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Chapter I

Introduction

The electrical engineer must often solve linear, constant-coefficient, differential

equations, especially in such fields as circuit analysis and control theory. The usual

method of solution involves use of the Laplace transform. Although this method

of solution is well-known [1], computing solutions to such equations often involves

many tedious calculations. The most difficult step in this method of solution is

performing the inverse Laplace transform of a rational function. The object of this

thesis is to describe an algorithm for solving large problems of this kind.

Solving such equations is not necessarily a numerical analysis problem. We are

not trying to approximate the solution to a differential equation. We already know

the general form of the solution, and are simply seeking coefficients for the solution.

Thus the problem is actually algebraic, rather than analytic.

There are three distinct steps in computing the inverse Laplace transform of a

rational function. They are: factoring the denominator polynomial, finding the par-

tial fraction expansion of the rational function, and computing the inverse Laplace

transform of each of these partial fractions. Except for the factoring, these are not

analytic problems, and even the factoring algorithm presented here makes use of an

algebraic technique to speed up the finding of multiple roots.

Special concern was devoted to the partial fraction expansion portion of the

algorithm in order to reduce the number of calculations. The method presented

herein is based on one developed elsewhere [4] and modified to further reduce the

number of calculations. The effort to minimize the number of calculations required

constitutes the main contribution of this research.

As the title declares, this thesis concerns itself with computing the inverse

Laplace transform of a rational function, but not with obtaining the rational func-
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tion in the first place. The algorithm consists of four parts. The first part of the

algorithm accepts a rational function as input and outputs the rational function

with the denominator expressed as a product of irreducible factors. The next part

accepts as input a rational function with a factored denominator. It outputs the

partial fraction expansion of the given rational function. The third stage accepts

this expansion and computes the inverse Laplace transform. The final stage evalu-

ates the inverse transform over a desired interval and plots a graph, if desired.



Chapter II

Some Preliminaries

We first review the definition of the Laplace transform and its usefulness in

solving linear, constant-coefficient, differential equations. Given a real-valued func-

tion /(<) of a real variable, its one-sided Laplace transform, F(s), is given by [1]:

•H-oo/•-l-oo

F(s) = £{f(t)} = / f(t)e-
st

dt,

Jo

where 5 is complex and hence F(s) is, in general complex-valued. This transform

has two important properties which can be used to transform a differential equation

in t into an algebraic equation in s. Both of these properties are easy to derive and

proofs are given elsewhere. These properties are [1]:

Linearity. Suppose fi(t) and f2{t) are such that their Laplace transforms, Fi(s)

and F2(s), exist. Also, let ci,C2 E R» Then

£{cifi(t) + c2 /2 (r)} = c.F^s) + c2F2 (s).

Forward Derivative Property. Suppose that /(r) is (n — 1) times continuously

differentiable and that the nth derivative, f^
n
'(t), is such that its Laplace transform

exists. Then
n

£{/<">(*)} = s
n F(s) - 53*"~i/°"" 1)

(0).

Given an nth-order linear differential equation with constant coefficients

n

]Ta;/(i)
(*) = K*),

and the initial conditions, /(0) = c ,/
(1
^(0) = C\, .

.

. , /
(n-1)

(0) = c„_i, we can

take the Laplace transform of both sides of the equation and end up with [1]

F(s) =
} i*A ^ 3

, (2.1)

Lj=0 a
j
sJ
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where B(s) = C{b(t)}.

We see that if b(t) is such that B(s) is a rational function, then F(s) will also

be a rational function. Thus, the problem is reduced to finding the inverse Laplace

transform of F(s). What might be done when b(t) is such that B(s) is not a rational

function will be discussed later.

The method employed here to find the inverse Laplace transform of (2.1) is,

first, to factor the denominator; next, to expand the rational function into partial

fractions; and finally, by applying the linearity property of the inverse Laplace

transform, to find the inverse Laplace transform of each of the partial fractions. The

algorithms presented in the next three chapters accomplish each of these steps by

using elementary concepts of polynomial ring theory, and recursion where possible.



Chapter III

Factoring

The form of the inverse Laplace transform of a rational function depends on

the factors in the denominator polynomial. The problem of factoring polynomials

is an important area of numerical analysis. The algorithm presented here relies on

elementary algebraic considerations. It should be pointed out that any other fac-

toring algorithm could be used with the rest of the programs listed in the appendix

by providing suitable interfacing software.

The algorithm presented here is based on the root-finding method of D. E.

Muller [2], a brief description of which follows. Given a polynomial, p, start with

three initial estimates for a root: x_2, x_i, and xo- At the nth stage (0 < n £ N), fit

a quadratic equation to the points (x n_2,p(x n _ 2 )), (i n-hP( 2 n-i))i and (x n ,p(xn )).

Then find the root of this quadratic equation nearest x n . This root becomes xn+i.

Repeat this procedure while n is less than a given upper bound, or subsequent

estimates fail to improve by a given small amount. To find other roots, deflate p by

the appropriate factor and reapply Muller's method if necessary.

Suppose we are given a polynomial with real coefficients and distinct complex

roots. Apply Muller's method to obtain a root. Deflate the polynomial by a factor

containing the root just found (and its complex conjugate, if necessary) to obtain

a polynomial of smaller degree with real coefficients and distinct complex roots.

Repeat this process until the degree of the deflated polynomial is of degree 0, at

which point all the roots of the original polynomial have been found.

The above process works quite well if all the roots are distinct. If Muller's

method is applied to find a multiple root, it converges more more slowly than it

does for a single root. That is, it runs through many more iterations before the

difference between successive estimates becomes as small. So we turn to abstract



algebra for a way to speed things up. By using the method described below, we can

ensure that we will always be searching for distinct roots.

Consider a monic polynomial p E R[x], with r £ C a root of p. Then there

exists q £ C[x] such that p = (x — r)q. Now consider the first derivative of p, p' =

q + (x — r)q' . Observe that p'{r) = if and only if q(r) = 0. Thus r appears more

than once as a root of p if and only if p'(r) = [3].

Now look at gi = gcd(p,p') € R[x]. If deg(gi) = then the roots of p are all

distinct. If deg(^i) > then each root of g\ is also a root of p and appears more

than once as a root of p. Now define gn = gcd(p,// n)
). If deg(g n ) > then each

root of gn is also a root of p and its multiplicity is at least n + 1.

Since the multiplicity of any root is at most deg(p) there exists a minimal k € N

such that deg(<7fc) = 0. This k can be found by repeated differentiation of p and

application of the Euclidean algorithm to obtain each gcd. The first gcd obtained

with degree is <?*.

The only roots of gk-i will be all the roots of p with multiplicity k. These

roots can be found using Muller's method on gk-i- These roots will be distinct

in gk-i but of multiplicity two in gk-2- But the remaining roots of gk-2 will be

distinct, and can be found by deflating gk-2 by all known roots and then applying

Muller's method on the deflated polynomial. Similarly, all roots of p of multiplicity

n or higher will be roots of gn -\- Say a root has multiplicity m > n; this root will

have multiplicity m — n + 1 in gn -\. Thus, we can find all roots of p by working

backward from gk to p using Muller's method and deflation. Most importantly,

Muller's method is never used to search for a root of multiplicity greater than 1.

It should be pointed out that repeated polynomial divisions occur in the Eu-

clidean algorithm. A loss of precision is inherent in this process. If one cannot make

this sacrifice of accuracy of the results in favor of increased rate of convergence, re-

alize that any other factoring algorithm will work with the rest of the programs in
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the appendix. The interfacing software would be easy to write.



Chapter IV

Partial Fraction Expansion

One objective in designing a partial fraction expansion algorithm was to min-

imize the amount of calculation done. Chin and Steiglitz [4] devised an algorithm

capable of accomplishing the expansion in N(N — 1) multiplications and |iV( JV — 1)

additions, where N is the degree of the denominator of the given rational function.

This algorithm has a disadvantage: it requires use of complex arithmetic. Chin and

Steiglitz count complex divisions as equivalent in time to complex multiplications.

While this may be true for real divisions and multiplications it certainly is not true

for complex ones. Observe that,

a + ib (ac + bd) + i(bc — ad)

c + id
'

c2 +d2 '

has 6 real multiplications, 2 real divisions and 3 real additions. Call this 8 multi-

plications and 3 additions. Furthermore,

(a + ib)(c + id) = (ac — bd) + i(bc + ad),

requires 4 real multiplications and 2 real additions. Finally, note that

(a + ib) + (c + id) = (a + c) + i(b + d),

consists of 2 real additions.

Examination of Chin's and Steiglitz's algorithm reveals that the expansion

actually involves |iV(iV-l) complex additions, |JV(JV— 1) complex multiplications,

and ^N(N — 1) complex divisions. Using the above calculations, this results in

6N(N - 1) real multiplications and ^A^iV - 1) additions. So if complex arithmetic

can be avoided and the operation count can be held lower than this, the algorithm

will be improved.
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It is clear that the reason Chin and Steiglitz chose to work with complex num-

bers is that a polynomial in R[x] C C[x], splits in C. This makes the partial fraction

expansion algorithm simple to describe and analyze. But R[x] has the property that

an irreducible element is either linear or quadratic. If we use this property we can

avoid complex arithmetic and thus reduce the number of calculations at the cost of

complicating the algorithm a bit.

