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INTRODUCTION

Mass Transfer Cooling

The problem of maintaining structural integrity of parts subjected to

high convective heating rates is of interest in this report. There are

two possible causes of high convective heating. The first is viscous

dissipation in the boundary layer. This occurs, for example, when a space

vehicle reenters the earth's atmosphere. The second is convection heat-

ing by high energy fluid streams, such as those encountered by turbine

blades or rocket nozzles.

Thermal protection of structures experiencing high convective heat-

ing is often necessary to prevent their failure. One way to achieve

thermal protection is by application of mass transfer cooling.

Mass transfer cooling involves the displacement of material from a

surface in order to protect it from high convective heating. There are three

fundamentally different types of mass transfer cooling; (1) ablation, (2)

film cooling, and (3) transpiration cooling.

In ablation, the surface of the part to be protected is constructed of

a material which undergoes thermal errosion (ablation) at high temperatures.

Ablation accomplishes cooling in two ways. First, the ablating surface acts

as a heat sink, thus shielding the material underneath from high heating flux.

Secondly, the ablation products alter the boundary layer in a manner which

reduces heat transfer. Ablation has two major advantages. It requires no

auxiliary equipment (pumps, valves, etc.) and it is self regulating, i.e.



higher heating rates increase the rate of ablation. Ablation has two

major disadvantages. First, as the surface errodes away, the surface area

changes, causing a change in the external flow characteristics. This

renders it unsuitable for cooling turbine blades or rocket nozzles where

flow passage geometry must be preserved. The second disadvantage is that

after the protective surface has erroded away, the structure it was protect-

ing is left vulnerable to severe heating and probable failure. Ablation has

been utilized successfully for thermal protection of reentry vehicles and

for short duration firing rocket nozzles.

Film cooling involves pumping a fluid coolant through discrete slots

in a surface. The coolant forms a film on the surface which protects it

from high convective heating. Special emphasis must be placed on the size,

shape, and position of the coolant outlets in order to avoid irregularities

in the film and to achieve complete filming of the surface. This is

necessary to avoid local hot spots. Any irregularities in the film at the

injection ports will become enlarged downstream. Film cooling is often

used to cool turbine blades and vanes.

Transpiration cooling is accomplished by forcing a coolant fluid through

a porous material. Transpiration cooling involves two mechanisms to

accomplish thermal protection.

(1) The pores in the material greatly increase the
contact area between the coolant and the matrix,
thus increasing the convection cooling of the
matrix.

(2) The injection of the coolant into the boundary
layer alters the temperature and velocity dis-
tributions in a manner which reduces heat transfer.
This is called the "heat blockage" effect.

Heat blockage effects are most pronounced in laminar flow regimes. This



is largely due to the absence of "washing" of the surface which is present

in turbulent flows. Washing causes destruction of part of the coolant film

on the surface thereby reducing the heat blockage effect. One major dis-

advantage of transpiration cooling is that it causes large temperature

gradients in the porous matrix.

Transpiration cooling requires the same basic equipment as film cooling,

the major mechanical difference being the method of coolant injection. Other

differences include the coolant distribution over the surface and the internal

heat rejection feature of transpiration cooling. Due to the mechanical

similarity of film cooling and transpiration cooling, the two are generally

applicable to the same types of cooling problems. The major similarities

between ablation and transpiration cooling are that they both possess the

internal heat rejection feature, although it is accomplished differently in

each method, and that they both provide the boundary layer heat blockage effect.

A brief survey of work in the transpiration cooling field prior to 1960

is given by Leadon (1) . Kelly and L'Ecuyer (2) review the literature per-

taining to transpiration cooling and report on the state of the art up to 1966.

Kelly and L'Ecuyer (2) discuss experimental results which indicate that

low molecular weight gases are more effective transpiration coolants than

gases having relatively high molecular weights. The reason for this has

been attributed to more effective heat blockage by the lighter gases. How-

ever, gases with low molecular weights tend to have relatively high specific

heats, therefore it is also possible to attribute part of their increased

effectiveness to greater heat absorption during the period of contact between

the coolant and the porous matrix.

Numbers in parentheses refer to references.



Transpiration Cooling with Reactive Coolants

In order for a gas to be effective as a transpiration coolant, it

should be able to fulfill certain desirable requirements. These requirements

include maximum heat absorption, maximum heat blockage, oxidation control,

and fuel value after entry into the free stream. A coolant which undergoes

an endothermic chemical reaction in the temperature ranges of interest

(i.e., permissible material temperatures) can theoretically fulfill many

of these requirements more effeciently than a nonreacting coolant.

A transpiration coolant absorbs heat as it passes through a porous

material. If the coolant is nonreacting, the amount of heat absorbed is

proportional to the temperature increase of the coolant, time of contact

between coolant and matrix, specific heat of the coolant, and the coolant

mass flow rate. If the coolant undergoes an endothermic reaction (e.g.,

endothermic dissociation) during its contact period with the porous matrix

the amount of heat absorbed will be proportional to the reaction rate in

addition to the above. Therefore, if all other conditions are equal, a

reacting coolant will absorb more heat than a nonreacting coolant.

The products of a dissociation reaction have a lower effective

molecular weight than the reactant, resulting in a greater heat blockage

effect than would be realized with a nonreacting coolant. The products also

will generally have a higher effective specific heat than the reactant.

This increases the coolant heat absorption during its contact with the

matrix over the heat absorption which would be realized if the specific

heats of the products and reactant were equal.

If the dissociation reaction rate is proportional to temperature,



large temperature gradients can be reduced. As the temperature of one port

of the matrix starts to increase, the dissociation rate increases proport-

ionately. This results in the coolant absorbing more heat. With more

dissociation occurring, the effective molecular weight of the mixture of

coolant and dissociation products entering the boundary layer is reduced.

This increases the heat blockage. The combination of effects should drive

the temperature down at local hot spots on the matrix, resulting in a

reduction of temperature gradients.

The possibility of utilizing a transpiration coolant which undergoes

an endothermic reaction has been investigated by Rcsner (3) , Koh and

del Casal (4), and Gorton (5). Rosner points out that because of the

relatively short contact time between the matrix and the coolar.t it may be

necessary to have a catalyst present in order to speed the reaction. This

would contribute to the realization of as much of the heat absorption

potential of the coolant as possible.

