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Abstract
Research in the effects of climate change on plant disease contin-
ues to be limited, but some striking progress has been made. At the
genomic level, advances in technologies for the high-throughput
analysis of gene expression have made it possible to begin discrim-
inating responses to different biotic and abiotic stressors and po-
tential trade-offs in responses. At the scale of the individual plant,
enough experiments have been performed to begin synthesizing the
effects of climate variables on infection rates, though pathosystem-
specific characteristics make synthesis challenging. Models of plant
disease have now been developed to incorporate more sophisticated
climate predictions. At the population level, the adaptive potential
of plant and pathogen populations may prove to be one of the most
important predictors of the magnitude of climate change effects.
Ecosystem ecologists are now addressing the role of plant disease in
ecosystem processes and the challenge of scaling up from individual
infection probabilities to epidemics and broader impacts.
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IPCC:
Intergovernmental
Panel on Climate
Change

INTRODUCTION

Eight years ago, Coakley et al. (38) reviewed
the implications of climate change for plant
disease management in the Annual Review of
Phytopathology series. They pointed out sev-
eral challenges for evaluating the likely ef-
fects of climate change. Most experiments
considering climate change effects include
only one or two of the changing climatic
factors, experiments tend to be performed
under conditions very different from those
in the field, and experiments are generally
short-term. But there were already enough re-
sults in hand to indicate that climate change
could “alter stages and rates of develop-
ment of the pathogen, modify host resis-
tance, and result in changes in the physiol-
ogy of host-pathogen interactions.” Coakley
et al. (38) concluded that the effects of climate
change on plant disease management may
be less important than changes in land-use
patterns, transgenic technologies, and avail-
ability of chemical pesticides. Another gen-
eral conclusion was that the effects of climate
change will tend to be different for different
pathosystems in different locations, so that
generalization is a challenge. Here we con-
sider multiple scales of host-pathogen inter-
action (Figure 1) and review factors that con-
tribute to determining how and when climate
change could have important effects on plant
disease.

Since the review by Coakley et al. (38),
what has changed? Consensus has contin-
ued building among climatologists that global
warming is occurring and linked to human
activity (62). Scientists have also continued
to evaluate the effects of climate change on
disease risk across systems (63). More stud-
ies of the “fingerprint” of global warming
have appeared as interest in the effect grows
and as trends become more distinct (66, 85,
108, 120, 140). More climate change simula-
tion experiments have been put in place (28).
Ecologists working outside agricultural sys-
tems have turned more attention to the ecol-
ogy of disease (58). There has been an explo-

sion in the development of genomics tools and
their application (reviewed in 56). And, with
the turn of the millennium, groups such as
the UN have reevaluated progress toward so-
cietal goals through the formulation of Mil-
lennium Development Goals and the Millen-
nium Ecosystem Assessment, while the U.S.
National Research Council has formulated a
list of Grand Challenges for the environmen-
tal sciences, which includes climate change as
well as infectious disease (96).

CLIMATE CHANGE

The Intergovernmental Panel on Climate
Change (IPCC), which was jointly established
by the World Meteorological Organization
(WMO) and the United Nations Environ-
ment Program (UNEP) in 1988, has respon-
sibility for assessing information relevant to
climate change and summarizing this infor-
mation for policy makers and the public. It
has published major assessment reports most
recently in 1995 and 2001 (69). A new as-
sessment is scheduled for publication in 2007,
and updated predictions are available in other
publications (e.g., 142). Since the 1995 report,
there have been a number of advances, includ-
ing improvements in the Atmosphere-Ocean
General Circulation Models (AOGCM) used
to predict climate change. Other improve-
ments include better regionalization tech-
niques, a better understanding of the physical
processes underlying the models, and better
availability of paleoclimate data for evaluating
long-term temperature change and historic
climate data for evaluating preindustrial
atmospheric concentrations of greenhouse
gases.

Climate change predictions are based on
scenarios that describe greenhouse gas emis-
sions from potential resource use patterns,
technological innovations, and demographics.
The results from modeling experiments based
on these emissions scenarios give a range of
predictions, depending on the assumptions
quantified by each scenario. Sources of un-
certainty in predictions include inability to
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Figure 1
Examples of potential climate change effects and research needs across biological scales. Arrows indicate
propagation of effects from smaller to larger processes, but feedbacks will also link across scales.

fully predict human resource use and incom-
plete understanding of climate processes. In
addition to the predicted increases in tem-
perature for much of the world, changes in
extremes are also predicted. For tempera-
ture, more frequent extreme high temper-
atures and less frequent extreme low tem-
peratures are predicted. Likewise, increased
intensity of precipitation events is predicted in
some regions. Although the IPCC (69) con-

cluded in 2001 that there was no compelling
evidence that characteristics of tropical and
extratropical storms have changed, more re-
cent analyses have concluded that there have
been changes in storm patterns in recent years
(47, 145), which could influence the global
movement of pathogens (26).

Additional predictive variability comes
into play for modeling of regional climates
(69). All the forms of uncertainty about global
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processes are still a factor, with additional
uncertainty due to lack of data from some
regions. Meteorological stations in some
regions are sparse, particularly in remote re-
gions with complex topography that may
produce rapid climatic variation over small ar-
eas. While water vapor, evaporation, and pre-
cipitation are predicted to increase on aver-
age, predictions about increased or decreased
precipitation are region specific. In general,
precipitation is predicted to increase in both
summer and winter in high-latitude regions.
In northern mid-latitudes, Antarctica, and
tropical Africa, precipitation is predicted to
increase in winter. In southern and eastern
Asia, precipitation is predicted to increase in
summer. Decreases in winter rainfall are pre-
dicted for southern Africa, Central America,
and Australia. Supplementary material on
IPCC websites supplies finer scale predic-
tions. Decreased snow cover and land-ice ex-
tent are expected to follow from the trend in
increasing temperature.