The key to adapting the algorithm of Chin and Steiglitz is finding a nice way

to generalize the following problem. Let s, r, K £ C, for s/r and find A, A* £ C,

such that

x — s \_(x — r) n

A*
+

A
(x - s)(x - r)n_1 (x-r) n

This problem generalizes to: Let s,r £ R[x] \ R, with gcd(.s,r) = 1; and A' £

R[x], with deg(k) < deg(r). Find A, A* £ R[x] such that deg(A) < deg(r), and

deg(.4*) < deg(.s), and

1 T K 1 A * A
(4.1)r + —

sr n-\ r n

First multiply through by r
n

to reduce the problem to:

K
r

A* A
s r

(4.2)

We know that since gcd(.s,r) = 1, there exists a, b £ R[x] such that as + br = 1

and so K = K[as + br] = Kas + Kbr. Apply the division algorithm to obtain the

following:

Ka = rq + A such that deg(.4) < deg(r),

(4.3)

Ka = rq + A such that deg(.4) < deg(r),

Kb = sq* + A" such that deg(.4*) < deg(^).

Now write

K = Kas + Kbr = (rq + A)s + (sq* + A*)r

= (q + q*)rs + As + A m
r.

By hypothesis we have deg(if) < deg(r) < deg(r.s) and from (4.3) we get deg(.4.s) <

deg(r.s) and deg(.4*r) < deg(rs). So q -f q* =0 and K = As + Am
r, which yields

(4.2) as required.



Now we must determine how to calculate A and A* in (4.1) [5], and the neces-

sary number of calculations. First consider the following adaption of the Euclidean

algorithm. Let s,r £ R[x]. The division algorithm gives:

s = rq1 + xj deg(xi) < deg(r)

r = xiq2 + x 2 deg(x 2 ) < deg(xi)

xi = Z2?3 + 2?3 deg(x 3 ) < deg(x 2 )

x n_ 2 = x n_j5n + x n deg(x n ) < deg(x n _i)

And also define xq = r. If, furthermore:

a = b = 1

ai = I &i = -qi

a n = O-n-2 — qn O-n-l bn = &n-2 ~ <Zn&n-l

then an 3 + bn r = x n , for all n > 0.

Proof: ao-s + &o r = r = xo- a\S + b\r = s — rqi = x\. Assume the hypothesis

is true for n — 2 and n — 1 for some n G N.

^n = ^n-2 ~ Qnx n— 1

= an -2>s + 6n -2^ - ?n(a n -i-s -I- bn -ir)

= (an_ 2 - qn an -i)s + (6n -2 - 9n&n-i)r

= an s + 6n r,

as claimed.

We can use the above procedure to develop a method for evaluating A and

—A*. There are four cases to consider since either s or r can be of degree 1 or 2.

Let us begin with the most difficult case:

Case 1: Both 5 and r are quadratic
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We have s = rqi + x and r = X\q2 -f x 2 . x 2 is a unit so a 2 s + b2 r = —q2 s -f

(1 + q\q2 )r = x 2 , and we can get the following.

K ±K(-q2 s + (l + qi q2 )r)

sr sr

r 5

By the division algorithm, 92 -K" = Q r — x 2A for some Q G R[x]. The quotient,

Q, does not matter as was shown in the derivation of (4.1). The remainder is the

important thing. Now we need to add up all the calculations required to evaluate

A.

Table (4.1) Summary of Case 1

To obtain x\ requires 2 adds,

to obtain q2 and x 2 requires 2 divs 2 mult 2 adds,

to obtain q2K requires 4 mults 2 adds,

to divide by r to get x 2A requires 2 mults 2 adds,

and to evaluate A requres 2 divs 1 add.

Resulting in 4 divs 8 mults 9 adds.

Now we have A. We need —A* as well. Since we know that K = As+ A*r, write

K = kix + ko, A = ajx+ao? A* = a*x + cto> s — x 2 +SiX + s , and r — x 2 +rix + r .

We obtain

k\x + k = (a\x + clq)(x
2 + 8\X + So) + (a*x + al){x~ + ri& + ro).

Equating coefficients for cubes and constants results in —a* = a
t , and — Oq =

(ciqSo — ko)/r . So —.4* can be calculated using one multiplication, one division,

and one addition. All told, calculation of .4 and —A* requires the equivalent of 14

multiplications and 11 additions.
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Case 2: s is quadratic and r is linear

We have 5 = rqx + x\. Since x 1 is a unit, we stop.

K j^K{s - qir)

sr sr

r s

— = A, and both K and xi are units, so

Table (4.2) Summary of Case 2

to obtain X\ requires 1 mult 2 adds,

and to obtain A requires 1 div.

The result is 1 div 1 mult 2 adds.

Now we have, as before,

k x x + kQ = A(x 2 + s\x + so) + {a\x + a%){x + r ).

Equating coefficients of squares and constants gives —a* = A and — clq = (Asq —

ko)/ ro- So —A* is computed with one multiplication, one division, and one addition.

All together, calculation of A and —A* requires the equivalent of 4 multiplications

and 3 additions.

Case 3: s is linear and r is quadratic

We have s = rq\ + xi, and r = x\q2 + X2- But q\ = 0, thus x\ = s and notice

that X2 is then a unit, so —^s + r = £2 and then

A" _ j;K(-q2 s + r)

sr sr

_ X2^ Z
I *2

r s

This time we will compute —A*, a unit, first. Observe that K = Qs —

(x2(—A*)). Now we do as before and write k\x + k = [a\X + a )(x + s ) +

12



A*(x 2 + r x x + r ). Equate coefficients of squares and constants to get a x
= —A*

and a = (k — A*tq )/sq. Now we summarize.

Table (4.3) Summary of Case 3

To obtain x 2 requires 1 mult 2 adds,

to obtain x 2A* requires 1 mult 2 adds,

to obtain —A* requires 1 div 1 add,

and to obtain a requires 1 div 1 mult 1 add.

The result is 2 divs 3 mults 5 adds.

All together calculation of A and —A* requires the equivalent of 5 multipli-

cations and 5 additions.

Case 4: r and s are both linear

This case is, of course, the simplest, s = q\r + X\, x\ is a unit and q\ = 1. So

K ±K{a-r)
sr sr

K —K
- JlL _i_

Xl

r s

Thus A = —A* = iv/xi, which requires 1 multiplication and 1 addition. Now

that each case has been examined, the following table summarizes the preceding

information:

13



Table (4.4) Number of operations required to evaluate (4.2)

deg(s) deg(r) multiplications additions111 1

2 1 4 3

12 5 5

2 2 14 11

The following is essentially Chin's and Steiglitz's algorithm in R[x] instead of

C[x]. Let p € N be given and dj G R[x], for each 1 < j < p and each dj irreducible

over R. Let rrij G N denote the multiplicity of each dj. Also let Qo,D £ TL[x] be

given such that D = YVj=i (^j)
m;

and deg(Q ) < deg(Z?) = 5Zi=i deg(<ij)m
;

. Thus

we have a proper rational function and wish to find K{j £ R[x] such that

Define mo = and n = ^2
P
j- rrij. Now, for 1 < / < n, define

u 1 = 1 + min{x G N U {0}lX>><
j=0

a,

•J-
if j < u/;

rrn, if j = u/,

for I < j < uj. Also, for each /, define // = dU/ , and Ri,Qi G R[x] such that

Qj-i = Q/// + Ri. Again define A (/v), A^(K ) : R[x] h* K[x] by

tf _ Af/A') A (7v)

Now the partial fraction expansion can be obtained as below in n steps, the

Ith step being:

Q° 1

-IQo]

nj_, <" n-=1 a

AA A"
(4 -5)

K' +EEtt^

14



where it is understood that Iln>Jfc>n fk = ^ and

[0,

4- W' +^wy)).
K 1-1

(i-i)i'

if i > uj or j > m or I = 0;

if j < u/ and i = v
1

.;

if j < m and i < uj;

if j = if/ and i > 1;

/-i
I
Ri + £o<*<i^W; 1

+ AikWk)), * J = «i and i = 1

(4.6)

Now we must count operations to compare this method with Chin's and Stei-

glitz's method. It turns out that the number of operations depends on the number

of quadratic factors in the denominator of the rational function. Let N = deg(D)

and then denote the number of quadratic factors in D as 9. Thus N = n + q.

First consider the number of calculations necessary to compute {R(
\

1 < / <

n}. The /th stage involves dividing Qi-\ by //. Two facts are necessary: To divide

an A/-degree polynomial by a monic linear factor requires M multiplications and M
additions and to divide the same polynomial by a monic quadratic factor requires

2(M — 1) multiplications and additions. Note that the largest that deg(Qo) can be is

N — 1 . We shall prove that in this worst case it requires no more than |JV(iV— 1) — q

multiplications and additions to compute {Ri \
1 < / < n}.

