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Abstract

The selection of relevant genes for classification of phenotypes for diseases with gene

expression data have been extensively studied. Previously, most relevant gene selection was

conducted on individual gene with limited sample size. Modern technology makes it possible

to obtain microarray data with higher resolution of the chromosomes. Considering gene

sets on an entire block of a chromosome rather than individual gene could help to reveal

important connection of relevant genes with the disease phenotypes. In this report, we

consider feature selection and classification while taking into account of the spatial location

of probe sets in classification of Duke’s stages B and C using DNA copy number data or

gene expression data from colorectal cancers. A novel method was presented for feature

selection in this report. A chromosome was first partitioned into blocks after the probe sets

were aligned along their chromosome locations. Then a test of interaction between Duke’s

stage and probe sets was conducted on each block of probe sets to select significant blocks.

For each significant block, a new multiple comparison procedure was carried out to identify

truly relevant probe sets while preserving the neighborhood location information of the

probe sets. Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) classification

using the selected final probe sets was conducted for all samples. Leave-One-Out Cross

Validation (LOOCV) estimate of accuracy is reported as an evaluation of selected features.

We applied the method on two large data sets, each containing more than 50,000 features.

Excellent classification accuracy was achieved by the proposed procedure along with SVM

or KNN for both data sets even though classification of prognosis stages (Duke’s stages B

and C) is much more difficult than that for the normal or tumor types.
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Chapter 1

Introduction

Diagnosis and prognosis of cancer subtypes using genomic information has been an active

area of research in recent years. In this report, we focus on colorectal cancer subtypes.

Current colorectal cancer prognosis is mainly through pathological staging, which provides

limited discrimination for Dukes stages B and C disease due to highly heterogeneous genetic

content of colorectal carcinoma. The heterogeneity is a result of multiple mechanisms,

including the accumulation of genetic alterations, such as chromosomal instability, gene

mutations, and epigenetic abnormality after initiated by inactivation of the adenomatous

polyposis coli (APC) tumour-suppressor pathway in a cell within the colon (Markowitz

and Bertagnolli 2009; Rajagopalan et al. 2003). There is also experimental evidence that

chromosomal instability (CIN) may precede mutation of APC. No matter which occurs first,

it is concluded that chromosomal abnormalities occur at an early stage of colorectal neoplasia

(Bomme et al. 1998; Hermsen et al. 2002; Pihan et al. 2003). Continuing accrual of genetic

changes from the occurrence of the APC mutation to the development of a metastatic

cancer generally takes about 20 to 40 years (Rajagopalan et al. 2003). Consequently,

tumors are very heterogeneous even when comparing within the same histopathological

stage with clonal selections (Alon et al. 1999; Beroukhim et al. 2010; Rajagopalan et al.

2003). These are shown in global gene expression and DNA copy number variation studies

obtained from colon cancer patients. Pathogenic alterations can be more heterogeneous in

adenomas than in carcinomas. Approximately 15% of colorectal cancers show microsatellite

instability and the remaining 85% are aneuploid because of CIN (Rajagopalan et al. 2003).
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In both cases, an accelerated rate of gains or losses of whole or large portions of chromosomes

allow cells to rapidly acquire genetic advantage for tumorigenesis leading to experimentally

verified evidence that most late stage cancer cells contain between 60 and 90 chromosomes.

Therefore, we believe that the chromosome copy number alteration might be a good indicator

to differentiate the various of stages the cancer cells belong to. However, we have not found

any successful application of using copy number alteration to differentiate tumor stages.

Statistical and computational techniques, such as clustering or classification modified

from classical setting to suit the current high density setting, were applied to this area to

help with the diagnosis and prognosis of various types of diseases using genomic data. For

example, binary tree based clustering could separate cancerous from noncancerous tissue

and cell lines from in vivo tissues by using patterns of genes expression from oligonucleotide

cDNA arrays (Alon et al. 1999). Nearest shrunken centroid classifier was found to be

highly efficient in finding genes for classifying small round blue cell tumors and leukemias

(Tibshirani et al. 2002). The same nearest shrunken centroid algorithm trained with Dukes

stage A and C colorectal cancer can predict poor prognosis outcomes in patients with Dukes

stage B and C colorectal cancer (Jorissen et al. 2009). A set of manually selected 34 genes

were used in hierarchical clustering based on Pearsons correlation coefficient to classify

patients with recurrence and death (Smith et al. 2010). Even though the classifiers build in

Jorissen et al. (2009) and Smith et al. (2010) showed little overlap with previously reported

prognosis signatures, they provide additional markers for outcome prediction.

Beyond those references cited above on Dukes stages, Recent studies provided various

methods to identify a set of marker genes and use these marker genes to classify cancer

types or assess the progression of a specific cancer with microarray data. It has been widely

recognized that the number of selected features and features themselves are very critical

to the classification accuracy (Dagliyan et al. 2011; Zhang and Deng 2007). Therefore,

recent tumor classification methods mostly consist of feature selection step and classification

step (Wei and Li 2010; Dagliyan et al. 2011; Wang et al. 2010; Zhang et al. 2011),

with some methods including an additional filtering step to remove redundant features

(Zhang and Deng 2007). One common aspect for selecting features in these methods is

as follows: a certain measurement, such as some test statistics or p-values, was chosen
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to evaluate the importance of each gene for classifying the phenotypes. Then a set of

genes with often an arbitrarily determined size were selected based on the rankings of this

measurement. Alternatively, some methods used False Discovery Rate (FDR) control to

select features. Classification accuracy from cross validation is typically carried out after

the feature selection step using the entire sample. These methods were reported to perform

very well in a few widely used microarray datasets with a few thousand genes ranging from

2000 to 12600. The feature selection based on multiple comparison adjustment may fail

when the number of features increases dramatically with the technology advances as is the

case in high density arrays.

In this study, we will use mRNA expression data and DNA copy number data from

colorectal tumors to identify cancer subtypes and biomarkers that are instructive for per-

sonalized medicine and predicative of clinical outcomes. Copy number profile consists of

copy numbers of singular nucleotide polymorphism (SNP) sites ordered by their physical

position on the genome. We will use publicly available Affymetrix SNP array data to obtain

the copy numbers of SNPs. For data collected from these arrays, there are a large num-

ber of probes (up to 1M probes on each chip) and the observed intensities of some of the

probes are correlated. Nearby probes have more chance of sharing common copy numbers

leading to a special form of spatial correlation. Most algorithms ignore the unknown corre-

lation structures among observations for different genetic markers from the same biological

sample. Appropriately taking into account such correlations can significantly increase the

classification accuracy and stability.

In this study we propose a novel method to conduct feature selection of genetic markers

and use those selected markers to classify the phenotypes of Duke’s stages. This method

is particularly suited to high density genomic data which contains rich information from

neighborhood yet is challenging for most available methods that focus on feature selection

through filtering of individual genetic marker. Instead of traditional methods that evaluate

individual genetic marker, our proposed method operates the feature selection based on the

blocks of contiguous markers. The selected markers can be utilized along with Support

Vector Machine (SVM) or K-Nearest Neighbor (KNN) to perform classification.

The rest of this report is organized as follows. Chapter 2 reviews some of the key
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references related to this field of study. Chapter 3 presents the details of the proposed

method and the rationale behind it. Chapter 4 is devoted to the application to two publicly

available datasets using the proposed method. The programming code in Java and R is

listed in the Appendices in the order of data analysis steps.
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Chapter 2

Literature Review

The selection of genes for classification of phenotypes for diseases using microarray data

has been a active research topic in recent years. Various methods have been proposed and

discussed targeting at improving the accuracy of classification while maintaining relative

small a number of genes. The following is a literature review of six articles in this field.

2.1 Gene selection for classification of microarray data

based on the Bayes error

A research article by Zhang and Deng (2007) presented a problem of gene selection and

classification of microarray data using Bayes error. The article first pointed out that several

widely used methods, which ranked individual genes based on their discriminative power,

resulted in a large number of candidate genes including some unnecessary ones due to

redundancy. Then it stated that more recent studies showed using correlation analysis

could help reduce the number of genes and increase the accuracy.

The gene selection process of Zhang and Deng (2007) contains two steps: gene preselection

and redundancy filter. In the gene preselection step, discriminative power of each gene

was measured by an univariate criterion function. Specifically, Wilcoxon test was used here

to select the genes based on Family-Wise-Error Rate(FWER) ≤ 0.05 from all genes. In
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the redundancy filter step, among the remaining genes, Bayes error, whose upper bound

was estimated by Bhattacharyya distance, was used as a criterion to filter out redundant

genes. The Bhattacharyya distance, dB measures the separability between two classes and

is defined as:

dB =
1

8
(M2 − M1)

T

[∑
1 +

∑
2

2

]−1

(M2 − M1) +
1

2
ln

|(
∑

1 +
∑

2)/2|
|
∑

1 |1/2|
∑

2 |
1/2

where Mk.... is the mean vector of class k (k = 1 or 2);
∑

k is the covariance matrix of class

k(k = 1 or 2). Then the upper bound of the Bayes error can be derived as

ε∗B ≤ 0.5 exp(−dB)

It is stated in Zhang and Deng (2007) that ǫ∗ monotonically increases in a decelerating

manner when dB increases and the effect of improvement for accuracy becomes negligible

after dB increases to a certain level. They therefore argue that as the number of genes in-

creases, after a certain threshold, the contribution caused by addition of more genes become

negligible. Following this principle, ǫ∗ being equal to 1.0E-4 was set up as a criterion to

control the Bayes error during the classification process to filter out the redundant genes.

The following is how the algorithm works: after the gene preselection step, a set B that

contains all the remaining genes and an empty set A are constructed. First, the gene ranks

first based on Wilcoxon test in set B is picked and moved to set A. This gene is considered

as indispensable in A. Second, 1.0E-4 is used as the pre-defined criterion and sequential

forward selection is applied to select the genes with great contribution to Bhattacharyya

distance between two classes. In other words, sequential forward selection is used to transfer

genes from set B to set A until ǫ∗ is less than 1.0E-4.

For the classification process, K-Nearest Neighbor(KNN) (k=5, using Euclidean distance)

and Support Vector Machine (SVM)(linear kernel) were used as two classifiers. Leave-

One-Out Cross Validation (LOOCV)was used to evaluate the performance of the proposed

method.

The experiment using the proposed method was conducted on five publicly available datasets,

i.e., Colon, DLBCL, Leukemia, Prostate and Lymphoma by Alon et al. (1999), Shipp et al.
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(2002), Golub et al. (1999), Singh et al. (2002) and Davis et al. (2000), respectively. These

five different datasets have different numbers of genes ranging from 2000 to 4026, different

total sample sizes ranging from 62 to 102. However, each of datasets has binary class la-

bel. The error which is calculated as the misclassified rate in test data was recorded as the

results.

The results were compared with several other methods in early studies for each of the

datasets. For the Colon dataset, Ben-Dor et al. (2000) also did an experiment using KNN

and SVM without selecting genes first. The errors using Based Bayes error Filter (BBF) were

much smaller than those Ben-Dor et al. (2000). In addition, Liu et al. (2005) used ”normal-

ized mutual information” with greedy algorithm and simulated annealing algorithm for gene

selection and KNN for classification, got the equal errors as BBF, but used more genes. Ding

and Peng (2005) used a ”Minimum Redundancy - Maximum Relevancy” (MRMR) method

for gene selection and SVM for classification got slightly smaller error than BBF with a

more genes. For DLBCL dataset, Shipp et al. (2002) who used this dataset originally, used

their own weighted combination of informative genes employing KNN and SVM, got same

errors as BBF with a much larger number of genes. In addition, Yang et al. (2006) used

GS1 and GS2 methods based on the ratio of inter-class and intra-class variation as a crite-

rion function for gene selection, and used KNN and SVM for classification. They produced

slightly smaller error than BBF but with much more genes. For Leukemia dataset, the BBF

method got all test sample correctly classified using both KNN and SVM with only 3 and

2 genes, respectively. Dettling and Buhlmann (2003) used four classifiers, i.e.,Logit-Boost,

AdaBoost, KNN and Classification tree and LOOCV for evaluation. They got error of 1.39%

using KNN. Weston et al. (2000) got all samples correctly classified by SVM but used 20

genes. For the Prostate dataset, Dettling and Buhlmann (2003) used supervised clustering

method to find gene groups for classification. With KNN and aggregated trees classifiers,

they got slightly better accuracy than BFF using more genes. For the lymphoma dataset,

Wang et al. (2006) used several methods for gene selection and classification. The smallest

error rate was produced by Information-Gain and Neuro-Fuzzy Ensemble model, but was

still bigger than BBF. Diaz-Uriarte and Alvarez (2006) employed random forest method for
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gene selection and a different method for estimating the error. It reached similar results as

BBF but used more genes.

2.2 Exploring the within- and between-class correla-

tion distribution for tumor classification

The research article by Wei and Li (2010) addressed cancer tumor classification problem

based on gene-expression data. Their idea was to use the biological intuition that samples

from the same tumor class usually have more similarities in terms of profiles of gene ex-

pression. Hence, the two samples that come from the same tumor class suppose to have

stronger correlation. Based on this idea, a new method named “Distribution Based Classi-

fication”(DBC) was proposed.

Like most studies in this filed, overall there are basically two steps: Gene selection and

classification.

In the gene selection step, the marker genes are selected by t-statistic. For kth class, the

t-statistic for jth gene is defined as follows:

tkj =
x̄kj − x̄k′j√

s2

kj

nkj
+

s2

k′j

nk′j

where x̄kj,skj and nkj are the average, standard deviation and sample size of the expression

levels of jth gene across samples belonging to the kth class in the training set and x̄k′j ,sk′j

and nk′j are the average, standard deviation and sample size of the expression levels of jth

gene across samples not belonging to the kth class in the training set. For each class, the

genes with 20 largest absolute values of t-statistic are selected as marker genes for this class.

After the gene selection step, the classification procedure uses Kullback-Leibler(KL)
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distance based on the distribution of correlations. There are two types of distributions of

correlations. The first type, i.e., fkk, is the distribution of all the pairwise correlations of

the sample profiles within class k; the second one, i.e.,fkj , is the distribution of all the

pairwise correlations of the sample profiles between a sample profile in class k and a sample

profile in class j (j 6= k). KL distance is a measurement for the dissimilarity between two

distributions. For classification, a new sample (with distribution f ∗
k ) is assigned to kth class

if the KL distance between f ∗
k and fkk is smaller than the KL distance between f ∗

k and

fkj (j 6= k).The formula for computing the Pearson Correlation between two samples is as

follow:

Corr(x̃1, x̃2)/
√

V ar(x̃1)V ar(x̃2) =
P∑

i=1

(x1i − x̄1.)(x2i − x̄2.)/

√√√√
P∑

i=1

(x1i − x̄1.)2

P∑

i=1

(x2i − x̄2.)2

where x̃1 = (x11, x12, ..., x1p) and x̃2 = (x21, x22, ..., x2p) be the gene-expression profiles of

any two samples.

In general, suppose K and N denote the number of classes, and number of training samples,

respectively. P represents the number of variables measured on each sample. A similarity

score is a measurement of the similarity between two sample profiles. Specifically, in microar-

ray data Pearson correlations are often used as similarity score. During the learning process,

the distribution of the similarity scores for pairs of sample profiles from class i and class

j could be calculated and denoted as fij . Then a matrix, i.e.,{fij}K×K(i, j = 1, 2, . . . , K

and fij = fjk) of similarity distribution for reference could be built. In the prediction pro-

cess, to determine the class label of a new sample, K parallel hypotheses will be performed

simultaneously. The null hypothesis is: the sample belong to kth class. The alternative

hypothesis is: the sample does not belong to kth class, where k = 1..K. If the conclusion of

these K testes are consistent, this new sample will be assigned to a class label based on the

results of the tests. Otherwise, the new sample will be assigned an “unclassified” label. For

unclassified samples, a new weighed KL distance rule is used for making the decision. Specif-

ically, the new sample is assigned to the kth class that reaches the smallest KL distance,
∑k

j=1 wj · KL(f ∗
j , fkj), among all classes that claim this ”unclassified” sample. If there is

no class claims this sample, all classes would be considered. To avoid the cancelation of the
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effect of overall shifting or rescaling caused by using correlation to build similarity scores,

transformation is applied to standardize the sample profile data. Specifically, the normal

score transformation is used by the formula {Φ−1( Ri

P+1
), i = 1, 2, ..., P}, where Φ(.) is the

cumulative normal distribution, Ri is the rank of the ith gene, and P is the total number

of maker genes.

The experiment using the methods above was conducted on 22 gene-expression datasets with

some contain binary classes and others contain multiclasses. In other words, The gene selec-

tion process was done first. Then the classification procedure was conducted by using DBC

classifier, as well as several traditional classifiers including Support Vector Machine(SVM),

Decision Tree(DT), Naive Bayes(NB), K nearest neighbor(KNN), and linear discriminate

analysis(LDA).

For each of these dataset, 3-fold cross validation was ran for 100 simulations, and the average

accuracy rates for each classifier (averaging over 100 simulations and over 22 datasets) were

recorded. The result shows that DBC reaches nearly same accuracy as SVM, and NB, and

is more accurate then other classifiers.

To test the robustness of the DBC method under the condition of higher noise level and

switch of baseline in test set. Two simulation studies were also conducted. In the first simu-

lation, suppose there was a binary class model, and the gene-expression data was generated

from the following model:

yjk = aj + bjxk + ejk,

where j is the index for maker genes, j = 1,2,...,J , and xk ∈ {0, 1} is the class label of the

kth sample, where k = 1,2,...,K. And ejk is the error term following normal distribution

with mean 0 and standard deviation(SD) σ. There were 50 marker genes and 50 samples

in each class in the training dataset, which was simulated with aj and bj from uniform

distribution of [-10,10] and [-2,2], respectively. The σtraining = 2. There were 10 samples

in each class in testing dataset. Four different scenarios were simulated: first, the training
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dataset and testing dataset had exactly same parameters. Second, the noise was added to

the testing dataset so the σtesting was increased to 4. Third, a baseline shift was added

so the gene expression value was generated from normal distribution of mean 5 and SD 2.

Last, both noise and baseline shift were added to testing dataset. As a result, the DBC

method performs better than other methods with a larger extent. In the second simulation,

the real dataset, i.e., the prostate gene-expression data was used. However, we change

the distribution of testing data (one third of the data in the 3-fold cross validation) as the

following three scenarios: (1). a random normal noise with mean 0 and SD 0.5σ̂ were added,

where σ̂ was estimated by the sample standard deviation of testing data. (2). a baseline

shift was added by generating data from normal distribution with mean 4 and SD 0.5σ̂ to

all samples in training dataset. (3). doing both (1) and (2). The result shows that DBC

method performs in all three scenarios above comparing with other classifiers.

It shows that the DBC classifier is more robust under the situation that noise and/or

baseline shift were added to gene expression data comparing with other classifiers tested in

the experiment.

2.3 Optimization Based Tumor Classification from Mi-

croarray Gene Expression Data

This article by Dagliyan et al. (2011) addressed the classification problem of tumor types

with genes. Unlike several traditional methods that require the optimal parameters. A

new method named Hyper-Box Enclosure (HBE),which do not need to adjust an optimal

parameters for individual data set was proposed. Three methods in WEKA package were

used in gene selection procedure. They are information gain attribute evaluator, relief

attribute evaluator, and correlation-based feature method.
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The gene classification procedure consists of Integer Programming(IP) and Mixed Integer

Linear Programming (MILP) based components. The data points belonging to different

classes are discriminated by Hyper-boxes. There are four steps for the Hyper-Box enclosure

algorithm: seed finding, construction of boxes with seeds, intersection elimination, and

optimal gene set finding.

The authors claimed that the performance of HBE overall was better than other algo-

rithms reported in the literature and classifiers found in WEKA data mining package.

2.4 Tumor classification by combining PNN classifier

ensemble with neighborhood rough set based gene

reduction

The article by Wang et al. (2010) is a tumor classification problem using the gene expres-

sions. The paper presents a method that combines ensemble of probabilistic neural network

(PNN) and neighborhood rough set model based gene reduction. Both single PNN(sPNN)

classifier and ensemble system of PNN (ePNN) classifier are introduced, and they both

have three steps: gene ranking, gene reduction and sample classification. Two classifiers

only differ in the final stage of determining the class label. The ePNN algorithm divide

the entire gene set into several subsets, train the model on each subset, assign class label

by each model trained, and finally decide the class label using majority rule. For gene

pre-selection, two algorithms were introduced: iterative search margin based algorithm and

weighted feature score criterion. Afterwards, in gene selection step, FARNeM algorithm is

introduced. The experiment has been conducted on 3 public datasets which are commonly

used by four computational methods with each uses a combination of the Simba, FARNeM

, sPNN, ePNN and WFSC. The results show that the ePNN method not only achieved the

high accuracy, but also have relative more stable performance.
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2.5 Classification of Colon Tumor Tissues Using Ge-

netic Programming

The paper by Archetti et al. (2008) presented a Genetic Programming (GP) approach for

classification problem of cancer types based on gene expression values. An advantage of GP

is that it can automatically select the small number of genes that are relevant and produce

the classifier. In other words, unlike most other approaches that uses different algorithms for

two separate steps which are gene selection and classification. The GP integrate two steps

into one. The experiment has been conducted on one public available data set Colon cancer

dataset which is widely used. The receiving operator (ROC) area under curve (AUC) and

the measure of correctly classified instances (CCI) have been chosen as the measurement for

the performance of the classifiers. For GP, the candidate classifiers (individuals) are Lisp-like

tree expressions building using function set F=+,-,*,/ and a set T as terminal composed by

M floating points variables. The dataset has M=2000 columns. Hence, the GP individuals

are arithmetic expressions. The GP will randomly generate a large number of expressions

and automatically select a rule to make a binary classification. The other parameters of GP

used are: population size of 200 individuals, ramped half-and-half initialization; tournament

selection of size 7, maximum tree size equal to 10, subtree crossover rate equal to 0.95,

maximum number of generations equal to 500; and generational tree based GP with elitism.

