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1. Introduction

The purpose of this paper is to synthesize the diverse informa-
tion in the literature of multidimensional contingency tables and
to compare the techniques of analysis, computational complexity and
types of hypotheses. |

Multidimensional contingency table analysis was largely ignored
until Bartlett's paper appeared in 1935. Since then numerous papers
have been written attempting to ana]yze contingency tables in many
fashions. Most of the methods are asymptotically eguivalent
(Berkson (1972)). The methods of maximum tikelihood, minimum
discrimination, and the general linear model are outlined in this
paper. References are inen for other methods as well. Estimation
procedures are discussed and examples are given to test the hypothesis
of no three-way interaction.

Contingency tables are characterized by two types of data:
1)} factor - classification of the unit to which the experimental
unit belongs and, 2} response - ciassffication of what happened
to the experimental unit. Hence, the data are the frequencies with
which experimental units fall into the various combinations of factor-
response categories. |

The term 'interaction' has been used in different contexts in
the statistical literature. Bhapkar and Koch (1968) list the four
si‘uations that arise in multidimensional contingency tables and
the interpretation of the 'ne interaction' hypothesis for each
situation.
Model 1 - mﬁlti-response and no factor

a) concerned with the relationship between different responses



b) "No interaction" hypotheses pertain to whether some
measure of association among the members of a certain
set of responses depends upon the categories of the
members of a subset of the remaining responses.

Model 2 - multi-response and one factor

a) concerned with the effect of the factor in the joint
and marginal distribution of the responses and on
measures of association among the responses.

b) “No interaction" hypotheses pertain to whether somne
measure of association among the members of a certain
set of responses depends upon the categories of the
members of a subset of the remaining responses and/or
the categories of the factor.

Model 3 - multi-response and multi-factor

a) concerned with both the relationship among the responses
and the way in whicii the factors combine.

b) "No interaction" hypothesis can take many forms. These
forms question the pattern of association among responses
and whether factor combinations affect the response dis-
tribution.

Model 4 - one response and multi-factor

a) concerned with the way that the factors influence the

response (analogous to univatiate analysis of variance).

b) "No interaction" hypothesis pertains to the manner in

which factors combine to determine the response distribution.

In all of the above models the marginals determined by adding

factor frequencies are assumed to be fixed. Marginals determined

[al]
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from response frequencies ave variabic.  Also, the total sample
size is fixed prior to conducting the experiment.

The procedure to be followed in contingency table analysis is:
1) specify the analysis method to be used, 2) formulate hypotheses
of interest, 3) compute expected frequencies (if the method vequires
it) and 4) interpret the results.
2. Methods

Many methods have been proposed to analyse multidimensional

contingency tables. The traditional Pearson's chi-square statistic

2
x2 = (observed - expected)
P expected

has been criticized because it doesn't produce any estimates of
the effects that the variables have on each other. Three pro-
posed methods of multidimension contingency table anaiysfs are:

1) maximum 1ikelihood: 2) minimum discrimination information;

and 3) the general Tinear model. The background for these methods
will now be presented. Later, examples will be given and other
methods of analysis will be mentioned.

2.1 Maximum Likelihood

The maximum 1ikelihood approach discussed here will be based on
logits as given by Goodman (197Gj. Refer to Fryer (1966) for a
discussion of logits. This type of analysis is appropriate for
data of the Model 4 type and should be used primarily for stratified
samples.  For notational convenience a three-way contingency table
(I xJ x K) will be discussed.

Notation:

151 2,550 =) 5254 k=1,2,,K



- observed frequency in cell (ijh)

ik
] .th th
%nijk = e marginal total of the 3 column in the k™ layer
1= "
J tho th
an'k =Mt marginal total of the i~ row in the k™ layer
=1 ™ '
Ny is defined similarly
% g n =n - total of the k' 1a er
=1 =1 1K .k Y
ng and n i are defined similarly
I J K
L L.l Mgy =n  =N-grand total
f=] 3=1 k=1 ¥
Pijk - true cell probability, Pijk > 0, 5% P1Jk =1
Pisk " observed cell probability
Visk = n Pijk are the logits, where 1n refers to the natural logarithm