We shall use induction on N. For N = 1 we must have n — 1, and q = 0.

and of course, deg(Qo) = thus ^N(N — 1) — q — 0, which reflects the fact that

there is really nothing to do in this case. We will also need to examine the case

where N = 2, with n = 1 and q = 1. We still get ±N(N - 1) - q = 0. which

again indicates that there is really no partial fraction expansion to carry out. Now

assume the result for a given N.

First assume that we add a linear factor to D and increase deg(Qo) to (X -f

1) — 1 = N. So divide Qq by this new linear factor to get deg(Qi) = N — 1, which

will require N multiplications and additions. Now apply the induction hypothesis

to Q\. It will require jN(N — 1) — q multiplications and additions to obtain {Ri
|

15



2 < / < n + 1}. Adding up, we get

N+±N(N-l)-q = ±(N + l)N-q.

Now assume that we add a quadratic factor to D and increase deg(Q ) to

(N + 2) — 1 = N + 1. Dividing Qo by the new quadratic factor requires 2N

multiplications and additions. We are left with deg(Q!) = N — 1. By induction, to

compute {Ri \
2 < I < n} requires |iV(JV — 1) — q multiplications and additions.

Summing, we get

2N + \N(N -l)-q = i(iV + 2)(N + 1) - (q + 1),

as required.

We must also consider the necessary number of calculations required to compute

{K\i
|
1 < j

' < u/, andl < i < v
lA for some 1 < I < n. It turns out that the number

of operations needed to compute this set depends on deg(dUl ), on m U( , and on the

number of quadratic factors preceding du ,

Notice that computation of K\u requires no calculation for i > 1. This means

that the largest operation count for the partial fraction expansion algorithm occurs

when all the factors of D are distinct, that is, when m,j = 1 for all 1 < j < p = n.

Consequently, uj = /, so /j = d\ and Vj = rrij = 1 for all admissable / and j. Now

write (4.5) as

rijk=l /* lln>Jfc>//* j—i J J

And we can also write (4.6) as

( 0, if / =
K{j =

\
^(Klj 1

), ifl<j</

l^ + Eo^i^C^ll 1

).
if ^^-

Calculation of {K[,
\

1 < j < 1} for a given / requires that A\j and —A*j be

determined / — 1 times along with (/ — 1) deg(//) additions. Consider the number of

16



calculations in computation of Aij and A*-. Table (4.4) gives us this information if

we let s = fi and r = /,-. Notice that, given //, it will take the most operations if

fj is quadratic. Hence, the number of calculations in computing {A'{ •

|
1 < j < 1}

will be largest if deg(/jt) = 2 for all k < I.

In order to find an upper bound on the number of calculations in this algorithm,

assume all factors of D are distinct and ordered such that all quadratic factors

appear first. Then the entire algorithm would require

1
q

N(N _ i) _ q +£ I4(fc - 1) + £( 5<? + (k - (q + 1))

= N(N - 1) - q
2 + ZNq - Iq

multiplications. This formula also works for q = and q = N/2. The result in each

case is N(N — 1) and |iV(JV — 2), respectively which is easily verified. Also the

algorithm will require

I/V(.V-l)-g + ]T(ll + 2)(fc-;L)

fc=l

n

+ £((5 + 2)g + (l + l)(*-(« + l)) ^
4 -S )

7+1

= lN(N-l)-^q 2 +3Nq-
l
-±q

additions. Again, for the special cases q = and q = N/2, the formula yields

%N(N — 1) and ^-N(N — 2) respectively. In fact it is quite easy to show that for

all N > 2 and N/2 < q < we get the following:

6N(N - 1) > -N(N - 2) > 7V(iV - 1) - q
2 + 3A'g - lq.

This shows that the greatest number of multiplications occurs when q = n, and is

still less than the number required by Chin's and Steiglitz's algorithm. Also observe

lAN{N _ i) > hN{N _ 2 ) > In(N - 1) -
'-f

+ 3iNTg - ^g.

17



Which tells the same story for additions.

These results show that this adaption of Chin's and Steiglitz's algorithm saves

calculations. To be fair, however, one must realize that the output of this adaptation

is not the same as that of Chin and Steiglitz. Which algorithm is better will depend

on the application. Partial fractions expansions can be useful in a wide scope of

problems involving integrals of rational functions [6].

Chin's and Steiglitz's output differs from the one presented here in that C[x] is

the ambient polynomial ring and each denominator in the partial fractions expansion

is thus linear. With the adapted algorithm, R[x] is used and the denominators can

be linear or quadratic. It happens that in computing inverse Laplace transforms,

either form is acceptable and it is better to have fewer operations; however, this

may not always be so for other applications of partial fraction expansion.

18



Chapter V

Inverse Laplace Transform

The most elementary approach to finding the inverse Laplace transform of a

given function is to use a table of transform pairs. Indeed, large tables of transform

pairs have been prepared. In particular, a popular table [7] lists the following

transform pair:

fc-l/2

The functions Jp are known as the Bessel functions of half-integral order. They

have the following recursive definition [8]:

•7-.i/2(0 = y 3 costi

Ji/2(t) = J—sint,

Jp+1 (t) = ^-Jp(t)-Jp. l (t).

Let us simplify things somewhat by defining:

fc-l/2

Hk(at) = y/Tri—J Jk-i/2(at)-

We thus obtain the recursive relationship:

2
Ho(at) = - cos(at),

Hi(at) = - sin(ai),
a

2k -I /t \
2

Hk+1 (at) = -—-J7*(at) - — Hk-i
la* \-a /

Hence the Laplace transform pair (5.1) becomes:

1

(
5 2 +a 2)M " iW

19



If we use a well-known property of the Laplace transform, we can derive another

important Laplace transform pair. Use

^{^w} = -*/(')

to get

•-i

c- 1
-2ks

(s 2 +a2
)

s

(s 2 + a2
)

fe+i

fe+i

T(k)

t

W)
t

2r(fc + i)

Hk(at)

Hk (at)

Hk (at).

Which is equivalent to

--i
Hk-i(at).

( s
2 +a2y 2T(k)

This would be true for k > 2 but also holds for k = 1. Again make use of a Laplace

transform property, namely C~ l {F(s + r)} = e~ Tt
f(t) to get one of the Laplace

transform pairs useful in this problem:

--1

(( s + r
)

2
+ a2)

fc

rt

T(k)

AtBHk (at) + —Hk- 1 (at (5.2)

We also make use of another often-tabulated Laplace transform pair [7]:

A 1 Ae- ri
t
k - 1

>-i
(5.3)

(s + r)*J T(k)

One of these two Laplace transform pairs will apply to each term in the partial

fraction expansion of a rational function. From (4.3) and we have

• -i Qo

uuw,^-EE
- Kij

tztzw

j=l :=1

- r-l J Ki
(djY

[5.4)
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Now if deg(Ktj ) = 1 use (5.3), and if deg(Kij) = 2 use (5.2).

Using (5.2), and induction it can be shown that:

C' 1
I

A (
s + T

)
+ B I _ e

-rty t j j co^at) + £, sin(at))

{((s + rf+a*) J JS

And also note that (5.3) can be written

1 } —
r } = e~ Tt

t
k - 1 (Acos(O))

Thus we can express (5.4) in the form:

EE £_1
7TT7 \= E e_T;

'E *' (a* cos ( a^ + ft* sin^)) •
<
5 ' 5 )

This is the way the inverse Laplace transform is computed by the program in

the appendix. The output is simply an array of coefficients for an expression of the

form (5.5).
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Chapter VI

Applications

One of the most probable applications of this algorithm will be to evaluate

transient responses of control systems with a known transfer function. Figure (6.1)

shows a control diagram for an automatic flight control system for a supersonic

aircraft [9]. The transfer function corresponding to figure (6.1) will depend on

the values of K\ and K-i- It is simple to compute this transfer function using the

coefficient values shown in figure (6.1).

The above transfer function was inverse transformed using various values for

K\ and K^. The transient response functions so obtained are graphed in figures

(6.2) and (6.3). Notice how the response improves until the onset of instability.

It was mentioned before that sometimes we want the inverse transform of some-

thing other than a rational function. One common example arises when a control

system contains time delays. We have the following transform pair.

e- sT
£{u(t-T)} =

In order to apply the algorithm, we must approximate e
aT by a rational function.

This can be done using the Pade approximant [9]. We have

.-.r_.„,.™. Y.U(-l)'HsT)'
e-' ~ Pn(sT) =

where

— 8

Using the Pade approximant, the algorithm was used to invert -j-. Pade

approximants of order 2,3,4, and 6 were used. These approximants are shown

graphically in figure (6.4).
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+

-» II

2500

s 2 + 605 + 2500

10

3 + 10

K l (62.os 4-6.25)

s 2 + 1.5*4-6.25

s
2 + 4j +4

i
2 + 10.13 + 1

K2

Figure (6.1) Control system diagram of SST aircraft. Adapted (9).

o.o 1 .00 2.00 3 00 4 00 5 00 6 . 00

Figure (6.2) Step response of above control system for K\Ki = 0,0.2,0.4.

and 0.6.
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0.500 2.00 2.50 3.00

Figure (6.3) Step response of above control system for K\

K

2 = 0.8, 1.0S, and
1.10.

o.o o . 400 o . aoo i . 20

Figure (6.4) Pade approximants to unit time delay.

