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Abstract 

Currently, there are two main models for Mesozoic suturing of the Wrangellia composite 

terrane in the North American Cordillera.  Studies from southeastern Alaska and British 

Columbia suggest that collision of the Wrangellia composite terrane with the North American 

craton occurred during the Middle Jurassic, and that early volcanism and sedimentation occurred 

in post-accretionary transtensional basins that were created by a strike-slip fault system. Another 

model suggests that accretion in eastern Alaska and the Yukon Territory occurred during the late 

Jurassic-early Cretaceous; associated volcanism was subduction-related and basin development 

evolved from an offshore Jurassic intraoceanic arc to a Cretaceous collisional arc setting.  South-

central Alaska, in the Nutzotin Mts. where the Chisana Formation crops out, is an ideal location 

for testing models for Wrangellia accretion because it is defined by two major collisional 

episodes: the Mesozoic collision of the Wrangellia composite terrane, and the ~30Ma to ongoing 

collision of the Yakutat terrane. The Chisana Formation consists of a succession of volcanic and 

sedimentary strata that conformably overlie late Jurassic‒early Cretaceous marine sedimentary 

strata of the Nutzotin Mt. Sequence. Geochronologic and geochemical data from upper Chisana 

lavas document ~121 to 117 Ma arc volcanism, however lavas from the lower parts of the 

Chisana Formation may be >121 Ma. New stratigraphic analysis indicates that the lavas are >2-

km-thick at the Bonanza Creek type section. The lavas are overlain unconformably by fluvial 

strata of the Beaver Lake Formation, the age of which is uncertain but between 117 – 98 Ma. Our 

field evidence suggests the Chisana Formation at Bonanza Creek can be divided into a lower 

subaqueous unit, a middle transitional unit, and an upper subaerial unit. Lateral lithofacies 

changes between Bonanza Creek and Jacksina Creek show a northwestward transition from a 

primarily marine environment of deposition/emplacement at Bonanza Creek to an environment 



  

that was primarily subaerial, with minor, shallow marine influences present at Jacksina Creek. 

Chisana Formation lavas sampled at both locations range from calc-alkaline to tholeiitic basalts 

to basaltic andesites. Stratigraphically lower lavas are typically more andesitic and become more 

basaltic and tholeiitic up-section. Trace element geochemistry shows high field strength element 

(Ti, Nb, Y, Zr) depletions relative to large ion lithophile elements (Rb, K, Ba) as well as hydrous 

mineral assemblages with calc-alkaline to tholeiitic chemistries, both of which are consistent 

with an arc origin. Our data imply more significant subaerial eruptions and sedimentation from 

an oceanic arc constructed upon Wrangellia than previously recognized from this area of the 

Wrangellia composite terrane. When combined with data from other studies in the area, all 

results support of an east-dipping, subduction-related island arc model for the origin of the 

Gravina-Nutzotin belt. 
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Chapter 1 - Introduction 

Suturing of oceanic crust onto continental crust following subduction is a fundamental 

process in the growth of Earth’s continents (Nokleberg et al., 1989; Abbott and Mooney, 1995; 

Jahn et al., 2000). Despite being a global tectonic process, suturing remains poorly understood 

when compared to other processes, such as subduction of oceanic plates and mid-ocean ridge 

formation. The evolutionary history of the south-central margin of Alaska is ideally suited to 

study suturing, because it is defined by two major collisional episodes: the Mesozoic collision of 

the Wrangellia composite terrane (WCT) and the ca. 30 Ma to ongoing collision of the Yakutat 

terrane (Nokleberg et al., 2000; Trop and Ridgway, 2007). The Wrangellia composite terrane is a 

subcontinent-sized fragment of crust that consists of the Wrangellia, Peninsular, and Alexander 

terranes (Plafker and Berg., 1994; Nokleberg et al., 1994).  Paleomagnetic studies (Stamatakos et 

al., 2001) indicate that the WCT was located thousands of kilometers south of its present location 

during the late Triassic and was translated northward to its current position during the Middle 

Jurassic-Late Cretaceous (Plafker et al., 1989; Nokleberg et al., 2000; Trop and Ridgway, 2007). 

The suture zone between the WCT and the former North American paleomargin is defined by 

sequences of sedimentary basinal strata that have been uplifted and exposed along south-central 

and south-eastern Alaska (McClelland et al., 1992; Kapp and Gehrels, 1998; Manuszak et al., 

2007) These basins are known as the Kahiltna, Nutzotin Mountain, Dezadeash, and Gravina 

basins (from north to south), and are commonly referred to as the Gravina-Nutzotin belt (Figure 

1-1; Plafker and Berg, 1994). Currently, the tectonic setting of the Gravina-Nutzotin belt is a 

subject of much debate (Berg et al., 1972; McClelland and Mattinson, 2000; Manuszak et al., 

2007; Sigloch and Mihalynuk, 2017), due to uncertainty regarding the timing and location of 

WCT accretion onto the North American paleomargin, as well as the polarity of subduction 
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associated with WCT accretion. The Gravina-Nutzotin belt sequence is a package of variably 

deformed Upper Jurassic to Lower Cretaceous metavolcanic and sedimentary rocks that are 

exposed nearly 750 km along the eastern portion of the Wrangellia and Alexander terranes 

(Figure 1-1)(Rubin and Saleeby, 1991). Multiple hypotheses for the origin of the Gravina-

Nutzotin belt have been suggested, and include back-arc basin (Berg et al., 1972), a sinistral 

transtensional basin (Gehrels et al., 2009; Yokelson et al., 2015), a rift basin (van der Heyden, 

1992; Kapp and Gehrels, 1998), a dextral transtensional basin (McClelland et al., 1992), an intra-

arc basin (McClelland and Mattinson, 2000), a retroarc foreland basin (Manuszak et al., 2007), 

and a forearc basin related to west-dipping subduction (Sigloch and Mihalynuk; Lowey 2018).   

The Kahiltna assemblage in the western Alaska Range represents development of a 

marine basin along the suture zone of the Late Jurassic-Cretaceous accretion of the WCT to the 

North American paleomargin (Kalbas et al., 2007; Hampton et al., 2010). The Dezadeash basin 

is a 3000-m-thick sequence of deepwater turbidites in southwestern Yukon that are inferred to 

have been deposited as a submarine fan in a back-arc basin to the Late Jurassic Chitina arc 

(Lowey, 2011). The Gravina basin in southeastern Alaska is composed of a western Gravina belt, 

which consists primarily of volcanic-rich turbidites and mafic to intermediate volcanic rocks, and 

an eastern Gravina belt, which consists mainly of pelitic schists with metaconglomerate horizons 

(Yokelson et al., 2015). The western Gravina basin strata are inferred to have been deposited in a 

back-arc position and were derived from the WCT (Yokelson et al., 2015), whereas the eastern 

Gravina basin strata are inferred to have been deposited in a forearc basin in respect to the 

eastern Coast Mountains batholith located on the Yukon composite terrane (Yokelson et al., 

2015). 
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The Nutzotin Mountains basin represents a unique area to study the WCT suture zone 

because unlike the other basins in the suture zone, thick packages of relatively unmetamorphosed 

volcanic strata and plutonic bodies are exposed in the Chisana Formation (Richter and Jones, 

1976). The Chisana Formation consists of volcanic, plutonic, and sedimentary rocks that were 

erupted, emplaced, and/or deposited in the Early Cretaceous (Figure 1-1)(Berg et al., 1972; 

Richter and Jones, 1976; Snyder and Hart, 2007; Graham et al., 2016), which have an estimated 

composite thickness of ~3 km (Barker, 1994). An over 200 km-long belt of Early Cretaceous 

plutonic rocks of granodiorite and diorite affinities crop out along the Nutzotin basin (Richter et 

al., 1975; Snyder and Hart, 2007; Graham et al., 2016), and likely represent the roots of the 

Chisana arc (Plafker and Berg, 1994; Snyder and Hart, 2007). Prior studies assume Chisana 

igneous rocks are the product of subduction-related volcanism (Trop and Ridgeway, 2007); 

however, this is based primarily on the presence of forearc subduction complex deposits to the 

south of the study area in the Chugach and Wrangell Mountains (Plafker and Berg, 1994; Trop 

and Ridgway, 2007) sedimentary and volcanic rocks exposed hundreds of kilometers away from 

the study area (e.g., Gravina belt (Figure 1-1)) and a set of geochemical and radiogenic isotope 

data from the scarce amount of erupted lavas and plutons of the Gravina-Nutzotin belt, which 

consists of only 88 igneous whole-rock geochemical and 20 whole-rock radiogenic isotope 

samples from the Gravina-Nutzotin belt (30 whole rock and 16 isotope from White Mountain 

pluton and 28 other whole rock geochemical analyses: only 17 with trace element data) 

characterizing the entirety of a >3,000 km suture zone (Berg et al., 1972; Richter et al., 1975; 

Rubin and Saleeby, 1991; McClelland et al., 1992; Barker, 1994; Aleinikoff et al., 2000; Stowell 

et al., 2000; Short et al., 2005; Snyder and Hart, 2007). Most of the previous studies of the 

inboard margin of the WCT in the Kahiltna basin from south-central and southwestern Alaska 
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(Ridgway et al., 2002; Kalbas et al., 2007) and in the Dezadeash, Nutzotin, and Gravina basins of 

southeastern Alaska (McClelland et al., 1992; Manuszak et al., 2007; Lowey, 2011; Yokelson et 

al., 2015) have focused on the sedimentary record, as volcanic rocks in the Kahiltna and 

Dezadeash basins are completely exhumed or were never deposited (Kalbas et al., 2007; 

Hampton et al., 2010), and volcanic rocks in the Gravina basin are intensely deformed or 

affected by post-depositional alteration effects (Stowell et al., 2000).  Therefore, analysis of the 

Chisana Formation, which contains volcanic rocks that have undergone less pervasive 

metamorphism than other igneous rocks of the Gravina-Nutzotin belt, represents a method to 

evaluate the role of Cretaceous magmatism. Accurate evaluation of the igneous and sedimentary 

strata of the Chisana Formation will provide a clearer view of Upper Jurassic/Lower Cretaceous 

tectonics in the area and additional constraints to restrict the possible tectonic setting of 

Wrangellia accretion. 

  In order to improve petrologic and geochemical characterizations and lithostratigraphic 

frameworks, this study presents new major and trace element geochemistry, thin section 

petrography and field-based lithologic observations from physical volcanological and 

sedimentary analysis of the Chisana Formation type section at Bonanza Creek, Alaska and 

outcrops at Jacksina Creek near Nabesna, Alaska.  We use these data, in conjunction with prior 

published and unpublished data from similarly-aged regional rocks, to elucidate the 

tectonomagmatic setting of Chisana volcanism and demonstrate that it occurred due to 

subduction. 

 Geologic Setting 

The outboard margin of southern Alaska and western Canada consists of three composite 

terranes. They are, from northeast to southwest, the Yukon, Wrangellia, and Southern Margin 
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composite terranes (Figure 1-1). The Yukon composite terrane consists of Paleozoic 

metamorphic rocks and overlying arc-related rocks (Nokelberg et al., 1994). The Wrangellia 

composite terrane is located on the outboard margin of the Yukon composite terrane along the 

Denali fault. The Southern Margin composite terrane is located on the outboard margin of the 

Wrangellia composite terrane along the Border Ranges fault (Plafker and Berg, 1994). The 

Southern Margin terrane is a complexly deformed accretionary prism, made up of Upper Triassic 

to Paleogene oceanic and arc-related volcanic and volcaniclastic rocks (Plafker and Berg, 1994).  

A >3,000 km suture zone extending along strike from western Alaska to coastal British 

Columbia separates the WCT from the outboard margin of the Yukon composite terrane (Figure 

1-1). The suture zone is characterized by complexly deformed sedimentary, igneous and 

metamorphic rocks (Trop and Ridgway, 2007; Hampton et al., 2010; Lowey, 2011) attributed to 

collision processes. The suture zone separating the WCT from inboard terranes consists of 

Jurassic-Cretaceous sedimentary and igneous rocks that crop out in the Alaska Range/Talkeetna 

Mountains, Nutzotin Mountains, Dezadeash Range, and coastal southeastern Alaska (Figure 1-1, 

McClelland et al., 1992; Trop and Ridgway, 2007; Lowey, 2011). Basinal sediments from the 

Wrangell Mountains basin, located to the south of our study area, expose sediments with ages 

similar to the Chisana Formation volcanic rocks and are interpreted to represent forearc deposits 

relative to the Chisana and Chitina arcs (Trop et al., 2002; Trop and Ridgway, 2007).  Plutonic 

rocks of Late Jurassic-Early Cretaceous ages crop out discontinuously along the Nutzotin basin 

and have been suggested to represent the roots of the volcanic arc complex of the Chisana 

Formation (Richter et al., 1975; Plafker and Berg, 1994; Aleinikoff et al., 2000; Snyder and Hart 

2007).  



6 

The Chisana Formation, located along the suture zone separating the WCT from the 

North American continent, consists of approximately three km of relatively undeformed igneous 

and sedimentary rocks that conformably overlie Jurassic-Cretaceous sedimentary strata. The 

Chisana Formation is unlike other suture zone units in the northern Cordillera, because thick 

packages of relatively unmetamorphosed volcanic strata crop out (Figure 1-1; Figure 1-2; Figure 

1-4). Reconnaissance study of the basal 600 m of the Chisana Formation, at its Bonanza Creek 

type section (Figure 3-7), showed that it consists of submarine lahars, basalt and andesite lavas, 

tuff, volcaniclastic sedimentary rocks, and marine argillite, greywacke, and conglomerate (Short 

et al., 2005).  Lower Chisana Formation (basal 1100 m) volcanic rocks include aphanitic to 

porphyritic lavas, volcanic-lithic breccia, crystal-lithic and volcanic-lithic tuff, minor mudstone 

and volcaniclastic sandstone deposited by effusive and pyroclastic eruptions (Short et al., 2005; 

this study) The upper 2500 m of the Chisana Formation consists of interlayered basalt lavas, 

lahars, pyroclastic breccia, tuff and volcaniclastic greywacke and conglomerate (Barker, 1994; 

this study). Published geochemical data are limited to 19 major-element analyses from the 

Chisana lavas (Barker, 1994), ten major-element analyses from mid-Cretaceous plutons (Richter 

et al., 1975), and 30 major and trace, 13 REE, and 16 Sr-Nd isotope elemental analyses from a 

0.78 km2 intrusive body, the White Mountain pluton (Snyder and Hart, 2007).   Short et al (2005) 

report 26 geochemistry, two 40Ar/39Ar ages (116±1.3 to 113±1.3 Ma), as well as 10 Ndi and 

five (87Sr/86Sr)i isotope values from Bonanza Creek Chisana lavas, in an abstract.  Six Lower 

Cretaceous aged granitoid and diorite plutons are present near our study areas. These six plutons 

have an age range from approximately 113 Ma to 105 Ma (Richter et al., 1975; Snyder and Hart, 

2007), which are consistent with dates from the Chisana Formation (Short et al., 2005), and 

likely represent the plutonic equivalents of Chisana Formation volcanic rocks. 
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The Chisana Formation at the Bonanza Creek type section disconformably overlies the 

late Jurassic to early Cretaceous Nutzotin Mountains Sequence (Manuszak et al., 2007). The 

upper Nutzotin Mountain Sequence at Bonanza Creek (approximately the uppermost 50 m of the 

Nutzotin Mountains Sequence directly underneath the Chisana Formation) consists of fossil-rich 

mudstones, with minor amounts of volcanic-lithic sandstone, conglomerate, and fossiliferous 

limestone that grades into the lower Chisana Formation (Manuszak et al., 2007). The Chisana 

Formation is exposed along a slot canyon where Bonanza Creek has cut through the igneous and 

sedimentary strata. At the Jacksina Creek study location, the Chisana Formation also overlies the 

Nutzotin Mountains Sequence (Lowe et al., 1982; Figure 1-5 B). The uppermost lavas of the 

Chisana Formation are exposed approximately 4.5 km southeast of Bonanza Creek and are in 

direct erosional contact with sedimentary facies of the Beaver Lake Formation (Koepp et al., 

2017). Overlying the Chisana Formation (located approximately 4.5km to the southeast) are 

nonmarine conglomerate, sandstone and mudrock of the Beaver Lake Formation (Koepp et al., 

2017). Deposition is inferred to have taken place in channel-bar complexes and vegetated 

floodplains with poorly drained wetlands (Koepp et al., 2017).  Volcaniclastic sediments from 

the Beaver Lake Formation were eroded from local igneous sources, including the underlying 

Chisana Formation (Koepp et al., 2017).  
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Figure 1-1 Geologic map of south-central Alaska. 