PLANT RESPONSES TO
CLIMATE CHANGE

Plant Responses in General: At the
Level of the Individual

The direct effects of climate change on indi-
vidual plants and plant communities may oc-
cur in the absence of pathogens, but may also
bring about changes in plants that will affect
their interactions with pathogens. Changes
in plant architecture may affect microclimate
and thus risks of infection (27). In general,
increased plant density will tend to increase
leaf surface wetness and leaf surface wet-
ness duration, and so make infection by fo-
liar pathogens more likely (65). But, of course,
how abiotic stress factors interact to affect
plants will be key to understanding climate
change effects on plants (92); abiotic stress
such as heat and drought may contribute to
plant susceptibility to pathogens or it may in-
duce general defense pathways which increase
resistance.

Elevated CO2 levels tend to result in
changed plant structure. At multiple scales,
plant organs may increase in size: Increased
leaf area, increased leaf thickness, higher
numbers of leaves, higher total leaf area per
plant, and stems and branches with greater
diameter have been observed under elevated
CO2 (117). Enhanced photosynthesis, in-
creased water use efficiency, and reduced
damage from ozone are also reported un-
der elevated CO2 (139). Since many foliar
pathogens benefit from denser plant growth
and the resulting more humid microclimate
(27), there is the potential for these changes in
plant architecture to increase infection rates,
all else being equal. But interactions with
other changing climatic variables may compli-
cate the effects of elevated CO2. For example,
in a California annual grassland, warming, al-
tered precipitation, addition of nitrogen, and
elevated CO2 each increased net primary pro-
ductivity when applied as single factors; but
in multifactor treatments, elevated CO2 ap-
peared to suppress the positive effects of the
other factors (131).

The effects of elevated temperature on
plants will tend to vary greatly throughout the
year. During colder parts of the year, warming
may relieve plant stress, whereas during hotter
parts of the year it may increase stress. When
high-temperature stress is exacerbated, plant
responses may be similar to those induced by
water stress, with symptoms including wilt-
ing, leaf burn, leaf folding, and abscission, and
physiological responses including changes in
RNA metabolism and protein synthesis, en-
zymes, isoenzymes, and plant growth hor-
mones (34). These changes will certainly af-
fect susceptibility to pathogens, though the
wide range of changes may make interactions
difficult to predict. As a striking example of the
potential effect on the yield of crop plants in
response to elevated temperature, rice yield in
the Philippines was estimated to decline 10%
for each 1◦C increase in the minimum tem-
perature during the dry season (110).

Elevated ozone concentrations can change
the structure of leaf surfaces, altering the
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physical topography as well as the chemical
composition of surfaces, including the struc-
ture of epicuticular wax (74). These changes in
leaf structure may alter leaf surface properties
such as leaf wettability and the ability of leaves
to retain solutes, all influencing the ability of
pathogens to attach to leaf surfaces and in-
fect (74). Ozone exposure has been proposed
to enhance attacks on plants by necrotrophic
fungi, root-rot fungi, and bark beetles
(123).

Gene expression studies of plant responses
to drought stress have expanded rapidly, al-
lowing a more mechanistic understanding of
responses and comparison between responses
to drought and other stressors. As an exam-
ple of expression responses, Way et al. (144)
found that, under both short- and long-term
stress, genes significantly up-regulated in-
cluded those coding for aldehyde dehydroge-
nase (associated with osmoregulation), delta
pyrroline-5-carboxylate synthetase (with a
role in biosynthesis of proline, which acts
to protect plant cells from dehydration), and
fatty acid alpha-oxidase (involved in repair-
ing stress-induced damage in membranes and
regulating fluidity of membrane and perme-
ability to toxic ions). Bray (24) summarized
expression responses to drought stress across
gene classes. Up-regulated genes included
those involved in cellular metabolism, cellular
transport, signal transduction, and transcrip-
tional regulation, as well hydrophilic, heat-
soluble proteins. Down-regulated genes in-
cluded those involved in cell wall synthesis, as
well as cellulases, and germin-like proteins.
These results can be linked to well-known
processes occurring at a larger scale within a
plant, such as stomatal closure and the inhibi-
tion of leaf growth, changes in leaf architec-
ture, and change in root:shoot ratio (32, 34).

It is now possible to measure gene ex-
pression responses to environmental changes
in natural plant populations. For example,
Travers et al. (S.E. Travers, M.D. Smith,
J. Bai, S.H. Hulbert, J.E. Leach, et al.,
manuscript submitted) studied the effects of
simulated changes in predicted precipitation

patterns in tallgrass prairie, where one pre-
diction is for increased intervals between rain
events even if total precipitation is not re-
duced. This experiment focused on the tall-
grass prairie dominant plant species Andro-
pogon gerardii. Using maize microarrays, gene
expression was studied in the natural popu-
lation of A. gerardii to which rainout exclu-
sion shelters were applied to impose the differ-
ent precipitation patterns. Increased intervals
between precipitation events decreased tran-
scription of genes related to photosynthesis
and carbon fixation and increased transcrip-
tion of a variety of heat shock proteins and
kinases. A gene associated with a hypersensi-
tive reaction, HIR1, was significantly down-
regulated under the treatment with increased
intervals, suggesting a defensive cost associ-
ated with climate change. Whereas these re-
sults are of interest in and of themselves for
understanding the tallgrass prairie ecosystem,
they also are important as an illustration of ad-
vances in microarray technologies to the point
where highly variable natural field systems can
be sampled and statistically significant differ-
ences in gene expression observed in response
to climate change simulations.

Host Resistance

Detecting the effects of drought stress on
plant resistance to infection is complicated by
the fact that foliar pathogens will tend to have
lower infection success under dry conditions
(65). But plant pathologists have studied the
interactions between pathogen and drought
stress at the scale of pathogen populations for
some time. For example, Pennypacker et al.
(111) found that alfalfa plants inoculated with
Verticillium albo-atrum exhibited fewer symp-
toms under drought stress. For some host-
pathogen systems, however, resistance is ap-
parently reduced under drought conditions
(34).