1 60 2 00

24



Chapter VII

Conclusion

This paper has presented an algorithm for computing inverse Laplace trans-

forms of rational functions as might arise in practical electrical engineering prob-

lems. Programs written to demonstrate the algorithm follow in the appendix.

Numerical analysis aspects of the problem were not dealt with, but, except for

root-finding, the problem was shown to be an algebraic one. Results from elemen-

tary abstract algebra were used to derive the methods described. Special effort was

made to reduce the number of calculations in the partial fraction expansion.

Some applications were presented to show practical results. These applications

also made it clear that assuming that the Laplace domain function, F(s), in (2.1)

is a ratio of polynomials is not always valid. Future work on this problem should

concern itself with this assumption.
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Appendix II

Glossary of Terms

C denotes the field of complex numbers.

C[x] denotes the ring of polynomials with coefficients in C.

deg: If p(x) = do + <L\X + • • • + an x
n ^ and an =fi

then deg(p(x)) = n.

Division algorithm: Given two polynomials p(x), q(x) £ F[x), where F[x] is the

ring of polynomials with coefficients in the field F and q(x) 7^ 0, there exist two

polynomials t(x),r(x) £ F[x] such that f(x) = t(x)q(x) + r(x) where r(x) = or

deg(r(x)) < deg(q(x)). The process by which t(x) and r(x) are found is known as

the division algorithm and is simply the "long-division" process everyone knows to

divide one polynomial by another.

Euclidean algorithm: Given two polynomials p(x),q(x) £ F[x], where F[x] is

the ring of polynomials with coefficients in the field F and p(x) and q(x) are not both

0, then gcd(p(x),q(x)) E F[x] exists and there exist polynomials m(x),n(x) E F[x]

such that gcd(p(x),q(x)) = m(x)p(x) + n(x)q(x). The process used to determine

these special polynomials is called the Euclidean algorithm and is shown explicitly

in Chapter IV.

T: A sufficient definition of the function T for n€NU{0}is

JO, if n = 0;
L[n) ~

\(n-l)!, if n >0.

gcd: Let a, b £ F[x]. If c € F[x] satisfies:

1. c is monic.

2. c divides a and 6.

3. Any other divisor of a and b divides c.

then c is called the greatest common divisor of a and b and is denoted gcd(a, b).

irreducible: Let p £ F[x] be such that p = ab for some a, 6 £ Ffx] if and only

if deg(a) = or deg(6) = 0. Such a p is said to be irreducible over F. Note that
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irreducibility depends on the field, F. x 2 + 1 is irreducible over R[x] but not over

C[x}.

min is a function that operates on a well ordered set and whose value is the

minimum element of that set. The well ordering property of N asserts that ifA C N

then min A exists.

N denotes the ring of natural numbers.

R denotes the field of real numbers.

R[x] denotes the ring of polynomials with coefficients in R. u(t): Let t € R.

fO, ift<0;
U(<) -\1, ift>0.

unit: u 6 F[x] is called a unit iff deg(u)=0.
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Appendix III

FORTRAN Programs

The following programs are intended to merely demonstrate the algorithms

described in the previous chapters. Specifically, they were used to evaluate the

example applications mentioned in Chapter VI. No guarantee of their usefulness to

any other application is implied.

These programs could certainly be made more user-friendly. There are no error

handling routines, the user interaction is minimal, and file management is cumber-

some. Such things are left to a better programmer. Nevertheless, the programs

serve their purpose of demonstrating the algorithms.

The programs fall into four slightly overlapping categories: those associated

with Chapters III through V and those for creating data files and making plots.

The following is a brief categorical index of the programs. Subroutine dependence

is indicated by indentions.

Factoring Program

ROOT_FIND
POLY_READ
FACTORER

DERIV
EUCLID

POLDIV
FIND_EM

MULLER
DEFVAL
COMPOSE

SPEC-WRITE
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Partial Fraction Expansion Program

PARTJFRAC
SPEC-READ
EXPAND

TRANSFER
POLDIV
ALIKE

TRANSFER
DIFFERENT

TRANSFER
EUCLIDEAN

TRANSFER
POLDIV
POLMULT

POLADD
PART-WRITE

Inverse Laplace Transform Program

INVERT
INV2

INIT
BESSEL
GAMMA

PLOT
READ
LOTS_0_PLOTS
PLOT.O_MATIC

Plotting Program

Data Entry Routines

INPUTJIAT

SPECJNPUT
SPEC-WRITE

The programs that follow are listed in alphabetical order according to their

VAX FORTRAN filenames. Each program is preceded by a header that explains

the purpose of the program, and describes the variables passed to and from the

program. I have tried to make each header as complete as required to be all the

documentation necessary to comprehend the program it describes.
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*****************************************************************
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Department of Electrical and Computer Engineering
Kansas State University

*

*

*

VAX FORTRAN source filename: ALIKE. FDR *

***************************************************************

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

X

DEGX

REM

DEGR

RETURN:

SUBROUTINE
ALIKE ( I , J, X, DEGX f REM, DEGR)

Refer to equation (4.6) in the main
thesis. This program computes K~l_ij
when j=u_l, hence the name ALIKE.

None.

The following arguments are passed to
the subroutine:

(input) integer
corresponds to j in (4.6)

( input ) intege r

corresponds to i in (4.6)

(input) real

is a three dimensional array, X(I,J,K)
represents to Ith coefficient of the
numerator of the (J,K)th term in the
partial fraction expansion. Namely,
that term with the Jth factor of DEN
to the Kth power as denominator.

(input) integer
is an array. DEGX (I, J) represents the
degree of the numerator of the (I,J)th
term in the partial fraction expansion.
See the description of X.

( input ) r eal

corresponds to R_l in (4.6) .

(input) integer
is the degree of R_l in (4.6) .

Not used.



ROUTINES
CALLED:

AUTHOR:

PUTX

James F. Stafford

DATE CREATED: 8Jun87 Version 1.0

REVISIONS: None.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

****************************************************************

SUBROUTINE ALIKE (I, J, X, DEGX, REM, DEGR)

IMELICIT NONE

INTEGER DEGR, I, J, K,L, DEGX (10,*)

REAL*8 X(0:1,10,*),REM(0:10)

DO K=J,2,-1

DEGX (I, K) =DEGX (I, K-l)

DO L=0,DEGX(I,K)

X(L,I,K)=X(L,I,K-1)

ENDDO

ENDDO

CALL HJTX (1,1, REM, DEGR, X, DEGX)

RETURN

END



ROUTINE:

DESCRIPTION:

SUBROUTINE
BESSEL(F,A,N)

This program computes the recursively
defined function H_k described in
chapter V.

DOCUMENTATION
FILES:

ARGUMENTS:

*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: BESSEL.POR *

*****************************************************************
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

N

RETURN:

ROUTINES
CALLED:

AUTHOR:

None.

The following arguments are passed to
the subroutine:

(input) real

is an array containing the coefficients
of the functions H_k. For a given j,
F(I,0,K) represents the coefficient of

the cosine term of H_(j-I), with t to
the power K. F(I,l r K) represents the
coefficient of the sine term of H_(j-I),
with t to the power K.

( input ) r eal

represents a in the recursive definition
of H_k in chapter V.

(input) integer
represents k in the recursive definition
of H_k in chapter V.

Not used.

None.

James F. Stafford

DATE CREATED: 9Jun37 Version 1.0



*

* REVISIONS: None.
*

*

****************************************************************

SUBROUTINE BESSEL(F,A, N)

IMPLICIT

INTEGER

REAL*8

DO J=-l,N-2

DO K=-2,-l

NONE

N,J,K

A, F (-2: 0,0: 1,-1: 9)

F(K,0,J)=F(K+1,0,J)
F(K,1,J)=F(K+1,1,J)

ENDDO

ENDDO

DO J=0,N-2

F(0,0,J)=F(-l,0,J)*(2*N-3)/A
F(0,l,J)=F(-l,l,J)*(2*N-3)/A

ENDDO

DO J=-l,N-3

F(0,0 f J*-2)=F(0,0,Jl-2)-F(-2,0,J)

F(0,l,dH-2)=F(0,l,J»-2)-F(-2,l,J)

ENDDO

RETURN

END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: COMPOSE. FOR *

*****************************************************************
*

RCUTINE:COMFOSE(X, FACTOR, NOM, DEGF, MULT)*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

FACTOR

NUM

DEGF

MULT

RETURN:

ROUTINES
CALLED:

AUTHOR:

This program accepts a complex-valued
root,X as input, decides whether X is
purely real or not, and updates the
factor array, FACTOR, accordingly.