Gorton (6) experimentally investigated the use of ammonia as a

dissociating transpiration coolant. Ammonia possesses a set of unique

properties which make it attractive for use as a transpiration coolant:

(1) Its dissociation reaction rate is sufficiently fast
in the temperature range of interest.

(2) It has a high heat of formation, 1165 Btu/lb.

(3) It has a high specific heat.

(4) It is readily available and relatively inexpensive.

(5) Commonly used metals (iron, stainless steel,
nickel, etc.) are cat^lyGt_ for the uiosociation
reaction.

(6) Only gaseous products are formed.

(7) The product mixture (containing nitrogen and



hydrogen) have a relatively low molecular
weight; 8.5 when the reaction goes to

completion.

Combustion of hydrogen (ammonia dissociation product) may occur in the

boundary layer. No experimental work to determine the effect of boundary

layer combustion on heat transfer in a transpiration cooling system has

been done. Meroney (7) used hydrogen as a transpiration coolant, but

ignored boundary layer combustion. Rosner (3) discusses boundary layer

combustion at some length and suggests that combustion inhibitors might be

used to prevent it.



ANALYSIS

Introduction

This report presents a study of the potential of reactive coolants

(ammonia) for temperature gradient control. This chapter contains a

description of a mathematical model used to simulate a transpiration

cooled turbine blade and an analytical comparison of the effectiveness

of nitrogen, hydrogen, and ammonia when used as transpiration coolants

applied to the model.

Transpiration Cooling System

Figure 1 is a simplified drawing of a transpiration cooling system.

The coolant is initially in a reservoir and at a temperature, T . As

the coolant flows toward the porous matrix, its temperature increases to

some temperature T, at the inside surface of the matrix (y=0). The

coolant is then forced through the matrix. The coolant temperature,

steadily increases during this period, until it reaches a temperature T ,

at the outside surface (y=t). The coolant then is injected into the free

stream, where it eventually reaches the free stream temperature, T .

Turbine Blade Model

A turbine blade model was considered ideal for this analysis because

of the large variation in the film heating coefficient along the blade.

These gave rise to the temperature gradients needed to analytically

verify the temperature gradient control feature of ammonia.

7
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Figure 1. Transpiration cooling system.



The model used to simulate a turbine blade was a streamlined cylinder.

Figure 2 is a sketch of the model. The natural coordinate system used is

also given. The reference line for the angle theta was the y-axis.

The model was based on a cylinder with a 2 inch radius. The stream-

lined end was 6 inches long and the wall thickness was .50 inches.

The temperature distribution around the model was assumed to be

symmetric about the y-axis line (see Figure 2). Therefore, only half of

the model was considered in the analysis.

Analysis

The temperature cooling system was approximated by a set of

discrete nodes. A sketch of the half-model with a sample set of nodes is

shown in Figure 3. Notice that there were three fundamentally different

types of nodes for which heat balances were written; (1) nodes on the

coolant reservoir side of the matrix, (2) nodes located in the matrix

interior, and (3) nodes on the exterior surface of the matrix.

The difference in length in the x-direction between the outer and

inner surfaces was assumed to be negligible. This permitted the use of

a rectangular nodal system and simplified the equations considerably.

Before the equations applied to each nodal type are presented, it

is necessary to discuss the boundary conditions applied to the problem,

to present the method used to estimate the convection coefficients on

the model surface, to present the ammonia dissociation reaction rate

equation, and to discuss the assumptions made in the problem.

Boundary Conditions

Four boundary conditions were needed to solve the problem. Because
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of symmetry the two ends were considered to be adiabtic, i.e., no heat trans-

fer across the ends. The boundary condition applied to the outside surface

(exposed to free stream) was that the heat conducted was equal to the

heat convected. This may be expressed mathematically as:

Ks dy
= h(T

f
-T

s ) (1)
2

heat conducted heat convected

In order to apply this boundary condition it is necessary to know the values

of k and h. The boundary condition applied to the coolant reservoir side
s

of the porous matrix was that the heat gain of the coolant, by virtue of

its temperature increase from T to T- , was equal to the heat conducted

by the matrix at that surface. Mathematically, this is expressed by:

V^jl *c C
p

(T
X
-TC ) (2)

heat conducted heat absorbed

To apply this boundary condition, one must know k
g

, A, m^, and C .

Convection Coefficient

The forward portion of the model was a cylindrical surface. The

following empirical equation was used to predict the local Nusselt numbers

for this part of the model (8).

.4 ^ TT
-5 3

Nu = 1.14(Pr)
DUp

x_ _| O
o

Q 80
o

(3)

The rear portion of the model was assumed to be a flat plate and the

following equation, given by Krieth (9), was applied in this region:
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4/5 1/3
Nu = 0.0292(Rev ) • (Pr) (4)

This equation is used to predict local Nusselt numbers for turbulent flow

over a flat plate. Its use here was consistent with the assumption that the

cylinder was streamlined. A similar approach was used by Matchett, Colburn,

& Ahles (10).

The convection coefficients given by equations (3) and (4) do not

account for the effects of mass injection into the boundary layer which

occurs during transpiration cooling. In order to correct the coefficients

for the mass injection case, Eckert (11) suggests:

1/2
n

.„
St „ MC1. 0) Pe Ik _*

(5 )

St * 2 P,, M_ P QU St
B=0

* c e e B=0

where C, n, and 3 are constants. C has a value of 0.73 for laminar

boundary layer flow and 0.37 for turbulent boundary layer flow. The value

of the exponent, n, on the molecular weight ratio is 1/3 for laminar flow

and 2/3 for turbulent flow. The constant 3 has a value of for flow over

a flate plate, 1 for plane stagnation flow, and 1/2 for axially symetric

stagnation flow. The Stanton number for no mass injection, St
B_

, is found

from equations (3) and (4) in their respective regions of application

to the model.

Ammonia Dissociation Reaction Rate Equation

The rate of heat absorption by the dissociation of ammonia may be

expressed by m AH ^°L. The reaction rate, R h , is defined as:
dy
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ch dy

or

• da _ pApm
d7 ch

-E/RT

(6)

Introduction of the Arrhenius factor, e , accounts for the : temperature

dependence of the reactior i rate with:

-E/RT
R . - Re
ch o

(7)

This assumes a zero order reaction. Substitution of (7) into (6) leads to:

-E/RT
• BSL = PAR em dy o

(8)

where T is the temperature of the gas under consideration and R is the

isothermal reaction rate.

