 439430 126848 192269 193605 119919
DS4 927413 199748 256656 122645 282599 245509 164164 151804 96442
DS7 802545 247030 136911 77217 157684 111268 74080 75774 43290

RP12 2854899 320514 1757174 636581 1010626 1849804 316597 1526923 571418
RP14 1496403 523174 916175 387088 480884 1222803 503619 850187 377415
SB2 3567474 1025894 1458629 599683 722112 2035248 1001193 1167223 568748

(b)

Table 6.3: The count of encountered states in various configuration on various input programs. (a)
is the state count for input programs on which the end-to-end execution completed within 10 hours
for at least one configuration. (b) is the state count for input programs on which the end-to-end
execution was terminated for all configurations.

162

CHAPTER 6. PARTIAL ORDER REDUCTION

Conf SC SD SC+E E+SD SC+F SD+F SC+F+E E+SD+F
AC1 -95307 -208957 -177610 -247239 -220557 -221001 -237551 -248231
AC2 6162 877 -6321 -10032 6162 877 -6321 -10032
AC3 16440 5023 -4215 -9084 16440 5023 -4215 -9084
BB1 1496 839 704 554 1496 839 704 554
BB4 -76 -78 -115 -117 135 133 -13 -72
BB8 124 121 -7 -5 124 121 -7 -5
DL1 -5 -65 -63 -89 -5 -43 -63 -67
DL2 39 26 0 0 39 26 0 0
DL3 54 36 0 -3 54 39 0 0
DP1 716 274 0 -14 716 274 0 -14
DP2 747 260 0 -33 747 274 0 -23
DP3 747 260 0 -33 747 274 0 -23
DP4 1588 343 0 -14 1591 346 0 -14
DP5 1757 289 -145 -144 1777 295 -145 -144
DP6 1757 289 -145 -144 1777 295 -145 -144
MD3 -188714 -191472 -196203 -198144 -190239 -192159 -196203 -198144
RT3 -2785 18293 -2318 -4445 -2804 18293 -2430 -4445
PL1 293914 5331 62303 -7297 293914 5331 62303 -7297
PC3 234 230 -9 -9 234 230 -9 -9
PC4 904 479 -15 -15 904 479 -15 -15
RW1 1279 737 -22 -52 1291 751 -20 -52
RW2 12124 7886 3972 1666 12128 9121 3733 3001
RW3 1279 737 -22 -52 1291 751 -20 -52
RW4 1527 845 -13 -46 1537 850 -13 -45
RW5 5055 2558 115 119 5103 2567 122 125
RP13 -817 -4958 -4789 -4990 -817 -4958 -4789 -4990
RP15 430293 -361256 -44026 -517297 430293 -361256 -44026 -517297
RP18 21378 -6304 -3446 -12357 21378 -6304 -3446 -12357
SB1 -9335 -10462 -10763 -11151 -9335 -10402 -10763 -11091
SB4 -182522 -190999 -194516 -202698 -182519 -190567 -194512 -202266

(a)

Conf SC SD SC+E E+SD SC+F SD+F SC+F+E E+SD+F
DS1 165668 -37935 -73329 -164114 -210978 -131781 -148148 -208232
DS2 146777 -127177 -137142 -263646 -312582 -247161 -245825 -319511
DS4 644814 -82851 -25943 -159954 -37090 -118435 -130795 -186157
DS7 644861 89346 -20773 -80467 -46416 -83604 -81910 -114394

RP12 1844273 -690112 746548 -374045 839178 -694029 516297 -439208
RP14 1015519 42290 435291 -93796 741919 22735 369303 -103469
SB2 2845362 303782 736517 -122429 1313136 279081 445111 -153364

(b)

Table 6.4: The E configuration relative count of encountered states in various configuration on
various input programs. (a) is the state count for input programs on which the end-to-end execution
completed within 10 hours for at least one configuration. (b) is the state count for input programs
on which the end-to-end execution was terminated for all configurations.

163

CHAPTER 6. PARTIAL ORDER REDUCTION

Conf SC SD SC+E E+SD E SC+F SD+F SC+F+E E+SD+F
AC1 114976 14334 52419 1441 415793 26061 12167 13901 2324
AC2 11475 5099 3889 485 13067 11475 5099 3889 485
AC3 21477 7469 4863 342 11239 21477 7469 4863 342
BB1 835 309 413 233 90 838 343 420 265
BB4 27 25 1 0 88 242 239 104 45
BB8 56 52 13 10 28 56 52 14 15
DL1 83 43 43 27 114 83 56 43 40
DL2 20 11 1 1 1 20 11 1 1
DL3 24 14 0 0 0 24 14 0 0
DP1 792 272 36 4 57 800 274 41 6
DP2 831 276 63 5 99 843 284 70 14
DP3 831 276 63 5 99 843 284 70 14
DP4 2056 334 36 4 57 2092 336 41 6
DP5 2304 417 2 1 346 2359 423 3 3
DP6 2304 417 2 1 346 2359 423 3 3
MD3 743 0 647 43 197416 471 0 647 43
RT3 156 5276 1119 5 3569 155 5276 1033 5
PL1 362901 13425 78117 17 15859 362901 13425 78117 17
PC3 87 84 31 31 44 87 84 31 31
PC4 615 284 64 64 85 615 284 64 64
RW1 1453 733 127 66 296 1493 770 139 79
RW2 10795 6438 3480 1606 2559 11328 7562 3758 2876
RW3 1453 733 127 66 296 1493 770 139 79
RW4 1647 835 154 79 299 1702 854 157 93
RW5 4744 1937 114 75 108 4831 1995 129 84
RP13 1764 747 641 495 6562 1764 747 641 495
RP15 753132 108054 328218 43268 1010878 753132 108054 328218 43268
RP18 34787 10783 13496 7225 40226 34787 10783 13496 7225
SB1 1650 663 147 8 22139 1650 683 147 24
SB4 24638 16879 12790 6408 493092 24770 17254 12922 6783

(a)

Conf SC SD SC+E E+SD E SC+F SD+F SC+F+E E+SD+F
DS1 176323 78041 97748 60075 137135 37712 51978 67193 42890
DS2 213654 86737 121775 68830 188600 44942 53477 76500 46644
DS4 219615 44681 83012 38192 96813 57062 36282 48727 30033
DS7 528986 124269 78195 30770 129614 61175 28997 40260 17457

RP12 1773213 157402 1028687 309869 2168202 1143564 155417 893958 281616
RP14 701784 207986 421679 153376 961519 566817 200552 389611 149814
SB2 3870150 1223108 2250433 922882 3246748 2163348 981585 1825146 881842

(b)

Table 6.5: The count of encountered matched states in various configuration on various input
programs. (a) is the matched state count for input programs on which the end-to-end execution
completed within 10 hours for at least one configuration. (b) is the matched state count for input
programs on which the end-to-end execution was terminated for all configurations.

164

CHAPTER 6. PARTIAL ORDER REDUCTION

Conf SC SD SC+E E+SD SC+F SD+F SC+F+E E+SD+F
AC1 -300817 -401459 -363374 -414352 -389732 -403626 -401892 -413469
AC2 -1592 -7968 -9178 -12582 -1592 -7968 -9178 -12582
AC3 10238 -3770 -6376 -10897 10238 -3770 -6376 -10897
BB1 745 219 323 143 748 253 330 175
BB4 -61 -63 -87 -88 154 151 16 -43
BB8 28 24 -15 -18 28 24 -14 -13
DL1 -31 -71 -71 -87 -31 -58 -71 -74
DL2 19 10 0 0 19 10 0 0
DL3 24 14 0 0 24 14 0 0
DP1 735 215 -21 -53 743 217 -16 -51
DP2 732 177 -36 -94 744 185 -29 -85
DP3 732 177 -36 -94 744 185 -29 -85
DP4 1999 277 -21 -53 2035 279 -16 -51
DP5 1958 71 -344 -345 2013 77 -343 -343
DP6 1958 71 -344 -345 2013 77 -343 -343
MD3 -196673 -197416 -196769 -197373 -196945 -197416 -196769 -197373
RT3 -3413 1707 -2450 -3564 -3414 1707 -2536 -3564
PL1 347042 -2434 62258 -15842 347042 -2434 62258 -15842
PC3 43 40 -13 -13 43 40 -13 -13
PC4 530 199 -21 -21 530 199 -21 -21
RW1 1157 437 -169 -230 1197 474 -157 -217
RW2 8236 3879 921 -953 8769 5003 1199 317
RW3 1157 437 -169 -230 1197 474 -157 -217
RW4 1348 536 -145 -220 1403 555 -142 -206
RW5 4636 1829 6 -33 4723 1887 21 -24
RP13 -4798 -5815 -5921 -6067 -4798 -5815 -5921 -6067
RP15 -257746 -902824 -682660 -967610 -257746 -902824 -682660 -967610
RP18 -5439 -29443 -26730 -33001 -5439 -29443 -26730 -33001
SB1 -20489 -21476 -21992 -22131 -20489 -21456 -21992 -22115
SB4 -468454 -476213 -480302 -486684 -468322 -475838 -480170 -486309

(a)

Conf SC SD SC+E E+SD SC+F SD+F SC+F+E E+SD+F
DS1 39188 -59094 -39387 -77060 -99423 -85157 -69942 -94245
DS2 25054 -101863 -66825 -119770 -143658 -135123 -112100 -141956
DS4 122802 -52132 -13801 -58621 -39751 -60531 -48086 -66780
DS7 399372 -5345 -51419 -98844 -68439 -100617 -89354 -112157

RP12 -394989 -2010800 -1139515 -1858333 -1024638 -2012785 -1274244 -1886586
RP14 -259735 -753533 -539840 -808143 -394702 -760967 -571908 -811705
SB2 623402 -2023640 -996315 -2323866 -1083400 -2265163 -1421602 -2364906

(b)

Table 6.6: The E configuration relative count of encountered matched states in various configu-
ration on various input programs. (a) is the matched state count for input programs on which the
end-to-end execution completed within 10 hours for at least one configuration. (b) is the matched
state count for input programs on which the end-to-end execution was terminated for all configura-
tions.

165

CHAPTER 6. PARTIAL ORDER REDUCTION

Conf SC SD SC+E E+SD E SC+F SD+F SC+F+E E+SD+F
AC1 2617743 619812 1471300 149699 5599303 506774 425965 363324 125174
AC2 443403 273092 165798 38522 418901 443403 273092 165798 38522
AC3 828223 482608 238414 55827 499105 828223 482608 238414 55827
BB1 7772 4677 5576 4493 2448 7775 4711 5583 4525
BB4 301 282 101 83 869 727 707 306 230
BB8 810 796 379 408 507 810 796 380 413
DL1 665 388 491 324 809 665 512 491 448
DL2 182 132 77 77 77 182 132 77 77
DL3 198 133 86 65 86 198 154 86 86
DP1 2426 925 266 173 287 2434 927 271 175
DP2 2584 950 391 192 427 2596 990 398 243
DP3 2589 955 396 197 432 2601 995 403 248
DP4 6197 1268 321 228 342 6238 1275 326 230
DP5 7123 1564 142 144 1434 7200 1578 143 146
DP6 7115 1556 138 140 1426 7192 1570 139 142
MD3 7251107 2762960 529098 103302 8287084 6303446 2105125 529098 103302
RT3 1455033 435667 711010 42604 1247000 1437594 435667 702675 42604
PL1 1081729 46687 323185 553 76291 1081729 46687 323185 553
PC3 2189 2177 1363 1375 1637 2189 2177 1363 1375
PC4 9986 7488 3460 3469 4057 9986 7488 3460 3469
RW1 5480 3564 1404 989 1746 5578 3689 1432 1002
RW2 47032 30692 22955 12789 12312 47612 35327 22517 18766
RW3 5480 3564 1404 989 1746 5578 3689 1432 1002
RW4 7063 4426 1794 1311 2091 7190 4490 1797 1335
RW5 22702 12243 2975 2665 2116 23098 12346 3058 2787
RP13 98168 31180 63785 60595 362027 98168 31180 63785 60595
RP15 4823439 1047995 3259745 413817 5709125 4823439 1047995 3259745 413817
RP18 252853 105190 154699 96363 321962 252853 105190 154699 96363
SB1 5656 2090 1502 256 47317 5656 2300 1502 462
SB4 90649 63264 56343 31290 984758 90794 64574 56489 32600

(a)

Conf SC SD SC+E E+SD E SC+F SD+F SC+F+E E+SD+F
DS1 13130000 8420000 10761570 6858336 14480000 2980661 5605795 7540000 4895085
DS2 15861823 9359041 13180000 7805424 19900000 3491532 5770000 8560000 5312019
DS4 29990000 6570000 12170000 5874295 13800000 8020000 5430000 7180000 4635284
DS7 14401190 4104736 4603123 2522397 5143947 2597494 1721830 2576842 1417963

RP12 9006579 967201 5700000 2055708 7522067 5880000 955702 4980000 1812125
RP14 5400914 2018866 3419295 1599607 6417914 4373007 1962390 3205777 1570605
SB2 12208052 3970000 6286847 2661671 10869856 6910000 3534082 5009925 2521013

(b)

Table 6.7: The count of executed transitions in various configuration on various input programs.
(a) is the transition count for input programs on which the end-to-end execution completed within
10 hours for at least one configuration. (b) is the transition count for input programs on which the
end-to-end execution was terminated for all configurations.

166

CHAPTER 6. PARTIAL ORDER REDUCTION

Conf SC SD SC+E E+SD SC+F SD+F SC+F+E E+SD+F
AC1 -2981560 -4979491 -4128003 -5449604 -5092529 -5173338 -5235979 -5474129
AC2 24502 -145809 -253103 -380379 24502 -145809 -253103 -380379
AC3 329118 -16497 -260691 -443278 329118 -16497 -260691 -443278
BB1 5324 2229 3128 2045 5327 2263 3135 2077
BB4 -568 -587 -768 -786 -142 -162 -563 -639
BB8 303 289 -128 -99 303 289 -127 -94
DL1 -144 -421 -318 -485 -144 -297 -318 -361
DL2 105 55 0 0 105 55 0 0
DL3 112 47 0 -21 112 68 0 0
DP1 2139 638 -21 -114 2147 640 -16 -112
DP2 2157 523 -36 -235 2169 563 -29 -184
DP3 2157 523 -36 -235 2169 563 -29 -184
DP4 5855 926 -21 -114 5896 933 -16 -112
DP5 5689 130 -1292 -1290 5766 144 -1291 -1288
DP6 5689 130 -1288 -1286 5766 144 -1287 -1284
MD3 -1035977 -5524124 -7757986 -8183782 -1983638 -6181959 -7757986 -8183782
RT3 208033 -811333 -535990 -1204396 190594 -811333 -544325 -1204396
PL1 1005438 -29604 246894 -75738 1005438 -29604 246894 -75738
PC3 552 540 -274 -262 552 540 -274 -262
PC4 5929 3431 -597 -588 5929 3431 -597 -588
RW1 3734 1818 -342 -757 3832 1943 -314 -744
RW2 34720 18380 10643 477 35300 23015 10205 6454
RW3 3734 1818 -342 -757 3832 1943 -314 -744
RW4 4972 2335 -297 -780 5099 2399 -294 -756
RW5 20586 10127 859 549 20982 10230 942 671
RP13 -263859 -330847 -298242 -301432 -263859 -330847 -298242 -301432
RP15 -885686 -4661130 -2449380 -5295308 -885686 -4661130 -2449380 -5295308
RP18 -69109 -216772 -167263 -225599 -69109 -216772 -167263 -225599
SB1 -41661 -45227 -45815 -47061 -41661 -45017 -45815 -46855
SB4 -894109 -921494 -928415 -953468 -893964 -920184 -928269 -952158

(a)

Conf SC SD SC+E E+SD SC+F SD+F SC+F+E E+SD+F
DS1 -1350000 -6060000 -3718430 -7621664 -11499339 -8874205 -6940000 -9584915
DS2 -4038177 -10540959 -6720000 -12094576 -16408468 -14130000 -11340000 -14587981
DS4 16190000 -7230000 -1630000 -7925705 -5780000 -8370000 -6620000 -9164716
DS7 9257243 -1039211 -540824 -2621550 -2546453 -3422117 -2567105 -3725984

RP12 1484512 -6554866 -1822067 -5466359 -1642067 -6566365 -2542067 -5709942
RP14 -1017000 -4399048 -2998619 -4818307 -2044907 -4455524 -3212137 -4847309
SB2 1338196 -6899856 -4583009 -8208185 -3959856 -7335774 -5859931 -8348843

(b)

Table 6.8: The E configuration relative count of executed transitions in various configuration on
various input programs. (a) is the transition count for input programs on which the end-to-end
execution completed within 10 hours for at least one configuration. (b) is the transition count for
input programs on which the end-to-end execution was terminated for all configurations.

167

CHAPTER 6. PARTIAL ORDER REDUCTION

Conf SC SD SC+E E+SD E SC+F SD+F SC+F+E E+SD+F
AC1 5531 250 1982 77 14668 3650 3476 3727 1144
BB4 5 4 2 1 32 216 215 104 46
DL1 2 2 2 2 2 2 2 2 2
DL2 1 1 1 1 1 1 1 1 1
DL3 2 1 2 1 2 2 2 2 2
DP1 1 1 1 1 1 1 1 1 1
DP2 1 1 1 1 1 1 1 1 1
DP3 1 1 1 1 1 1 1 1 1
DP4 1 1 1 1 1 1 1 1 1
DP5 1 1 1 1 1 1 1 1 1
DP6 1 1 1 1 1 1 1 1 1
SB1 6 2 6 2 6 6 6 6 6

(a)

Conf SC SD SC+E E+SD E SC+F SD+F SC+F+E E+SD+F
DS1 6922 3 448 0 0 984 0 0 0
DS2 8672 5 865 1 0 1366 0 0 0
DS4 21 0 0 0 0 0 0 0 0
DS7 10604 2490 4346 2409 4155 2679 1977 2228 2027
SB2 1 1 1 1 1 1 1 1 1

(b)

Table 6.9: The count of errors detected in various configuration on various input programs. (a)
is the error count for input programs on which the end-to-end execution completed within 10 hours
for at least one configuration. (b) is the error count for input programs on which the end-to-end
execution was terminated for all configurations. For unmentioned input programs, the error count
was zero in all configurations.

168

CHAPTER 6. PARTIAL ORDER REDUCTION

6.4.4 State Level Experimental Results

For each input program and each configuration, the raw exploration data was collected in terms
(aspects) of the number of explored states (States), matched states (Matched), explored transitions
(Transitions) and uncovered errors (Errors). The total time (Time) and maximum memory (Mem-
ory) required to execute the entire analysis and model checking pipeline was also recored. In the
data for each input program, this data is presented in the (a) table.

To determine the relative merit of the proposed approach, the data from the non-E configurations
were compared with the data from the E configuration by subtracting the former from the latter,
e.g. States in SC was subtracted from States in E. In the data for each input program, this data is
presented in the (b) table.

While the above evaluation is useful to assess the relative merit of the approaches at a system
level, it is insufficient to evaluate the approaches at a micro (state) level. Further, it is insufficient
to evaluate the approaches in case of terminated experiments. Hence, to facilitate a local and
complimentary evaluation, local (reduction) data at the state level was collected. This data contains
the total number of enabled (E), sufficient (A), and independent (I) transitions encountered at the
visited states of the system. Further, the weighted average of the ratio of sufficient and enabled
transition (A/E) at each visited states of the system was also collected. In case of configurations
involving SDPOR, the total number of dynamic dependences discovered merely via static dependence
information (S) and via pure dynamic approach (D) was collected and the ratio of between these
numbers (D/S) was calculated. In the data for each input program, this data is presented in the (c)
table.

Observations The relative data indicates that the proposed non-FESC SPD-CSS based ap-
proaches are comparable to EPOR based approach in case of programs with trivial state space
and better in case of programs with non-trivial state space.

From the reduction data, the weighted average of the ratio of the size of the sufficient set to
the size of enabled set at a state is similar in case of the SC and SD configurations. This is true
independent of the completion and FESC nature of the configuration. Hence, the effect of the
approaches distributes evenly across the reduced state space.