None.

(input) complex
Is a complex-valued root of a polynomial.

( input/o utput ) r eal

Is an array containing each factor of the
above polynomial.

( input/o utput ) intege r

Is the number of factors in FACTOR. NUM
is already incremented before calling
COMPOSE.

( input/output ) intege r

Is an array specifying the degree of each
corresponding factor in FACTOR.

( input/output ) integer

Is an array specifying the multiplicity of

each factor in FACTOR.

Not used.

None.

James F. Stafford



*

* DATE CREATED: 30Jurfi8 Version 1.0
*

*

* REVISIONS: None.
*

****************************************************************

SUBROUTINE COMPOSE (X, FACTOR, NUM, DEGF, MULT)

IMPLICIT NCNE

INTEGER NUM, DEGF (*) , MULT (*)

REAL*8 FACTOR (10, 0:2) , SMALL

COMPLEX*16 X

LCGICAL REAL

PARAMETER (SMALL=10E-4)

REAL=. FALSE.

IF (DREAL(X).NE.O.) THEN

IF (DABS(DIMAG(X)/DREAL(X)).LT. SMALL) THEN

REAL=.TRUE.
FACTOR ( NUM, 1)=1
FACTOR ( NUM, ) =-DREAL (X

)

DEGF (NUM) =1

ENDIF

ELSE IF (CDABS(X).LT. SMALL) THEN

REAL=.TRUE.
FACTOR ( NUM, 1)=1.
FACTOR (NUM, 0)=0.

DEGF (NUM) =1

ENDIF

IF (REAL. BQ.. FALSE.) THEN

FACTOR (NUM, 2 ) =1

FACTOR (NUM, 1 ) =-2 . *DRE£L (X

)

FACTOR ( NUM, ) =OIMG (X ) *DIMAG (X ) +DREAL (X ) *DREAL (X

)

DEGF (NUM) =2



ENDIF

MULT(NUM)=1

RETURN

END



* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: DEFVAL.FOR *

*****************************************************************
*

ROUTINE: COMILEX*16 FUNCTION
DEFVAL ( POLY, DEG, FACTOR, NUMf DEGF, MULT, X)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

POLY

DEG

FACTOR

NUM

DEGF

MULT

This program evaluates a polynomial at
a given complex argument, X, all known
factors are divided out.

None.

The following arguments are passed to
the function:

(input) real

is an array containing coefficients of

the polynomial to be evaluated.

(input) integer

is the degree of POLY.

(input) real
is an array containg the coefficients
of all known factors of POLY.

(input) integer
is the number of factors in FACTOR.

(input) integer
is an array specifying the degree of

each corresponding factor in FACTOR.

(input) integer
is an array specifying the multiplicity

of each corresponding factor in FACTOR.

(input) complex
is the argument at which the polynomial

is to be evaluated.



RETURN:

ROUTINES
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

Not used.

None.

James F. Stafford

30Jun38 Version 1.0

None.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*****************************************************************

COMILEX*16 FUNCTION DEFVAL (POLY, DEC, FACTOR, NUM, DEGF, MULT, X)

NONE

DEC, I, NUM, DEGF (* ) , MULT (*

]

POLY(0:*) , FACTOR (10, 0:2)

X,EVAL

IMPLICIT

INTEGER

REAL*8

COMPLEX*16

DEFVAL=POLY(DEG)

DO I=DEG-1,0,-1

DEEVAL=DEFVAL*X+POLY (I

)

ENDDO

DO 1=1, NUM

IF (DEFVAL. NE.0) THEN

DEFVAL=DEFVAL/EVAL( FACTOR, I, DEGF (I) ,MULT(I) ,X)

ENDIF

ENDDO

RETURN

END

COMPLEX*16 FUNCTION EVAL (FACTOR, I, DEGF, MULT, X)



IMPLICIT NONE

INTEGER J, I, DEGF, MULT

REAL*8 FACTOR(10,0:2)

G0MHLEX*16 X f VALUE

EVAL=1
VALUE=FACTOR ( I , DEGF)

DO J=DEGF-1,0,-1

VALUE=VALUE*X+FACTOR ( I , J)

ENDDO

DO J=1,MULT

EVAL=EVAL*VALUE

ENDDO

RETURN

END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source f ilename:DER]V.POR *

*****************************************************************
*

* ROUTINE: SUBROUTINE
DERIV( POLY, DEC)*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

POLY

DEC

RETURN:

ROUTINES
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

This program computes the derivative of

a given polynomial.

None.

The following arguments are passed to
the routine.

( input/o ut put ) r eal

is an array containing the coefficients
of the polynomial to be differentiated.
On return, this array contains the
coefficients of the derivative.

( input/output ) intege

r

is the degree of the polynomial on
input and the degree of the
derivative on output.

Not used.

None.

James F. Stafford

30Jun88 Version 1.0

None.



****************************************************************

SUBROUTINE DEPJV(POLY,DEG)

IMPLICIT NONE

INTEGER I, J,EEG

REAL*8 POLY(0:*)

DO J=0,DEG-1

POLY (J) =(JH)*POLY(JH)

ENDDO

POLY(DEG)=0.
DEG=DEG-1

RETURN

END



*****************************************************************
* Department of Electrical and Computer Engineering *

Kansas State University *

* *

* VAX FORTRAN source filename: DIFFERENT. FOR *

*****************************************************************
*

ROUTINE: SUBROUTINE
DIFFERENT (I, B, DEGB, DEN, DEGD, MULTS, X, DEGX)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

B

DEGB

DEN

DEGD

MULTS

Refer to equation (4.6) in the main
thesis. This program computes K~l_ij
when j<u_l, hence the name DIFFERENT.

None.

The following arguments are passed to the
subroutine:

(input) integer
corresponds to j in (4.6)

(input) real

is an array containing the coefficients of

the polynomial f_l in the notation of
chapter IV.

( input ) intege r

is the degree of B

( input ) r eal

is a two-dimensional array. DEN (I, J)

represents the coefficient of the Ith
power of x in the Jth factor of the
denominator polynomial.

(input) integer
is an array. DEGD(I) represents the
degree of the Ith factor in the
denominator polynomial.

(input) integer
is an array. MULTS(I) represents the
multiplicity of the Ith factor in the
denominator polynomial.



*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

DEGX

RETURN:

ROUTINES
CALLED:

AUTHOR:

(input) real
is a three-dimensional array. X(I,J, K)
represents the Jth coefficient of the
numerator of the (Jf K)th term in the
partial fraction expansion. Namely,
that term with the Jth factor of DEN
to the Kth power as denominator.

(input) integer
is a two-dimensional array. DEG(I,J)
represents the degree of the numerator
of the (I,J)th term in the partial
fraction expansion. See the description
of X.

Not used.

EUCLID, HJTX, GETD, GETX, POLADD

James F. Stafford

DATE CREATED: 8Jun37 Version 1.0

REVISIONS: None.

**************************************************************

SUBROUTINE DIFFERENT (I, B f DEGB, DEN, DEGD,MULTS, X, DEGX)

IMFLICIT

INTEGER

REAL*8

NONE

DEGD ( * ) , MULTS ( * ) , I, J, K, L, DECS,

DEGT,DEGX(10,*) ,DEGA,DEGB,DEGF

DEN(0:2,*) ,X(0:1,10,*) ,A(0:2) ,B(0:2) ,

S(0:1) ,T(0:1) ,F(0:1)

DO J=1-1,1,-1

PRINT *, , J= I ,J

CALL GETD (J, A, DEGA, DEN, DEGD)

CALL GETX(J,MULTS(J) ,F,DEGF,X,DEGX)



DO K=MULTS( J) -1,1,-1

PRINT VK=',K

CALL EUCLID (A, DEGA, B, DEGB, F, DEGF, S, DEGS, T, DEGT)

CALL PUTX(J,K+1,T,DEGT,X,DEGX)

CALL GETX(J,K,F,DEGF,X,DEGX)

CALL POLADD(F, DEGF, S, DEGS)

ENDDO

CALL EUCLID (A, DEGA, B, DEGB, F, DEGF, S, DEGS, T, DEGT)

CALL PUTX(J,1,T,DEGT,X,DEGX)

CALL GETX(I,1,F,DEGF,X,DEGX)

CALL POLADD (F, DEGF, S, DEGS)

CALL PUTX(I,1,F,DEGF,X,DEGX)

ENDDO

RETURN

END



ROUTINE: SUBROUTINE
EUCLID (POL1 ,DEG1 , POL2 ,DEG2 , GCD, DEGG)

DESCRIPTION: This program computes the greatest
common divisor of two given polynomials.

DOCUMENTATION
FILES: None.

*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename:EUCLID. FOR *

*****************************************************************
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ARGUMENTS:

P0L1

DEG1

POL2

DEG2

GCD

DEGG

RETURN:

ROUTINES
CALLED:

(input) real

is an array representing one input
polynomial.

(input) integer
is the degree of POLL

(input) real

is an array representing the other
input polynomial.