Assumptions

The assumptions made to simplify the problem were:

(1) The temperature distribution in the model was axially

symmetric with respect to the centerline.

(2) The difference in length in x-direction between

outer and inner surfaces was negligible.

(3) The porous matrix and the coolant were in local

thermal equilibrium.

(4) Operation was at steady state.

(5) Coolant properties were constant.

(6) Heat conduction
was negligible.

through the coolant fluid



(7) Thermal conductivity of the porous matrix was

constant.

The third assumption essentially meant that T
c

= T
s

everywhere in the

porous matrix.

By assuming constant coolant properties a closed form solution is

possible for a one-dimensional system with nonreacting coolants (12 and 13).

Koh and del Casal (14) have discussed the case of variable coolant properties

where the properties are assumed to be power series functions of

temperature.

Within the porous matrix, the convection heat transfer completely

overwhelmes the conduction within the fluid. Therefore, the assumption of

negligible heat conduction within the coolant was made.

The conductivity of the matrix was taken to be kg (1-P).

Discrete Approximation of the System

The finite difference equation used to describe heat flow at nodal

points on the interior surface of the model (see Figure 3) was:

ks(1
_P) AzZ2 ^^^ + ^^ _ 2Ti>n) + ks (l-P)g.

-E/RTl,n
<T2,n " Tl,n> + A C

p <Tc " Tl,n> " AxAyPAHR
Q
e =0 (9)

The first and second terms accounted for conduction in the x and y directions,

respectively. The third term accounted for the heat absorbed by the coolant

as its temperature rose from the reservoir temperature, Tc , to the temperature

of- the inside surface of the matrix (see Equation 2). The last term

represented the heat absorbed by the coolant reaction. For nonreacting cool-

ants the last term was dropped from the equation.
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The double subscripts on the temperatures labeled rows and columns of

nodal points, respectively. The rows and columns were numbered in ascending

order from front to rear and from inside surface to outside surface.

The equation used to describe heat flow at nodal points inside the matrix

was:

V1-^ <Tm,n+l
+ Tm,n-1 " 2\,n>

+ k
s ^f*

(T . , + T . - 2T ) + m C (T . - T )
m+l,n m-l,n m,n P m-l,n m,n

-E/RT
-AxAypAKR e

m
' n =0 (10)

o

The explanation of the first, second, and last terms is the same for

equation (10) as for equation (9). The third term represented the heat

absorption of the coolant by virtue of its temperature increase in moving

from the corresponding node in the preceeding row to the node under

consideration.

Heat flow for nodal points on the exterior surface of the cylinder was

described by:

-E/RT
m,n

+ hfAx (T f - T ) - (11)
1 t m,n

where the subscript m was the number of the label for the row of nodes at

the outside surface. The explanation of the first four terms was the same

as for equation (10) . The fifth term described the convection heat transfer

to the matrix from the mainstream (see Equation 1).
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The general method of solution involved choosing a grid of nodal points,

writing the equation applicable to each node, and solving the resulting

system of simultaneous equations. The simultaneous equations in the analysis

were solved on a digital computer using the method of iteration by total

steps as described by Crandall (15).

Appendix A contains a listing of the computer program. Comment

cards at the beginning of the program explain the input parameters needed.

Results and Discussion

The freestream gas considered was air with the following input

parameter values

:

1. Re
D

= 100,000 (corresponding to a velocity of

approximately 830 ft/sec for air).

2. T
f

= 2500°F

3. u
f

= 3.69 (10~5 ) lbm/ft-sec

4. p = 1 atm.

5. p = .0133 lbm/ft
3

6. Pr
f

= .763

The reservoir temperature and pressure of all the coolants were

taken as

:

1. T = 400°F
c

2. p = 1 atm.

The values of the coolant properties required by the program (specific heat,

Prandtl number, and thermal conductivity) were evaluated at these conditions

for each coolant.

The porous matrix material was stainless steel. The value of thermal

conductivity input for the matrix was 13.5 Btu/hr-f t-°F.



18

The E/R value in the exponential pov/er was input as 9500°R~ (6).

The blowing rate was an input parameter. Its value was chosen to

be within the range of blowing rates used in previous transpiration

cooling experiments.

The first case studied was transpiration cooling with nitrogen. The

blowing rate parameter chosen was .003. The results are plotted in Figures

4 and 5.

Hydrogen was considered as a transpiration coolant in the second case.

The results are plotted in Figures 4 and 5, along with the results of the

first case. Two blowing rates were considered for the hydrogen case;

F = .0003 and F = .0003. At a blowing rate of .0003, hydrogen maintained

approximately the same outer surface temperatures as nitrogen at F = .003.

The temperature gradient in the x-direction was somewhat reduced by hydrogen

when compared with nitrogen, however the gradient in the y-direction was

significantly increased.

Ammonia, with its accompanying dissociation reaction, was studied in

the third case. The results are shown in Figures 6 and 7. Three blowing

rates were considered for ammonia; F = .0003, .0008, and .003. Comparing

Figures 4 and 6 reveals that ammonia, with a blowing rate of .0008,

maintained approximately the same surface temperatures as hydrogen at a blow-

ing rate of .0003 and nitrogen at .003. In these comparison runs the

temperature gradients in both the x and y-directions were less for the

ammonia case than for either of the other two cases (Figures 4,5,6, and 7).

In Figures 6 and 7 it may be seen that as the ammonia blowing rate was

reduced, the temperature gradients in both the x and y-directions were reduced,

even though the actual matrix temperatures increased. This was attributed
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to the greater amount of dissociation which occurred at lower ammonia flow

rates (Figure 7)

.

The conclusions drawn from the analysis were:

(1) Hydrogen was the most effective at reducing matrix

temperatures, on a blowing rate basis, of the three

transpiration coolants studied. The use of

hydrogen as a coolant did result in large temperature

gradients, particularly in the y-direction.

(2) Temperature gradients within the porous matrix

could be significantly reduced by using ammonia

as a transpiration coolant.



EXPERIMENT

Introduction

To substantiate the above conclusions, an experimental program was

begun. The purposes of the experiment were to compare ammonia, hydrogen,

and nitrogen as transpiration coolants in a high temperature combustion

gas stream and to verify the predicted ammonia reaction effect of reducing

temperature gradients.

