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LIST OF SYMBOLS

a Mean radius of cylindrical shell

.

b Effective bending length of flange in transverse
plane (See Fig. 3 ).

Cjm » ^ixn' ^3m* ^4m Coefficients or constants of integration which
Isatisfy boundary conditions.

d The width of the horixontal flange (See Fig. 4).

td$DFL
S

12 ^ Flexural rigidity of the longitudinal flange in bending
in the longitudinal plane (Shown in Fig. 4).

t* EDFT *
12fl- ii

1
)

Flexural rigidity of the longitudinal flange in bending
1 " ' ' in the transverse plane (See Fig. 3).

Dg » h3 E/ntl-n2
) Flexural rigidity of the cylindrical shell.

E Modulus of elasticity.

h Shell thickness.

i STY"

L Length of cylinder.

M
x , M, , M , , **ix Bending and twisting moments per unit length of

• * * section of shell as defined in Fig. 6 (positive directions
are shown in Fig. 6).

m Number designating term of series.

N
x*

N±* Mx*'
N
*x

Normal and "bear forces per unit length of section of
* ™ shell as defined in Fig. 6 (positive directions are as

shown in Fig. 6).

N^ = q a Membrane hoop force per unit length of shell.

Qx» Qx Transverse shear forces per unit length as shown
* in Fig. 6 (positive directions are shown).

q Internal pressure, lb per square inch.

t The thickness of the longitudinal flange (See Fig. 3).
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U Strain energy due to bending of the longitudinal flange in a
longitudinal plane.

U__ Strain energy due to bending of the longitudinal flange in a
transverse plane.

u Component of displacement in the direction of the x axis.

V Strain energy due to bending of the cylindrical shell.

y Component of displacement in the y direction.

w Component of displacement in the c direction.

x f y, z Rectangular coordinates (See Fig. 2).

a Root of characteristic equation.

)3 Imaginary part of root of characteristic equation.

y Real part of root of characteristic equation.



INTRODUCTION

This thesis is concerned with the mathematical determination of the

forces, moments, and deformations in a cylindrical shell of particular

design subjected to internal pressure. The shell is made up of two halves,

one of which is shown in Fig. I
1
. The two halves are bolted together along

the longitudinal flanges, and may be joined to other shells by bolting to

the transverse end flanges. This type o£ construction is used extensively

in jet engines, the bolted cylinder being used to house the axial-flow

compressor.

Simplifications are made to the general equations which describe

the bending of a laterally-loaded cylindrical shell (for small deflections),

and the resulting simplified equations are used in conjunction with the

principle of least work in order to evaluate the forces, moments, and

deflections of the shell.

Although the writer believes that the problem attacked in this thesis

has not heretofore been solved, the equations (and simplifications of

same) governing the deflection of a late rally-loaded cylindrical shell

were taken from Timoshenko'6 Theory of Plates and Shells , pages 446-

449. The strain energy due to bending of the shell and longitudinal flanges

is summed and then minimized, yielding expressions for moments, forces,

and deflections in the shell.

1 All figures in the Appendices.



DESCRIPTION OF PROBLEM

A sketch of a pressure vessel under consideration is shown in

Fig. 1. The shell has transverse flanges at either end, each of which

is bolted to adjoining shells. The cylindrical shell is made in halves,

bolted together with longitudinal flanges. The shell will need to sustain

uniform internal pressure.

The pressure loading will induce bending, shear, and normal forces

in the shell. The mathematical determination of such forces and moments

will be attempted here.

DERIV/TION OF EQUATIONS

The system of differential equations which describes the bending of

a laterally-loaded cylindrical shell (for small deflections) is as follows

(see Fig. 2 and Fig. 6 for explanation of the coordinate system, forces

and moments)*. *

8N 9N

**•
9N A 3N

inr +
'

a "5lP •v°
3Q

a ~g-
x- +

8Q
*

«•

8M .

ox

dM.
• + a Q . «=

8M, m
+ a

x
- - a Qwx * 0.+ a

9x

( 1 a,b,c,d,e.)

1 Timoshenko, S. , Theory of Plates and Shells , 1940, page 440.



The general solution of these equations for the problem under con-

sideration would prove too complex for practical application; hence a

simplification will be made.

For large cylindrical shells, the membrane theory gives satis-

factory results for portions of a shell at considerable distances from the

edges, but the theory wi 1 1 not satisfy the conditions at the boundary.

It is logical, therefore, to take the membrane theory as a first approxi-

mation and use the more elaborate bending theory to satisfy the con-

ditions at the udges. 1 In applying this latter theory, it must be assumed

that au external load is distributed over the shell and that only forces

and moments such as are necessary to satisfy the boundary conditions

are applied along the eciges. The bending produced by such forces can be

investigated by using equations (1) after placing q equal to zero in these

equations.