Map showing major terranes, faults, and suture zones. Mesozoic (Mz) suture zone deposits 

(green) record accretion of the Wrangellia composite terrane (orange) against inboard terranes 

(purple). This study targets Chisana igneous rocks that are located in the Nutzotin area (N) of 

eastern Alaska (Fig. 1-2). (CZ-Cenozoic; Pz-Paleozoic) Adapted from Trop et al. (2002). 
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Figure 1-2 Geologic Map of study areas. 

Geologic map showing the location of the Chisana Formation in dark green. Red rectangles mark 

focus areas for this study Chisana lavas in the Bonanza Creek study area were also studied by 

Short et al. (2005).  Barker (1994) reports geochemical data from Chisana lavas from Bonanza 

creek and just southeast of the Jacksina Creek study area. Adapted from Richter and Jones, 1976. 

Geologic maps of outlined areas are present in Figure 1-3. 
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Figure 1-3: Geologic map of the Bonanza Creek and Beaver Lake study areas 

Simplified geologic map of the Bonanza Creek study area (Richter and Jones, 1976), showing 

locations of samples taken. The sampled plutonic body is located approximately 5.3 km 

northwest of Bonanza Creek. 
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Figure 1-4 Geologic Map of Bonanza Creek and Beaver Lake study areas. 

Simplified geologic map after Lowe et al. (1982) and this study showing the Jacksina Creek 

study area with sample locations.  
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Figure 1-5 Overview Photographs of study areas. 

A.) Overview picture of the Chisana Formation at Bonanza Creek, near the contact between the 

lower and middle sections, person for scale. B.) Overview picture of the upper section of the 

Chisana Formation at Bonanza Creek, looking northeast. Note that as the formation became 

more lava dominated, the canyon became narrower and the creek typically becomes deeper. C.) 

Photograph of Chisana Formation lavas near Jacksina Creek, looking northwest along Canyon 

Creek. 
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Chapter 2 - Methods 

Stratigraphic observations of the volcanic and sedimentary lithologies of the Chisana 

Formation were made at both Bonanza Creek and Jacksina Creek study areas (Table 3-1). 

Lithologies were grouped into lithofacies and lithofacies associations on the basis of grain size, 

sedimentary structures, and igneous structures. Sampling locations were targeted based on 

published geologic maps and observations made in the field. At both Bonanza Creek and 

Jacksina Creek, sampling was guided by stratigraphic relationships between lithofacies. Only the 

freshest rocks were targeted for collection and further processing analysis for the igneous 

samples. After removing weathered surfaces from samples, a RockLabs hydraulic press was used 

to split fist-size samples into smaller pieces. These pieces were powdered using a Spex Industries 

shatterbox (alumina vessel). 

Thirty-four samples (this study) were collected from sedimentary and igneous strata at 

both Bonanza Creek and Jacksina Creek in the Nutzotin Mountains, Alaska. Thin sections were 

made of twenty igneous rocks: 12 lavas, seven dikes, and one plutonic rock. Thin sections were 

used to help determine the extent of alteration before selecting samples for geochemical analyses 

and also for mineral and textural characterization. Modal percentages were made using visual 

estimations (thin section descriptions are present in Appendix A). Nineteen samples were 

selected for geochemical analyses based on the lack of obvious post-emplacement alteration in 

hand sample and thin section. A second suite of nine samples was collected from Chisana lavas 

and dikes in various locations surrounding Beaver Lake; their physical characteristics and 

relationships with overlying Cretaceous Beaver Lake formation strata are described in Koepp et 

al. (2017). A third suite of 15 samples was collected from the lower and middle sections of the 

Chisana Formation at Bonanza Creek (Short et al., 2005) and are incorporated into this study. 
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New Bonanza Creek, Jacksina Creek, and Beaver Lake samples from this study (samples 

starting with PM or JT in Appendix C) were sent to Franklin and Marshall College for XRF 

analysis of major and trace element compositions and loss on ignition (LOI) following the 

method outlined in (Mertzman, 2000, 2015) and online at http://www.fandm.edu/earth-

environment/laboratory-facilities/instrument-use-and-instructions.  One-gram of powder from 

each sample was placed in clean ceramic crucibles and heated at 900 °C in a muffle furnace for 

60–75 min. After cooling to room temperature, samples were reweighed and the change in 

percent was reported as LOI. Following LOI determinations, 0.4 g of anhydrous powder was 

mixed with 3.6 g of lithium tetraborate (Li2B4O7) and melted in 95% Pt −5% Au crucibles. 

Samples were then quenched into glass disks, which were used for XRF analysis of major 

elements using a Panalytical, Inc. 2404 XRF vacuum spectrometer equipped with a 4 kW Rh X-

ray tube. Major elements are reported as weight percent oxide (SiO2, Al2O3, CaO, K2O, P2O5, 

TiO2, Fe2O3, MnO, Na2O, and MgO). Nineteen trace elements (Rb, Sr, Y, Zr, Ni, Nb, Ga, Zn, 

Cu, U, Th, Co, Pb, Sc, Cr, V, La, Ce, and Ba) were analyzed on pressed powder briquettes made 

from a mixture of 7.0 g of whole-rock sample powder and 1.4 g of high purity Copolywax 

powder. Working curves for each element are determined by analyzing geochemical rock 

standards from Abbey (1983) and Govindaraju (1994). The bulk rock data for all samples are 

presented in Appendix C, precision and accuracy of analyzed standards are presented in 

Appendix D. Major and trace element data for a subset (Denoted as samples beginning with CHI 

in Appendix C) of the Bonanza Creek samples were determined via Direct Current Argon 

Plasma Atomic Emission Spectroscopy (DCP-AES), at Miami University following methods 

outlined in Katoh et al. (1999) and Brueseke and Hart (2008).  All trace element concentrations 

in this study are presented as parts per million (ppm) and major element data as weight percent 
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oxide (wt. %). Iron was split into Fe+2 and Fe+3 according to the procedure described by Le 

Maitre (1976), and all major element data used in diagrams and the discussion are reported as 

anhydrous using the split iron data.   

Samples from all three locations (Beaver Lake, Bonanza Creek, Jacksina Creek) show 

signs of alteration, ranging from mildly altered (less than 10% alteration) to complete 

replacement of primary minerals. Samples that showed obvious signs of alteration in hand 

sample, such as phenocryst replacement, were eliminated from further analysis during the cutting 

phase.  However, it is possible that alteration not immediately apparent in hand sample could still 

be present and affect the quality of geochemical analyses. In order to avoid biasing the 

geochemical analysis with samples that have been altered, a filter proposed by Beswick and 

Soucie (1978) was applied to the geochemical data (Appendix F). The “alteration filter” 

compares the molecular proportions of major element ratios (Al2O3/K2O, SiO2/K2O, CaO/K2O 

etc.) on logarithmic X Y-plots (Beswick and Soucie, 1978). Samples with compositions that are 

relatively unaffected by alteration plot as clustered, linear arrays on these diagrams whereas 

significant deviation from this array suggests post-eruptive alteration has affected the sample. 

Nine samples that did not fall along the linear array on multiple plots were removed from further 

consideration and are not reported or included in this study. 
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Chapter 3 - Results 

This study provides new major and trace element data in a combined dataset of 43 

samples from Chisana volcanic rocks. Samples from Short et al. (2005) were collected from the 

Chisana Formation at Bonanza Creek, from 775 m above the base of the section to 

approximately 1695 m (Figure 3-7). The Chisana Formation at Bonanza Creek was split into 

three sections on the basis of field observations.  Newly collected samples from this study are 

from the lower and upper part of the sections, from 69.4 m to 775 m and from 1695 m to 2115 m 

(Figure 3-7). Beaver Lake samples were collected from the uppermost lavas of the Chisana 

Formation approximately 4.5 km southeast of Bonanza Creek, near Beaver Lake (Figure 1-4). A 

complete list of samples and geochemical results is provided in Appendix C. Samples from 

Bonanza Creek include a mixture of lavas and dikes cutting through sedimentary facies in the 

lower section of the Chisana Formation. Samples from Jacksina Creek consist of lavas, from the 

Chisana Formation at Jacksina Creek, and of dikes cutting the Nutzotin Mountains Sequence that 

directly underlies the Chisana Formation.  

Sedimentary and Volcanic Lithofacies 

Physical volcanic and sedimentologic observations from >2 km of combined Chisana 

Formation stratigraphic sections were made at the Bonanza Creek study location (Figure 3-7). 

There, the Chisana Formation is approximately 2.25 km-thick and can be divided into three 

sections: the lower, middle and upper sections, each of which is composed of seven different 

lithofacies associations that were identified through our field observations. Each section was 

demarcated based on the primary depositional environment of the associated lithofacies present 

in the section. Lithofacies were created based on rock type and environment of deposition and 

follow the example outlined in Trop et al. (2012).  Table 3-1 summarizes the common facies in 
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the formation at the type section of Bonanza Creek and their key aspects. A stratigraphic column 

summarizing the Chisana Formation at Bonanza Creek is presented in Figure 3-7. 

 Marine Mudstones and minor fine-grained volcaniclastic sandstone (KcM) 

Description. This facies consists of very fine-grained mudstones with minor amounts of 

sandstones. It occurs in the lower Chisana Formation and upper Nutzotin Mountain Sequence, 

which directly underlies the Chisana Formation at Bonanza Creek. Marine brachiopods (Sandy 

and Blodgett, 1996) molluscs (Richter et al., 1975), and fragments of Buchia are present in the 

upper portions of the lower and middle section of the Chisana Formation at Bonanza Creek. 

Disarticulated brachiopods and molluscs are common. Sandstones occur in tabular beds but can 

be locally lenticular (Manuszak et al. 2007). This facies is depicted in Figure 3-1A.  

Interpretation. This lithofacies reflects a subaqueous deposition in a marine environment, 

possibly representing suspensions settling. Evidence for marine deposition includes the presence 

of benthic marine fossils and very fine grain size. Deposits of disarticulated Buchia are 

interpreted by Manuszak et al. (2007) to represent fair-weather deposits on a marine shelf. 

 Volcaniclastic Conglomerate (KcCGL) 

Description. This facies consists of a green, volcaniclastic granule to pebble 

conglomerate that represents the thickest facies in the lower section of the Chisana Formation at 

Bonanza Creek and is present throughout the entire formation. This lithofacies stops repeating at 

approximately 1982 m up section (Figure 3-7). Clasts are typically rounded to subrounded and 

poorly sorted, with a maximum clast size of 49.5 cm. Clasts are a mixture of volcanic and 

sedimentary rocks. Volcanic clasts appear to be consistent with the underlying mafic-

intermediate Chisana lavas. Individual strata are typically matrix supported.  In the lower section 

of the Chisana Formation, these rocks contain Belemnite and Buchia fragments. This facies is 
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seen in Figure 3-2C. Inoceramus fossils (Figure 3-2B.) and disarticulated and abraded fossil 

fragments are locally present in the conglomerates from the middle section of the Chisana 

Formation. Thickness of this facies can range from 8m to approximately 180 m. The parts of this 

facies that are in the lower section of the Chisana Formation at Bonanza Creek are frequently cut 

by mafic dikes. In a single location in the upper section at Bonanza Creek (Figure 3-7), this 

facies also contains thinly bedded (less than 6-cm-thick) tephras that are interbedded with the 

volcaniclastic conglomerate.  

Interpretation. This lithofacies, which occurs throughout the middle and lower parts of 

the Chisana Formation at Bonanza Creek, implies subaqueous deposition via primary volcanic 

processes or by mass wasting onto the flanks of an active volcano.  The presence of marine 

fossils, rare subaqueous structures, and interbedded pillow lavas in these facies are evidence of 

submarine deposition. Similar volcaniclastic strata can be seen in the Talkeetna arc (Clift et al., 

2005), the Dezadeash basin (Lowey, 2011), and the Gravina belt (McClelland et al., 1992); they 

are interpreted by Draut et al. (2006) to represent similar depositional processes and 

environments. 

 Marine Lavas (KcLL) 

Description. Stratified basaltic andesite to basaltic lavas typify this lithofacies. Lavas are 

typically massive in nature, though pillow structures (1.1 m in length) are present from 

approximately 699 to 747 m in the lower section. Lavas are porphyritic, with fine-grained gray 

matrices and phenocrysts of plagioclase (typically 1-3 mm) and pyroxene (up to 3 mm). 

Plagioclase phenocrysts are more abundant than pyroxene phenocrysts, typically comprising 60-

80% modally, while pyroxene typically makes up 5-10%. This facies is shown in Figure 3-1B. 

Autobrecciated lava tops and bottoms are present in KcLL lavas in the middle section of the 
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Chisana Formation. Lavas are interbedded with volcaniclastic conglomerates and mudstones 

containing marine fossils from the KcCGL and KcM facies, which imply marine deposition of the 

lavas. 

Interpretation. This facies represents a subaqueous environment of emplacement for 

Chisana lavas. This is exhibited by the presence of pillow structures in lavas from the lower 

Bonanza Creek section and by interbedded sedimentary facies containing marine fossils. 

 Lahar Breccias (KcB) 

Description. Inversely graded, poorly sorted and mud matrix-supported breccias define 

this facies, which is found at both the Bonanza Creek and Jacksina Creek locations.  Clasts 

consist of underlying volcanic and sedimentary rocks from the Chisana Formation and are 

angular to subrounded and are poorly sorted. Clasts are more angular than clasts found in KcCGL. 

The mud matrix, poor sorting, and angular nature of clasts are consistent with lahar breccias 

(Compton, 1985). This facies has an average clast size of approximately 8 cm. This facies is 

shown in Figure 3-3A, taken at Bonanza Creek, and Figure 3-5A, from the Jacksina Creek 

location. 

Interpretation. This facies reflects volcanic aprons flanking an active volcano in a 

subaerial or shallow marine environment. The presence of a mud matrix, and the presence of 

more angular clasts distinguish this facies from previous sedimentary facies and establish it as a 

lahar. The poorly sorted, matrix-supported breccias are indicative of emplacement via debris 

flow, flood flow, and stream-bank collapse (Trop et al., 2012). 