(input) integer
is the degree of POL2.

(output) real

is the gcd of the two input polynomials

(output) integer
is the degree of GCD.

Not used.

AUTHOR:

POLDIV

James F. Stafford



*

*

* DATE CREATED: 30JunS8 Version 1.0
*

*

* REVISIONS: None.
*

*

****************************************************************

SUBROUTINE EUCLID (POLl f DEGl f POL2 / DEG2,GCD,DEGG)

IMPLICIT NCNE

INTEGER I f J,DEG1,DEG2,DEGG,DEGA,DEGB,DEGQ

REAL*8 POL1(0:10) ,POL2(0:10) ,GCD(0:10) ,

+ A(0:10) ,B(0:10) ,Q(0:10) ,ZERO

LOGICAL EASY, HARD

PARAMETER (ZERO=l .OE-5)

EASY=. FALSE.
HARD=.TRUE.

CALL GET(GCD,DEGG,POLl,DEGl)
CALL GET(B,DEGB,POL2,DEG2)

DO WHILE (.NOT. (DEGB. EQ.O .AND.DABS(B(0) ).LT.ZERO))

CALL GET(A,DEGA,GCD,DEGG)

CALL GET (GCD, DEGG,B, DEGB)

CALL POLDIV (A, DEGA, GCD, DEGG,Q,DEGQ,B, DEGB, EASY, HARD)

DO I=0,DEGG

GCD (I ) =GCD (I ) /GCD (DEGG)

ENDDO

ENDDO

RETURN

END

SUBROUTINE GET (A, DEGA, B, DEGB)



IMHilCIT NCNE

INTEGER I , J, DEGA, DEGB

REAL*8 A(0:*),B(0:*)

DEGA=DEGB

DO 1=0,DEGA

A(I)=B(I)

ENDDO

RETURN

END



ROUTINE:

DESCRIPTION:

SUBROUTINE
EUCLID (A, DEGAf B, DEGB, F, DEGF, S, DEGS,

T f DEGT)

This program computes A and A"* in
equation (4.1) given K f s and r via
the methods discussed in chapter IV.

DOCUMENTATION
FILES:

ARGUMENTS:

None.

*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: EUCLIDEAN. FOR *

*****************************************************************
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

DEGA

B

DEGB

DEGF

DEGS

The following arguments are passed to
the subroutine:

( input ) r eal

is an array containing the coefficients
of s in (4.2)

.

(input) integer
is the degree of s in (4.2)

.

(input) real

is an array containing the coefficients
of r in (4.2)

.

(input) integer
is the degree of r in (4.2)

.

(input) real
is an array containing the coefficients
of K in (4.2)

.

(input) integer
is the degree of K in (4.2).

(output) real

is an array containing the coefficients
of A in (4.2)

.

(output) integer
is the degree of A in (4.2) .



*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

****************************************************************

SUBROUTINE EUCLID (A, DEGA, B, DEGB, F, DEGF, S, DEGS,
+ T, DEGT)

DEGT

RETURN:

ROUTINES
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

(output) real
is an array containing the coefficients
of A"* in (4.2) .

(output) integer
is the degree of A~* in (4.2)

.

Not used.

POLDIV,K)LMULT,
GET(contained in TRANSFER)

James F. Stafford

9Jun87 Version 1.0

None.

IMILICIT

INTEGER

REAL*8

LOGICAL

ADD=0
DIV=0
MULT=0
EASYDIV=.TRUE.
HARD=. FALSE.
DEGR=1

IF (DEGA. LE. DEGB) THEN

SWITCH=.TRUE.

NONE

I , DEGA, DEGB, DEGF, DEGT, DEGS, DEGQ, DEGR,
DEG1 , DEG2 , ADD, MULT, DIV

A(0:2) ,B(0:2) ,F(0:1) ,S(0:1) ,T(0:1) ,

QUO(0:1) ,REM(0:2) ,BUFF1(0:3) ,BUFF2(0:3)

EASYDIV, HARD, EASYMULT, SWITCH



CALL GET(BUFF2,DEG2,A,DEGA)
CALL GET(BUFF1,DEG1,B,DEGB)

ELSE

SWITCH=. FALSE.

CALL GET(BUFF1,DEG1,A,DEGA)
CALL GET(BUFF2,DEG2,B,DEGB)

ENDIF

1=0

DO WHILE (DEGR.GT.0)

CALL POLDIV ( BUFFI , DEGl , BUFF2 , DEG2 , QUO, DEGQ , REM, DEGR,

EASYDIV, HARD)

CALL GET (BUFFI, DEGl ,BUFF2,DEG2)
CALL GET(BUFF2,DEG2 f REM, DEGR)

EASYDIV=. FALSE.
HARD=.TRUE.
1=1+1

ENDDO

IF (I.LT.2) THEN

EASYMULT=.TRUE.
DEGQ=0

ELSE

EASYMULT=. FALSE.
BUFF2(0)=-BUFF2(0)
ADD=ADD«-1

ENDIF

CALL POLMULT( QUO, DEGQ ,F,DEGF, BUFFI, DEGl r EASYMULT)

DO 1=0, DEGl

BUFFI ( I ) =BUFF1 ( I ) /BUFF2 ( 0)

DIV=DIV+1

ENDDO



HARD=. FALSE.

IF (SWITCH) THEN

CALL POLDIV(BUFFl,DEGl,A,DEGA,Cro,DEC^,T,DEGT,
EASYDIV,HARD)

DEGS=DEGB-1
S(DEGS)=T(DEGT)
DO I=DEGS-1,0,-1

S ( ) =T (DEGT) * (B (DEGB-1 ) -A (DEGA-1 ) )

MULT=MULT+1
ADD=ADDfl

IF (DEGT.GT.O) THEN

S(0)=S(0)+T(0)
ADD=ADDfl

ENDIF

ENDDO

ELSE

CALL POLDIV( BUFFI ,DEGl,B f DEGB, QUO, DEGQ,S,DEGS,
EASYDIV,HARD)

DEGT=1
S(0)=>-S(0)

T(1)=S(0)
T(0)=(A(1)-B(0))*S(0)+F(1)
ADD=ADEH-3

MULT=MULT+1

ENDIF

PRINT *, ADD, 'additions 1

PRINT *,MQLT, 'multiplies'
PRINT *,DIV, 'divisions'

RETURN

END



*****************************************************************
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Department of Electrical and Computer Engineering *

Kansas State University *

*

VAX FORTRAN source filename: EXPAND. FOR *

***************************************************************

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

NUM

DEGN

DEN

DEGD

MULTS

SUBROUTINE
EXPAND ( (NUM, DEGN, DEN, DEGD, MULTS, X,DEGX,
NO_ FACTS)

This program performs a partial fraction
expansion on a rational function using
Chin's and Steiglitz's algorithm.

None.

The following arguments are passed to
the subroutine:

(input) real

is an array containing the coefficients
of the numerator polynomial of the
rational function to be expanded.

(input) integer
is the degree of the numerator
polynomial.

(input) real

is a two-dimensional array. DEN (I, J)

represents the coefficient of the Ith
power of x in the Jth factor of the
denominator polynomial.

(input) integer
is an array. DEGD(I) represents the
degree of the Ith factor in the
denominator polynomial.

(input) integer
is an array. MULTS (I) represents the
multiplicity of the Ith factor in the
denominator polynomial.

NO_ FACTS (input) integer



*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

***

DEGX

RETURN:

ROUTINES
CALLED:

AUTHOR:

is the number of factors in the
denominator polynomial.

(output) real
is a three-dimensional array. X(I f Jf K)

represents the Ith coefficient of the
numerator of the (J f K)th term in the
partial fraction expansion. Namely,
that term with the Jth factor of DEN
to the Kth power as denominator.

(output) integer
is an array. DEGX(I, J) represents the
degree of the numerator of the (I, J)th
term in the partial fraction expansion.
See the description of X.

Not used.

GETD, POLDIV , ALIKE , DIFFERENT

James F. Stafford

DATE CREATED: 6JunS7 Version 1.0

REVISIONS: None.

*************************************************************

SUBROUTINE EXPAND (NUMf DEGN, DEN, DEGD, MULTS, X, DEGX,
+ NO_ FACTS)

+
+

IMPLICIT

INTEGER

REAL*8

LOGICAL

EASY=. FALSE.

NONE

DEGN, NO_ FACTS, DEGD( 10) ,DEGB,

MULTS ( * ) ,DEGR, I , DEGQ , J, K, L,

DEGX(10,*)

NUM(0:*) ,DEN(0:2,*),X(0:1,10,*)

,

QUO(0:10) ,REM(0:10) ,B(0:2)

EASY, HARD



HARD=. FALSE.