Temperature may have important reper-
cussions on the effectiveness of resistance
genes, though it may generally be chal-
lenging to discriminate between temperature
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effects on host resistance genes versus ef-
fects on pathogen virulence. Browder &
Eversmeyer (25) reported that, for the wheat-
Puccinia recondita system, host-pathogen gene
pairs related to resistance responded differ-
ently to different temperature ranges. Partic-
ular pairings tended to produce low infection
rates at specific temperatures and time periods
of exposure to these temperatures. Newton
& Young (101) have suggested that resistance
mechanisms in barley may be disrupted fol-
lowing drought stress as cells undergo expan-
sion once an adequate water supply is restored.
Other systems such as sunflower-broomrape
(46) have shown similar temperature sensitiv-
ity. In rice, Webb et al. (K. M. Webb, J. Bai,
I. Oña, K. A. Garrett, T. W. Mew, C. M. Vera
Cruz & J. E. Leach, manuscript in prepara-
tion) found that one bacterial blight resistance
gene (Xa7), which confers resistance to Xan-
thomonas oryzae pv. oryzae, is more effective
at high temperatures whereas other bacterial
blight resistance genes are less effective with
increasing temperature. In this system, there
is the potential to determine the molecular
basis of the differences in response to temper-
ature (79a).

Elevated CO2 and ozone also have the po-
tential to influence the effectiveness of host
resistance (114, 115). Pangga et al. (106) re-
port that high levels of CO2 may prevent in-
duced resistance as plants grow more rapidly.
On the other hand, at twice ambient CO2,
fecundity of the anthracanose pathogen Col-
letotrichum gloeosporioides increased on both re-
sistant and susceptible varieties of Stylosanthes
scabra in a controlled environment (29). The
potential for accelerated pathogen evolution,
if it is found in many pathosystems, may be
one of the most important effects of elevated
CO2.

Integration of gene expression analyses
into studies of plant responses will help
to unravel the effects of multiple stressors
(92). For example, Luo et al. (81) examined
gene expression in a drought-tolerant and
Aspergillus-resistant peanut line. As Aspergillus
causes significant disease under drought con-

ditions, peanuts were examined under control,
drought, and Aspergillus/drought treatments.
The detected variation in gene expression
among treatments indicates that the interac-
tion between host, pathogen, and environ-
ment can be studied at the genomic level to
increase understanding of processes at larger
scales.

More data about the population genetics
of defense genes in natural plant populations
will be important for determining the poten-
tial for adaptation under potential changes in
pathogen pressure due to climate change (or
other factors). In an unusually extensive study,
Thrall & Burdon (137) have found important
variation in both host resistance and pathogen
virulence among natural populations. If cli-
mate change increases or decreases environ-
mental conduciveness, the shift in selection
pressure on the host populations could result
in shifts in the diversity of resistance genes
present.

Plant Responses in General: At the
Level of the Population

Although much research on plant community
responses to climate change has focused on
plant species range shifts (10, 88), the slow
rate of migration of plants from one region to
another, combined with land use patterns that
fragment plant populations, may make adap-
tation the more important factor in plant re-
sponses to climate change (41, 42). But the
current state of research in plant adaptation
to climate change suggests that plant popula-
tions will tend not to have sufficient time to
adapt to altered climates (50), so that popula-
tions of plant species will be subject to rapid
changes in their genetic structure, perhaps es-
pecially for plant species with long genera-
tion times (72). Even if there is genetic vari-
ation present in a population for traits that
could support adaptation to a location with al-
tered climate, correlations between traits that
do not support selection for the new climate
may limit adaptive evolution (50). Also, differ-
ent populations of the same species may differ
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in both their genetic structure and the extent
to which climate change will push the species
to its physiological limits (49). As a result of
climate change, the abundance of particular
species may change rapidly, as species may lose
their ability to recover from other perturba-
tions such as diseases, insect herbivores, and
climatic extremes within a background of cli-
mate changes (60, 72, 136). Novel plant com-
munities may result (141), with the increased
potential for new patterns of host-sharing by
pathogens (107). More studies on trait vari-
ation related to climate change are needed,
along with evaluation of phenotypic plasticity
in response to predicted changes in climate.

In agricultural systems, questions about
plant population structure are different.
There is no direct concern about whether
plant populations can successfully migrate
through fragmented landscapes, rather the
concern is whether farmers will be able to
identify and acquire crop genotypes that are
adapted to their changing climates (8, 31, 45,
54, 122, 132, 134). In traditional agricultural
settings, another problem is whether in situ
conservation of traditional land races can be
meaningfully maintained when local condi-
tions change too rapidly and whether pop-
ulations of wild crop relatives will be out-
competed by other species better adapted
to the new climate. Where seed from vari-
able land races is saved, processes of adap-
tation will change the selection pressures on
these populations and, while new and poten-
tially valuable populations may be generated,
much genetic diversity may be lost in subse-
quent selection to the changing climate. In
current crop breeding programs, comparable
concerns would include the following: Can
climate change result in shorter useful lives
for resistance genes, through mechanisms de-
scribed in other sections of this chapter? Will
less emphasis on local adaptation be possible,
as conditions change rapidly? Will it be possi-
ble to produce varieties that are as productive
if they must be adapted to a more variable
environment?

PATHOGEN AND VECTOR
RESPONSES TO CLIMATE
CHANGE

The range of many pathogens is limited by
climatic requirements for overwintering or
oversummering of the pathogen or vector.
For example, higher winter temperatures of
−6◦C versus −10◦C increase survivorship of
overwintering rust fungi (Puccinia graminis)
and increase subsequent disease on Festuca
and Lolium (113). In the case of Phytoph-
thora infestans, the introduction of multiple
mating types, allowing sexual reproduction,
increases the ability of the pathogen to over-
winter. For pathogens subject to an Allee ef-
fect, or destabilizing density-dependent re-
production at low population levels, release
from overwintering restrictions may have
a much stronger effect than expected (55).
Temperature requirements for infection dif-
fer among pathogen species. For example,
wheat rust fungi differ in their require-
ments from 2◦–15◦C for stripe rust, 10◦–30◦C
for leaf rust, and 15◦–35◦C for stem rust
(119).