In the application considered, the ends x 0, and x * L of the shell

(Fig. 2) are supported by the transverse flanges in such a manner that the

displacements v and w at the ends virtually vanish. Experiments show

in such shells that at a small axial distance from the ends, the bending in

the axial planes is negligible, and one can assume M * 0, and G »

in the equations (l). One can also neglect the twisting moment M . . Withxv

these assumptions, the system of equations (l) can be considerably simpli-

fied, and the resultant forces and components of displacement can be all

expressed in terms of the moment M, .*

1 Loc. Cit. , page 446.

2 Loc. Cit., page 447.



From equation (Id)

Substituting this in equation (lc) leads to (for q )

'-V----f-^i*-- »V
Equations (la) and (lb) then give

8x*
a

dT 8x a* \ 8+* »« /

The components of displacement can also be expressed in

terms of M. and its derivatives. Beginning with the known

relations 1

•x'-ir'-EsOVV

„ »n 9v _ «l*|t) N

Vi5lr--s: --En-^ -•"*,)• «

i

Loc. Cit., pages 354, 355.



these equations lead to

£r"EF (*m
m **<

8x

8*v 1——— = —
2 THE 2(1 + |i)

9N
x l/8Nx
9jT

8N

d*w 1
a u

8 2N 8 2N
x

8 2n

8xJ fy* 2*1^)-^
8x

I &. 8 2n
- v

d
2

(7)

Using these expressions together with equations (3), (4), and (5)

and using an expression for bending moment which is

it is finally obtained for the determination of M the following

.idifferential equation of eighth order:

8 8 M. 8 8 M. 8*M. 9
aMA—1 + (2 + |i) a* *— + 2 *- + (1 + 2ji) a* $

8+8 8xto+t
8«J>* 8x*8*4

.4 9*M,
+ 2(2+n)

2 ^ gJt + (2+|t) a1 -i- + i
8x*84>2 8x2

8<|>
4

84M,

84>
4

8 8 M. a4** a 84M V

+ •"'—irr + (2 + »i)a2—7
i- + 12(l.,i«)-i. J-

&x*8«>2 8x289* h2 8x4
0. (9)

A particular solution of this equation is afforded by the expression

U - Ae-**.in-2^2L . (10)

1 Loc. Cit. , 448.



Substituting this expression in equation 9 and using the notation

m ua _ *

the following algebraic equation for a is obtained:

a8 + [>-(2+ |i)*nai + C(l+2u) * - 2(2+ u) >?+ «*

tf>|#4 (1 + u)* rf - (2+ u) tf] *a
(11)

+ 12(1 -n*)J^ J? = 0.
h

The eight roots of this equation can be put in the form

Beginning with the edge 4 * (Fig. 2) and assuming that

the moment M. rapidly diminishes as A increases, 1 only those

four of the roots (12) which satisfy this requirement are used.

Then, combining the four corresponding solutions (10), the fol-

lowing is obtained,

M e (Ci cosft | + C 2 sin ft a)

e"
Y** (C 3 cos ft* + C4 sinfe4) «m-2i£

If, instead of a single term (10), the trigonometric series

1 In large shells, the bending moment usually fades rapidly with distance
from an edge, if loading is due to uniform internal pressure.



"2
m=l,

<Clm cos «W + C2m sia
*lm >

an.
e (C3m cos fi^i + C^ «in p^ *) 8inJ22^iS (13)

is taken, then any distribution of the bending moment M along

the edge 1 = can be obtained. Having an expression for M » the

resultant forces Q,, N t , and N are obtained from equations
*- x u

(2), (3), and (4).

APPLICATION OF THE PRINCIPLE OF LEAST WORK

Now in order to determine the actual distribution of moments and

forces in the shell, the principle of least work w 11 be used. This

principle can be stated as follows: Of the infinite number of load and

moment distributions in the shell which could possibly satisfy the con-

ditions of equilibrium, but which do not necessarily satisfy compati-

bility, the true or compatible distribution has the least strain energy

in the system, all other non-compatible stress distributions having

greater energy than the true one. 1 In applying this principle, one needs

only to calculate the strain energy in the entire system and minimize it.

To do this, only the energy due to bending will be determined, since

it can be shown that energy due to shear, tension, and twist is negligibly

small. The energy in the entire system will be broken into three parts

1 Den Hartog, J. P. , Advanced Strength of Materials , 1952, page 212.



as follows! (1) energy due to bending of the cylindrical shell, (2) energy

due to the transverse bending of the lcngitudinal flanges in transverse

planes perpendicular to the center line of the cylinder (see Fig. 3), and

(3) energy due to bending of the longitudinal flanges in a longitudinal

plane containing the center line of the cylinder.

ENERGY DUE TO BENDING OF THE
CYLINDRICAL SHELL

Half of the energy, V , in the shell will be 1

L %/ZL V2 « r~my

2D"
m=l, 2, '5

*§m*
(14)*

. » m »x
»in rj- .+ e (C3m cos p^ + C^ sin p^ :

)

Performing the indicated integration, the following expression is obtainedi

1 Since the loading and shell is symmetrical about the axis of the shell,

only one half need be considered.

2 The terms involving sin —-— sin —j— , where m * n, have been

omitted since they produce terms which are sero when integrated between
the limits and L.



t

* m»l
h Clm +

h.5C*3nSh
Cl
Zm+ h.tf*f ^Im^

+ I
3 .5

C3mC4m +
*
ClmC3m+ C2mC4m) X

4

+ (C.mC3m-C2mC4m)
I
4.5

+<C2mC 3m-C lxn
Cto) 1

5 _ <
l5>'

+
<ClmCtei+C2mC3m) I

5.5

Now, in order to minimise the energy subsequently, it will be

required to obtain the following quantities!