 Block and Ash Flow deposit (KcBAF) 

Description. This lithofacies consists of a matrix-supported volcaniclastic pebble 

conglomerate.  Clasts are poorly sorted, composed primarily of subangular welded tuff, up to 15 
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cm in length. Matrix is fine-grained and grey-green. Rock is matrix supported but has more 

clasts than previous units. This facies is seen in Figure 3-2 F and I. 

Interpretation. The presence of welded tuff clasts in this unit indicate the presence of 

elevated (relative to the area they were deposited in) lava domes that collapsed and produced 

pyroclastic density currents.  

 Oxidized Lavas (KcUL) 

Description. This lithofacies is characterized by the presence of reddish-brown, oxidized 

lavas with autobrecciated tops and/or bottoms. These typically massive lavas occur in the upper 

section of the Chisana Formation at Bonanza Creek and directly overlie The Nutzotin Mountain 

Sequence in the Jacksina Creek area. In both locations, these occur as large packages of lavas 

that are distinguishable by autobreccias in interflow zones. These lavas range from basaltic 

andesites to andesites in composition, and typically contain 50-60% plagioclase, 0-24% 

pyroxene, and contain relict olivine phenocrysts. This is seen in Figure 3-4. 

Interpretation. The presence of oxidation in the lava tops/bottoms indicates eruption in a 

subaerial environment. 

 Nutzotin Mountain Sequence at Bonanza Creek (Kjs) 

Description. This unit disconformably underlies the Chisana Formation at Bonanza 

Creek. At Bonanza Creek, this facies consists of mudstone with minor amounts of sandstone, 

conglomerate, and fossiliferous limestone.  

Interpretation. At Bonanza Creek, this facies is interpreted to represent subaqueous 

deposition on a marine shelf (Manuszak et al., 2007; this study).  
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 Nutzotin Mountains Sequence at Jacksina Creek (Kjs) 

At Jacksina Creek, the stratigraphy exposes nonmarine sedimentary strata (Figure 3-5B). 

Sedimentary strata at Jacksina Creek consist of mudrock, carbonaceous shale, fine-grained 

sandstone, and coal with abundant plant debris. Sandstones display symmetrical ripples and tidal 

bedding structures (flaser bedding, lenticular bedding, wavy bedding; Figure 3-6 A, B). Coal 

layers range from less than 5 cm to approximately 1.6 m in thickness. 

Interpretation. At Jacksina Creek, this facies is interpreted to represent deposition that 

occurred in a coastal marine and terrestrial environment, influenced by fluvial, tidal, and wave 

processes (e.g., a fluvial-deltaic system). 

 Petrography 

Hand samples of both subaerial and subaqueous lavas are typically light to dark gray in 

color. Thin sections were made of 20 igneous and two sedimentary samples from this study; 

samples for petrographic analysis were limited to igneous rocks and combined with 26 thin 

sections from the study by Short et al. (2005). Thin sections were used to determine degrees of 

alteration of samples, and to provide visual estimates of mineralogy. In thin section, sampled 

lavas are porphyritic, and plutonic samples are phaneritic. Phenocrysts of plagioclase, 1-3 mm in 

size, are present in most of the lavas, with many samples also containing 1-4 mm pyroxene 

crystals. Alteration is clearly discernable in hand sample as pyrite blebs, veins of carbonates and 

sulfides, and as replacement of primary minerals by serpentine, epidote and other secondary 

alteration minerals. Alteration is pervasive and is distributed homogenously throughout all 

samples collected. Alteration can make up anywhere from 10% to 100% of samples. In all but 

the most altered samples, phenocrysts typically exhibit less alteration than groundmass minerals 

(typically less than 30% alteration per phenocryst). Amphibole minerals are only present in 
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samples from the middle section of Bonanza Creek and from samples from Jacksina Creek. 

Amphiboles are typically completely replaced by chlorite, serpentine and/or opaque minerals, 

with the exception of a few samples from the middle section of the Chisana formation at 

Bonanza Creek (Figure 3-9 A, B) and samples from Jacksina Creek. Amphibole phenocrysts first 

appear at approximately 1185 m in the stratigraphic column in the middle section of the Chisana 

Formation at Bonanza Creek and continue until at least 1510 m. Amphibole phenocrysts range 

from greater than 2.5 mm to less than 0.125 mm. Alteration in amphibole phenocrysts and 

pseudomorphs can range from complete replacement by chlorite, sericite and opaque minerals to 

less than 5% replacement.In thin section, plagioclase is the dominant phenocryst phase for all 

samples.  It is typically altered to sericite, epidote, carbonate, and opaque minerals. Plagioclase 

laths exhibit sieve textures, and are typically zoned (Figure 3-9 C, D). Plagioclase is present 

throughout the Chisana Formation at all localities sampled. Alteration ranges from total 

replacement of plagioclase minerals, to partial replacement present in certain zones, to 

homogenous alteration across the mineral to sericite and kaolinite. Chisana Lavas are locally 

amygduloidal, with vesicles filled by epidote, zeolites, serpentine, and calcite (Figure 3-9 E, F). 

Olivine pseudomorphs (Figure 3-9 G, H) are present only in samples from the upper section of 

Bonanza Creek and from Jacksina Creek. Olivine-bearing lavas first appear at about 1595m in 

the stratigraphic column and are found until approximately 1910 m. Olivine is typically replaced 

by serpentine, with minor chlorite and iddingsite also present. Clinopyroxene is the dominant 

mafic phenocryst found in samples from the upper and lower sections of the Chisana formation 

at Bonanza Creek. Orthopyroxene is typically less abundant than clinopyroxene. Alteration of 

pyroxenes is typically less than 5% of the phenocryst, and is concentrated around the rims of the 

minerals. Many pyroxenes are also normally zoned, and some are partially resorbed. Pyroxene 
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phenocrysts range in size from over 4 mm to microcrystalline. Many phenocrysts of pyroxene 

minerals exhibit twinning, and form as glomerocrysts (Figure 3-9 I, J). The groundmass of the 

volcanic samples contain plagioclase laths, pyroxene crystals, opaque minerals, serpentine, 

chlorite, zeolites, sericite, kaolinite, and epidote (Appendix B).  

Multiple samples from the upper Chisana section at Bonanza Creek and Jacksina Creek 

exhibit trachytic textures in groundmass plagioclase. Samples from the lower section of the 

Chisana Formation at Bonanza Creek are typically porphyritic with glomerocrysts consisting of 

plagioclase and clinopyroxene. Glomerocrysts often are larger than 4 mm in diameter. Lower 

section samples typically contain amygdules that have been filled by calcite and/or zeolites. 

Lavas from the middle section also have plagioclase as the dominant mineral, but have more 

amphibole pseudomorphs and phenocrytsts than pyroxene or olivine. Olivine pseudomorphs are 

present only in the uppermost portions of the middle section. In the upper section lavas, 

plagioclase is still the dominant mineral; however, pyroxene phenocrysts and olivine 

pseudomorphs are present mainly at the base of the upper section, and become less abundant and 

smaller upsection. Lavas from the Jacksina Creek region are plagioclase dominated; these 

include samples with trachytic texture with more than 90% plagioclase laths. Others contain 

large (greater than 1.65 mm in diameter) glomerocrysts of both clinopyroxene and hornblende, in 

addition to plagioclase. The stratigraphically lowest lavas sampled at Jacksina creek contain 

large (greater than 2.5 mm) amphibole pseudomorphs and medium (approximately 2 mm and 

smaller) clinopyroxene glomerocrysts. The uppermost samples from the Jacksina Creek region 

are trachytic and composed of approximately 85% plagioclase laths and 15% alteration minerals.  

The plutonic sample collected from the Chisana Pluton near Bonanza Creek consists of 

plagioclase feldspar, amphibole pseudomorphs, trace apatite and secondary alteration minerals 
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such as serpentine, chlorite, kaolinite, and epidote. Alteration is extensive, making up 

approximately 45% of the sample. Plagioclase laths are typically euhedral to subhedral, and 

exhibit zoning, sieve textures, and extensive alteration to kaolinite (sometimes >50% of the 

mineral). Amphibole pseudomorphs are typically replaced by serpentine, epidote, and chlorite.  

 Geochemical classification and bulk rock geochemical characteristics 

On the total alkalis versus silica diagram (Le Maitre, 1989), the samples from Beaver 

Lake, Bonanza Creek and Jacksina Creek can be classified as transitional basalts to andesites, 

with SiO2 values ranging from 44.7 wt.% to 63.4 wt.% (Figure 3-10). The samples show a broad 

array in which total alkali content increases with increasing silica content. Samples from 

Bonanza Creek and Jacksina Creek typically plot as basaltic andesites (Figure 3-9).  Samples 

from Jacksina Creek and Beaver Lake range from basalts to andesites. On an alkali-FeO*-MgO 

(AFM, where FeO* is the total Fe expressed as FeO) diagram (Figure 3-10), samples from the 

upper Chisana Formation at Bonanza Creek follow a tholeiitic array whereas samples from 

middle and lower sections, Beaver Lake, and Jacksina Creek dike samples plot along a calc-

alkaline array. Most of the Jacksina Creek lavas plot along a tholeiitic array, only the 

stratigraphically lowest lava collected from Jacksina creek plots along the calc-alkaline array. 

Samples also plot as subalkaline basaltic to andesitic compositions on a Zr/TiO2 versus Nb/Y 

discrimination diagram (Figure 3-10). The similarity in classification using the two different 

schemes suggests that alteration has had a relatively small effect on the nomenclature and bulk 

chemical composition. CIPW normative estimations of basaltic samples plot as olivine tholeiites 

and tholeiites. (Appendix E)  

Major element geochemical diagrams typically show increasing SiO2 with Na2O and K2O 

and decreasing SiO2 content with MgO, CaO, FeO and Fe2O (Figure 3-11). There are both high 



25 

FeO* and low FeO* groups present. Samples from the upper and Lower Chisana formation at 

Bonanza Creek tend to plot in a higher FeO* group than samples from the middle section.  

Published data, as well as samples from Beaver Lake and Jacksina Creek typically plot within 

both groups. K2O and TiO2 also have a small separation between the upper and middle sections 

of the Chisana Formation at Bonanza Creek. Samples from the middle section of Bonanza Creek 

commonly group together on most of the major and trace element diagrams. Data from the 

middle section show anomalously high values when plotting SiO2 vs. K2O, Na2O, and Rb. Trace 

element diagrams (Figure 3-12) show that samples from the middle section are typically more 

elevated in Zr, Ba, and Rb; and more depleted in Sc than samples from the upper section. 

Samples from Beaver Lake show broadly similar elevations and depletions, except with higher 

concentrations of La, Y, Zr and Sc than the middle section of Bonanza Creek. These trace 

elements were chosen because they had the most overlap between the three datasets. Chemo-

stratigraphic diagrams show that there are significant differences between lavas from the three 

sections of the Chisana Formation at Bonanza Creek (Figure 3-13). 

 A primitive mantle normalized multi-element diagram (Figure 3-14) shows enrichment 

of LILE (large ion lithophile elements) and depletion of HFSE (high field strength elements) 

relative to each other, characteristic of elemental enrichments and depletions associated with 

subduction.  
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Table 3-1: Facies Table 

Table describing observed units from Bonanza Creek and Jacksina Creek and their inferred 

depositional processes. The Upper Nutzotin Mountains sequence is split into two facies here, as 

the description and inferred processes of deposition differs greatly between the two study areas. 

 

Unit Abbreviation Description Inferred Depositional processes
Facies 

Location

Subaerial Oxidized Lavas KcUL

Andesite lava flows and flow top/bottom breccias that 

have been oxidized, typically occur as thick packages of 

massive andesites. Porphyritic, with fine-grained light to 

dark gray matrices. Phenocrysts include 1-3mm plag 

(sometimes replaced with epidote) as well as 1-2mm 

pyroxene and 1-4 mm amphibole phenocrysts

Effusive volcanism

Jacksina 

and 

Bonanza

Block and Ash Flow KcBAF

Volcaniclastic pebble conglomerate, matrix supported 

with a fine-grained matrix, but more clasts than previous 

conglomerates. Poorly sorted clasts of what look like 

tuffs, up to 15 cm in length.

Explosive Volcanism Bonanza

Lahar Breccias KcB

Inversely graded, poorly sorted and matrix supported 

breccias, found in the lower parts of the section. Cut by 

andesite dikes.

Debris avalanche off volcano 

flank 

Jacksina 

and 

Bonanza

Pillow and Marine Lavas KcLL

Andesite and Basaltic lava flows, found interbedded with 

KCgl. Porphyritic, with fine grained light-to-dark colored 

matrixes. Frequently contain 1-3mm plagioclase laths. 

Frequently have lava flow top/bottom breccias.

Marine deposition indicated by 

pillows in andesite lavas, and by 

the interbedded sedimentary 

units containing marine fossils

Bonanza

Volcaniclastic 

Conglomerate
KcCgl

Volcaniclastic pebble conglomerate, found throughout 

the lower and middle sections of the formation. Coarsens 

upward, and contains Inoceramus  fossils and fragments 

intermittently.

Shallow marine to deltaic 

deposition indicated by large 

clast size, and inverse grading 

of clasts.

Jacksina 

and 

Bonanza

Marine Mudstones and 

minor fine-grained 

volcaniclastic sandstone 

KcM

Very fine-grained mudstones and volcaniclastic 

sandstones found in the lower third of the Chisana 

Formation. Marine brachiopods (Sandy and Blodgett 

2000) and  molluscs (Richter 1994) are present 

throughout the facies.

Deep marine environment, 

indicated by marine fossils and 

low energy deposition of 

mudstones

Bonanza

Upper Nutzotin Mountain 

Sequence
Kjs

Sandstone, mudrock, carbonaceous shale, and coal with 

abundant plant debris, symmetrical ripples, and tidal 

bedding.  

Deposition in coastal marine 

and terrestrial environments 

influenced by fluvial, tidal, and 

wave processes such as a 

fluvial-deltaic system. 

Jacksina

Upper Nutzotin Mountain 

Sequence
Kjs

Mudstone with minor amounts of sandstone, 

conglomerate, and fossiliferous limestone.

Deposition in submarine-fan 

systems (Manuszak et al., 2007)
Bonanza
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Figure 3-1: Pictures of Bonanza Creek Study area, lower section. 

A.) Dike in lower section of Bonanza Creek, cutting through marine mudstone facies. B.) 

Bonanza Creek pillow lavas in marine lavas facies. Person for scale. 
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Figure 3-2 Pictures of Bonanza Creek Study area, lower section. 

A.) Volcaniclastic conglomerate facies in lower section of Bonanza Creek, very poorly sorted, 

with pebble sized clasts and coarse sand-sized matrix. Clasts are volcanic in nature and are 

texturally consistent with derivation from underlying lavas (rock hammer for scale, 
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approximately 28cm). B.) Cross sections of Inoceramus and Belemnite fossils in volcaniclastic 

conglomerate facies at Bonanza Creek, indications of a marine environment. 
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Figure 3-3 Pictures of Bonanza Creek study area, middle section. 