Similarly, the introduction of new vec-
tor species and changes in vector overwinter-
ing and oversummering (52, 73, 93–95, 98–
100) and other effects of change on insects
(112) may have important effects on pathogen
survival, movement, and reproduction. For
example, introduction of the glassy-winged
sharp shooter has led to increased patterns
of infection of grape plants in winter, greatly
altering infection rates (3). Interactions be-
tween pathogens may also shift with climate
change. For cases where timing of infection
by different pathogen species is important for
determining the outcome of interactions be-
tween pathogens, the form of competition or
facilitation may be shifted (e.g., 2).

In a review of the effect of climate change
on insect herbivory, Bale et al. (11) make many
points relevant to plant pathogens, whether
insect-vectored or not. They concluded that
temperature was the dominant climate factor
in terms of direct effects through effects on
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overwintering and the potentially important
combination of photoperiod and temperature.
They further concluded that there was little
evidence of direct effects of CO2 or UVB and
that precipitation effects had not been stud-
ied sufficiently to draw a general conclusion.
Other factors such as acid rain may also influ-
ence disease (6, 7, 12).

Pathogen movement is difficult to study
at large scales even in a relatively homoge-
neous environment, so it is not surprising
that few studies have addressed changes in
movement with changing climate. But new
diagnostic techniques will make it easier to
study large numbers of pathogen species over
larger scales. For example, diagnostic arrays
are being developed to identify large num-
bers of virus species simultaneously across
plant species in agricultural and natural sys-
tems (146a). Such approaches can be applied
to monitor changes in pathogen populations
over time and space, with the potential to
revolutionize our understanding of pathogen
communities and their movement.

In many cases, temperature increases are
predicted to lead to the geographic expansion
of pathogen and vector distributions, bring-
ing pathogens into contact with more poten-
tial hosts (10, 103) and providing new oppor-
tunities for pathogen hybridization (22, 23).
Increased transportation and human move-
ment may act synergistically with temperature
changes (4, 48). In one of the most detailed
analyses of a plant pathogen, Bergot et al. (16)
predicted the geographic range expansion of
Phytophthora cinnamomi in Europe in response
to increased temperatures that would allow
for overwintering of this oomycete in new ar-
eas. Pathogen range shifts that appear to be
associated with climate change are now be-
ing reported. Wheat stripe rust is spreading
in South Africa in association with changes
in rainfall patterns and native grass infec-
tion (19). In North America, needle blight
caused by Dothistroma septosporum is moving
north with increasing temperatures and pre-
cipitation (148). Increased pathogen ranges
may also have the effect of including expo-

sure to reservoir host species that increase
prevalence of disease in other adjacent taxa
(116). But if some parts of pathogen life cy-
cles are photoperiod sensitive, populations
might need to undergo extensive adaptation
to make use of extended seasons in temperate
areas.

Microbial Interactions

Soil microbial communities are likely to shift
with climate change. Researchers have em-
phasized that elevated CO2, temperature and
nitrogen deposition are important factors in
driving soil communities. Soil nitrate concen-
trations are reduced under elevated CO2 in
grassland microcosms (13). In a microcosm
experiment by Hu et al. (64), CO2 increased
plant growth, which in turn facilitated plant
N acquisition. Similarly, increasing temper-
ature by 2◦C in a tallgrass prairie increased
plant growth, which facilitated plant uptake
of N and dominance of fungi in the microbial
community. These studies suggest that micro-
bial communities may generally experience
decreased available N, though plant commu-
nity composition and soil type will generally
have large effects on the type of responses
observed (67). Because of the great variation
in interactions among microbial species (e.g.,
40), it is difficult to predict the effect of cli-
mate change on the disease-suppressive qual-
ities of soils, both in natural systems and in
agricultural systems where farmers are try-
ing actively to increase disease suppressive-
ness. Recent technological advances such as
metagenomic analyses (118) will increase our
understanding of microbial dynamics in soil
and other environments.

Climate Change Effects on
Virulence, Aggressiveness, or
Fecundity of Pathogens

Pathogen evolution rates are determined by
the number of generations of pathogen re-
production per time interval, along with other
characteristics such as heritability of traits
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related to fitness under the new climate sce-
nario. Temperature governs the rate of re-
production for many pathogens; for exam-
ple, spore germination of the rust fungus
Puccinia substriata increases with increasing
temperature over a range of temperatures
(135), and the root rot pathogen Monospo-
rascus cannonballus reproduces more quickly
at higher temperatures (143). Longer sea-
sons that result from higher temperatures
will allow more time for pathogen evolu-
tion. Pathogen evolution may also be more
rapid when large pathogen populations are
present, so increased overwintering and over-
summering rates will also contribute. Climate
change may also influence whether pathogen
populations reproduce sexually or asexually;
in some cases, altered temperatures may fa-
vor overwintering of sexual propagules (113),
thus increasing the evolutionary potential of a
population.

Under climate change, pathogens, like
plants, may potentially be unable to migrate or
adapt as rapidly as environmental conditions
change. But most pathogens will have the ad-
vantage over plants because of their shorter
generation times and, in many cases, the abil-
ity to move readily through wind dispersal.
Climate variability itself may be an important
form of selection: Koelle et al. (78) suggest
that particular strains of cholera are selected
under more variable environments, such that
sensitivity to environmental fluctuations can
be considered a phenotypic trait subject to
evolution and pathogens may evolve to re-
duced sensitivity to fluctuations.