To accomplish these objectives a cylinder was chosen as a porous

sample shape. The cylinder was chosen for two reasons. First, it was an

easy geometry to fabricate and second, it provided a large variation of

convection coefficients on the surface. This variation of convection

coefficients gave rise to the matrix temperature gradients needed to verify

the ammonia reaction effect.

Apparatus

The apparatus used in the experiment consisted of five parts; (1)

a propane burner and hot gas mixing tube, (2) a test section, (3) an exhaust

fan and duct, (4) a sample with its associated mechanical fixtures, and

(5) instrumentation. A schematic of the system is shown in Figure 8.

The burner was a Wondaire Model PG-260B. This unit was capable of

producing 280,000 Btu's per hour. Hot gases from the burner were released

inside a 6 1/2 inch diameter ceramic tube, 6 feet in length. The ceramic

tube served two purposes; mixing of the hot gases and reducing heat losses

24
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from the system to a minimum.

At the end of the ceramic tube, the hot gases entered a 14 inch long

section of 6 inch diameter iron pipe. The end of this pipe had two short

pieces of channel iron welded into its walls (Figure 9). The large flat

faces of the channel irons were opposite and parallel, changing the duct

shape from circular to nearly rectangular. This was the test section. Each

flat face had a 1 9/16 inch diameter hole in it. The holes were aligned

to allow the sample cylinder to be inserted through them into the test

section.

From the test section, the hot gases next entered the exhaust system.

A louver on the open end of the duct permitted control of the amount of

room air entering it. The hot gases were pulled into the duct through a

port in its side. Room air and exhaust gases were mixed in the duct and

then forced through a window by the axial flow exhaust fan.

Figure 10 is a drawing of the porous sample with its associated

hardware. Two different sizes of samples were used. The first was 1 1/2

inches in outside diameter with 1/4 inch thick walls. The second had a 1

inch outside diameter with 1/16 inch thick walls. Both samples were 4

inches in length and were constructed of sintered stainless steel. Also,

both samples had a 40 micron filteration rating. Although the samples were

different, the mechanical fixtures used to seal the ends and inject the

coolant were basically the same, having only minor dimensional differences.

The coolant was injected into the cylinder through a 1/4 inch stainless

steel tube. The tube had a series of small holes in its surface to allow

dispersion of the coolant inside the cylinder. The end of the tube was

sealed by brazing a 3 inch long, 1/4 inch threaded rod in it. The end

caps for the cylinder had circular groves machined in them. Asbestos
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gaskets were set in the groves. The cylinder ends were then inserted in the

groves. The coolant tube was inserted in the cylinder through Swagelck

fittings in the end caps. The fitting on the coolant entrance side was

tightened making the cap on that end immobile with respect to the coolant tube,

In order to allow for thermal expansion of the sample, it was necessary that

the other end cap (which had the 1/4 inch threaded rod protruding from its

fitting) be free to move parallel to the axis of the cylinder. This was

accomplished by compressing a spring against the end cap. The spring

exerted a compressive force on the cylinder-gasket-end cap system, thereby

helping to seal the ends. The fitting at the spring end was sealed by

wrapping its parts with Teflon tape and partially tightening the fitting.

The most important part of the instrumentation was the thermocouple

mounting in the porous cylinders (see Figure 10). Chrome-alumel

thermocouples with fiberglass insulation were used. Thermocouples on the

1 1/2 inch diameter cylinder were mounted on both the outside surface and

the inside surface. The wall of the 1 inch cylinder was assumed to be

thin enough that the temperature gradient across it was negligible, there-

fore thermocouples were mounted only on the inside of this sample. In

order to measure the outside surface temperature of the 1 1/2 inch sample

as accurately as possible it was necessary to minimize disturbance of the

coolant flow in the vicinity of the thermocouple. This was accomplished by

separating the two thermocouple wires and stringing them through separate,

ceramic insulated, holes. These holes were located at the middle of the

cylinder about 1/2 inch apart on a line parallel to the longitudinal axis

of the cylinder. The ends of the wires were bent over towards each other

and welded into tapered slots, leaving a gap between their ends of about
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l/8 inch. The holes were sealed with Saucreisen porcelain cement. Thermo-

couples mounted on the insides of the samples were merely welded in place.

Figure 11 shows the thermocouple installation positions along with the

numbering system used to identify them. The thermocouple leads extended

through holes in the end cap at the spring end of the cylinder. The thermo-

couple outputs were recorded on a Speedomax, type G, twenty point recorder.

A thermcouple was installed in the coolant injection tube to measure the

coolant reservoir temperature, (see Figure 10). The output was measured with

a manual balance potentiometer instead of using the recorder because of

range mismatch between the recorder input and the reservoir thermocouple

output.

A system of piping and valves allowed selection of the desired coolant

(see Figure 8). The coolant flow rate was measured with a rotameter. The

temperature and pressure of the coolant was measured as it left the rotameter

by means of a mercury thermometer and Bourdon-type pressure gauge, respectively.

The fuel flow rate to the burner was measured with a rotameter.

The fuel and coolant rotameters were calibrated by means of a positive

displacement American gas meter.

Procedure

Startup of the system merely involved opening the propane supply valve

and activating the burner relay and ignition circuits. The burner then started

automatically and when the flame was established the exhaust fan was started.

The system took approximately one hour to reach steady state due to the

long warmup period for the ceramic duct.

Velocity and temperature profiles were measured in the test section
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in order to find the free stream temperature and estimate the product pU.

A thermocouple probe was used for the temperature traverse and a pitot tube

was used to measure the pressure profile from which the velocity profile was

calculated. The test section centerline was used as a reference with

measurements being taken -here and at 1/2 inch intervals from the centerline

to both walls. The traverses were done parallel to the axis of the sample

installation holes.

Tests were run on the 1 1/2 inch cylinder first. The cylinder was

inserted in the test section with thermocouple #1 at the front stagnation

point, (see Figure 11). This caused thermocouple #2 to be located at a point

90° clockwise from the stagnation point. After the temperature readings

reached steady state, the cylinder was rotated clockwise 15°. After steady

state temperatures were reached the cylinder was rotated another 15°. This

procedure was repeated for two more 30° rotations, for a total of 90°, ending

with thermocouple #2 at the back stagnation point. It took approximately

10 minutes for the temperatures to reach .steady state at each station.

For the next data set either the coolant type, the coolant flow rate, or

the burner fuel flow rate was changed and the cylinder rotation procedure

reversed. The coolants were run in the following order; (1) nitrogen,

(2) hydrogen, and (3) ammonia.