As in analysis of variance, Vijk can be broken down as

_ I B lC AB
V. =y + wi + Wj * wk 5 w

ijk

where A, B, and C denote the three variables and Zw? = Zw? =

ABC
z W13k

Then the w's

v The interpretation of the w's

gk’
w?, w?, and wE are main effects

AB

AC BC
W1J, “1k and wJ

ABC

+ v

ABC
ijk

BC

AC

+ W
ik

Ewi =

represent the possible effects of the three variables on

is identical to analysis of variance:

F are Z2-viay interaction effects

WTJP is the 3-way interaction effect



Wy =¥y, * ¥

B

I
¥ F Vi
‘AB _ i i N
w,ij V.ij, V_i“ v'j. V
.ABC= 2 & & + o+ + -
Wisk T Visk T Vigs T Vi T Vg T Vi TV T YT Y,
where the dot subscript on the v's denotes the averages over the

J
corresponding index (Vi =3 Vij/J)' For a given hypothesized
. jz‘] .

distribution each w estimate (w) can be expressed as
w= )} ajjk ™ Ny Where ays, are constants whose values

depend on the null hypothesis being tested and szaijk = 0.

2.2 Minimum Discrimination Information

The principle of minimum « iscrimination information (MDI)
estimation is similar to the forward type of regression analysis.
It has been suggested by Margolin, et al (1974) that the MDI
statistic should be avoided in small samples because it is less
conservative than Pearson's chi-sguare statistic. In Ireland and
Kullback (1968b) the following summary of the principle for a
three-way table is given. The proofs appear in Ireland and Kullback
(1968a).
Notation:
P-table - entries are Pijk which are either observed entries
or estimated i=1, 2,,I; j=1,2,,Jd; k-1,2,,K
Pijk> O,Zigpijk = 1 The P-table entries correspond
to an hypothesized distribution for the data.

LN



p-table - entries are pijk that satisfy certain conditions

Y

of interest, )i?pijk = 1 (observed probabilities)
*
p*~tab1e - entries are p ik which most closely resenble

P by the principle of MDI (estimated probabilities)

ijk
Theoren 1
Let the P-contingency table be given. Consider all p-
contingency tables of the same dimension such that the

marginal probabilities are given and fixed. Then the

minimum value of the discrimination information
H(p:P) = T10P; sy 1Py 51 /Ps )

N _
is attained for Pysk ® Pigp = aibjckpfjk where the ai's,

bj's and ck's are determined subject to the marginal probability

restrictions. Then the minimum value is

() = | ) §
Itp ,P) =)p; Tna,+)p . Inb,+)p ,Iinc
.i='l 1-- 1 j:'i -Jo ,} k___-l ..k k

Theorem 2
The p* contingency table can be computed by an iterative
procedure that satisfies the marginal restrictions. (This
procedure will be discussed using frequencies rather than
proportions. The initial value is pggi = Pijk')

Theoremn 3

If Pijk in Theorem 1 is p'jk = nijk/N where n. .. is the

} ijk
number of observations in cell {ijk) and XE[nijk = N
~k
then the minimizing set pijk is a best asymptotically

hormal estimate and the MDI statistic for goodness of fit



A

A ~
)

\,\‘.,“* * L )
» = 2N i Yy G
NI(p : p) = 2N ““)pijk In(pmk/puk
is asymptotically chi-square with I 4+ J + K - 2 degrees of
freedom.
Theorem 4
*
The follewing is true for p cowputed according to Theorem 2
®
where the p -table and p-table have common specified marginals
* *
I{p:P) = I(p :P) + I(p:p )

2.3 General Linear Model

Grizzle, Starmer, and Koch (1969) introduced a linear model
approach to contingency table analysis that does not require
jterative procedures to estimate cell probabilities. Since then
numerous articles have bean writlen describing this as the unified
approach to an 'ysis of mu tidimensional contingency tables.

Grizzie, Starmer, and Koch (GSK) applied methods of linear regression
and weighted Teast squares to test hypotheses using a minimum
modified chi-square test statistic or the eguivalent Wald's statistic.

Notation:

i=1,2,,,5 population factors

Jj=1,2,,,r response categories

Pij - truz cell probability i=1,2,,s: jfT,Z,,r;zzzPijk = .