For comparison purpose, three non-evolutionary classifiers have also been applied on the

dataset along with GP. They are Support Vector Machine (SVM), Voted Perception (VP)

and Random Forest(RF). As a result, the best fitness of GP reaches 1.0 for both ROC-

AUC and CCI, which is better than those three non-evolutionary classifiers. The average

fitness for GP produces 0.9462 and 0.8941 as ROC-AUC, and CCI, respectively. They are

competitive as SVM and better than other 2 classifiers.
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2.6 Support Vector Machine model for diagnosis of

lymph node metastasis in gastric cancer with mul-

tidetector computed tomography: a preliminary

study

The paper by Zhang et al. (2011) addresses the classification problem for diagnosis of

lymph node metastasis in gastric cancer. The imaging techniques in the stomach which

have been commonly used have the difficulty of achieving high sensitivity and specificity

both at the same time. A preliminary study has been done showing that Support Vector

Machine (SVM) has the potential to overcome this difficulty. The dataset comes from 175

patients. The input for SVM are six indicators collected on MDCT images including serosal

invasion, tumor classification, tumor maximum diameter, number of lymph nodes, maximum

lymph node size and lymph nodes station. The class label being predicted has binary values

which are either positive or negative. The experiment has been conducted by using free

SVM software named LibSVM 2.89, and RBF has been selected as kernel function. 5-fold

cross validation has been employed for training and testing, Receiver operating characteristic

(ROC) curve was used to evaluate the performance of SVM. In addition, a statistical analysis

including independent-sample T test and Mann-Whitney U test has been conducted on six

imaging indicators. The results of classification using SVM reaches 88.5% , 78.5% and 0.876

for sensitivity, specificity, and AUC, respectively. In contrast, the radiologist only reaches

63.4% and 75.6% for sensitivity and specificity, respectively. This shows that SVM produces

better results. Also, the independent t test of six indicators between positive and negative

classes produces all significant differences.
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Chapter 3

Methodology

The characteristic of genomic data is that a dataset usually has a large number of features

(e.g.: genes, SNPs, or probe sets) and relatively small sample size. Using all features to

do the classification on phenotype is not reasonable because usually there are only some

features, i.e., a subset of all features, that are biologically relevant to the phenotype. In

addition, including irrelevant features could decrease the classification accuracy. Therefore,

feature selection step, that is, to find the subset of features that is relevant to phenotype,

is important not only for its own, but also for improving accuracy of the classification step

afterwards. This paper addresses the feature selection and classification of Duke’s stage using

high density genomic data. We first describe the specific characteristics of the data with

the initial analysis of its correlation structure to find suitable feature selection approach.

Then we discuss the approach we propose for feature selection. We will use hypothesis

testing-based approach for feature selection. After feature selection step, the selected SNPs

will be used as features and B and C of Duke’s stages will be used as class label in the

classification step. We will use Support Vector Machine (SVM) and K-Nearest Neighbor

(KNN) as classifiers and Leave-One-Out Cross Validation (LOOCV)as validation method

to compute the accuracy as an evaluation of selected features.

15



3.1 Preliminary Analysis of Data Characteristic

The particular data we will consider are 94 matched pair chromosome copy number data in

the genome of colorectal carcinoma using SNP-typing arrays (Kurashina et al. (2008)) and

mRNA expression data from 290 primary colorectal tumor samples from Affymetrix Human

Genome U133Plus 2.0 arrays (Jorissen et al. (2009)).

For the copy number dataset, genomic DNA from tumor and paired normal tissues of

CRC (n=94) hybridized to Affymetrix Mapping 50K Xba 240 arrays were obtained from

NCBI at http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE11417. Chro-

mosome copy numbers at 58,494 SNP loci were obtained with CNAG2.0 software avail-

able at http://www.genome.umin.jp. For the gene expression data, raw mRNA expression

data for 54675 probe sets from 290 colorectal tumor samples were obtained from NCBI at

http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE14333. The large num-

ber of SNPs or probe sets densely cover the human genome. The genetic distance between

neighboring SNPs or probe sets is very short and the expression values of these probe sets or

copy numbers of these SNPs tend to have high correlations. The correlation plot in the left

panel of Figure 3.1 shows the sample correlation between each probe set and other probe

sets in block 23 of size 100. The plot reveals the characteristic that some probe sets have

high correlation with neighboring probe sets in the same block. In fact, this characteristic

happens for all blocks of size 100. In general, there are about 18 probe sets on average that

shows this characteristic in one block. More specifically, the frequency for the number of

probe sets that have high correlation with neighbors in all blocks ranges from 4 to 59 (see

the histogram in the right panel of Figure 3.1). Due to this properties of probe sets, the

expression value of neighbors that are closer might have higher correlation than those that

are further away. Appropriately utilize such correlation can improve the power to identify

relevant SNPs or probe sets.

Denote Xijk to be the relative copy number of the jth SNP for kth subject in phenotype i.
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Figure 3.1: Correlation of some probe sets with neighbors within block 23. Only probe sets that have

strong correlation (> 0.8) with neighbor probe sets in the same block are plotted. Nprobes represents the

number of probe sets that has correlation with neighbor probe sets > 0.8

.

We assume that the series of SNPs or probe sets on a chromosome corresponding to different

subjects (such as patients) are independent and each series satisfies an α-mixing condition,

i.e., assume that for some sequence αm → 0 as m → ∞, |P (A∩B)−P (A)P (B)| ≤ αm holds

for all A ∈ σ(Xi1k, . . . , Xiℓk), B ∈ σ(Xi,ℓ+m,k, Xi,ℓ+m+1,k, . . .), and all i, k, where σ(·) denotes

the σ-field generated by the random variables. The α-mixing condition basically requires the

correlation between observations from the same subject to decay as the separation distance

m increases. This can be seen from the following Lemma:

Lemma 3.1.1. (Billingsley 1995) If Y is measurable σ(Xi1k, . . . , Xijk) and E[Y 4] ≤ C,

and if Z is measurable σ(Xi,j+n,k, Xi,j+n+1,k, . . .), and E[Z4] ≤ D, then under the α-mixing

condition,

|E[Y Z] − E[Y ]E[Z]| ≤ 8(1 + C + D)α1/2
n . (3.1.1)

The left-hand side in the equation above is the covariance of Y and Z. Since the variance

of both Y and Z are constant, the correlation between Y and Z is also bounded by 8(1 +
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C + D)α
1/2
n , which approaches 0 as α is in the order of O(m−5).

From the analysis of the correlation structure on probe sets, we can tell it satisfies

the weak dependence condition. Therefore, it is reasonable to assume a polynomial or

exponential decay rate. For convenience, we use αm = O(m−5). Most published inferences

under α-mixing condition also require the stationary condition (Doukhan, Oppenheim, and

Taqqu 2003; Bradley 2005; Billingsley 1995) . However, for genomic data, complicated

nature of biological processes makes it unreasonable to assume stationary condition for

the sequence of SNPs or probe sets. The inferences introduced in (Wang, Higgins, and

Blasi 2009; Wang and Akritas 2010a; Wang and Akritas 2010b) do not require stationary

condition. Since genomic data on which our studying focuses have either correlation decays

fast enough to be described by the polynomial rate, the test of interaction in (Wang and

Akritas 2010a; Wang and Akritas 2010b) is suitable to be used and we will employ it to test

the interactions between phenotypes of disease (such as Duke’s stages of colorectal cancer)

and genetic markers (such as SNPs or probe sets). For data that has long range dependence,

the test in Wang, Higgins, and Blasi (2009) can be used.

3.2 Feature Selection

In feature selection step, the goal is to select those genetic markers that are relevant to

phenotype.

3.2.1 Identification of Significant Blocks Using Interaction Test

If there is an significant interaction effect exists between genetic markers and phenotypes, it

implies that they are relevant. Therefore, the interaction test between genetic marker and

phenotype can be conducted. We can set up the test in the context of the two-way factorial
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design as follows:

• Factor A: phenotype of disease with level i = 1, ..., a.

• Factor B: genetic marker with level j = 1, ..., b.

• Response: gene-expression value or copy number of SNPs.

The levels of factor A depends on the number of categories of a specific phenotype. For

example, the normal/tumor tissue would have 2 levels, and the Duke’s stages of colorectal

cancers have four levels: A, B, C, and D. The levels of factor B depends on the number of

genetic markers, such as the number of genes or SNPs in a dataset.

Suppose the response variable (i.e., copy number or expression value) Xijk has marginal

distribution Fij(x) for all k = 1, . . . ni for some unknown Fij(·). We assume

Fij(x) = M(x) + Ai(x) + Bj(x) + Cij(x), (3.2.1)

where
∑a

i=1 Ai(x) =
∑b

j=1 Bj(x) =
∑a

i=1 Cij(x) =
∑b

j=1 Cij(x) = 0, ∀x. The null hypoth-

esis for no interaction effect between genetic marker and phenotype H0(C) : all Cij = 0

means that the marginal distribution of DNA copy number or expression value is a mixture

of two components with equal mixture probability, one depending on the phenotype, and

the other one depending on the genetic marker. We use (mid-) rank test (Wang and Akritas

2010b) to test the interaction effect. The test works as following:

Let Rijk represent the mid-rank of observation Xijk, the copy number or expression

value of ith phenotype and jth genetic marker from kth subject, k = 1, ..., ni, among all
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observations. Denote

N =

a∑

i=1

nib, ñ= min
1≤i≤a

{ni},

Rij. =
1

ni

ni∑

k=1

Rijk, R̃i.. =Ri.. =
1

b

b∑

j=1

Rij., Ri.k =
1

b

b∑

j=1

Rijk,

R̃... =
1

ab

a∑

i=1

b∑

j=1

Rij., R̃.j. =
1

a

a∑

i=1

Rij., R... =
1

N

a∑

i=1

b∑

j=1

ni∑

k=1

Rijk,

Let ASCR and ASER be the variations of the mean squares defined in (mid-)ranks as

follows:

ASCR =
∑

i,j

(Rij. − R̃i.. − R̃.j. + R̃...)
2

(a − 1)(b − 1)
,

ASER =
∑

i,j

ni∑

k=1

(
Rijk − Rij. − Ri.k + R̃i..

)2

a(b − 1)ni(ni − 1)
,

FR,C = ASCR/ASER

The asymptotic distribution of
√

b(FR,C − 1) from (Wang and Akritas 2010a) is restated

below for convenience.

• If ni → ∞ as b → ∞, assume maxi{ni}/ñ = O(1). Then

under H0(C),
√

b(FR,C − 1)
d→ N

(
0, τ̃ 2

C∗/σ̃
4
∗

)
, (3.2.2)

• if ni ≥ 2 are bounded, then

under H0(C),
√

b(FR,C − 1)
d→ N

(
0, τ̃ 2

C/σ̃4
)
; (3.2.3)

where τ̃ 2
C = limb→∞

(
ζ̃1 + ζ̃2/(a − 1)2

)
, τ̃ 2

C∗ = limb→∞ ñ2
(
ζ̃1 + ζ̃2/(a − 1)2

)
,

and

ζ̃1 =
2

a2b

b∑

j=1

b∑

j′=1

a∑

i=1

σ̃2
ijj′

ni(ni − 1)
, ζ̃2 =

2

a2b

b∑

j=1

b∑

j′=1

a∑

i6=i′

σ̃ijj′σ̃i′jj′

nini′
.
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The terms σ̃2 and σ̃2
∗ are defined as follows: let σ̃2 = lim

b→∞
E(ASER), and σ̃2

∗ = lim
b→∞

E(ñASER),

where

E(ASER) =
1

a(b − 1)

∑

i,j

σ̃2
ij

ni
− 1

ab(b − 1)

a∑

i=1

b∑

j=1

b∑

j′=1

σ̃ijj′

ni
,

and Yijk = H(Xijk), σ̃ijj′ = cov(Yijk, Yij′k), and σ̃ijj = σ̃2
ij = Var(Yijk), with H(x) =

N−1
∑a

i=1

∑b
j=1 niFij(x) being the average distribution function, c(x, y) = [I(x < y) +

I(x ≤ y)]/2, and Ĥ(x) = N−1
∑a

i=1

∑b
j=1 niF̂ij(x) , F̂ij(x) = n−1

i

∑ni

k=1 c(Xijk, x), being its

empirical version of the average distribution function.

The equation (3.2.2) and (3.2.3) show that under null hypothesis, i.e. there is no signif-

icant interaction effect, the test statistic
√

b(FR,C − 1) converges in distribution to Normal

distribution with mean 0. Using this test statistic, p-value could be calculated to make

the conclusion of whether there is a significant interaction between genetic markers and

phenotypes for a given significant level, i.e., whether there are some genetic markers behave

differently on different levels of phenotypes.

Due to the large number genetic markers for genomic data, we divided all genetic markers

into different blocks with each block containing a subset of genetic markers, aligned according

to their genetic locations. After division, the blocks and the genetic markers in each block

are still in the order of their relative locations. Then the test could be performed on each

individual block.

There are several reasons and considerations of conducting the test on divided blocks

with appropriate size on each instead of testing all genetic markers at once.

First, the interaction test only produces the conclusion of either significance or non-

significance. If the interaction test described above produces a significant result, it just

means a subset of all genetic markers being tested are relevant to phenotypes. Further

exploration is needed to reduce the number of genetic markers and find the true relevant

ones. The more genetic markers a block contains, the more difficult to find the relevant ones
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within this block. Hence, we need to control each block to be within a reasonable size.

Second, the inference of the interaction test described earlier is based on the number of

levels of genetic markers b approaching to ∞. Simulation studies (Wang and Akritas 2010b)

showed that to conduct a valid test, b should be at least 20. Hence, we suggest to avoid

having the number of genetic markers in each block being too small.

Third, considering the capacity of computing power and time cost, including too many

genetic markers in one test is too expensive. Dividing them into different blocks and testing

on each block could make the computing realistic.

Considering the factors discussed above, we recommend to use 100 as the size of each

block except for the last block. In other words, the group of all genetic markers are divided

into m blocks with each block containing 100 genetic markers and the last block contains

the rest of genetic markers, whose number is at least 100 and less than 200.

To decrease the false discovery rate, we partition the subjects (patients) into ten folds.

and apply the interaction test on each of the blocks using only training data (i.e. 9 folds

each time) of 10-fold Cross Validation(CV). In other words, all the subjects in the sample

were partitioned into 10 folds Zij, i = 1, . . . , 10, where j refers to jth block. Each time

the subjects in Zij were excluded and the rest 9 folds were selected as training set and the

interaction test was conducted on the training set. Therefore, there are 10 training sets to

be tested for no interaction effect for block j. We let pij = “p-value for fold i and block j”

represents the test results using the 9 folds without Zij . The significance can be determined

in one of the three scenarios below listed in the reverse order of conservativeness:

1 The blocks that had significant interactions across all folds were selected at a signifi-

cance level. Even though testing on all blocks is in the form of multiple comparison,

if some blocks produced the p-values≤α consistently across all 10 folds, these blocks

were considered as the ones that had significant interactions due to consistent results
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from all folds.

2 For each fold, using multiple comparison control such as False Discovery Rate (FDR),

a block is considered to be significant if its ordered p-value is less than or equal to the

order divided by the total number of p-values for this fold. That is, denote the ordered

p-values for fold i as Pi,(1), . . . , Pi,(m). For a specified α, the kth ordered p-value is

significant if Pi,(k) ≤ k
m

α. This is typically referred as Banjamini-Hochberg procedure

(Benjamini and Hochberg 1995). Alternative FDR control considering either positive

or negative dependence exists can be incorporated by applying the procedures in Storey

(2003), Clarke and Hall (2009).

3 For each fold, controlling the family-wise error rate such as Bonferroni correction, a

block is considered to be significant if its p-value is less than or equal to α divided by

the number of blocks.

Similar to the first scenario, the blocks that are significant across all 10 folds are selected. In

principle, we recommend to carry out all three procedures above and then start with the list

that contains most parsimonious, non-empty set of significant genetic markers. Typically, if

all three scenarios produce non-empty set of significant genetic markers, then we would use

the one that produces the fewest number of genetic markers. If the scenarios 2 and 3 found

no significant genetic markers but the scenario 1 does, we would use the list produced by

the scenario 1. Therefore, these significant blocks were selected and some genetic markers

in each of these blocks should be relevant to phenotypes.

3.2.2 Detection of Relevant Genetic Markers Within Identified

Blocks

Identification of the blocks that have significant interaction effect in previous section suggests

that each of these blocks contains some genetic markers that are relevant to phenotypes.
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The goal in this step is to detect those relevant genetic markers within each of significant

blocks that were selected from previous step.

For each significant block, it contains 100 genetic markers (except the last block might

contain more). All these 100 genetic markers are candidate markers that are relevant to

phenotypes. To detect the relevant ones, some type of evaluation is needed to measure

the significance of each individual genetic marker within each block. Routinely, the feature

selection, i.e., the selection of genetic markers, use the methods such as Wilcoxon test or

t-test on each individual genetic marker (Zhang and Deng 2007; Zhang et al. 2011). These

methods perform fairly well for the datasets with relatively large sample size and middle-

size (i.e. usually less than 10000) of genetic markers. However, for the dataset with small

sample size and large number of genetic markers, such as the SNP copy number dataset we

described at the beginning with only 94 pairs of patients and 58494 SNPs, these methods do

not perform well. We tried both Mann-Whitney test (i.e., extension of Wilcoxon test) and t

test on individual SNPs on copy number dataset, but failed to detect any significant SNPs

using Family-Wise Error Rate with Bonferroni correction, or FDR of Banjamini-Hochberg.

Therefore, we consider to employ the test for interaction again to detect the relevant

genetic markers. Since this time we need to test the significance of each individual genetic

marker, but the assumption of the interaction test used earlier is that b, the number of genetic

markers, should be large, testing on interaction on each genetic marker is not applicable.

Instead, we use the test of interaction in a slightly modified fashion as follows:

Suppose there are total of l significant blocks selected. Let Mij (j = 1, . . . , 100) rep-

resents the jth genetic marker in block i. In order to evaluate the significance of Msr, we

perform the interaction test described earlier twice for kth training sample from the 10 folds

CV:

• First, using all markers in the block {Msq, q = 1, . . . , 100} and obtain the p-value,

denoted as ps,k;
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• Second, we perform the same interaction test again using {Msq, q = 1, . . . , r − 1, r +

1, 100}, i.e., 99 genetic markers by excluding the rth one, and obtain the p-value,

denoted as ps,−r,k.

Actually, the calculation of ps,k (i.e., the p-value using all 100 genetic markers in one

block) was already conducted when we tested the interaction for each block. The only extra

test for ps,−r,k also has similar number of genetic markers (i.e.,99). This modified applica-

tion, to maintain the number of genetic markers to be big enough, so that the interaction

test is still valid. To determine the significance of each individual genetic marker we use

the following analysis: In one block, since ps,k and ps,−r,k contain the sample evidence from

100 genetic markers (with Msr present) and that from 99 genetic markers (with Msr ab-

sent), respectively, the only difference between two p-values is caused by genetic marker

Msr. Therefore, the comparison between ps,k and ps,−r,k can be analyzed to evaluate the

significance of Msr, i.e., the rth genetic marker in block s.

Generally the difference or the ratio could be used to measure the comparison of two

values. Considering both ps,k and ps,−r,k could be very small so the difference between the

two is also very small. Ratio of the two p-values is a preferred measurement. Therefore, we

use the following algorithm to detect the significant genetic markers within each block:

1. For sth significant block, use training data in fold k to compute ps,−r,k for r =

1, . . . , 100, i.e., the p-values for excluding one genetic marker at a time, to obtain

100 p-values.

2. For block s, use training data in fold k to compute
ps,−r,k

ps,k
for r = 1, . . . , 100, i.e,

the ratio of p-values between excluding each genetic marker and using all 100 genetic

markers. Denote these ratios as ratiosrk, r = 1, . . . , 100;

3. Do (1) and (2) for all significant blocks s, s = 1, . . . , l, to obtain ratiosrk for s = 1, . . . , l;

(r = i, . . . , 100).
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4. Do (3) for all 10 folds to obtain ratioirk(i = 1, . . . , l; r = 1, . . . , 100; k = 1, . . . , 10),

i.e., the ratios for each genetic marker for all significant blocks of all 10 folds.

5. In each block s, for each genetic marker Mr, the 10 ratios across 10 folds, i.e., ratiosrk

for k = 1, . . . , 10 is treated as a random sample, denoted as {Rsrk, k = 1, . . . , 10}.

6. In each block, for each genetic marker, i.e., {Rsr, (s = 1, . . . , l; r = 1, . . . , 100), we

conduct the t-test for the null hypothesis “mean of Rsr is greater than 1” at a specified

significance level and the lower bound of the confidence interval (CI) is computed to

make the conclusion . If there are some outliers, conduct a sign test for the null

hypothesis “median of Rsrk is greater than 1” instead, and the conclusion is made in

the same way.

The rationale behind step 6 is that if the ratio of p-values is significantly greater than 1,

it means that the p-value obtained by using all 100 genetic markers is significantly smaller

than the p-value using 99 markers. This implies the significance of this omitted genetic

marker.

After these 6 steps, the significant genetic markers that are relevant to phenotype have

been detected in each block. If there was only one significant block selected earlier, the

significant genetic markers detected from this block are considered as the relevant genetic

markers for feature selection. If there are more than one significant block selected earlier,

then the combination of the relevant genetic markers from all these blocks are considered

as the relevant genetic markers for feature selection.

3.2.3 Test for Non-significance of Remaining Genetic Markers

In order to confirm the genetic markers we selected are significant ones and none of those

remaining genetic markers is significant, for each block, we conduct the same test for in-

teraction using the set of remaining genetic markers after excluding the markers already
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identified. We still use the training set from 10-fold CV to conduct the test. If test re-

sult from any of the blocks for any of the 10 folds show significance, more explorations are

needed to analyze those blocks. If none of blocks from show significant result in all 10 folds,

it confirms the significant genetic markers selected earlier are the key ones to phenotypes

and the rest of them are not.

3.3 Classification of Phenotypes Using Selected Ge-

netic Markers

In classification step, the goal is to build a model with training data and predict the class

of test data with high accuracy. As a single split of test and training data often yield biased

classification accuracy, it’s recommended to use Cross Validation (CV).

As mentioned earlier, including too many irrelevant genetic markers in the classification

will add noise leading to poor accuracy. Following the feature selection step, the relevant

genetic markers we selected will be used as features in classification.

In terms of the choice of classifier, some literatures concluded that in general Support

Vector Machine (SVM) produces the highest accuracy among common classifiers in classifi-

cation problem of phenotypes using genomic data (Zhang and Deng (2007), Archetti et al.