Similarly, the ratio of the number of dynamic dependences triggered via PDD and via static
program dependences10 is less than or equal to 0.01. This implies that, if possible, dynamic POR
based on PDD should be preferred.

Although experiments dedicated to SDD approach were not conducted, based on the data from
(S) and (D) and the relation between SDD and PDD, it follows that the data for SDD approach
will be the same or better than that for static program dependence. Upon factoring in state local
thread aliveness information, the SDD approach will most likely provide reduction that is better
than SPD-CSS approach but still not better than PDD approach.

6.5 Related Work

As mentioned in the earlier sections, Godefroid presented a collection of POR techniques in his
dissertation [God95]. He acknowledged that the conditional stubborn sets, the most optimal of the

10These dependences are not pruned based on state local thread aliveness information.

169

CHAPTER 6. PARTIAL ORDER REDUCTION

proposed partial order reduction techniques based on dependences to reduce the number of explored
states, was purely theoretical due to lack of a practical approach to calculate transitions reachable
from a state. The proposed technique (SPD-CSS) in Section 6.2 of this chapter leverages program
analysis and addresses this limitation of conditional stubborn sets in a sound and relatively accurate
manner.

Kurshan et al. [KLM+98] described a similar approach based on compile-time calculation of
partial order reduction. Their approach was focused on ensuring the reduction techniques were
non-intrusive of the state space exploration algorithm. Also, they focused on breadth first variant
of the exploration algorithm. In comparison, the proposed approach does modify the exploration
algorithm and is targeted towards the depth first variant of the algorithm.

Stoller [Sto02] described a collection of POR techniques focused on model checking Java pro-
grams. These techniques were based on common synchronization pattern in Java programs — use
of locks to protect shared variables. The basic idea was to increase the instances of same-thread
transition sequences (and lengthen them) by only allowing context switches before lock acquisition
operations and not before access to variables protected by locks. These techniques relied on user
input to classify objects appropriately as required by the techniques; hence, the input could be vali-
dated at runtime. The proposed reduction (SPD-CSS and SDPOR) based on lock acquisition-based
transition dependence is similar to Stoller’s techniques with the exceptions that 1) the proposed
reduction is fully automated as it depends on program analysis and does not require user input and
2) the proposed reduction relies on a weaker premise of mutual exclusion via locking to prohibit
context switches before access to variables.

An alternate approach [FQ03a, FF04] for detecting when thread interleaving can be avoided is
based on the notion of left- and right-movers as proposed in Lipton’s Reduction Theory [Ric75].
The basic idea is to detect and move transitions in an execution history to maximize the length of
same-thread transitions (atomic) sub-sequence while honoring the ordering imposed by inter-thread
communication. This approach relies on user input to annotate intra-thread transition sequences
as being atomic; hence, the approach is amenable to runtime checking of annotations. Given the
similarity between Stoller’s approach and this approach, the comparison with the proposed approach
carries over as is.

Dwyer et al. [DHRR04] proposed a dynamic escape analysis based approach to efficiently calculate
relatively accurate independence information and effect partial order reduction. While this approach
is applicable in state space exploration frameworks where dynamic escape analysis can be easily
implemented, the proposed approach (SPD-CSS) can be applied in any framework that supports
sufficient set calculation.

In the realm of dynamic POR, Godefroid and Flanagan [FQ03b] proposed the first stateless state
space exploration algorithm for acyclic state space. In comparison, SDPOR is stateful, can handle
cyclic state space, and it leverages cheaper static dependence information.

170

CHAPTER 7. CONCLUSION

Chapter 7

Conclusion

7.1 Summary

We1 identified the incorrectness of existing notions of control dependence in the context of modern
programs with zero or more than one exit points. As a solution, we proposed a new trace-based
definitions of control dependences that can seamlessly handle programs with zero or more exit points
written in structure programming languages such as Java as well as unstructured programming
languages such as JVM language and assembly language. The usefulness and correctness of these
definitions was illustrated in the context of program slicing. The feasibility of these definitions was
demonstrated by designing polynomial-time algorithms to calculate control dependences according to
the new definitions; further, the algorithms were implemented and realized in the slicing framework
available in the Indus project.

The interaction between processes of a concurrent system is crucial to understand the behavior
of concurrent systems. In a shared memory computation model, such interaction is captured by
the notion of interference dependence and ready dependence. In an object oriented environment,
it seems that points-to information can be used to calculate interference and ready dependence.
However, it is hard to be accurate with context-free points-to information, and contextual points-
to information is expensive to calculate. To address this situation, we2 proposed an equivalence
class based analysis to discover information about shared data based inter-thread communication.
Specifically, the analysis calculates escape, shared read-write and write-write access, lock coupling,
and wait-notify coupling information that can be (was successfully) used to improve the accuracy of
interference and ready dependence calculation. Leveraging the structural genericity of the analysis,
we easily extended the analysis to calculate intra-thread inter-procedural aliasing information; the
cost and the accuracy of this extended analysis is comparable to that of classic data flow style
points-to analysis. Further, the results from the analysis were employed to improve the accuracy
of program slicing and to realize an efficient and accurate partial order reduction in the context of
program verification via software model checking.

As an alternative to the classic dependence graph based program slicing algorithm, I proposed
a simple parametric static program slicing algorithm that operates on dependence relations (and
not graphs). Using this algorithm, I successfully realized algorithms for the most common forms

1This was a collaborative effort with Torben Amtoft, Anindya Banerjee, Matthew B. Dwyer, and John Hatcliff.
2This was a collaborative effort with John Hatcliff.

171

CHAPTER 7. CONCLUSION

of slicing: backward, forward, and control. With a minor alteration, the same algorithm was used
to realize calling context sensitive algorithms for various forms of slicing. Also, given the gradual
increase in forms of and interest in context sensitivity, I proposed trace/property sensitivity, a
general form of context sensitivity that can uniformly capture various forms of context sensitivities.
As another contribution, I discovered scoping as an approach to meaningfully and accurately scale
program slicing and other analysis in the context of large software. Beyond these fundamental
contributions, I successfully implemented all of the proposed approaches/techniques in the first
publicly available program slicing framework for Java in the Indus project. Results from experiments
based on this implementation indicated that the proposed approaches are a step in the enabling the
application of program slicing and other analysis in the context of large scale software.

While many have proposed various partial order reduction based approaches to alleviate the
cost of model checking concurrent systems, countably few have explored the possibility of leveraging
program analysis information to affect partial order reduction during state space exploration. As an
experiment, I devised an algorithm to leverage the information calculated by the previously proposed
equivalence class based analysis to efficiently realize partial order reduction during software model
checking. I proposed the first stateful dynamic partial order reduction technique based on the
static program dependence information. The data from preliminary experiments indicate that these
techniques are simpler to realize, cost effective, and comparably accurate to more sophisticated,
accurate, and dynamic partial order reduction techniques.

In summary, I have proposed (and demonstrated) a collection of feasible approaches/techniques
to address scalability and accuracy issues common to program analysis of concurrent object oriented
programs.

As every innovator, I hope and believe these contributions will make an impact on mainstream
software development.

7.2 Future Work

Measure In every topic studied in this research effort, there was a lack of measure, either absolute
or relative, to evaluate and compare the relative merits of alternative techniques. The best available
approach to measure was to implement the techniques and compare them based on various aspects
of the results, e.g. the best approach to compare existing slicing algorithms with proposed slicing
algorithm was to implement the algorithms and compare the size of resulting slice. However, the
ideal approach would have been to have a model onto which the inputs and outputs of various
techniques could be mapped and to evaluate the techniques in the context of such a model. Such
comparison would be accurate (due to being based on common model), noise-free (due to the absence
of any external and hidden influence possible during empirical evaluation) and easy (due to reuse of
previous results established w.r.t. the common model).

In terms of realizing such a model, one possibility is for such a model to quantitatively capture
various aspects of input programs in terms of a set of static features and a set of dynamic features
that can be derived from the set of static features.

Independent of the approach, devising such a model that is simple to use is certainly an inter-
esting, challenging, and relevant effort.

Modularity, Compositionality, Openness, and Heterogeneity The proposed approaches
assumed that the whole program/system is available; however, this is untrue in case of systems

172

CHAPTER 7. CONCLUSION

that composed at runtime via facilities such as dynamic class loading and reflection. Native code is
another aspect that contributes to this issue. Further, as the size of the systems increases, the cost
of various approaches will increase. A solution to curb the increasing cost is to design approaches
that are modular and compositional.

However, the heterogeneity (e.g. Java-Python bridge) and openness (e.g. native code) of systems
can be almost impossible to handle and, interestingly, almost all systems exhibit at least one of these
traits. Hence, analysis should be capable of handling these traits.

In other words, future solutions need to be modular and compositional as well as specification-
based in a manner that they can seamlessly handle open and/or heterogeneous systems.

Property Sensitivity Given the genericity of property sensitivity, most forms of sensitivities
used by the program analysis can be cast as a form of property sensitivity. Hence, it would be an
interesting effort to develop a formal framework to reason about property sensitivity. Given the
trend towards techniques being more application, domain, and/or usage-pattern specific, a generic
framework to reason about techniques based on their sensitivity towards properties would be helpful.

Trace-based Reasoning Many recent scalable and accurate program analyses track the state
of the system at a level of abstraction that is closer to the actual runtime state of the system,
e.g. calling context sensitive points-to analysis. As level of abstraction decreases, the analyses seem
to be processing abstract execution history of the system. In other words, analyses are processing
traces of the system. Hence, it would be appropriate and probably simpler to reason about program
analyses in terms of traces (the appropriate abstraction formalism) as opposed reasoning using
formalisms higher than the employed abstraction. An ideal solution would be to develop a trace-
based framework for reasoning about program analysis.

173

APPENDIX A. DATA FROM SLICING EXPERIMENTS

Appendix A

Data From Slicing Experiments

The data collected in the Java Grande benchmark based slicing experiments are presented both
as raw numbers and as graphs. Please refer to Section 5.5 for the conclusions drawn from the
experiments.

A.1 Experimental Setup

As in the experiments in Section 3.7, Java Grande Benchmark programs were considered as input
programs. For each program in the benchmark, 26 slices were generated using different algorithms
and different configurations. These 26 slices comprised of three sets of slices.

The first set of 11 slices is used to evaluated various slicing algorithms in combination with
varying levels of accuracy of interference and ready dependence information. The legends are given
below.

BSA t Backward slice with type-based interference and ready dependence information.

BSA e Backward slice with escape-based interference and ready dependence information.

BSA Backward slice with entity-based interference and ready dependence information.

CCSBSA+ Optimized calling context sensitive backward slice with entity-based interference and
ready dependence information.

CCSBSA+ t Optimized calling context sensitive backward slice with type-based interference and
ready dependence information.

CCSBSA+ e Optimized calling context sensitive backward slice with escape-based interference and
ready dependence information.

CCSBSA+ 1D-PS Optimized calling context sensitive backward slice with entity-based interference
and ready dependence information and calling context enriched seed criteria generation with
the length of the seed calling context limited to 10.

174

APPENDIX A. DATA FROM SLICING EXPERIMENTS

2D-PSSA 4 Property sensitive calling context sensitive backward slice with entity-based interference
and ready dependence information and source and destination specific data-based property
sensitivity with the length of property sensitive calling contexts limited to 4.

2D-PSSA 16 Property sensitive calling context sensitive backward slice with entity-based interfer-
ence and ready dependence information and source and destination specific data-based prop-
erty sensitivity with the length of property sensitive calling contexts limited to 16.

2D-PSSA 256 Property sensitive calling context sensitive backward slice with entity-based interfer-
ence and ready dependence information and source and destination specific data-based prop-
erty sensitivity with the length of property sensitive calling contexts limited to 256.

2D-PSSA 10000 Property sensitive calling context sensitive backward slice with entity-based in-
terference and ready dependence information and source and destination specific data-based
property sensitivity with the length of property sensitive calling contexts limited to 10000.

The second set of 6 slices is used to evaluate the combination of accurate dependence calculation
as described in the previous chapter along with property sensitivity in the context of calling context
sensitive slicing.

1C-PSSA Property sensitive calling context sensitive backward slice with entity-based interference
and ready dependence information and control based property sensitivity with the length of
the property specific calling context limited to 256.

1D-PSSA Property sensitive calling context sensitive backward slice with entity-based interference
and ready dependence information and destination specific data-based property sensitivity
with the length of the property sensitive calling context limited to 256.

2D-PSSA Property sensitive calling context sensitive backward slice with entity-based interference
and ready dependence information and source and destination specific data-based property
sensitivity with the length of the property sensitive calling contextx limited to 256.

t 1C-PSSA Property sensitive calling context sensitive backward slice with type-based interference
and ready dependence information and control based property sensitivity with the length of
the property specific calling context limited to 256.

t 1D-PSSA Property sensitive calling context sensitive backward slice with type-based interference
and ready dependence information and destination specific data-based property sensitivity
with the length of the property sensitive calling context limited to 256.

t 2D-PSSA Property sensitive calling context sensitive backward slice with type-based interference
and ready dependence information and source and destination specific data-based property
sensitivity with the length of the property sensitive calling contextx limited to 256.

The third set of 9 slices is used evaluate the combination of various optimizations to equivalence
class analysis along with the proposed slicing algorithms.

BSA sf Backward slice with entity-based interference and ready dependence and static filtering
optimized equivalence class analysis.

BSA tf Backward slice with entity-based interference and ready dependence and type filtering op-
timized equivalence class analysis.

175

APPENDIX A. DATA FROM SLICING EXPERIMENTS

BSA both Backward slice with entity-based interference and ready dependence and both static and
type filtering optimized equivalence class analysis.

CCSBSA+ sf Optimized calling context sensitive backward slice with entity-based interference and
ready dependence and static filtering optimized equivalence class analysis.

CCSBSA+ tf Optimized calling context sensitive backward slice with entity-based interference and
ready dependence and type filtering optimized equivalence class analysis.

CCSBSA+ both Optimized calling context sensitive backward slice with entity-based interference
and ready dependence and both static and type filtering optimized equivalence class analysis.

2D-PSSA sf Property sensitive context sensitive backward slice with entity-based interference and
ready dependence, static filtering optimization for equivalence class analysis, and source and
destination specific data-based property sensitivity with the length of the property sensitive
calling contextx limited to 256.

2D-PSSA tf Property sensitive context sensitive backward slice with entity-based interference and
ready dependence, static filtering optimization for equivalence class analysis, and source and
destination specific data-based property sensitivity with the length of the property sensitive
calling contextx limited to 256.

2D-PSSA both Property sensitive context sensitive backward slice with entity-based interference and
ready dependence, static filtering optimization for equivalence class analysis, and source and
destination specific data-based property sensitivity with the length of the property sensitive
calling contextx limited to 256.

For each slice generation, the following data was collected.

Time Three time measures were taken in each experiment. The first was the measure of the time
taken to merely identify the slice. The second was the measure of the time taken to identify the
slice and inject executability into the slice. This subsumed the first measure. The third measure
accounted for the time taken by other analysis other than residualization and serialization.
These measures are presented as three slash separated values under the column Time.

Memory Two memory measures were taken in each experiment. The first was the measure of
memory consumed during slice identification and the second was the measure of memory
consumed during slicing and other analysis except residualization and serialization. These
measures are presented as two slash separated values under the column Memory.

Classes The number of classes in the slice.

Methods The number of methods in the slice.

Fields The number of fields in the slice.

Stmts The number of Jimple statements in the slice.

Exprs The number of Jimple expressions in the slice.

Bytecodes The number of compressed bytecodes in the slice.

The experiments were executed on an assertion enabled JVM available as part of JDK 1.6.0 b104
with 512MB of maximum heap space on a 1.4GHz and 1GB Linux box.

The time and memory measurements were collected by instrumenting the code via AspectJ1.

1http://www.eclipse.org/aspectj

176

APPENDIX A. DATA FROM SLICING EXPERIMENTS

A.2 Experimental Data

177

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

Configuration Time Memory Classes Methods Fields Stmts Exprs Bytecodes
(s) (MB) (Bytes)

Unsliced 121 301 212 5782 16195

BSA t 1/13/71 3/21 118 319 86 5962 16683 65651
BSA e 1/15/78 3/20 118 319 86 5962 16683 65648
BSA 1/13/74 3/20 118 319 86 5962 16683 65648
CCSBSA+ 1/12/67 2/20 94 262 82 5672 16136 55488
CCSBSA+ t 1/13/71 2/20 94 262 82 5672 16136 55488
CCSBSA+ e 1/13/76 2/20 94 262 82 5672 16136 55488
CCSBSA+ 1D-PS 1/12/67 2/21 85 240 75 5487 15793 51626
2D-PSSA 4 1/12/68 2/21 85 237 74 5481 15782 51407
2D-PSSA 16 2/12/68 2/21 85 237 74 5481 15782 51407
2D-PSSA 256 1/12/68 2/21 85 237 74 5481 15782 51407
2D-PSSA 10000 2/12/68 2/21 85 237 74 5481 15782 51407

1C-PSSA 2/14/78 3/21 85 240 75 5487 15793 51592
1D-PSSA 2/14/78 2/21 85 238 74 5481 15782 51435
2D-PSSA 2/14/77 2/21 85 234 74 5387 15629 51077
t 1C-PSSA 2/15/76 3/21 85 240 75 5487 15793 51586
t 1D-PSSA 2/14/76 2/21 85 238 74 5481 15782 51429
t 2D-PSSA 2/14/75 2/21 85 237 74 5481 15782 51404

BSA sf 1/13/70 3/21 118 319 86 5962 16683 65648
BSA tf 1/13/73 3/20 118 319 86 5962 16683 65648
BSA both 1/13/73 3/21 118 319 86 5962 16683 65648
CCSBSA+ sf 1/13/75 2/20 94 262 82 5672 16136 55488
CCSBSA+ tf 1/13/73 2/20 94 262 82 5672 16136 55488
CCSBSA+ both 1/13/73 2/20 94 262 82 5672 16136 55488
2D-PSSA sf 2/14/77 2/21 85 234 74 5387 15629 51076
2D-PSSA tf 2/14/77 2/21 85 234 74 5387 15629 51079
2D-PSSA both 2/14/78 2/21 85 234 74 5387 15629 51076

Table A.1: Data from slicing Bar benchmark program from the Java Grande suite.

1
7
8

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

 1
0

 1
0

0

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

C
la

sse
s

M
e

th
o

d
s

F
ie

ld
s

S
tm

ts
E

xp
rs

 5
0

0
0

0

 5
2

0
0

0

 5
4

0
0

0

 5
6

0
0

0

 5
8

0
0

0

 6
0

0
0

0

 6
2

0
0

0

 6
4

0
0

0

 6
6

0
0

0

2D-PSSA_both

2D-PSSA_tf

2D-PSSA_sf

CCSBSA+_both

CCSBSA+_tf

CCSBSA+_sf

BSA_both

BSA_tf

BSA_sf

t_2D-PSSA

t_1D-PSSA

t_1C-PSSA

2D-PSSA

1D-PSSA

1C-PSSA

2D-PSSA_10000

2D-PSSA_256

2D-PSSA_16

2D-PSSA_4

CCSBSA+_1D-PS

CCSBSA+_e

CCSBSA+_t

CCSBSA+

BSA

BSA_e

BSA_t

B
yte

co
d

e
s (B

yte
s)

F
ig

u
re

A
.1

:
G

ra
p

h
ica

l
rep

resen
ta

tio
n

o
f

th
e

d
a
ta

(T
a
b

le
A

.1
)

fro
m

slicin
g

B
a
r

b
en

ch
m

a
rk

p
ro

g
ra

m
fro

m
th

e
J
ava

G
ra

n
d

e
su

ite.