DO 1=1 ,NQ_ FACTS

PRINT *,'I=',

I

CALL GETD(I,B,DEGB,DEN,DEGD)

DO J=1,MJLTS(I)

CALL POLDW(NUM,DEGN,B,DEGB,CTO,DEGQ,REM,DEGR,
EASY, HARD)

DEGN=DEGQ

DO K=0,DEGN

NUM(K)=OUO(K)

ENDDO

PRINT *,DEGRf
, YES l

DO K=0,DEGR

PRINT *,REM(K)

ENDDO

CALL ALIKE(I,J,X,DEGX,REM,DEGR)

CALL DIFFERENT(I,B,DE£B,DEN,DE£D,MULTS,X,DEGX)

ENDDO

ENDDO

RETURN

END



*****************************************************************

Department of Electrical and Computer Engineering *

Kansas State University *

*

VAX FORTRAN source f ilename:FACTORER.FOR *

*****************************************************************
*

* ROUTINE:
*

*

*

SUBROUTINE
FACTORER (POLY, DEGP, FACTOR, NUM, DEGF, MULT)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

POLY

DEGP

FACTOR

NUM

DEGF

MULT

RETURN:

ROUTINES
CALLED:

This program factors a given input
polynomial into irreducible elements of

R[x].

None.

( input ) r eal

is an array containing the coefficients
the polynomial to be factored.

(input) integer
is the degree of POLY.

(output) real

is an array containinng coefficients
each factor of POLY.

(output) integer

is the number of factors in FACTOR.

(output) integer

is an array specifying the degree of

the corresponding factor in FACTOR.

(output) integer

is an array specifying the multiplicity
of the corresponding factor in FACTOR.

Not used.

DERIV, EUCLID, FIND_EM



*

* AUTHOR: James F. Stafford
*

*

* DATE ORFATED: 30Jun88 Version 1.0
*

*

* REVISIONS: None.
*

*

*************************************************************

SUBROUTINE FACTORER (POLY, DEGP, FACTOR, NUM, DEGF, MULT)

IMPLICIT NONE

INTEGER I,J,K,DEGP,DEGF(*),MUXT(*),NUM,DEGGCD(0:10) ,

+ DEGD, DEGG

REAL*8 FOLY(0:10) ,FACTOR(10,0:2) ,GCD(0:10,0:10) ,D(0:10)
+ G(0:10)

DO 1=0, DEGP

D(I)=POLY(I)
GCD(0 f I)=POLY(I)

ENDDO

DEGD=DEGP
DEGGCD(0)=DEGP
K=0

DO WHILE (DEGGCD(K).GT.O)

K=K+1
CALL DERIV(D,DEGD)
CALL EUCLID (POLY, DEGP, D, DEGD, G, DEGG)

DO J=0,DEGG

GCD(K,J)=G(J)

ENDDO

DEGGCD(K)=DEGG

ENDDO

DO I=K-1,0,-1



DO J=0,DEGGCD(I)

G(J)=GCD(I,J)

ENDDO

DEGG=DEGGCD(I)

CALL FIND. EM ( G, DEGG , FACTOR, NUM, DEG F, MULT)

ENDDO

RETURN

END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: FIND. EM. FOR *

*****************************************************************
*

SUBROUTINE
FIND_ EM (P, DEGPf FACTOR, NUM f DEGF, MULT)

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

RETURN:

ROUTINES
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

A polynomial and a list of already known
roots is passed to the subroutine.

None.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

****************************************************************

SUBROUTINE FIND_EM(P, DEGPf FACTOR, NUM, DEGF , MULT)

Not used.

MULLER

James F. Stafford

5Sep86 Version 1.0

None.

IMPLICIT

INTEGER

REAL*8

SUM=0

DO J=l f NUM

NONE

J,DEGP,NUM,DEGF(*) ,MULT(*) ,SUM

P(0:*) ,FACTOR(10 f 0:2)



MULT(J)=MULT(J)+1
SUM=SUW-DEGF(J) *MULT( J)

ENDDO

DO WHILE (DEGP-SUM.GT.O)

CALL MULLER (P, DEGP, FACTOR, NUM, DEGF, MULT)

SUM=SUM-DEGF (NUM)

ENDDO

RETURN

END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: GAMMA. FOR *

*****************************************************************
*

FUNCTION
GAMMA (K)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*******

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

K

RETURN:

ROUTINES
CALLED:

AUTHOR:

This program computes the integer-valued
function Gamma defined in the glossary.

None.

The following argument is passed to the
function:

(input) integer
is any non-negative integer.

The function returns an integer according
to the definition in the glossary.

None.

James F. Stafford

DATE CREATED: 5Sep36 Version 1.0

REVISIONS: None.

*********************************************************

INTEGER FUNCTION

IMPLICIT NONE

INTEGER J,K

GAMMA=1

GAMMA(K)



DO J=K-1,2,-1

GAMMA=GAMMA*J

ENDDO

REIUEN

EM)



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: INIT. FOR *

*****************************************************************
*

ROUTINE: SUBROUTINE
INIT(F)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

****

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

RETURN:

ROUTINES
CALLED:

AUTHOR:

This program initializes the recursively
defined function H_k described in
chapter V.

None.

The following argument in passed to
the subroutine:

(output) real
is an array containing the coefficients
of the functions H_k. For a given j,
F(I,0,K) represents the coefficient of
the cosine term of H_(j-I), with t to the
power K. F(I,1,K) represents the
coefficient of the sine term of H_(j-I)
with t to the power K.

Not used.

None.

James F. Stafford

DATE CREATED: 9Jun37 Version 1.0

REVISIONS: None.

************************************************************

SUBROUTINE INIT(F)



IMILICIT NONE

INTEGER I,J,K

REAL*8 F(-2:0, 0:1,-1:9)

DO I=-2,0

DO J=0,1

DO K=-l,9

F(I,J,K)=0.

ENDDO

ENDDO

ENDDO

F(-1,0,-1)=1.
F(0,1,0)=1.

RETURN

END



DESCRIPTION:

*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: INPUT. RAT. FOR *

*****************************************************************
*

* ROUTINE: PROGRAM
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

****************************************************************

NONE

DOCUMENTATION
FILES:

ARGUMENTS:

RETURN:

ROUTINES
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

This program allows one to establish a

data file compatible with the inverse
transform package programs containing the
necessary data to describe a rational
function.

None.

Not used.

Not used.

None.

James F. Stafford

27May87 Version 1.0

None.

IMPLICIT

INTEGER

REAL*8

COMPLEX*16

CHARACTER*15

I , N_DEG , D_ DEG , NO_ ROOTS , MLTPLCTS ( 1 0)

NUM(0:15) ,DEN(0:15)

ROOTS (10)

FILENAME, YESNO



PRINT *,'Are numerator roots known? (Y/N) •

READ (*,200) YESNO

IF (YESNO. EQ.'Y') THEN

CALL INPUT. FACT ( NO. ROOTS, ROOTS, MLTFLCTS

)

CALL RECONSTRUCT (NO_ ROOTS, ROOTS, MLTFLCTS,
+ NUM,N_DEG)

ELSE

CALL rNFUT_NONFACT(NUM,N.DEG)

ENDIF

PRINT *,'Are denominator roots known? (Y/N)'

READ (*,200) YESNO

IF (YESNO. EQ.'Y') THEN

CALL INPUT. FACT (NO_ ROOTS, ROOTS, MLTPLCTS)

CALL RECONSTRUCT (NO. ROOTS, ROOTS, MLTPLCTS,
+ DEN,D_DEG)

ELSE

CALL INPUT_NCNFACr(DEN,D_DEG)

ENDIF

PRINT *,' Enter filename.'

READ (*,200) FILENAME

200 FORMAT (A15)

OPEN (UNIT=1, FILE=FILENAME, STATUS='NEW')

WRITE (1,*) N.DEG

DO 1=0, N_DEC

WRITE (1,*) NUM(I)

ENDDO



WRITE (1,*) D_DEG

DO I=0,D_DEG

WRITE (1,*) DEN(I)

ENDDO

CLOSE (UNIT=1, STATUS^KEEP'

)

END

SUBROUTINE INFUT_FACT (NO_ ROOTS, ROOTS, MLTPLCTS)

IMELICIT NONE

INTEGER NO_ ROOTS, MLTPLCTS (*), I

COMPLEX*16 ROOTS (*)

PRINT *,
' Input nimber of roots'

READ (*,*) NO_ ROOTS

100 FORMAT (F8.5,F8.5)

DO 1=1, NO_ ROOTS

PRINT *,' Input root nimber ',1

READ (*,100) ROOTS(I)
PRINT *,' Input corresponding multiplicity'
READ (*,*) MLTPLCTS(I)

PRINT *,ROOTS(I),MLTPLCTS(I)

ENDDO

RETURN

END

SUBROUTINE RECONSTRUCT (NO. ROOTS, ROOTS, MLTPLCTS,
+ RESULT, ORDER)

IMPLICIT NONE

INTEGER NQ_ ROOTS, MLTPLCTS (*), I, J, ORDER, MULT

COMPLEX*16 ROOTS (*) , BUFFER (0:50)



REAL*8 RESULT(0:*)

BUFFER ( 0) =DCMPLX ( 1 . , . )

DO 1=1,50

BUFFER ( I ) =DCMHJX ( . , .