HOST-PATHOGEN
INTERACTION RESPONSES
TO CLIMATE CHANGE

Gene Expression and Plant
Physiology

Charkraborty et al. (30) have reviewed the ef-
fects of CO2 on plant disease. For biotrophic
fungi, they found an increase in disease sever-
ity for six of ten biotrophic fungi studied,

and a decrease for the other four. For 15
necrotrophic fungi studied, they reported that
9 exhibited an increase in disease severity,
4 exhibited a decrease, and 2 remained un-
changed. This suggests that predicting ef-
fects for unstudied pathosystems will be quite
challenging. Some mechanisms of effects of
elevated CO2 on plants are fairly well un-
derstood, such as reduced stomatal opening
and changes in leaf chemistry, so that disease
caused by pathogens that infect through stom-
ata, such as Phyllosticta minima, may be re-
duced (86). But combining the direct effects
of elevated CO2 on plants with the effects on
disease will make predictions of plant pro-
ductivity even more challenging. For exam-
ple, von Tiedemann & Firsching (139) found
that benefits from elevated CO2 counterbal-
anced negative effects from ozone but did not
compensate for the effects of fungal infec-
tion. In a study of plant disease in tallgrass
prairie, Mitchell et al. (89, 91) found that
elevated CO2 increased the pathogen load
of C3 grasses, perhaps due to increased leaf
longevity and photosynthetic rate. They sug-
gested that one result of climate change for
grassland ecosystems could thus be increased
pathogen load.

The effects of elevated ozone on disease
may not be straightforward to study and pre-
dict (123). For rust fungi, as examples, ele-
vated ozone has been found to increase (74)
and decrease (139) infection. Karnosky et al.
(74) suggested that the effects of ozone on
leaf surface characteristics, including wetta-
bility, led to increased rust incidence in their
study. von Tiedemann & Firsching (139) also
observed that rust-infected plants exhibited
symptoms of ozone damage several weeks ear-
lier and with higher severity than uninfected
plants.

Plant pathologists have studied the rela-
tionship between precipitation and disease for
decades. Even without the added impetus of
predicting climate change effects, this interac-
tion is of primary importance for predicting
disease severity. Decreases in precipitation,
or increased intervals between precipitation
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events, have been predicted for a greater
geographic area than are increases (69).
Drought stress and disease stress may have
additive effects on plants, as observed for in-
fection by Xyllela fastidiosa (87), Beet yellows
virus (36), and Maize dwarf mosaic virus (102).
Other pathogens, such as Macrophomina phase-
olina (84) and Septoria musiva causing canker
in poplar (83), may cause more deleterious ef-
fects on their hosts under drought conditions,
though it is unclear whether this is because of
increased infection rates under drought or be-
cause of increased impacts per infection event.
Mayek-Perez et al. (84) suggest that the con-
centration of carbohydrates in host tissues as a
result of drought stress may benefit pathogens
such as M. phaseolina that can survive in
extremely dry soils.

While effects of temperature on disease
epidemiology also have a long history of study
in agricultural systems, newer work has also
addressed temperature effects in a natural
montane meadow in Rocky Mountain Bi-
ological Station (121). In this study, many
pathogens and herbivores were more abun-
dant on plant populations with the longer
growing season produced by artificial heating,
but some were more abundant in the ambient
cooler conditions.

New approaches to the study of pre-
served specimens may reveal surprising cor-
relations with environmental variables. The
ratio of Stagnospora and Septoria species in his-
toric British wheat samples was closely cor-
related with the levels of environmental SO2

(15). This is also an illustration of how one
pathogen might appear to “emerge” in re-
cent decades when it is actually only regain-
ing its historical advantage from the previous
century.

Population Biology

Plant exposure to pathogens may increase un-
der predicted climate change scenarios be-
cause of longer growing seasons and expanded
ranges for overwintering or oversummering.
Both the “absolute range” and the “seasonal

range” may be important; for example, wheat
leaf rust epidemics in the Great Plains are very
different from year to year as a function of
whether the pathogen was able to overwin-
ter or was reintroduced from further south.
Changes in the timing of conducive temper-
atures and moisture availability may also al-
ter disease severity; both the likelihood of
conducive conditions and the duration of con-
ducive conditions may increase, with nonad-
ditive effects on disease risk. If environmental
conditions are more conducive, this may lead
not only to more disease in the short run, but
also more potential for pathogen evolution.
Depending on the life history of the pathogen,
new interactions brought about by expanding
ranges and exposure to new plant communi-
ties could result in rapid pathogen evolution
(107).

Plant Disease Management

Disease management strategies may require
adjustment under climate change. Strategies
such as delaying planting to avoid a pathogen
may become less reliable. And one of the ma-
jor problems with applications of biological
control for plant disease management in the
field has been the vulnerability of biocontrol
agent populations to environmental variation
and environmental extremes (59, 147). If ap-
propriate temperature and moisture are not
consistently available, biocontrol agent popu-
lations may reach densities that are too small
to have important effects, and may not recover
as rapidly as pathogen populations when con-
ducive conditions recur (57, 61).

Models of the risk of movement of invasive
pathogens to a new area are typically based on
climatic variables such as temperature, rain-
fall, and humidity (133). Such risk models
are of great economic importance when they
bear on what trade restrictions may be ap-
plied against regions where a pathogen such as
Tilletia indica, causal agent of Karnal bunt, is
present. For many invasive pathogens, models
of climatic conditions and requirements need
to be supplemented by information about

498 Garrett et al.

A
nn

u.
 R

ev
. P

hy
to

pa
th

ol
. 2

00
6.

44
:4

89
-5

09
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 K

an
sa

s 
St

at
e 

U
ni

ve
rs

ity
 o

n 
08

/0
9/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV283-PY44-21 ARI 13 June 2006 13:56

the availability of susceptible hosts and the
likelihood of transport of pathogens by trade
and other human networks (10).

Johnson (70) defined durable resistance as
resistance “that remains effective during its
prolonged and widespread use in an environ-
ment favorable to the disease.” If resistance
is “inherently” durable, then climate change
may have no influence on its continued effi-
cacy. But “realized durability” will vary de-
pending on the extent to which the condi-
tions defined by Johnson (70) can be avoided
through deployment decisions (K. A. Garrett
& R. L. Bowden, manuscript in preparation).
Prolonged and widespread exposure of the
pathogen population to host populations with
a resistance gene is more likely and more im-
portant if pathogen overwintering increases
along with the number of pathogen gener-
ations possible. The frequency with which
environments favorable for infection occur
will also be an important factor. It is notable
that pathogen characteristics that will tend
to result in reduced durability of resistance,
such as frequent sexual reproduction (85a),
will also tend to facilitate adapation to a new
climate.