9V av av
9V. 8 8 8

TOT"' ac. ' ae. * &e, •

lm 2m 3m 4m

These quantities can be found from equation (15) by partially differ-

entiating as follows:

9V
8 aL

acT" " "4lB~lm s

2I
1
Clm+ X

3
C2m + <X4

+ hJ C3m *$>9rV C4m . (16)

3V aL

2m s

2l
2
C2m + h Clm +

<
X4 ' X4.5> C4m + <X5

+ X
5.5>

C3m
l_

. (17)

9 V aL

tc~t "is-Jm g

2 X
l . 5

C3m + h. 5
C4m+<V X

4. 5)
Clm+<V h. 5>

C2m . (18)

8 V aL

5cJV "4D74m 8

2 I
2.5

C4m + I
3.5

C3m+ <
X
4 " X

4. 3)0^4 d5 g
- tt«L^ . (19)

For identification of I. , I. -, I,» etc. see Appendices, Eq. 1-10.



ENERGY DUE TO THE TRANSVERSE BENDING
OF THE LONGITUDINAL FLANGE IN TRANS-
VERSE PLANES PERPENDICULAR TO THE

CENTER LINE OF THE CYLINDER

10

Consider Fig. 3. The transverse bending of the flange is depicted

in Fig. 3 -a. In calculating the energy due to bending in the transverse

plane, the axial load Q m Q
will be neglected since it can be shown to

have a negligible effect on this bending.

From equations (3) and (13),

N 1 8 2M
<£(>

_
oo —

-4 Z HU*4»H
»ttf m=l '

—

lm

* 27lm Plm C2m+ (Ylm" ^Zm* C3m* *72m P2m C4m

(20)

_._mirx

The variable bending moment, M , is determined from Fig. 3-b as

From equation 13,

m«l

(21)

Let the bending energy in the flange in a transverse plane be

UFT , where

L b

"rr'Ti=i j>« d
e *

r-b

^Vt Jn X^F1 *—
( m=i

(C, +C, )sin 9U£.l
* lm 3m' L a

m»l'

—

^m-^JClm



11

27lmPlm C2m+ *\mf ^Im^m" 272m^m C
4m_

sin
mix

+ qae + qe2Af 4 dx (22)

Performing the indicated integration and partially differentiating, the

following is obtained:

8UFT = 1 \ bL

*C ^T^" (A„-?,„)2a * lm plm x lm 3m'

b2L T "Ja-^lm'^lm^ < 1f,lm-PF
lm> Clm (23)

" 2Ylm hm C2m+ <*2m " ^2m >
C3m" 272m P2m C4m

&
2 L

FTvm
ii^a

m+1
abJ 1

^lm " P'lm I

1 b
1 3T <*lm-P\m>



8UFT
3?

bL
2d:3m FT

1 - 7r-(^:2m *»0 <c
i 3m

" 27lm ^lm C2m + <7 2m * P*2m >C3m " 272m P2m C4m

ba L
S=£'FT m 1 + (-1)

m+1
a 1 b (T

2
, -P* )

b 1 b
TT T " 4T" ^2m~ p 2mW- " P

2^ )

12

*UFT
B

27lm Plm ^
TZZL nSZZ ?7- (Clm+C3m> '

2m FT ^lm -^lm*
Clm

lm rlm 2m * 2m r2m ' 3m 2m r2m 4m

+ULLwm ("T
+X

(24)

• T |jT " la" (722m * P*2m >J J7\m " ^lm J
Clm (25)
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9UFT
3C"4m

2*2m ^2m b* L
~? (Clm + C3m > " TTaDFT

(7*, - p* )C.lm , ' lmim

2Tlm Plm C2m * *7 2m * ?Zm I
C3m " 272m P2m C

4mJ (26)

+ ^m ("3 +
"tJ **3j •

Thus equations (21) - ( 24) define the rate of change of the strain

energy (due to transverse binding of the f . ages) with respect to the

four coefficients C, , C-. C- , and C.lm' ~2m' 3m' '4m*

ENERGY DUE TO BENDING OF THE LONGITUDINAL
FLANGE IN A PLANE CONTAINING THE CEN-

TER LINE OF THE CYLINDER

The strain energy due to bending of the longitudinal flange in the

longitudinal plane (Fig. 4) will be denoted by Up. , where

L . vl
d*w
dx2 dx |

'FL

where djW

dx2
is developed in Appendices (see equation v ); from this

FL

2D

'FL 2(Eh):M 2 »• J

h/z

7 (k, c. +
Li lm lm K, C,2m 2m
m=l

I

+ K- C, + K, C. ) sin *L*2-
3m 3m 4m 4m

'

L

(27)

dx.