The test procedure for the 1 inch diameter cylinder differed in that the

temperatures from 0° to 180° were measured at 45° increments simultaneously

by its five thermocouples (see Figure 11). Ammonia was the only coolant used

with this sample.

Results

Three data runs were performed with 1 1/2 inch cylinder. The first run
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Figure 11. Thermocouple locations. The thermocouples were mounted

at the center of the cylinder.



was made using nitrogen as a coolant. The blowing rate for this run was .00583.

The burner fuel flow rate was .88 cubic feet per minute, giving a centerline

temperature in the test section of 1170°F. Ammonia was used as a coolant in the

second run. The blowing rate was .00478 and the burner fuel flow rate was

the same as in the first run. The third run was also performed with ammonia.

The burner fuel flow rate was 1.08 cubic feet per minute, giving a centerline

temperature of 1380°F. The ammonia flow rate was the same in the third run

as it was in the second, however, the extra fuel mass in the free stream

resulted in a slight decrease in the blowing rate to .00482. The results of

these three runs are plotted in Figures 12 and 13. Comparison of the plots

in Figure 12 for the first two runs indicates that ammonia was a more effect-

ive coolant than nitrogen (identical free stream conditions) . Use of ammonia

resulted in lower matrix temperatures than nitrogen, even though the ammonia

blowing rate was less than that of nitrogen. The matrix temperatures were

increased considerably in the third run over the temperatures obtained in the

second run. A temperature rise was expected because the free stream

temperature was higher, however, the matrix temperature increase in the

vicinity of the forward stagnation point was greater than the increase in

free stream temperature. There was no apparent reduction in temperature

gradients along the surface or through the wall of the sample (see Figure

13).

Combustion in the boundary layer was observed in the forward stagnation

region during the second and third runs.

Near the end of the third run, a slight bulge appeared near the front of

the cylinder. Another run with ammonia was attempted, but before any data

could be taken the bulge had become a rupture and it was obvious the sample
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was ruined.

A hydrogen run was attempted between the first and second runs. This

run was abandoned because the matrix temperature increased very rapidly and

showed no signs of reaching equillibrium before it attained a temperature level

at which failure seemed imminent. Combustion in the boundary layer was

observed during the time the hydrogen was being injected into the sample

Ammonia was the only coolant used with the 1 inch cylinder. The

burner fuel flow rate was .88 cubic feet per minute for all three data runs

performed with this sample. The only parameter that was varied for these

runs was the blowing rate. Blowing rates of .00776, .00533, and .00364 were

used for the first, second, and third runs on the 1 inch cylinder, respect-

ively. The results of these runs are presented in Figure 14. Lower

coolant blowing rates resulted in higher matrix temperatures, as expected.

No reduction of temperature gradients between the forward and back stagnation

points occurred as the blowing rate was lowered (more ammonia dissociation

occurred at lower blowing rates). The gradient actually increased 60°F

in going from the highest blowing rate to lowest blowing rate. This

sample failed in a manner similar to the first sample.

Appendix B contains a summary of the data.

Conclusions

Extensive examination of the rather meager data and the samples was

undertaken to determine why the samples failed and why the temperature

gradients were not reduced as predicted.

There were several similarities between the failures of the two

samples. Both failed in the region of the forward stagnation point. The
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material in the areas of the failure looked the same for both. Swelling and

extensive cracking had occurred and the material in these areas had a burned

appearance. Both failures occurred during ammonia runs.

There were two possible reasons why the samples failed and the

temperatures gradients were not reduced. The first possibility was extreme

convection heating in the forward stagnation region caused by boundary layer

combustion. This extreme local heating at the forward region could have caused

the sample failures. It also could have given rise to the large temperature

gradients obtained due to severe uneven heating of the sample. Boundary

layer combustion could also explain why the temperature at the forward

stagnation point on the 1 1/2 inch cylinder increased more than the

increase in free stream temperature between the second and third runs. The

higher temperature of the third run considerably increased the amount of

dissociation calculated (see Appendix B) to have occurred. This in turn

released more hydrogen to burn in the boundary layer thereby increasing the

convection heating received by the sample, and causing the large temperature

increase, leading to the failure of the sample. The failure of the 1 inch

cylinder could be explained in much the same manner. Reduction in the blowing

rate caused an increase in sample temperature resulting in more dissociation

(calculated; see Appendix B) . This increased the amount of hydrogen in the

boundary layer available for combustion, etc.

The second possible cause of sample failure was non-uniform coolant flow

distribution. Since the free stream pressure was greatest at the forward

stagnation point, more coolant would be forced to flow out the backside of

the cylinder. This could explain the extreme heating at the front of the

cylinder, which was left relatively unprotected due to the reduced coolant
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flow through that region, and the ultimate thermal failure. This type of

uneven coolant flow would also have produced large temperature gradients

around the cylinder.

It was felt that the most probable cause of the difficulties was boundary

layer combustion because of two facts. First, the free stream velocity was

relatively slow (15 feet per second) , causing very small pressure variation

around the cylinder. Secondly, the failures occurred during the ammonia

runs which were the only successful data runs where combustion could occur.

Boundary layer combustion was observed during both ammonia runs with the

1 1/2 inch cylinder. Combustion in the boundary layer was also observed

during the one run that was attempted with hydrogen. Combustion in the

boundary layer was not seen to occur on the second sample. However, the

front of the sample could not be observed due to the construction of the

test section, therefore, combustion could have occurred at the very front

without being seen. The calculated amount of dissociation at the front

stagnation point was very low for the second sample (see Appendix B) , so the

small amount of hydrogen produced could have burned at the front of the

cylinder. By the time the boundary layer carried the mass injection products

around to an observable part of the cylinder surface, the hydrogen produced

could have already been burned. It was proven to this investigator's

satisfaction that combustion caused the difficulties (by comparing the

experimental results with results obtained from an analysis using the program

described in the preceding chapter of this paper).