3

nij ~ ot “rved frequency

Pij = nij/ni. - unbiased estimate of Pij
. ‘s . ,

p (PiT,P12111P1r) 1715245

n~
il

i (B'Eﬁ Eé!}ssP;ﬁ)

p; and p' have corresponding notation



~

1] nﬁri = { " - iy N s -A ]
Var(Py) = Var(p,) = ( D(pg) = pypy' )0y,
whevre U(ﬁi) is a diagonal malrix with the elements of

p; on the diagenal

~

Varfﬂ) = Var(é) - bleck diagonal with Ve ,34) on the main
diaconal
f(P) - any function of P such that the continuous first and

secon” derivatives exist with respect to the Pijls

f(p) = E(1(P))

' = (F(R)s Fp(D)ssnsfy (D))t <(r-1)s
H = (dF{x)/dx! x = p;

¥ = var(F) = ﬂ_Var(ﬁ) H*

Define a Tinear model F(P) = Xi where X is a known (t x u)
design matrix and B is a (u x 1} vector of unknown parameters,
The weighted least squares estimate of B {b) is

XV E

b=(x ¥y X
The Wald test statistic for goodness of fit is
¥2 = (F - Xb)'V(F - ¥b)

with (t-u) degrees of freedom.

3. Formulation of Hypotheses

Forming meaningful and interpretable hypotheses in a multi-
dimensional contingency table is no easy task. The interpretation
of the "no interaction" hypotheses for the four types of models
was explained in the Introd:ction. Hypotheses of interest pertaining

to the three methods of analysis wiTl be presented.



3.7 Maximum Likelihood

A maximum 1ikelihood hypothesis is formulated from a hier-
archial model. An hierarchial model is defined such that, if
any w-term is set to zero all the higher w-terms involving that
particular one are also set to zero, and if that w-term is not
zero, all the Tower terms must be present.

Example: If in the model

B C AB AC BC ABC

A
T ot Wy W, bWl o+ b W
Visk T U Wy Wi ® W W Wi * Wi * Wisp o

AC . ARG AC .
wik is set to zero then hijk must also be zero. If wik is not

zero then w? and wE must be in the model.
This must be taken into consideration when building hypotheses.
The following is a list of p:ssible hypotheses for the three-way

table from Goodman (1970).
# of hypotheses

Degrees of this

Parameters set to zero of f+ edom kind Basic Set
v T-DEDED 1 Sl
2. i vk L(3-1)(K-1) AR
3. w??ﬁ W?E W?E (IJ-l)(K-T) 3 w?? WE
b s i 13(K-1) A
5. W?gi Wgﬁ fE W?? TJK=[=g=K+2 1 f ?”E
6. ”’f?ﬁ ‘?E TE ‘*’“?? WE [JK-1-0+1 3 w’?’ J
7. W?SE ‘”EE ?E fﬂ “"’E "’? I{1%-1) 3 w’;‘
8. W?EE w?? WTE w?? wE w? w? TJK-1 1



Hypothesis 2 states that variables B and C are independent
given the category of variable A. Hypothesis § states that
the three variables are mutually independent., In hypothesis 6,
two items are hypothesized: 1) variables A and B are independent
and 2) the categories of variable C are equiprobable given the
joint‘category of A and B.

The degrees of freedom can be calculated in two ways: 1)
the number of w's in the basic sets that are set to zero by
the null hypothesis or 2) {IJK-1) winus the number . w's in the
basic sets that are not set to zero by the hypothesis.

For informaticn to partition a hypothesis (partition into
hypotheses about marginal tables, independence, conditional
indep- ndence, etc.) refer to Goodmzn (1971b). Goodman (1971c)
presents a stepwise procedure to obtain estimates cither with
quantitative or qualitative variables and exhibits methods for
analysis of Model 1 and Model 4 type data. In Goodman (1971c)
the methods developed by Goodman are applied to a survey analysis.