1
7
9

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

Configuration Time Memory Classes Methods Fields Stmts Exprs Bytecodes
(s) (MB) (Bytes)

Unsliced 133 336 236 6515 18462

BSA t 1/14/75 3/24 129 371 105 6753 19098 73817
BSA e 1/14/79 3/23 129 371 105 6753 19098 73799
BSA 1/14/77 3/24 129 371 105 6753 19098 73799
CCSBSA+ 1/14/77 3/23 105 307 101 6439 18511 63477
CCSBSA+ t 1/14/73 3/23 105 308 101 6443 18522 63506
CCSBSA+ e 1/13/79 3/23 105 305 101 6431 18497 63427
CCSBSA+ 1D-PS 1/14/79 3/24 96 283 94 6246 18154 59566
2D-PSSA 4 2/14/80 3/24 96 275 93 6142 17983 58964
2D-PSSA 16 2/15/78 3/24 96 278 93 6236 18136 59293
2D-PSSA 256 2/14/75 3/24 96 278 93 6236 18136 59293
2D-PSSA 10000 2/14/80 3/24 96 275 93 6142 17983 58964

1C-PSSA 3/15/81 3/24 96 281 94 6242 18147 59462
1D-PSSA 2/14/80 3/24 96 278 93 6236 18136 59184
2D-PSSA 2/14/76 3/24 96 275 93 6142 17983 58855
t 1C-PSSA 3/15/75 3/24 96 281 94 6242 18147 59461
t 1D-PSSA 2/15/76 3/24 96 278 93 6236 18136 59184
t 2D-PSSA 2/15/74 3/24 96 275 93 6142 17983 58855

BSA sf 1/14/78 3/24 129 371 105 6753 19098 73799
BSA tf 1/14/77 3/24 129 371 105 6753 19098 73799
BSA both 1/14/77 3/24 129 371 105 6753 19098 73799
CCSBSA+ sf 1/14/78 3/23 105 305 101 6431 18497 63427
CCSBSA+ tf 1/14/77 3/23 105 305 101 6431 18497 63427
CCSBSA+ both 1/14/77 3/23 105 305 101 6431 18497 63427
2D-PSSA sf 2/14/76 3/24 96 275 93 6142 17983 58855
2D-PSSA tf 2/14/76 3/24 96 278 93 6236 18136 59293
2D-PSSA both 2/14/80 3/24 96 275 93 6142 17983 58855

Table A.2: Data from slicing Crp benchmark program from the Java Grande suite.

1
8
0

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

 1
0

 1
0

0

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

C
la

sse
s

M
e

th
o

d
s

F
ie

ld
s

S
tm

ts
E

xp
rs

 5
8

0
0

0

 6
0

0
0

0

 6
2

0
0

0

 6
4

0
0

0

 6
6

0
0

0

 6
8

0
0

0

 7
0

0
0

0

 7
2

0
0

0

 7
4

0
0

0

2D-PSSA_both

2D-PSSA_tf

2D-PSSA_sf

CCSBSA+_both

CCSBSA+_tf

CCSBSA+_sf

BSA_both

BSA_tf

BSA_sf

t_2D-PSSA

t_1D-PSSA

t_1C-PSSA

2D-PSSA

1D-PSSA

1C-PSSA

2D-PSSA_10000

2D-PSSA_256

2D-PSSA_16

2D-PSSA_4

CCSBSA+_1D-PS

CCSBSA+_e

CCSBSA+_t

CCSBSA+

BSA

BSA_e

BSA_t

B
yte

co
d

e
s (B

yte
s)

F
ig

u
re

A
.2

:
G

ra
p

h
ica

l
rep

resen
ta

tio
n

o
f

th
e

d
a
ta

(T
a
b

le
A

.2
)

fro
m

slicin
g

C
rp

b
en

ch
m

a
rk

p
ro

g
ra

m
fro

m
th

e
J
ava

G
ra

n
d

e
su

ite.

1
8
1

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

Configuration Time Memory Classes Methods Fields Stmts Exprs Bytecodes
(s) (MB) (Bytes)

Unsliced 117 299 203 5731 16101

BSA t 1/13/73 3/20 114 318 78 5911 16589 64192
BSA e 1/13/77 3/20 114 318 78 5911 16589 64189
BSA 1/13/75 3/20 114 318 78 5911 16589 64189
CCSBSA+ 1/13/73 2/20 90 261 74 5621 16042 54035
CCSBSA+ t 1/13/72 2/20 90 261 74 5621 16042 54035
CCSBSA+ e 1/13/76 2/20 90 261 74 5621 16042 54035
CCSBSA+ 1D-PS 1/15/79 2/20 81 239 67 5436 15699 50160
2D-PSSA 4 2/15/85 2/20 81 235 66 5424 15676 49883
2D-PSSA 16 2/15/84 2/20 81 235 66 5424 15676 49874
2D-PSSA 256 1/14/76 2/20 81 235 66 5424 15676 49874
2D-PSSA 10000 2/14/78 2/21 81 235 66 5424 15676 49874

1C-PSSA 2/14/74 2/21 81 239 67 5436 15699 50127
1D-PSSA 1/13/73 2/21 81 235 66 5424 15676 49871
2D-PSSA 1/13/73 2/21 81 232 66 5330 15523 49535
t 1C-PSSA 2/14/72 2/21 81 239 67 5436 15699 50127
t 1D-PSSA 2/13/71 2/21 81 235 66 5424 15676 49871
t 2D-PSSA 2/13/72 2/21 81 235 66 5424 15676 49871

BSA sf 1/13/77 3/20 114 318 78 5911 16589 64189
BSA tf 1/13/77 3/20 114 318 78 5911 16589 64189
BSA both 1/13/75 3/20 114 318 78 5911 16589 64189
CCSBSA+ sf 1/13/73 2/20 90 261 74 5621 16042 54035
CCSBSA+ tf 1/13/77 2/20 90 261 74 5621 16042 54035
CCSBSA+ both 1/13/74 2/20 90 261 74 5621 16042 54035
2D-PSSA sf 2/14/78 2/21 81 235 66 5424 15676 49871
2D-PSSA tf 2/14/77 2/21 81 235 66 5424 15676 49874
2D-PSSA both 1/13/73 2/21 81 235 66 5424 15676 49871

Table A.3: Data from slicing FJ benchmark program from the Java Grande suite.

1
8
2

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

 1
0

 1
0

0

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

C
la

sse
s

M
e

th
o

d
s

F
ie

ld
s

S
tm

ts
E

xp
rs

 4
8

0
0

0

 5
0

0
0

0

 5
2

0
0

0

 5
4

0
0

0

 5
6

0
0

0

 5
8

0
0

0

 6
0

0
0

0

 6
2

0
0

0

 6
4

0
0

0

 6
6

0
0

0

2D-PSSA_both

2D-PSSA_tf

2D-PSSA_sf

CCSBSA+_both

CCSBSA+_tf

CCSBSA+_sf

BSA_both

BSA_tf

BSA_sf

t_2D-PSSA

t_1D-PSSA

t_1C-PSSA

2D-PSSA

1D-PSSA

1C-PSSA

2D-PSSA_10000

2D-PSSA_256

2D-PSSA_16

2D-PSSA_4

CCSBSA+_1D-PS

CCSBSA+_e

CCSBSA+_t

CCSBSA+

BSA

BSA_e

BSA_t

B
yte

co
d

e
s (B

yte
s)

F
ig

u
re

A
.3

:
G

ra
p

h
ica

l
rep

resen
ta

tio
n

o
f

th
e

d
a
ta

(T
a
b

le
A

.3
)

fro
m

slicin
g

F
J

b
en

ch
m

a
rk

p
ro

g
ra

m
fro

m
th

e
J
ava

G
ra

n
d

e
su

ite.

1
8
3

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

Configuration Time Memory Classes Methods Fields Stmts Exprs Bytecodes
(s) (MB) (Bytes)

Unsliced 121 316 225 6477 18400

BSA t 1/13/74 3/23 118 339 100 6657 18888 68369
BSA e 1/14/76 3/23 118 339 100 6657 18888 68329
BSA 1/13/78 3/23 118 339 100 6657 18888 68329
CCSBSA+ 1/14/76 3/22 94 278 96 6353 18315 58076
CCSBSA+ t 1/13/74 3/22 94 280 96 6361 18333 58135
CCSBSA+ e 1/14/76 3/22 94 278 96 6353 18315 58076
CCSBSA+ 1D-PS 1/14/76 3/23 85 256 89 6168 17972 54216
2D-PSSA 4 2/14/77 3/23 85 252 88 6156 17949 53944
2D-PSSA 16 2/14/76 3/23 85 252 88 6156 17949 53933
2D-PSSA 256 2/14/77 3/23 85 252 88 6156 17949 53933
2D-PSSA 10000 2/14/79 3/23 85 252 88 6156 17949 53921

1C-PSSA 2/15/78 3/23 85 256 89 6168 17972 54062
1D-PSSA 2/14/79 3/23 85 252 88 6156 17949 53918
2D-PSSA 2/14/77 3/23 85 249 88 6062 17796 53643
t 1C-PSSA 2/25/127 3/23 85 256 89 6168 17972 54050
t 1D-PSSA 2/21/147 3/23 85 252 88 6156 17949 53918
t 2D-PSSA 2/14/75 3/23 85 252 88 6156 17949 53918

BSA sf 1/13/78 3/23 118 339 100 6657 18888 68329
BSA tf 1/14/76 3/23 118 339 100 6657 18888 68329
BSA both 1/14/76 3/23 118 339 100 6657 18888 68329
CCSBSA+ sf 1/14/76 3/23 94 278 96 6353 18315 58076
CCSBSA+ tf 1/14/76 3/22 94 278 96 6353 18315 58076
CCSBSA+ both 1/14/76 3/22 94 278 96 6353 18315 58076
2D-PSSA sf 2/14/77 3/23 85 249 88 6062 17796 53643
2D-PSSA tf 2/14/77 3/23 85 252 88 6156 17949 53933
2D-PSSA both 2/14/78 3/23 85 249 88 6062 17796 53643

Table A.4: Data from slicing LUF benchmark program from the Java Grande suite.

1
8
4

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

 1
0

 1
0

0

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

C
la

sse
s

M
e

th
o

d
s

F
ie

ld
s

S
tm

ts
E

xp
rs

 5
2

0
0

0

 5
4

0
0

0

 5
6

0
0

0

 5
8

0
0

0

 6
0

0
0

0

 6
2

0
0

0

 6
4

0
0

0

 6
6

0
0

0

 6
8

0
0

0

 7
0

0
0

0

2D-PSSA_both

2D-PSSA_tf

2D-PSSA_sf

CCSBSA+_both

CCSBSA+_tf

CCSBSA+_sf

BSA_both

BSA_tf

BSA_sf

t_2D-PSSA

t_1D-PSSA

t_1C-PSSA

2D-PSSA

1D-PSSA

1C-PSSA

2D-PSSA_10000

2D-PSSA_256

2D-PSSA_16

2D-PSSA_4

CCSBSA+_1D-PS

CCSBSA+_e

CCSBSA+_t

CCSBSA+

BSA

BSA_e

BSA_t

B
yte

co
d

e
s (B

yte
s)

F
ig

u
re

A
.4

:
G

ra
p

h
ica

lrep
resen

ta
tio

n
o
f
th

e
d

a
ta

(T
a
b

le
A

.4
)

fro
m

slicin
g

L
U

F
b

en
ch

m
a
rk

p
ro

g
ra

m
fro

m
th

e
J
ava

G
ra

n
d

e
su

ite.

1
8
5

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

Configuration Time Memory Classes Methods Fields Stmts Exprs Bytecodes
(s) (MB) (Bytes)

Unsliced 250 776 541 13934 37447

BSA t 5/27/137 10/59 250 868 299 14694 39326 165446
BSA e 4/27/142 10/59 250 868 299 14694 39326 165419
BSA 4/27/140 9/59 250 868 299 14694 39326 165421
CCSBSA+ 5/27/141 10/58 227 817 299 14451 38871 155121
CCSBSA+ t 5/27/139 10/59 227 815 299 14406 38736 155018
CCSBSA+ e 5/27/144 10/58 230 816 299 14411 38745 155958
CCSBSA+ 1D-PS 5/27/145 10/61 226 816 298 14448 38865 154686
2D-PSSA 4 8/30/148 13/62 217 754 280 14083 38145 147125
2D-PSSA 16 8/30/148 12/61 220 769 284 14156 38281 149105
2D-PSSA 256 8/31/148 12/61 220 769 284 14156 38281 149105
2D-PSSA 10000 8/30/147 12/61 220 769 284 14156 38281 149105

1C-PSSA 12/35/154 13/68 224 788 292 14331 38658 151683
1D-PSSA 8/31/150 13/66 224 786 291 14325 38647 152175
2D-PSSA 8/31/151 13/67 220 755 280 14088 38154 147397
t 1C-PSSA 13/36/149 13/67 228 789 293 14336 38667 154004
t 1D-PSSA 8/32/147 14/67 228 787 292 14330 38656 153691
t 2D-PSSA 8/32/147 13/67 227 778 289 14276 38540 152607

BSA sf 4/27/142 9/61 250 868 299 14694 39326 165421
BSA tf 4/27/141 10/59 250 868 299 14694 39326 165421
BSA both 4/27/143 9/61 250 868 299 14694 39326 165421
CCSBSA+ sf 5/27/143 9/61 227 817 299 14451 38871 155121
CCSBSA+ tf 5/27/143 10/58 230 818 299 14456 38880 156092
CCSBSA+ both 5/27/143 9/61 227 817 299 14451 38871 155121
2D-PSSA sf 8/31/141 13/67 223 781 288 14254 38445 151719
2D-PSSA tf 8/31/148 12/62 220 769 284 14156 38281 149108
2D-PSSA both 8/31/150 12/68 221 768 283 14161 38293 149037

Table A.5: Data from slicing MC benchmark program from the Java Grande suite.

1
8
6

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

 1
0

0

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

C
la

sse
s

M
e

th
o

d
s

F
ie

ld
s

S
tm

ts
E

xp
rs

 1
4

6
0

0
0

 1
4

8
0

0
0

 1
5

0
0

0
0

 1
5

2
0

0
0

 1
5

4
0

0
0

 1
5

6
0

0
0

 1
5

8
0

0
0

 1
6

0
0

0
0

 1
6

2
0

0
0

 1
6

4
0

0
0

 1
6

6
0

0
0

2D-PSSA_both

2D-PSSA_tf

2D-PSSA_sf

CCSBSA+_both

CCSBSA+_tf

CCSBSA+_sf

BSA_both

BSA_tf

BSA_sf

t_2D-PSSA

t_1D-PSSA

t_1C-PSSA

2D-PSSA

1D-PSSA

1C-PSSA

2D-PSSA_10000

2D-PSSA_256

2D-PSSA_16

2D-PSSA_4

CCSBSA+_1D-PS

CCSBSA+_e

CCSBSA+_t

CCSBSA+

BSA

BSA_e

BSA_t

B
yte

co
d

e
s (B

yte
s)

F
ig

u
re

A
.5

:
G

ra
p

h
ica

l
rep

resen
ta

tio
n

o
f
th

e
d

a
ta

(T
a
b

le
A

.5)
fro

m
slicin

g
M

C
b

en
ch

m
a
rk

p
ro

g
ra

m
fro

m
th

e
J
ava

G
ra

n
d

e
su

ite.

1
8
7

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

Configuration Time Memory Classes Methods Fields Stmts Exprs Bytecodes
(s) (MB) (Bytes)

Unsliced 123 324 283 7195 20647

BSA t 2/15/84 3/28 120 347 139 7375 21135 70563
BSA e 2/16/86 3/28 120 347 139 7375 21135 70560
BSA 2/16/85 3/28 120 347 139 7375 21135 70560
CCSBSA+ 2/15/85 3/28 96 286 134 7062 20531 60183
CCSBSA+ t 2/16/85 3/28 96 288 134 7070 20545 60236
CCSBSA+ e 2/16/86 3/28 96 286 134 7062 20531 60183
CCSBSA+ 1D-PS 2/15/87 3/28 87 264 127 6877 20188 56322
2D-PSSA 4 3/17/89 3/28 87 260 126 6865 20165 56053
2D-PSSA 16 3/17/89 3/28 87 260 126 6865 20165 56042
2D-PSSA 256 3/17/89 3/28 87 260 126 6865 20165 56042
2D-PSSA 10000 3/17/89 3/28 87 260 126 6865 20165 56042

1C-PSSA 3/17/90 3/29 87 262 117 6873 20179 55377
1D-PSSA 3/17/89 3/29 87 260 126 6865 20165 56039
2D-PSSA 3/17/87 3/29 87 260 126 6865 20165 56039
t 1C-PSSA 4/18/88 3/29 87 264 127 6877 20188 56272
t 1D-PSSA 3/17/87 3/29 87 260 126 6865 20165 56039
t 2D-PSSA 3/17/87 3/29 87 257 126 6771 20012 55705

BSA sf 2/16/86 3/28 120 347 139 7375 21135 70560
BSA tf 2/16/85 3/28 120 347 139 7375 21135 70560
BSA both 2/16/86 3/28 120 347 139 7375 21135 70560
CCSBSA+ sf 2/16/86 3/28 96 286 134 7062 20531 60183
CCSBSA+ tf 2/16/86 3/28 96 286 134 7062 20531 60183
CCSBSA+ both 2/16/86 3/28 96 286 134 7062 20531 60183
2D-PSSA sf 3/17/90 3/28 87 257 126 6771 20012 55705
2D-PSSA tf 3/17/89 3/28 87 260 126 6865 20165 56042
2D-PSSA both 3/17/89 3/28 87 260 126 6865 20165 56039

Table A.6: Data from slicing MD benchmark program from the Java Grande suite.

1
8
8

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

 1
0

 1
0

0

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

C
la

sse
s

M
e

th
o

d
s

F
ie

ld
s

S
tm

ts
E

xp
rs

 5
4

0
0

0

 5
6

0
0

0

 5
8

0
0

0

 6
0

0
0

0

 6
2

0
0

0

 6
4

0
0

0

 6
6

0
0

0

 6
8

0
0

0

 7
0

0
0

0

 7
2

0
0

0

2D-PSSA_both

2D-PSSA_tf

2D-PSSA_sf

CCSBSA+_both

CCSBSA+_tf

CCSBSA+_sf

BSA_both

BSA_tf

BSA_sf

t_2D-PSSA

t_1D-PSSA

t_1C-PSSA

2D-PSSA

1D-PSSA

1C-PSSA

2D-PSSA_10000

2D-PSSA_256

2D-PSSA_16

2D-PSSA_4

CCSBSA+_1D-PS

CCSBSA+_e

CCSBSA+_t

CCSBSA+

BSA

BSA_e

BSA_t

B
yte

co
d

e
s (B

yte
s)

F
ig

u
re

A
.6

:
G

ra
p

h
ica

l
rep

resen
ta

tio
n

o
f

th
e

d
a
ta

(T
a
b

le
A

.6
)

fro
m

slicin
g

M
D

b
en

ch
m

a
rk

p
ro

g
ra

m
fro

m
th

e
J
ava

G
ra

n
d

e
su

ite.

1
8
9

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

Configuration Time Memory Classes Methods Fields Stmts Exprs Bytecodes
(s) (MB) (Bytes)

Unsliced 132 363 266 6903 19422

BSA t 1/14/79 3/25 129 393 140 7087 19919 76501
BSA e 1/14/83 3/25 129 393 140 7087 19919 76505
BSA 1/14/82 3/25 129 393 140 7087 19919 76523
CCSBSA+ 1/14/82 3/24 105 332 136 6782 19343 66217
CCSBSA+ t 1/14/78 3/25 105 332 136 6782 19343 66217
CCSBSA+ e 1/15/80 3/24 105 332 136 6782 19343 66217
CCSBSA+ 1D-PS 1/14/83 3/25 96 308 129 6593 18991 62328
2D-PSSA 4 2/15/84 3/25 96 304 128 6581 18968 62049
2D-PSSA 16 2/15/84 3/25 96 304 128 6581 18968 62040
2D-PSSA 256 2/15/84 3/25 96 304 128 6581 18968 62040
2D-PSSA 10000 2/15/84 3/25 96 304 128 6581 18968 62040

1C-PSSA 3/16/85 3/26 96 308 129 6593 18991 62293
1D-PSSA 2/15/84 3/26 96 304 128 6581 18968 62037
2D-PSSA 2/15/84 3/26 96 304 128 6581 18968 62042
t 1C-PSSA 3/16/83 3/26 96 308 128 6593 18991 62195
t 1D-PSSA 2/16/82 3/26 96 304 128 6581 18968 62037
t 2D-PSSA 2/16/82 3/26 96 301 128 6487 18815 61704

BSA sf 1/14/82 3/25 129 393 140 7087 19919 76498
BSA tf 1/14/83 3/25 129 393 140 7087 19919 76498
BSA both 1/14/83 3/25 129 393 140 7087 19919 76498
CCSBSA+ sf 1/14/82 3/25 105 332 136 6782 19343 66217
CCSBSA+ tf 1/14/82 3/24 105 332 136 6782 19343 66217
CCSBSA+ both 1/14/83 3/25 105 332 136 6782 19343 66217
2D-PSSA sf 2/15/83 3/26 96 304 128 6581 18968 62037
2D-PSSA tf 2/15/84 3/25 96 301 128 6487 18815 61707
2D-PSSA both 2/15/84 3/26 96 301 128 6487 18815 61704

Table A.7: Data from slicing RT benchmark program from the Java Grande suite.