A.) Lahar breccia facies in Bonanza Creek. Clasts are both sedimentary and volcanic. There are 

fewer clasts than previously seen in the formation, and clasts are more angular than previously 
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seen conglomerates. B.) Block and ash flow facies in Bonanza Creek. Clasts are made up of 

mostly pyroclastic rocks, but also include XXX rocks, and are also angular.  
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Figure 3-4 Pictures of Bonanza Creek upper section and Jacksina Creek study areas. 

A.) Contact of first oxidized lava autobreccias (basalt autobreccia above red-colored zone of 

oxidation) facies signaling the beginning of subaerial lava facies. Previous lavas were not 

oxidized and were greenish-gray in color. B.) Subaerial lava facies at Jacksina Creek. Lowermost 
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stratigraphic part of the Chisana Formation at Jacksina Creek, very similar to upper Chisana 

section lavas at Bonanza Creek.  
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Figure 3-5 Pictures of Jacksina Creek study area. 

 A.) Lahar breccia facies at Jacksina Creek. Similar to the same facies from Bonanza Creek.  B.) 

Chisana formation dike cutting through Nutzotin Mountains Sequence facies underlying Chisana 
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Formation at Jacksina Creek. Dike cuts through the sandstone and mudstone facies of the 

Nutzotin Mountains Sequence. Person for scale. 
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Figure 3-6: Pictures of Nutzotin Mountains Sequence at Jacksina Creek 

A.) Symmetrical ripples in NMS sandstone as well as plant fossils in coal beds (inset). B.) 

Flaser bedding in sandstones. 
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Figure 3-7: Bonanza Creek stratigraphic column. 

Stratigraphic column for the Chisana Formation at Bonanza Creek. Unit consists of three 

sections, the upper, middle and lower, and is composed of six different facies. Facies 
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descriptions and abbreviations are taken from Table 3-1. The top of the section was eroded away 

and not documented. 
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Figure 3-8: Jacksina Creek stratigraphic column. 

Stratigraphic column showing the approximate stratigraphy of the Chisana Formation at Jacksina 

Creek. 
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Figure 3-9: Thin section photographs. 

 Plane and cross-polarized light photomicrographs of: A, B) amphibole phenocrysts in an 

andesite from the middle section of the Chisana Formation. (4x) C, D) Phenocryst of zoned 
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plagioclase (4x). E, F) Vesicle filled with chlorite and epidote in a basaltic andesite from the 

Chisana Formation at Jacksina Creek (XPL, 10x).  G, H) Olivine pseudomorph consisting of 

opaque minerals and iddingsite from lava from the upper section of the Chisana Formation at 

Bonanza Creek. (4x) I+J) Glomerocryst of clinopyroxene and orthopyroxene. Note twinning 

present in some pyroxenes. Sample from lower section of Bonanza Creek dike (4x). 
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Figure 3-10 Geochemical classification diagrams. 

A.) Volcanic rock classification diagram based on LeMaitre (1989). Chisana formation igneous 

rocks are composed primarily of basalts, basaltic andesites, and andesites. B.) Zr/Ti vs. Nb/Y 

classification scheme after Pearce (1996). The similar results yielded from both this diagram and 

the total alkalies vs. silica diagram indicates that any alteration has had minimal effect on the 
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behavior of incompatible trace elements and the overall bulk chemistry. C.) F/M vs. silica plot of 

Miyashiro (1974), showing the primarily tholeiitic rocks from the Chisana Formation. C.) AFM 

diagram after Irvine and Baragar, (1971), showing both tholeiitic and calc-alkaline arrays from 

the Chisana formation. 
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Figure 3-11: Major element diagrams. 

 Major elements vs. SiO2.  
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Figure 3-12: Trace element diagrams. 

 Select trace elements vs. SiO2.  
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Figure 3-13: Chemostratigraphic diagrams. 

Stratigraphically-controlled geochemical variations in the Chisana Formation at the Bonanza 

Creek type section.  Differences between the middle sections and the upper and lower sections 

likely due to three different lava packages. 
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Figure 3-14: Primitive mantle normalized multi-element diagram. 

 Primitive mantle normalized multi-element diagram, normalizing values from Sun and 

McDonough, 1989. Overall, LILE enrichments and HFSE depletions relative to other elements 

are present, which is typical of arc magmatism. OIB-ocean island basalt, N-MORB-normal mid 

ocean ridge basalt (Sun and McDonough, 1989) 
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Chapter 4 - Discussion 

 Stratigraphic Relationships of the Chisana Formation 

The Chisana Formation at Bonanza Creek is a record of a transition from subaqueous 

deposition and eruptions to subaerial deposition and eruptions. The presence of marine fossils 

and pillow lavas in the lower section, along with the inferred depositional setting of the locally 

exposed Nutzotin Mountains sequence (Berg et al., 1972; Richter and Jones, 1976; Manuszak et 

al., 2007) support a marine environment for deposition of the lower section of the Chisana 

Formation at Bonanza Creek. The middle section at Bonanza Creek contains a much higher 

proportion of lavas compared to the lower section and is interpreted to represent a transition 

between subaqueous and subaerial deposition. The interbedded sediments of the middle section 

are interpreted to have been deposited in a marine environment based on fossil evidence. 

Sedimentary layers thin, and eventually disappear upsection. The upper section of the Chisana 

Formation at Bonanza Creek, with its massive, oxidized lavas represents a primarily subaerial 

environment of deposition/emplacement. Manuszak et al. (2007) interpret structural imbrication 

and translation of the sedimentary strata of the Nutzotin basin during the Late-Early Cretaceous 

to represent accretion of the WCT onto the North American paleomargin. This is consistent with 

an interpretation where the transition from subaqueous to subaerial deposition/emplacement was 

caused by accretion of the WCT to the North American paleomargin. 

The Chisana Formation at Jacksina Creek consists of oxidized lavas and autobrecciated 

lava tops/bottoms interbedded with the volcaniclastic conglomerate facies. The lavas and 

sedimentary rocks at Jacksina Creek are the same as the subaerial lava facies and upper section 

conglomerates at Bonanza Creek. Observations of the Nutzotin Mountains Sequence at the 

Jacksina Creek locality, however, indicate deposition of the Nutzotin Mountain Sequence at 
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Jacksina Creek to have occurred in a coastal marine and terrestrial environment influenced by 

fluvial, tidal, and wave processes. The Chisana Formation at Jacksina Creek is interpreted to 

represent a similar subaerial environment of deposition/emplacement as the subaerial lava facies 

from Bonanza Creek (Figure 4-1).  

Chisana Formation chemostratigraphy at Bonanza Creek (Figure 3-13) show evidence of 

at least three distinct packages of lavas: chemically similar lower and upper section lavas, and a 

more evolved, middle section lava package. The upper section of the Chisana Formation at 

Bonanza Creek shows distinct enrichments in FeO*, V, and TiO2, and depletions in Ba and K2O 

relative to lavas from the middle section (Figure 4-2). When plotted on a SiO2 vs K2O 

discrimination diagram after Peccerillo and Taylor (1976), samples from the middle section of 

the Chisana Formation at Bonanza Creek typically plot as transitional from calc-alkaline to high-

K calc-alkaline, and lavas from the upper formation plot as transitional from arc tholeiites to 

calc-alkaline affinities (Figure 4-2). Additional evidence of a change in magma composition are 

the petrographic differences present between the middle and upper sections of the Chisana 

Formation at Bonanza Creek (Figure 3-7; Figure 3-9). Phenocrysts of amphibole are abundant in 

middle section lavas but are absent in the upper and lower section lavas. Additionally, relict 

olivine phenocrysts are present in the upper section but absent in the lower and middle sections. 

These results indicate that lava packages in the middle and the upper Chisana Formation at 

Bonanza Creek came from different eruptions and potentially from different volcanic centers.  

 Geochemical constraints on Chisana Formation magmatism 

Geochemical analyses of new data gathered from the Chisana Formation, in addition to 

the minimal existing published data (Berg et al., 1972; Richter et al., 1975; Barker, 1994; Snyder 

and Hart, 2007) provide strong evidence that the Chisana Formation has an arc origin. 
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Subduction processes produce magmas that are enriched in LREEs and LILEs and depleted in 

HREEs and HFSEs (Smithies et al., 2007); these characteristic enrichments and depletions are 

present in the majority of samples from the Chisana Formation (Figure 3-14). Chisana Formation 

lavas show different trace element enrichments and depletions than OIB and N-MORB (Figure 

3-14), that lack strong enrichments in Sr, K and Ba, which are present in most Chisana 

Formation samples. Basalts from the Chisana Formation primarily plot within the island arc 

array of a Zr-Ti-Sr diagram after Pearce and Cann, (1973) (Figure 4-5).  

Plutonic rocks of similar ages (Richter et al., 1975; Snyder and Hart, 2007; Graham et al., 

2016) to the volcanic rocks of the Chisana Formation crop out along the Nutzotin basin. 

Geochemical comparison of samples collected from the Chisana Formation (Berg et al., 1972; 

Barker, 1994, this study) to major element (Richter et al., 1975; Snyder and Hart, 2007) data 

from Cretaceous-aged plutons in the Nutzotin Mountains basin show similar arrays (Figure 4-3) 

Comparison with major, trace and REE geochemical data from the White Mountain pluton 

(Snyder and Hart, 2007) show that the White Mountain pluton in the Nutzotin basin plots within 

a similar range as samples from Chisana Formation volcanic rocks (Figure 4-3; Figure 4-4) and 

is compositionally similar.  Radiogenic isotope data from Aleinikoff et al. (2000) show εNdi 

values range from 8.1-8.6 and 87Sr/86Sri values range from 0.70289 to 0.70316 for four Chisana 

volcanic rocks. This is similar to radiogenic isotope ranges from the White Mountain pluton 

reported by Snyder and Hart (2007), who report εNdi = 7.2 to 9.1 and 87Sr/86Sri = 0.703189 to 

0.704334. Short et al. (2005) report εNdi values of 8.8-9.1 and 87Sr/86Sri values ranging from 

0.70292-0.70327 for middle and lower lavas from the Chisana Formation at Bonanza Creek. 

Preliminary εNdi and 87Sr/86Sri isotope data for samples from the Nabesna and Klein Creek 

plutons show a εNdi value of ~4.0 and an 87Sr/86Sri value of ~0.7040 for the Nabesna pluton, and 
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an εNdi value of ~4.5 with an 87Sr/86Sri value of ~0.7045 for a sample from the Klein Creek 

pluton (Graham et al., 2016).   While these datasets are limited in scope, the similarity between 

radiogenic isotope values for the Chisana Formation lavas and Nutzotin basin plutons, as well as 

their geochemical overlap, is consistent with the interpretation that these igneous rocks all reflect 

magmatism in the same volcanic arc.  

 Origin of the Chisana Formation and tectonic implications 

Sedimentary facies similar to the volcaniclastic conglomerate facies we identified are 

found in modern arcs, such as the Mariana or Tonga arcs and are interpreted as primary volcanic 

and mass-wasting deposits proximal to an active arc volcano (Draut et al., 2006). The similarities 

of the sedimentary facies of the Chisana Formation and the sedimentary facies found in the 

Talkeetna, Mariana and Tonga arcs lend further credence to the hypothesis that the Chisana 

Formation was part of an island-arc system. Lithofacies of the lower and middle sections of the 

Chisana Formation at Bonanza Creek are very similar to lithofacies associations of the Talkeetna 

Formation at Sheep Mountain, or debris aprons formed around volcanic centers of the Tonga arc 

(Draut et al., 2006). Abundance of volcaniclastic turbidite facies, along with the presence of 

lahar breccias and block and ash flow deposits in the middle section of the Chisana Formation at 

Bonanza Creek, all suggest that deposition occurred less than 10 km from the volcanic vent 

(Draut et al., 2006).  Lithofacies from the Chisana Formation are also consistent with lithofacies 

of island arcs, such as the Cretaceous Alisitos arc reported by Busby, (2004).  Furthermore, thick 

successions of siliciclastic strata occur south of the Chisana Formation in the Wrangell 

Mountains basin and are interpreted to have been deposited in a forearc basin, relative to the 

Chisana arc (Plafker and Berg, 1994; Trop et al., 2002). Compositional data of volcaniclastic 

strata and volcaniclastic strata show that Late Cretaceous sediment in this basin was sourced 
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chiefly from the Chisana arc (Trop et al., 2002; Trop and Ridgway, 2007). The presence of these 

forearc deposits, support a model of island arc-formation for the Chisana Formation. 

Chisana Formation igneous rocks originated in an island arc but differ slightly from 

“typical” island arcs, such as the Aleutians, because they would have been erupted/emplaced 

through/into an overthickened segment of oceanic crust in the Wrangellia terrane. This 

overthickened crust was created by the presence of the 3-6 km-thick package of Triassic Nikolai 

greenstone flood basalt lavas (and presumably, accompanying sub-volcanic magma plumbing 

systems) that represent an oceanic plateau that overlies older arc-related oceanic crust (Greene, 

2010). Crustal thickness calculations using low magnesium intermediate (55-68 wt% SiO2) calc-

alkaline Chisana Formation samples using Sr/Y concentrations and selection criteria after the 

method described by Profeta et al. (2015) (Appendix G) yield an average crustal thickness of the 

Wrangellia composite terrane crust of approximately 43 km, which is significantly thicker than 

the average island arc crust (Tetreault and Buiter, 2014).   Supporting these calculations are 

La/Yb calculations (after Profeta et al., 2015) from four Chisana lavas that have Yb (Barker, 

1994).  

The arc-like signatures present in the geochemistry of the Chisana Formation, regional 

radiogenic isotope results, combined with marine depositional environments for lavas and 

interbedded sediments, local-regional geological setting and similarity between Chisana 

Formation sedimentary facies and sedimentary facies of other island arcs (Draut and Clift, 2006), 

all suggest that the Chisana Formation is the product of an island arc.  Comparison of 

geochemical data from the Chisana Formation to geochemical data from volcanic rocks of the 

Gravina belt (Stowell et al., 2000) (Figure 4-6; Figure 4-7) exhibit very similar arrays and 

support the model of Plafker and Berg (1994) that Late Jurassic-Early Cretaceous volcanism in 
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the Gravina and Nutzotin belts were part of a single arc, dubbed the Gravina-Nutzotin arc (here 

called the Chisana arc).  

The tectonic origin of the Gravina-Nutzotin belt is a highly debated subject (Yokelson et 

al., 2015; Lowey, 2017). Studies located in southeastern Alaska and British Columbia suggest 

that the WCT collision occurred during the Middle Jurassic, and that volcanism and 

sedimentation occurred in post-accretionary transtensional basins that were created by strike-slip 

fault systems (McClelland et al., 1992; Gehrels et al., 2009) Studies from southern Alaska and 

Yukon territory propose that volcanism is related to east-dipping subduction and that basin 

development evolved from an offshore Jurassic intra-oceanic arc to a Cretaceous collisional arc 

setting (Trop et al., 2002; Trop and Ridgway, 2007; Hampton et al., 2010). Recent tomography 

studies and studies of volcaniclastic rocks from the Dezadeash formation suggest that the 

Gravina-Nutzotin belt were the products of a west-dipping subduction related fore-arc basin 

(Sigloch and Mihalynuk, 2013, 2017; Lowey, 2017).  