3.2 Minimum Discrimination Information

By Theorem 4 an analysis of information table can be
constructed where both the information components and the degrees
of freoedom are additive. Ku, et al (1971) showed that if n is

*

the obscrved frequency and Ny is estimated, then under a set of

- . - L3 3 3 - *
marginal constraints that include the marginals used in cstimating n,

21 (n:n*)

- %
A 2 )jnIn (n/n,)

* % o
21 (nb ‘ na) + 21 (n:nb]

1

5 : :
2 lnb 1n[n;/n:) + 2 )n 1In (n/n;)

10



This additive property allows the tetal information to be analyzed
using additive components similar to analysis of variance., Informa-
tion statistics such as 21 (n:n;) thot compare an observed table
with an expec..:d table are measures i interaction. Information
statistics comparing two cxpected tab?eé (21 (n;:n;)) are called
measures of effect, that is, the effect of adding additional
constraints in estimating n; not contained in the set of con-
straints for n;.

To clarify this, assume that the null hypothesis is

HO: pijk = pﬁ“p”j.p”k {independence among the three-way

cell entries in a three-way table). The conrarison is between
an observed table and an expected teole and, therefore, the
information statistic measures interaction. H0 usually doesn't

can be partitioned into

specify Foos P s and p K Thus, H

ida 0
additive components specifying each of the above marginals.

Hr: p; =7 i=1,2,,1  (row)
Hg! Pj. =S i=1,2,,d  (column)
Hgep =t k=1,2,,K  (depth)

where r,s, and t are given censtraints. A table to give the

informaticn du- to interactiun can be constructe. as follows:

Component due to Information Deqgrees of Freedom
Rovis ZI(pi__:r) I-1

Columns ZI(p'j.:s) J-1

De; 2l(p | :t) KT
Independence EI(pijk;rst) [JK-T-J-K+2

Tots1 21(p":p) TK-1



If Hy is true then ZI(TJHRIY'SU is asymptotically chi-square with

[JK-I-J-K+2 degrees of freedom.
The null hypothesis ki : p,s =Ps P 5\ tests whether or not

the row classification is independent of column and depth classifi-
cations since
Pij. " Pigk T PiLPaak T PP
Pk ™ Pigk ~ Pi Pk T By, Pk,
Again, p; and p_, are usually not specified in Hj and 2 (p":p)
can be partitioned into additive components. These components

specify values of Pi..» P sk and Pi. P ik Kullback (1959} gives

details for other hypotheses to test.

3.3 General Linear Model

Assume that tie modal is
F(P) = XB
where F(P) is a (tx1) ver :r of functions of P, X is a (txu)
known design matrix and B is a (ux1) vector of unknocwn prrameters.
Given that the above modei fits the daia, tests can be performed
concerning parameters and/or combinations of parameters by hypotheses
of the form

H0 : CB =0,

viere C is a (dxu) matrix of constants. This may be accomplished
by the usual methods of weighted multiple regression.
The test statistic is
ss(ce = 0) = b'e' (e e e,



where V is the estimated covariance matrix of F(P). This test
statistic is compar I to the tabled chi-square value with d degrees
of freedom.

GSK discuss examples with one and more populations. Forthofer,
et al (1971b) extend the work of GSK to more complex problems
involving association, rank correlation and "ridits" (ordered data).
In Johnson and Koch (1970) qualitative data obtained by a stratified
random sample is analysed by the GSK methods. Johnson and Koch
(1971); Koch, et al (1972); and Koch and Tolley (1975) an: "yse
probizms using the weighted least squares approach. In recent
statistical literature the analysis of contingency tables by
1og-Tinear models has been developed. Bishop, et al (1975) discuss
this thoroughly. Ku and Kullback (1974) apply the principle of
miimum discrimination to the leg~linear model.

4, Estimation of Cell Frenuencies

There are basically thrce methods of obtaining estimates:

1) direct procedure;

2} maximum Tikelihood equation solving;

3) iterative proportional fitting algorithm.

When direct estimates exist (refer to Bishop (1975), pages
73-83) the maximum likelihood estimate can be obtained from the
familar forinula

_(row total)(colunn total)
{grand total)

with a two-way table and the hypothesis of no interactions.

The second procedure involves solving a system of simultaneous



equations which increasc in difficulty as the dimensions increase
and, therefore, will not be illustrated.

Maximum Tikelihood estimates can be obtained for any hier-
archial model by iterative fitting under the conditions imposed
by the null hypothesis.

The iterative scheme successively adjusts the marginals
proportionally. If direct estimates exist, they will be cbtained
after one cycle. For wore details refer to Bishop (1975), pages
83-97.