1
9
0

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

 1
0

 1
0

0

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

C
la

sse
s

M
e

th
o

d
s

F
ie

ld
s

S
tm

ts
E

xp
rs

 6
0

0
0

0

 6
2

0
0

0

 6
4

0
0

0

 6
6

0
0

0

 6
8

0
0

0

 7
0

0
0

0

 7
2

0
0

0

 7
4

0
0

0

 7
6

0
0

0

 7
8

0
0

0

2D-PSSA_both

2D-PSSA_tf

2D-PSSA_sf

CCSBSA+_both

CCSBSA+_tf

CCSBSA+_sf

BSA_both

BSA_tf

BSA_sf

t_2D-PSSA

t_1D-PSSA

t_1C-PSSA

2D-PSSA

1D-PSSA

1C-PSSA

2D-PSSA_10000

2D-PSSA_256

2D-PSSA_16

2D-PSSA_4

CCSBSA+_1D-PS

CCSBSA+_e

CCSBSA+_t

CCSBSA+

BSA

BSA_e

BSA_t

B
yte

co
d

e
s (B

yte
s)

F
ig

u
re

A
.7

:
G

ra
p

h
ica

l
rep

resen
ta

tio
n

o
f

th
e

d
a
ta

(T
a
b

le
A

.7
)

fro
m

slicin
g

R
T

b
en

ch
m

a
rk

p
ro

g
ra

m
fro

m
th

e
J
ava

G
ra

n
d

e
su

ite.

1
9
1

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

Configuration Time Memory Classes Methods Fields Stmts Exprs Bytecodes
(s) (MB) (Bytes)

Unsliced 119 313 208 5922 16701

BSA t 1/15/79 3/21 116 336 85 6102 17189 66183
BSA e 1/15/85 3/21 116 336 85 6102 17189 66180
BSA 1/15/82 3/21 116 336 85 6102 17189 66180
CCSBSA+ 1/15/82 2/21 92 279 81 5814 16648 56057
CCSBSA+ t 1/15/80 2/21 92 277 81 5806 16634 56004
CCSBSA+ e 1/15/85 2/21 92 277 81 5806 16634 56004
CCSBSA+ 1D-PS 1/15/85 2/21 83 255 74 5621 16291 52143
2D-PSSA 4 2/16/86 2/21 83 251 73 5609 16268 51857
2D-PSSA 16 2/13/81 3/21 83 251 73 5609 16268 51847
2D-PSSA 256 2/13/76 2/21 83 251 73 5609 16268 51851
2D-PSSA 10000 2/14/77 3/21 83 251 73 5609 16268 51847

1C-PSSA 2/14/78 3/22 83 250 74 5609 16272 51988
1D-PSSA 2/14/77 2/21 83 248 73 5601 16256 51783
2D-PSSA 2/14/75 2/21 83 245 73 5507 16103 51449
t 1C-PSSA 2/14/73 3/22 83 250 74 5609 16272 51988
t 1D-PSSA 2/14/73 2/22 83 248 73 5601 16256 51783
t 2D-PSSA 2/14/73 2/22 83 248 73 5601 16256 51783

BSA sf 1/13/76 3/21 116 336 85 6102 17189 66180
BSA tf 1/13/74 3/21 116 336 85 6102 17189 66180
BSA both 1/13/76 3/21 116 336 85 6102 17189 66180
CCSBSA+ sf 1/13/75 2/21 92 279 81 5814 16648 56057
CCSBSA+ tf 1/13/74 2/21 92 277 81 5806 16634 56004
CCSBSA+ both 1/13/74 2/21 92 279 81 5814 16648 56057
2D-PSSA sf 2/13/77 2/21 83 245 73 5507 16103 51449
2D-PSSA tf 2/14/77 3/21 83 251 73 5609 16268 51847
2D-PSSA both 2/14/77 2/21 83 245 73 5507 16103 51449

Table A.8: Data from slicing Ser benchmark program from the Java Grande suite.

1
9
2

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

 1
0

 1
0

0

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

C
la

sse
s

M
e

th
o

d
s

F
ie

ld
s

S
tm

ts
E

xp
rs

 5
0

0
0

0

 5
2

0
0

0

 5
4

0
0

0

 5
6

0
0

0

 5
8

0
0

0

 6
0

0
0

0

 6
2

0
0

0

 6
4

0
0

0

 6
6

0
0

0

 6
8

0
0

0

2D-PSSA_both

2D-PSSA_tf

2D-PSSA_sf

CCSBSA+_both

CCSBSA+_tf

CCSBSA+_sf

BSA_both

BSA_tf

BSA_sf

t_2D-PSSA

t_1D-PSSA

t_1C-PSSA

2D-PSSA

1D-PSSA

1C-PSSA

2D-PSSA_10000

2D-PSSA_256

2D-PSSA_16

2D-PSSA_4

CCSBSA+_1D-PS

CCSBSA+_e

CCSBSA+_t

CCSBSA+

BSA

BSA_e

BSA_t

B
yte

co
d

e
s (B

yte
s)

F
ig

u
re

A
.8

:
G

ra
p

h
ica

l
rep

resen
ta

tio
n

o
f

th
e

d
a
ta

(T
a
b

le
A

.8
)

fro
m

slicin
g

S
er

b
en

ch
m

a
rk

p
ro

g
ra

m
fro

m
th

e
J
ava

G
ra

n
d

e
su

ite.

1
9
3

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

Configuration Time Memory Classes Methods Fields Stmts Exprs Bytecodes
(s) (MB) (Bytes)

Unsliced 133 337 246 6328 17755

BSA t 1/14/75 3/23 129 372 114 6566 18391 73666
BSA e 1/13/74 3/23 129 372 114 6566 18391 73663
BSA 1/14/76 3/23 129 372 114 6566 18391 73663
CCSBSA+ 1/14/78 3/23 105 310 110 6264 17830 63367
CCSBSA+ t 1/14/75 3/23 105 310 110 6264 17830 63367
CCSBSA+ e 1/13/75 3/23 105 310 110 6264 17830 63367
CCSBSA+ 1D-PS 1/14/77 3/23 96 286 103 6071 17473 59454
2D-PSSA 4 2/14/77 3/23 96 282 96 6059 17450 58864
2D-PSSA 16 2/14/75 3/23 96 282 96 6059 17450 58853
2D-PSSA 256 2/14/77 3/23 96 282 96 6059 17450 58853
2D-PSSA 10000 2/14/78 3/23 96 282 96 6059 17450 58853

1C-PSSA 2/15/79 3/24 96 286 97 6071 17473 59100
1D-PSSA 2/15/79 3/24 96 282 96 6059 17450 58759
2D-PSSA 2/15/78 3/23 96 279 96 5965 17297 58429
t 1C-PSSA 2/15/77 3/24 96 286 97 6071 17473 59100
t 1D-PSSA 2/15/77 3/24 96 282 96 6059 17450 58759
t 2D-PSSA 2/14/77 3/24 96 282 96 6059 17450 58764

BSA sf 1/14/79 3/23 129 372 114 6566 18391 73663
BSA tf 1/14/80 3/23 129 372 114 6566 18391 73663
BSA both 1/13/79 3/23 129 372 114 6566 18391 73663
CCSBSA+ sf 1/13/79 3/23 105 310 110 6264 17830 63367
CCSBSA+ tf 1/13/78 3/23 105 310 110 6264 17830 63367
CCSBSA+ both 1/13/79 3/23 105 310 110 6264 17830 63367
2D-PSSA sf 2/14/76 3/23 96 282 96 6059 17450 58764
2D-PSSA tf 2/15/78 3/23 96 282 96 6059 17450 58853
2D-PSSA both 2/15/79 3/23 96 279 96 5965 17297 58429

Table A.9: Data from slicing SMM benchmark program from the Java Grande suite.

1
9
4

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

 1
0

 1
0

0

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

C
la

sse
s

M
e

th
o

d
s

F
ie

ld
s

S
tm

ts
E

xp
rs

 5
8

0
0

0

 6
0

0
0

0

 6
2

0
0

0

 6
4

0
0

0

 6
6

0
0

0

 6
8

0
0

0

 7
0

0
0

0

 7
2

0
0

0

 7
4

0
0

0

2D-PSSA_both

2D-PSSA_tf

2D-PSSA_sf

CCSBSA+_both

CCSBSA+_tf

CCSBSA+_sf

BSA_both

BSA_tf

BSA_sf

t_2D-PSSA

t_1D-PSSA

t_1C-PSSA

2D-PSSA

1D-PSSA

1C-PSSA

2D-PSSA_10000

2D-PSSA_256

2D-PSSA_16

2D-PSSA_4

CCSBSA+_1D-PS

CCSBSA+_e

CCSBSA+_t

CCSBSA+

BSA

BSA_e

BSA_t

B
yte

co
d

e
s (B

yte
s)

F
ig

u
re

A
.9

:
G

ra
p

h
ica

l
rep

resen
ta

tio
n

o
f

th
e

d
a
ta

(T
a
b

le
A

.9
)

fro
m

slicin
g

S
M

M
b

en
ch

m
a
rk

p
ro

-
g
ra

m
fro

m
th

e
J
ava

G
ra

n
d

e
su

ite.

1
9
5

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

Configuration Time Memory Classes Methods Fields Stmts Exprs Bytecodes
(s) (MB) (Bytes)

Unsliced 133 335 233 6264 17627

BSA t 1/13/74 3/23 129 368 101 6500 18261 72790
BSA e 1/15/75 3/22 129 368 101 6500 18261 72787
BSA 1/15/83 3/22 129 368 101 6500 18261 72787
CCSBSA+ 1/15/83 3/22 105 306 97 6198 17700 62486
CCSBSA+ t 1/15/79 3/22 105 306 97 6198 17700 62486
CCSBSA+ e 1/15/82 3/22 105 306 97 6198 17700 62486
CCSBSA+ 1D-PS 1/15/81 3/23 96 282 90 6005 17343 58573
2D-PSSA 4 2/16/82 3/23 96 278 88 5993 17320 58254
2D-PSSA 16 2/16/82 3/23 96 278 88 5993 17320 58247
2D-PSSA 256 2/16/83 3/23 96 278 88 5993 17320 58247
2D-PSSA 10000 2/16/83 3/23 96 278 88 5993 17320 58247

1C-PSSA 3/17/84 3/23 96 282 89 6005 17343 58391
1D-PSSA 2/16/84 3/23 96 278 88 5993 17320 58138
2D-PSSA 2/16/83 3/23 96 278 88 5993 17320 58138
t 1C-PSSA 2/16/84 3/23 96 282 90 6005 17343 58535
t 1D-PSSA 2/16/84 3/23 96 278 89 5993 17320 58199
t 2D-PSSA 2/16/83 3/23 96 278 89 5993 17320 58199

BSA sf 1/15/84 3/23 129 368 101 6500 18261 72787
BSA tf 1/15/84 3/22 129 368 101 6500 18261 72787
BSA both 1/15/85 3/23 129 368 101 6500 18261 72787
CCSBSA+ sf 1/15/84 3/22 105 306 97 6198 17700 62486
CCSBSA+ tf 1/15/85 3/22 105 306 97 6198 17700 62486
CCSBSA+ both 1/15/85 3/22 105 306 97 6198 17700 62486
2D-PSSA sf 2/16/83 3/23 96 278 89 5993 17320 58188
2D-PSSA tf 2/16/83 3/23 96 278 88 5993 17320 58247
2D-PSSA both 2/16/84 3/23 96 278 88 5993 17320 58138

Table A.10: Data from slicing SOR benchmark program from the Java Grande suite.

1
9
6

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

 1
0

 1
0

0

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

C
la

sse
s

M
e

th
o

d
s

F
ie

ld
s

S
tm

ts
E

xp
rs

 5
8

0
0

0

 6
0

0
0

0

 6
2

0
0

0

 6
4

0
0

0

 6
6

0
0

0

 6
8

0
0

0

 7
0

0
0

0

 7
2

0
0

0

 7
4

0
0

0

2D-PSSA_both

2D-PSSA_tf

2D-PSSA_sf

CCSBSA+_both

CCSBSA+_tf

CCSBSA+_sf

BSA_both

BSA_tf

BSA_sf

t_2D-PSSA

t_1D-PSSA

t_1C-PSSA

2D-PSSA

1D-PSSA

1C-PSSA

2D-PSSA_10000

2D-PSSA_256

2D-PSSA_16

2D-PSSA_4

CCSBSA+_1D-PS

CCSBSA+_e

CCSBSA+_t

CCSBSA+

BSA

BSA_e

BSA_t

B
yte

co
d

e
s (B

yte
s)

F
ig

u
re

A
.1

0
:

G
ra

p
h

ica
l

rep
resen

ta
tio

n
o
f

th
e

d
a
ta

(T
a
b

le
A

.1
0
)

fro
m

slicin
g

S
O

R
b

en
ch

m
a
rk

p
ro

g
ra

m
fro

m
th

e
J
ava

G
ra

n
d

e
su

ite.

1
9
7

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

Configuration Time Memory Classes Methods Fields Stmts Exprs Bytecodes
(s) (MB) (Bytes)

Unsliced 119 297 209 5742 16115

BSA t 1/12/68 3/20 116 315 83 5922 16603 65076
BSA e 1/13/75 3/20 116 315 83 5922 16603 65074
BSA 1/12/69 3/20 116 315 83 5922 16603 65074
CCSBSA+ 1/12/69 2/20 92 258 79 5632 16056 54928
CCSBSA+ t 1/13/70 2/20 92 258 79 5632 16056 54928
CCSBSA+ e 1/13/74 2/20 92 258 79 5632 16056 54928
CCSBSA+ 1D-PS 1/12/69 2/20 83 236 72 5447 15713 51066
2D-PSSA 4 1/12/69 2/21 83 233 71 5441 15702 50843
2D-PSSA 16 1/12/69 2/21 83 233 71 5441 15702 50843
2D-PSSA 256 1/12/69 2/21 83 233 71 5441 15702 50843
2D-PSSA 10000 1/13/74 2/21 83 233 71 5441 15702 50843

1C-PSSA 2/14/76 2/21 83 236 72 5447 15713 51032
1D-PSSA 1/13/75 2/21 83 233 71 5441 15702 50840
2D-PSSA 1/13/75 2/21 83 230 71 5347 15549 50506
t 1C-PSSA 2/14/72 3/21 83 236 72 5447 15713 51032
t 1D-PSSA 2/13/71 2/21 83 233 71 5441 15702 50840
t 2D-PSSA 2/13/71 2/21 83 230 71 5347 15549 50506

BSA sf 1/13/74 3/21 116 315 83 5922 16603 65074
BSA tf 1/13/74 3/20 116 315 83 5922 16603 65074
BSA both 1/13/75 3/21 116 315 83 5922 16603 65074
CCSBSA+ sf 1/12/74 2/20 92 258 79 5632 16056 54928
CCSBSA+ tf 1/13/74 2/20 92 258 79 5632 16056 54928
CCSBSA+ both 1/12/74 2/20 92 258 79 5632 16056 54928
2D-PSSA sf 1/13/75 2/21 83 230 71 5347 15549 50506
2D-PSSA tf 1/13/75 2/21 83 233 71 5441 15702 50843
2D-PSSA both 1/13/75 2/21 83 230 71 5347 15549 50506

Table A.11: Data from slicing Syn benchmark program from the Java Grande suite.

1
9
8

A
P

P
E

N
D

IX
A

.
D

A
T

A
F

R
O

M
S

L
IC

IN
G

E
X

P
E

R
IM

E
N

T
S

 1
0

 1
0

0

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

C
la

sse
s

M
e

th
o

d
s

F
ie

ld
s

S
tm

ts
E

xp
rs

 5
0

0
0

0

 5
2

0
0

0

 5
4

0
0

0

 5
6

0
0

0

 5
8

0
0

0

 6
0

0
0

0

 6
2

0
0

0

 6
4

0
0

0

 6
6

0
0

0

2D-PSSA_both

2D-PSSA_tf

2D-PSSA_sf

CCSBSA+_both

CCSBSA+_tf

CCSBSA+_sf

BSA_both

BSA_tf

BSA_sf

t_2D-PSSA

t_1D-PSSA

t_1C-PSSA

2D-PSSA

1D-PSSA

1C-PSSA

2D-PSSA_10000

2D-PSSA_256

2D-PSSA_16

2D-PSSA_4

CCSBSA+_1D-PS

CCSBSA+_e

CCSBSA+_t

CCSBSA+

BSA

BSA_e

BSA_t

B
yte

co
d

e
s (B

yte
s)

F
ig

u
re

A
.1

1
:

G
ra

p
h

ica
l

rep
resen

ta
tio

n
o
f

th
e

d
a
ta

(T
a
b

le
A

.1
1
)

fro
m

slicin
g

S
yn

b
en

ch
m

a
rk

p
ro

g
ra

m
fro

m
th

e
J
ava

G
ra

n
d

e
su

ite.

1
9
9

APPENDIX B. DATA FROM POR EXPERIMENTS

Appendix B

Data From POR Experiments

The data collected in the partial order reduction related experiments are presented. Please refer to
Section 6.4 for the conclusions drawn from the experiments.

B.1 Data Description

For each input program and each configuration, the raw exploration data was collected in terms
(aspects) of the number of explored states (States), matched states (Matched), explored transitions
(Transitions) and uncovered errors (Errors). The total time (Time) and maximum memory (Mem-
ory) required to execute the entire analysis and model checking pipeline was also recored. In the
data for each input program, this data is presented in the (a) table.

To determine the relative merit of the proposed approach, the data from the non-E configurations
were compared with the data from the E configuration by subtracting the former from the latter,
e.g. States in SC was subtracted from States in E. In the data for each input program, this data is
presented in the (b) table.

While the above evaluation is useful to assess the relative merit of the approaches at a system
level, it is insufficient to evaluate the approaches at a micro (state) level. Further, it is insufficient
to evaluate the approaches in case of terminated experiments. Hence, to facilitate a local and
complimentary evaluation, local (reduction) data at the state level was collected. This data contains
the total number of enabled (E), ample (A), and independent (I) transitions encountered at the
visited states of the system. Further, the weighted average of the ratio of ample and enabled
transition (A/E) at each visited states of the system was also collected. In case of configurations
involving SDPOR, the total number of dynamic dependences discovered merely via static dependence
information (S) and via pure dynamic approach (D) was collected and the ratio of between these
numbers (D/S) was calculated. In the data for each input program, this data is presented in the (c)
table.

The data is separated based on the completion of execution of at least one of the configuration.