Chisana Formation-aged forearc deposits located south of our study area are interpreted 

by Trop et al. (2002) to represent deposition sediments derived from Chisana arc rocks into the 

Wrangell Mountains basin (Figure 4-8), located in a forearc position to the Chisana arc.  

Radiogenic isotope analysis of Chisana volcanic rocks (Aleinikoff et al., 2000; Short et 

al., 2005) give a composite range of εNdi values from 7.2-9.1 and a range of 87Sr/86Sri values 

from 0.70289 to 0.704334. Radiogenic isotope analysis of Yukon Tanana terrane (craton) 

granitoids give a range of εNdi values from -6.93 to -11.14, and a range of 87Sr/86Sri values from 

0.70706 to 0.711535 (Aleinikoff et al., 2000). The differences between εNdi values from the 

Chisana Formation volcanic rocks and Yukon Tanana granitoids suggest that Chisana magmas 

were not influenced by interaction with the North American craton.  This indicates that Chisana 
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Formation volcanism occurred prior to accretion of the WCT onto the North American continent 

and the arc was not in close spatial proximity to the continental margin.   

Data from this study alone cannot distinguish between an east-dipping subduction model 

and a west-dipping subduction model; however, when taken in context with other studies from 

southern Alaska, the results of this study provide more evidence for east-dipping subduction 

under the WCT than the alternatively proposed, west-dipping subduction model. Studies from 

the Chugach terrane to the west of the study area (Plafker and Berg, 1994; Amato et al., 2013) 

yield evidence that the Chugach terrane represents the remains of Late Jurassic-Early Cretaceous 

accretionary prism. Middle Jurassic to Early Cretaceous siliciclastic strata located inboard of the 

Chugach Terrane and outboard of the Chisana Formation are interpreted to represent intra-arc 

and forearc depocenters relating to the Chisana-Chitina-Talkeetna formations (Plafker and Berg, 

1994; Trop and Ridgway, 2007).   Our data, when combined with these other studies from across 

southern Alaska, support a model where formation of the Gravina-Nutzotin belt was dominated 

by subduction-related arc volcanism through overthickened island arc crust and underlain by an 

east-dipping subduction zone beneath the WCT. 

 Comparison to other volcanic arcs and other tectonomagmatic environments 

New data presented in this study, when combined with published data (Berg et al., 1972; 

Barker, 1994) allow for a detailed characterization of the Chisana Formation. This combined 

dataset allows us to compare the Chisana Formation with rocks from other volcanic arcs, such as 

the modern Honshu or Jurassic Talkeetna arcs. The Talkeetna Formation is an oceanic volcanic 

arc complex within the Peninsular terrane of south-central Alaska and was formed during the 

Early Jurassic (Clift et al., 2005). This formation is comprised of lavas, tuffs and volcaniclastic 

debris-flow and turbidite deposits. Geochemical comparison of rocks from the Chisana 
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Formation (Barker, 1994; this study) to geochemical analyses of igneous rocks from the 

Talkeetna Formation (Clift et al., 2005) show similarities between the two arcs. This is to be 

expected, as the two both represent arc magmatism within the WCT, albeit at different times. 

Chisana Formation samples plot in a similar range as samples from the older (182-177 Ma) 

Talkeetna arc (Clift et al., 2005) (Figure 4-9). Sedimentary facies in the Chisana Formation are 

very similar to volcaniclastic turbidites from other arcs, such as the Talkeetna arc (Clift et al., 

2005).  

Comparison of the Chisana Formation to the younger continental arc, the Wrangell arc 

(Preece and Hart, 2004; Brueseke et al., 2019) show that, while the two arcs have similarities in 

some elements, there are significant differences in others (Figure 4-10). Samples from the 

Wrangell arc are significantly more depleted in Ti, Sr, and P, and more enriched in Zr. An AFM 

diagram (Irvine and Baragar, 1971) show that Chisana Formation samples plot as more 

transitional tholeiitic to calc-alkaline, whereas samples from the Wrangell arc plot almost 

exclusively in the calc-alkaline field.  

We compared samples of the Chisana Formation to samples from the modern Honshu 

arc, as we infer it to be a possible modern-day proxy for the Chisana arc due to the accretionary 

nature of both arcs. Compared to representative samples from the central and northeastern 

Honshu arc (Nobuyuki, 1988; Allan and Gorton, 1992; Jones et al., 1993; Morris and Itaya, 

1997; Kawabata and Shuto, 2005; Safonova et al., 2015), the Chisana Formation typically shows 

greater trace element enrichments than Honshu and has greater Nb depletions (Figure 4-11), 

however, major element chemistries show overlap and the two arcs plot along similar transitional 

calc-alkaline to tholeiitic arrays on an AFM diagram. Trace element diagram comparisons 

between the two arcs show that, while they are similar, the Chisana Formation has higher 
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concentrations of La, Zr, Ce, Rb, Ba, and Nb/Y and Sr/Y. Similarities between the two arcs are 

consistent with the interpretation that the Honshu arc represents a modern-day proxy for Chisana 

Formation igneous rocks. 

Trace element data from Chisana Formation igneous rocks with SiO2 less than 64 wt.% 

were compared to Quaternary samples of basaltic to andesitic composition from the East African 

Rift (Giordano et al., 2014). Chisana Formation volcanic rocks are typically more depleted in Sr, 

and Ti, and more depleted in Ba and Nb than East African Rift (EAR) rocks. Chisana Formation 

volcanic rocks are significantly more depleted in Zr, Nb and Th than samples from the EAR. 

Differences between the two sets of geochemical data do not support the hypothesis that Chisana 

Formation volcanism occurred due to continental rifting. 

Comparison of trace element geochemistry from igneous rocks from the Chisana 

Formation to samples from the Mariana back arc (Hart et al., 1972; Bougault et al., 1982; Stern 

et al., 1990; Gribble et al., 1998; Newman et al., 2000; Pearce et al., 2005; Straub et al., 2015) 

show broad similarities. Trace element ratios from samples from the Marianas back arc are 

similar to trace element ratios from samples of the Chisana Formation (Figure 4-13). 

Geochemical similarities are consistent with the model where the Gravina Nutzotin belt was 

formed in a back arc environment (Berg et al., 1972). However, back arc basin mantle source 

geochemistry can be influenced by subduction related processes which can cause back arc 

derived magmas to exhibit arc-like geochemical signatures (Saunders and Tarney, 1984; Pearce 

and Stern, 2006). Additionally, strata of the Wrangell Mountains basin that are inferred to 

represent fore arc deposits of the Chisana arc (Trop et al., 2002) are inconsistent with this model. 

Another suggested model for the formation of the Chisana Formation and associated 

igneous rocks is formation via transtensional rifting during northward translation along strike-
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slip faults (McClelland et al., 1992). Volcanic activity along strike-slip fault zones is primarily 

related to local extensional processes occurring at pull-apart basins or at releasing bend basins 

(Tibaldi et al., 2010) and in small volumes (relative to belts of arc volcanoes). Chisana 

Formation igneous rocks help define a ~2,000 km-long zone of magmatism (Plafker and Berg, 

1994), which is inconsistent with a transtensional-related model of formation. Additionally, 

magmas produced in a transtensional tectonic regime are usually less hydrous than what is seen 

in Chisana Formation lavas and plutons (e.g., hydrous mineral-bearing). Overall, the hydrous 

nature and long linear array of coeval igneous rocks from south-central through southeastern 

Alaska are inconsistent with a model where Chisana Formation igneous rocks were formed in a 

transtensional tectonic setting. 
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Figure 4-1 Depiction of differences in depositional environments between study areas. 

Cartoon showing inferred depositional differences between Bonanza Creek and Jacksina Creek 

locales, based on field relationships from this study. This diagram illustrates that the Chisana 

Formation at Jacksina Creek was deposited in a subaerial (Tan) environment alongside deltaic 

facies, while at the same time, the lower Chisana Formation at Bonanza Creek was being 

deposited in a subaqueous (Blue) environment alongside marine sediments 
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Figure 4-2: Selected geochemical diagrams showing differences between upper and middle 

packages of Chisana Formation lavas at Bonanza Creek. 

A.) SiO2 vs FeO* diagram showing two different arrays from lavas from Bonanza Creek, one 

array for the middle section and one array for the lower and upper sections. B.) SiO2 vs. V 
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diagram showing elevated levels of V in upper and lower section Chisana lavas at Bonanza 

Creek relative to the middle section. C.) SiO2 vs. Ba diagram showing different arrays 

between the middle section and upper and lower section lavas at Bonanza Creek. D.) SiO2 vs. 

TiO2 diagram illustrating similar to the SiO2 vs. V diagram where the upper and lower 

Chisana formation show elevated TiO2 relative to the middle section of the Chisana 

Formation at Bonanza Creek. E.) SiO2 vs. K2O diagram (Peccerillo and Taylor, 1976) 

showing calc-alkaline and high-K calc-alkaline affinity of middle and lower Chisana 

Formation lavas at Bonanza Creek, and the arc-tholeiitic and calc-alkaline affinities of the 

lower section of the Chisana Formation lavas at Bonanza Creek. 
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Figure 4-3: Comparison of the Chisana Formation igneous rocks to Cretaceous plutons in 

the Nutzotin belt. 

Multi-element diagram comparing geochemistry from the Cretaceous-aged plutons in blue 

(Richter et al., 1975; Snyder and Hart, 2007) to geochemical data from the Chisana Formation 

(black)(Barker, 1994; this study), showing REE overlap between the plutons and volcanic rocks 
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from the Chisana Formation. AFM diagrams after Irvine and Baragar (1971) and major elements 

vs. silica plots show additional similarities between the two groups. 
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Figure 4-4: Trace element comparison of Chisana Formation igneous rocks to White 

Mountain plutons 

Geochemical diagram showing trace element overlap between samples of the Chisana Formation 

and samples of the White Mountain pluton (Snyder and Hart, 2007). 
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Figure 4-5 Ternary diagram of tholeiitic basalts from the Chisana Formation. 

Ternary diagram after Pearce and Cann. (1973), showing island-arc affinity for Chisana 

Formation tholeiitic basalts. 
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Figure 4-6: Geochemical comparison of the Chisana Formation to Gravina belt volcanic 

rocks. 

Multi-element (normalizing values Sun and McDonough, 1989) and Trace element diagrams 

comparing the Chisana Formation to basalts from the Gravina belt (Rubin and Saleeby, 1991; 



66 

McClelland et al., 1992; Stowell et al., 2000). Similarities between the two suggest that both 

were part of the same arc. 
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Figure 4-7: Trace element comparison of Chisana Formation igneous rocks to Gravina 

metabasalts 

Geochemical diagram showing trace element overlap between igneous rocks from the Chisana 

Formation and samples of the Gravina belt (Rubin and Saleeby, 1991; McClelland et al., 1992; 

Stowell et al., 2000).  
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Figure 4-8: Cartoon depicting favored model of formation for Chisana Formation and 

Gravina-Nutzotin belt. 

Cartoon showing the formation of the Chisana Formation magmatic arc relative to other Jurassic-

Cretaceous arcs as well as the position of forearc and backarc basin deposits. Adapted from Trop 

and Ridgway (2007). 
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Figure 4-9: Geochemical comparison of the Chisana Formation to the Talkeetna arc. 

Multi-element (normalizing values Sun and McDonough, 1989) and Trace element diagrams 

comparing the Chisana Formation to the Talkeetna arc (Clift et al., 2005). Samples from the 

Chisana Formation overlap with geochemical fields representing the Talkeetna Formation. 
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Figure 4-10: Geochemical Comparison of the Chisana Formation igneous rocks to the 

Wrangell Arc. 

Multi-element (normalizing values from Sun and McDonough, 1989) and Trace element 

diagrams comparing the Chisana Formation to representative samples from Wrangell arc (Preece 
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and Hart, 2004; Trop et al., 2012; Brueseke et al., 2019). Samples from the Wrangell arc are 

significantly more depleted in Sr, P, and Ti than samples from the Chisana Formation. 
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Figure 4-11: Geochemical comparison of igneous rocks from the Chisana Formation to the 

modern Honshu arc. 

Multi-element (Sun and McDonough, 1989) and Trace element diagrams comparing the Chisana 

Formation to representative samples from Honshu arc (Nobuyuki, 1988; Allan et al., 1992; Jones 

et al., 1993; Morris et al., 2006; Kawabata and Shuto, 2005; Safonova et al., 2015). The Chisana 
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Formation shows greater enrichments of trace elements, and greater depletion of Nb than the 

Honshu arc. 
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Figure 4-12: Geochemical comparison of igneous rocks from the Chisana Formation 

igneous rocks to the East African Rift. 

Trace element diagrams comparing samples from the Chisana Formation to samples from the 

East African Rift (Giordano et al., 2014).  



75 

 

Figure 4-13: Geochemical Comparison of igneous rocks from the Chisana Formation to 

samples from the Mariana trough back arc.  

Trace element diagrams comparing samples from the Chisana Formation to samples from the 

Mariana trough (Hart et al., 1972; Bougault et al., 1982; Stern et al., 1990; Gribble et al., 1998; 

Newman et al., 2000; Pearce et al., 2005; Straub et al., 2015).  
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Chapter 5 - Conclusions 

The Chisana Formation is an approximately 2-3 km-thick sequence of Early Cretaceous 

volcanic and volcaniclastic rocks that are exposed at their type section at Bonanza Creek, in the 

vicinity of Jacksina Creek, in small outcrops near Beaver Lake, and in other locations near our 

study areas (Figure 1-2; Figure 1-4). Geochemical data and sedimentary lithofacies comparisons 

strongly support a subduction-related origin for the Chisana Formation. Furthermore, 

paleogeographic reconstructions of underlying formations (Manuszak et al., 2007), 

geochemistry, and reconstructions of the crust through which Chisana Formation volcanic rocks 

erupted (Greene et al., 2004; Greene, 2010) suggest that the Chisana Formation was an island arc 

that erupted through significantly overthickened oceanic crust. 

Geochemical data presented here can be used to directly correlate to metabasalts exposed 

in Gravina belt to the south (Rubin and Saleeby, 1991; McClelland et al., 1992; Stowell et al., 

2000) and used to verify earlier conclusions that the Chisana Formation in the Nutzotin basin is 

part of a long-lived Chisana Arc (Plafker and Berg, 1994). 

Geochemical similarities between Cretaceous-aged plutons in the Nutzotin Mountains 

and Chisana Formation igneous rocks are consistent with the hypothesis that these Cretaceous 

plutons also represent magmatism in the Chisana arc. Data from this study, combined with: [1] 

accretionary wedge deposits coeval with the Chisana Formation in the Chugach Mountains 

(Plafker and Berg, 1994); [2] Chisana Formation-aged basinal sediments located in a forearc 

position relative to the Chisana Magmatic arc (Trop et al., 2002), and [3] Chisana-derived 

sediments located in a backarc position to the Chisana Formation in the Nutzotin and Kahiltna 

basins (Trop and Ridgway, 2007; Manuszak et al., 2007) can only reflect an arc origin, with an 

east-dipping subduction zone under the WCT.  
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Appendix A - Petrography 

All modal percentages are visual estimates. 

Sample ID: PM18-1    Latitude: 62.11155 

Rock Type: Basalt    Longitude: -141.81622 

 

Thin Section: This rock consists of approximately 99% groundmass, 1% phenocrysts. 