(2008), Zhang et al. (2011)). There are also other methods that perform better than SVM,

such as the DBC classifier in Wei and Li (2010). KNN is also a commonly used classifier

whose performance is in the medium range (Wei and Li 2010). We use SVM and KNN as

classifiers to build the model.

As for the choice of validation method, since the sample size of the dataset we use is

relatively small and the fact that Leave-One-Out Cross Validation(LOOCV) is an unbiased
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estimator of the generalization error. We use LOOCV to validate the learned model and

compute the accuracy in classification step. KNN has one parameter, k, the number of

nearest neighbors. SVM contains two parameters, γ and cost. To estimate these parameters,

we use 10-fold CV within the training data. The entire LOOCV proceeds as follows:

• For each of the training set {X−i,Y−i}, where X−i is the matrix of selected features

observed with subject i removed, and Y−i is the vector of phenotypes of all subjects

excluding subject i.

– In parameter tuning step, we use 10-fold CV within {X−i,Y−i}, targeting at

finding the optimal parameters.

– After the optimal parameters have been found, we use these parameters to fit the

model using {X−i,Y−i}.

• Using the fitted model, we predict the class label using Xi, the observed feature vector

for ith subject. This is the prediction step for the single observation in the test data.

• Repeat the steps above for i = 1, . . . , n, where n represents the total number of subjects

in the entire dataset.

It should be noted that the optimal parameters vary every time as the training set changes in

LOOCV, so does the fitted model. For each step in LOOCV, a single observation is either

predicted correctly or incorrectly. Then we will compute the proportion of the correctly

classified subjects as the classification accuracy.

The proposed methodology is applied to the two datasets mentioned in the introduction

section and the process is illustrated in the following chapter. The implementation is in

statistical software R.
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Chapter 4

Real Data Analysis

Current classification (prognosis) of colorectal cancer is mainly based on pathological stag-

ing. Such prognosis method faces challenge for discriminating Duke’s stages B and C.

Additional genetic markers are needed to help differentiate Duke’s stages B and C. In this

chapter, we analyze the two publicly available datasets described in Section 3.1 aiming at

finding key genetic markers for classification of Duke’s stages B and C with high accuracy.

For the first dataset using copy number, the original authors analyzed copy number al-

terations (CNA) and pointed that several chromosomes contain CNA and some chromosome

arms contain loss of heterozygosity (LOH). However, neither of these CNA nor LOH were

used to classify the clinical outcome of Duke’s stages. For the second dataset using mRNA

expression data, the original authors identified 128 genes using 3 training sets for Duke’s

stages A and D. They then used these genes and a Prediction Analysis of Microarray (PAM)

algorithm to classify patients of Duke’s stages B and C into stage A-like/good prognosis or

stage D-like/poor prognosis types.

Using the method presented in Chapter 3 on both datasets of chromosome copy number

and mRNA expression data, we successfully identified a very small set of genetic markers in
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feature selection step, and achieved 100% LOOCV accuracy in classification step of Duke’s

stages B and C on both datasets.

In the following two sections, we describe the process of applying the proposed method

in Chapter 3 to the two datasets. The programming code of the implementation in R is

given in the Appendices A.2 and B.2.

4.1 Feature Selection and Classification of Duke’s Stage

Using Chromosome Copy Number Dataset

4.1.1 Data Preprocessing

The raw chromosome copy number dataset was downloaded directly from NCBI (Accession

number: GSE11417) in the zipped CEL file format. The physical characteristics of 94 pa-

tients were downloaded from 188 links through the java program in Appendix A.1 ( first

link: http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSM288035, last link:

http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSM288222). The downloaded

raw data was preprocessed using the software CNAG (Nannya et al. 2005) with the option

of the paired sample to obtain the copy number. The obtained relative copy number from

CNAG at each SNP locus is estimated from the log 2 ratio of the normalized signals of each

SNP in the diseased sample and paired normal sample. The SNPs are aligned in relative

position same as their locations on chromosomes.
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4.1.2 Feature Selection of SNP’s

After data preprocessing, the dataset consists of the copy number dataset and the corre-

sponding Duke’s stage from patients’ physical characteristics. The copy number dataset is

a 58494 × 94 matrix with each row represents the copy numbers of one SNP and each col-

umn represents one patient. The 58494 SNPs were divided into 584 blocks with each block

contains 100 SNPs except that the last block containing 194 SNPs. The number of patients

with Duke’s stages A, B, C, and D are 3, 46, 37, and 8, respectively. Since our interest

is to find SNPs to differentiate Duke’s stages B and C, we work only with the 46 patients

with stage B disease and 37 patients with stage C disease. Excluding the small number of

Duke’s stages A and D patients is also consistent with the conditions in the interaction test,

which requires that the sample sizes of different levels of phenotypes are of the same order.

Therefore, the total sample size of the dataset is 83 which is the total number of patients

with Duke’s stages B and C. We partition the 46 patients with Duke’s stage B into 10 folds,

among which 4 (i.e, truncate 46/10) of them are denoted as test set and the rest are training

set. Similarly, We partition the 37 patients with Duke’s stage B into 10 folds, among which

3 (i.e., truncate 37/10) of them are denoted as test set and the rest are training set. Then

we combine the training sets from both stages and apply the test for interaction effect for

each block. As we move along the index of the folds, we get 10 training sets.

After application of the test, attempts were made for detecting those blocks for significant

results for each fold. With Bonferroni or FDR multiple comparison adjustment, none of the

blocks was found to be significant consistently for every fold. Instead, significant blocks were

selected based on α = 0.05 for each of the 10 folds. Since 115th block showed consistently

significant results across all 10 folds, this block was selected as the block from which some

SNPs are relevant to the variations among Duke’s stages.

Next, we seek to identify the relevant SNPs within 115th block using the training set of

LOOCV. To find the significant SNPs in this block, each SNP was excluded from the block
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one at a time, and the p-values for testing of no interaction effect with the rest of 99 SNPs

for each of the 10 folds. As we go through all the SNPs, we obtained 100 p-values each fold.

Equivalently, for each SNP, there are 10 p-values, one from each fold.

Recall that there was also the original p-value calculated using all 100 SNPs for each

fold. For each SNP, we calculated the ratio of the p-value using 99 SNPs (after excluding

this SNP) to that using 100 SNPs. Then the ratios across 10 folds for each SNP serves as

a ‘random’ sample, and the t-test was conducted on each sample of size 10 to select those

SNPs with the mean ratio significantly greater than 1. Fifteen SNPs were found. To make

sure that there are no other SNPs relevant to the variation of the Duke’s stages, we double

check through excluding these 15 SNPs and test the remaining 85 SNPs for each of the 10

folds. The results show that none of them is significant. The 15 SNPs in Table 4.1 are the

significant ones such that the rest of the SNPs on the block lead to non-significant test of

the interaction effect after these SNPs were removed.

From literature review, other methods for feature selection used t-test or Mann-Whitney

test on each individual genetic marker and the selection was based on q-values of those ge-

netic markers ranked top with FDR control (Storey and Tibshirani 2003). In order to com-

pare the results for feature selection using our proposed method with these other methods,

we also calculated the p-values of each SNP using t-test and Mann-Whitney test. Different

multiple comparison criteria were considered, i.e., Family Wise Error Rate (FWER) with

Bonferroni correction and FDR control. The results from neither of the two tests found

significant SNP with either FDR or FWER control.

4.1.3 Classification on Duke’s Stages

After feature selection step, we used the selected 15 SNPs to classify Duke’s stages B and C.

SVM and KNN were employed as the classifier and LOOCV was used as validation method

in classification step. For each patient as the test set, the LOOCV uses data from the rest
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Table 4.1: Significant SNPs found from block 115

SNP p.value 99% lower.bound Mean Ratio Across 10 folds

SNP A-1657650 0.0030 2.7766 9.5100

SNP A-1749435 0.0019 2.7983 7.6780

SNP A-1689468 0.0012 2.1534 4.5120

SNP A-1689889 0.0000 2.2672 3.0720

SNP A-1648196 0.0006 1.4614 2.1800

SNP A-1727755 0.0026 1.2480 2.0790

SNP A-1752279 0.0000 1.3767 1.5470

SNP A-1695975 0.0040 1.1174 1.7010

SNP A-1702481 0.0003 1.2377 1.5310

SNP A-1734536 0.0002 1.2397 1.5070

SNP A-1648758 0.0005 1.1598 1.3860

SNP A-1741653 0.0010 1.1470 1.4310

SNP A-1713231 0.0000 1.1453 1.2500

SNP A-1728065 0.0011 1.0926 1.2800

SNP A-1678518 0.0060 1.0095 1.0950

of the patients as the training data. The optimal parameters (γ and cost) in SVM were

tuned using the 10-fold CV within the training data. Hence the sets of parameters might

be different for different patients used in test data as shown in Table 4.2. Then the optimal

parameters were used to build the final SVM model for prediction. By comparing the

observed class label, each patient’s Duke’s stage is either correctly classified or incorrectly

classified. The result showed that we correctly classified the Duke’s stages for all 83 patients

in LOOCV.

For KNN classifier, 10-fold CV was used to estimate the optimal parameter k within

the training set of LOOCV. Then the trained model with the optimal parameter for each

patient was used to predict the class label. The optimal parameters and the classification
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results are shown in Table 4.3. The Duke’s stages of all patients were correctly classified.

4.2 Feature Selection and Classification of Duke’s Stage

Using mRNA Expression Data

4.2.1 Data Preprocessing

The raw mRNA expression dataset was downloaded from NCBI (Accession number: GSE14333)

in CEL files. The raw data were normalized with bioconductor package gcrma to summarize

probe sets expression. The patients’ Duke’s stages were retrieved from 290 links using the

Java program in Appendix B.1. To find the relative locations of the probe sets on their

chromosomes, we downloaded the annotation file of human U 133 plus 2.0 array from the

Affymatrix website. Based on the ”Chromosomal location” column from annotation file,

the sex chromosomes were identified and removed. In addition, the remaining probe sets

were sorted based on the location information obtained from the “Alignment” column from

the annotation file.

4.2.2 Feature Selection of Probe Sets

After data preprocessing step, we obtained the dataset that contains both mRNA expression

values and the Duke’s stages. For each of the 290 patients, there are 53158 probe sets after

removing the probe sets from sex chromosomes aligned based on their chromosome locations

(except for 1075 probe sets that did not have alignment information).

The total 53158 probe sets were divided into 531 blocks of size 100 with the exception

of the last block containing 158 probe sets. Similarly to the objective for the copy number
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dataset, we are still interested in finding relevant probe sets to classify Duke’s stages B and

C. There are 94 patients with Duke’s stage B and 91 patients with Duke’s stage C disease.

The patients in each Duke’s stage were partitioned into 10 folds, among which 1 fold was

excluded at a time and the rest 9 folds were used as training data. That is, each of the 10

training sets contains 85 patients with Duke’s stage B and 82 patients with Duke’s stage C.

The test of interaction effect was applied to each block for each fold. We used Bonferroni

and FDR multiple comparison correction for detecting the significant blocks. The 23th bock

was detected as the only significant block under both criteria. The next step is to identify

the relevant probe sets within this block using the training set of LOOCV. To achieve this,

each probe set was excluded from the block and a p-value was obtained by testing the

interaction effect of this block with remaining 99 probe sets for each fold. Such calculation

was repeated for all probe sets, yielding 100 p-values for each fold. This group of p-values

was used along with the original p-value from the entire block to get the ratio of p-values.

Different from the analysis in previous copy number dataset, these ratios from different folds

do not seem to have common distribution. Instead the ratios for fold 1 are obviously much

bigger than those for other folds (see the boxplot in figure 4.1).

G1AovB G2AovB G3AovB G4AovB G5AovB G6AovB G7AovB G8AovB G9AovB G10AovB

−1
0

1
2

3
4

5

Boxplot of the log(ratios of p−values)

Figure 4.1: Boxplot of the log(ratios of p-values) between the test with 100 probe sets and 99 probe sets.

Then the ratios across 10 folds for each probe set serves as a ‘random’ sample. Since

the fold 1 has extreme ratios, the sign test was conducted to select those probe sets with

the median ratio significantly greater than 1. Thirty six probe sets were found as shown in
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table 4.4.

Further confirmation was conducted to guarantee that there are no other probe sets

relevant to the variation of the Duke’s stages through excluding these 36 probe sets and

test the remaining 64 probe sets for each of the 10 folds. None of them was significant as a

result.

4.2.3 Classification on Duke’s Stages

We used the selected 36 probe sets from block 23 to classify the Duke’s stage with SVM

as classifier and LOOCV as validation method. The training sample size was 184, and the

test sample size is 1. The class of the test data was predicted based on the model trained

with the training set with optimal parameters determined through 10-fold CV on the same

training data using SVM and KNN. Incidentally, the optimal parameters for all training sets

appear to be the same for SVM. They are γ = 0.125, cost=4. The class label, i.e, Duke’s

stages of all 185 of patients, were correctly classified. Therefore, the average accuracy is

100%. We also used K-Nearest Neighbor (KNN) as the classifier using the selected 36 probe

sets to classify Duke’s stages. Similar to SVM, 10-fold CV was used to estimate the optimal

parameter k with the training set of LOOCV. Then the trained model with the optimal

parameter for each patient was used to predict the class label. The optimal parameters and

the classification result are shown in Table 4.5. Again, the Duke’s stages of all patients were

correctly classified.
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Table 4.2: Optimal parameter estimates and classification results of SVM for DNA copy

number dataset
Patient γ Cost Correctly classified Patient γ Cost Correctly classified

Patient 2 0.125 4 Yes Patient 83 0.125 8 Yes

Patient 3 0.125 4 Yes Patient 87 0.125 4 Yes

Patient 6 0.125 8 Yes Patient 91 0.125 4 Yes

Patient 7 0.125 4 Yes Patient 93 0.125 4 Yes

Patient 8 0.125 4 Yes Patient 4 0.125 8 Yes

Patient 9 0.125 4 Yes Patient 5 0.125 8 Yes

Patient 10 0.5 4 Yes Patient 11 0.125 4 Yes

Patient 12 0.125 4 Yes Patient 14 0.125 8 Yes

Patient 13 0.125 8 Yes Patient 17 0.25 4 Yes

Patient 16 0.125 4 Yes Patient 23 0.25 4 Yes

Patient 18 0.125 4 Yes Patient 28 0.125 4 Yes

Patient 19 0.125 8 Yes Patient 31 0.5 4 Yes

Patient 20 0.125 8 Yes Patient 34 0.125 4 Yes

Patient 21 0.25 4 Yes Patient 35 0.125 8 Yes

Patient 22 0.125 4 Yes Patient 36 0.125 8 Yes

Patient 24 0.125 4 Yes Patient 39 0.125 8 Yes

Patient 25 0.125 4 Yes Patient 43 0.125 4 Yes

Patient 27 1 4 Yes Patient 44 0.125 4 Yes

Patient 29 0.125 4 Yes Patient 48 0.125 4 Yes

Patient 32 0.125 4 Yes Patient 51 0.125 4 Yes

Patient 33 0.125 4 Yes Patient 53 0.125 4 Yes

Patient 37 0.125 4 Yes Patient 54 0.125 8 Yes

Patient 40 0.25 4 Yes Patient 57 0.125 4 Yes

Patient 41 0.25 4 Yes Patient 59 0.125 8 Yes

Patient 42 0.125 8 Yes Patient 62 0.5 4 Yes

Patient 45 0.125 8 Yes Patient 64 0.125 4 Yes

Patient 46 0.25 4 Yes Patient 66 0.125 8 Yes

Patient 47 0.125 4 Yes Patient 67 0.25 4 Yes

Patient 50 0.125 4 Yes Patient 69 0.125 4 Yes

Patient 52 0.125 8 Yes Patient 72 0.125 8 Yes

Patient 55 0.125 4 Yes Patient 73 0.125 4 Yes

Patient 56 0.125 4 Yes Patient 76 0.125 4 Yes

Patient 58 0.125 4 Yes Patient 77 0.125 4 Yes

Patient 60 0.125 8 Yes Patient 84 0.125 4 Yes

Patient 63 0.125 8 Yes Patient 85 0.25 4 Yes

Patient 65 0.125 8 Yes Patient 86 0.125 8 Yes

Patient 68 0.125 8 Yes Patient 88 0.125 4 Yes

Patient 70 0.125 8 Yes Patient 89 0.25 4 Yes

Patient 71 0.125 4 Yes Patient 90 0.125 8 Yes

Patient 74 0.125 8 Yes Patient 92 0.125 4 Yes

Patient 78 0.125 8 Yes Patient 94 0.125 8 Yes

Patient 81 0.125 8 Yes
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Table 4.3: Estimate of k and Classification Accuracy of KNN for Copy Number Dataset

Subject k Correctly classified Subject k Correctly classified

Patient 2 16 Yes Patient 83 23 Yes

Patient 3 24 Yes Patient 87 25 Yes

Patient 6 14 Yes Patient 91 25 Yes

Patient 7 14 Yes Patient 93 16 Yes

Patient 8 17 Yes Patient 4 18 Yes

Patient 9 17 Yes Patient 5 16 Yes

Patient 10 15 Yes Patient 11 18 Yes

Patient 12 17 Yes Patient 14 15 Yes

Patient 13 22 Yes Patient 17 14 Yes

Patient 16 16 Yes Patient 23 17 Yes

Patient 18 15 Yes Patient 28 23 Yes

Patient 19 14 Yes Patient 31 13 Yes

Patient 20 22 Yes Patient 34 22 Yes

Patient 21 15 Yes Patient 35 21 Yes

Patient 22 15 Yes Patient 36 13 Yes

Patient 24 17 Yes Patient 39 17 Yes

Patient 25 17 Yes Patient 43 15 Yes

Patient 27 23 Yes Patient 44 14 Yes

Patient 29 18 Yes Patient 48 18 Yes

Patient 32 14 Yes Patient 51 16 Yes

Patient 33 16 Yes Patient 53 19 Yes

Patient 37 18 Yes Patient 54 14 Yes

Patient 40 16 Yes Patient 57 14 Yes

Patient 41 16 Yes Patient 59 14 Yes

Patient 42 17 Yes Patient 62 18 Yes

Patient 45 16 Yes Patient 64 14 Yes

Patient 46 14 Yes Patient 66 16 Yes

Patient 47 17 Yes Patient 67 16 Yes

Patient 50 16 Yes Patient 69 19 Yes

Patient 52 13 Yes Patient 72 20 Yes

Patient 55 14 Yes Patient 73 18 Yes

Patient 56 18 Yes Patient 76 22 Yes

Patient 58 19 Yes Patient 77 13 Yes

Patient 60 18 Yes Patient 84 14 Yes

Patient 63 16 Yes Patient 85 14 Yes

Patient 65 19 Yes Patient 86 15 Yes

Patient 68 14 Yes Patient 88 15 Yes

Patient 70 25 Yes Patient 89 18 Yes

Patient 71 18 Yes Patient 90 13 Yes

Patient 74 25 Yes Patient 92 14 Yes

Patient 78 13 Yes Patient 94 15 Yes

Patient 81 15 Yes
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Table 4.4: Probe sets with median ratios significantly greater than 1

99lower.bound median.ratio.across.folds

1555896 a at 12.2342 48.7050

213448 at 4.8124 7.4800

210132 at 3.7970 5.4800

236224 at 4.2232 5.8050

241377 s at 2.6757 5.1950

214532 x at 3.0840 4.5900

236223 s at 2.3616 2.8700

209197 at 2.0262 2.4400

221115 s at 1.5824 2.0150

243463 s at 1.5777 1.8700

210589 s at 1.5592 1.8000

244489 at 1.5662 1.7400

223555 at 1.3692 1.5650

209198 s at 1.3932 1.5450

206635 at 1.3777 1.4900

209093 s at 1.3592 1.4050

237810 at 1.2770 1.4400

222584 at 1.3292 1.4400

244803 at 1.2477 1.4650

203229 s at 1.2970 1.4250

1554057 at 1.2762 1.3800

230256 at 1.1977 1.3350

218815 s at 1.2492 1.2950

218873 at 1.2300 1.2450

226644 at 1.1385 1.3000

212259 s at 1.1700 1.1950

208286 x at 1.1885 1.2150

205107 s at 1.1200 1.1650

217007 s at 1.1292 1.1750

235145 at 1.1292 1.1450

222480 at 1.1285 1.1550

205661 s at 1.0192 1.0900

203515 s at 1.0377 1.0750

202023 at 1.0270 1.0850

212541 at 1.0277 1.0650

241389 at 1.0177 1.0600
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Table 4.5: Estimate of k and Classification Accuracy of KNN for mRNA Expression Dataset