200

APPENDIX B. DATA FROM POR EXPERIMENTS

B.2 Completed Configurations

201

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 10128 2163 161172 114976 2617743 5531

SD 1574 2228 47522 14334 619812 250

SC+E 7351 3103 78869 52419 1471300 1982

E+SD 588 3124 9240 1441 149699 77

E 36013 4209 256479 415793 5599303 14668

SC+F 36052 6178 35922 26061 506774 3650

SD+F 36065 6280 35478 12167 425965 3476

SC+F+E 36049 6905 18928 13901 363324 3727

E+SD+F 11151 7414 8248 2324 125174 1144

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC -25885 -2046 -95307 -300817 -2981560 -9137

SD -34439 -1981 -208957 -401459 -4979491 -14418

SC+E -28662 -1106 -177610 -363374 -4128003 -12686

E+SD -35425 -1085 -247239 -414352 -5449604 -14591

SC+F 39 1969 -220557 -389732 -5092529 -11018

SD+F 52 2071 -221001 -403626 -5173338 -11192

SC+F+E 36 2696 -237551 -401892 -5235979 -10941

E+SD+F -24862 3205 -248231 -413469 -5474129 -13524

(b)

Conf E A I E-I A-I A/E S D D/S

SC 6050668 2617641 2340181 3710487 277460 0.09 0 0 0

SD 1438791 614811 560289 878502 54522 0.09 854233 4981 0.01

SC+E 3086258 1476912 1321733 1764525 155179 0.12 0 0 0

E+SD 165678 148590 136662 29016 11928 0.90 84256 1111 0.01

SC+F 1123359 504036 445600 677759 58436 0.12 0 0 0

SD+F 946075 419355 382243 563832 37112 0.10 504248 3178 0.01

SC+F+E 752479 361384 328420 424059 32964 0.14 0 0 0

E+SD+F 135661 123174 112860 22801 10314 0.90 76378 885 0.01

(c)

Table B.1: The raw and EPOR-relative exploration data and reduction data from alarm clock AC1
input program.

202

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 684 2079 18051 11475 443403 0

SD 474 1016 12766 5099 273092 0

SC+E 442 1009 5568 3889 165798 0

E+SD 147 516 1857 485 38522 0

E 476 769 11889 13067 418901 0

SC+F 1182 6311 18051 11475 443403 0

SD+F 830 7184 12766 5099 273092 0

SC+F+E 691 7243 5568 3889 165798 0

E+SD+F 297 7113 1857 485 38522 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 208 1310 6162 -1592 24502 0

SD -2 247 877 -7968 -145809 0

SC+E -34 240 -6321 -9178 -253103 0

E+SD -329 -253 -10032 -12582 -380379 0

SC+F 706 5542 6162 -1592 24502 0

SD+F 354 6415 877 -7968 -145809 0

SC+F+E 215 6474 -6321 -9178 -253103 0

E+SD+F -179 6344 -10032 -12582 -380379 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 967950 443359 396090 571860 47269 0.18 0 0 0

SD 624603 272112 250020 374583 22092 0.11 364679 987 0.00

SC+E 280233 167247 138646 141587 28601 0.40 0 0 0

E+SD 41470 38179 33896 7574 4283 0.92 37811 340 0.01

SC+F 967950 443359 396090 571860 47269 0.18 0 0 0

SD+F 624603 272112 250020 374583 22092 0.11 364679 987 0.00

SC+F+E 280233 167247 138646 141587 28601 0.40 0 0 0

E+SD+F 41470 38179 33896 7574 4283 0.92 37811 340 0.01

(c)

Table B.2: The raw and EPOR-relative exploration data and reduction data from alarm clock AC2
input program.

203

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 844 1013 27470 21477 828223 0

SD 566 1419 16053 7469 482608 0

SC+E 425 779 6815 4863 238414 0

E+SD 138 578 1946 342 55827 0

E 424 495 11030 11239 499105 0

SC+F 966 1774 27470 21477 828223 0

SD+F 622 1865 16053 7469 482608 0

SC+F+E 443 1859 6815 4863 238414 0

E+SD+F 152 1698 1946 342 55827 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 420 518 16440 10238 329118 0

SD 142 924 5023 -3770 -16497 0

SC+E 1 284 -4215 -6376 -260691 0

E+SD -286 83 -9084 -10897 -443278 0

SC+F 542 1279 16440 10238 329118 0

SD+F 198 1370 5023 -3770 -16497 0

SC+F+E 19 1364 -4215 -6376 -260691 0

E+SD+F -272 1203 -9084 -10897 -443278 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 1868586 828060 757631 1110955 70429 0.14 0 0 0

SD 1127213 479693 453561 673652 26132 0.08 565788 2878 0.01

SC+E 419007 240040 206271 212736 33769 0.33 0 0 0

E+SD 60114 55624 51214 8900 4410 0.92 22137 200 0.01

SC+F 1868586 828060 757631 1110955 70429 0.14 0 0 0

SD+F 1127213 479693 453561 673652 26132 0.08 565788 2878 0.01

SC+F+E 419007 240040 206271 212736 33769 0.33 0 0 0

E+SD+F 60114 55624 51214 8900 4410 0.92 22137 200 0.01

(c)

Table B.3: The raw and EPOR-relative exploration data and reduction data from alarm clock AC3
input program.

204

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 69 594 1586 835 7772 0

SD 56 934 929 309 4677 0

SC+E 45 1197 794 413 5576 0

E+SD 46 1144 644 233 4493 0

E 42 94 90 90 2448 0

SC+F 49 1252 1586 838 7775 0

SD+F 49 98 929 343 4711 0

SC+F+E 52 1252 794 420 5583 0

E+SD+F 49 1148 644 265 4525 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 27 500 1496 745 5324 0

SD 14 840 839 219 2229 0

SC+E 3 1103 704 323 3128 0

E+SD 4 1050 554 143 2045 0

SC+F 7 1158 1496 748 5327 0

SD+F 7 4 839 253 2263 0

SC+F+E 10 1158 704 330 3135 0

E+SD+F 7 1054 554 175 2077 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 11059 7771 4196 6863 3575 0.54 0 0 0

SD 6723 4476 2610 4113 1866 0.49 95171 200 0.00

SC+E 7720 5642 3133 4587 2509 0.60 0 0 0

E+SD 4974 4324 2558 2416 1766 0.85 95002 168 0.00

SC+F 11059 7771 4196 6863 3575 0.54 0 0 0

SD+F 6723 4476 2610 4113 1866 0.49 97550 200 0.00

SC+F+E 7720 5642 3133 4587 2509 0.60 0 0 0

E+SD+F 4974 4324 2558 2416 1766 0.85 95544 168 0.00

(c)

Table B.4: The raw and EPOR-relative exploration data and reduction data from bounded buffer
BB1 input program.

205

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 66 60 46 27 301 5

SD 60 73 44 25 282 4

SC+E 51 93 7 1 101 2

E+SD 50 93 5 0 83 1

E 67 92 122 88 869 32

SC+F 158 100 257 242 727 216

SD+F 157 98 255 239 707 215

SC+F+E 90 100 109 104 306 104

E+SD+F 76 100 50 45 230 46

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC -1 -32 -76 -61 -568 -27

SD -7 -19 -78 -63 -587 -28

SC+E -16 1 -115 -87 -768 -30

E+SD -17 1 -117 -88 -786 -31

SC+F 91 8 135 154 -142 184

SD+F 90 6 133 151 -162 183

SC+F+E 23 8 -13 16 -563 72

E+SD+F 9 8 -72 -43 -639 14

(b)

Conf E A I E-I A-I A/E S D D/S

SC 489 295 197 292 98 0.43 0 0 0

SD 457 277 182 275 95 0.45 0 0 0

SC+E 165 109 77 88 32 0.48 0 0 0

E+SD 86 81 62 24 19 0.94 0 0 0

SC+F 1014 506 408 606 98 0.24 0 0 0

SD+F 982 488 393 589 95 0.25 286 0 0

SC+F+E 368 211 179 189 32 0.24 0 0 0

E+SD+F 188 183 164 24 19 0.97 22 0 0

(c)

Table B.5: The raw and EPOR-relative exploration data and reduction data from bounded buffer
BB4 input program.

206

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 60 59 152 56 810 0

SD 58 72 149 52 796 0

SC+E 50 91 21 13 379 0

E+SD 48 91 23 10 408 0

E 52 91 28 28 507 0

SC+F 44 92 152 56 810 0

SD+F 48 92 149 52 796 0

SC+F+E 44 92 21 14 380 0

E+SD+F 50 92 23 15 413 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 8 -32 124 28 303 0

SD 6 -19 121 24 289 0

SC+E -2 0 -7 -15 -128 0

E+SD -4 0 -5 -18 -99 0

SC+F -8 1 124 28 303 0

SD+F -4 1 121 24 289 0

SC+F+E -8 1 -7 -14 -127 0

E+SD+F -2 1 -5 -13 -94 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 1054 809 397 657 412 0.69 0 0 0

SD 1032 789 392 640 397 0.68 2546 6 0.00

SC+E 462 386 199 263 187 0.80 0 0 0

E+SD 423 402 211 212 191 0.95 1088 5 0.00

SC+F 1054 809 397 657 412 0.69 0 0 0

SD+F 1032 789 392 640 397 0.68 2546 6 0.00

SC+F+E 462 386 199 263 187 0.80 0 0 0

E+SD+F 423 402 211 212 191 0.95 1124 5 0.00

(c)

Table B.6: The raw and EPOR-relative exploration data and reduction data from bounded buffer
BB8 input program.

207

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 52 60 173 83 665 2

SD 52 72 113 43 388 2

SC+E 53 92 115 43 491 2

E+SD 48 91 89 27 324 2

E 50 91 178 114 809 2

SC+F 39 92 173 83 665 2

SD+F 53 92 135 56 512 2

SC+F+E 39 92 115 43 491 2

E+SD+F 43 92 111 40 448 2

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 2 -31 -5 -31 -144 0

SD 2 -19 -65 -71 -421 0

SC+E 3 1 -63 -71 -318 0

E+SD -2 0 -89 -87 -485 0

SC+F -11 1 -5 -31 -144 0

SD+F 3 1 -43 -58 -297 0

SC+F+E -11 1 -63 -71 -318 0

E+SD+F -7 1 -67 -74 -361 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 930 664 348 582 316 0.59 0 0 0

SD 532 352 191 341 161 0.49 368 35 0.10

SC+E 662 494 265 397 229 0.63 0 0 0

E+SD 372 292 168 204 124 0.73 244 31 0.13

SC+F 930 664 348 582 316 0.59 0 0 0

SD+F 693 463 262 431 201 0.50 511 44 0.09

SC+F+E 662 494 265 397 229 0.63 0 0 0

E+SD+F 503 403 239 264 164 0.75 387 40 0.10

(c)

Table B.7: The raw and EPOR-relative exploration data and reduction data from deadlock DL1
input program.

208

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 75 59 47 20 182 1

SD 48 71 34 11 132 1

SC+E 44 91 8 1 77 1

E+SD 53 91 8 1 77 1

E 40 90 8 1 77 1

SC+F 47 91 47 20 182 1

SD+F 37 91 34 11 132 1

SC+F+E 37 91 8 1 77 1

E+SD+F 37 91 8 1 77 1

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 35 -31 39 19 105 0

SD 8 -19 26 10 55 0

SC+E 4 1 0 0 0 0

E+SD 13 1 0 0 0 0

SC+F 7 1 39 19 105 0

SD+F -3 1 26 10 55 0

SC+F+E -3 1 0 0 0 0

E+SD+F -3 1 0 0 0 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 268 181 107 161 74 0.55 0 0 0

SD 186 128 76 110 52 0.59 99 3 0.03

SC+E 102 80 50 52 30 0.74 0 0 0

E+SD 80 74 50 30 24 0.93 19 2 0.11

SC+F 268 181 107 161 74 0.55 0 0 0

SD+F 186 128 76 110 52 0.59 99 3 0.03

SC+F+E 102 80 50 52 30 0.74 0 0 0

E+SD+F 80 74 50 30 24 0.93 19 2 0.11

(c)

Table B.8: The raw and EPOR-relative exploration data and reduction data from deadlock DL2
input program.

209

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 64 59 61 24 198 2

SD 47 71 43 14 133 1

SC+E 46 91 7 0 86 2

E+SD 54 91 4 0 65 1

E 41 90 7 0 86 2

SC+F 40 91 61 24 198 2

SD+F 39 91 46 14 154 2

SC+F+E 39 91 7 0 86 2

E+SD+F 50 91 7 0 86 2

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 23 -31 54 24 112 0

SD 6 -19 36 14 47 -1

SC+E 5 1 0 0 0 0

E+SD 13 1 -3 0 -21 -1

SC+F -1 1 54 24 112 0

SD+F -2 1 39 14 68 0

SC+F+E -2 1 0 0 0 0

E+SD+F 9 1 0 0 0 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 282 197 89 193 108 0.58 0 0 0

SD 198 132 62 136 70 0.52 64 0 0

SC+E 115 91 50 65 41 0.75 0 0 0

E+SD 69 64 40 29 24 0.94 5 0 0

SC+F 282 197 89 193 108 0.58 0 0 0

SD+F 219 152 72 147 80 0.58 87 0 0

SC+F+E 115 91 50 65 41 0.75 0 0 0

E+SD+F 89 84 50 39 34 0.95 14 0 0

(c)

Table B.9: The raw and EPOR-relative exploration data and reduction data from deadlock DL3
input program.

210

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 54 533 746 792 2426 1

SD 57 71 304 272 925 1

SC+E 39 91 30 36 266 1

E+SD 50 91 16 4 173 1

E 47 91 30 57 287 1

SC+F 40 117 746 800 2434 1

SD+F 50 117 304 274 927 1

SC+F+E 42 117 30 41 271 1

E+SD+F 41 117 16 6 175 1

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 7 442 716 735 2139 0

SD 10 -20 274 215 638 0

SC+E -8 0 0 -21 -21 0

E+SD 3 0 -14 -53 -114 0

SC+F -7 26 716 743 2147 0

SD+F 3 26 274 217 640 0

SC+F+E -5 26 0 -16 -16 0

E+SD+F -6 26 -14 -51 -112 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 5800 2425 922 4878 1503 0.12 0 0 0

SD 2203 901 348 1855 553 0.15 12511 23 0.00

SC+E 581 289 144 437 145 0.46 0 0 0

E+SD 214 168 110 104 58 0.87 199 4 0.02

SC+F 5800 2425 922 4878 1503 0.12 0 0 0

SD+F 2203 901 348 1855 553 0.15 12620 23 0.00

SC+F+E 581 289 144 437 145 0.46 0 0 0

E+SD+F 214 168 110 104 58 0.87 208 4 0.02

(c)

Table B.10: The raw and EPOR-relative exploration data and reduction data from dining philoso-
phers DP1 input program.

211

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 57 615 798 831 2584 1

SD 57 72 311 276 950 1

SC+E 49 91 51 63 391 1

E+SD 49 91 18 5 192 1

E 37 91 51 99 427 1

SC+F 45 128 798 843 2596 1

SD+F 43 128 325 284 990 1

SC+F+E 49 128 51 70 398 1

E+SD+F 51 128 28 14 243 1

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 20 524 747 732 2157 0

SD 20 -19 260 177 523 0

SC+E 12 0 0 -36 -36 0

E+SD 12 0 -33 -94 -235 0

SC+F 8 37 747 744 2169 0

SD+F 6 37 274 185 563 0

SC+F+E 12 37 0 -29 -29 0

E+SD+F 14 37 -23 -85 -184 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 6175 2583 977 5198 1606 0.13 0 0 0

SD 2256 925 350 1906 575 0.16 13171 24 0.00

SC+E 874 414 189 685 225 0.38 0 0 0

E+SD 240 186 112 128 74 0.86 271 5 0.02

SC+F 6175 2583 977 5198 1606 0.13 0 0 0

SD+F 2373 957 367 2006 590 0.15 13886 27 0.00

SC+F+E 874 414 189 685 225 0.38 0 0 0

E+SD+F 323 228 133 190 95 0.81 608 9 0.01

(c)

Table B.11: The raw and EPOR-relative exploration data and reduction data from dining philoso-
phers DP2 input program.

212

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 64 533 798 831 2589 1

SD 52 72 311 276 955 1

SC+E 50 91 51 63 396 1

E+SD 38 91 18 5 197 1

E 33 91 51 99 432 1

SC+F 54 128 798 843 2601 1

SD+F 52 128 325 284 995 1

SC+F+E 56 128 51 70 403 1

E+SD+F 51 128 28 14 248 1

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 31 442 747 732 2157 0

SD 19 -19 260 177 523 0

SC+E 17 0 0 -36 -36 0

E+SD 5 0 -33 -94 -235 0

SC+F 21 37 747 744 2169 0

SD+F 19 37 274 185 563 0

SC+F+E 23 37 0 -29 -29 0

E+SD+F 18 37 -23 -85 -184 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 6179 2587 990 5189 1597 0.13 0 0 0

SD 2260 929 363 1897 566 0.17 13171 24 0.00

SC+E 878 418 202 676 216 0.39 0 0 0

E+SD 244 190 125 119 65 0.86 271 5 0.02

SC+F 6179 2587 990 5189 1597 0.13 0 0 0

SD+F 2377 961 380 1997 581 0.16 13886 27 0.00

SC+F+E 878 418 202 676 216 0.39 0 0 0

E+SD+F 327 232 146 181 86 0.81 608 9 0.01

(c)

Table B.12: The raw and EPOR-relative exploration data and reduction data from dining philoso-
phers DP3 input program.

213

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 65 903 1618 2056 6197 1

SD 58 92 373 334 1268 1

SC+E 45 92 30 36 321 1

E+SD 47 92 16 4 228 1

E 53 92 30 57 342 1

SC+F 46 867 1621 2092 6238 1

SD+F 41 194 376 336 1275 1

SC+F+E 50 194 30 41 326 1

E+SD+F 52 194 16 6 230 1

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 12 811 1588 1999 5855 0

SD 5 0 343 277 926 0

SC+E -8 0 0 -21 -21 0

E+SD -6 0 -14 -53 -114 0

SC+F -7 775 1591 2035 5896 0

SD+F -12 102 346 279 933 0

SC+F+E -3 102 0 -16 -16 0

E+SD+F -1 102 -14 -51 -112 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 14926 6196 2524 12402 3672 0.09 0 0 0

SD 3246 1244 564 2682 680 0.11 14549 23 0.00

SC+E 768 390 199 569 191 0.38 0 0 0

E+SD 275 223 165 110 58 0.89 199 4 0.02

SC+F 14939 6204 2526 12413 3678 0.09 0 0 0

SD+F 3265 1249 566 2699 683 0.10 14664 24 0.00

SC+F+E 768 390 199 569 191 0.38 0 0 0

E+SD+F 275 223 165 110 58 0.89 208 4 0.02

(c)

Table B.13: The raw and EPOR-relative exploration data and reduction data from dining philoso-
phers DP4 input program.

214

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 69 596 1910 2304 7123 1

SD 51 92 442 417 1564 1

SC+E 47 93 8 2 142 1

E+SD 50 93 9 1 144 1

E 49 92 153 346 1434 1

SC+F 65 820 1930 2359 7200 1

SD+F 59 152 448 423 1578 1

SC+F+E 56 153 8 3 143 1

E+SD+F 54 153 9 3 146 1

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 20 504 1757 1958 5689 0

SD 2 0 289 71 130 0

SC+E -2 1 -145 -344 -1292 0

E+SD 1 1 -144 -345 -1290 0

SC+F 16 728 1777 2013 5766 0

SD+F 10 60 295 77 144 0

SC+F+E 7 61 -145 -343 -1291 0

E+SD+F 5 61 -144 -343 -1288 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 17599 7121 2961 14638 4160 0.08 0 0 0

SD 3967 1539 706 3261 833 0.12 16910 23 0.00

SC+E 197 151 103 94 48 0.72 0 0 0

E+SD 153 141 104 49 37 0.93 18 1 0.06

SC+F 17696 7146 2980 14716 4166 0.08 0 0 0

SD+F 4001 1547 711 3290 836 0.12 17153 24 0.00

SC+F+E 197 151 103 94 48 0.72 0 0 0

E+SD+F 153 141 104 49 37 0.93 27 2 0.07

(c)

Table B.14: The raw and EPOR-relative exploration data and reduction data from dining philoso-
phers DP5 input program.