14

Now, the rate of change of U_L with respect to C. , C. t C- ,

and C,^ will be found.

dUFL DFL fW£ '
(Eh) * a. Jq

Klm (Klm Clm + K2m C2m + K3m C3m

+ K4m C4J»in2ELT^dx (28)

DFL L

"TTT Klm ^lm Clm + K2m C2nS K3mC3m + K4mC4m>-2(Eh)' a8

9UFL DFL L

WB£ =

2(Eh)2 a8

K2m ^lm ^ + K2mC2m + K3mC3m + K4mC4m) * <
29>

9UFL ,
K3m 8UFL M*£ m *S *£r (30)

^r" *2m «S "

(3I)

SUMMARY OF TOTAL STRAIN ENERGY

Now the total strain energy will be summed and minimized. From

equations (15), (22), and (27), the total strain energy UT is

UT * V s
+ UFT + U

FI/ <32>



In order that the strain energy in the system be minimum, the fol-

15

lowing equations must be valid:

TVlm

8U

au.

TC *

(33)

3m

au„

-wc
s .

4m

From equations (16) through (19), (23) through (26), and (28)

8UTdV 8U_ 8U-
through (31), ^m , a/i , -^r— » ;TCT" • "8TT,lm 2m 3m 4m

8UT a L
1 lm 3 2m * 4 4.5' 3m

+ < I5.5- I5) C4m
. bL
+
-2irFT

1 "s-< TL-» ii»> < c
im

C- ) -
3m T "32"^\m "^lm* (T,lm'^lm* Clm

2*i«*i« c*« +
( *V™ - ft™ ) •*••^ fe. clm Klm 2m 2m K2m ' 3m 2m K2m 4m

wmDFT
1 (-1)

m+1 T ""3T <

7l
lm^lm'

-5-
3 "4T l*\m*ttm)

PFLL
*^«fc->«l

2(Eh)* a> ,8 'lm * lm lm
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Letting

1 . ° (y* - p\ )
= F, ,2a x lm rlm '

IT^Zm ' P 2m

2m 2m 3m 3m 4m 4m '

'

1 b fv*

i-tc-^-pV™)-** •

4--^^lm-Pl

lm)
tBG^

N»
= -T-4T- (Y

lm"
p2
lm ) »

N^4--4a~^Zm-^Zm)' <34>

Y lm * "lm " H* '
J>«M^

^Zm-^Zm^' *- 2Wzm'

the first of equations (33) becomes

all b v D_ T K*
. + .

( F
b

Gl H,)+
FL

*
m

a
Z(Eh) 1 a82D ZD„- s FT

c- +

(^
b'Jid D_ T K. K, N

* * FL lm 2m
* .8Za DFT Z(Eh)* a

c^ +

L^ u+l4
-
5) (33a)

2DFT
(Ft -|-G1 Ha) +

DFL KlmK3m
2(Eh) a a8

C3m+ ir^.s-V

,

g* ,

DFLKlm K4m
ZaDFT Z(Eh)» a fl

'4m
£ T+(-i)

m+1

TTT _ m _
(aGj + ^Nt).

I

Also
auT av

B
aurT auFL^ =^ +

^m~
+

^Im
o.

or simplifying, one is led to
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al
3 . V (l

hH
l) ,

DFLKlm K2m

57 Mn\7,ir/ 2<Eh)*a» J
c. +lm

al

IS
*V*
6a*DFT

DFLK 2m
2(Eh) 2 a8

_.
2m.

ja
i
b* A bH

2^i^-rxg^^T-ja^ (-2—31
( I. + I* 1

)

+

DFLK2mK3m
2(Eh) 2 a8

C3m +
a

4TT
(I

4
-I

4 . 5
)*

J
l
J
2
b'

6%*DFT

DFL K2mK4m
2(Eh) 1 .9 '4m

* b' J
l a

+ b

wa DFT
m

m+1
(35)

Also,
au

T 9V, 9UFT »oFL

or simplifying, this becomes

Itbj <V'4. >)+,DFT V
.aau

* a

DFL KlmK3m~
| £

2(Eh)*a8 'm

[w I I, L c ) +

baj
l
G
2

5
T15.5' T Tn3FT

DFLK2mK3m
2(Eh)» a8 2m [V 1 -

+ 15~- < F2-T- G-H- )/FlK 3m

^FT 2 a 2 2 2(Eh)*a8 J
C3m + ST X

3.5

DFLK3m K4m
2(Eh) 2 a8 '4m

qb*

FT
< aC2

+ -2- N2>
1 + (-D

m+1

m (36)



And finally,

18

8U,

Sc"4m

8V
. ,

8UFT .
8UFL .

or from equations (19), (26), (31), and (34), the following is obtained,

"a .. . ,. h* (l b - \
,
»««1»'W

'lm

J^b'j, D_. K, K.
*

(I j ) + _i L +
_FL_2m__4m

3^7 4 4 * 5 6aIDn 2<Eh)*a«
2m

al
3.5

"3D"

J
2
b«

TTdFT
b „ \

L

DFLK3m K4m
2(Eh) 2 a2 ,«

al

3m
2.5 '^
2d~

8 6a2DFT

DFLK 4m
2(Eh) a a8

qJ
2
b'

'4m
a »D

>*;
FT

m
m+1

(37)