Iterative algorithm for a three-way (I x J x K) table:

(0) _

1. Start with an initial value - usually nijk =1 or

N/(I x J x K}, For restrictions on initial values see

Bishop (1975), pages 92-95,

2. Compute the marginals ngg)

s o (0) (0) .

3. Adjust "3 5k by nij./n%j. (observed/expected)
Adjusted entries are ”§}3

4. Compute the marginals ng]a

: (1) 1) pas . (2)
5. Adjust "ijk by ni.k/n'.k Adjusted entries are n].‘].k
6. Compute the marginals n(§%

- (2) (2) pas : (3)
7. Adjust nijk by n.jk/".jk Adjusted entries are nijk

8. Continue steps (2) through (7) using ngiz as the starting
entry.
9. Continue the process until successive cycles differ by

no more than some specified range (.01, .001, etc.).

14



The MDI method uses the statistic

2

A

" *
2NRLIP g n(Pyg / Pyge)
* *
— : f
= ZXXZnijk Tn‘”ijk / nijk)
* * ’
where Pisk (nj-r) are the estimates obtained by the iterative
J K
procedure and p‘jk(nijk) are ohserved values.

3
For the data given in Table 1 below, the Pearsch, maximum
1ike1ihood, and MDI x? values are .851, .853, and 756, respectively,
for testing the hypotheses of three-way interaction. The tabled
chi-square value with (I-1){J-1)(K-1) = 2 degrees of freedom and
a .95 probability level is 5.99. Therefore, the hypothesis of no
three-way interactien is accepted. Hovever, one cannot assume that
the three classifications are independent. Perhaps an hypothesis

to test the association between birth order and number of losses would

be of interest.
TABLE 1

Data on the Number of Mothers
with Previous Infant Losses, Grizzle (1961)

Number of mothers with

Birtt Order ' Losses No Losses

Problem 20 82

2
Control 10 54 )
Problem 26 41

3-4
Control 16 30

" Problem 27 27

5
Control 14 23

i=1{problem), 2{control)
j=1{losses), 2{no losse:)

k=1(2), 2(3-4), 3(5")

3



Sets of cobserved marginals:

b A =
73 14% 102 67 49
40 107 64 46 37
TABLE 2

N ik

30 42 4
136 71 45

Iterative Values, Ku, et al (1971)

(0) (1) (2) (3)
il Mijk Mk Mgk Mgk Mk
1M 20 30.416 24.333 34.156 19.869
M2 26 30.416 24.333 22.435 26.959

113 27 30.41¢ 24.333 16.408 25.410
121 10 30.416 48.333 67.844 80.633
122 16 30.416 48.333 40.564 40.540
123 14 30.416 48.333 32.592 24.639
211 82 30.416 13.333 17.415 10.130
12 41 30.416 13.333 12.517 15.041
30.416 13.333 10.067 15.590
221 54 30.416 35.667 46;595 65,367
222 30 30.416 35.667 33.483 30.369

30.476 35.667 26.932 20.361

-------

g
20.503 20.503
27.213 27.213
25,284 25.284
81.497 81.497
39.787 39.787
23.716 23.716
9.497  9.497
14.787 14.787
15.716 15.716
54.503 54.503
81,213 31,213

21.284 21.284

An example will be given to clarify the procedure using the data

~of Table 1.

hypotheses of no three-way interaction.