215

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 64 515 1910 2304 7115 1

SD 40 92 442 417 1556 1

SC+E 41 93 8 2 138 1

E+SD 44 93 9 1 140 1

E 34 92 153 346 1426 1

SC+F 64 692 1930 2359 7192 1

SD+F 65 151 448 423 1570 1

SC+F+E 55 151 8 3 139 1

E+SD+F 53 151 9 3 142 1

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 30 423 1757 1958 5689 0

SD 6 0 289 71 130 0

SC+E 7 1 -145 -344 -1288 0

E+SD 10 1 -144 -345 -1286 0

SC+F 30 600 1777 2013 5766 0

SD+F 31 59 295 77 144 0

SC+F+E 21 59 -145 -343 -1287 0

E+SD+F 19 59 -144 -343 -1284 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 17591 7113 2953 14638 4160 0.08 0 0 0

SD 3959 1531 698 3261 833 0.12 16910 23 0.00

SC+E 193 147 99 94 48 0.71 0 0 0

E+SD 149 137 100 49 37 0.93 18 1 0.06

SC+F 17688 7138 2972 14716 4166 0.08 0 0 0

SD+F 3993 1539 703 3290 836 0.12 17153 24 0.00

SC+F+E 193 147 99 94 48 0.71 0 0 0

E+SD+F 149 137 100 49 37 0.93 27 2 0.07

(c)

Table B.15: The raw and EPOR-relative exploration data and reduction data from dining philoso-
phers DP6 input program.

216

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 36019 5937 11908 743 7251107 0

SD 36247 14842 9150 0 2762960 0

SC+E 5469 6135 4419 647 529098 0

E+SD 1564 5932 2478 43 103302 0

E 36012 5890 200622 197416 8287084 0

SC+F 36081 10539 10383 471 6303446 0

SD+F 36288 14407 8463 0 2105125 0

SC+F+E 5497 6207 4419 647 529098 0

E+SD+F 1629 5966 2478 43 103302 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 7 47 -188714 -196673 -1035977 0

SD 235 8952 -191472 -197416 -5524124 0

SC+E -30543 245 -196203 -196769 -7757986 0

E+SD -34448 42 -198144 -197373 -8183782 0

SC+F 69 4649 -190239 -196945 -1983638 0

SD+F 276 8517 -192159 -197416 -6181959 0

SC+F+E -30515 317 -196203 -196769 -7757986 0

E+SD+F -34383 76 -198144 -197373 -8183782 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 7268871 7254294 4619080 2649791 2635214 1.00 0 0 0

SD 5520859 2762954 2755684 2765175 7270 0.00 45275 0 0

SC+E 758550 632726 289442 469108 343284 0.76 0 0 0

E+SD 109860 103254 58298 51562 44956 0.94 3501994 41 0.00

SC+F 6319678 6306597 4111038 2208640 2195559 1.00 0 0 0

SD+F 4205189 2105119 2097879 2107310 7240 0.00 44975 0 0

SC+F+E 758550 632726 289442 469108 343284 0.76 0 0 0

E+SD+F 109860 103254 58298 51562 44956 0.94 3501994 41 0.00

(c)

Table B.16: The raw and EPOR-relative exploration data and reduction data from molecular
dynamics MD3 input program.

217

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 36011 5526 1831 156 1455033 0

SD 13314 6381 22909 5276 435667 0

SC+E 36014 5960 2298 1119 711010 0

E+SD 1830 5607 171 5 42604 0

E 24263 5783 4616 3569 1247000 0

SC+F 36034 6942 1812 155 1437594 0

SD+F 13287 6640 22909 5276 435667 0

SC+F+E 36027 6666 2186 1033 702675 0

E+SD+F 1827 5652 171 5 42604 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 11748 -257 -2785 -3413 208033 0

SD -10949 598 18293 1707 -811333 0

SC+E 11751 177 -2318 -2450 -535990 0

E+SD -22433 -176 -4445 -3564 -1204396 0

SC+F 11771 1159 -2804 -3414 190594 0

SD+F -10976 857 18293 1707 -811333 0

SC+F+E 11764 883 -2430 -2536 -544325 0

E+SD+F -22436 -131 -4445 -3564 -1204396 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 1457291 1455148 1057730 399561 397418 1.00 0 0 0

SD 841343 435325 403207 438136 32118 0.06 82471867 336 0.00

SC+E 1098039 802388 519537 578502 282851 0.58 0 0 0

E+SD 43966 42595 32894 11072 9701 0.97 56594 3 0.00

SC+F 1439849 1437709 1045264 394585 392445 1.00 0 0 0

SD+F 841343 435325 403207 438136 32118 0.06 82471867 336 0.00

SC+F+E 1081541 792354 513095 568446 279259 0.59 0 0 0

E+SD+F 43966 42595 32894 11072 9701 0.97 56594 3 0.00

(c)

Table B.17: The raw and EPOR-relative exploration data and reduction data from ray tracer RT3
input program.

218

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 1446 1358 301293 362901 1081729 0

SD 128 1151 12710 13425 46687 0

SC+E 714 829 69682 78117 323185 0

E+SD 55 232 82 17 553 0

E 119 799 7379 15859 76291 0

SC+F 1746 1641 301293 362901 1081729 0

SD+F 126 1269 12710 13425 46687 0

SC+F+E 748 1481 69682 78117 323185 0

E+SD+F 53 248 82 17 553 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 1327 559 293914 347042 1005438 0

SD 9 352 5331 -2434 -29604 0

SC+E 595 30 62303 62258 246894 0

E+SD -64 -567 -7297 -15842 -75738 0

SC+F 1627 842 293914 347042 1005438 0

SD+F 7 470 5331 -2434 -29604 0

SC+F+E 629 682 62303 62258 246894 0

E+SD+F -66 -551 -7297 -15842 -75738 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 2732043 1081728 435388 2296655 646340 0.05 0 0 0

SD 129663 44038 20943 108720 23095 0.03 2218888 2648 0.00

SC+E 865735 362456 144030 721705 218426 0.07 0 0 0

E+SD 722 538 342 380 196 0.83 2837 14 0.00

SC+F 2732043 1081728 435388 2296655 646340 0.05 0 0 0

SD+F 129663 44038 20943 108720 23095 0.03 2218888 2648 0.00

SC+F+E 865735 362456 144030 721705 218426 0.07 0 0 0

E+SD+F 722 538 342 380 196 0.83 2837 14 0.00

(c)

Table B.18: The raw and EPOR-relative exploration data and reduction data from pipeline PL1
input program.

219

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 75 430 291 87 2189 0

SD 53 73 287 84 2177 0

SC+E 47 93 48 31 1363 0

E+SD 49 93 48 31 1375 0

E 36 92 57 44 1637 0

SC+F 45 95 291 87 2189 0

SD+F 42 95 287 84 2177 0

SC+F+E 40 95 48 31 1363 0

E+SD+F 43 95 48 31 1375 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 39 338 234 43 552 0

SD 17 -19 230 40 540 0

SC+E 11 1 -9 -13 -274 0

E+SD 13 1 -9 -13 -262 0

SC+F 9 3 234 43 552 0

SD+F 6 3 230 40 540 0

SC+F+E 4 3 -9 -13 -274 0

E+SD+F 7 3 -9 -13 -262 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 2839 2188 1066 1773 1122 0.70 0 0 0

SD 2818 2153 1060 1758 1093 0.69 5531 23 0.00

SC+E 1668 1380 665 1003 715 0.79 0 0 0

E+SD 1383 1350 671 712 679 0.98 3207 24 0.01

SC+F 2839 2188 1066 1773 1122 0.70 0 0 0

SD+F 2818 2153 1060 1758 1093 0.69 5531 23 0.00

SC+F+E 1668 1380 665 1003 715 0.79 0 0 0

E+SD+F 1383 1350 671 712 679 0.98 3207 24 0.01

(c)

Table B.19: The raw and EPOR-relative exploration data and reduction data from producer-
consumer PC3 input program.

220

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 61 1046 1007 615 9986 0

SD 60 1143 582 284 7488 0

SC+E 52 1352 88 64 3460 0

E+SD 49 1351 88 64 3469 0

E 46 95 103 85 4057 0

SC+F 62 1356 1007 615 9986 0

SD+F 41 1356 582 284 7488 0

SC+F+E 43 1460 88 64 3460 0

E+SD+F 45 1356 88 64 3469 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 15 951 904 530 5929 0

SD 14 1048 479 199 3431 0

SC+E 6 1257 -15 -21 -597 0

E+SD 3 1256 -15 -21 -588 0

SC+F 16 1261 904 530 5929 0

SD+F -5 1261 479 199 3431 0

SC+F+E -3 1365 -15 -21 -597 0

E+SD+F -1 1261 -15 -21 -588 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 14235 9985 6014 8221 3971 0.57 0 0 0

SD 10274 7285 4529 5745 2756 0.59 25889 202 0.01

SC+E 4325 3514 1991 2334 1523 0.76 0 0 0

E+SD 3542 3419 1997 1545 1422 0.96 8888 49 0.01

SC+F 14235 9985 6014 8221 3971 0.57 0 0 0

SD+F 10274 7285 4529 5745 2756 0.59 25889 202 0.01

SC+F+E 4325 3514 1991 2334 1523 0.76 0 0 0

E+SD+F 3542 3419 1997 1545 1422 0.96 8888 49 0.01

(c)

Table B.20: The raw and EPOR-relative exploration data and reduction data from producer-
consumer PC4 input program.

221

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 53 654 1403 1453 5480 0

SD 48 1022 861 733 3564 0

SC+E 41 106 102 127 1404 0

E+SD 49 106 72 66 989 0

E 36 106 124 296 1746 0

SC+F 65 1283 1415 1493 5578 0

SD+F 53 1152 875 770 3689 0

SC+F+E 50 107 104 139 1432 0

E+SD+F 49 107 72 79 1002 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 17 548 1279 1157 3734 0

SD 12 916 737 437 1818 0

SC+E 5 0 -22 -169 -342 0

E+SD 13 0 -52 -230 -757 0

SC+F 29 1177 1291 1197 3832 0

SD+F 17 1046 751 474 1943 0

SC+F+E 14 1 -20 -157 -314 0

E+SD+F 13 1 -52 -217 -744 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 10923 5479 2380 8543 3099 0.35 0 0 0

SD 6544 3389 1650 4894 1739 0.42 121289 215 0.00

SC+E 2080 1486 817 1263 669 0.77 0 0 0

E+SD 1108 951 588 520 363 0.92 17209 56 0.00

SC+F 11030 5543 2418 8612 3125 0.35 0 0 0

SD+F 6666 3481 1706 4960 1775 0.43 129951 216 0.00

SC+F+E 2105 1503 828 1277 675 0.77 0 0 0

E+SD+F 1108 951 588 520 363 0.92 18790 60 0.00

(c)

Table B.21: The raw and EPOR-relative exploration data and reduction data from readers-writers
RW1 input program.

222

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 123 1422 13338 10795 47032 0

SD 131 981 9100 6438 30692 0

SC+E 94 563 5186 3480 22955 0

E+SD 95 717 2880 1606 12789 0

E 60 505 1214 2559 12312 0

SC+F 113 1182 13342 11328 47612 0

SD+F 151 826 10335 7562 35327 0

SC+F+E 82 475 4947 3758 22517 0

E+SD+F 95 628 4215 2876 18766 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 63 917 12124 8236 34720 0

SD 71 476 7886 3879 18380 0

SC+E 34 58 3972 921 10643 0

E+SD 35 212 1666 -953 477 0

SC+F 53 677 12128 8769 35300 0

SD+F 91 321 9121 5003 23015 0

SC+F+E 22 -30 3733 1199 10205 0

E+SD+F 35 123 3001 317 6454 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 111536 47021 21506 90030 25515 0.15 0 0 0

SD 73866 28259 14133 59733 14126 0.11 8059290 2471 0.00

SC+E 52055 23489 11912 40143 11577 0.20 0 0 0

E+SD 17889 11854 6883 11006 4971 0.66 2254047 973 0.00

SC+F 111317 46815 21517 89800 25298 0.15 0 0 0

SD+F 84418 32110 16225 68193 15885 0.10 11334045 2800 0.00

SC+F+E 50191 22396 11496 38695 10900 0.20 0 0 0

E+SD+F 25939 17129 9787 16152 7342 0.65 4278026 1312 0.00

(c)

Table B.22: The raw and EPOR-relative exploration data and reduction data from readers-writers
RW2 input program.

223

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 69 144 1403 1453 5480 0

SD 50 92 861 733 3564 0

SC+E 45 93 102 127 1404 0

E+SD 43 93 72 66 989 0

E 40 93 124 296 1746 0

SC+F 46 94 1415 1493 5578 0

SD+F 46 94 875 770 3689 0

SC+F+E 53 94 104 139 1432 0

E+SD+F 40 94 72 79 1002 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 29 51 1279 1157 3734 0

SD 10 -1 737 437 1818 0

SC+E 5 0 -22 -169 -342 0

E+SD 3 0 -52 -230 -757 0

SC+F 6 1 1291 1197 3832 0

SD+F 6 1 751 474 1943 0

SC+F+E 13 1 -20 -157 -314 0

E+SD+F 0 1 -52 -217 -744 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 10923 5479 2380 8543 3099 0.35 0 0 0

SD 6544 3389 1650 4894 1739 0.42 121289 215 0.00

SC+E 2080 1486 817 1263 669 0.77 0 0 0

E+SD 1108 951 588 520 363 0.92 17209 56 0.00

SC+F 11030 5543 2418 8612 3125 0.35 0 0 0

SD+F 6666 3481 1706 4960 1775 0.43 129951 216 0.00

SC+F+E 2105 1503 828 1277 675 0.77 0 0 0

E+SD+F 1108 951 588 520 363 0.92 18790 60 0.00

(c)

Table B.23: The raw and EPOR-relative exploration data and reduction data from readers-writers
RW3 input program.

224

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 70 987 1661 1647 7063 0

SD 57 1039 979 835 4426 0

SC+E 51 94 121 154 1794 0

E+SD 51 94 88 79 1311 0

E 49 93 134 299 2091 0

SC+F 63 1353 1671 1702 7190 0

SD+F 53 1143 984 854 4490 0

SC+F+E 51 95 121 157 1797 0

E+SD+F 49 95 89 93 1335 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 21 894 1527 1348 4972 0

SD 8 946 845 536 2335 0

SC+E 2 1 -13 -145 -297 0

E+SD 2 1 -46 -220 -780 0

SC+F 14 1260 1537 1403 5099 0

SD+F 4 1050 850 555 2399 0

SC+F+E 2 2 -13 -142 -294 0

E+SD+F 0 2 -45 -206 -756 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 12948 7062 3135 9813 3927 0.46 0 0 0

SD 7459 4252 2032 5427 2220 0.51 148940 223 0.00

SC+E 2409 1862 1006 1403 856 0.82 0 0 0

E+SD 1432 1278 751 681 527 0.93 24306 46 0.00

SC+F 13053 7140 3178 9875 3962 0.46 0 0 0

SD+F 7518 4299 2059 5459 2240 0.52 156159 226 0.00

SC+F+E 2409 1862 1006 1403 856 0.82 0 0 0

E+SD+F 1445 1288 757 688 531 0.93 25621 46 0.00

(c)

Table B.24: The raw and EPOR-relative exploration data and reduction data from readers-writers
RW4 input program.

225

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 78 1019 5113 4744 22702 0

SD 73 625 2616 1937 12243 0

SC+E 60 60 173 114 2975 0

E+SD 57 61 177 75 2665 0

E 62 59 58 108 2116 0

SC+F 78 693 5161 4831 23098 0

SD+F 69 630 2625 1995 12346 0

SC+F+E 63 64 180 129 3058 0

E+SD+F 59 65 183 84 2787 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 16 960 5055 4636 20586 0

SD 11 566 2558 1829 10127 0

SC+E -2 1 115 6 859 0

E+SD -5 2 119 -33 549 0

SC+F 16 634 5103 4723 20982 0

SD+F 7 571 2567 1887 10230 0

SC+F+E 1 5 122 21 942 0

E+SD+F -3 6 125 -24 671 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 45673 22701 11068 34605 11633 0.35 0 0 0

SD 23187 11613 6314 16873 5299 0.35 1231920 652 0.00

SC+E 4178 3029 1688 2490 1341 0.76 0 0 0

E+SD 2915 2600 1552 1363 1048 0.93 77497 82 0.00

SC+F 46124 23032 11245 34879 11787 0.36 0 0 0

SD+F 23258 11658 6338 16920 5320 0.36 1219570 651 0.00

SC+F+E 4265 3100 1725 2540 1375 0.77 0 0 0

E+SD+F 3037 2713 1621 1416 1092 0.93 82508 82 0.00

(c)

Table B.25: The raw and EPOR-relative exploration data and reduction data from readers-writers
RW5 input program.

226

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 337 2227 5760 1764 98168 0

SD 162 2074 1619 747 31180 0

SC+E 325 1322 1788 641 63785 0

E+SD 338 1286 1587 495 60595 0

E 619 872 6577 6562 362027 0

SC+F 317 1409 5760 1764 98168 0

SD+F 156 1347 1619 747 31180 0

SC+F+E 338 1631 1788 641 63785 0

E+SD+F 332 1956 1587 495 60595 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC -282 1355 -817 -4798 -263859 0

SD -457 1202 -4958 -5815 -330847 0

SC+E -294 450 -4789 -5921 -298242 0

E+SD -281 414 -4990 -6067 -301432 0

SC+F -302 537 -817 -4798 -263859 0

SD+F -463 475 -4958 -5815 -330847 0

SC+F+E -281 759 -4789 -5921 -298242 0

E+SD+F -287 1084 -4990 -6067 -301432 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 129497 98163 71277 58220 26886 0.67 0 0 0

SD 37132 30547 20861 16271 9686 0.78 189609 630 0.00

SC+E 80099 64186 45758 34341 18428 0.75 0 0 0

E+SD 62388 60185 43827 18561 16358 0.96 173626 405 0.00

SC+F 129497 98163 71277 58220 26886 0.67 0 0 0

SD+F 37132 30547 20861 16271 9686 0.78 189609 630 0.00

SC+F+E 80099 64186 45758 34341 18428 0.75 0 0 0

E+SD+F 62388 60185 43827 18561 16358 0.96 173626 405 0.00

(c)

Table B.26: The raw and EPOR-relative exploration data and reduction data from replicated
workers RP13 input program.

227

APPENDIX B. DATA FROM POR EXPERIMENTS

B.3 Terminated Configurations

228

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 14357 5119 1043247 753132 4823439 0

SD 5956 13922 251698 108054 1047995 0

SC+E 16302 6405 568928 328218 3259745 0

E+SD 2619 7468 95657 43268 413817 0

E 13515 6382 612954 1010878 5709125 0

SC+F 19593 12220 1043247 753132 4823439 0

SD+F 6816 14390 251698 108054 1047995 0

SC+F+E 18419 10279 568928 328218 3259745 0

E+SD+F 2654 7954 95657 43268 413817 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 842 -1263 430293 -257746 -885686 0

SD -7559 7540 -361256 -902824 -4661130 0

SC+E 2787 23 -44026 -682660 -2449380 0

E+SD -10896 1086 -517297 -967610 -5295308 0

SC+F 6078 5838 430293 -257746 -885686 0

SD+F -6699 8008 -361256 -902824 -4661130 0

SC+F+E 4904 3897 -44026 -682660 -2449380 0

E+SD+F -10861 1572 -517297 -967610 -5295308 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 9466092 4823436 2741042 6725050 2082394 0.26 0 0 0

SD 1888152 951921 578447 1309705 373474 0.29 121278050 96143 0.00

SC+E 6736469 3422551 1967867 4768602 1454684 0.26 0 0 0

E+SD 503251 379445 220569 282682 158876 0.73 19058347 34379 0.00

SC+F 9466092 4823436 2741042 6725050 2082394 0.26 0 0 0

SD+F 1888152 951921 578447 1309705 373474 0.29 121278050 96143 0.00

SC+F+E 6736469 3422551 1967867 4768602 1454684 0.26 0 0 0

E+SD+F 503251 379445 220569 282682 158876 0.73 19058347 34379 0.00

(c)

Table B.27: The raw and EPOR-relative exploration data and reduction data from replicated
workers RP15 input program.