DETERMINATION OF MOMENTS AND
FORCES IN THE SHELL AND FLANGES

Now in order to determine the bending moment M , , the normal

forces N, and N , the shear forces N. and N . , and the transverse

shear force Q . , one needs first to solve for the negative roots of

equation (11) for various values of m(m = 1, 2, 3, . . .) or for the four

roots

a
l,3

e "
<>i

±i ^)» a
5,7

c " (*t #l04 )«

Then with these values, one can solve for the coefficients of C. , C, ,im cm
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C, , and C, in equations (33a), (35), (36), and 37. Having the coef-
3m 4m

ficients, one can solve for Clm . C^, C3m , and C^ by solving equations

(33a), (35), (36), and (37) simultaneously. It is obvious from these four

equations that the equations become homogeneous for even values of m,

and, consequently, Clm
= C^ = C3m • C^ = for even values of m.

After obtaining the values of the coefficients Clm , C2m , C3m , and

C. , it is an easy matter to determine M, from equation (13), Q^ from

equation (2), N. from equation (3), and N. from equation (4). It must

be remembered, however, that forces, N' , determined from the mem-

brane solution must be superposed on those determined from the above

edge >bending solution, where

N» q a .

9

DETERMINATION OF RADIAL DEFLECTION OF THE SHELL

The radial deflection obtained from the membrane solution must be

superposed on that obtained from the bending solution. The deflection

obtained from the membrane theory is w , wherem

The radial deflection obtained from the bending theory can be obtained

from integration of equation (iv) in the Appendices as follows:
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T * V
(K, C. + K, C, + K, C,

i

x lm lm 2m 2m 3m 3mB tEha4 *£. , -m=l ,:>,!>,«••

"WW-z,""*8?- Wm

The total radial deflection will be w. , where

Wt* Wm + WB* (40)

NUMERICAL EXAMPLE

A numerical solution for the moment and force distribution in a

cylindrical shell was attempted. The dimensions of the shell were as

follows (Figs. 2 and 3):*

L * 32. 0, a • 9.70, h = .204, b * .705, t = .662, |i * . 3, c = 1.08,

q * 100 psi,

D
s

a 1. 789(1 0)-4E, D
ft

a .02657 E, D
fl

= . 06949 E, E » 10(10)* psi.

Equation (11) was solved for the negative roots for values of m from

1 to 9» these values were found to be as follows

»

m ?! H y* H
1 3.195 1.314 1.318 3.187
3 5.860 2.141 2.418 5,194
5 7.906 2.622 3.260 6.366
7 9.745 2.941 4.012 7.144
9 11.489 3.155 4.720 7.664

1 This expression yields the radial deflection at the edge < = only.

2 All dimensions are in inches.
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Equation (11) was solved by the use of Underwood's Elecom 120 digital

computer, and the accuracy obtained was very good. 1

H* h.5' h.S* h' J3.5» h' J4.5' andI5.5 <8ee Appendices) were

computed by the use of a Burroughs El 01 computer.' These values we re

found to be as shown in Table 1

.

The K values (see Appendices) were also evaluated by the use of

the El 01 computer. These values are shown in Table 2.

The coefficients of C. , C^' C
3m » and C4m in equations (33a),

(34), (35), and (36) were also calculated with the E101 computer. These

were found to be as shown in Table 3. Equations (33a), (34), (35), and

(36) were then solved simultaneously for C. , Cjjm, ^3m* and ^4m

by use of the Elecom 120. These values were found to be as follows:

lm 2m 3m 4m

1 68.482 .175.332 -49.886 24.438
3 36.814 -78.788 -24.596 8.368
5 16.724 -49.836 -11.691 12.493 5.20
7 7.519 -18.817 -4.859 2.265
9 4.297 - 11.998 - 2.742 1.536
11 2.36 - 6.40 - 1.55 .66

C. , C-* £$—» an<* ^*^ versus m were plotted on semi-log

paper, and it was found that C. , C-, and C, plotted as straight

lines. At the point where m = 5, however, there was a large discon-

tinuity in the curve of C *^ versus m. The calculations (involving C^)

were exhaustively checked, but no error was found. In order for the plot

of C^, versus m to form a smooth curve, it was found that C^^ should

1 The Elecom 120 computer has a storage capacity of 1000 words.
2 The El 01 computer has a storage capacity of 100 words.
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be 5. 20 at m = 5. It is disturbing that only one curve has a point of

discontinuity; this seemed to indicate that the C values for a large

number of m values should be calculated in order to insure convergence

of the solution. Values of CJm , Cj^, C3m , and C^ were determined by

extrapolating the C - versus • m plot on semi-log paper, in spite of

the possible danger of discontinuity. These values are shown above.

This was done in order to improve convergence.

M.
Q

, N. , and Q,
Q
were calculated from equations (21), (20), and

(2) respectively. These values were plotted versus -£- and are shown inm
Fig. 7.