Subject k Correctly classified Subject k Correctly classified Subject k Correctly classified
Patient 2 1 Yes Patient 170 3 Yes Patient 107 5 Yes
Patient 3 5 Yes Patient 171 1 Yes Patient 112 1 Yes
Patient 6 1 Yes Patient 174 7 Yes Patient 116 3 Yes
Patient 7 1 Yes Patient 176 5 Yes Patient 123 3 Yes
Patient 10 6 Yes Patient 177 1 Yes Patient 129 1 Yes
Patient 15 5 Yes Patient 182 3 Yes Patient 130 1 Yes
Patient 16 4 Yes Patient 184 1 Yes Patient 131 1 Yes
Patient 18 1 Yes Patient 187 5 Yes Patient 134 1 Yes
Patient 19 4 Yes Patient 189 5 Yes Patient 136 1 Yes
Patient 24 5 Yes Patient 195 4 Yes Patient 139 3 Yes
Patient 25 3 Yes Patient 197 5 Yes Patient 141 5 Yes
Patient 28 1 Yes Patient 202 1 Yes Patient 142 3 Yes
Patient 30 1 Yes Patient 209 1 Yes Patient 143 3 Yes
Patient 40 5 Yes Patient 217 1 Yes Patient 146 1 Yes
Patient 41 3 Yes Patient 218 3 Yes Patient 151 5 Yes
Patient 42 1 Yes Patient 219 3 Yes Patient 153 4 Yes
Patient 45 6 Yes Patient 224 1 Yes Patient 154 5 Yes
Patient 48 5 Yes Patient 227 4 Yes Patient 159 1 Yes
Patient 51 1 Yes Patient 229 1 Yes Patient 161 1 Yes
Patient 53 1 Yes Patient 243 1 Yes Patient 164 5 Yes
Patient 54 1 Yes Patient 251 3 Yes Patient 166 1 Yes
Patient 55 1 Yes Patient 254 1 Yes Patient 167 3 Yes
Patient 56 5 Yes Patient 257 1 Yes Patient 173 1 Yes
Patient 60 1 Yes Patient 259 3 Yes Patient 175 1 Yes
Patient 63 5 Yes Patient 263 1 Yes Patient 178 1 Yes
Patient 64 4 Yes Patient 269 1 Yes Patient 179 3 Yes
Patient 67 3 Yes Patient 270 1 Yes Patient 183 1 Yes
Patient 68 1 Yes Patient 271 6 Yes Patient 185 5 Yes
Patient 70 5 Yes Patient 274 1 Yes Patient 186 5 Yes
Patient 74 3 Yes Patient 276 1 Yes Patient 190 1 Yes
Patient 77 1 Yes Patient 283 5 Yes Patient 192 3 Yes
Patient 79 1 Yes Patient 290 1 Yes Patient 194 7 Yes
Patient 82 3 Yes Patient 1 7 Yes Patient 199 1 Yes
Patient 83 5 Yes Patient 4 3 Yes Patient 200 3 Yes
Patient 84 1 Yes Patient 9 5 Yes Patient 204 4 Yes
Patient 88 1 Yes Patient 11 1 Yes Patient 206 1 Yes
Patient 94 1 Yes Patient 12 3 Yes Patient 211 5 Yes
Patient 95 5 Yes Patient 14 3 Yes Patient 212 3 Yes
Patient 98 1 Yes Patient 20 2 Yes Patient 213 3 Yes
Patient 101 1 Yes Patient 23 6 Yes Patient 216 1 Yes
Patient 103 5 Yes Patient 26 3 Yes Patient 220 1 Yes
Patient 104 3 Yes Patient 27 3 Yes Patient 223 1 Yes
Patient 108 3 Yes Patient 29 1 Yes Patient 225 1 Yes
Patient 109 1 Yes Patient 31 1 Yes Patient 231 1 Yes
Patient 114 1 Yes Patient 36 7 Yes Patient 233 3 Yes
Patient 115 1 Yes Patient 37 1 Yes Patient 235 1 Yes
Patient 119 1 Yes Patient 39 3 Yes Patient 238 1 Yes
Patient 120 4 Yes Patient 44 4 Yes Patient 239 1 Yes
Patient 127 1 Yes Patient 50 1 Yes Patient 240 6 Yes
Patient 128 1 Yes Patient 52 3 Yes Patient 241 3 Yes
Patient 133 3 Yes Patient 65 3 Yes Patient 242 3 Yes
Patient 135 1 Yes Patient 66 2 Yes Patient 246 5 Yes
Patient 137 1 Yes Patient 76 5 Yes Patient 247 5 Yes
Patient 138 6 Yes Patient 78 4 Yes Patient 250 8 Yes
Patient 140 4 Yes Patient 87 4 Yes Patient 252 5 Yes
Patient 144 5 Yes Patient 92 3 Yes Patient 262 6 Yes
Patient 147 4 Yes Patient 93 5 Yes Patient 278 3 Yes
Patient 150 2 Yes Patient 96 4 Yes Patient 279 3 Yes
Patient 162 1 Yes Patient 97 1 Yes Patient 282 5 Yes
Patient 163 1 Yes Patient 99 4 Yes Patient 286 1 Yes
Patient 165 1 Yes Patient 105 1 Yes Patient 287 1 Yes
Patient 169 3 Yes Patient 106 5 Yes
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Conclusion

Overall, this report reviewed some existing work addressing the feature selection of genes

and classification on cancer types and prognosis using genomic data. Regardless of the ap-

proaches, this type of study typically could be divided into two steps: gene selection and

type classification. Most of the methods we reviewed made selection based on rankings of

the individual gene using some criteria. Due to the modern technology, more microarray

data with high densities are available today. Our study tackled the feature selection of

genetic markers and classification of phenotypes using these data with high densities. In-

corporating the possible strong correlation between the genetic markers that are neighbors

in terms of their chromosome locations, a novel method was proposed. Instead of selection

based on individual genetic marker, we made the selection based on the unit of block (i.e.,

a group of contiguous genetic markers) first and then select the relevant genetic markers

within significant blocks. From statistical perspective, a test for interaction between genetic

markers and phenotypes was used throughout to detect significant blocks and the relevant

genetic markers within each block. This method was applied to two high density datasets.

After feature selection, classification was made on Duke’s stages using SVM and KNN as

classifiers and LOOCV as test method. Excellent accuracies obtained showed the effective-

ness of the proposed procedure for feature selection. The traditional methods which make

selection based on individual gene are more flexible on the structure of microarray data and

the size the selected genes. Our proposed method could make use of modern data with high

density. It takes into account of correlation information based on chromosome locations

such that high accuracy could be obtained through precise selection of genetic markers that

are discriminative to the phenotypes. Even though perfect accuracies were obtained using

our method on two datasets, the allocation of contribution made by selected features and
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suitable classifiers are still worth further exploration by applying our proposed method to

more different types of datasets using various other classifiers.
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Appendix A

Java and R code for Copy Number

Dataset

A.1 Java Code to Retrieve Characteristics Data for

Chromosome Copy Number Dataset

import java.io.*; import java.net.*; import java.util.Arrays; public

class JavaGetUrl { public static void main(String[] args) throws

IOException {

String record = new String();

String[] URL = new String[190];

URL[0]="http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSM288035";

int i = 0;

//BufferedWriter out = new BufferedWriter(new FileWriter("outfile.csv"));
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//String str = "";

FileWriter writer = new FileWriter("test.csv");

writer.append("disease_state, Patient_ID, Age, Sex, Position, Pathology,

Duke’s_grade, Lymph_node_metastasis, MSI, Observation, Censor");

writer.append(’\n’);

while (i < 188) {

String digit = URL[i].substring(62,68);

int idigit = Integer.parseInt(digit);

int idigit2 = idigit + 1;

String sdigit2 = Integer.toString(idigit2);

URL[i+1] = URL[i].substring(0,62) + sdigit2;

record = Arrays.toString(ret(URL[i])).replace("[", "").replace("]", "");

//System.out.println(record);

writer.append(record);

writer.append(’\n’);

i++;

}

writer.flush();

writer.close();
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}

@SuppressWarnings("deprecation")

public static String[] ret(String url) {

URL u;

InputStream is = null;

DataInputStream dis;

String s;

int[] idx= new int[22];

String[] feature = new String[11];

try{

u = new URL(url);

is = u.openStream();

dis = new DataInputStream(new BufferedInputStream(is));

while ((s = dis.readLine()) != null){

if (s.contains("disease_state = ")){

//System.out.println(s);

idx[0] = s.indexOf("disease_state =") + 16;

idx[1] = s.indexOf("<br>Patient_ID");

idx[2] = s.indexOf("Patient_ID =") + 13;

idx[3] = s.indexOf("<br>Age");
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idx[4] = s.indexOf("Age =") + 6;

idx[5] = s.indexOf("<br>Sex");

idx[6] = s.indexOf("Sex =") + 6;

idx[7] = s.indexOf("<br>Position");

idx[8] = s.indexOf("Position =") + 11;

idx[9] = s.indexOf("<br>Pathology");

idx[10] = s.indexOf("Pathology =") + 12;

idx[11] = s.indexOf("<br>Duke’s_grade");

idx[12] = s.indexOf("Duke’s_grade =") + 15;

idx[13] = s.indexOf("<br>Lymph_node_metastasis");

idx[14] = s.indexOf("Lymph_node_metastasis =") + 24;

idx[15] = s.indexOf("<br>MSI");

idx[16] = s.indexOf("MSI =") + 6;

idx[17] = s.indexOf("<br>Observation_(days)");

idx[18] = s.indexOf("Observation_(days) =") + 21 ;

idx[19] = s.indexOf("<br>Censor");

idx[20] = s.indexOf("Censor =") + 9;

idx[21] = s.indexOf("<br></td>");

feature[0] = s.substring(idx[0],idx[1]);
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feature[1] = s.substring(idx[2],idx[3]);

feature[2] = s.substring(idx[4],idx[5]);

feature[3] = s.substring(idx[6],idx[7]);

feature[4] = s.substring(idx[8],idx[9]);

feature[5] = s.substring(idx[10],idx[11]);

feature[6] = s.substring(idx[12],idx[13]);

feature[7] = s.substring(idx[14],idx[15]);

feature[8] = s.substring(idx[16],idx[17]);

feature[9] = s.substring(idx[18],idx[19]);

feature[10] = s.substring(idx[20],idx[21]);

}

}

//System.out.println(idx);

int i;

for (i=0; i < 11; i++) {

//System.out.println(feature[i]);

}

}

catch (MalformedURLException mue){

System.out.println("Ouch -a MalformedURLExeption happened.");

mue.printStackTrace();

System.exit(1);

}

catch (IOException ioe) {
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System.out.println("Oops- an IOException happend");

ioe.printStackTrace();

System.exit(1);

} finally{

try {

is.close();

} catch (IOException ioe) {

}

}

return feature;

}

}

A.2 R Code for Chromosome Copy Number Dataset

A.2.1 Combine Individual Copy Number Files

setwd("C:\\Users\\plg519\\Documents\\Academic\\MS Report\\R Files")

i=35

filename = paste("C:\\Users\\plg519\\Documents\\Academic\\MS Report\\Output files\

\GSM2880",i,"NonSelf.txt",sep="")

x1 = read.table(filename, header=T)

cat("@RELATION CNV", "\n", file="CNVALL.arff", append=T)
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nv=nrow(x1)

for (j in 1:nv){

cat(paste("@ATTRIBUTE ", x1[j,2], " NUMERIC", sep=""), "\n", file="CNVALL.arff",

append=T)

}

cha = read.csv("C:\\Users\\plg519\\Documents\\Academic\\MS Report\\test.csv")

Resp = character()

for (i in 1:nrow(cha)){

Resp =c(Resp, paste("",cha[i,6], cha[i,7],cha[i,8],cha[i,9],"") )

}

cat("@ATTRIBUTE Age NUMERIC", "\n", file="CNVALL.arff", append=T)

cat("@ATTRIBUTE Sex {F,M}","\n", file="CNVALL.arff", append=T)

cat("@ATTRIBUTE Position {Left,Right,Rectum}","\n", file="CNVALL.arff", append=T)

cat("@ATTRIBUTE Observation NUMERIC", "\n", file="CNVALL.arff", append=T)

cat("@ATTRIBUTE Censor {Yes,No}", "\n", file="CNVALL.arff", append=T)

levels=unique(Resp)

waht=c( rep(",", length(levels)-1), "")

cat("@ATTRIBUTE class {",paste("\"",levels,"\"", waht, sep=""),"}","\n",

file="CNVALL.arff", append=T)

cat("\n\n",file="CNVALL.arff", append=T)

cat("@DATA","\n", file="CNVALL.arff", append=T)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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for (ii in 20:110) {

i=2*ii+1

j=2*ii+2

filenameC = paste("C:\\Users\\plg519\\Documents\\Academic\\MS Report\\Output files

\\GSM288", ifelse(ii<50, "0", ""),i,"NonSelf.txt",sep="")

filenameN = paste("C:\\Users\\plg519\\Documents\\Academic\\MS Report\\Output files

\\GSM288", ifelse(ii<49, "0", ""),j,"NonSelf.txt",sep="")

filenameC

filenameN

x1 = read.table(filenameC, header=T)

x2 = read.table(filenameN, header=T)

cat(c(x1[,6]-x2[,6]),",",sep=",", file="CNVALL.arff", append=T)

cat(cha[i-34,3],",",file="CNVALL.arff", append=T)

cat(as.character(unlist(cha[i-34, 4])),",", file="CNVALL.arff", append=T)

cat(as.character(unlist(cha[i-34, 5])),",", file="CNVALL.arff", append=T)

cat(cha[i-34,10],",", file="CNVALL.arff", append=T)

cat(as.character(cha[i-34,11]),",", file="CNVALL.arff", append=T)

cat( paste("\"", cha[i-34,6], cha[i-34,7],cha[i-34,8],cha[i-34,9],"\""), "\n",

file="CNVALL.arff", append=T)

}

setwd("C:\\Users\\plg519\\Documents\\Academic\\MS Report\\R Files")
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dat=read.table("CNVALL_2.txt", sep=",")

dat3=read.table("CNV3.arff", sep=",",skip=58504)

dim(dat3)

n=ncol(dat)

dat3[,(n-6) :n]

ndat=rbind(dat3[,-((n-6) :n)], dat[,-((n-6) :n)] )

chr=rbind(dat3[,(n-6) :n], dat[,(n-6) :n] )

write.table(t(ndat),file="tdat.txt",row.names=F)

write.table(chr,file="character.txt",row.names=F)

A.2.2 Test for Interaction Functions

File ”Heter.gamma.r” to be called in later functions

Heter.gamma<-function(data,a,b, mn, mcon, coln=5){

N<-sum(mn)*b

d1<-data[, 1]

d2<-data[, 2]

d3<-data[, 3]

ranks<-data[, coln]

Rij<-as.matrix(tapply(ranks, list(d1, d2), mean) )

# matrix with \bar{R}<-{ij.} as the (i,j) element

Rik<-as.matrix(tapply(ranks, list(d1, d3), mean) )

# matrix with \bar{R}<-{i.k} as the (i,j) element might have NA if unbalanced.

Rik<-replace(Rik, is.na(Rik), 0) # replace NA’s in matrix Rik by 0.

# note: after replace, the number of rows still correct, but the number
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#of columns

# would be all same as max<-i n<-i instead of n<-i columns for the ith row.

Ri<-apply(Rij, 1, mean) # returns a vector (\wtR<-{1..}, ..., \wtR<-{a..})

Rj<-apply(Rij, 2, mean)

Rim<-kronecker(Ri, t(as.vector(rep(1,b))) )

# a a by b matrix with all elements of the ith row same as \wtR<-{i..}

Rjm<-kronecker(t(Rj), as.vector(rep(1,a)))

# a a by b matrix with all elements of the ith column same as \wtR<-{.j.}

## calculate test statistics

MSgamma<- sum((Rij-Rim-Rjm+mean(Ri) )^2 )/((a-1)*(b-1) )

tmp1<-tapply(ranks^2, d1, sum)

# returns a vector with ith element

#\sum<-{j=1}^b \sum<-{k=1}^{n<-i} R<-{ijk}^2

tmp2<-sum( tmp1/(mn*(mn-1)) )

# \sum<-{i,j, k}\frac{X<-{ijk}^2}{n<-i(n<-i-1)}

MSEphi<- tmp2/(a*b) - mean( apply(Rij^2, 1, mean)/(mn-1) )

MSE<- MSEphi *b/(b-1) - mean(apply(Rik^2, 1, sum)/(mn*(mn-1)) ) *b/(b-1) +

mean(Ri^2/(mn-1)) *b/(b-1)

## another way to calculate MSE

# MSE<- tmp2/(a*(b-1)) - mean(apply(Rik^2, 1, sum)/(mn*(mn-1)) ) *b/(b-1) -

mean(apply((Rij-Rim)^2, 1, sum)/(mn-1) )/(b-1)
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Fgamma<-MSgamma/MSE

Fphi<-MSphi/MSEphi

Dgamma<-MSgamma-MSE

Dphi<-MSphi-MSEphi

## and

euijk<-apply(data, 1, e<-function(x) eu(x, coln, Rij, Rik))

e<-euijk[1,] # returns the e<-{ijk} as a vector, same as ranks structure

u<-euijk[2,] # returns the u<-{ijk} as a vector, same as ranks structure

vars<-taufun(u, ranks, d1, d2, d3, a, b, mn, mcon, coln)

#TSbeta<-sqrt(b)*(Fbeta-1)

TSgamma<-sqrt(b)*(Fgamma-1)

#TSphi<-sqrt(b)*(Fphi-1)

#DSbeta<-sqrt(b)*Dbeta

DSgamma<-sqrt(b)*Dgamma

#DSphi<-sqrt(b)*Dphi

if (coln==5) {

#DSbeta<-DSbeta/N^2

DSgamma<-DSgamma/N^2

#DSphi<-DSphi/N^2

}
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#varTSbeta<-vars$taubeta2/vars$EMSE^2

varTSgamma<-vars$taugamma2/vars$EMSE^2

#varTSphi<-vars$tauphi2/vars$EMSEphi^2

#pbeta<- 2*(1-pnorm(abs( TSbeta/sqrt(varTSbeta) )))

#pphi<- 2*(1-pnorm( abs(TSphi/sqrt(varTSphi) )))

pgamma<- 2*(1- pnorm(abs(TSgamma/sqrt(varTSgamma) )) )

#Dpbeta<- 2*(1-pnorm(abs( DSbeta/sqrt(vars$taubeta2) )))

#Dpphi<- 2*(1-pnorm(abs( DSphi/sqrt(vars$tauphi2) )))

#Dpgamma<- 2*(1- pnorm(abs(DSgamma/sqrt(vars$taugamma2))) )

list(pgamma=pgamma)

#results=c(pbeta, pgamma, pphi)

#names(results)=c("palpha", "pbeta", "pgamma", "pphi")

}

File ”faster.heter.gamma.r” to be called in later functions

taufunNew<-function(u, ranks, d1, d2, d3, a, b, mn, mcon, coln){

R<-ranks

usigmaijj1<-usigmaijj12<-array(rep(0, a*b*b), c(a, b, b))
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usigma2<-0

us <-numeric()

for (i in 1:a){

us[i]<-0

trti.dat=t(matrix(u[(d1==i)], nrow=b))

usigmaijj1[i,,]=cov(trti.dat)

Rtrti.dat=t(matrix(R[(d1==i)], nrow=b))

bb1=rep(1:b, b:1)

b2=cbind((1:b), b)

bb2=unlist(apply(b2,1, function(x) x[1]:x[2]))

Rpairs=rbind(Rtrti.dat[, bb1], Rtrti.dat[, bb2])

tempusig = apply(Rpairs, 2, sigijj12jacknew)

indexUe= (bb1 != bb2)

midd=cbind(c(bb1, bb2[indexUe]), c(bb2, bb1[indexUe]),

c(tempusig, tempusig[indexUe] ) )

usigmaijj12[i, ,]=matrix(midd[order(midd[,1], midd[,2]), 3], nrow=b)

usigma2=usigma2+sum(diag(usigmaijj1[i,,]))/mn[i]

us[i]<-us[i]+ sum(diag(usigmaijj1[i,,]))/mn[i]

}

usigma2<-usigma2/(a*b)

EMSEphi<-usigma2

# ucsi1<-2*sum(apply(usigmaijj12, 1, sum) /(mn*(mn-1)) )/(a^2*b)

# estimate of $\zeta<-1$ in thm 2.1
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pucsi1<-2*apply(usigmaijj12 /(mn*(mn-1)), c(2, 3), sum) /(a^2*b)

pucsi2<-2*((apply(usigmaijj1/mn, c(2, 3), sum) )^2 -

apply(usigmaijj1^2 / mn^2, c(2, 3), sum) )/(a^2*b)

ucsi1<-sum(pucsi1) # estimate of $\zeta<-1$ in thm 2.1 using all sum

ucsi2<-sum(pucsi2) #estimate of $\zeta<-2$ in thm 2.1. using all sum

psum<-apply(usigmaijj1/mn, c(2, 3), sum)

zeta1<-zeta2<-partsum<-numeric()

#mc<-c(1/4, 1/3, 2/5, 9/20)

mc<-mcon

ll<-0

for (l3 in mc[-length(mc)]){

ll<-ll+1

tu1<-tu2<-parts0<-0

for (j0 in 1:b){

# for (j2 in seq(round(-b^l3 ), round(b^l3))){

for (j2 in seq(-l3, l3)){

if ((j0+j2>0)& (j0+j2<=b) ) {

tu1<-tu1+pucsi1[j0, j0+j2]

tu2<-tu2+pucsi2[j0, j0+j2]

parts0<- parts0+ psum[j0, j0+j2]

}

}

}

zeta1[ll]<-tu1

zeta2[ll]<-tu2
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partsum[ll]<-parts0

}

zeta1[length(mc)]<- ucsi1

zeta2[length(mc)]<- ucsi2

partsum[length(mc)]<- sum(usigmaijj1/mn)

esigma2<- a*b*usigma2/(a*(b-1))- partsum/(a*b*(b-1))

N<-sum(mn)*b

tauphi2<-taubeta2<- taugamma2<-numeric()

tauphi2<-zeta1 + zeta2/(a-1)^2

taubeta2<-zeta1 + zeta2

taugamma2<-zeta1 + zeta2/(a-1)^2

if (coln==5) {

tauphi2<-tauphi2/N^4

taubeta2<-taubeta2/N^4

taugamma2<-taugamma2/N^4

esigma2<-esigma2/N^2

usigma2<-usigma2/N^2

}

tauphi2[(tauphi2 <=0)] <- 10^(-15)

taubeta2[(taubeta2 <=0)] <-10^(-15)

taugamma2[(taugamma2 <=0)] <-10^(-15)
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list( EMSE=esigma2, tauphi2=tauphi2, taubeta2=taubeta2, EMSEphi=usigma2,

taugamma2=taugamma2, zeta1=zeta1, zeta2=zeta2)

}

#dataformat2 function take argument data in format1 and convert to dataformat2

#x_{ijk}, k=1, ..., n_i are the kth observation from the ith subject at time j.

# 1 1 1 x111

# 1 1 2 x112

# 1 2 1 x121

# 1 2 2 x122

# 1 2 3 x123

#nofactor is the number of fixed factors (including time)

dataformat2= function(data, nofactor=2){ m=ncol(data)-nofactor

y=c(t(data[,-(1:nofactor)]))

Time=rep(1:m, nrow(data))

sub=kronecker( data[,1],rep(1, m))

mydat=numeric()

for (i in 2:nofactor ){

temp=kronecker( data[,i],rep(1, m))

mydat=cbind(mydat, temp )

}

resu=cbind(mydat, Time, sub, y)

colnames(resu)=c(paste("class", 1:(i-1), sep=""), "SNP", "PatID", "y" )

resu

}

Heter.gamma2<-function(data,a,b, mn, mcon, coln=5, Ca=cbind(as.vector

(rep(1, a-1)), -diag(a-1)) ){

N<-sum(mn)*b
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d1<-data[, 1]

d2<-data[, 2]

d3<-data[, 3]

ranks<-data[, coln]

Rij<-as.matrix(tapply(ranks, list(d1, d2), mean) )

# matrix with \bar{R}<-{ij.} as the (i,j) element

Rik<-as.matrix(tapply(ranks, list(d1, d3), mean) )

# matrix with \bar{R}<-{i.k} as the (i,j) element might have NA if

# unbalanced.

Rik<-replace(Rik, is.na(Rik), 0) # replace NA’s in matrix Rik by 0.