Interpretation of Experimental Results in Light of Analytical Results

Four runs were made with the program using a model based on the 1 1/2

inch cylinder. The free stream conditions, blowing rates, and coolant
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reservoir temperatures were input to the program using conditions correspond-

ing to the experimental data runs. The input to the first three computer runs

was meant to duplicate the conditions of the three experimental data runs

made on the 1 1/2 inch cylinder. The fourth run duplicated the conditions

of the second experimental data run, except that no dissociation was allowed

in the computation. The results are plotted in Figure 15. The mathematical

model used was a streamlined cylinder, therefore, only the results obtained

for the 0°, 30°, and 60° points in the experimental data can be validly

compared to the corresponding results obtained from the analysis. With this

in mind, comparison of the experimental and analytical results for the

nitrogen coolant at these points reveals that the analysis predicted matrix

temperatures within 50°F of the measured results. This indicates that the

coolant flow was fairly well distributed (uniform distribution was assumed

in the program) . Comparison of the corresponding ammonia runs shows large

differences between the analytically and the experimentally obtained results.

The fact that the experimentally obtained temperatures were so much greater

than the analytical predictions, in view of the fact that the coolant flow

was uniformly distributed, indicates that combustion in the boundary layer

did in fact cause the poor performance of ammonia as a transpiration coolant.

Combustion also was the probable reason why no data was obtained for

hydrogen.
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SUMMARY

On paper, ammonia appears to be an almost ideal transpiration coolant

for immersed bodies experiencing extreme convective heating due to high free

stream temperatures. However, in practice, this does not seem to be true

due to the high heating rates imposed by boundary layer combustion of

hydrogen (ammonia dissociation product). Much more work needs to be done in

this field. Some suggestions for future work include:

1. Experimentation with combustion inhibitors.

2. Investigation of effects of boundary layer combustion.

3. Investigation of pressure gradient effects on

transpiration coolant flow distribution from

immersed bodies.
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NOMENCLATURE

English Symbols

A = area

C = specific heat
P

y

D = diameter

E = activation energy

F = blowing rate (pV/pU)

h = convection heat transfer coefficient

AH = heat of dissociation at T^

k = thermal conductivity

m = mass flow rate

m" = mass flow rate per unit area

Nu = Nusselt number (h- characteristic length/k)

P = porosity

p = pressure

Pr = Prandtl number (uC
p
/k)

R = gas constant

R , = temperature dependent reaction rate

Re = Reynolds number (pVD/u)

R = isothermal reaction rate
o

St = Stanton number (h/pC
p
V)

T = temperature

45
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t = wall thickness

U = velocity of free stream

V = velocity

x = length coordinate

y = thickness coordinate

Greek Symbols

a = fraction of coolant dissociated

P = density

\i = dynamic viscosity

= angle from the leading edge

Subscripts

1 = of the surface on coolant reservoir side of porous material

2 = of the surface on free stream side of porous material

B=0 = at zero blowing rate

C = of the coolant reservoir

D = based on diameter

e = at the outer edge of the boundary layer

f = of the free stream

m = integer for subscripted variables

n = integer for subscripted variables

s = of the porous material

x = based on distance measured from the leading edge

* = at the Rubesin-Eckert reference state
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APPENDIX A

This appendix contains a printout of the computer program

used in the analytical section.
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C N-NUMBER OF NODAL POINTS
C M-NUMBER OF POINTS IN Y-DIRECTION
C NOTE-N/M MUST BE AN INTEGER
C TF-TEMPFRATURE OF FREE STREAM
C TC-TEMPFRATURE OF COOLANT INSIDE CYLINDER
C RED-REYNOLDS NUMBER BASED DIAMETER OF CYLINDER
C D-DIAMETER OF CYLINDER IN INCHES
C NOTE-THICKNESS OF WALL MAY BE CHANGED BY CHANGING
C NUMERATOR OF DY CARD IN MAIN PROG
C P-POROSITY OF MATRIX
C DVF-DYNAMIC VISCOSITY OF FREE STREAM
C CP-SPECIFIC HEAT OF COOLANT
C CKS-CCNDUCTIVITY OF MATRIX (SOLID)
C CXF-CONDUCTIVITY OF FREE STREAM GAS
C PRF-PRANDTL MUMBER OF FREE STREAM
C REDC-RFYNOLDS NUMBER OF COOLANT FOR ORDINARY DUCT
C CONVECTION CHOLING
C DL-NUMBER OF INCREMENTS IN X-DIRECTION (AROUND CYL,

C TW-KALL TEMPERATURE DESIRED IN ORDINARY DUCT
C CONNECTION
C CKC-CGNDUCTIVITY OF COOLANT AT TC
C PRC-COOLANT PRANDTL NUMBER
C UFA-INPUT PARAMETER
C =l-FOR REACTING COOLANT
C DH-HEAT OF FORMATION OF COOLANT
C NOTE-BLOWING RATE MAY BE CHANGED BY CHANGING
C F CARD IN MATM PROG
C NOTE- KF.ICHT RATIO CHANGE BY CHANGING WR CARD
C INPUT TO SUBROUTINE STR
C X(N)-TEMPEPATURE GUFSS FOR EACH NODE

DIMENSION AUOO.lOl) ,HF( 100)
COMMON N»DX,DY,P,DH,RO,RVC,NM,NMl, IREA

L F0RMAT(l8H0S r PARATI0N OCCURS/)
2 FORMAT (lH0,8V t lHX,15X,2HHF,12X, 1HI/)
3 FORMATQH , 2F16. 8 , 2X , 13 )

6 F0RMAT(2I4,2X,3F8.0,F4.2)
7 FGRMAT(6F10.8)
8 FORMAT (3H K= , I 3 , 5X , 2HL= , I 3

)

9 F0RMAT(3F10.2,2F10.8)
10 FORMAT(I1,2X»FLO.O)
11 FORMAT (3H N= , 3X , I 3 , 14X , 2HM= , 2X, I 3 , 1 5X , 3HTF=

,

11X,E16.8,2X,3HTC=,1X,E16.8,2X,4HRED=,E16.8)
12 FORMATUH D= , 2X, E16. 8, 2X, 2HP= , 2X , E16. 8, 2X

,

14HDVF=,E16.8,2X,3HCP=,1X,E16.8,2X,4HCKS=,E16.8)
13 FGRMAT15H CKF=, E 16. 8 , 2X, 4HPRF= , E 16. 8, 2X, 5HREDC=

,

1E15.8,2X,3HCL=,1X,EL6.8,2X,3HTW=,1X,E16.8)
14 F0RMATI5H CKC=, E16.8. 2X,4HPRC=, E16.8,2X, 5HIREA=

,

112, 15X,3HDH=,1X,E16.8,2X,3HWR=, 1X,E16.8)
15 FORMAT KH DR= , IX, E 16. 8, 2X, 2HF= , 2X, E 16. 8, 2X , 3HDX=

,

11X,E16.8,2X,3HDY=,1X,E16.8,2X,4HRVC=,E16.8)
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16 FORMATUH HC= , IX, E16. 8/