In order to check the solution, the slope, —rr-. , of the shell at
ac,

*|**o
the junction of the shell and flange was calculated. To accomplish this,

equation (i) in the Appendices was integrated four times with respect to

x and then differentiated with respect to +. This lengthy manipulation

results in

dw

«0 Eha*«* Lj
. . _

m
m=l,3,5, • • •

<*lmKlm + eimK2m> Clm

+ <*lmK&n * PlmKlm >
C2m +

<*2mK3m

+ P2mK4m >
C3m +

<*2mK4m " ^m K3m >
C4m in-2££. (41)

8w™r was calculated and plotted versus -5- and is

Fig. 7.

shown in



23

DISCUSSION

The plot shewn in Fig. 7 of M. mQ , Qx_ » a»d N. =Q
indicates fairly

good convergence for these values. Apparently several more terms of

the series should have been used in order to get smooth curves (the

dotted lines in Fig. 7 show actual values calculated, whereas the solid

lines show average values). The reason that more terms of the series

(series in equations (21), (20), (2), and (41) ) were not used was because

of scaling problems with the above-mentioned computers. In all, 22

separate programs were written and "debugged" for the £101 computer,

and each program had scaling problems. The scaling range was exceeded

after m = 9, and the writer had not the time to rewrite the programs.

The whole analysis could be programmed in floating point on the IBM 704

which would eliminate scaling problems, but this would not be justified

until all errors are definitely eliminated.

The signs of all values calculated seemed right except that of M , .

and - vi . In calculating these two quantities, however, large

numbers which were almost equal were subtracted. This indicated that

the correct degree of accuracy was not obtained with the £101 computer;

i.e., in the automatic computing sequence, possibly significant figures

were shifted out of memory and lost. This again is a scaling problem,

and it is apparent that a hand calculation is out of the question, since it

would be humanly impossible to make the number of calculations required

without error.
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Exhaustive checking was done on all calculations made, and only one

minor error was discovered and corrected. One thing which indicated

that fairly accurate results were obtained was that, although the coeffi-

cients listed in Table 3 were calculated independently, the following

reciprocal principle held:

This can be noted in Table 3.

To further check the accuracy obtained, the change in slope at the

junction of the shell and flange was determined by the analysis indicated

in Fig. 3) i.e. , by calculating the slope change due to the loads exerted

on the flange. This was done for -*- .5 using the following loads

{taken from Fig. 7):

V' 70^' <W 14 - 2
-tn-. . Vo-- 50

Tn7 '

dy I

The slope will be -y»— , where
d*

I
frO

• .000908 radians in this case.

This change in slope is opposite in direction but equal in magnitude to

that indicated in Fig. 7.

If one were to assume the cylindrical shell infinite in length and a

uniform moment distributed along the side 4 = 0, one would find that a

moment of M in. -lb would be needed to correct this incompatible change
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in elope, where
2D

M = -(. 000908 + . 000907) ~

or M = - .213
m *

"

— in this case. Hence, although the incompatible
Hi

change in slope appears to be a serious error, it apparently is only

the result of inadvertent loss of significant digits in the use of a small

digital computer. Hence, additional work needs to be done in program-

ming snore carefully, possibly using a larger computer. Unfortunately,

the writer had neither the time nor the facilities required to accomplish

this.

CONCLUSIONS

An approximate solution for a cylindrical shell with two longitudinal

flanges loaded by uniform internal pressure has been presented by per-

haps using the only possible method - the theorem of least work.

Although this energy method is probably the most powerful tool available

for the analysis of such problems as presented in this paper, it appears

also to be probably the most laborious tool one could use - as is evident

from the almost astronomical number of calculations which were necessary

in the solution presented here. Only the use of automatic computers can

afford such a solution as has been made in this thesis, and the whole

analysis could be performed by a single program using a computer com-

parable to the IBM 704.

The analysis presented is valid only for points in the shell at distances

of three inches or more from the ends because of the end effects on the

bending of the shell. The reasons for this are explained in detail in the
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Appendices. These end effects render the analysis invalid because the

shell was assumed simply supported and because the resistance of the

horizontal flanges to the shell deflection (due to the uniform internal

pressure) was neglected. .As shown in the Appendices, these effects

dampen out at distances of approximately three inches from the ends.

The analysis was performed essentially by evaluating the first

five terms of the various series defining M,
3

« N,
Q

, Q^qp etc.

(e.g. see equations (13), (20), and (41). Figure 7 indicates the degree

of convergence of the solution, the dotted lines showing the actual mag-

nitudes calculated. It would appear that three more terms would provide

good convergence of the calculations » i.e. , the calculations should at

least be carried through to m = 15 in the various series.

Poor accuracy was apparently attained in the calculation of M . „.

Exhaustive checking of both the theoretical and numerical work failed

to turn up anything but small errors which changed the result only slightly.

Since the calculation of M. « involved subtracting large numbers of the

same relative magnitude, it is believed that not enough attention was paid

to scaling problems involved in the use of the automatic computers,

significant digits being inadvertently lost as a result. More work with

a larger computer would have rectified this problem, but unfortunately

the writer had neither the time nor the facilities available.