229

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 629 2736 48232 34787 252853 0

SD 377 1480 20550 10783 105190 0

SC+E 621 1486 23408 13496 154699 0

E+SD 478 2151 14497 7225 96363 0

E 506 2306 26854 40226 321962 0

SC+F 628 2971 48232 34787 252853 0

SD+F 364 3126 20550 10783 105190 0

SC+F+E 640 3612 23408 13496 154699 0

E+SD+F 474 4041 14497 7225 96363 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 123 430 21378 -5439 -69109 0

SD -129 -826 -6304 -29443 -216772 0

SC+E 115 -820 -3446 -26730 -167263 0

E+SD -28 -155 -12357 -33001 -225599 0

SC+F 122 665 21378 -5439 -69109 0

SD+F -142 820 -6304 -29443 -216772 0

SC+F+E 134 1306 -3446 -26730 -167263 0

E+SD+F -32 1735 -12357 -33001 -225599 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 463428 252850 146396 317032 106454 0.34 0 0 0

SD 185304 97196 60228 125076 36968 0.34 5617528 8004 0.00

SC+E 288128 160836 92825 195303 68011 0.37 0 0 0

E+SD 112458 91342 57566 54892 33776 0.81 3934334 5034 0.00

SC+F 463428 252850 146396 317032 106454 0.34 0 0 0

SD+F 185304 97196 60228 125076 36968 0.34 5617528 8004 0.00

SC+F+E 288128 160836 92825 195303 68011 0.37 0 0 0

E+SD+F 112458 91342 57566 54892 33776 0.81 3934334 5034 0.00

(c)

Table B.28: The raw and EPOR-relative exploration data and reduction data from replicated
workers RP18 input program.

230

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 63 392 1870 1650 5656 6

SD 48 74 743 663 2090 2

SC+E 41 96 442 147 1502 6

E+SD 34 95 54 8 256 2

E 64 3314 11205 22139 47317 6

SC+F 42 632 1870 1650 5656 6

SD+F 34 715 803 683 2300 6

SC+F+E 39 129 442 147 1502 6

E+SD+F 33 127 114 24 462 6

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC -1 -2922 -9335 -20489 -41661 0

SD -16 -3240 -10462 -21476 -45227 -4

SC+E -23 -3218 -10763 -21992 -45815 0

E+SD -30 -3219 -11151 -22131 -47061 -4

SC+F -22 -2682 -9335 -20489 -41661 0

SD+F -30 -2599 -10402 -21456 -45017 0

SC+F+E -25 -3185 -10763 -21992 -45815 0

E+SD+F -31 -3187 -11091 -22115 -46855 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 12587 5655 2059 10528 3596 0.21 0 0 0

SD 4346 1981 609 3737 1372 0.20 11558 108 0.01

SC+E 3248 1560 736 2512 824 0.33 0 0 0

E+SD 339 246 135 204 111 0.77 92 9 0.10

SC+F 12587 5655 2059 10528 3596 0.21 0 0 0

SD+F 4618 2167 681 3937 1486 0.24 16482 126 0.01

SC+F+E 3248 1560 736 2512 824 0.33 0 0 0

E+SD+F 579 432 207 372 225 0.74 248 27 0.11

(c)

Table B.29: The raw and EPOR-relative exploration data and reduction data from sleeping barbers
SB1 input program.

231

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 151 1150 31343 24638 90649 0

SD 201 604 22866 16879 63264 0

SC+E 135 851 19349 12790 56343 0

E+SD 130 1015 11167 6408 31290 0

E 2415 628 213865 493092 984758 0

SC+F 142 830 31346 24770 90794 0

SD+F 210 760 23298 17254 64574 0

SC+F+E 139 849 19353 12922 56489 0

E+SD+F 135 824 11599 6783 32600 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC -2264 522 -182522 -468454 -894109 0

SD -2214 -24 -190999 -476213 -921494 0

SC+E -2280 223 -194516 -480302 -928415 0

E+SD -2285 387 -202698 -486684 -953468 0

SC+F -2273 202 -182519 -468322 -893964 0

SD+F -2205 132 -190567 -475838 -920184 0

SC+F+E -2276 221 -194512 -480170 -928269 0

E+SD+F -2280 196 -202266 -486309 -952158 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 203245 90598 33559 169686 57039 0.14 0 0 0

SD 140961 55928 22176 118785 33752 0.06 18708267 7341 0.00

SC+E 122152 56852 22530 99622 34322 0.17 0 0 0

E+SD 47683 27564 12399 35284 15165 0.49 6769341 3714 0.00

SC+F 203281 90612 33569 169712 57043 0.14 0 0 0

SD+F 144472 57053 22675 121797 34378 0.06 19156149 7487 0.00

SC+F+E 122191 56867 22540 99651 34327 0.17 0 0 0

E+SD+F 49993 28689 12898 37095 15791 0.48 7212881 3860 0.00

(c)

Table B.30: The raw and EPOR-relative exploration data and reduction data from sleeping barbers
SB4 input program.

232

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 36028 3075 484320 176323 13130000 6922

SD 36316 12172 280717 78041 8420000 3

SC+E 36075 6221 245323 97748 10761570 448

E+SD 36308 14043 154538 60075 6858336 0

E 36115 6579 318652 137135 14480000 0

SC+F 36189 8462 107674 37712 2980661 984

SD+F 36347 14268 186871 51978 5605795 0

SC+F+E 36280 13351 170504 67193 7540000 0

E+SD+F 36310 14300 110420 42890 4895085 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC -87 -3504 165668 39188 -1350000 0

SD 201 5593 -37935 -59094 -6060000 0

SC+E -40 -358 -73329 -39387 -3718430 0

E+SD 193 7464 -164114 -77060 -7621664 0

SC+F 74 1883 -210978 -99423 -11499339 0

SD+F 232 7689 -131781 -85157 -8874205 0

SC+F+E 165 6772 -148148 -69942 -6940000 0

E+SD+F 195 7721 -208232 -94245 -9584915 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 14307229 13130041 7218084 7089145 5911957 0.92 0 0 0

SD 9046789 8355377 4833261 4213528 3522116 0.92 45743350 64668 0.00

SC+E 11554895 10772540 6151656 5403239 4620884 0.93 0 0 0

E+SD 6865277 6803916 3935919 2929358 2867997 0.99 33516766 54461 0.00

SC+F 3237344 2980704 1656118 1581226 1324586 0.93 0 0 0

SD+F 6022115 5562942 3218717 2803398 2344225 0.92 29535614 42886 0.00

SC+F+E 8091637 7546938 4321143 3770494 3225795 0.93 0 0 0

E+SD+F 4899828 4856372 2808718 2091110 2047654 0.99 23200199 38743 0.00

(c)

Table B.31: The raw and EPOR-relative exploration data and reduction data from disk scheduler
DS1 input program.

233

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 36030 2033 586207 213654 15861823 8672

SD 36242 12356 312253 86737 9359041 5

SC+E 36064 6665 302288 121775 13180000 865

E+SD 36199 14247 175784 68830 7805424 1

E 36081 5549 439430 188600 19900000 0

SC+F 36131 10150 126848 44942 3491532 1366

SD+F 36256 14252 192269 53477 5770000 0

SC+F+E 36184 13792 193605 76500 8560000 0

E+SD+F 36228 14293 119919 46644 5312019 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC -51 -3516 146777 25054 -4038177 0

SD 161 6807 -127177 -101863 -10540959 0

SC+E -17 1116 -137142 -66825 -6720000 0

E+SD 118 8698 -263646 -119770 -12094576 0

SC+F 50 4601 -312582 -143658 -16408468 0

SD+F 175 8703 -247161 -135123 -14130000 0

SC+F+E 103 8243 -245825 -112100 -11340000 0

E+SD+F 147 8744 -319511 -141956 -14587981 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 17294081 15861867 8703982 8590099 7157885 0.93 0 0 0

SD 10056316 9287145 5372443 4683873 3914702 0.92 51005785 71949 0.00

SC+E 14165557 13193854 7518151 6647406 5675703 0.93 0 0 0

E+SD 7813389 7743107 4477593 3335796 3265514 0.99 38710023 62361 0.00

SC+F 3794063 3491574 1935889 1858174 1555685 0.93 0 0 0

SD+F 6198527 5725851 3313147 2885380 2412704 0.92 30483575 44180 0.00

SC+F+E 9186673 8568005 4904530 4282143 3663475 0.93 0 0 0

E+SD+F 5317229 5269891 3047699 2269530 2222192 0.99 25331009 42158 0.00

(c)

Table B.32: The raw and EPOR-relative exploration data and reduction data from disk scheduler
DS2 input program.

234

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 36050 4447 927413 219615 29990000 21

SD 36256 10549 199748 44681 6570000 0

SC+E 36085 7910 256656 83012 12170000 0

E+SD 36226 13811 122645 38192 5874295 0

E 36117 7261 282599 96813 13800000 0

SC+F 36275 12701 245509 57062 8020000 0

SD+F 36367 14272 164164 36282 5430000 0

SC+F+E 36264 13918 151804 48727 7180000 0

E+SD+F 36338 14315 96442 30033 4635284 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC -67 -2814 644814 122802 16190000 0

SD 139 3288 -82851 -52132 -7230000 0

SC+E -32 649 -25943 -13801 -1630000 0

E+SD 109 6550 -159954 -58621 -7925705 0

SC+F 158 5440 -37090 -39751 -5780000 0

SD+F 250 7011 -118435 -60531 -8370000 0

SC+F+E 147 6657 -130795 -48086 -6620000 0

E+SD+F 221 7054 -186157 -66780 -9164716 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 33244817 29990097 17137631 16107186 12852466 0.94 0 0 0

SD 7265168 6525446 3766129 3499039 2759317 0.89 38910802 44621 0.00

SC+E 13444299 12180543 6954328 6489971 5226215 0.90 0 0 0

E+SD 5880275 5832322 3366566 2513709 2465756 0.99 32683258 42042 0.00

SC+F 8868206 8019155 4597822 4270384 3421333 0.89 0 0 0

SD+F 6001490 5393296 3115502 2885988 2277794 0.89 31589272 36775 0.00

SC+F+E 7929954 7186737 4101738 3828216 3084999 0.90 0 0 0

E+SD+F 4640117 4602231 2657909 1982208 1944322 0.99 25567266 33124 0.00

(c)

Table B.33: The raw and EPOR-relative exploration data and reduction data from disk scheduler
DS4 input program.

235

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 36024 2618 802545 528986 14401190 10604

SD 36114 8645 247030 124269 4104736 2490

SC+E 36035 4969 136911 78195 4603123 4346

E+SD 36082 7226 77217 30770 2522397 2409

E 36037 3599 157684 129614 5143947 4155

SC+F 36080 7247 111268 61175 2597494 2679

SD+F 36109 7967 74080 28997 1721830 1977

SC+F+E 36081 7358 75774 40260 2576842 2228

E+SD+F 36111 7282 43290 17457 1417963 2027

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC -13 -981 644861 399372 9257243 6449

SD 77 5046 89346 -5345 -1039211 -1665

SC+E -2 1370 -20773 -51419 -540824 191

E+SD 45 3627 -80467 -98844 -2621550 -1746

SC+F 43 3648 -46416 -68439 -2546453 -1476

SD+F 72 4368 -83604 -100617 -3422117 -2178

SC+F+E 44 3759 -81910 -89354 -2567105 -1927

E+SD+F 74 3683 -114394 -112157 -3725984 -2128

(b)

Conf E A I E-I A-I A/E S D D/S

SC 17608612 14401228 7722382 9886230 6678846 0.85 0 0 0

SD 5113093 4023061 2281952 2831141 1741109 0.80 79471699 96253 0.00

SC+E 5118320 4613372 2429884 2688436 2183488 0.93 0 0 0

E+SD 2543126 2501487 1377355 1165771 1124132 0.99 16245521 26675 0.00

SC+F 2970141 2597531 1364863 1605278 1232668 0.91 0 0 0

SD+F 1955955 1701687 926715 1029240 774972 0.90 16274744 24943 0.00

SC+F+E 2851382 2581851 1373181 1478201 1208670 0.93 0 0 0

E+SD+F 1428121 1405120 777314 650807 627806 0.99 8477691 15091 0.00

(c)

Table B.34: The raw and EPOR-relative exploration data and reduction data from disk scheduler
DS7 input program.

236

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 36038 7325 2854899 1773213 9006579 0

SD 36054 9671 320514 157402 967201 0

SC+E 36044 7541 1757174 1028687 5700000 0

E+SD 36086 14613 636581 309869 2055708 0

E 36043 8189 1010626 2168202 7522067 0

SC+F 36148 14940 1849804 1143564 5880000 0

SD+F 36073 11424 316597 155417 955702 0

SC+F+E 36134 14495 1526923 893958 4980000 0

E+SD+F 36115 14735 571418 281616 1812125 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC -5 -864 1844273 -394989 1484512 0

SD 11 1482 -690112 -2010800 -6554866 0

SC+E 1 -648 746548 -1139515 -1822067 0

E+SD 43 6424 -374045 -1858333 -5466359 0

SC+F 105 6751 839178 -1024638 -1642067 0

SD+F 30 3235 -694029 -2012785 -6566365 0

SC+F+E 91 6306 516297 -1274244 -2542067 0

E+SD+F 72 6546 -439208 -1886586 -5709942 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 19592136 9011127 4251374 15340762 4759753 0.17 0 0 0

SD 2000755 830210 460272 1540483 369938 0.11 719140148 138584 0.00

SC+E 11982175 5771693 2736436 9245739 3035257 0.20 0 0 0

E+SD 2856111 1790584 1029497 1826614 761087 0.62 509945970 266895 0.00

SC+F 12578050 5883808 2783108 9794942 3100700 0.19 0 0 0

SD+F 1977207 820644 454545 1522662 366099 0.11 710342925 136605 0.00

SC+F+E 10448212 5038921 2396965 8051247 2641956 0.21 0 0 0

E+SD+F 2528376 1573384 897617 1630759 675767 0.61 433298735 240537 0.00

(c)

Table B.35: The raw and EPOR-relative exploration data and reduction data from replicated
workers RP12 input program.

237

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 36029 6378 1496403 701784 5400914 0

SD 36086 9378 523174 207986 2018866 0

SC+E 36040 6990 916175 421679 3419295 0

E+SD 36081 9033 387088 153376 1599607 0

E 36046 7357 480884 961519 6417914 0

SC+F 36130 12882 1222803 566817 4373007 0

SD+F 36128 12178 503619 200552 1962390 0

SC+F+E 36097 11224 850187 389611 3205777 0

E+SD+F 36105 11003 377415 149814 1570605 0

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC -17 -979 1015519 -259735 -1017000 0

SD 40 2021 42290 -753533 -4399048 0

SC+E -6 -367 435291 -539840 -2998619 0

E+SD 35 1676 -93796 -808143 -4818307 0

SC+F 84 5525 741919 -394702 -2044907 0

SD+F 82 4821 22735 -760967 -4455524 0

SC+F+E 51 3867 369303 -571908 -3212137 0

E+SD+F 59 3646 -103469 -811705 -4847309 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 9799819 5402924 2816427 6983392 2586497 0.33 0 0 0

SD 3433479 1821698 1099250 2334229 722448 0.28 141058275 197266 0.00

SC+E 5942178 3420262 1799928 4142250 1620334 0.36 0 0 0

E+SD 1909990 1454631 878457 1031533 576174 0.73 96085136 145076 0.00

SC+F 7893628 4375180 2282539 5611089 2092641 0.32 0 0 0

SD+F 3311365 1772376 1069730 2241635 702646 0.29 134878469 190117 0.00

SC+F+E 5509392 3206814 1692635 3816757 1514179 0.37 0 0 0

E+SD+F 1873030 1428991 863296 1009734 565695 0.73 93884999 141714 0.00

(c)

Table B.36: The raw and EPOR-relative exploration data and reduction data from replicated
workers RP14 input program.

238

APPENDIX B. DATA FROM POR EXPERIMENTS

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC 36068 7284 3567474 3870150 12208052 1

SD 36189 11667 1025894 1223108 3970000 1

SC+E 36086 8253 1458629 2250433 6286847 1

E+SD 36139 10583 599683 922882 2661671 1

E 36089 8723 722112 3246748 10869856 1

SC+F 36237 12376 2035248 2163348 6910000 1

SD+F 36278 14894 1001193 981585 3534082 1

SC+F+E 36195 12529 1167223 1825146 5009925 1

E+SD+F 36188 12682 568748 881842 2521013 1

(a)

Conf Time (s) Memory (MB) States Matched Transitions Errors

SC -21 -1439 2845362 623402 1338196 0

SD 100 2944 303782 -2023640 -6899856 0

SC+E -3 -470 736517 -996315 -4583009 0

E+SD 50 1860 -122429 -2323866 -8208185 0

SC+F 148 3653 1313136 -1083400 -3959856 0

SD+F 189 6171 279081 -2265163 -7335774 0

SC+F+E 106 3806 445111 -1421602 -5859931 0

E+SD+F 99 3959 -153364 -2364906 -8348843 0

(b)

Conf E A I E-I A-I A/E S D D/S

SC 39104259 12200022 5092116 34012143 7107906 0.04 0 0 0

SD 12202031 3749493 1874935 10327096 1874558 0.04 1945181165 211956 0.00

SC+E 17748650 6636795 2592980 15155670 4043815 0.11 0 0 0

E+SD 3542841 2517959 1100345 2442496 1417614 0.65 -1515683079 126903 NaN

SC+F 20565527 6815904 2950767 17614760 3865137 0.05 0 0 0

SD+F 10650328 3277956 1690070 8960258 1587886 0.04 1599914993 217469 0.00

SC+F+E 13327809 5251111 2035187 11292622 3215924 0.12 0 0 0

E+SD+F 3356494 2385845 1040035 2316459 1345810 0.65 -1705230362 117697 NaN

(c)

Table B.37: The raw and EPOR-relative exploration data and reduction data from sleeping barbers
SB2 input program.