Phenocrysts consist of only subhedral plagioclase laths. The groundmass consists of 50% 

subhedral plagioclase, 40% dark green alteration mineral, 5% anhedral calcite, 3% opaque 

minerals, and 2% anhedral to subhedral biotite. Phenocryst plagioclase, up to 0.772 mm in 

length, exhibit varying degrees of alteration, and are partially replaced by calcite. Groundmass 

plagioclase, cryptocrystalline to 0.2 mm in length, exhibit extensive alteration to calcite, chlorite, 

and a dark green alteration mineral. Calcite occurs as a replacement mineral, and in veins along 

with minor quartz and clusters of opaque minerals, probably pyrite.  

 

Sample ID: PM18-2    Latitude: 62.11068 

Rock Type: Basaltic Andesite Longitude: -141.81697 

 

Thin Section: This is a seriate glomeroporphyritic basaltic andesite, with glomerocrysts greater 

than 4mm in size. Glomerocrysts are composed entirely of subhedral to euhedral plagioclase. 

The rock is approximately 45% glomerocrysts and 55% groundmass. Glomerocryst plagioclase 

is typically zoned, and exhibit both regular and irregular alteration patterns as well as alteration 

rims around some crystals. Plagioclase exhibits both normal and oscillatory zoning patterns. 

Relict glomerocrysts, accounting for approximately 10% of glomerocrysts, are typically 

composed varying combinations of calcite, chlorite, smectite and minor quartz. Plagioclase in 

glomerocrysts contain multiple inclusions, including opaque minerals and zircon. The 

groundmass is composed of approximately 45% euhedral to subhedral opaque minerals, 25% 

smectite and clay minerals, 25% euhedral to subhedral plagioclase laths, and 5% chlorite and 

other alteration products. Opaque minerals in the groundmass are evenly distributed throughout 

the sample, with concentrations around certain glomerocrysts as alteration rims. They occur as 

individual crystals <0.3 mm in size, and as aggregates of 0.708 mm in length. Groundmass 
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plagioclase contain numerous opaque mineral inclusions, and exhibit alteration to smectite or 

other clays and, rarely, calcite. Calcite and zeolites are present as amygdaloidal vesicle fill 

minerals. Amygdules range in diameter from 0.75mm to less than 0.25mm. 

 

Sample ID: PM18-3   Latitude: 62.10862 

Rock Type: Basaltic Andesite Longitude: -141.82146 

 

Thin Section: This rock is a seriate, glomeroporphyritic basaltic andesite, with glomerocrysts 

greater than 4mm in size. Glomerocrysts are composed of plagioclase, orthopyroxene, and 

clinopyroxene. The rock is approximately 50% glomerocrysts and phenocrysts, and 50% 

groundmass, not including xenoliths present in this rock. Glomerocrysts and phenocrysts are 

approximately 95% euhedral to subhedral plagioclase, 3% euhedral to subhedral clinopyroxene, 

and 2% euhedral orthopyroxene. Groundmass consists of approximately 60% subhedral 

plagioclase, 38% alteration minerals and clays, 1% subhedral clinopyroxene, and 1% subhedral 

orthopyroxene.  Glomerocryst clinopyroxene is typically large (up to 2.7mm) and euhedral to 

subhedral. They exhibit less alteration than plagioclase laths, and contain inclusions of opaque 

minerals, zircon, and plagioclase. Phenocryst clinopyroxene consist of subhedral to euhedral 

crystals, ranging in size from 0.7mm to 0.06mm. It is also relatively unaltered, and contains 

inclusions of oxides, plagioclase, and rare zircon. Glomerocryst plagioclase is typically 

subhedral, and ranges in size from 1.45mm to 0.4mm. Many plagioclase crystals exhibit either 

normal or oscillatory zoning. Glomerocryst plagioclase contain alteration zones with opaque and 

clay alteration present. Bow-tie structures are also exhibited. Plagioclase phenocrysts are also 

subhedral and range in size from 1.2mm to 0.4mm. They are similar to glomerocryst plagioclase, 

with the same inclusions and alteration patterns. Sieve textures are common. Groundmass 

plagioclase are subhedral, with sizes ranging from 0.4mm to cryptocrystalline. They also exhibit 

extensive alteration and are interbedded with clays and other alteration minerals. Calcite is 

present as a post-eruption vein mineral. Xenoliths in this sample are composed typically of 

calcite and plagioclase laths and are more extensively altered than the host rock. They have 

subhedral plagioclase, typically less than 0.5mm in length. They seem to be clasts of previously 

erupted igneous rocks and clasts of the volcaniclastic pebble conglomerate that is commonly 

interbedded with Chisana volcanic rocks. 
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Sample ID: PM18-4   Latitude: 62.10767 

Rock Type: Andesite   Longitude: -141.82329 

 

Thin Section: This rock is an amygdaloidal glomeroporphyritic andesite. This rock consists of 

30% glomerocrysts and phenocrysts, 15% amygdaloids, and 55% groundmass. The 

glomerocrysts and phenocrysts in this rock consist of 90% subhedral plagioclase and 10% 

subhedral to euhedral chlorite. The groundmass is composed of roughly 5% opaque minerals, 

50% plagioclase, and 45% alteration minerals. Glomerocryst and phenocryst plagioclase is 

extensively altered, showing alteration to calcite and clay minerals, and can be larger than 4mm 

in length. Chlorite has completely replaced what I assume to be clinopyroxene in this rock, and is 

typically euhedral to subhedral, with a maximum size of 2mm. Chlorite phenocrysts also contain 

more opaque mineral inclusions than plagioclase phenocrysts. Groundmass plagioclase is 

typically subhedral, with a maximum size of 0.3mm. They too are extensively altered, many 

having been replaced by calcite and clay minerals. Chlorite is also found extensively in the 

groundmass, possibly replacing clinopyroxene. Amygdules range in diameter from larger than 

4mm to less than 0.40mm, and are filled mainly by carbonates, and some zeolite minerals. 

 

Sample ID: PM18-5   Latitude: 62.10657 

Rock Type: Trachyandesite  Longitude: -141.82689 

 

Thin Section: This rock is a trachyandesite porphyry. It consists of approximately 1% subhedral 

to euhedral phenocrysts and 99% groundmass. Phenocrysts consist of 99% euhedral to subhedral 

clinopyroxene, and 1% subhedral plagioclase. Clinopyroxene phenocrysts are largely unaltered 

and have a maximum size of mm. Plagioclase phenocrysts have a maximum size of >4mm. They 

have been extensively replaced by clay minerals, and exhibit sieve textures. The groundmass of 

this rock is approximately 35% subhedral plagioclase laths, and 45% alteration minerals, 10% 

opaque minerals, and 10% subhedral pyroxene phenocrysts. Plagioclase laths in the groundmass 

are less than 0.25 mm in length, however, the extensive alteration present makes determining 

their original sizes difficult. Three different alteration minerals are present throughout the 

sample. There is an olive-green mineral with low interference colors that may be chlorite or 
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serpentine. Calcite is present in very low (<1%) abundance as subhedral crystals in parts of the 

slide. Kaolinite is present throughout, especially in plagioclase laths, as the primary plagioclase 

alteration mineral. Opaque minerals are typically euhedral, equant in shape, and are less than 

0.1mm in diameter. Groups of opaque minerals can grow up to 0.875mm. Pyroxene crystals are 

typically less than 0.125mm in diameter and are euhedral to subhedral. Pyroxene crystals in both 

the groundmass and phenocrysts show very little, if any, alteration.  

 

Sample ID: PM18-8   Latitude: 62.08989 

Rock Type: Andesite   Longitude: -141.85278 

 

Thin Section: This sample is an andesite that has been completely replaced by secondary 

alteration. There are relict crystals of what appear to have been plagioclase that have been 

entirely replaced by calcite, quartz, and kaolinite. Relict pyroxenes have been replaced by 

chlorite, kaolinite and quartz.  

 

Sample ID: PM18-9   Latitude: 62.08965 

Rock Type: Basalt   Longitude: -141.85352 

 

Thin Section: This sample is a seriate porphyritic basalt. It is approximately 60% phenocrysts 

and 40% groundmass. Phenocrysts are comprised of approximately 55% subhedral to euhedral 

plagioclase, 40% subhedral to euhedral pyroxene, and 5% relict olivine. Phenocryst plagioclase 

exhibit zoning, with sieve alteration textures present in certain zones of the mineral. Some 

plagioclase display alteration rims of opaque minerals. Plagioclase laths frequently show 

kaolinite alteration, and some have chlorite alteration present as well. Pyroxene phenocrysts are 

subhedral to euhedral, with a max size of >4mm. Pyroxene is present as both individual 

phenocrysts and as glomerocrysts. Many pyroxenes exhibit simple twins. Pyroxene phenocrysts 

contain numerous inclusions, including clay minerals, opaque minerals, and chlorite. Relict 

olivine are typically euhedral to subhedral, with a maximum size of 1.525 mm. Olivine 

phenocrysts have been entirely replaced by opaque minerals, iddingsite, chlorite, and other clay 

minerals. The groundmass of this rock is composed of 60% plagioclase laths, 20% alteration 

minerals, 10% opaque minerals, and pyroxene crystals. Groundmass plagioclase is typically 
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subhedral and range in size from cryptocrystalline to less than 0.5 mm in length. Groundmass 

plagioclase also shows some zoning. Groundmass opaque minerals are typically subhedral to 

euhedral and are concentrated around the rims of groundmass pyroxene and phenocryst olivine. 

Groundmass clinopyroxene are typically subhedral, showing pseudo-hexagonal sections, and 

typically are extensively replaced by opaque minerals. 

 

Sample ID: PM18-10   Latitude: 62.08912 

Rock Type: Basaltic Andesite Longitude: -141.85454 

 

Thin Section: This sample is an extensively altered basaltic andesite porphyry. This sample 

contains approximately 60% phenocrysts and 40% groundmass. Phenocrysts consist of 

approximately 70% plagioclase, and 30% alteration and relict minerals. Phenocryst plagioclase is 

typically subhedral, with a maximum size of more than 4mm in one glomerocryst. Phenocryst 

plagioclase typically shows extensive alteration to clay minerals, and rarely to chlorite. 

Phenocryst relict minerals include pyroxenes that have been replaced by chlorite, and olivines 

that have been replaced by quartz, calcite, and iddingsite. These relict minerals are typically 

subhedral, with pyroxene relicts up to 1.375 mm in length, and olivine relicts up to 1.5 mm. 

Phenocryst alteration minerals include anhedral serpentine, calcite and quartz up to 4 mm in 

length. The groundmass of this sample is approximately 10% plagioclase, 30% alteration 

minerals, and 60% opaque minerals. Groundmass plagioclase is subhedral and is typically 

extensively altered. Alteration minerals in the groundmass are typically clay minerals, or chlorite 

intergrown with quartz. Groundmass opaque minerals are subhedral, with square to rounded 

cross sections, and individual crystals less than 0.125mm in diameter. In part of this rock, the 

groundmass has been completely filled with hematite. 

 

Sample ID: PM18-12   Latitude: 62.08833 

Rock Type: Andesite   Longitude: -141.85738 

 

Thin Section: This sample is an extensively altered andesite. This sample consists entirely of 

clay minerals, chlorite, calcite, and quartz. There are relict plagioclase laths present, that have 

been completely replaced by clay minerals. 
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Sample ID: PM18-13   Latitude: 62.08754 

Rock Type: Basaltic Andesite Longitude: -141.86189 

 

Thin Section: This sample is a porphyritic basaltic andesite. It is approximately 20% 

phenocrysts, and 80% groundmass. The phenocrysts are composed of approximately 96% 

plagioclase relics, 2% calcite, 1% epidote, and 1% clasts. Plagioclase relict phenocrysts up to 

1.750 mm in length are present. These plagioclase relics are replaced by calcite, sericite, and 

kaolinite. Calcite phenocrysts are anhedral and can be up longer than 4 mm. Epidote phenocrysts 

are typically subhedral and up to 1mm in length. They have many inclusions of clay minerals, 

and some exhibit simple twinning. The groundmass of this rock has been completely replaced by 

kaolinite, chlorite, quartz, calcite, and opaque minerals. Calcite, quartz, chlorite and kaolinite are 

typically massive. Opaque minerals are typically euhedral to subhedral and equant, with larger 

crystals growing up to 0.375mm in diameter. 

 

Sample ID: PM18-15   Latitude: 62.11954 

Rock Type: Diorite   Longitude: -141.93036 

 

Thin Section: This sample is a diorite, composed of roughly 55% plagioclase laths, and 45% 

alteration minerals. Plagioclase laths are euhedral to subhedral, lath shaped, and grow up to 

>4mm in length.  Some plagioclase laths exhibit zoning, and some show preferential alteration 

confined to certain zones. All plagioclase minerals show some alteration to kaolinite and sericite, 

some show additional alteration to epidote, calcite, or zeolites. Small (<1mm) apatite crystals are 

also present as euhedral prisms. Alteration minerals are typically serpentine, chlorite, epidote, 

and opaque minerals. 

 

Sample ID: PM18-17   Latitude: 62.3453 

Rock Type: Basaltic Andesite Longitude: -143.08243 

 

Thin Section: This rock is a porphyritic basaltic andesite. It is composed of roughly 80% 

phenocrysts and 20% groundmass. Phenocrysts are composed of approximately 10% euhedral to 



91 

subhedral clinopyroxene, and 90% subhedral to anhedral plagioclase relicts. Clinopyroxene 

phenocrysts are typically zoned, and some exhibit twins. Clinopyroxene phenocrysts can be 

found up to 2.45mm in length. Plagioclase relicts have a maximum clast size of larger than 3mm. 

Plagioclase relicts have been replaced by clay minerals, zeolites, serpentine and opaque minerals. 

The groundmass of this rock consists of approximately 5% plagioclase relicts, 94% alteration 

minerals, and 1% clinopyroxene. Groundmass plagioclase and clinopyroxene are very similar to 

phenocryst plagioclase and clinopyroxene. Alteration minerals in the groundmass include oxides, 

serpentine, kaolinite, sericite, calcite and zeolites. This sample was gathered from an 

autobrecciated lava flow and contains multiple clasts of similar lavas. 

 

Sample ID: PM18-18   Latitude: 62.346115 

Rock Type: Andesite   Longitude: -143.07751 

 

Thin Section: This sample is a porphyritic andesite, containing approximately 20% phenocrysts 

and 80% groundmass. Phenocrysts range in size from more than 2.5mm to 0.625mm. They 

consist of approximately 60% subhedral plagioclase laths, 20% relict amphiboles, 5% quartz, 

and 5% pyroxene phenocrysts. Plagioclase is subhedral, ranging in size from less than 0.625mm 

to greater than 2.5mm, and exhibits zoning in places. Plagioclase laths show extensive alteration 

to sericite and kaolinite. Amphibole relicts range from 0.625mm to greater than 2.5mm. They 

have been replaced by chlorite, and opaque minerals. Quartz is present as a vesicle-fill mineral 

and is typically rimmed by a fibrous mineral, possibly epidote, or vesuvianite. Pyroxene 

glomerocrysts range from 2mm to less than 0.625mm. Pyroxene phenocrysts are euhedral to 

subhedral and range in size from larger than 3mm to less than 0.625mm. Pyroxene phenocrysts 

are typically zoned and exhibit alteration to serpentine and clay minerals, possibly kaolinite or 

sericite.  A large xenocryst, approximately 24mm in length, is present in the sample. The 

xenocryst is comprised of approximately 75% plagioclase laths, 5% relict amphibole and 20% 

alteration minerals. Plagioclase laths grow to over 4mm in length. Plagioclase show extensive 

alteration to sericite and kaolinite. Amphibole relicts are composed of serpentine and opaque 

minerals, and exhibit amphibole-like shapes.  