One conclusion about the effects of
climate change for disease management is
that changes, especially if they lead to greater
variability in climate, will tend to add extra
uncertainty to decision making. In tropical
regions where food security is a particular
concern, there may tend to be both greater
climate variability and uncertainty and less
investment in technologies supporting pro-
duction of regionally important crops. For
example, “orphan crops” (97) of particular
regional importance that have received less
research attention than dominant temperate
crops include plantain, cassava, sweet potato,
millets, teff, and quinoa. Information about
changing disease-management needs will be
particularly important for such crops. In fact,
incorporating climatic predictions based on
El Niño patterns was found useful for general
decision making by subsistence farmers in
Zimbabwe (109).

Models for Disease Prediction

Coakley et al. (38) discussed several ap-
proaches that have been used for modeling
the effect of climate change on disease. Cli-
mate matching is applied by quantifying the
climatic features of locations so that the suc-
cess of an organism in a reference climate can
be used to predict the success of that organism
in other locations with similar climates where
the organism has not yet been introduced or
where the climate is expected to change to
become similar to the reference climate. Em-
pirical models, such as regression models with
climatic variables as predictors and epidemic
parameters as response variables, can be used
to predict the success of organisms across the
range of conditions studied (18), with extrap-
olation a possibility when the mechanisms of
relationship are sufficiently understood. Sim-
ulation models are based on theoretical re-
lationships and can be used to predict out-
comes under a range of scenarios. Because
climate change occurs slowly and variably, it
is difficult to study its effects directly. Tem-
poral variability in climate can be used to
draw inference about the potential effects of
climate change through the argument that
temporary effects of a year with unusual cli-
matic features are likely to represent the ef-
fects of longer-term changes. More recently,
Scherm (126, 127) has identified three contin-
uing problems with the application of models
for predicting climate change effects on dis-
ease. First, model inputs have a high degree
of uncertainty (75, 125). For example, data on
the geographic distribution of disease are still
surprisingly difficult to acquire. Second, non-
linear relationships (21) and thresholds in the
relationship between climatic variables and
epidemiological responses (104, 128) make it
difficult to collect sufficient data for a clear
predictive understanding. Third, the poten-
tial for adaptation by plants and pathogens
is another complicating factor that is often
ignored in models.

At the time of the review by Coakley et al.
(38), no studies had been published using
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climate variables generated by the more
sophisticated General Circulation Models
(GCM). Instead, most studies had been based
on fixed changes in temperature or precipi-
tation. Since then, modelers have developed
approaches for scaling from the coarse GCM
predictions down to the smaller scales at
which plant disease epidemics are more typ-
ically studied (14, 129, 130) and for scaling
up from small-scale predictions (5, 33, 68, 79,
105). Bergot et al. (16) have used a GCM
to predict a range expansion of Phytophthora
cinnamomi of up to a few hundred km east-
ward over 100 years, by modeling the tem-
perature of phloem in infected trees to evalu-
ate overwintering probabilities. Chuine et al.
(35) have argued for the inclusion of phenol-
ogy, such as the time of bud and leaf open-
ing or flowering (53), in models of climate ef-
fect. Asynchrony between pathogen, vector,
and host may be an effect of climate change
(43). This could be important for pathosys-
tems such as Fusarium head blight for which
there is a specific window of time during
which flowers can be infected. Newman (99)
has predicted that cereal aphids will decline
significantly in southern Britain, but suggests
caution in tallying such a prediction as a pos-
itive potential outcome from climate change,
since many “desirable” insects may experience
a similar decline, predictions may vary with re-
gion, and, as in most models, potential adap-
tation by cereal aphids is not evaluated.

Ecosystem Level Effects

The implications of plant disease at the
ecosystem level have rarely been addressed.
Malmstrom & Raffa (82) have addressed in-
corporating insect and pathogens as “biotic
disturbance agents” (76) in models of vege-
tation change in response to climate. Eviner
& Likens (51) have developed a framework
for evaluating likely ecosystem effects for a
pathogen and, by extension, the potential
ecosystem and “meta-ecosystem” (80) impacts
of a pathogen when its epidemiology shifts
with a shifting climate. Of course, at this

scale, the number of interactions and even
types of interactions rapidly increases, and
changes in land use patterns will also be im-
portant factors (39). But it is relevant to con-
sider Eviner & Likens’ factors for predicting
ecosystem effects and how pathogen charac-
terization might shift with climate change: (a)
pathogen effect on host survival, physiology,
behavior, and/or reproduction; (b) life stages
of a host vulnerable to a pathogen; (c) propor-
tion of individuals/biomass infected at a site;
(d ) spatial extent and distribution of infection;
(e) rate of pathogen effects on hosts in relation
to rate of response/recovery by hosts or indi-
viduals replacing hosts; ( f ) functional simi-
larity of infected individuals versus replace-
ments; and ( g ) frequency and duration of
pathogen impact. Many of these factors have
been addressed in other sections of this review,
but the sixth is of particular interest for scal-
ing up predictions to the ecosystem level. It is
possible that, even in the extreme event that a
plant species should go extinct due to greater
pathogen effects resulting from climate
change, plant species that replace it could
maintain ecosystem function. On the other
hand, if climate change produces major shifts
in which agricultural species are present in a
region, this may result in important changes
in nutrient loss from agriculture to surround-
ing ecosystems. Ultimately, the study of such
large-scale processes will be facilitated by re-
mote sensing of plant populations. Although
remote sensing technologies have advanced
rapidly, there are still challenges to identifying
particular plant species and to distinguishing
between different types of plant stress in the
field (146). Global networking for impact as-
sessment such as the Global Change and Ter-
restrial Ecosystems Core Project of the Inter-
national Geosphere-Biosphere Programme
will provide context for evaluation (128a).