# note: after replace, the number of rows still correct, but the number

# of columns

# would be all same as max<-i n<-i instead of n<-i columns for the ith row.

Ri<-apply(Rij, 1, mean) # returns a vector (\wtR<-{1..}, ..., \wtR<-{a..})

Rj<-apply(Rij, 2, mean)

Rim<-kronecker(Ri, t(as.vector(rep(1,b))) )

# a a by b matrix with all elements of the ith row same as \wtR<-{i..}

Rjm<-kronecker(t(Rj), as.vector(rep(1,a)))

# a a by b matrix with all elements of the ith column same as \wtR<-{.j.}

## calculate test statistics

MSbeta<- a* sum( (Rj-mean(Rj))^2 ) /(b-1)

MSgamma<- sum((Rij-Rim-Rjm+mean(Ri) )^2 )/((a-1)*(b-1) )

MSphi<- sum((Rij-Rjm)^2 )/((a-1)*b )

tmp1<-tapply(ranks^2, d1, sum)
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tmp2<-sum( tmp1/(mn*(mn-1)) )

# \sum<-{i,j, k}\frac{X<-{ijk}^2}{n<-i(n<-i-1)}

MSEphi<- tmp2/(a*b) - mean( apply(Rij^2, 1, mean)/(mn-1) )

MSE<- MSEphi *b/(b-1) - mean(apply(Rik^2, 1, sum)/(mn*(mn-1))

) *b/(b-1) + mean(Ri^2/(mn-1)) *b/(b-1)

Fbeta<-MSbeta/MSE

Fgamma<-MSgamma/MSE

Fphi<-MSphi/MSEphi

euijk<-apply(data, 1, e<-function(x) eu(x, coln, Rij, Rik))

e<-euijk[1,] #returns the e<-{ijk} as a vector, same as ranks structure

u<-euijk[2,] #returns the u<-{ijk} as a vector, same as ranks structure

vars<-taufunNew(u, ranks, d1, d2, d3, a, b, mn, mcon, coln)

TSbeta<-sqrt(b)*(Fbeta-1)

TSgamma<-sqrt(b)*(Fgamma-1)

TSphi<-sqrt(b)*(Fphi-1)

varTSbeta<-vars$taubeta2/vars$EMSE^2

varTSgamma<-vars$taugamma2/vars$EMSE^2

varTSphi<-vars$tauphi2/vars$EMSEphi^2

pbeta<- 2*(1-pnorm(abs( TSbeta/sqrt(varTSbeta) )))

pphi<- 2*(1-pnorm( abs(TSphi/sqrt(varTSphi) )))
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pgamma<- 2*(1- pnorm(abs(TSgamma/sqrt(varTSgamma) )) )

list(pgamma=pgamma)

}

File ”function.s”

## store the data, they are stored in data like this: # 1 1 1 x111 #

1 1 2 x112 # 1 2 1 x121 # 1 2 2 x122 # 1 2 3 x123 # x<-{ijk}, k=1,

..., n<-{ij} are iid from distribution defined as a function distr #

The overall rank is calculated and put at the last colum # coln=4 or

5. if coln=4, test use org data ; if coln=5, test use rank, 5 is

default. # mn is a matrix with (i,j) element n<-{ij}

# eu is a function to calaculate residue x<-{ijk}-\bar{x}<-{ij.}

eu<-function(x, coln, Rij, Rik){

d1<-x[ 1]

d2<-x[ 2]

d3<-x[ 3]

R<-x[ coln]

# e<- R-Rij[d1,d2]+Rik[d1, d3]-mean(Rij[d1,])

u<- R-Rij[d1,d2]

result<-rbind(u,u) #used to be rbind(e,u)

result

}

# returns a vector with two elements. The first one is e<-{ijk} and

the second is u<-{ijk}
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# in the following function, u, d1, d2 are all b*sum(mn) dimentional

vectors, same as the last # column of dat

# Unbiased estimate of \sigma<-{ijj1}^2 # calculate the u-stat of

vectors x=(x<-1, x<-2, \cdots, x<-{ni}) y=(y<-1, y<-2, \cdots,

y<-{ni}), # where $X<-j$ and $Y<-j$ are correlated, but $X<-j$ and

$Y<-j1$ are indept if j \ne j1. # : \sum<-{k1 \ne k2 \ne k3 \ne k4}

(x<-{k1}-x<-{k2)})(y<-{k1}-y<-{k2)}) (x<-{k3}-x<-{k4)})

(y<-{k3}-y<-{k4)}) # unbiased est. of 4*ni*(ni-1)*(ni-2)*(ni-3)

[E(X<-{ijk}-\mu<-{ij} u<-{ij1k}) ]^2 #fun.sigijj12$sigmaijj12 will

give the unbiased est of $\sigma<-{ijj1}^2$ #fun.sigijj12$ssijj1

will give the unbiased est of $\sigma<-{ijj} \sigma<-{ij_1j_1}$.

fun.sigijj12<-function(x, y){

ni<-length(x)

sigmaijj12<- 0

ssijj1<- 0

for (m1 in 1:ni){

for (m2 in 1:ni){

for (m3 in 1:ni){

for (m4 in 1:ni){

flag<- (m1!=m2)&(m1 !=m3)&(m1 !=m4) &(m2 !=m3) &(m2 !=m4) & (m3 !=m4)

sigmaijj12<-sigmaijj12+ (flag==T)* ( (x[m1]-x[m2])*(y[m1]-y[m2])*

(x[m3]-x[m4])*(y[m3]-y[m4]) )

ssijj1<-ssijj1+(flag==T)* (x[m1]-x[m2])^2*(y[m3]-y[m4])^2

}

}
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}

}

sigmaijj12<-sigmaijj12/(4*ni*(ni-1)*(ni-2)*(ni-3) )

ssijj1 <- ssijj1/(4*ni*(ni-1)*(ni-2)*(ni-3) )

result<- list(sigmaijj12=sigmaijj12, ssijj1=ssijj1)

result

}

### # tauphi2 have five components corresponds to partial sum # up

to b^c(1/4, 1/3, 2/5, 9/20)

taufun<-function(u, ranks, d1, d2, d3, a, b, mn, mcon, coln){

R<-ranks

usigmaijj1<-usigmaijj12<-array(rep(0, a*b*b), c(a, b, b))

usigma2<-0

us <-numeric()

for (i in 1:a){

us[i]<-0

for (j in 1:b){

for (j1 in 1:b){

usigmaijj1[i, j, j1]<-sum(u[((d1==i)&(d2==j))] * u[((d1==i)&(d2==j1))])

/(mn[i]-1) # unbiased est. of $\sigma<-{ijj1}$

x<-R[((d1==i)&(d2==j))]

y<-R[((d1==i)&(d2==j1))]

usigmaijj12[i, j, j1]<-sigijj12jack(x , y)
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} # end of j1

usigma2<-usigma2+usigmaijj1[i, j, j]/mn[i]

us[i]<-us[i]+usigmaijj1[i, j, j]/mn[i]

}

}

usigma2<-usigma2/(a*b)

EMSEphi<-usigma2

# ucsi1<-2*sum(apply(usigmaijj12, 1, sum) /(mn*(mn-1)) )/(a^2*b)

# estimate of $\zeta<-1$ in thm 2.1

# tmpucsi2<-sum( (apply(usigmaijj1/mn, c(2, 3), sum) )^2 ) -

sum(usigmaijj1^2 / mn^2) # ucsi2<-2*tmpucsi2/(a^2*b) #estimate of

$\zeta<-2$ in thm 2.1.

pucsi1<-2*apply(usigmaijj12 /(mn*(mn-1)), c(2, 3), sum) /(a^2*b)

pucsi2<-2*((apply(usigmaijj1/mn, c(2, 3), sum) )^2 -

apply(usigmaijj1^2 / mn^2, c(2, 3), sum) )/(a^2*b)

ucsi1<-sum(pucsi1) # estimate of $\zeta<-1$ in thm 2.1 using all

sum ucsi2<-sum(pucsi2) #estimate of $\zeta<-2$ in thm 2.1. using

all sum

psum<-apply(usigmaijj1/mn, c(2, 3), sum)

zeta1<-zeta2<-partsum<-numeric() #mc<-c(1/4, 1/3, 2/5, 9/20)

mc<-mcon ll<-0 for (l3 in mc[-length(mc)]){
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ll<-ll+1

tu1<-tu2<-parts0<-0

for (j0 in 1:b){

# for (j2 in seq(round(-b^l3 ), round(b^l3))){ for (j2 in seq(-l3,

l3)){

if ((j0+j2>0)& (j0+j2<=b) ) {

tu1<-tu1+pucsi1[j0, j0+j2]

tu2<-tu2+pucsi2[j0, j0+j2]

parts0<- parts0+ psum[j0, j0+j2]

}

}

}

zeta1[ll]<-tu1 zeta2[ll]<-tu2 partsum[ll]<-parts0 }

zeta1[length(mc)]<- ucsi1

zeta2[length(mc)]<- ucsi2

partsum[length(mc)]<- sum(usigmaijj1/mn)

esigma2<- a*b*usigma2/(a*(b-1))- partsum/(a*b*(b-1))

N<-sum(mn)*b

tauphi2<-taubeta2<- taugamma2<-numeric()

tauphi2<-zeta1 + zeta2/(a-1)^2

taubeta2<-zeta1 + zeta2

taugamma2<-zeta1 + zeta2/(a-1)^2
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if (coln==5) {

tauphi2<-tauphi2/N^4

taubeta2<-taubeta2/N^4

taugamma2<-taugamma2/N^4

esigma2<-esigma2/N^2

usigma2<-usigma2/N^2

}

tauphi2[(tauphi2 <=0)] <- 10^(-15)

taubeta2[(taubeta2 <=0)] <-10^(-15)

taugamma2[(taugamma2 <=0)] <-10^(-15)

list( EMSE=esigma2, tauphi2=tauphi2, taubeta2=taubeta2,

EMSEphi=usigma2,taugamma2=taugamma2, zeta1=zeta1, zeta2=zeta2)

}

# calculate the u-stat of vector x=(x<-1, x<-2, \cdots, x<-{nij})

where # X<-i are iid with variance \sigma^2. This u-stat will give #

unbiased estimate of \sigma^4 # : \sum<-{k1 \ne k2 \ne k3 \ne k4}

(x<-{k1}-x<-{k2)})^2 (x<-{k3}-x<-{k4)})^2 # sigij4<-function(x){

nij<-length(x)

sigmaij4<- 0

for (m1 in 1:nij){

for (m2 in 1:nij){

for (m3 in 1:nij){

for (m4 in 1:nij){

flag<- (m1!=m2)&(m1 !=m3)&(m1 !=m4) &(m2 !=m3) &(m2 !=m4) & (m3 !=m4)
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sigmaij4<-sigmaij4+ (flag==T)*(x[m1]-x[m2])^2 * (x[m3]-x[m4])^2

}

}

}

}

sigmaij4<-sigmaij4/(4*nij*(nij-1)*(nij-2)*(nij-3) )

sigmaij4

}

Heter.test<-function(data,a,b, mn, mcon, coln=5,

Ca=cbind(as.vector(rep(1, a-1)), -diag(a-1)) ){

N<-sum(mn)*b

d1<-data[, 1]

d2<-data[, 2]

d3<-data[, 3]

ranks<-data[, coln]

Rij<-as.matrix(tapply(ranks, list(d1, d2), mean) )

# matrix with \bar{R}<-{ij.} as the (i,j) element

Rik<-as.matrix(tapply(ranks, list(d1, d3), mean) )

Rik<-replace(Rik, is.na(Rik), 0) # replace NA’s in matrix Rik by 0.

Ri<-apply(Rij, 1, mean)

Rj<-apply(Rij, 2, mean)

Rim<-kronecker(Ri, t(as.vector(rep(1,b))) )

# a a by b matrix with all elements of the ith row same as \wtR<-{i..}

Rjm<-kronecker(t(Rj), as.vector(rep(1,a)))

# a a by b matrix with all elements of the ith column same as \wtR<-{.j.}
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## calculate test statistics

MSbeta<- a* sum( (Rj-mean(Rj))^2 ) /(b-1)

MSgamma<- sum((Rij-Rim-Rjm+mean(Ri) )^2 )/((a-1)*(b-1) )

MSphi<- sum((Rij-Rjm)^2 )/((a-1)*b )

tmp1<-tapply(ranks^2, d1, sum)

tmp2<-sum( tmp1/(mn*(mn-1)) )

MSEphi<- tmp2/(a*b) - mean( apply(Rij^2, 1, mean)/(mn-1) )

MSE<- MSEphi *b/(b-1) - mean(apply(Rik^2, 1, sum)/(mn*(mn-1))

) *b/(b-1) + mean(Ri^2/(mn-1)) *b/(b-1)

Fbeta<-MSbeta/MSE

Fgamma<-MSgamma/MSE

Fphi<-MSphi/MSEphi

Dbeta<-MSbeta-MSE

Dgamma<-MSgamma-MSE

Dphi<-MSphi-MSEphi

## and

euijk<-apply(data, 1, e<-function(x) eu(x, coln, Rij, Rik))

e<-euijk[1,] # returns the e<-{ijk} as a vector, same as ranks structure

u<-euijk[2,] # returns the u<-{ijk} as a vector, same as ranks structure
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vars<-taufun(u, ranks, d1, d2, d3, a, b, mn, mcon, coln)

TSbeta<-sqrt(b)*(Fbeta-1)

TSgamma<-sqrt(b)*(Fgamma-1)

TSphi<-sqrt(b)*(Fphi-1)

DSbeta<-sqrt(b)*Dbeta

DSgamma<-sqrt(b)*Dgamma

DSphi<-sqrt(b)*Dphi

if (coln==5) {

DSbeta<-DSbeta/N^2

DSgamma<-DSgamma/N^2

DSphi<-DSphi/N^2

}

varTSbeta<-vars$taubeta2/vars$EMSE^2

varTSgamma<-vars$taugamma2/vars$EMSE^2

varTSphi<-vars$tauphi2/vars$EMSEphi^2

pbeta<- 2*(1-pnorm(abs( TSbeta/sqrt(varTSbeta) )))

pphi<- 2*(1-pnorm( abs(TSphi/sqrt(varTSphi) )))

pgamma<- 2*(1- pnorm(abs(TSgamma/sqrt(varTSgamma) )) )

Dpbeta<- 2*(1-pnorm(abs( DSbeta/sqrt(vars$taubeta2) )))

Dpphi<- 2*(1-pnorm(abs( DSphi/sqrt(vars$tauphi2) )))
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Dpgamma<- 2*(1- pnorm(abs(DSgamma/sqrt(vars$taugamma2))) )

# test for main group effect

#Ca<-cbind(as.vector(rep(1, a-1)), -diag(a-1))

N<-sum(mn)*b

etai<-matrix(0, length(mcon), a)

ll<-0

for (l in mcon){

ll<-ll+1

for (i in 1:a){

for (j in 1:b){

# for (j1 in seq(round(-b^l ), round(b^l))){

for (j1 in seq(-l, l) ){

if ((j+j1>0)& (j+j1<=b) ) {

tmpinc<- sum((ranks[((d1==i)&(d2==j))] -Rij[i, j])*(ranks

[((d1==i)&(d2==(j+j1)))] -Rij[i, (j+j1)]))*sum(mn)/(b*mn[i]*(mn[i]-1))

etai[ll, i]<-etai[ll, i]+tmpinc

}

} #end of j1

} #end of j

} #end of i

} # end of l

Ri<-as.vector(Ri)

TSalphastat<-function(etaii, Ca, N, Ri) N * t(Ri)%*% t(Ca)%*%solve(

Ca%*% diag(etaii)%*% t(Ca) ) %*% Ca %*% Ri

TSalpha<- apply(etai, 1, TSalpha<-function(etaii) {TSalphastat(etaii, Ca,

N, Ri) } )
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palpha<-1-pchisq(TSalpha, nrow(Ca))

palpha1<- palpha

results=c(palpha, pbeta, pgamma, pphi)

names(results)=c("palpha", "pbeta", "pgamma", "pphi")

list(TSalpha=TSalpha, Dpalpha=palpha1, Dpbeta=Dpbeta, Dpgamma=Dpgamma,

Dpphi=Dpphi, palpha=palpha1, pbeta=pbeta, pgamma=pgamma, pphi=pphi,

results=results)

}

sigijk4<-function(x){

nijk<-length(x)

sigmaijk4<- 0

for (m1 in 1:nijk){

for (m2 in 1:nijk){

for (m3 in 1:nijk){

for (m4 in 1:nijk){

flag<- (m1!=m2)&(m1 !=m3)&(m1 !=m4) &(m2 !=m3) &(m2 !=m4) & (m3 !=m4)

sigmaijk4<-sigmaijk4+ (flag==T)*(x[m1]-x[m2])^2 * (x[m3]-x[m4])^2

}

}

}

}

sigmaijk4<-sigmaijk4/(4*nijk*(nijk-1)*(nijk-2)*(nijk-3) )

sigmaijk4

}

thetahat<-function(x) (mean((x-mean(x))^2 ))^2
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#thetahatijj1<-function(x, y) (mean((x-mean(x))*(y-mean(y))))^2

thetahatijj1<-function(x, y) (cov(x,y))^2

sigijk4jack<-function(x){

n<-length(x)

s4hat<- thetahat(x)

result <- n *s4hat

for (i in 1:n) result<-result- (n-1)/n* thetahat(x[-i])

result

}

sigijk4boot<-function(x){

n<-length(x)

thetahatstar<-mean(apply(matrix(sample(x, 3*1000, replace = T), 1000, 3)

, 1, thetahat ) )

result<-2*thetahat(x)-thetahatstar

result

}

## Jackknife estimate of \sigma_{ijj’}^2 ## x=(X_{ij1}, \cdots,

X_{ijn_i}), y=(X_{ij’1}, \cdots, X_{ij’n_i}),

sigijj12jack<-function(x, y){

n<-length(x)

s4hat<- thetahatijj1(x, y)

result <- n *s4hat

for (i in 1:n) result<-result- (n-1)/n* thetahatijj1(x[-i], y[-i])

result
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}

sigijj12jacknew=function(z) {n=length(z);

sigijj12jack(unlist(z[1:(n/2)]), unlist(z[-(1:(n/2))]))}

### test for contrast effect

tcontrast<-function(data,a,b, mn, mcon, coln=5,

Ca=cbind(as.vector(rep(1, a-1)), -diag(a-1)) ){

N<-sum(mn)*b

d1<-data[, 1]

d2<-data[, 2]

d3<-data[, 3]

ranks<-data[, coln]

Rij<-as.matrix(tapply(ranks, list(d1, d2), mean) )

# matrix with \bar{R}<-{ij.} as the (i,j) element

Ri<-apply(Rij, 1, mean)

N<-sum(mn)*b

etai<-matrix(0, length(mcon), a)

ll<-0

for (l in mcon){

ll<-ll+1

for (i in 1:a){

for (j in 1:b){

# for (j1 in seq(round(-b^l ), round(b^l))){

for (j1 in seq(-l, l) ){

if ((j+j1>0)& (j+j1<=b) ) {

tmpinc<- sum((ranks[((d1==i)&(d2==j))] -Rij[i, j])

*(ranks[((d1==i)&(d2==(j+j1)))] -Rij[i, (j+j1)]))

*sum(mn)/(b*mn[i]*(mn[i]-1))
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etai[ll, i]<-etai[ll, i]+tmpinc

}

} #end of j1

} #end of j

} #end of i

} # end of l

Ri<-as.vector(Ri)

TSalphastat<-function(etaii, Ca, N, Ri) N * t(Ri)%*% t(Ca)

%*%solve( Ca%*% diag(etaii)%*% t(Ca) ) %*% Ca %*% Ri

TSalpha<- apply(etai, 1, TSalpha<-function(etaii)

{TSalphastat(etaii, Ca, N, Ri) } )

palpha<-1-pchisq(TSalpha, nrow(Ca))

palpha1<- palpha

list(TSalpha=TSalpha, Dpalpha=palpha1)

}

#format1 # sub trt time1 time2 time3 time4

time5 # 1 1 2.4644642 1.7233498 -1.1374695 -0.5242729

-2.379145 # 2 1 2.5746848 1.0181738 -0.8325308 -2.4873067

-3.463602 # 3 1 2.5813995 -0.7528324 -3.1457645 -3.3135573

-4.364621 # 4 1 0.8232141 0.2394987 -2.2073150 -3.3583005

-6.073399 # 5 1 0.8274860 0.8323298 -2.1028060 -2.6015848

-3.291307 # 1 2 -2.2217084 0.6779049 3.6310542 3.2052691

4.310316 # 2 2 -3.3954705 -0.7827040 3.1364749 3.7184895

5.118996

#dataformat2 function take argument data in format1 and convert to
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dataformat2 #### x_{ijk}, k=1, ..., n_i are the kth observation from

the ith subject at time j. # 1 1 1 x111 # 1 1 2 x112 # 1 2 1 x121 #

1 2 2 x122 # 1 2 3 x123 #nofactor is the number of fixed factors

(including time) dataformat2= function(data, nofactor=2){

m=ncol(data)-nofactor

y=c(t(data[,-(1:nofactor)]))

Time=rep(1:m, nrow(data))

sub=kronecker( data[,1],rep(1, m))

mydat=numeric()

for (i in 2:nofactor ){

temp=kronecker( data[,i],rep(1, m))

mydat=cbind(mydat, temp )

}

resu=cbind(mydat, Time, sub, y)

colnames(resu)=c(paste("class", 1:(i-1), sep=""), "SNP", "PatID", "y" )

resu

}

Heter.gamma<-function(data,a,b, mn, mcon, coln=5){

N<-sum(mn)*b

d1<-data[, 1]

d2<-data[, 2]

d3<-data[, 3]

ranks<-data[, coln]

Rij<-as.matrix(tapply(ranks, list(d1, d2), mean) )

# matrix with \bar{R}<-{ij.} as the (i,j) element

Rik<-as.matrix(tapply(ranks, list(d1, d3), mean) )