An incompatible change in slope at the junction of the flange and shell

evolved in the numerical solution. Since the theorem of least work assures

that compatibility be satisfied at all points within the system, this is an

apparent paradox - since the junction of the shell and flange represents

points internal in the system. Exhaustive checking of both the develop-
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ment of equations and the numerical calculations failed to reveal anything

other than minor discrepancies (which were corrected). -A detailed search

revealed that the discrepancy most probably was the result of scaling

problems involved in the use of the digital computer. In fixed-decimal-

point calculations, significant digits were apparently shifted out and lost,

and since equation (41) (the equation for change in slope) involved adding

and subtracting almost equal numbers, inaccuracy in the final result

occurred. This loss of significant digits could easily occur in any or all

of the twenty-two separate programs written for the El 01 computer. An

exhaustive study of significant digits in the mountainous calculations would

have to be done, and appropriate scaling (that would insure that signi-

ficance woul d not be loat) of all computer programs would be required.

An easier approach would be to use a larger computer with floating-

decimal-point calculation. Unfortunately, the writer had neither the time

nor facilities available for such an approach.

Although this paper has not presented a usable solution to the designer,

it is believed that only more numerical work would be required to verify

the numerical technique required for a complete solution. To be in

usable form, the solution would need to be programmed on a large com-

puter with input data easily inserted.
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Development of
d2w
dxJ

FL

Differentiate the last of equation* (7) with respect to x, as follows:

8*w
a

= a I
|

*x* 8x4 Eh •— V

8«N 8*N a4N

8x4
+ 2(1 +K)—f*8x4 / 8x38$

, 84N
1 / x

8 4N
. j!

a v 8. 2 8xz 8x2 8<*

Now, substituting the expressions for N , N , N from equations

(5), (3), and (4) in terms of M in the above equation leads to

84w 1
i s —

—

8x4 Eh a4

~8*M

d 4

4

8*M
+ 2a 3 1 +a4

8*M d*U
X. +

8x*8<:4 dx*d$* d *

i-+(2+H)a
I-

84M

8x*92a 2
• (i)

Now, substituting equation (13) in (i), (for 4 , 0) the following is obtained:

8V

8x4
«0 Eha* m*l

[>lm+
l5^lm *\» <C " ^Im > " ^lm] Clm

+ Zhmhm \***%Am " 3(7*lm
+ ^lm >]

C2m

+

J* 2m
T

2m «*2m " 3 <*\m+ »*2m>]+ 2 ?>~P2m p2m V10y \ 4m
m ixsxn—Jr
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2aV »*[^T*lm .6r l̂m + ^m )Clm

' 4Tlm *im < ^im ' ?tm >
C2m+ ^2m*6lr*2m^m+*U C3m

.1<* ~
*J 2aV m*

• 4y2m P2nS 7*2mha)C4m

* Am " ^lm •
Clm * 27lm *im C2m

+ (l*Un " P2m) C3m - 2 *2m»2m C
4»J

**4|

) tin
mix

1 >V m*

L L4 5 J
•in

m »x
(ii)

Integrating equation (ii) twice with respect to x and observing that at

the end* x • 0. x • L t
—~ * 0, the following is obtained*
la*

8x»
«0

Eha* m»l/ '

—

rays:
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2a>-

m=i'
«*-»>m* <*lm " 6YlmC + ^lm )Clm ' 4hmhJAm^lniCZm

m* x

2m ^2m 4ma sin
m ffx

(iii)

For simplicity, this equation may be represented as follows:

3*w

where

bZ (KlmC lm+K2m C2m+K3mC3m+KtoC*„)'1'1nf£
' <

iv>
- En. &

<h«0 m=l

ir ni

a ' lm lm Klm Klm '

#1

|]_2
+„)a»-.*i^| <*lm -*m >.

K2m

.(ia.-JiL 4TIm »im (T,

Im -(Clm )

** m
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K
3

is the game as Kj except Tr

lm> p\ are replaced by 7- and

p\* respectively, and

K4m iB the 8ame a8 K2m excePt ?2m and ^2m rePlace Y
i

and

Pj respectively.

&2__ I

But this expression for only accounts for the curvature of the
8x* •

flange due to the edge moments'
3

and forces. The change in curvature

due to the pressure loading on the shell should be superposed on the

above expression. The exact expression for the deflection of a cylindri-

cal shell of finite length with axial stiffeners and loaded with internal

pressure (deflection in a plane containing an axial stiffener and the center

line of the cylinder) would be an extremely difficult expression to derive.

This thesis is concerned primarily with stresses and deflections at points

at considerable distances from the ends of the cylinder, and it can be

shown (for the sixes of cylinders considered) that the assumption that

pressure loading causes no change in curvature of the axial stiffener

(horizontal flange) is an assumption which results in small error. We can

take the extreme case of an infinitely long cylinder with uniform internal

pressure and with axial stiffeners; then one can see that there will be no

bending in the axial stiffeners. For cylinders of finite length, one can

estimate the magnitude of error (in assuming no bending in the axial

stiffeners) by assuming the axial stiffeners to be bent so as to conform

to the deflection shape of the cylinder, and then by calculating the resulting

bending stress in the axial stiffeners. The magnitude of this stress would

indicate whether the bending of the stiffeners is significant. Consider

Fig. 5. Consider the cylinder in terms of a beam on an elastic foundation.
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infinite in length, built in at the end, and loaded with a uniform pressure.