CONCLUSIONS

Since climate change effects are challeng-
ing to study but of potentially great im-
portance, the topic has been reviewed and
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recommendations put forward almost as fre-
quently as climate change effects have been
studied empirically. Thus a number of authors
have supplied recommendations for needed
research and syntheses. One broad recom-
mendation would be an increased focus on
how a changing environment affects evolution
(11, 42). What pathogen characteristics, such
as frequency of generations and proportion of
sexual reproduction, affect the rate of adap-
tation? What host characteristics, such as life
span, affect rates of adaptation in both host
populations and pathogen populations? Are
invasive plant species better able to adapt to
climate change and move to new areas rapidly,
leaving pathogens behind or at least limit-
ing their evolutionary options through bot-
tlenecks (1, 90, 138)?

Closer links between empirical and model-
ing studies could support more rapid progress
in understanding climate change effects. At
the smallest scales, understanding trade-offs
in plant gene expression in response to dif-
ferent stressors will allow more mechanis-
tic predictions about responses to complex
shifts in many climatic variables and perhaps
also about the potential for adaptation, once
the costs and benefits of expression of par-
ticular genes are better understood (20). If
these more detailed studies can be developed
as modules for inclusion in larger modeling
systems, potential problems in calibrating ex-
periments in more controlled environments
with field experiments will also need to be ad-
dressed (37).

The impact of climate change on disease
for a given plant species will depend on the
nature of the effects climate change has on
both the host and its pathogens (17). Climate
change could first affect disease directly by ei-
ther decreasing or increasing the encounter
rate between pathogens and host by chang-
ing ranges of the two species. Disease severity

should be positively correlated with increases
in virulence and aggressiveness of pathogens.
However, both of these effects on disease
will be mediated by host resistance and en-
counter rates, which in turn are potentially
affected by climate change. Thus a positive
effect of climate change on conduciveness to
infection or pathogen aggressiveness or vir-
ulence could be offset by a concurrent in-
crease in resistance, yielding no net change
in disease impact. Species at highest risk for
an increase in disease will be those with pos-
itive effects of climate change on encounter
rates, environmental conduciveness to infec-
tion, aggressiveness, or virulence, but with
neutral or negative effects on resistance. The
effects of climate change on all these traits will
ultimately be modified by the evolutionary
potential of host and pathogen.

Finally, global climate change will affect
plant disease in concert with other global
change phenomena. We have discussed the
potential effects of introductions of new
species, in terms of new hosts that may
boost pathogen inoculum levels, new vectors
that may alter epidemic dynamics, and new
pathogens themselves. Social changes, such
as shifts in the availability of agricultural la-
bor, will also change options available for dis-
ease management (124). Widespread changes
in land-use patterns will alter the potential
for populations of plants and plant pathogens
(71) to migrate through fragmented land-
scapes. If agricultural land use decreases in
temperate areas and expands in the trop-
ics, policies in temperate areas may support
restoration of natural areas or they may sup-
port expansion of suburban development (9,
44), while the development of land use poli-
cies in tropical areas will face related chal-
lenges to maintenance of agricultural pro-
ductivity and plant biodiversity in a changing
world.

SUMMARY POINTS

1. At the genomic level, advances in technologies for the high-throughput analysis of
gene expression have made it possible to begin discriminating host, pathogen, and
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vector responses to different biotic and abiotic stressors and potential trade-offs in
responses.

2. At the scale of the individual plant, enough experiments have been performed to begin
synthesizing the effects of climate variables on infection rates, though pathosystem-
specific characteristics make synthesis challenging.

3. Models of plant disease have now been developed to incorporate more sophisticated
climate predictions from General Circulation Models.

4. At the population level, the adaptive potential of plant and pathogen populations may
prove to be one of the most important predictors of the magnitude of climate change
effects on plant disease, since, for many species, populations will not be able to migrate
quickly enough to keep pace with climate change.

5. Ecosystem ecologists are now addressing the role of plant disease in ecosystem pro-
cesses, with the potential for greater understanding of the large-scale impacts of
disease.

ACKNOWLEDGMENTS

Thanks to R. L. Bowden, P. Garfinkel, H. Gould, E. Jewett, J. E. Leach, A. Saleh, an anony-
mous reviewer, and members of the KSU Ecological Genomics Community for discussions
and comments that improved this manuscript. It is also a pleasure to acknowledge support by
the U.S. National Science Foundation under Grants DEB-0130692, DEB-0516046, and EF-
0525712 (as part of the joint NSF-NIH Ecology of Infectious Disease program), by the Eco-
logical Genomics Initiative of Kansas through NSF Grant No. EPS-0236913 with matching
funds from the Kansas Technology Enterprise Corporation, by the Office of Science (Program
in Ecosystem Research), U.S. Department of Energy, Grant No. DE-FG02-04ER63892, by
the U.S. Agency for International Development for the Sustainable Agriculture and Natural
Resources Management Collaborative Research Support Program (SANREM CRSP) under
terms of Cooperative Agreement Award No. EPP-A-00-04-00013-00 to the Office of Interna-
tional Research and Development at Virginia Tech and for the Integrated Pest Management
CRSP, by the U.S. Department of Agriculture under Grant No. 2002-34103-11746, by the
NSF Long Term Ecological Research Program at Konza Prairie, and by The Land Institute.
This is Kansas State Experiment Station Contribution No. 06-311-J.

LITERATURE CITED

1. Agrawal AA, Kotanen PM, Mitchell CE, Power AG, Godsoe W, Klironomos J. 2005.
Enemy release? An experiment with congeneric plant pairs and diverse above- and
belowground enemies. Ecology 86:2979–89

2. Al-Naimi FA, Garrett KA, Bockus WW. 2005. Competition, facilitation, and niche
differentiation in two foliar pathogens. Oecologia 143:449–57

3. Almeida RPP, Wistrom C, Hill BL, Hashim J, Purcell AH. 2005. Vector transmission
of Xylella fastidiosa to dormant grape. Plant Dis. 89:419–24

4. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. 2004.
Emerging infectious diseases of plants: pathogen pollution, climate change and agrotech-
nology drivers. Ecol. Evol. 19:535–44

502 Garrett et al.

A
nn

u.
 R

ev
. P

hy
to

pa
th

ol
. 2

00
6.