The following illustrates the first cycle to fit the

O



57

1. ng?& = 365/{2xx3) = 30.416  1=1,2; §=1,2: k=1,2,3

2. 089) = 30,416 + 30.416 + 30.416 = 91.248 i=1,2; j=1,2

1

LER L PR /n§$)) = 30.416 x (73/91.248) = 24,333

(1) - (0) (0)y _ -
nid) = ni0) x (nyy /nj7’) = 30.416 x (73/91.248) = 24.333
(1) _ (0) (0)y _ -
Nop3 = Nooa X (n22_/n22.) 30.416 x (107/91.248) = 35.667
(1) _ (1) (1) _ 5 _
byl T gy ¥ npy - 24335 4 48.333 = 72.667
(1) _ (1 (1) _ -
ng ) = Ngpg + Nyoh = 13.333 + 35.667 = 49
(2) _ (1) 1)y - o et o
5. ny&) = mald x (ng (/n]'7) = 24.333 x (102/72.667) = 34.156
(2y _ (1) (1)y . a
nsad = ngpd x (n, o/nsl0) = 35.667 x (37/49) = 26.932
(2) _ (2) (2) _ : "
6. n'%l = o)+ niid = 34.156 + 17.415 = 51,571
(2) _ (2) . (2) _ _
n's) = niZ) + njs) = 32,592 + 26.932 = 59.524
(3) _ (2) (2)y _ .
7. ny30 = itk (n go/n'3)) = 34,156 x (30/51.571) = 19.869
négé . néé% X (n_23/nf§%) = 26.932 x (45/59.524) = 20.36]

The first cycle of the iterative proportional fitting alqgorithm is

completed. The cycles are continued until the chainge between successive



cycles is less than a specified tolerance. Five cycles are required
to obtain a change no greater than 0.007.

5. Interpretation of Results

Once an liypothesis has been formulated and the computations
are performed, the results remain to be.interpreted. A no inter-
action hypothesis takes on different meanings as discussed in the
Introduction, depending on the model being used.

Consider a test for no three-way interaction in a three
dimensional contingency table with A, B, and C as the thrée
classifications. It is not necessary to begin the analysis with
this particular hypothesis. Regardless of an acceptance or
rejection of the hypothesis of no three-way interaction, further
hypotheses concerning other relationships should be te ‘ed. If
the hypothesis of no three-way interaction is accepted, one should
not assume that all three classifications are independent. Perhaps
two classifications interact, but are independent of the third.

Then three more hypotheses may be of interest: 1) the association
between classification A and classification B is the same for all
categories of C; 2) the association between classification A and
classification C is the same for all categories of B; 3) the
association between classification B and C is the same for all
categories of A. These hypotheses test whether or not one classifi-
cation is independent of the other two. If one of the abave
hypotheses is rejected, then an hypothesis testing whether or not

one classification is independent of one other classification (rather

than two) can be made.

18



With the Tinear model approach,parameters are added to
the hypethesized medel until the model fits the data. Then
various hypotheses concerning constraints an the model parameters
may be of interest, such as hypotheses of no linear effects
on each of the classifications. Once a model is fitted, it
is desirable to have th- test of the null hypothesis on each
separate effect in the model individually significant. Koch
and Reinfurt (1970) suggest deleting the nensignificant effests
from the model but warn that this may affect subsequent tests
oi" siynif.cance. For details the reader should see Koch and
Reinfurt (1970).
6. Examples

The data of Table 1 was take from Baltimore schools.
Information recorded was: 1) whether the child has been
referred by teachers as presenting behavior prou.ems or was
in the control oroup, 2} whether or not the mother suficred
any infant losses prior to the birth of this child and 3} the
birth order of the child in the study. The hypothesis of no
three way interaction will be discussed for the methods of
Pearson, waximum 1ikelihood, and minimum discrimination informe -
tion. |

This problem was discussed by Grizzle (1961). He used a
different iterative scheme than described here, but the results

are equivalent. Grizzle used the Pearson chi-square test statistic
I J K
(n

where Hig.s is any maximum likelihood estinate.

jk



An hypothesis of no three-way interaction for the maimum
ABC

likelihood approach would be HO: wijk = 0. The usual iterg.ijve
prdcedure can be applied to obtain the cell estimates with the
suggested initial value being nggi = 1. However, the estimates

converge to the estimates using N/{I x J x K) as the initial
value. The test statistic is

¢ = 2NEIEP; 5y Inlpy 5 /P 5,),
where In refers fo the natural logarithm and ﬁijk is the maximum
Tikelihood estimate obtained from the general iterative procedure
or (depending on the hypothesis to be tested) the easier formulas
presented in Goodman (1971a). Using frequencies rather than
probabilities the formula is

X = 2IIng 5 Mnlngg /g5,
where N3k is the maximum Tikelihood estimate for the frequency.