Rik<-replace(Rik, is.na(Rik), 0) # replace NA’s in matrix Rik by 0.
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Ri<-apply(Rij, 1, mean) # returns a vector (\wtR<-{1..}, ..., \wtR<-{a..})

Rj<-apply(Rij, 2, mean)

Rim<-kronecker(Ri, t(as.vector(rep(1,b))) )

# a a by b matrix with all elements of the ith row same as \wtR<-{i..}

Rjm<-kronecker(t(Rj), as.vector(rep(1,a)))

# a a by b matrix with all elements of the ith column same as \wtR<-{.j.}

## calculate test statistics

MSgamma<- sum((Rij-Rim-Rjm+mean(Ri) )^2 )/((a-1)*(b-1) )

tmp1<-tapply(ranks^2, d1, sum)

tmp2<-sum( tmp1/(mn*(mn-1)) )

MSEphi<- tmp2/(a*b) - mean( apply(Rij^2, 1, mean)/(mn-1) )

MSE<- MSEphi *b/(b-1) - mean(apply(Rik^2, 1, sum)/(mn*(mn-1)) )

*b/(b-1) + mean(Ri^2/(mn-1)) *b/(b-1)

## another way to calculate MSE # MSE<- tmp2/(a*(b-1)) -

mean(apply(Rik^2, 1, sum)/(mn*(mn-1)) ) *b/(b-1) -

mean(apply((Rij-Rim)^2, 1, sum)/(mn-1) )/(b-1)

Fgamma<-MSgamma/MSE

Fphi<-MSphi/MSEphi

Dgamma<-MSgamma-MSE
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Dphi<-MSphi-MSEphi

## and

euijk<-apply(data, 1, e<-function(x) eu(x, coln, Rij, Rik))

e<-euijk[1,] # returns the e<-{ijk} as a vector, same as ranks structure

u<-euijk[2,] # returns the u<-{ijk} as a vector, same as ranks structure

vars<-taufun(u, ranks, d1, d2, d3, a, b, mn, mcon, coln)

#TSbeta<-sqrt(b)*(Fbeta-1)

TSgamma<-sqrt(b)*(Fgamma-1)

#TSphi<-sqrt(b)*(Fphi-1)

#DSbeta<-sqrt(b)*Dbeta

DSgamma<-sqrt(b)*Dgamma

#DSphi<-sqrt(b)*Dphi

if (coln==5) {

#DSbeta<-DSbeta/N^2

DSgamma<-DSgamma/N^2

#DSphi<-DSphi/N^2

}

#varTSbeta<-vars$taubeta2/vars$EMSE^2

varTSgamma<-vars$taugamma2/vars$EMSE^2

#varTSphi<-vars$tauphi2/vars$EMSEphi^2
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#pbeta<- 2*(1-pnorm(abs( TSbeta/sqrt(varTSbeta) )))

#pphi<- 2*(1-pnorm( abs(TSphi/sqrt(varTSphi) )))

pgamma<- 2*(1- pnorm(abs(TSgamma/sqrt(varTSgamma) )) )

#Dpbeta<- 2*(1-pnorm(abs( DSbeta/sqrt(vars$taubeta2) )))

#Dpphi<- 2*(1-pnorm(abs( DSphi/sqrt(vars$tauphi2) )))

#Dpgamma<- 2*(1- pnorm(abs(DSgamma/sqrt(vars$taugamma2))) )

list(pgamma=pgamma)

#results=c(pbeta, pgamma, pphi)

#names(results)=c("palpha", "pbeta", "pgamma", "pphi")

#list(TSalpha=TSalpha, Dpalpha=palpha1, Dpbeta=Dpbeta, Dpgamma=Dpgamma

, Dpphi=Dpphi, palpha=palpha1, pbeta=pbeta, pgamma=pgamma, pphi=pphi,

results=results)

}

# LOOCV with libsvm # The training data set Yu has a column called

response # Other columns of Yu are feature variables svm.test=

function(Yu, testuse, crossv=10){

library(e1071)

obj = tune(svm, response~., data = Yu,

ranges = list(gamma = 2^(-3:1), cost = 2^(2:4)),

tunecontrol = tune.control(cross=crossv )

)

bestGamma = obj$best.parameters[[1]]
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bestC = obj$best.parameters[[2]]

#Build model using SVM

svm1=svm(response~., data=Yu, cost=bestC, gamma=bestGamma )

#Compute the predicted class for test data

totest=data.frame(testuse[,-ncol(testuse)])

colnames(totest)=colnames(Yu)[-ncol(testuse)]

pred <- as.character(predict(svm1, totest) )

pred

#Construct confusious matrix (table)

confuTable=table(pred,testuse$response)

#Compute accuracy

accuracy=sum(diag(confuTable))/(sum(confuTable))

accuracy

}

A.2.3 Test for Interaction Effect for Each Block

#setwd("C:\\Users\\plg519\\Documents\\Academic\\MS Report\\R Files")

source("functions.s")

source("faster.heter.gamma.r")
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#Name the snaps data (i.e. a 58494(snaps)*94(paris of patiances) matrix) "dat"

dat=read.table("tdat.txt",header=T)

#Name Physical characteristic data "cha"

cha=read.csv("test.csv")

#Extract the column of Duke stage from characteristic data, call it "Duke"

#One Duke Stage from each pair since each pair have same stages

Duke=as.character(cha[(1:94)*2-1,7])

#NDuke=1*(Duke==" A")+2*(Duke==" B")+3*(Duke==" C")+4*(Duke==" D")

#order(NDuke)

#table(NDuke)

#Convert Duke Stages to numerical values (B=1, C=2). Only use B and C here first

NDuke=1*(Duke==" B")+2*(Duke==" C")

#Get a sequence of positions corresponding to "B" stage, call it Blist

Blist=seq(length(NDuke))[Duke==" B"]

#Get a sequence of positions corresponding to "C" stage, call it Clist

Clist=seq(length(NDuke))[Duke==" C"]

n=8

#Get the length of Blist (i.e. count the number of "B" stages) (=46)
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nB=length(Blist)

#Get the length of Clist (i.e. count the number of "C" stages)(=37)

nC=length(Clist)

bp=sample(1:nB,nB); cp=sample(1:nC,nC)

step0=100;alpha=0.1

#############################################

fold=10; pv.all=numeric();sigblocks.all=vector("list",fold)

accuracy=numeric()

for (group in 1:fold){

ngb=trunc(nB/fold);ngc=trunc(nC/fold)

testpo=c(((1:ngb)+ngb*(group-1)),(1:ngc)+ngc*(group-1))

testposition=c(Blist[testpo[1:ngb]],Clist[testpo[ngb+(1:ngc)]])

trainposition=c(Blist[-testpo[1:ngb]],Clist[-testpo[ngb+(1:ngc)]])

testclass=NDuke[testposition]

trainclass=NDuke[trainposition]

total=0;pv=numeric();nblock=0

eventotal=(trunc(nrow(dat)/step0)-1)*step0

while (total<nrow(dat)){

#57290){

nblock=nblock+1

step=ifelse(total<eventotal, step0,nrow(dat)-total)

testX=dat[total+(1:step),testposition]

trainX=dat[total+(1:step),trainposition]

patID=c(1:(nB-ngb),1:(nC-ngc) )

traindata=data.frame(patID,trainclass,t(trainX))
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traindataformat1=dataformat2(traindata)

ranks=rank(traindataformat1[,4])

mydat=cbind(traindataformat1, ranks)

org=Heter.gamma2(mydat, 2, step, mn=c((nB-ngb),(nC-ngc)), 5)

pv=c(pv,org$pgamma)

total=total+step

cat(c(group,nblock,org$pgamma),"\n",file=paste(

"pv.for", group, ".txt", sep=""),append=T)

} #end of while loop

}

A.2.4 Detection of Significant Blocks

#####################

#test for interaction effect for each block of size 100 SNPs

#Boffroni or FDR did not find any significance

#We did not do SVM.

#Instead, significances for the blocks was selected based just on

#alpha=0.05 for each of the fold training data

#Then the significant blocks were selected as those that are

#significant for all folds

#setwd("C:\\Users\\plg519\\Documents\\Academic\\MS Report\\R Files")

source("functions.s")

source("faster.heter.gamma.r")
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#Name the snaps data (i.e. a 58494(snaps)*94(paris of patiances) matrix) "dat"

dat=read.table("tdat.txt",header=T)

#Name Physical characteristic data "cha"

cha=read.csv("test.csv")

#Extract the column of Duke stage from characteristic data, call it "Duke"

#One Duke Stage from each pair since each pair have same stages

Duke=as.character(cha[(1:94)*2-1,7])

#NDuke=1*(Duke==" A")+2*(Duke==" B")+3*(Duke==" C")+4*(Duke==" D")

#order(NDuke)

#table(NDuke)

#Convert Duke Stages to numerical values (B=1, C=2). Only use B and C here first

NDuke=1*(Duke==" B")+2*(Duke==" C")

#Get a sequence of positions corresponding to "B" stage, call it Blist

Blist=seq(length(NDuke))[Duke==" B"]

#Get a sequence of positions corresponding to "C" stage, call it Clist

Clist=seq(length(NDuke))[Duke==" C"]

n=8

#Get the length of Blist (i.e. count the number of "B" stages) (=46)
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nB=length(Blist)

#Get the length of Clist (i.e. count the number of "C" stages)(=37)

nC=length(Clist)

#bp=sample(1:nB,nB); cp=sample(1:nC,nC)

step0=100;alpha=0.05

#############################################

fold=10; #pv.all=numeric();

sigblocks.all=vector("list",fold)

accuracy=numeric()

for (group in 1:fold){

ngb=trunc(nB/fold);ngc=trunc(nC/fold)

testpo=c(((1:ngb)+ngb*(group-1)),(1:ngc)+ngc*(group-1))

testposition=c(Blist[testpo[1:ngb]],Clist[testpo[ngb+(1:ngc)]])

trainposition=c(Blist[-testpo[1:ngb]],Clist[-testpo[ngb+(1:ngc)]])

testclass=NDuke[testposition]

trainclass=NDuke[trainposition]

#total=0;pv=numeric();

nblock=trunc(nrow(dat)/step0)

#eventotal=(trunc(nrow(dat)/step0)-1)*step0

pv=read.table(paste("pv.for", group, ".txt", sep="") )[,3]

#pv.all=cbind(pv.all,pv)

lengthpv=length(pv)

#pv[order(pv)] <(1:lengthpv)/lengthpv*alpha

# Bonferroni correction
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#sigblocks=(1:nblock)[pv[order(pv)] <(1:lengthpv)/lengthpv*alpha]

#FDR control

sigblocks=(1:nblock)[pv<alpha]

# no multiple-comparison adjustment

# Then use common significant blocks from all ’group’s.

##################################################

sigblocks.all[[group]]=sigblocks

if (length(sigblocks)>0){

#need to use svm to build model using the snps found.

#Then test on the test data and report accuracy

step=ifelse(max(sigblocks)<nblock, step0, nrow(dat)-nblock

*step0)

sigSNP.id=c( t(kronecker(matrix(1:step,nrow=1), matrix(

1, nrow=length(sigblocks) ))+(sigblocks-1)*step))

# need to select representative features from each block and filter

# out other variables that are correlated with

# the representative features.

trainuse=data.frame(t(dat[sigSNP.id, trainposition])

, response=as.factor(trainclass))

testuse=data.frame(t(dat[sigSNP.id,testposition])

,response=as.factor(testclass))

#testX has dimension 16*40

testX=data.frame(t(dat[sigSNP.id,testposition]))
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######################

#Use SVM

#accuracy=c(accuracy,svm.test(trainuse,testuse))

}

# write.table(pv,file=paste("pv.for.fold", group, ".txt", sep=""))

} #end of group loop

#write.table(pv.all,file="pv.txt",row.names=F)

write.table(accuracy,file="accuracy.txt")

cat("*significant blocks\n",file="blocks.txt", append=F)

for(k in 1:fold) {

cat(paste("fold ", k,sep=""), unlist(sigblocks.all[[k]]), "\n",

file="blocks.txt", append=T)

}

A.2.5 Calculation of Delete-One p-values

######################################

#### For each SNP in block 115, to find the significant SNPs within block 115.

##Each SNP was deleted from the blcok at a time, the p-value for testing of

#the interaction effect with rest of 99

#### SNPs was calculated for each of the 10 folds.
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####

#setwd("C:\\Users\\plg519\\Documents\\Academic\\MS Report\\R Files")

source("functions.s")

source("faster.heter.gamma.r")

#Name the snaps data (i.e. a 58494(snaps)*94(paris of patiances) matrix) "dat"

dat=read.table("tdat.txt",header=T)

#Name Physical characteristic data "cha"

cha=read.csv("test.csv")

#Extract the column of Duke stage from characteristic data, call it "Duke"

#One Duke Stage from each pair since each pair have same stages

Duke=as.character(cha[(1:94)*2-1,7])

#NDuke=1*(Duke==" A")+2*(Duke==" B")+3*(Duke==" C")+4*(Duke==" D")

#order(NDuke)

#table(NDuke)

#Convert Duke Stages to numerical values (B=1, C=2). Only use B and C

#here first

NDuke=1*(Duke==" B")+2*(Duke==" C")

92



#Get a sequence of positions corresponding to "B" stage, call it Blist

Blist=seq(length(NDuke))[Duke==" B"]

#Get a sequence of positions corresponding to "C" stage, call it Clist

Clist=seq(length(NDuke))[Duke==" C"]

n=8

#Get the length of Blist (i.e. count the number of "B" stages) (=46)

nB=length(Blist)

#Get the length of Clist (i.e. count the number of "C" stages)(=37)

nC=length(Clist)

#bp=sample(1:nB,nB); cp=sample(1:nC,nC)

step0=100;alpha=0.05

#############################################

fold=10; pv.all=NULL;

sigblocks.all=vector("list",fold)

accuracy=numeric()

for (group in 1:fold){

#total=0;pv=numeric();

nblock=trunc(nrow(dat)/step0)

#eventotal=(trunc(nrow(dat)/step0)-1)*step0

pv=read.table(paste("pv.for", group, ".txt", sep="") )[,3]

pv.all=cbind(pv.all,pv)

lengthpv=length(pv)

#pv[order(pv)] <(1:lengthpv)/lengthpv*alpha

# Bonferroni correction
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#sigblocks=(1:nblock)[pv[order(pv)] <(1:lengthpv)/lengthpv*alpha]

#FDR control

sigblocks=(1:nblock)[pv<alpha]

# no multiple-comparison adjustment

# Then use common significant blocks from all ’group’s.

##################################################

sigblocks.all[[group]]=sigblocks

}

T.orF=logical()

uniquesigs=unique(unlist(sigblocks.all))

for (h in 1:length(uniquesigs)){

T.orF=c(T.orF, all(unlist(lapply(sigblocks.all, function(x)

uniquesigs[h] %in% x))) )

}

sig.in.all=uniquesigs[T.orF]

# need to select representative features from each block and filter

#out other variables that are correlated with

# the representative features.

# cat("",file="split.pv.for.group.txt",append=F)

# The next for loop code tests if left or right half of the blocks

#are significant.

########## not helpful.

# for ( hsig in 1:length(sig.in.all) ){

# step=ifelse(sig.in.all[hsig]<nblock, step0, nrow(dat)-nblock*step0)

# sigSNP.id=c( t(kronecker(matrix(1:step,nrow=1), matrix(1, nrow=
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#length(sig.in.all[hsig]) ))+(sig.in.all[hsig]-1)*step))

# for (group in 1:fold){

# ngb=trunc(nB/fold);ngc=trunc(nC/fold)

# testpo=c(((1:ngb)+ngb*(group-1)),(1:ngc)+ngc*(group-1))

# testposition=c(Blist[testpo[1:ngb]],Clist[testpo[ngb+(1:ngc)]])

# trainposition=c(Blist[-testpo[1:ngb]],Clist[-testpo[ngb+(1:ngc)]])

# testclass=NDuke[testposition]

# trainclass=NDuke[trainposition]

# pvsplit=numeric()

# for (split in 1:2){

# testX=dat[sigSNP.id[(split-1)*50+1:(step/2)],testposition]

# trainX=dat[sigSNP.id[(split-1)*50+1:(step/2)],trainposition]

# patID=c(1:(nB-ngb),1:(nC-ngc) )

# traindata=data.frame(patID,trainclass,t(trainX))

# traindataformat1=dataformat2(traindata)

# ranks=rank(traindataformat1[,4])

# mydat=cbind(traindataformat1, ranks)

# org=Heter.gamma2(mydat, 2, step/2, mn=c((nB-ngb),(nC-ngc)), 5)

# pvsplit=c(pvsplit,org$pgamma)

# } #end of split loop

# cat(c(group,sig.in.all[hsig],pvsplit),"\n",file=

"split.pv.for.group.txt",append=T)

# }
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########################3 do delete one SNP at a time and recalculate p-values

group=group0

#for (group in 1:fold){

#pv.delete1=numeric()

for ( hsig in 1:length(sig.in.all) ){

step=ifelse(sig.in.all[hsig]<nblock, step0, nrow(dat)-nblock*step0)

sigSNP.id.block=c( t(kronecker(matrix(1:step,nrow=1), matrix(1, nrow

=length(sig.in.all[hsig]) ))+(sig.in.all[hsig]-1)*step))

pv.100=numeric()

for ( jjj in 1:step){

sigSNP.id= sigSNP.id.block[-jjj]

ngb=trunc(nB/fold);ngc=trunc(nC/fold)

testpo=c(((1:ngb)+ngb*(group-1)),(1:ngc)+ngc*(group-1))

testposition=c(Blist[testpo[1:ngb]],Clist[testpo[ngb+(1:ngc)]])

trainposition=c(Blist[-testpo[1:ngb]],Clist[-testpo[ngb+(1:ngc)]])

testclass=NDuke[testposition]

trainclass=NDuke[trainposition]

testX=dat[sigSNP.id,testposition]

trainX=dat[sigSNP.id,trainposition]

patID=c(1:(nB-ngb),1:(nC-ngc) )

traindata=data.frame(patID,trainclass,t(trainX))

traindataformat1=dataformat2(traindata)

ranks=rank(traindataformat1[,4])

mydat=cbind(traindataformat1, ranks)

org=Heter.gamma2(mydat, 2, step-1, mn=c((nB-ngb),(nC-ngc)), 5)
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pv.100=c(pv.100,org$pgamma)

cat(c(group,sig.in.all[hsig], jjj,pv.all[sig.in.all[hsig],group],

org$pgamma),"\n",file=paste("delete1.pv.for.group", group,

".txt", sep=""),append=T)

}

cat(c(group,sig.in.all[hsig], jjj,pv.all[sig.in.all[hsig],group], pv.100)

,"\n",file="delete1.pv.txt",append=T)

# pv.delete1=rbind(pv.delete1, pv.100)

}

A.2.6 Identification of Significant SNPs within Block 115

##########################

#### After observing the some of differences of p-values between using

##100 SNPs and 99 SNPs seem small. To find a criterion for selecting

### the significant SNPs within block 115.

#### The ratio of p-values between using 100 SNPs and 99 SNPs were

#calcuated. Then the ratios across 10 folds for each SNP serves as

#a random sample, and the t-test was conducted

#### to select those SNPs with the mean ratio significant greater

#than 1. 15 SNPs were selected.

#### After finding the 15 significant SNPs within block 115

#### Excluding these 15 SNPs, the remaining 85 SNPs were tested for

#each of the 10 folds.