44
:4

89
-5

09
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 K

an
sa

s 
St

at
e 

U
ni

ve
rs

ity
 o

n 
08

/0
9/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV283-PY44-21 ARI 13 June 2006 13:56
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narios and visualisations to illustrate potential policy and climatic influences on future
agricultural landscapes. Agric. Ecosyst. Environ. 14:103–20

45. Doos BR. 2002. The problem of predicting global food production. Ambio 31:417–24
46. Eizenberg H, Plakhine D, Hershenhorn J, Kleifeld Y, Rubin B. 2003. Resistance to

broomrape (Orobanche spp.) in sunflower (Helianthus annuus L.) is temperature depen-
dent. J. Exp. Bot. 54:1305–11

47. Emanuel K. 2005. Increasing destructiveness of tropical cyclones over the past 30 years.
Nature 436:686–88

504 Garrett et al.

A
nn

u.
 R

ev
. P

hy
to

pa
th

ol
. 2

00
6.

44
:4

89
-5

09
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 K

an
sa

s 
St

at
e 

U
ni

ve
rs

ity
 o

n 
08

/0
9/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV283-PY44-21 ARI 13 June 2006 13:56

48. Epstein PR. 2001. Climate change and emerging infectious diseases. Microbes Infect.
3:747–54

49. Etterson JR. 2004. Evolutionary potential of Chamaecrista fasciculata in relation to climate
change. I. Clinal patterns of selection along an environmental gradient in the Great
Plains. Evolution 58:1446–58

50. Etterson JR, Shaw RG. 2001. Constraint to adaptive evolution in response to global
warming. Science 294:151–54

51. Eviner VT, Likens GE. 2006. Effects of disease on biogeochemical cycling. In Cary
Conference XI: Infectious Disease Ecology: The Effects of Ecosystems on Disease and of Disease
on Ecosystems, ed. R Ostfeld, F Keesing, V Eviner. New York: Princeton Univ. Press. In
press

52. Fabre F, Plantegenest M, Mieuzet L, Dedryver CA, Leterrier JL, Jacquot E. 2005.
Effects of climate and land use on the occurrence of viruliferous aphids and the epi-
demiology of barley yellow dwarf disease. Agric. Ecosyst. Environ. 106:49–55

53. Fitter AH, Fitter RSR. 2002. Rapid changes in flowering time in British plants. Science
296:1689–91

54. Fuhrer J. 2003. Agroecosystern responses to combinations of elevated CO2, ozone, and
global climate change. Agric. Ecosyst. Environ. 97:1–20

55. Garrett KA, Bowden RL. 2002. An Allee effect reduces the invasive potential of Tilletia
indica. Phytopathology 92:1152–59

56. Garrett KA, Hulbert SH, Leach JE, Travers SE. 2006. Ecological genomics and epi-
demiology. Eur. J. Plant Pathol. In press

57. Gibson GJ, Gilligan CA, Kleczkowski A. 1999. Predicting variability in biological con-
trol of a plant-pathogen system using stochastic models. Proc. R. Soc. London Ser. B
266:1743–53

58. Gilbert GS. 2002. Evolutionary ecology of plant diseases in natural ecosystems. Annu.
Rev. Phytopathol. 40:13–43

59. Grevstad FS. 1999. Factors influencing the chance of population establishment: impli-
cations for release strategies in biocontrol. Ecol. Appl. 9:1439–47

60. Gutschick VP, BassiriRad H. 2003. Extreme events as shaping physiology, ecology, and
evolution of plants: toward a unified definition and evaluation of their consequences.
New Phytol. 160:21–42

61. Hannusch DJ, Boland GJ. 1996. Interactions of air temperature, relative humidity and
biological control agents on grey mold of bean. Eur. J. Plant Pathol. 102:133–42

62. Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, et al. 2005. Earth’s energy imbalance:
confirmation and implications. Science 308:1431–35

63. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, et al. 2002. Climate warming
and disease risks for terrestrial and marine biota. Science 296:2158–62

64. Hu S, Chapin FC III, Firestone MK, Field CB, Chiariello NR. 2001. Nitrogen limitation
of microbial decomposition in a grassland under elevated CO2. Nature 409:188–91

65. Huber L, Gillespie TJ. 1992. Modeling leaf wetness in relation to plant disease epi-
demiology. Annu. Rev. Phytopathol. 30:553–77

66. Hughes L. 2000. Biological consequences of global warming: Is the signal already ap-
parent? Trends Ecol. Evol. 15:56–61

67. Hungate BA, Canadell J, Chapin FS III. 1996. Plant species mediate changes in soil
microbial N in response to elevated CO2. Ecology 77:2505–15

68. Huntley B, Green RE, Collingham YC, Hill JK, Willis SG, et al. 2004. The performance
of models relating species geographical distributions to climate is independent of trophic
level. Ecol. Lett. 7:417–26

www.annualreviews.org • Climate Change Effects on Plant Disease 505

A
nn

u.
 R

ev
. P

hy
to

pa
th

ol
. 2

00
6.

44
:4

89
-5

09
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 K

an
sa

s 
St

at
e 

U
ni

ve
rs

ity
 o

n 
08

/0
9/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV283-PY44-21 ARI 13 June 2006 13:56

This document
summarizes the
understanding of
the climatology
community about
the state of current
understanding of
climate change and
is scheduled to be
updated in 2007.

69. IPCC. 2001. Climate Change 2001: The Scientific Basis. Contrib. Work. Group

I Third Assess. Rep. Intergov. Panel Clim. Change, ed. JT Houghton, Y Ding,
DJ Griggs, M Noguer, PJ van der Linden, et al. Cambridge, UK/New York:
Cambridge Univ. Press

70. Johnson R. 1984. A critical analysis of durable resistance. Annu. Rev. Phytopathol. 22:309–
30

71. Jules ES, Kauffman MJ, Ritts WD, Carroll AL. 2002. Spread of an invasive pathogen
over a variable landscape: a nonnative root rot on Port Orford cedar. Ecology 83:3167–81
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