239

BIBLIOGRAPHY

Bibliography

[ACSE99] Jonathan Aldrich, Craig Chambers, Emin Gun Sirer, and Susan J. Eggers. Static Anal-
yses for Eliminating Unnecessary Synchronization from Java Programs. In Proceedings
of Static Analysis Symposium (SAS’99), pages 19–38, 1999. 3.2.2, 3.8

[AH90] Hiralal Agarwal and Joseph H. Horgan. Dynamic program slicing. In Proceedings of
the ACM SIGPLAN 1990 conference on Programming language design and implemen-
tation, pages 246–256. ACM Press, 1990. 5

[AH03] Mark Allen and Susan Horwitz. Slicing Java Programs that Throw and Catch Excep-
tions. In Procedings of the 2003 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM ’03), pages 44–54. ACM, June 2003.
2.6

[And94] Lars Ole Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, May 1994. 3.6.4, 3.8

[BH93] Thomas Ball and Susan Horwitz. Slicing programs with arbitrary control-flow. In
Proceedings of the First International Workshop on Automated and Algorithmic De-
bugging, volume 749 of Lecture Notes in Computer Science, pages 206–222. Springer-
Verlag, 1993. 2.1.1, 2.3, 2.6

[BH99] Jeff Bogda and Urs Hölzle. Removing unnecessary synchronization in Java. ACM
SIGPLAN Notices, 34(10):35–46, 1999. 3.8

[Bla99] Bruno Blanchet. Escape analysis for object-oriented languages: application to Java.
ACM SIGPLAN Notices, 34(10):20–34, 1999. 3.8

[BP96] Giangranco Bilardi and Keshav Pingali. A Framework for Generalized Control Depen-
dences. In Proceedings of the ACM SIGPLAN 1996 conference on Programming lan-
guage design and implementation, pages 291–300, Philadelphia, Pennsylvania, United
States, 1996. ACM, ACM Press New York, NY, USA. 2.2.1, 2.3, 2.6

[BR01] Chandrasekhar Boyapati and Martin Rinard. A parameterized type system for race-
free Java programs. In Proceedings of 16th Annual Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’01), Tampa Bay, FL,
USA, Oct 2001. 3.8

[BS96] David F. Bacon and Peter F. Sweeney. Fast Static Analysis of C++ Virtual Function
Calls. In OOPSLA, pages 324–341, 1996. 3.3.3, 3.6.4

[CB01] Zhengqiang Chen and Xu Baowen. Slicing Concurrent Java Programs. SIGPLAN
Notices, 36(4):41–47, April 2001. 5, 5.8

240

BIBLIOGRAPHY

[CCL98] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned program slicing. Information
and Software Technology – Special Issue on Program Slicing, 40:595–607, 1998. 5

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Păsăreanu, Robby, and Hongjun Zheng. Bandera: Extracting Finite-state Models
from Java source code. In Proceedings of the 22nd International Conference on Soft-
ware Engineering (ICSE’00), pages 439–448, June 2000. 5.4.4, 5.6.3

[CGS+99] J. D. Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and Samuel P.
Midkiff. Escape Analysis for Object Oriented Languages. Application to Java. In
Proceedings of Conference on Object-Oriented Systems, Languages and Applications
(OOPSLA’99), volume 34(10) of ACM SIGPLAN Notices, pages 1–19, Denver, CO,
USA, Oct 1999. ACM. 3.8

[CLL+02] J. D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan. Efficient
and precise datarace detection for multithreaded object-oriented programs. In Pro-
ceedings of ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation (PLDI’02), June 2002. 3.8

[CLS01] J. D. Choi, A. Loginov, and V. Sarkar. Static datarace analysis for multithreaded
object-oriented programs. Technical report, IBM Research Division, Thomas J. Watson
Research Centre, 2001. 3.8

[Das00] Manuvir Das. Unification-based Pointer Analysis with Directional Assignments. In
Proceedings of ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’00), pages 35–46, June 2000. 3.8

[DHH+06] Matthew B. Dwyer, John Hatcliff, Mattew Hoosier, Venkatesh Ranganath, Robby, and
Todd Wallentine. Evaluating the Effectiveness of Slicing for Model Reduction of Con-
current Object-Oriented Programs. In Proceedings of 12th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’06),
2006. 5.4.4

[DHRR04] Matthew B. Dwyer, John Hatcliff, Robby, and Venkatesh Prasad Ranganath. Exploit-
ing object escape and locking information in partial-order reductions for concurrent
object-oriented programs. Formal Methods in System Design, 25(2-3):199–240, 2004.
6, 6.1, 2, 6.4.2, 6.5

[EMCGP99] Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The
MIT Press, 1999. 2.3, 6.1

[FF00] Cormac Flanagan and Stephen N. Freund. Type-based race detection for Java. ACM
SIGPLAN Notices, 35(5):219–232, 2000. 3.8

[FF01] Cormac Flanagan and Stephen N. Freund. Detecting Race Conditions in Large Pro-
grams. In Proceedings ACM SIGPLAN/SIGFSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE’01), 2001. 3.8

[FF04] Cormac Flanagan and Stephen N. Freund. Atomizer: a dynamic atomicity checker for
multithreaded programs. In Proceedings of Symposium on Principles of programming
languages (POPL), 2004. 6.5

[FG05] Cormac Flanagan and Patrice Godefroid. Dynamic Partial-Order Reduction for Model
Checking Software. In Proceedings of Symposium on Principles of programming lan-
guages (POPL), 2005. 6, 6.3

241

BIBLIOGRAPHY

[FQ03a] Cormac Flanagan and Shaz Qadeer. Transactions for Software Model Checking. Elec-
tronic Notes in Theoretical Computer Science, 89, 2003. 6.5

[FQ03b] Cormac Flanagan and Shaz Qadeer. Types For Atomicity. In Proceedings of the 2003
ACM SIGPLAN international workshop on Types in Languages Design and Implemen-
tation (TLDI), pages 1–12, 2003. 6.5

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison
Wesley, 1996. 4.2

[GJS00] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison
Wesley, second edition, 2000. 3.2.1, 4

[God95] Patrice Godefroid. Partial Order Methods for the Verification of Concurrent Systems.
PhD thesis, Facultè des Sciences Appliquèes, Universite De Liege, 1995. 6, 6.2.1, 6.5

[HCD+99] John Hatcliff, James C. Corbett, Matthew B. Dwyer, Stefan Sokolowski, and Hongjun
Zheng. A Formal Study of Slicing for Multi-threaded Programs with JVM Concurrency
Primitives. In Proceedings on the 1999 International Symposium on Static Analysis
(SAS’99), Lecture Notes in Computer Science, pages 1–18, Sept 1999. 2.6, 3.1.2, 3.2.2,
3.2.3, 3.8, 5, 5.8

[HDD+03] John Hatcliff, William Deng, Matthew B. Dwyer, Georg Jung, and Venkatesh Prasad
Ranganath. Cadena: An Integrated Development, Analysis, and Verification Environ-
ment for Component-based Systems. In Proceedings of the 2003 International Confer-
ence on Software Engineering (ICSE’03), May 2003. 1.2

[HDZ00] John Hatcliff, Matthew B. Dwyer, and Hongjun Zheng. Slicing Software for Model Con-
struction. Journal of Higher-order and Symbolic Computation, 13(4):315–353, 2000. A
special issue containing selected papers from the 1999 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation. 2.2.1

[HPR89] Susan Horwitz, Phil Pfeiffer, and Thomas W. Reps. Dependence Analysis for Pointer
Variables. In Proceedings of the ACM SIGPLAN ’89 Conference on Programming
Language Design and Implementation (PLDI’89), pages 28–40. ACM, 1989. 2.6, 3.8

[HRB88] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using Depen-
dence Graphs. In Proceedings of the ACM SIGPLAN ’88 Conference on Programming
Language Design and Implementation (PLDI’88), volume 23, pages 35–46, 1988. 3.8

[HRB90] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural Slicing Using Depen-
dence Graphs. ACM Transactions on Programming Language and Systems, 12(1):26–
60, 1990. 2.6, 5, 5.1.2

[HS04] Christian Hammer and Gergor Snelting. An Improved Slicer for Java. In Proceedings
of the ACM-SIGPLAN-SIGSOFT workshop on Program Analysis for Software Tools
and Engineering (PASTE’04), pages 17–22, 2004. 3.8, 5.8

[HU74] M. S. Hecht and J. D. Ullman. Characterizations of Reducible Flow Graphs. Journale
of ACM, 21(3):367–375, 1974. 5

[IT98] Lynette I.Millett and Tim Teitelbaum. Slicing Promela and its applications to model
checking, simulation, and protocol understanding. In Proceedings of the 4th Interna-
tional SPIN Workshop, 1998. 2.6

242

BIBLIOGRAPHY

[JP93] Richard Johnson and Keshav Pingali. Dependence-based Program Analysis. In SIG-
PLAN Conference on Programming Language Design and Implementation, pages 78–
89, 1993. 2.6

[KLM+98] Robert P Kurshan, Vladdimir Levin, Marius Minea, Doron Peled, and Husnu Yeni-
gun. Static Partial Order Reduction. In Proceedings of Tools and Algorithms for the
Construction and Analysis of System (TACAS’98), pages 345–357, 1998. 6.5

[KP92] Shmuel Katz and Doron Peled. Defining Conditional Independence Using Collapses.
Theoretical Computer Science, 101(2):337–359, 1992. Selected papers of the Interna-
tional BCS-FACS Workshop on Semantics for Concurrency. 3

[Kri98] Jens Krinke. Static Slicing of Threaded Programs. In Proceedings ACM SIG-
PLAN/SIGFSOFT Workshop on Program Analysis for Software Tools and Engineer-
ing (PASTE’98), pages 35–42, Montreal, Canada, June 1998. ACM SIGPLAN Notices
33(7). 2.6, 3.1.2, 3.8, 5.8

[Kri02] Jens Krinke. Evaluating Context-Sensitive Slicing and Chopping. In Proceedings of
Internationational on Software Maintainance (ICSM’02), 2002. 5.1.2, 13, 5.8

[Kri03a] Jens Krinke. Advanced Slicing of Sequntial and Concurrent Programs. PhD thesis,
Fakultät für Mathematik und Informatik, Universität Passau, 2003. 5

[Kri03b] Jens Krinke. Barrier Slicing and Chopping. In Proceedings of Third IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM 2003), pages 81–87,
2003. 5.6.1

[Kri03c] Jens Krinke. Context-Sensitive Slicing of Concurrent Programs. In Proceedings of
ESEC/SIGSOFT FSE’03, pages 178–187, 2003. 5.1.3, 5.3.5, 5.8

[Kri04] Jens Krinke. Context-Sensitivity Matters, But Context Does Not. In Proceedings
of Fourth IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM 2004), pages 29–35, September 2004. 5.6.2, 5.8

[LH96] Loren Larsen and Mary Jean Harrold. Slicing Object-Oriented Software. In Proceedings
of International Conference on Software Engineering (ICSE’96), pages 495–505, 1996.
3.8

[LH98] Donglin Liang and Mary Jean Harrold. Slicing Objects Using System Depen-
dence Graphs. In Proceedings of International Conference on Software Maintenance
(ICSM’98), pages 358–367, 1998. 3.8

[LH99] Donglin Liang and Mary Jean Harrold. Efficient Points-to Analysis for Whole-Program
Analysis. In Proceedings of ESEC/SIGSOFT FSE’99, pages 199–215, 1999. 3.8

[LH01] Donglin Liang and Mary Jean Harrold. Efficient Computation of Parameterized Pointer
Information for Interprocedural Analyses. In Proceedings 8th International Static
Analysis Symposium (SAS 2001), volume 2126 of Lecture Notes in Computer Science,
pages 279–298. Springer, July 2001. 3.8

[LH03] Ondej Lhótak and Laurie J. Hendren. Scaling Java Points-to Analysis Using SPARK.
In Görel Hedin, editor, Proceedings of Compiler Construction (CC’03), volume 2622 of
Lecture Notes in Computer Science, pages 153–169. Springer, April 2003. 3.4.1, 3.6.4,
3.8

243

BIBLIOGRAPHY

[Lho02] Ondrej Lhotak. Spark: A Flexible Points-to Analysis Framework for Java. Master’s
thesis, School of Computer Science, McGill University, December 2002. 5.4.4

[Lho06] Ondrej Lhotak. Program Analysis using Binary Decision Diagrams. PhD thesis, School
of Computer Science, McGill University, January 2006. 14

[LR94] P. Livadas and A. Rosenstein. Slicing in the presence of pointer variables, 1994. 3.8

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison
Wesley, 1996. 4.2

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison
Wesley, second edition, 1999. 4, 4.2, 5.6.3

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, Prentice Hall Europe,
Campus 400, Marylands Avenue, Hemel Hempstead, Hertfordshire, HP2 7EZ, 1989.
ISBN: 0-13-115007-3. 2.4.1

[MRR02] A. Milanova, A. Rountev, and B. Ryder. Parameterized object sensitivity for points-
to and side-effect analyses for Java. In Proceedings of International Symposium on
Software Testing and Analysis (ISSTA’02), pages 1–11, 2002. 3.8

[Muc97] Steven S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kaufmann
Publishers. Inc., San Francisco, California, USA, 1997. 2.1.1, 2.1.3, 3.1.1

[NAC98] G. Naumovich, G. Avrunin, and L. Clarke. An Efficient Algorithm for Computing
MHP Information for Concurrent Java Programs. Technical Report UM-CS-1998-044,
University of Massachusetts, Amherst, October 1998. 3.2.2, 3.8

[Nan01] Mangala Gowri Nanda. Slicing Concurrent Java Programs: Issues and Solutions. PhD
thesis, Indian Institute of Technology, Bombay, November 2001. 3.8, 5, 5.1.3, 5.8

[NR00] Mangala Gowri Nanda and S. Ramesh. Slicing concurrent programs. In Proceedings
of International Symposium on Software Testing and Analysis (ISSTA’00), pages 180–
190, 2000. 5.8

[PC90] A Podgurski and L Clarke. A Formal Model of Program Dependences and its Im-
plications for Software Testing, Debugging, and Maintenance. IEEE Transactions on
Software Engineering, 16(8):965–979, 1990. 2.1.1, 2.2.1, 2.3, 2.6

[RAB+04] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, Matthew B. Dwyer,
and John Hatcliff. A New Foundation For Control-Dependence and Slicing for Modern
Program Structures - Technical Report #8. Technical Report 8, Kansas State Uni-
versity, 2004. This is available at http://projects.cis.ksu.edu/docman/?group id=12.
2

[RAB+05] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, Matthew B.Dwyer,
and John Hatcliff. A New Foundation For Control-Dependence and Slicing for Mod-
ern Program Structures. In Programming Languages and Systems, Proceedings of 14th
European Symposium on Programming, ESOP 2005. Springer-Verlag, April 2005. Ex-
tended version is available at http://projects.cis.ksu.edu/docman/?group id=12. 1.2,
2

[Ran02] Venkatesh Prasad Ranganath. Object-Flow Analysis for Optimizing Finite-State Mod-
els of Java Software. Master’s thesis, Department of Computing and Information Sci-
ence, Kansas State University, 2002. (document), 3.3.3, 3.4.1, 3.6.4, 3.7.2, 3.7, 3.8,
5.4.4

244

BIBLIOGRAPHY

[RDHI03] Robby, Matthew B. Dwyer, John Hatcliff, and Radu Iosif. Space-Reduction Strategies
for Model Checking Dynamic Systems. In In Proceedings of the 2003 Workshop on
Software Model Checking (SMC 2003), July 2003. 6.4.2

[RH04] Venkatesh Prasad Ranganath and John Hatcliff. Pruning Interference and Ready De-
pendences for Slicing Concurrent Java Programs. In Evelyn Duesterwald, editor, Pro-
ceedings of Compiler Construction (CC’04), volume 2985 of Lecture Notes in Computer
Science, pages 39–56. Springer-Verlag, March 2004. 3

[Ric75] Richard J. Lipton. Reduction: A Method of Proving Properties of Parallel Programs.
Communications of the ACM, 18(12):717–721, December 1975. 6.5

[RR95] Thomas Reps and Genevieve Rosay. Precise Interprocedural Chopping. In SIGSOFT
’95: Proceedings of the Third ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, volume 20, pages 41–52. ACM, ACM, 1995. 5.1.2, 5.3

[Ruf00] Erik Ruf. Effective Synchronization Removal for Java. In Proceedings of the ACM
SIGPLAN ’00 Conference on Programming Language Design and Implementation
(PLDI’00), pages 208–218, June 2000. 3.2.2, 3.3, 3.8

[SR01] Alexandru Sălcianu and Martin Rinard. Pointer and escape analysis for multithreaded
programs. ACM SIGPLAN Notices, 36(7):12–23, 2001. 3.8

[Ste96] Bjarne Steensgaard. Points-to Analysis in Almost Linear Time. In Conference
Record of the 23th Annual ACM Symposium on Principles of Programming Lan-
guages(POPL’96), pages 32–41. ACM Press, Jan 1996. 3.8

[Sto02] Scott Stoller. Model-checking multi-threaded distributed Java programs. International
Journal on Software Tools for Technology Transfer, 4(1):71–91, 2002. 6, 6.1, 6.5

[SUL00] Scott D. Stoller, Leena Unnikrishnan, and Yanhong A. Liu. Efficeint Detection of
Global Properties in Distributed Systems Using Partial-Order Methods. In Computer
Aided Verification (CAV 2000), pages 264–279, 2000. 6

[Tip95] Frank Tip. A survey of program slicing techniques. Journal of programming languages,
3:121–189, 1995. 2.1.3

[Ven91] G. A. Venkatesh. The Semantic Approach to Program Slicing. In Proceedings of the
ACM SIGPLAN 1991 conference on Programming language design and implementa-
tion, pages 107–119. ACM Press, 1991. 5

[VR00] Raja Vallée-Rai. SOOT: A Java Bytecode Optimization Framework. Master’s thesis,
School of Computer Science, McGill University, Oct 2000. 3.7.1

[VSD86] Alfred V.Aho, Ravi Sethi, and Jeffrey D.Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley International, 1986. 3.3.2

[Wei84] M. Weiser. Program Slicing. IEEE Transactions on Software Engineering, 10(4):352–
357, 1984. 2.1.3, 2.4.1, 3.8, 5

[WL04] John Whaley and Monica S. Lam. Cloning-based Context-sensitive Pointer Alias
Analysis using Binary Decision Diagrams. In Proceedings of the ACM SIGPLAN 2004
conference on Programming language design and implementation, pages 131–144. ACM
Press, 2004. 14

[Zha99] Jianjun Zhao. Slicing Concurrent Java Programs. In Proceedings of the 7th IEEE
International Workshop on Program Comprehension (IWPC’99), pages 126–133, May
1999. 3.2.2, 5

245

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Motivation
	Contributions
	Organization

	Control Dependence
	Basic Definitions
	Control Flow Graphs
	Program Execution
	Notions of Dependence and Slicing

	Assessment of Existing Definitions
	Variations in Existing Control Dependence Definitions
	Unique End node restriction on CFG

	New Dependence Definitions
	Examples
	Properties of the Dependence Relations

	Slicing
	Correctness Properties

	Algorithms
	Non-Termination Sensitive Control Dependence (NTSCD)
	Non-Termination Insensitive Control Dependence (NTICD)
	Decisive Control Dependence (DCD)
	Decisive Order Dependence (DOD)

	Related Work

	Data-based Dependence
	Background
	Identifier-based Data Dependence (IBDD)
	Effects of Aliasing

	Motivation
	Data flow across threads in Java
	Interference Dependence
	Ready Dependence

	Equivalence-based Escape Analysis
	Alias sets
	Alias Context
	Algorithm
	Complexity
	Example
	In Comparison with Ruf's analysis

	Extensions
	Aliasing
	Lock Coupling
	Side-Effect Analysis
	Generalization

	Optimizations
	Multiple Executions of Thread Creation Sites
	Static Field Access
	Type Filtering

	Applications
	Using Escape Information
	Accurate Ready Dependence via Ready Entities
	Accurate Interference Dependence via Read-Write Entities
	Aliasing-based Data Dependence
	Atomicity and Independence
	Property-sensitive Program Slicing
	Partial Order Reductions

	Empirical Evaluation
	Implementation
	Experimental Setup
	Escape Analysis
	Alias Analysis
	Interference Dependences
	Ready Dependences
	Aliasing-based Data Dependences (ABDD)
	Type Filtering

	Related Work

	Constrained Java
	Structural Constraints in CJava
	Assignment Constraints
	Array/Field Access Constraints
	Invocation Constraints
	Statement Constraints
	Method Constraints
	Class Constraints

	Semantics of Field Resolution

	Program Slicing
	Motivation
	Basics
	Inter-procedural Slicing
	Concurrency
	Summary

	Inter-Procedural Slicing Algorithm
	Premises
	Parametric Slicing Algorithm (PSA)
	Backward Slicing Algorithm (BSA)
	Backward Control Slicing Algorithm (BCSA)
	Forward Slicing Algorithm (FSA)

	Calling Context Sensitivity
	Premises
	Calling Context Sensitive Backward Slicing Algorithm (CCSBSA)
	Correctness Argument
	Complexity Analysis
	Optimization (CCSBSA+)

	Property Sensitivity
	Motivation
	Parametric Property Aware Calling Context Sensitive Backward Slicing Algorithm (PS-CCSBSA)
	Control Flow-based Property Aware Calling Context Sensitive Backward Slicing Algorithm (C-PS-CCSBSA)
	Data-based Property Sensitive Calling Context Sensitive Slicing Algorithm (D-PS-CCSSA)
	Trace Sensitivity

	Empirical Evaluation
	Implementation
	Experimental Setup
	Experimental Results

	Extensions
	Scoping
	Context Restriction
	Executability

	Handling Exceptions
	Related Work

	Partial Order Reduction
	Background
	Static Program Dependence-based Conditional Stubborn Sets (SPD-CSS)
	Conditional Stubborn Sets (CSS)
	Transition Dependences
	The Approach

	Stateful Dynamic POR (SDPOR)
	The Algorithm
	Full Enabled Set Coverage (FESC)
	Pure Dynamic Dependence (PDD)
	Pseudo Dynamic Dependences (SDD)
	Dependence-based Equivalence Classes (DEC)

	Empirical Evaluation
	Implementation
	Experimental Setup
	System Level Experimental Results
	State Level Experimental Results

	Related Work

	Conclusion
	Summary
	Future Work

	Data From Slicing Experiments
	Experimental Setup
	Experimental Data

	Data From POR Experiments
	Data Description
	Completed Configurations
	Terminated Configurations

	Bibliography