)

READ(1,61 N,M,TF,TC,RED,D
READ (1,7) P.DVF, CP,CKS , CKF , PRF
READ(l,9) RFPC,DL,TW,CKC,PRC
READ(1,10) IREA,DH
RO=132.*1778«
l)L = 1.0/DL
N1=N+1
WR=1.703
OR=1.0
PRR=1.0
PRP=l./3.
PRP2=2./3.
LL=1
PI = 3. 14159265
F=. 00487
NM=N/M
NMl=NM+l
L=l
K=l
D=D/L2.
XX=NM-1
SEPX=(2./9. )*PI*D
YY=M-1
l)X=(PI*D/2.)/XX
X=0.
DY=.250/( 12.*YY)
RVC=F*RED*(DVF/D)
Cl=OY/DX
C2=QX/DY
C3=DX/(CKS*(1.-P)

)

C4=(RVC*3600.*DX*CP)/(CKS*(1.-P)

)

C5=Cl/2.
C6=CKS*{1.-P)
C7=C1*C6
C3=C2*C6
S=(PRC**PRP)*(REDC**»8)*< ( TC/TW) **. 15

)

R=. 020* ( 1 .+ ( DL**. 7 ) ) *( CKC/D

)

HC=S*R
N,M,TF,TC,RED
D,P,DVF,CP,CKS
CKF,PRF,REDC,Dl,TW
CKC,PRC, IREA,DH,WR
DR,F,.DX,DY,RVC
HC

102
101

WRITE (3, 11)
WRITE (3, 12)
WRITE (3,13)
WRITE{3,14)
WRITE(3,15)
WRI FE(3,16)
00 101 1=1,

N

DU 102 J=1,N1
A( I,J) = 0.
CONTINUE
MI=N1-NM
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00 104 KK=Mt,N
IF(X.GE.SEP.X) GO TO 205
HF(KK)=1.01*(RED**.5)*tl.-( { (4.*X)/(D*PI ) )**3)

)

HF(KK)=(CKF/D)*( ( HF ( KK ) *PRR )-. 7 3* { . 75**. 5

)

i*OR*(WR**PRP)*RVC*PRF*(D/DVF)

)

GO TO 206
205 HF(KK)=. 0292*1 (RED*(X/D) ) **. 8 ) * { PRF**PRP

)

HF(KK)=(CKF/D)*{ ( HF ( KK ) *PRR )- . 3 7* { .75** . 5

)

l*DR*l UR**PRP2 ) *RVC*PRF* ( D/DVF )

)

IF(LL.EQ.l) WRITEOtl)
LL=LL+1

206 IF(KK.EQ.MI) WRIT£(3,2)
WRITE13.3) X,HF(KK),KK
X=X+CX

104 CONTINUE
00 103 1=1,

M

WRITE13,8) K,L
J = T

J1 =JU
J2=J-1
J.3=J-NM
J4=J+NM
IF(L.EQ.l)
IF(L.EQ.M)

GO
GO

TO
TO

201
200

A( I, J)=-2.*(C7+C8)-(RVC*CP*3600.*DX)
IFIK.EQ.1 ) GO TO 202
All, J2)=C7
IF(K.EQ.NM) GO TO 211
A(I,J1)=C7
GO TO 203

211 A{ I, J2)=2.*C7
GO TO 203

202 A{ I,J1)=2.*C7
203 A( I, J3)=C8+(RVC*CP*3600.*DX)

A( I,J4) =C8
K=K + i

IF(K.EQ.NKl) GO TO 204
GO TO 103

204 K=l
L=L + 1

GO TO 103
200 A( I, J)=-(C1+C2+(C3*HF( I ) )+C4)

A( I, J3)=C4+C?
A( I,N1)=-(HF( I )*0X*TF)/C6
IFIK.E0.1) GO TO 207
A( I,J2)=C5
IF(K.EQ.NM) GO TO 208
All, Jl J=C5
GO TC 2 09

208 Al I,J2)=2.*C5
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207
209

210

201

212

213
214

21'

300

301

302
303

304

103

Gl) TO 209
At ttJl)=2.*C5
K = K+1
IFCK.EQ.NM1 ) GO TO 210
Gl) TC 103
K=l
L = L+l
GO TO 103
IKF.LI. .000001) GO TO 300
AU, J)=-(2.*C6*C5)-C8-(RVC*CP*3600.*DX)
A( I ,NL )=-(RVC*CP*TC*3600.*DX)
At I , J4)=C8
[FtK.EQ.l ) GO TO 212
A( I, J2)=C6*C5
IF(K.FQ.NM) GO TO 213
A{ I,Jl)=C6*C5
GO TO 214
A( I, J1)=2.*C6*C5
GO TO 214
At l,J2)=2.*C6*C5
K = K+l
IF(h.EQ.NKl) GO TO 215
GO TO 103
K=l
L = L + 1

GO TO 103
At I, J4)=C8
Atlt J)=-C8-C7-tHC*DX)
At I,N1)=-HC*TC*DX
IF(K.EO.l) GO TO 301
At I,J2)=C5*C6
IF(K.EQ.NK) GO TO 302
A(l,Jl)=C5*C6
GO TC 303
At

I

T J1)=2.*C5*C6
GO TO 303
A(I,J2)=2.*C5*C6
K = K+1
IFtK.EQ.NMl) GO TO 304
GO TO 103
K=l
L=L+1
CONTINUE
CALL STR(A)
STOP
END
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SUBROUTINE STR(A)
DIMENSION X( 100) ,XX( 100) , A( 100, 101) , ALPHA ( 100)
COMMON N,.DX,DY,P,.UH,R0,RVC,NM,NM1,IREA

1 FORMAT (15H NO CONVERGENCE)
2 FORMAT (3H0L=, 13)
3 FORMAT ( 1H0, 10X, 1HX, 13X, 1IIJ, 12X , 5HALPHA/ )

<+ FORMAT! 3H ,E16.8,4X,I3,5X,E16.8)
5 FORMAT (8F 10. A)
6 F0RMU(4H0ER=,1X,E16.8//)

READ<1,51 (X(M),M=1,N)
E:U9500.
WRITE (3,6) ER
KL=1
LK =

Nl=N+l
L =

K =

QR=0.
00 801 I = 1,N

801 ALPHA( I )=0.
203 00 201 I=1,N

IF(IREA.NE.l) GO TO 800
BR = 0.