#### The resutls show that non of them are significant
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####

nblock

all.g=NULL

reverse.rank=NULL

for (i in 1:10) {

#get all 100 p-values from 10 fold

pi=read.table(paste("delete1.pv.for.group",i,".txt", sep=""))

#construct the matrix including p-values and corresponding ratios

#with/without one SNP

gi=as.matrix(cbind(pi[,c(1,3:5)], pi[,5]/pi[,4]))

all.g=cbind(all.g,gi)

reverse.rank=cbind(reverse.rank, 101-rank(pi[,5]/pi[,4]) )

}

idx=order(apply(reverse.rank,1,mean))

SNPid=(1:100)[idx]

ratio=round(all.g[idx,5*(1:10)],2)

colnames(ratio)=paste("G", 1:10,"AovB", sep="")

row.names(ratio)=SNPid

### For each SNP in this block, calculate a 99% confidence lower

#bound to see if the mean is > 1.

myT=function(x) unlist( t.test(x, alternative = "greater", mu = 1,
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conf.level = 0.99)[3:5])

t.test.result=t(apply(ratio,1, myT))

#myT(ratio[1,])

t.test.result[,1]<0.01

sig.SNPs=subset(t.test.result, t.test.result[,1]<0.01)

SNP.num=as.numeric(row.names(sig.SNPs))

### Exclude these 15 significant SNPs from 115th blcok(has 100 SNPs)

#and test to see whether

### the remaining SNPs are still significant

dat=read.table("tdat.txt",header=T);

step0=100

nblock=trunc(nrow(dat)/step0)

#nblock =584

step=ifelse(pi[1,2]<nblock, step0, nrow(dat)-nblock*step0)

SNP.id.block=c( t(kronecker(matrix(1:step,nrow=1), matrix(1, nrow=

length(pi[1,2]) ))+(pi[1,2]-1)*step))

sigSNP.id=SNP.id.block[-SNP.num]

##########get the training data for above SNP ids and do one test

#Name Physical characteristic data "cha"

cha=read.csv("test.csv")

#Extract the column of Duke stage from characteristic data, call it "Duke"

#One Duke Stage from each pair since each pair have same stages

Duke=as.character(cha[(1:94)*2-1,7])
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#Convert Duke Stages to numerical values (B=1, C=2). Only use

# B and C here first

NDuke=1*(Duke==" B")+2*(Duke==" C")

#Get a sequence of positions corresponding to "B" stage, call it Blist

Blist=seq(length(NDuke))[Duke==" B"]

#Get a sequence of positions corresponding to "C" stage, call it Clist

Clist=seq(length(NDuke))[Duke==" C"]

n=8

#Get the length of Blist (i.e. count the number of "B" stages) (=46)

nB=length(Blist)

#Get the length of Clist (i.e. count the number of "C" stages)(=37)

nC=length(Clist)

fold=10

source("functions.s")

source("faster.heter.gamma.r")

pv.fold=numeric()

for (group in 1:fold){

ngb=trunc(nB/fold);ngc=trunc(nC/fold)

testpo=c(((1:ngb)+ngb*(group-1)),(1:ngc)+ngc*(group-1))

testposition=c(Blist[testpo[1:ngb]],Clist[testpo[ngb+(1:ngc)]])

trainposition=c(Blist[-testpo[1:ngb]],Clist[-testpo[ngb+(1:ngc)]])

testclass=NDuke[testposition]

trainclass=NDuke[trainposition]

testX=dat[sigSNP.id,testposition]

trainX=dat[sigSNP.id,trainposition]

patID=c(1:(nB-ngb),1:(nC-ngc) )

traindata=data.frame(patID,trainclass,t(trainX))
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traindataformat1=dataformat2(traindata)

ranks=rank(traindataformat1[,4])

mydat=cbind(traindataformat1, ranks)

org=Heter.gamma2(mydat, 2, length(sigSNP.id), mn

=c((nB-ngb),(nC-ngc)), 5)

pv.fold=c(pv.fold,org$pgamma)

}

# all of them are non-significant

# [1] 0.2394575 0.3204927 0.4178413 0.3182170 0.5518691 0.4749392

# 0.1996476 0.2739037 0.8633620 0.3097809

report.sigSNP.table=sig.SNPs[,-3]

row.names(report.sigSNP.table )= SNP.id.block[SNP.num]

write.table( SNP.id.block[SNP.num], file="sig.SNPs.within.block115",

row.names=F)

colnames(report.sigSNP.table ) =c("p.value", "99lower.bound",

"mean.ratio.across.folds")

library(xtable)

xtable(report.sigSNP.table, digits=4)

101



A.2.7 Try with Wilcoxon Test and t-test on Individual SNP

############################

#### In order to compare the results for feature selection using

#our proposed method with other methods (i.e.: Some score was

#computed based on t-statistic or Wilconxon test on each indificual gene

#### and the selection was based on the those genes ranked top based

#on this calcuated socre.), we also calcutate the p-values of each SNP

#### using Mann-Whitney test (Extension of Wilcoxon test for

#arbitrary sample sizes) and t test. Different multiple comparison

#criteria are considered, ie.,Family Wise Error Rate with Bonferroni correction

### False Discovery Rate with Benjamin Hochberg FDR.

#### The results from both sets of tests found no significant SNPs

# with either FDR or FWER control.

dat=read.table("tdat.txt",header=T);

#Name Physical characteristic data "cha"

cha=read.csv("test.csv")

#Extract the column of Duke stage from characteristic data, call it "Duke"

#One Duke Stage from each pair since each pair have same stages

Duke=as.character(cha[(1:94)*2-1,7])

#Convert Duke Stages to numerical values (B=1, C=2). Only use B and C

NDuke=1*(Duke==" B")+2*(Duke==" C")

#Get a sequence of positions corresponding to "B" stage, call it Blist

Blist=seq(length(NDuke))[Duke==" B"]

#Get a sequence of positions corresponding to "C" stage, call it Clist

Clist=seq(length(NDuke))[Duke==" C"]
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n=8

#Get the length of Blist (i.e. count the number of "B" stages) (=46)

nB=length(Blist)

#Get the length of Clist (i.e. count the number of "C" stages)(=37)

nC=length(Clist)

fold=10;alpha=0.05

pv.fold.FWER=pv.fold.FDR= t.pv.fold.FWER=t.pv.fold.FDR=list()

all.pv.wilcox=NULL; all.pv.t=NULL

for (group in 1:fold){

ngb=trunc(nB/fold);ngc=trunc(nC/fold)

testpo=c(((1:ngb)+ngb*(group-1)),(1:ngc)+ngc*(group-1))

testposition=c(Blist[testpo[1:ngb]],Clist[testpo[ngb+(1:ngc)]])

trainposition=c(Blist[-testpo[1:ngb]],Clist[-testpo[ngb+(1:ngc)]])

testclass=NDuke[testposition]

trainclass=NDuke[trainposition]

testX=dat[sigSNP.id,testposition]

trainX=dat[,trainposition]

# myWilcox=function(z) wilcox.test(x=z[trainclass==1], y

# =z[trainclass==2])$p.value

# wilcox.p=apply(trainX, 1, myWilcox)

# all.pv.wilcox=cbind( all.pv.wilcox,wilcox.p)

# wil.sig.FWER= (1:length(wilcox.p))[wilcox.p<0.05/length(wilcox.p)]

# wil.sig.FDR= (1:length(wilcox.p))[wilcox.p[order(wilcox.p)]

# <(1:length(wilcox.p))/length(wilcox.p)*alpha]

# pv.fold.FWER[[group]]= wil.sig.FWER

# pv.fold.FDR[[group]]= wil.sig.FDR

myT2=function(z) t.test(x=z[trainclass==1], y =z[trainclass==2])$p.value
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t.p=apply(trainX,1, myT2)

all.pv.t=cbind( all.pv.t,t.p)

t.sig.FWER= (1:length(t.p))[t.p<0.05/length(t.p)]

t.sig.FDR= (1:length(t.p))[t.p[order(t.p)] <(1:length(t.p))/

length(t.p)*alpha]

t.pv.fold.FWER[[group]]= t.sig.FWER

t.pv.fold.FDR[[group]]= t.sig.FDR

}

ave.pv=apply(all.pv.wilcox, 1, mean)

write.table(cbind(1:length(ave.pv),ave.pv)[(order(ave.pv)),],file="wilcoxon.pv")

ave.pv.t=apply(all.pv.t, 1, mean)

write.table(cbind(1:length(ave.pv.t),ave.pv.t)[(order(ave.pv.t)),],file="ttest.pv")

A.2.8 Classification with SVM

######## Use selected 15 SNPs from bolck 115 to classify the

# Duke’s stage with SVM as classifer.

######## Leave-One-Out(LOO) CV is used. The training sample

#size is 82, and the test sample size is 1. The class of test

######## instance is predicted based on the training sample

#of size 82, using SVM.

######## All test data (83 of them) are correctly classifiedm,

#i.e.: all 83 accuracy are 1.

########
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setwd("C:\\Users\\plg519\\Documents\\Academic\\MS Report\\R

Files\\After 115 block\\pv results for deleting 1")

source("functions.s")

#Name the snaps data

#(i.e. a 58494(snaps)*94(paris of patiances) matrix) "dat"

dat=read.table("tdat.txt",header=T)

#Name Physical characteristic data "cha"

cha=read.csv("test.csv")

#Extract the column of Duke stage from characteristic data,

#call it "Duke"

#One Duke Stage from each pair since each pair have same stages

Duke=as.character(cha[(1:94)*2-1,7])

#NDuke=1*(Duke==" A")+2*(Duke==" B")+3*(Duke==" C")+4*(Duke==" D")

#order(NDuke)

#table(NDuke)

#Convert Duke Stages to numerical values (B=1, C=2). Only use B and C

NDuke=1*(Duke==" B")+2*(Duke==" C")

#Get a sequence of positions corresponding to "B" stage, call it Blist

Blist=seq(length(NDuke))[Duke==" B"]

#Get a sequence of positions corresponding to "C" stage, call it Clist
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Clist=seq(length(NDuke))[Duke==" C"]

n=8

#Get the length of Blist (i.e. count the number of "B" stages) (=46)

nB=length(Blist)

#Get the length of Clist (i.e. count the number of "C" stages)(=37)

nC=length(Clist)

#bp=sample(1:nB,nB); cp=sample(1:nC,nC)

alpha=0.05

sigSNP.id=(read.table( file="sig.SNPs.within.block115", header=T))[,1]

#############################################

svm.test.with.par= function(Yu, testuse, crossv=10){

library(e1071)

obj = tune(svm, response~., data = Yu,

ranges = list(gamma = 2^(-3:1), cost = 2^(2:4)),

tunecontrol = tune.control(cross=crossv )

)

bestGamma = obj$best.parameters[[1]]

bestC = obj$best.parameters[[2]]

#Build model using SVM

svm1=svm(response~., data=Yu, cost=bestC, gamma=bestGamma )
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#Compute the predicted class for test data

totest=data.frame(testuse[,-ncol(testuse)])

colnames(totest)=colnames(Yu)[-ncol(testuse)]

pred <- as.character(predict(svm1, totest) )

pred

#Construct confusious matrix (table)

confuTable=table(pred,testuse$response)

#Compute accuracy

accuracy=sum(diag(confuTable))/(sum(confuTable))

#list(parameter=c(bestGamma,bestC),accuracy=accuracy)

c(bestGamma,bestC,accuracy)

}

fold=nB+nC;

#pv.all=numeric();

accuracy=NULL

for (group in 1:fold){

#ngb=trunc(nB/fold);ngc=trunc(nC/fold)

#testpo=c(((1:ngb)+ngb*(group-1)),(1:ngc)+ngc*(group-1))

#testposition=c(Blist[testpo[1:ngb]],Clist[testpo[ngb+(1:ngc)]])

#trainposition=c(Blist[-testpo[1:ngb]],Clist[-testpo[ngb+(1:ngc)]])

testposition=c(Blist,Clist)[group]

trainposition=c(Blist,Clist)[-group]

testclass=NDuke[testposition]

trainclass=NDuke[trainposition]

trainuse=data.frame(t(dat[sigSNP.id, trainposition]),
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response=as.factor(trainclass))

testuse=data.frame(t(dat[sigSNP.id,testposition]),

response=as.factor(testclass))

#testX=data.frame(t(dat[sigSNP.id,testposition]))

######################

#Use SVM

accuracy=rbind(accuracy,svm.test.with.par(trainuse,testuse))

}

write.table(accuracy,file="LOOCV.accuracy.with.parameter.txt",

row.names=F)

library(xtable)

accuracy2=cbind(accuracy[,-3], ifelse(accuracy[,3]==1, rep(

"Yes",nrow(accuracy)), rep("No",nrow(accuracy)) ) )

row.names(accuracy2)= paste("Patient", c(Blist,Clist))

colnames(accuracy2)=c( "gamma", "cost", "Correctly classified")

xtable(accuracy2)

res=cbind( paste("Patient", c(Blist,Clist)[1:42]), accuracy2[1:42, ],

rbind(cbind(paste("Patient", c(Blist,Clist)[43:83]), accuracy2[43:83,]),

rep("", 4)))

xtable(res)

A.2.9 Classification with KNN

######## Use selected 15 SNPs from bolck 115 to classify the Duke’s
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#stage with SVM as classifer.

######## Leave-One-Out(LOO) CV is used. The training sample size is 82,

#and the test sample size is 1. The class of test

######## instance is predicted based on the training sample of size 82,

# using SVM.

######## All test data (83 of them) are correctly classifiedm,i.e.:

#all 83 accuracy are 1.

########

setwd("C:\\Users\\plg519\\Documents\\Academic\\MS Report\\

R Files\\After 115 block\\pv results for deleting 1")

source("functions.s")

#Name the snaps data

#(i.e. a 58494(snaps)*94(paris of patiances) matrix) "dat"

dat=read.table("tdat.txt",header=T)

#Name Physical characteristic data "cha"

cha=read.csv("test.csv")

#Extract the column of Duke stage from characteristic data, call it "Duke"

#One Duke Stage from each pair since each pair have same stages

Duke=as.character(cha[(1:94)*2-1,7])

#NDuke=1*(Duke==" A")+2*(Duke==" B")+3*(Duke==" C")+4*(Duke==" D")

#order(NDuke)

#table(NDuke)

#Convert Duke Stages to numerical values (B=1, C=2). Only use B and C
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NDuke=1*(Duke==" B")+2*(Duke==" C")

#Get a sequence of positions corresponding to "B" stage, call it Blist

Blist=seq(length(NDuke))[Duke==" B"]

#Get a sequence of positions corresponding to "C" stage, call it Clist

Clist=seq(length(NDuke))[Duke==" C"]

n=8

#Get the length of Blist (i.e. count the number of "B" stages) (=46)

nB=length(Blist)

#Get the length of Clist (i.e. count the number of "C" stages)(=37)

nC=length(Clist)

#bp=sample(1:nB,nB); cp=sample(1:nC,nC)

alpha=0.05

sigSNP.id=(read.table( file="sig.SNPs.within.block115", header=T))[,1]

#############################################

svm.test.with.par= function(Yu, testuse, crossv=10){

library(e1071)

obj = tune(svm, response~., data = Yu,

ranges = list(gamma = 2^(-3:1), cost = 2^(2:4)),

tunecontrol = tune.control(cross=crossv )

)
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bestGamma = obj$best.parameters[[1]]

bestC = obj$best.parameters[[2]]

#Build model using SVM

svm1=svm(response~., data=Yu, cost=bestC, gamma=bestGamma )

#Compute the predicted class for test data

totest=data.frame(testuse[,-ncol(testuse)])

colnames(totest)=colnames(Yu)[-ncol(testuse)]

pred <- as.character(predict(svm1, totest) )

pred

#Construct confusious matrix (table)

confuTable=table(pred,testuse$response)

#Compute accuracy

accuracy=sum(diag(confuTable))/(sum(confuTable))

#list(parameter=c(bestGamma,bestC),accuracy=accuracy)

c(bestGamma,bestC,accuracy)

}

fold=nB+nC;

#pv.all=numeric();

accuracy=NULL

for (group in 1:fold){

#ngb=trunc(nB/fold);ngc=trunc(nC/fold)

#testpo=c(((1:ngb)+ngb*(group-1)),(1:ngc)+ngc*(group-1))

#testposition=c(Blist[testpo[1:ngb]],Clist[testpo[ngb+(1:ngc)]])

#trainposition=c(Blist[-testpo[1:ngb]],Clist[-testpo[ngb+(1:ngc)]])
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testposition=c(Blist,Clist)[group]

trainposition=c(Blist,Clist)[-group]

testclass=NDuke[testposition]

trainclass=NDuke[trainposition]

trainuse=data.frame(t(dat[sigSNP.id, trainposition]),

response=as.factor(trainclass))

testuse=data.frame(t(dat[sigSNP.id,testposition]),

response=as.factor(testclass))

#testX=data.frame(t(dat[sigSNP.id,testposition]))

######################

#Use SVM

#accuracy=rbind(accuracy,svm.test.with.par(trainuse,testuse))

accuracy=rbind(accuracy, myknn(trainuse,testuse))

}

write.table(accuracy,file="dat1.LOOCV.accuracy.knn.with.parameter.txt",

row.names=F)

library(xtable)

accuracy2=cbind(accuracy[,-2], ifelse(accuracy[,2]==1, rep("Yes"

,nrow(accuracy)), rep("No",nrow(accuracy)) ) )

row.names(accuracy2)= paste("Patient", c(Blist,Clist))

colnames(accuracy2)=c( "k", "Correctly classified")

xtable(accuracy2)

res=cbind( paste("Patient", c(Blist,Clist)[1:42]), accuracy2[1:42, ],

rbind(cbind(paste("Patient", c(Blist,Clist)[43:83]), accuracy2[43:83,]

), rep("", 3)))
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xtable(res)

myknn=function(Yu, testuse, crossv=10){

library(e1071)

obj = tune.knn(Yu[,-ncol(Yu)], Yu[,ncol(Yu)],

k=1:25,

tunecontrol = tune.control(cross=crossv )

)

bestk = obj$best.parameters

#Compute the predicted class for test data

totest=data.frame(testuse[,-ncol(testuse)])

colnames(totest)=colnames(Yu)[-ncol(testuse)]

#Build model using knn

knn1=knn(train=Yu[,-ncol(Yu)], test= totest, cl=Yu[,ncol(Yu)], k=bestk )

pred <- as.character(knn1 )

pred

#Construct confusious matrix (table)

confuTable=table(pred,testuse$response)

#Compute accuracy

accuracy=sum(diag(confuTable))/(sum(confuTable))

#list(parameter=c(bestGamma,bestC),accuracy=accuracy)

unlist(c(bestk,accuracy))

}
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Appendix B

Java and R code for mRNA

expression dataset

B.1 Java Code to Retrieve Characteristics Data for

mRNA Dataset

import java.io.*; import java.net.*; import java.util.Arrays; public

class JavaGetUrl { public static void main(String[] args) throws

IOException {

String record = new String();

String[] URL = new String[290]; //290 is the number of URLs

URL[0] = "http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM358341";

int i = 0;
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//BufferedWriter out = new BufferedWriter(new FileWriter("outfile.csv"));

//String str = "";

FileWriter writer = new FileWriter("test.csv");

writer.append("Location, DukesStage, Age_Diag,

Gender, DFS_Time, DFS_Cens, AdjXRT, AdjCTX");

writer.append(’\n’);

while (i < 290) {

String digit = URL[i].substring(56,59);

//the indices of the last digits of the URL that vary

int idigit = Integer.parseInt(digit);

int idigit2 = idigit + 1;

String sdigit2 = Integer.toString(idigit2);

URL[i+1] = URL[i].substring(0,56) + sdigit2;

//combine the fixed part of URL and the last several digits that vary,

//(0,56) is the indices of the fixed digits

record = Arrays.toString(ret(URL[i])).replace("[", "").replace("]", "");

//record is the retrieved features for

//System.out.println(record);
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writer.append(record);

writer.append(’\n’);

i++;

}

writer.flush();

writer.close();

}

@SuppressWarnings("deprecation")

public static String[] ret(String url) {

URL u;

InputStream is = null;

DataInputStream dis;

String s;

int[] idx= new int[16];

String[] feature = new String[8];

try{

u = new URL(url);

is = u.openStream();

dis = new DataInputStream(new BufferedInputStream(is));

while ((s = dis.readLine()) != null){

if (s.contains("Location:")){

//System.out.println(s);
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idx[0] = s.indexOf("Location:") + 10;

idx[1] = s.indexOf("; DukesStage:");

idx[2] = s.indexOf("DukesStage:") + 12;

idx[3] = s.indexOf("; Age_Diag:");

idx[4] = s.indexOf("Age_Diag:") + 10;

idx[5] = s.indexOf("; Gender:");

idx[6] = s.indexOf("Gender: ") + 8;

idx[7] = s.indexOf("; DFS_Time:");

idx[8] = s.indexOf("; DFS_Time:") + 12;

idx[9] = s.indexOf("; DFS_Cens:");

idx[10] = s.indexOf("; DFS_Cens:") + 12;

idx[11] = s.indexOf("; AdjXRT:");

idx[12] = s.indexOf("; AdjXRT:") + 10;

idx[13] = s.indexOf("; AdjCTX:");

idx[14] = s.indexOf("; AdjCTX:") + 10;

idx[15] = s.indexOf("<br></td>");

feature[0] = s.substring(idx[0],idx[1]);

feature[1] = s.substring(idx[2],idx[3]);

feature[2] = s.substring(idx[4],idx[5]);

feature[3] = s.substring(idx[6],idx[7]);

feature[4] = s.substring(idx[8],idx[9]);

feature[5] = s.substring(idx[10],idx[11]);
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feature[6] = s.substring(idx[12],idx[13]);

feature[7] = s.substring(idx[14],idx[15]);

}

}

}

catch (MalformedURLException mue){

System.out.println("Ouch -a MalformedURLExeption happened.");

mue.printStackTrace();

System.exit(1);

}

catch (IOException ioe) {

System.out.println("Oops- an IOException happend");

ioe.printStackTrace();

System.exit(1);

} finally{

try {

is.close();

} catch (IOException ioe) {

}

}

return feature;

}
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}

B.2 R Code for mRNA expression Dataset

B.2.1 Data Preprocessing

#################################

## Data preprocessing: Downloaded CEL data from the nih website, and then used

# R package gcrma to summarize probe sets expression, and converted to csv file.

# Downloaded annotation of human U 133 plus 2.0 array from affymatrix website.

## Based on the "Chromosomal location" column from annotatiton csv file, the sex

# chromosomes were idenfied and excluded. In addition, the remianing probe sets

# were sorted based on the locaion info. obtained from "Alligenment" column from

# annotation file.

setwd("C:\\Users\\plg519\\Documents\\Academic\\MS Report 2nd Dataset")

# the cel. files are in here.

library(affy)

library(gcrma)

#Load the .CEL files from my directary.

filenames=paste("GSM358",341:630,".CEL",sep="")
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for(i in 1:29){

try = just.gcrma(filenames=filenames[(i-1)*10+(1:10)])

dati=data.frame( featureNames(try), exprs(try))

write.csv(dati,file=paste("GCRMA", i,".expression.probeset.csv",sep=""),

row.names=F)

}

dat=NULL

for(i in 1:29){

dat=cbind(dat,as.matrix(read.csv(file=paste("GCRMA", i,

".expression.probeset.csv",sep=""),row.names=1)))

}

write.csv(dat,file="GSE14333.GCRMA.csv")

anno=read.csv(file="HG-U133_Plus_2.na31.annot.csv",skip=24)

location=as.character(anno[,16])

YLOC=grep("chrY",location)

XLOC=grep("chrX",location)

#matchRowID=(match(as.character(dat2[,1]),as.character(anno[,1])))

#(1:54675)[abs((matchRowID-(1:54675)))>0]

SEXLOC=c(XLOC,YLOC)

sexProb=anno[-SEXLOC,c(1,13,16)]

dim(sexProb)

head(sexProb)

ordSexProb=sexProb[order(sexProb[,2]),]
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#Check the number of probe sets with neither Alliganment

#locatoion or Chromoseomal Location, i.e., 831

#temp=ordSexProb[(ordSexProb[,2]=="---")&(ordSexProb[,3]=="---"),]

#Check the number of probe sets with no Alliganment locatoion or

#Chromoseomal Location, i.e., 13414

#temp1=ordSexProb[(ordSexProb[,2]=="---")|(ordSexProb[,3]=="---"),]

##Check the number of probe sets with no info. of

#Alliganment locatoion, i.e., 1075

#temp11=ordSexProb[(ordSexProb[,2]=="---"),]

#dim(temp11)

matchID=match(as.character(ordSexProb[,1]),as.character(dat2[,1]))

head(matchID)

#Extract the probe sets excluding sex-related chomosomes

#from dat2 dataset based on Probe

#set ID from annotation file. These probe sets were ordered

#according to their location on

#chromosomes (info. contained in Alliganment in annotation file)

write.csv(dat2[matchID,],file="orderedDat.csv",row.names=F)

B.2.2 Test for Interaction Effect for Each Block

#setwd("C:\\Users\\plg519\\Documents\\Academic\\MS Report 2nd

#Dataset\\Results\\Stage0p-valuesForFeatureSelection\\WithOrder")

############################
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## Combine the p-values results for fold 1 from 30 separated