The curvature at a point x is

dx* * T|X
2tj

a
*»
X

where _^
B = e"^ sin tpc, A « e ^ (cos tpc + sin tpc ),

Eh 1.285K -^-
\Z~aF

A plot of A and B versus Tpc will show that both decrease to zero
tpc tpc

before tpc exceeds 3. For the si»e of cylinders considered in this thesis,

t| is equal to or greater than .9. hence the curvature (and the axial bend-

ing) diminishes to a negligible quantity at distances of approximately three

inches from the ends. Therefore for cylinders of lengths of 25 inches or

greater, the axial bending would be negligible over the greater length

of the cylinder. Hence the bending of the axial stiffeners due to uniform

internal pressure will be neglected, and it will be assumed that the only

change in curvature will be that given by equation (iv), or

d'w
r
8'w

d xa 8 x2
fv)

4*0.



36

aL

4D
6 m=l

I

r/2

Evaluation of V (See page 8)
s

-27, «i>

C? e
lm +C*lm 3m

-2T, <fc£m
' in je cos P2mv

+ C 2m e" '

lm 8inl hm * + C24m e" ' *" sia ^» •

+ Clm C2m e
2Ti~4>lm

2W
sin 2pim* C3m C^e sin 2^*

+ e

"
(Yl-+72- ) - [cos (p

xlm"3m w »1» K2m,

+ P2r»K + COSiw w*3

+ C2m C4m GJ
08 ^lm" W* " C°8(Plm + *2m Nj

+ Clm C4m [8ia< Plm +
Pfen N - *M hm ' ?2m >]

+ C2m C3m [8in< ^lm
+ ?2m > + 8ia

< ?lm " ^2m >*>

r
w/z

' ZW
Ij = \ e **" cos* plm <: d$

d<i> .

*w4J
2y* + a*lm rlm

_ ^lm ^lm

+ e («i*»Plm

2^y-r !iW) 1
Ylm Plm / _|

' (1)
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Let I.
5

I. , except that 7, and p\ are replaced by 7- and Pjjm'

respectively. (2)

X
2 " Li

V2
. 27lm f

sin2 Pjm4 d<j>
lm m

«*/
- e

lm
sinwp^m +

^im^lm) lm

(3)

1 7 - a I_, except that 7. and {J. are replaced by 7-l_ and p\, . (4)
'2. 5 *2' lm Hm

b*
'/2 -27lm

8i* *W

2m """ K2m'

""lmPlm .,

2(7

(5)+ cos irp\

Jl

I, , s I-, except that 7, and fL are replaced by 7~ and {J- ,

respectively.

'<-£
'o

co. *»jm -^ ) «4

^Im * ^2m Tlm + r2m

<rim+ T2m >' + «W P2m>' TW 2̂m

+ e

-<7lm+72m)V2
tin

-Z ^lm-P2m)

7lm + 72m

h^?;2m
CoS -T <Plm " ^2m > (7)
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I.
5

I., except that -fijrn is replace<* by +p2m* (8)

^m " P2m !

<*lm
+ yym^ + kirn- P2m>

2
1 - e

-OS™* ^5»«,)-^ylmT '2m'~7

lm 2m
+ t^tlm K2m

8in -T^m-P2mLf^

,

co6T^lm-P2m)

(9)

L .5 I_, except that -P^ i8 *cPlaced by +P2m" (10)

Then

aL

s
ZLI

i
C Un + I

l. 5
C23m + I

2
C22m + h.5 C*4m

m=l

3 lm 2m 3. 5 3m 4m * 4 4. 5 ' lm 3m

+
<
J
4 * J

4.5 )C2m C4m +
<
X
5.5 " J

5 )Clm C4m

^V^S^ZmSm
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TRANSVERSE FLANGES

Longitudinal Flange

Fig. 1 Cylindrical shell with longitudinal and transversa
flanges
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Fig. 2 Coordinate 3ystem used.

Shell

fa**]*)

(m**+7«)

(a)

/

<sw

fa* +7")

•4
/

nn +$

(b)

Fig. 3 (a) Loading of flanges.
(b) Analytical model of flange.
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X-

2-

/ / yy / W

Fig. ^ View of longitudinal flange in a plane containing
the center line of the cylindrical shell . The
ends will be considered simply supported,
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^J ' //^£s'j

>X

Fig. 5 Semi-infinite beam on elastic foundation.

* '

(a)

*HF*

Fig. 6 (a) Forc«s
(b) Mome-its

•V^*

(b)
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The object of this thesis was the mathematical determination of

forces, moments, and deformations in a cylindrical shell comprised

of two cylindrical halves bolted together along longitudinal flanges,

the two halves having transverse flanges at the ends which can afford

assembly to adjoining shells. The shell is subjected to uniform

internal pressure.

Simplifications were made to the general equations whi ch

describe the bending of a laterally-loaded cylindrical shell, and the

resulting simplified equations were used in conjunction with the prin-

ciple of least work. The strain energy due to bending of the shell and

longitudinal flanges was summed and then minimised, yielding expres-

sions for the forces, moments and deflections in the shell and longi-

tudinal flanges. A numerical example was included to demonstrate

the use of the developed method.