TABLE 3
Data of Kastenbaum and

Lamphiear (1959)
Number of deaths

Population Litter size Treatment 0 1 2
1 A 58 11 5
7
2 B 75 19 7 |
3 A 49 14 10
8
4 B 58 17 8
5 A 33 18 15
9
6 B 45 22 10
7 A\ 15 12 15
10
8 B 39 22 18 |
9 A 4 12 17
11
10 [ B 5 15 8

20



The data in Table 3 were collected in a laboratory wnore
the experiment was on litters of wice. The mice of different
~Titter sizes were treated with one of {wo treatments and the
number of deaths per litter before weaning was observed.

GSK used this example to illustrate the Tinear model approach

to multidimansional contingency table ana]ysis.'

r = 3 responses

i

s = 10 populations

Pio, P11, and PiZ arc the probabilities of observing zero, one,

and two or more deaths, respectively. Definc logarithmic
functions, (F(P)),

mig = 10 (Pyg/Pyy)

moy = In (Piy/P.),
where the functions are considered to be additive functions of the

overall mean, treatment effect and litter size effect.

As seen belcw

1

ITE-lD UDA+ ﬂo + b']O:

where uj = overall effect j=0,1

a. A treatment effect j=0,1

J
b]j - the fir:t Titter size effect j=0,1

The other bijls are defined similarly with the effect of the size
of the last litter being the neuntive of all the others and the

effect of B ireatment being the negétive of the A treatment.



By the above definition of the m's the following is true:

m-|0
!1’!20

M0

1™o1

=/

0

o




The general Tincar model is
F(P) = XG

where F(P) is the vector of m's above and § 17 a matrix

composed of ei ments that are the logarithm of the product of

the identity matrix times P,

1 0 -1 0 0 O ... 0 0 0
0 0 0 1 0 -1 0 0 0
“ o 00 0 0 0 1 0 -1
0 1 -1 0 0 0 0 0 0
0 0 0 0 1 - 0 0 0
o 0 0 0 0 0 ... 0 1 -1

Note that the first element is

Mo
= n(Py4/Ppy )

which is identical to the definition given earlier. Now,
substitute the p estimates for P into the matrices and
perform a weighted multiple regression analysis.

! ".I_X-lyh_TF

b=(xV %

with V and F as described in the notation given for the linear
model approach.

The test statistic is

x2 = SS(F(P) = X6) = F'VE - b (x'y"

b,

sum of squares of deviation from the model,

11

3.126% with t-u = 20 - 12 = 8 degrees of frecdom.



Berkson (1968) used the minjmum logit chf»square and the results
were equivalent. Berkson (1972) used iterative maximum likeli-
hood estimates and obtained a chi-square value of 3.159 with the
maximum Tikelihood method and a value of 3.175 with the MDI.

The tabled chi-square value at the .95 probability level
is 15.51. Therefore, the hypothesized model fits the data.
Now other tests of hypotheses can be made such as the test

for no effect of treatment simultarcously on m,

io and Mg This

hypothesis is HO:Q§_= 0, where
c=(0 1000000 0O00 0
-~ [ 000O0CO0O0O0OT1TO0O0 0 0_

7. Summary

In addition to the contingency table analysis problems
that have already been given, there are problems of small
frequency counts and ordered data. The only possible ways of
handling categories with very small frequencies is to delete
them from the analysis or pool them with other cateqories.
However, the interaction between the remaining variables will
be affected. This problem is discussed in Bishop (1971) and
(1975). Problems also arise w:en there is a natural ordering of
the categories and the assumption of normality can not be made
This is discussed in William (1972) and Weisburg (1972).

In conclusion, there are many problews with multidimensional
contingency table analysis. Recently statisticians have become
mgre concerned with analysis of such tables. Literature on con-
tingency tables is plentiful, but confusing, because different

methods must be used to handle specific problems.
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The analysis of multidimensional contingency tables is
often confusing. Basically, there are three methods of
analysis., These are: 1) maximum Yikelihood; 2) mininum
discriminationﬁinformation; and 3) the general linear model.

The form of the hypotheses of interest and the procedure
to estimate cell frequencies varies with each method. In
general, an iterative procedure can be used for the maximum
Tikelihood and the minimum discrimination information approaches.
The general Tinear models approach does not require prior
estimates of the cell frequencies. However, knowledge of
Tinear models .5 necessary.

The above three methods suggest test statistics which

are asymptoticaily equivalent,