 

Sample ID: PM18-19   Latitude: 62.33818 
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Rock Type: Basalt   Longitude: -143.04895 

 

Thin Section: This sample is a seriate porphyritic basalt containing roughly 75% phenocrysts 

and 25% groundmass. Phenocrysts are composed of 80% plagioclase, 15% clinopyroxene, and 

5% amphibole. Plagioclase phenocrysts are euhedral to subhedral, and lath like in shape. They 

range in size from 2.75mm to cryptocrystalline. Multiple phenocrysts show zoning and alteration 

to sericite. Clinopyroxene phenocrysts range in size from larger than 3mm to cryptocrystalline, 

and from euhedral to anhedral. Clinopyroxene phenocrysts contain numerous inclusions of 

opaque minerals and plagioclase. Many phenocrysts exhibit zoning textures and simple twinning. 

Amphibole occurs as two phenocrysts larger than 3mm in size. They are anhedral, and exhibit 

both twinning and a reaction rim of opaque minerals. Alteration is present as abundant 

replacement of the groundmass by chlorite. Calcite and quartz are also present as alteration 

products. 

 

Sample ID: PM18-20   Latitude: 62.343437 

Rock Type: Basaltic Andesite Longitude: -143.023676 

 

Thin Section: This is a phaneritic, porphyritic basalt. This sample consists of approximately 

85% groundmass and 15% phenocrysts. The phenocryst assemblage consists of approximately 

15% clinopyroxene, 85% alteration minerals. Clinopyroxene phenocrysts have a maximum clast 

size of greater than 3mm. They are typically are euhedral and occur in glomerocrysts. Pyroxenes 

are commonly zoned, and contain inclusions of opaque minerals, clays, apatite, serpentine, and 

epidote. Alteration mineral phenocrysts are composed of zeolites, clay minerals, epidote, 

serpentine, chlorite, epidote, calcite and apatite. Groundmass is completely altered to clay 

minerals and zeolites. 

 

Sample ID: PM18-21   Latitude: 62.33508 

Rock Type: Basaltic Andesite Longitude: -143.07706 

 

Thin Section: This rock is a porphyritic basaltic andesite, composed of approximately 70% 

groundmass and 30% phenocrysts. Phenocrysts consist of approximately 90% relict plagioclase 
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minerals, 9% pyroxene phenocrysts, and 1% calcite phenocryst. Plagioclase relicts are subhedral 

to euhedral and are replaced by sericite. Phenocrysts of plagioclase have a maximum size of 

2.75mm. Clinopyroxene phenocrysts have a max size of approximately 2.5mm and are zoned. 

Phenocrysts contain numerous inclusions of apatite, sericite, serpentine and opaque minerals. 

The calcite phenocryst is anhedral and appears to be an amygdule. The groundmass of this 

sample has been completely altered to fine clays, serpentine, and epidote. 

 

Sample ID: PM18-22   Latitude: 62.3255 

Rock Type: Basalt   Longitude: -143.067 

 

Thin Section: This sample is a seriate porphyritic basalt containing roughly 85% phenocrysts 

and 15% groundmass. Phenocrysts consist of about 75% plagioclase, 20% relict olivine and 5% 

clinopyroxene. Plagioclase laths range in size from 2.25mm to less than 0.625mm in length. 

Plagioclase laths are euhedral to subhedral, showing alteration to sericite, kaolinite, and zeolite 

minerals. Plagioclase phenocrysts exhibit zoned textures. Serpentine, iddingsite and opaque 

minerals have completely replaced olivine crystals. These relict crystals grow up to 1.625mm in 

length. They are euhedral to subhedral and exhibit reaction rims of opaque minerals. 

Clinopyroxene glomerocrysts range from 2 to 1.25mm in size. They are euhedral to subhedral 

and exhibit zoning textures. The groundmass is composed of 40% plagioclase, 30% opaque 

minerals, and 30% alteration minerals, including zeolites, quartz, sericite, and kaolinite. 

Groundmass plagioclase ranges in size from cryptocrystalline to greater than 0.625mm. 

Plagioclase laths are euhedral to subhedral, and typically contain numerous inclusions of 

zeolites, quartz and opaque minerals. Opaque minerals are round, and typically subhedral to 

euhedral.  

 

Sample ID: PM18-23   Latitude: 62.32255 

Rock Type: Basalt   Longitude: -143.0672 

 

Thin Section: This sample is a glomoeroporphyritic, pilotaxitic basalt, composed of 

approximately 90% phenocrysts and 10% groundmass. Phenocrysts consist entirely of 

plagioclase laths, and the groundmass consists of 90% plagioclase, and 9% alteration minerals, 
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and less than 1% pyroxene minerals. Plagioclase phenocrysts range in size from larger than 4mm 

to 0.5mm. Phenocrysts are typically euhedral to subhedral and consist of both individual 

phenocrysts and glomerocrysts. Plagioclase phenocrysts exhibit zoning textures with alteration to 

opaque minerals, zeolites, and clays. Some phenocrysts exhibit reaction rims consisting of 

opaque minerals located in certain zones of zoned plagioclase. Groundmass plagioclase ranges in 

size from cryptocrystalline to 0.375mm in length. They are typically euhedral to subhedral, and 

exhibit sericite alteration. Groundmass alteration consists of serpentine, opaque minerals, 

iddingsite, and possibly zeolite minerals. Clinopyroxene minerals range from 0.45mm to 

0.0375mm. 

 

Sample ID: Jacksina-01   Latitude:  

Rock Type: Andesite    Longitude:  

 

Thin Section: This porphyritic andesite is composed of approximately 50% phenocrysts and 

50% groundmass. Phenocrysts are approximately 80% subhedral plagioclase, 15% euhedral to 

subhedral amphibole, and 5% subhedral clinopyroxene. Plagioclase is extensively altered by 

sericite and has a max size of approximately 0.77mm. Plagioclase is typically lath shaped. 

Amphibole has a maximum size of approximately 1mm and is typically lath or rhomb shaped. 

Amphibole phenocrysts are locally zoned, with many displaying alteration rims and inclusions of 

opaque minerals. Clinopyroxene phenocrysts have a maximum size of approximately 0.875mm. 

They exhibit simple twinning and are zoned. The groundmass is almost completely composed of 

secondary minerals. These include Sericite, opaque minerals, serpentine, epidote, chlorite, and 

zeolites. 

 

Sample ID: Jacksina-02   Latitude:  

Rock Type: Basaltic Andesite  Longitude:  

 

Thin Section: This sample is a porphyritic basaltic andesite and consists of approximately 80% 

phenocrysts and 20% groundmass. Phenocrysts are composed of 85% plagioclase, 10% 

clinopyroxene, and 5% amphibole. Plagioclase phenocrysts are typically euhedral to subhedral 

and have a maximum clast size of approximately 1.87mm in length. Plagioclase laths are 
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extensively altered, with 80-100% of the phenocryst being composed of sericite or kaolinite. 

Clinopyroxene phenocrysts are typically euhedral, with few subhedral phenocrysts, and have a 

maximum size of 1.75mm. Clinopyroxene phenocrysts exhibit simple twinning and oscillatory 

zonation. Amphibole phenocrysts are typically subhedral and have a maximum size of greater 

than 4.55mm. Amphibole phenocrysts typically display an alteration rim of opaque minerals, and 

some form around phenocrysts of clinopyroxene. The groundmass of this sample is composed 

entirely of secondary minerals such as kaolinite, sericite, opaque minerals, chlorite, and small 

amounts of epidote.  
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Appendix B - Alteration Photomicrographs 

Representative photomicrographs of kaolinite and sericite alteration (A-PPL, B-XPL; 

CHI-1066; 4x), epidote, sericite alteration (C-PPL , D-XPL ; PM18-15; 4x), and chlorite 

alteration (E-PPL, F-XPL; PM18-4; 4x) 
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Appendix C -  Geochemical Analyses 

New geochemical data presented from this study that passed the alteration filter (labeled PM18-# 

and Jacksina-#, and JT#) analyzed by XRF, and unpublished data from Short et al. (2005) 

(labeled CHI-#) analyzed by DCP-AES. 

Sample ID PM18-2 PM18-3 PM18-4 PM18-5 PM18-8 PM18-9 PM18-10 PM18-12 PM18-13 

Rock 
Unit/Location 

Low 
Bonanza 

Low 
Bonanza 

 
Bonanza 

Dike 

 
Bonanz
a Dike 

Upper 
Bonanza 

Upper 
Bonanza 

Upper 
Bonanza 

Upper 
Bonanza 

Upper 
Bonanza 

SiO2 52.84 49.40 53.35 55.34 53.64 49.56 49.79 51.34 53.17 

TiO2 0.93 0.93 0.90 1.11 0.70 0.74 0.78 1.11 0.72 

Al2O3 19.17 20.16 19.11 15.98 19.45 17.04 17.54 16.21 19.03 

Fe2O3* 9.08 9.13 8.10 10.78 10.09 11.53 12.26 13.16 9.41 

MnO 0.11 0.12 0.08 0.21 0.18 0.16 0.18 0.28 0.20 

MgO 2.95 4.02 3.93 2.71 2.46 6.44 4.76 3.13 4.51 

CaO 9.89 13.35 9.87 5.72 8.43 12.65 11.41 10.83 8.18 

Na2O 3.04 2.73 3.57 3.77 3.58 1.90 2.47 3.35 4.52 

K2O 1.62 0.20 0.27 3.48 1.02 0.14 0.18 0.54 0.30 

P2O5 0.38 0.25 0.33 0.48 0.25 0.19 0.17 0.24 0.27 

Total 100.01 100.29 99.51 99.58 99.80 100.35 99.54 100.19 100.31 

LOI 5 8.6 7.26 5.5 7.69 4.69 7.04 10.52 6.12 

Rb 26.0 <0.5 3.8 58.2 18.4 <0.5 3.2 8.4 8.7 

Sr 540 579 600 537 591 478 550 430 701 

Y 29.8 25.9 37.0 39.0 25.7 25.3 24.1 30.1 23.9 

Zr 189 87 131 236 94 75 80 100 68 

V 276 342 234 267 220 308 269 425 255 

Ni 13 22 35 4 12 48 40 6 12 

Cr 43 36 81 12 27 59 79 10 19 

Nb 5.5 1.9 3.3 8.2 1.9 1.5 1.5 1.8 0.7 

Ga 19.9 18.2 17.3 18.8 17.1 15.5 15.4 15.3 17.6 

Cu 216 111 125 244 62 51 69 63 18 

Zn 95 82 92 108 94 76 84 116 100 

Co 39 18 27 38 23 23 12 34 26 

Ba 288 126 155 531 238 132 134 119 197 

La 21 15 15 26 15 13 12 14 15 

Ce 42 21 30 41 26 26 15 24 25 

U 2.6 <0.5 <0.5 1.7 <0.5 1.8 <0.5 <0.5 1.1 

Th 4.0 <0.5 1.6 9.6 0.8 <0.5 <0.5 6.6 0.6 

Sc 27 36 27 20 26 38 35 40 25 

Pb <1 <1 <1 6 <1 <1 <1 <1 <1 
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Sample ID PM18-15 PM18-17 PM18-18 PM18-19 PM18-20 PM18-21 PM18-22 PM18-23 
Jacksina-

01 

Rock 
Unit/Location 

Pluton Jacksina Jacksina 
Jacksina 

Dike 
Jacksina 

Dike 
Jacksina 

Dike 
Jacksina Jacksina 

Jacksina 
Dike 

SiO2 56.17 49.03 56.99 50.16 54.75 51.06 48.01 51.43 57.12 

TiO2 0.75 0.91 0.52 0.72 0.54 0.86 0.75 0.93 0.72 

Al2O3 17.58 19.66 17.05 18.27 18.85 20.25 20.47 20.63 18.63 

Fe2O3* 9.38 11.84 7.39 10.67 8.99 10.36 10.91 9.83 7.69 

MnO 0.19 0.18 0.17 0.19 0.18 0.18 0.16 0.20 0.12 

MgO 2.95 4.85 5.12 7.31 4.00 4.38 5.71 3.47 4.39 

CaO 6.39 10.73 7.20 10.35 7.23 7.30 10.70 9.33 6.51 

Na2O 3.73 2.05 3.49 2.04 3.93 4.65 2.76 3.49 3.72 

K2O 2.45 0.34 1.59 0.07 1.12 0.35 0.44 0.58 0.78 

P2O5 0.30 0.26 0.14 0.24 0.41 0.41 0.14 0.25 0.33 

Total 99.89 99.85 99.66 100.02 100.00 99.80 100.05 100.14 100.01 

LOI 1.84 9.36 3.6 3.45 3.48 4.73 2.62 1.39 3.13 

Rb 60.7 3.3 32.8 <0.5 14.5 5.1 4.7 6.3 12.8 

Sr 513 552 595 671 991 1620 543 673 1295 

Y 33.5 22.4 16.7 24.0 24.5 28.3 17.3 27.4 22.7 

Zr 225 65 85 51 87 75 50 90 140 

V 220 352 192 276 155 271 348 263 197 

Ni 12 4 45 35 7 8 26 8 40 

Cr 35 17 110 55 14 15 34 11 78 

Nb 4.9 1.0 0.5 1.6 3.8 1.1 0.6 4.6 5.1 

Ga 19.6 17.3 15.9 15.6 18.0 19.2 18.3 18.5 20.0 

Cu 153 49 85 53 34 74 63 62 45 

Zn 116 81 100 75 94 102 73 75 91 

Co 24 33 21 41 24 30 36 28 33 

Ba 404 122 408 136 507 393 187 244 810 

La 25 14 15 13 16 19 13 14 30 

Ce 45 26 18 24 40 35 17 27 66 

U <0.5 <0.5 <0.5 <0.5 0.5 <0.5 <0.5 <0.5 3.5 

Th 4.6 <0.5 1.0 <0.5 <0.5 <0.5 <0.5 <0.5 4.3 

Sc 22 33 23 28 15 25 37 27 17 

Pb 5 <1 7 <1 1 <1 10 <1 <1 
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Sample ID 
Jacksina-