[Fd.EQ.11 KL=1
ALPHA( I )=0.
IF(I.EO.l) LK=0
LK=LK+1
XP=-(ER/(X(I)+460.)

)

DA=(RO*DY*P*EXP(XP) )/(RVC*3600.

)

KM=I-NM
IF(LK.F.Q.NMl) GO TO 600

701 IF(KL.NE.l) GO TO 601
ALPHA( I )=ALPHA( I )+DA
GO TC 700

600 KL=KL+1
LK=1
GO TO 701

601 ALPHA {

I

)=ALPHA(I)+DA+ALPHA(KM)
700 IF(ALPHA( I ).GE.l. ) GO TO 800

BR=EXP(XP )*DX*DY#P*DH*RO
800 SUM=A( I,Nl)+3R

00 202 J=1,N
IFtJ.EO.I ) GO TO 202
SUM-SUM-A1 I ,J)*X( J)

202 CONTINUE
XX(I)=X(I )

X( I )=SUM/A( 1,1)
201 CONTINUE

L=L + i

K = K + 1
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207

206

204

205

500
501

200

IF(K.EG.IO) GO TO 204
IFIL.E0.200) GO TO 500
00 206 I-1,N
8 = X( I )-XX(I )

B=ABSCB)
IF(B.CT..1) GO TO 203
CONTINUE
GO TO 501
K=0
WRtTE(3,2) L

WRITEl3,3)
OU 205 JK=1,N
WRITE (3,4) X( JK) ,JK, ALPHA ( JK

)

GO TO 207
WRITE (3, 1)

klR1TE(3 v 2) L

WRITE (3, 3)

DO 208 JK=UN
WRITE (3,4) X( JK) , JK, ALPHA ( JK

)

REtURN
END



APPENDIX B

Data Summary

1 1/2 inch cylinder

1. Coolant: N
2

A. Fuel flow rate: .88 cfm

B. Free stream temperature: 1174°F

C. Coolant reservoir temperature: 230°F

D. Coolant flow rate: 20 scfh

E. Blowing rate: .00583

(degrees) 15 30 60 90 105 120 150 180

Exterior surface
Temperature (°7) 964 972 960 .896 786 752 731 671 632

Interior Surface
Temperature (°F) 877 888 871 820 735 756 722 671 632

Coolant : NH^

A. Fuel flow rate: .88 cfm

B. Free stream temperature: 1174°F

C. Coolant reservoir temperature: 163°F

D. Coolant flow rate: 27 scfh

E. Blowing rate: .00487

F. Maximum dissociation (calculated): 25.9%
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0(degrees) 15 30 60 90 105 120 150 180

Interior Surface
Temperature (°F) 917 900 905 816 726 675 653 597 597

Interior Surface
Temoerature (°V) 820 807 816 731 666 675 653 597 595

£ i - ——'

3. Coolant: NH„

A. Fuel flow rate: 1.08 cfm

B. Free stream temperature: 1377°F

C. Coolant reservoir temperature: 169°F

D. Coolant flow rate: 27scfh

E. Blowing rate: .00482

F. Maximum dissociation (calculated): 72.5%

G(degrees) 15 30 60 90 105 120 150 180

Exterior Surface
Temperature (°F) 1162 — 1135 1005 891 — 323 754 720

720
Interior Surface

Temperature (°F) 1053 — 1026 895 818 — 823 750

II. 1 Inch Cylinder

1. Coolant: NH
3

A. Fuel flow rate: .88 cfm

B. Free stream temperature: 1174°F

C. Coolant reservoir temperature: 195 °F

D. Coolant flow rate: 27 scfh

E. Blowing rate: .00776

F. Maximum dissociation (calculated): 1.6%
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(decrees) 45 90 135 180

Interior Surface
Temperature (°F) 793 729 656 552 543

2. Coolant: NIL,

A. Fuel flow rate: .88 cfm

B. Free stream temperature: 1174°F

C. Coolant reservoir temperature: 317°F

D. Coolant flow rate: 18.4 scfh

E. Blowing rate: .00533

F. Maximum dissociation (calculated): 6.9%

9 (degrees) 45 90 135 180

Interior Surface
Temperature (°F) 921 844 797 703 695

3. Coolant: NH3

A. Flue flow rate: .88 cfm

B. Free stream temperature: 1174°F

C. Coolant reservoir temperature: 360°F

D. Coolant flow rate: 12.6 scfh

E. Blowing rate: .00364

F. Maximum dissociation (calculated): 16.4%

(degrees) 45 90 135 180

Interior Surface
Temperature (°F) 1043 980 946 840 830
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ABSTRACT

Transpiration cooling is an effective method of cooling structures

which are receiving high convective heat fluxes. It has been shown that

low molecular weight gases are more effective coolants, on a blowing rate

basis, than are relatively high molecular weight gases. If a potential

coolant undergoes an endothermic reaction in the temperature ranges of

interest in transpiration cooling, that coolant has a much higher heat

absorption capability than a nonreactive coolant with the same properties.

If the reaction rate is proportional to temperature, the reactive coolant

should also be able to reduce temperature gradients within the matrix.

Ammonia is a potential reactive transpiration coolant. It undergoes a

dissociation reaction, forming nitrogen and hydrogen, in the temperature

ranges of interest.

A study was undertaken to compare the relative effectiveness of

nitrogen, hydrogen, and ammonia when used to transpiration cool two-

dimensional bodies receiving high convective heat fluxes from hot com-

bustion gas streams. The study was done in two parts; analysis and

experiment. For the analysis, a program was written to predict temperature

profiles for a transpiration cooled, streamlined cylinder. Results from

the analysis indicated that hydrogen, due to its low molecular weight,

was the most effective coolant but also produced the largest temperature

gradients in the wall. The results also indicated that ammonia could reduce

matrix temperature gradients considerably.

The samples used in the experimental part of the study were porous



cylinders. The data obtained was insufficient to draw any conclus. -out

the relative effectiveness of the three coolants or the ability of ammonia

to reduce temperature gradients. The samples all underwent thermal

failure before enough data could be collected. The samples failed during

ammonia runs. The cause of the failures was attributed to boundary layer

combustion of the hydrogen produced by the dissociation of ammonia.