#running reuslts into one file

splitMat=matrix(c(kronecker(1770*(0:9), rep(1,2)), 17700+

kronecker(1770*(0:9), rep(1,2)), kronecker(1770*(0:9), rep(1,2))+

35400, 53158)[-1], nrow=30, byrow=T)

fold1=numeric()

for(j in 1:nrow(splitMat)){

totalLeft=splitMat[j,1]

file=paste("dat2.pv.for", group,".", totalLeft, ".txt", sep="")

fold1=rbind(fold1,read.table(file))

}

#write.table(fold1, file="dat2.pv.for1WithDecimal.txt",row.name=F)

fold1[,2]=trunc(fold1[,2])

#write.table(fold1, file="dat2.pv.for1.txt",row.name=F,col.name=F)

#############################################

step0=100;alpha=0.05

#############################################

fold=10; pv.all=NULL;

sigblocks.all=vector("list",fold)

BonSigBlocks.all=vector("list",fold)

FDRSigBlocks.all=vector("list",fold)
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for(group in 1:fold){

pvUnord=read.table(paste("dat2.pv.for", group, ".txt", sep="") )[,2:3]

uni=pvUnord[match(sort(unique(pvUnord[,1])),pvUnord[,1]),]

pv=uni[,2]

#pvOrd=pvUnord[order(pvUnord[,1]),]

#temp=c(0,177,177*2)+pvOrd[,1]

#pv=pvOrd[order(temp),2]

pv.all=cbind(pv.all,pv)

lengthpv=length(pv)

#print(c(group,lengthpv))

FDRSigBlocks=((1:lengthpv)[order(pv)])[(pv[order(pv)] <(1:lengthpv)/

lengthpv*alpha) ] #FDR control

BonSigBlocks=(1:lengthpv)[pv<alpha/lengthpv] # Bonferroni correction

sigblocks=(1:lengthpv)[pv<alpha] # no multiple-comparison adjustment

# Then use common significant blocks from all ’group’s.

##################################################

sigblocks.all[[group]]=sigblocks

BonSigBlocks.all[[group]]=BonSigBlocks

FDRSigBlocks.all[[group]]=FDRSigBlocks

}

commonSigBlocks=function(sigblocks.all) {
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T.orF=logical()

uniquesigs=unique(unlist(sigblocks.all))

for (h in 1:length(uniquesigs)){

T.orF=c(T.orF, all(unlist(lapply(sigblocks.all, function(x)

uniquesigs[h] %in% x))) )

}

sig.in.all=uniquesigs[T.orF]

sig.in.all

}

commonSigBlocks(sigblocks.all)

commonSigBlocks(BonSigBlocks.all)

commonSigBlocks(FDRSigBlocks.all)

nblock=max(pvUnord[,1])

sig.in.all=commonSigBlocks(BonSigBlocks.all)

########################

source("functions.s")

source("faster.heter.gamma.r")

dat=read.csv("orderedDat.csv",row.names=1)
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cha=read.csv("testCompleteFinal.csv")

#dat=read.csv(file="C:\\Users\\plg519\\Documents\\Academic\\MS Report

2nd Dataset\\orderedDat.csv",row.names=1)

#cha=read.csv("C:\\Users\\plg519\\Documents\\Academic\\MS Report 2nd

Dataset\\testCompleteFinal.csv")

set.seed(10)

randOrd=sample(nrow(cha))

#print(dim(dat))

#print(randOrd)

dat=data.frame(dat[,randOrd])

cha=cha[randOrd,]

Duke=as.character(cha[,3])

NDuke=1*(Duke==" B")+2*(Duke==" C")

Blist=seq(length(NDuke))[Duke==" B"]

Clist=seq(length(NDuke))[Duke==" C"]

nB=length(Blist)

nC=length(Clist)

########################3 do delete one SNP at a time and

#recalculate p-values

group=group0
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#for (group in 1:fold){

#pv.delete1=numeric()

for ( hsig in 1:length(sig.in.all) ){

step=ifelse(sig.in.all[hsig]<nblock, step0, nrow(dat)-nblock*step0)

sigSNP.id.block=c( t(kronecker(matrix(1:step,nrow=1),

matrix(1, nrow=length(sig.in.all[hsig]) ))+(sig.in.all[hsig]-1)*step))

pv.100=numeric()

for ( jjj in 1:step){

sigSNP.id= sigSNP.id.block[-jjj]

ngb=trunc(nB/fold);ngc=trunc(nC/fold)

testpo=c(((1:ngb)+ngb*(group-1)),(1:ngc)+ngc*(group-1))

testposition=c(Blist[testpo[1:ngb]],Clist[testpo[ngb+(1:ngc)]])

trainposition=c(Blist[-testpo[1:ngb]],Clist[-testpo[ngb+(1:ngc)]])

testclass=NDuke[testposition]

trainclass=NDuke[trainposition]

testX=dat[sigSNP.id,testposition]

trainX=dat[sigSNP.id,trainposition]

patID=c(1:(nB-ngb),1:(nC-ngc) )

traindata=data.frame(patID,trainclass,t(trainX))

traindataformat1=dataformat2(traindata)

ranks=rank(traindataformat1[,4])

mydat=cbind(traindataformat1, ranks)

org=Heter.gamma2(mydat, 2, step-1, mn=c((nB-ngb),(nC-ngc)), 5)

pv.100=c(pv.100,org$pgamma)

cat(c(group,sig.in.all[hsig], jjj,pv.all[sig.in.all[hsig],group],

org$pgamma),"\n", file=paste("dat2.delete1.pv.for.group",

group, ".txt", sep=""),append=T)
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}

cat(c(group,sig.in.all[hsig], jjj,pv.all[sig.in.all[hsig],

group], pv.100),"\n",file="dat2.delete1.pv.txt",append=T)

# pv.delete1=rbind(pv.delete1, pv.100)

}

#}

######################

#Use SVM

#accuracy=c(accuracy,svm.test(trainuse,testuse))

# }

# write.table(pv,file=paste("pv.for.fold", group, ".txt", sep=""))

#} #end of group loop

#write.table(pv.all,file="pv.txt",row.names=F)
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#write.table(accuracy,file="accuracy.txt")

#cat("*significant blocks\n",file="blocks.txt", append=F)

#for(k in 1:fold) {

# cat(paste("fold ", k,sep=""), unlist(sigblocks.all[[k]]), "\n",

#file="blocks.txt", append=T)

#}

B.2.3 Calculation of Delete-One p-values and Identification of

Significant Probe Sets

##########################

#### After observing the some of differences of p-values between

#using 100 SNPs and 99 SNPs seem small. To find a criterion for

#selecting the significant SNPs within block 115.

#### The ratio of p-values between using 100 SNPs and 99 SNPs

#were calcuated. Then the ratios across 10 folds for each SNP

#serves as a random sample, and the t-test was conducted

#### to select those SNPs with the mean ratio significant

#greater than 1. 15 SNPs were selected.

#### After finding the 15 significant SNPs within block 115

#### Excluding these 15 SNPs, the remaining 85 SNPs were

#tested for each of the 10 folds.

#### The resutls show that non of them are significant

####

setwd("C:\\Users\\plg519\\Documents\\Academic\\MS Report
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2nd Dataset\\Results\\State1_Within23_selection")

#nblock

all.g=NULL

reverse.rank=NULL

for (i in 1:10) {

#get all 100 p-values from 10 fold

pi=read.table(paste("dat2.delete1.pv.for.group",i,".txt", sep=""))

#construct the matrix including p-values and corresponding

#ratios with/without one SNP

gi=as.matrix(cbind(pi[,c(1,3:5)], pi[,5]/pi[,4]))

all.g=cbind(all.g,gi)

reverse.rank=cbind(reverse.rank, 101-rank(pi[,5]/pi[,4]) )

}

idx=order(apply(reverse.rank,1,mean))

SNPid=(1:100)[idx]

ratio=round(all.g[idx,5*(1:10)],2)

colnames(ratio)=paste("G", 1:10,"AovB", sep="")

row.names(ratio)=SNPid

### For each SNP in this block, calculate a 99% confidence

#lower bound to see if the mean is > 1.

### t-test was used for dataset1, but t-test was not used

# for dataset2 due to the extreme values in fold1

#myT=function(x) unlist( t.test(x, alternative = "greater",
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# mu = 1, conf.level = 0.99)[3:5])

#t.test.result=t(apply(ratio,1, myT))

#myT(ratio[1,])

#t.test.result[,1]<0.01

#sig.SNPs=subset(t.test.result, t.test.result[,1]<0.01)

### Since the ratios from fold 1 seems extremme,

#the sign test is conducted instead of t-test

library(BSDA)

mySign=function(x) c(SIGN.test(x, md = 1, alternative =

"greater", conf.level = 0.99)[2,2], median(x))

#temp=SIGN.test(ratio[1,], md = 1, alternative = "greater",

#conf.level = 0.99)

#temp[2, 2]

Sign.test.result=t(apply(ratio,1, mySign))

sig.SNPs=Sign.test.result[Sign.test.result[,1]>1,]

boxplot(ratio)

postscript("boxplot_log_ratio_dat2.eps")

boxplot(log(ratio), main="Boxplot of the log(ratios of p-values)" )

dev.off()

SNP.num=as.numeric(row.names(sig.SNPs))

### Exclude these 36 significant SNPs from 115th blcok(has 100

#SNPs) and test to see whether

### the remaining SNPs are still significant

dat=read.csv(file="C:\\Users\\plg519\\Documents\\Academic\\MS
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Report 2nd Dataset\\orderedDat.csv",row.names=1)

cha=read.csv("C:\\Users\\plg519\\Documents\\Academic\\MS

Report 2nd Dataset\\testCompleteFinal.csv")

set.seed(10)

randOrd=sample(nrow(cha))

dat=data.frame(dat[,randOrd])

cha=cha[randOrd,]

step0=100

nblock=trunc(nrow(dat)/step0)

#nblock =584

step=ifelse(pi[1,2]<nblock, step0, nrow(dat)-nblock*step0)

SNP.id.block=c( t(kronecker(matrix(1:step,nrow=1), matrix(1,

nrow=length(pi[1,2]) ))+(pi[1,2]-1)*step))

sigSNP.id=SNP.id.block[-SNP.num]

####### get the training data for above SNP ids and do one test

#Name Physical characteristic data "cha"

#Extract the column of Duke stage from characteristic data,

#call it "Duke"

#One Duke Stage from each pair since each pair have same stages

Duke=as.character(cha[,3])

NDuke=1*(Duke==" B")+2*(Duke==" C")

Blist=seq(length(NDuke))[Duke==" B"]

Clist=seq(length(NDuke))[Duke==" C"]
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nB=length(Blist)

nC=length(Clist)

fold=10

source("C:\\Users\\plg519\\Documents\\Academic\\MS Report 2nd

Dataset\\functions.s")

source("C:\\Users\\plg519\\Documents\\Academic\\MS Report 2nd

Dataset\\faster.heter.gamma.r")

pv.fold=numeric()

for (group in 1:fold){

ngb=trunc(nB/fold);ngc=trunc(nC/fold)

testpo=c(((1:ngb)+ngb*(group-1)),(1:ngc)+ngc*(group-1))

testposition=c(Blist[testpo[1:ngb]],Clist[testpo[ngb+(1:ngc)]])

trainposition=c(Blist[-testpo[1:ngb]],Clist[-testpo[ngb+(1:ngc)]])

testclass=NDuke[testposition]

trainclass=NDuke[trainposition]

testX=dat[sigSNP.id,testposition]

trainX=dat[sigSNP.id,trainposition]

patID=c(1:(nB-ngb),1:(nC-ngc) )

traindata=data.frame(patID,trainclass,t(trainX))

traindataformat1=dataformat2(traindata)

ranks=rank(traindataformat1[,4])

mydat=cbind(traindataformat1, ranks)

org=Heter.gamma2(mydat, 2, length(sigSNP.id), mn=c((nB-ngb),

(nC-ngc)), 5)

pv.fold=c(pv.fold,org$pgamma)

}

# all of them are non-significant
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# [1] 0.8450296 0.7899294 0.8728943 0.8625813 0.9573931

# 0.7737742 0.8082923 0.7296441 0.7720006 0.8835492

report.sigSNP.table=as.matrix(sig.SNPs)

row.names(report.sigSNP.table )= row.names(dat)[SNP.id.block[SNP.num]]

colnames(report.sigSNP.table )=c("99lower.bound",

"median.ratio.across.folds")

SNP.id.block[SNP.num]

#### The indeces of the final selected probe sets

#[1] 2234 2253 2236 2300 2257 2273 2299 2295 2227

#[10] 2298 2251 2249 2291 2296 2206 2254 2279 2282

#[19] 2286 2260 2278 2268 2213 2290 2215 2218 2276

#[28] 2235 2233 2229 2202 2226 2214 2237 2225 2207

write.csv( cbind(report.sigSNP.table, SNP.id.block[SNP.num]) ,

file="dat2.sig.SNPs.within.block23.csv")

library(xtable)

xtable(report.sigSNP.table, digits=4)

B.2.4 Classification Using SVM

######## Use selected 36 SNPs from bolck 23 to classify the

#Duke’s stage with SVM as classifer.

######## Leave-One-Out(LOO) CV is used. The training sample

# size is 184, and the test sample size is 1. The class of test

######## instance is predicted based on the training sample

134



#of size 184, using SVM.

######## All test data (185 of them) are correctly classified,

#i.e.: all 185 accuracy are 1.

########

setwd("C:\\Users\\plg519\\Documents\\Academic\\MS Report 2nd

Dataset\\Results\\State1_Within23_selection")

source("C:\\Users\\plg519\\Documents\\Academic\\MS Report 2nd

Dataset\\functions.s")

source("C:\\Users\\plg519\\Documents\\Academic\\MS Report 2nd

Dataset\\faster.heter.gamma.r")

#Name the snaps data (i.e. a 58494(snaps)*94(paris of patiances)

# matrix) "dat"

dat=read.csv(file="C:\\Users\\plg519\\Documents\\Academic\\MS

Report 2nd Dataset\\orderedDat.csv",row.names=1)

#Name Physical characteristic data "cha"

cha=read.csv("C:\\Users\\plg519\\Documents\\Academic\\MS Report

2nd Dataset\\testCompleteFinal.csv")

set.seed(10)

randOrd=sample(nrow(cha))

dat=data.frame(dat[,randOrd])

cha=cha[randOrd,]
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#Extract the column of Duke stage from characteristic data, call it "Duke"

#One Duke Stage from each pair since each pair have same stages

Duke=as.character(cha[,3])

NDuke=1*(Duke==" B")+2*(Duke==" C")

Blist=seq(length(NDuke))[Duke==" B"]

Clist=seq(length(NDuke))[Duke==" C"]

nB=length(Blist)

nC=length(Clist)

alpha=0.05

sigSNP.id=(read.csv("C:\\Users\\plg519\\Documents\\Academic\\MS

Report 2nd Dataset\\Results\\State1_Within23_selection\\

dat2.sig.SNPs.within.block23.csv"))[,4]

svm.test.with.par= function(Yu, testuse, crossv=10){

library(e1071)

obj = tune(svm, response~., data = Yu,

ranges = list(gamma = 2^(-3:1), cost = 2^(2:4)),

tunecontrol = tune.control(cross=crossv )

)

bestGamma = obj$best.parameters[[1]]

bestC = obj$best.parameters[[2]]

#Build model using SVM

svm1=svm(response~., data=Yu, cost=bestC, gamma=bestGamma )
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#Compute the predicted class for test data

totest=data.frame(testuse[,-ncol(testuse)])

colnames(totest)=colnames(Yu)[-ncol(testuse)]

pred <- as.character(predict(svm1, totest) )

pred

#Construct confusious matrix (table)

confuTable=table(pred,testuse$response)

#Compute accuracy

accuracy=sum(diag(confuTable))/(sum(confuTable))

#list(parameter=c(bestGamma,bestC),accuracy=accuracy)

c(bestGamma,bestC,accuracy)

}

#############################################

fold=nB+nC;

#pv.all=numeric();

accuracy=NULL

for (group in 1:fold){

#ngb=trunc(nB/fold);ngc=trunc(nC/fold)

#testpo=c(((1:ngb)+ngb*(group-1)),(1:ngc)+ngc*(group-1))

#testposition=c(Blist[testpo[1:ngb]],Clist[testpo[ngb+(1:ngc)]])

#trainposition=c(Blist[-testpo[1:ngb]],Clist[-testpo[ngb+(1:ngc)]])

testposition=c(Blist,Clist)[group]

trainposition=c(Blist,Clist)[-group]
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testclass=NDuke[testposition]

trainclass=NDuke[trainposition]

trainuse=data.frame(t(dat[sigSNP.id, trainposition]),

response=as.factor(trainclass))

testuse=data.frame(t(dat[sigSNP.id,testposition]),

response=as.factor(testclass))

#testX=data.frame(t(dat[sigSNP.id,testposition]))

######################

#Use SVM

accuracy=rbind(accuracy,svm.test.with.par(trainuse,testuse))

}

write.table(accuracy,file="dat2.LOOCV.accuracy.with.para.estimate.txt",

row.names=F)

library(xtable)

accuracy2=cbind(accuracy[,-3], ifelse(accuracy[,3]==1, rep("Yes",

nrow(accuracy)), rep("No",nrow(accuracy)) ) )

row.names(accuracy2)= paste("Patient", c(Blist,Clist))

colnames(accuracy2)=c( "gamma", "cost", "Correctly classified")

xtable(accuracy2)

res=cbind( paste("Patient", c(Blist,Clist)[1:42]), accuracy2[1:42, ],

rbind(cbind(paste("Patient", c(Blist,Clist)[43:83]), accuracy2[43:83,]),

rep("", 4)))

xtable(res)

mat.accuracy=matrix(accuracy, ncol=3, byrow=T)
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B.2.5 Classification with KNN

######## Use selected 36 SNPs from bolck 23 to classify the

#Duke’s stage with KNN as classifer.

######## Leave-One-Out(LOO) CV is used. The training sample size

#is 184, and the test sample size is 1. The class of test

######## instance is predicted based on the training sample of

#size 184, using KNN.

######## All test data (185 of them) are correctly classified,

#i.e.: all 185 accuracy are 1.

########

setwd("C:\\Users\\plg519\\Documents\\Academic\\MS Report 2nd

Dataset\\Results\\State1_Within23_selection")

source("C:\\Users\\plg519\\Documents\\Academic\\MS Report

2nd Dataset\\functions.s")

source("C:\\Users\\plg519\\Documents\\Academic\\MS Report

2nd Dataset\\faster.heter.gamma.r")

#Name the snaps data (i.e.

#a 58494(snaps)*94(paris of patiances) matrix) "dat"

dat=read.csv(file="C:\\Users\\plg519\\Documents\\Academic\\

MS Report 2nd Dataset\\orderedDat.csv",row.names=1)

#Name Physical characteristic data "cha"
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cha=read.csv("C:\\Users\\plg519\\Documents\\Academic\\

MS Report 2nd Dataset\\testCompleteFinal.csv")

set.seed(10)

randOrd=sample(nrow(cha))

dat=data.frame(dat[,randOrd])

cha=cha[randOrd,]

#Extract the column of Duke stage from characteristic data, call it "Duke"

#One Duke Stage from each pair since each pair have same stages

Duke=as.character(cha[,3])

NDuke=1*(Duke==" B")+2*(Duke==" C")

Blist=seq(length(NDuke))[Duke==" B"]

Clist=seq(length(NDuke))[Duke==" C"]

nB=length(Blist)

nC=length(Clist)

alpha=0.05

sigSNP.id=(read.csv("C:\\Users\\plg519\\Documents\\Academic\\MS

Report 2nd Dataset\\Results\\State1_Within23_selection\\

dat2.sig.SNPs.within.block23.csv"))[,4]

#############################################

fold=nB+nC;
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#pv.all=numeric();

accuracy=NULL

for (group in 1:fold){

#ngb=trunc(nB/fold);ngc=trunc(nC/fold)

#testpo=c(((1:ngb)+ngb*(group-1)),(1:ngc)+ngc*(group-1))

#testposition=c(Blist[testpo[1:ngb]],Clist[testpo[ngb+(1:ngc)]])

#trainposition=c(Blist[-testpo[1:ngb]],Clist[-testpo[ngb+(1:ngc)]])

testposition=c(Blist,Clist)[group]

trainposition=c(Blist,Clist)[-group]

testclass=NDuke[testposition]

trainclass=NDuke[trainposition]

trainuse=data.frame(t(dat[sigSNP.id, trainposition]),

response=as.factor(trainclass))

testuse=data.frame(t(dat[sigSNP.id,testposition]),

response=as.factor(testclass))

#testX=data.frame(t(dat[sigSNP.id,testposition]))

######################

#Use SVM

#accuracy=c(accuracy,svm.test(trainuse,testuse))

accuracy=rbind(accuracy, myknn(trainuse,testuse))

}

write.table(accuracy,file="dat2.knn.LOOCV.accuracy.txt", row.names=F)

library(xtable)
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accuracy2=cbind(accuracy[,-2], ifelse(accuracy[,2]==1,

rep("Yes",nrow(accuracy)), rep("No",nrow(accuracy)) ) )

row.names(accuracy2)= paste("Patient", c(Blist,Clist))

colnames(accuracy2)=c( "k", "Correctly classified")

xtable(accuracy2)

res=cbind( paste("Patient", c(Blist,Clist)[1:92]),

accuracy2[1:92, ], rbind(cbind(paste("Patient", c(Blist,Clist)[93:185]),

accuracy2[93:185,]), rep("", 2)))

xtable(res)

myknn=function(Yu, testuse, crossv=10){

library(e1071)

obj = tune.knn(Yu[,-ncol(Yu)], Yu[,ncol(Yu)],

k=1:25,

tunecontrol = tune.control(cross=crossv )

)

bestk = obj$best.parameters

#Compute the predicted class for test data

totest=data.frame(testuse[,-ncol(testuse)])

colnames(totest)=colnames(Yu)[-ncol(testuse)]

#Build model using knn

knn1=knn(train=Yu[,-ncol(Yu)], test= totest, cl=Yu[,ncol(Yu)], k=bestk )

pred <- as.character(knn1 )
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pred

#Construct confusious matrix (table)

confuTable=table(pred,testuse$response)

#Compute accuracy

accuracy=sum(diag(confuTable))/(sum(confuTable))

#list(parameter=c(bestGamma,bestC),accuracy=accuracy)

unlist(c(bestk,accuracy))

}
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