02 
JT08LA JT09LA JT15LA JT22LA JT23LA JT24LA JT01LA JT02LA 

Rock 
Unit/Location 

Jacksina 
Dike 

Beaver 
Lake 

Beaver 
Lake 

Beaver 
Lake 

Beaver 
Lake 

Beaver 
Lake 

Beaver 
Lake 

Beaver 
Lake 

Beaver 
Lake 

SiO2 53.76 57.83 55.82 59.25 49.37 49.21 52.76 50.88 55.37 

TiO2 0.66 0.58 0.56 0.59 1.31 0.85 0.67 0.84 1.05 

Al2O3 19.22 17.34 17.76 16.7 14.66 18.46 18.22 19.25 16.82 

Fe2O3* 9.56 7.58 6.8 6.67 10.62 10.96 9.9 9.74 9.85 

MnO 0.16 0.22 0.26 0.17 0.2 0.2 0.22 0.19 0.22 

MgO 4.28 3.08 2.57 2.12 8.46 5.55 4.31 4.77 3.35 

CaO 7.43 6.77 9.54 7.02 10.42 10.39 9 10.77 6.5 

Na2O 4.01 3.59 4.06 5.45 2.9 2.86 3.17 3.09 3.32 

K2O 0.46 2.41 2.19 1.53 1.22 0.87 1.22 0.33 2.67 

P2O5 0.37 0.18 0.19 0.23 0.44 0.29 0.36 0.23 0.46 

Total 99.91 99.58 99.75 99.73 99.6 99.64 99.83 100.09 99.61 

LOI 3.56 2.61 4.56 5.2 2.11 2.96 2.99 2.88 2.65 

Rb 9.5 50 45.5 21.4 20.2 14 25 2.1 37.2 

Sr 905 651 634 763 983 949 927 546 478 

Y 26.0 19 19.1 31.3 26.1 25 24.1 26.7 40.6 

Zr 70 127 123 160 167 73 100 109 235 

V 206 185 160 145 199 304 196 285 241 

Ni 11 10 6 10 180 21 13 45 11 

Cr 20 25 20 21 331 29 48 78 33 

Nb 1.1 1.6 1.6 2.6 17.6 1.3 1.8 1.9 7.6 

Ga 17.5 18.4 16.2 16.2 17 19.4 19.8 18.4 20 

Cu 39 47 36 60 82 145 98 60 242 

Zn 108 54 56 83 159 53 72 80 102 

Co 26 18 11 13 36 35 27 32 23 

Ba 264 483 557 537 729 298 363 132 413 

La 17 19 16 20 24 16 20 19 25 

Ce 33 30 28 43 53 31 34 24 50 

U 1.1 <0.5 0.9 1 2.1 <0.5 <0.5 <0.5 2.5 

Th <0.5 <0.5 <0.5 0.8 <0.5 <0.5 <0.5 <0.5 6.3 

Sc 21 17 19 16 18 24 18 28 21 

Pb <1 10 <1 <1 <1 3 <1 4 10 
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Sample ID JT07LA CH1-704 
CH1-
1109 

CH1-
1130 

CH1-
1191 

CH1-
1232 

CH1-
1291 

CH1-
1299 

CH1-
1311 

Rock 
Unit/Location 

Beaver 
Lake 

Lower 
Bonanza 

Middle 
Bonanza 

Middle 
Bonanza 

Middle 
Bonanza 

Middle 
Bonanza 

Middle 
Bonanza 

Middle 
Bonanza 

Middle 
Bonanza 

SiO2 55.32 53.82 55.15 57.80 58.32 55.61 55.77 55.06 54.51 

TiO2 1.12 1.21 0.50 0.46 0.47 0.52 0.51 0.51 0.48 

Al2O3 16.84 15.73 17.65 17.51 17.24 18.14 17.52 17.53 17.28 

Fe2O3* 10.21 10.25 6.06 5.56 5.56 6.42 6.21 6.07 5.78 

MnO 0.21 0.18 0.17 0.14 0.14 0.18 0.14 0.15 0.16 

MgO 3.23 3.02 2.02 1.99 1.84 2.16 2.09 1.28 1.56 

CaO 5.01 7.39 7.27 6.37 6.38 6.74 7.53 8.02 7.12 

Na2O 4.12 3.07 3.41 4.07 3.60 4.55 2.85 3.11 3.17 

K2O 3.11 2.67 1.31 1.31 1.51 1.78 1.35 1.41 1.81 

P2O5 0.49 0.45 0.32 0.25 0.23 0.36 0.47 0.33 0.32 

Total 99.66 99.65 93.88 95.46 99.34 99.02 99.89 93.47 92.20 

LOI 3.09 1.856843 5.356786 4.006795 4.04826 2.556166 5.444755 5.96 7.078853 

Rb 53.6 63 53 49 43 35 44 66 83 

Sr 629 389 759 966 875 962 695 660 565 

Y 42.2 39 24.8 19.2 20 25 24 24.8 23.9 

Zr 253 227 128 126 130 119 122 128 124 

V 247 305 134 134 116 130 128 129 123 

Ni 11 7 4 11 6  2 3 3 

Cr 32 7  4 9 2 3   
Nb 8.7 8 7 6 3 1 2 7 7 

Ga 19.9         
Cu 248 250 9 4 20 14 16 13 14 

Zn 109 107 54 49 83 78 68 76 91 

Co 23         
Ba 1078 388 479 658 502 473 750 465 625 

La 23         
Ce 52         
U 1.3         
Th 6.6         
Sc 21 26.3 8.9 10 10.8 9.1 9.9 9.2 8.4 

Pb 15         
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Sample ID 
CH1-
1324 

CH1-
1344 

CH1-
1414 

CH1-
1422 

CH1-
1438 

CH1-
1450 

CH1-
1459 

Rock 
Unit/Location 

Middle 
Bonanza 

Middle 
Bonanza 

Upper 
Bonanza 

Upper 
Bonanza 

Upper 
Bonanza 

Upper 
Bonanza 

Upper 
Bonanza 

SiO2 55.55 55.96 48.09 50.58 53.10 44.32 48.77 

TiO2 0.49 0.50 0.63 1.02 1.10 0.87 0.95 

Al2O3 17.13 17.81 19.36 16.11 16.42 19.45 18.05 

Fe2O3* 5.73 6.08 8.06 11.30 11.43 8.93 10.97 

MnO 0.22 0.16 0.13 0.18 0.19 0.15 0.16 

MgO 1.28 1.88 2.09 3.08 3.77 2.90 4.44 

CaO 6.55 6.94 11.00 8.66 7.66 11.31 10.99 

Na2O 2.35 3.40 2.83 2.87 3.36 2.64 2.50 

K2O 1.99 1.56 0.28 0.25 0.70 0.27 0.44 

P2O5 0.27 0.32 0.21 0.21 0.26 0.17 0.17 

Total 91.56 94.62 92.68 94.27 97.99 91.02 97.44 

LOI 7.782878 5.34222 6.287992 5.864722 1.771144 8.158787 2.383564 

Rb 78 59 45    6 

Sr 449 944 522 574 475 596 489 

Y 24.8 24.2 22.6 27.4 31.7 21.4 23.6 

Zr 126 124 71 80 98 61 64 

V 121 136 154 244 246 252 350 

Ni 9 9 21 3  15 23 

Cr 
  42   14 8 

Nb 3 4 6 1 6 1 1 

Ga 
       

Cu 5 10 70 57 80 24 36 

Zn 63 92 79 90 98 76 101 

Co 
       

Ba 721 451 181 163 224 95 157 

La 
       

Ce 
       

U 
       

Th 
       

Sc 9.3 8.3 23 31.3 34 26.1 34 

Pb 
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Appendix D - XRF precision and accuracy 

Precision and Accuracy of standard and replicate geochemical data from this study via XRF at 

Franklin and Marshall College. 

 BHVO-2 

Chemical SiO2 TiO2 Al2O3 Fe2O3* MnO MgO CaO Na2O K2O P2O5 

USGS 
accepted 

concentration 
49.9 2.73 13.5 12.3 0.17 7.23 11 2.22 0.5 0.27 

Units Wt% Wt% Wt% Wt% Wt% Wt% Wt% Wt% Wt% Wt% 

Replicate 1 49.9 2.72 13.63 12.43 0.17 7.3 11 2.196 0.5 0.27 

Replicate 2 50 2.73 13.66 12.45 0.17 7.29 11 2.19 0.5 0.27 

Replicate 3 50 2.73 13.66 12.41 0.17 7.29 11 2.197 0.5 0.27 

Replicate 4 49.9 2.72 13.65 12.42 0.17 7.29 11 2.2 0.5 0.27 

Replicate 5 49.8 2.72 13.61 12.4 0.17 7.29 11 2.202 0.5 0.27 

Replicate 6 50 2.73 13.62 12.43 0.17 7.31 12 2.191 0.5 0.27 

Replicate 7 50 2.73 13.65 12.42 0.16 7.3 11 2.19 0.5 0.27 

Replicate 8 49.9 2.73 13.62 12.42 0.17 7.29 11 2.199 0.5 0.27 

Replicate 9 50 2.73 13.64 12.43 0.17 7.29 11 2.192 0.5 0.27 

Replicate 10 50 2.72 13.66 12.43 0.17 7.29 11 2.197 0.5 0.27 

Mean 49.9 2.73 13.64 12.424 0.17 7.29 11 2.195 0.5 0.27 

Standard 
Deviation 

0.05 0.01 0.019 0.0135 0 0.01 0 0.004 0 0 

LOD - t value 
2.764 

0.14 0.01 0.052 0.0373 0 0.02 0 0.012 0 0 

LOQ 0.51 0.05 0.189 0.135 0 0.07 0.1 0.044 0 0.01 

mean % 
recovery 

1 1 1.01 1.0101 0.97 1.01 1 0.989 1 0.99 

(+/-) 0.14 0.01 0.052 0.0373 0 0.02 0 0.012 0 0 
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Appendix E - CIPW data 

CIPW norm data calculated for basaltic rocks.  

  

sample Q Or Ab An Lc Ne Di Hy Ol Mt Il Ap 

CH1-
1450 

0.00 1.81 24.68 44.70 0.00 0.00 13.36 8.30 0.62 4.26 1.83 0.44 

CH1-
1414 

5.05 1.78 25.99 42.67 0.00 0.00 12.53 6.13 0.00 4.01 1.30 0.53 

CH1-
1459 

2.75 2.68 21.90 37.93 0.00 0.00 14.25 13.04 0.00 5.18 1.86 0.41 

Klein 1 0.00 8.58 31.28 29.85 0.00 0.15 13.87 0.00 6.06 5.31 2.75 2.14 

Barker 
1 

1.18 5.18 22.94 35.00 0.00 0.00 12.13 12.18 0.00 8.40 1.91 1.08 

Chisana  0.00 6.13 25.29 33.06 0.00 0.00 17.86 2.93 7.63 4.56 1.76 0.78 

PM18-
22 

0.00 2.61 23.51 42.40 0.00 0.00 8.29 9.71 6.63 5.06 1.44 0.34 

JT23LA 0.00 5.17 24.43 35.31 0.00 0.00 12.21 12.71 2.50 5.36 1.62 0.69 

JT22LA 0.00 7.23 24.69 23.56 0.00 0.00 20.90 6.03 8.70 5.33 2.51 1.04 

Barker 
2 

0.00 2.11 19.10 30.04 0.00 0.00 18.31 20.14 1.52 6.69 1.64 0.45 

Barker 
3 

4.11 0.88 17.16 38.74 0.00 0.00 20.22 9.90 0.00 7.24 1.36 0.40 

Barker 
4 

4.38 2.18 21.59 43.47 0.00 0.00 13.17 5.81 0.00 7.14 1.81 0.45 

Barker 
5 

4.47 0.47 12.81 41.34 0.00 0.00 19.71 14.75 0.00 4.89 1.25 0.31 

Barker 
6 

4.45 1.42 17.17 50.45 0.00 0.00 10.52 11.10 0.00 3.37 1.21 0.31 

Barker 
7 

4.61 1.42 17.50 49.99 0.00 0.00 10.87 10.28 0.00 3.82 1.19 0.31 

CH1-
1422 

9.68 1.58 26.00 32.42 0.00 0.00 10.02 11.99 0.00 5.74 2.05 0.53 

JT01LA 1.99 1.96 26.28 37.81 0.00 0.00 11.79 13.27 0.00 4.75 1.60 0.55 
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Appendix F - Alteration Filter from Beswick and Soucie 

Geochemical samples from this study that passed the alteration filter proposed by Beswick and 

Soucie (1978). Samples show relatively little variation from a near-linear array when plotted on 

plots after Beswick and Soucie (1978). 
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Appendix G - Sr/Y Calculations 

The following calculations from Profeta et al (2015) were performed for all low-magnesium 

(between 0 and 6 wt. %) calc alkaline samples between 55 and 68 wt. % SiO2:  

𝑆𝑟/𝑌 = 0.9𝑑𝑚 − 7.25, or         𝑑𝑚 = 1.11 𝑆𝑟/𝑌 + 8.05 

Where dm represents crustal thickness. For samples from Barker (1994) which have La/Yb data, 

La/Yb calculations, after those outlined in Profeta et al. (2015), were performed on low-

magnesium (between 0 and 6 wt. %) calc alkaline samples between 55 and 68 wt. % SiO2:  

La/𝑌𝑏𝑛 = 0.98𝑒0.047 𝑑𝑚      or      𝑑𝑚 = 21.277 ln  (1.0204 𝐿𝑎/𝑌𝑏𝑛)  

Where La/Ybn implies that the ratio was normalized to chondritic values of McDonough and Sun 

(1995). Error calculations are made based on calculations from Zhu et al. (2017): 

𝐸𝑟𝑟𝑜𝑟 = 2.29𝐿𝑛(La/𝑌𝑏𝑛) + 4.32 

Values and calculations are presented in the following table: 

 

Sample Sr Y Sr/Y dm (Km) La Yb La n Yb n La/Yb dm error 

CH1-1109 759 24.8 30.6 42.0 - - - - - - - 
CH1-1130 966 19.2 50.3 63.9 - - - - - - - 
CH1-1191 875 20 43.8 56.6 - - - - - - - 
CH1-1232 962 25 38.5 50.8 - - - - - - - 
CH1-1291 695 24 29.0 40.2 - - - - - - - 
CH1-1299 660 24.8 26.6 37.6 - - - - - - - 
CH1-1324 449 24.8 18.1 28.1 - - - - - - - 
CH1-1344 944 24.2 39.0 51.3 - - - - - - - 

Jacksina-01 1295 22.7 57.0 71.4 - - - - - - - 
Jacksina-02 905 26 34.8 46.7 - - - - - - - 

JT02LA 478 40.6 11.8 21.1 - - - - - - - 
JT07LA 629 42.2 14.9 24.6 - - - - - - - 
JT08LA 651 19 34.3 46.1 - - - - - - - 
JT09LA 634 19.1 33.2 44.9 - - - - - - - 
JT15LA 763 31.3 24.4 35.1 - - - - - - - 

PM18-12 430 30.1 14.3 23.9 - - - - - - - 
PM18-13 701 23.9 29.3 40.6 - - - - - - - 
PM18-15 671 24 28.0 39.1 - - - - - - - 
PM18-18 595 16.7 35.6 47.6 - - - - - - - 
PM18-2 540 29.8 18.1 28.2 - - - - - - - 

PM18-20 991 24.5 40.4 52.9 - - - - - - - 
PM18-4 600 37 16.2 26.1 - - - - - - - 
PM18-5 537 39 13.8 23.3 - - - - - - - 
PM18-8 591 25.7 23.0 33.6 - - - - - - - 

Barker 14 960 20 48.0 61.3 22 2.5 92.8 15.5 6.0 38.5 8.4 
Barker 15 1130 22 51.4 65.1 22 2 92.8 12.4 7.5 43.2 8.9 
Barker 16 761 18 42.3 55.0 25 2.1 105.5 13.0 8.1 44.9 9.1 
Barker 17 788 22 35.8 47.8 22 2.2 92.8 13.7 6.8 41.2 8.7 

Average 748.6 25.7 31.5 43.0        
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