)

ENDDO

ORBER=0

DO 1=1 ,NO_ ROOTS

ORDER=ORDER+ MLTPLCTS ( I

)

MULT=MLTPLCTS(I)

DO WHILE (MULT.NE.O)

DO J=GRDER,1,-1

BUFFER ( J) =BUFFER (J-l ) -BUFFER ( J) *ROOTS ( I

)

ENDDO

BUFFER ( 0) =-BUFFER (0) *ROOTS ( I

)

MULT=MULT-1

ENDDO

ENDDO

DO 1=0, ORDER

RESULT ( I ) =REAL ( BUFFER ( I )

)

ENDDO

RETURN

END
SUBROUTINE INHJT_ NONFACT (POLY, DEG)

IMPLICIT NONE

INTEGER DEG, I

REAL*8 POLY(0:*)



PRINT *,
' Input degree'

READ (*,*) DBG

DO 1=0,DEG

PRINT *, 'Input coeff. of power ' ,1

READ (*,*) POLY (I)

ENDDO

RETURN

END



ROUTINE:

DESCRIPTION:

*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: INV2.F0R *

*****************************************************************
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

DOCUMENTATION
FILES:

ARGUMENTS:

SUBROUTINE
INV2 ( I , J, RESP, OMEGA, A, B)

This program computes the inverse
Laplace transform of a rational function
such that equation (5.2) applies. Note
that since the algorithm described in
chapter V is recursive, that for a

given k f all of the previous transforms
for k>j>=l must be already computed.
The function H_k is computed each time
the subroutine is called, using H_(k-1)
and H_ (k-2) which are held in an array
intrinsic to this routine, namely, F.

On K=l, F is initialized to hold the
coefficients of H_0 and H_-l. The
inverse transform coefficients are
accumulated in an array called RESP.

None.

RESP

OMEGA

The following arguments are passed to
the subroutine:

(input) integer
is an index variable specifying which
factor of the denominator polynomial

of the original rational function is

currently being inverse transformed.

(input) integer
corresponds to k in (5.2)

( input/o utput ) r eal\
is an array to accumulate the computed
time-domain response. RESP(j,0,i)
represents alpha_ji in equation (5.5)

and RESP(j,l,i) respresents beta_ji

in equation (5.5) .

(input) real



B

RETURN:

ROUTINES
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

corresponds to a in (5.2)

.

(input) real
corresponds to A in (5.2)

.

(input) real
corresponds to B in (5.2)

.

Not used.

INIT, BESSEL f GAMMA

James F. Stafford

5Sep36 Version 1.0

None.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

****************************************************************

SUBROUTINE INV2 (I, J,RESP, OMEGA, A,B)

IMPLICIT NONE

INTEGER I,J,K,L,M,GAMMA

REAL*8 A, B, OMEGA, F (-2: 0,0: 1,-1: 9) ,RESP(10,0:1,0:9) ,

+ ADJ

IF (J.EQ.l) THEN

CALL INIT(F)

ELSE

CALL BESSEL(F,OMEGA,J)

ENDIF

ADJ=GAMMA( J) * (2*OMEGA)** (J-l)

DO K=0,J-1

RESP(I,0,K)=RESP(I,0,K)+(F(-1,0,K-1)*A+F(0,0,K)*B)
+ /ADJ



RESP(I,l,K)=RESP(I,l,K)+(P(-l rl,K-l)*AfF(0,l/K)*B)
+ /AECT

ENDDO

RETURN

END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: INVERT. FOR *

*****************************************************************
*

PROGRAM
INVERT

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

This program computes the inverse
Laplace transform of a rational
function that has been expanded into
partial fractions. The user is prompted
for a filename under which the
output of the partial fraction expander
program has been stored. Again, the
user is prompted for another filename
under which to store the parameters of
the inverse transform function.

None.

RETURN:

ROUTINES
CALLED:

AUTHOR:

None.

Not used.

INV2

James F. Stafford

DATE CREATED: 10JunS7 Version 1.0

REVISIONS: None.

****************************************************************

PROGRAM INVERT

IMPLICIT

INTEGER

NONE

I, J, K,NO_TERMS, ORDER, MULT(IO) , GAMMA



REAL*8 TAU(IO) ,OMEGA(10) ,A,B,F(-2: 0,0:1,-1:10) ,

+ RESP(10,0:1,0:9)

CHARACTER*15 FILENAME

PRINT *, * Enter filename.

'

READ (*,200) FILENAME

200 FORMAT (A15)

OPEN (UNIT=1, FILE=FILENAME, STATUS= ' OLD 1

)

READ (1,*) NO_TERMS

DO 1=1, NO_ TERMS

READ (1,*) ORDER
PRINT *, ORDER
READ (1,*) MULT(I)
PRINT *,MULT(I)

IF (ORDER. EQ.l) THEN

READ (1,*) TAU(I)
PRINT *,TAU(I)

ELSE

READ (1,*) TAU(I)
PRINT *,TAU(I)
READ (1,*) OMEGA(I)
PRINT *,OMEGA(I)

ENDIF

DO J=1,MULT(I)

IF (ORDER. EQ.l) THEN

READ (1,*) A
PRINT *,A
RESP ( 1 , , J-l ) =A/GAMMA ( J)

ELSE

READ (1,*) A
PRINT *,'A =',A
READ (1,*) B



PRINT *, 'B =',B

CALL INV2(I,J,RESP,0MEGA(I),A,B)

ENDIF

ENDDO

ENDDO

CLOSE (UNrT=l, STATUS=' KEEP'

)

PRINT *,' Enter filename. 1

READ (*,200) FILENAME

OPEN (UNIT=1, FILE=FILENAME, STATUS= I NEW I

)

WRITE (1,*) NO_ TERMS

DO 1=1 ,NO_TERMS

WRITE(*,300) 'expC-TAUCD/t)*'
WRITE (l r

*) TAU(I),OMEGA(I)
WRITE (1,*) MULT(I)

DO J=1,MULT(I)

WRITE(*,301) ' C,RESP(I,0,J-1) /f'^-l,
+ 'COS' ,OMEGA(I), l t +

WRITE (1,*) RESP(I,0,J-1)
WRTTE(*,301) ' ' ,RESP(I,1,J-1) ,'t~',J-l,

+ 'SIN' ,OMEGA(I),'t) '

WRITE (1,*) RESP(I,1,J-1)

ENDDO

ENDDO

CLOSE (UNTr=l, STATUS= I KEEP ,

)

300 FORMAT (A5, E12.4E3 / A3)

301 FORMAT (A2,E12.4E3 , A2, 12, A3, E12.4E3 ,A4)

END



*******************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: LOTS_0_ PLOTS. FDR *

*****************************************************************
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

DEVICE

subroutine
FIRST, PLOT (DEVICE, NUM_ POINTS, X_DATA,
Y_DATA, X_AXIS_TITLE, X_AXIS_ UNITS,
Y_AXIS_TITLE, Y_AXIS_ UNITS, PLOT_TITLE,
INFO)

Makes a plot using X_DATA as abscissa
and Y_DATA as ordinate. The axes are
labelled with titles and units. The
plot is also titled.

None.

(input) integer
is the device type to display the plot

7475 for plotter
4014 for terminal (Selanar only)

NUM_ POINTS ( input ) intege r

is the number of data points to
be plotted

X_DATA (input) real

is the array of abscissa values for the
data to be plotted

Y_DATA (input) real
is the array of ordinate values for the
data to be plotted

X_AXIS_TITLE (input) character* (*)

is the title to be placed on the x_axis

X_AXIS_UNITS (input) character* (*)

is the name to be given to the units



associated with the x-axis

Y_AXIS_TITLE (input) character* (*)

is the title to be placed on the y-axis

Y_AXIS_UNITS (input) character* (*)

is the name to be given to the units
associated with the y-axis

PLOT_TITLE (input) character* (*)

is the title to be placed on the plot

RETURN:

INFO

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

****************************************************************

(output) real (6)

is the information necessary to make
subsequent plots on the same axes.

ROUTINES
CALLED: P System of Generalized Plot Routines

AUTHOR: James F. Stafford

DATE CREATED: 24May86 Version 1.0

REVISIONS: None.

SUBROUTINE FIRST. PLOT (DEVICE , NUM_POINTS , X_DATA, Y_DATA,
+ X_AXIS_TITLE, X_AXIS_ UNITS, Y_AXIS_TITLE f

+ Y_AXIS_ UNITS, PLOT_TITLE, INFO)

IMPLICIT NONE

INTEGER DEVICE, NUM_POINTS,FORLAB,FORTIC, NEGFLG, FORM,
+ SCNTL , LENSTR, UPDOWN

REAL X_DATA(*) ,Y_DATA(*) , FACTOR, VEL,X,Y, LENGTH,
+ FIRSTX, DELTAX, ANGLE, CLEN, FIRDEL ( 4) ,

+ DIVLNX, DIVLNY, WIDTH, HEIGHT, INFO (6)

CHARACTER* (* ) X_AXIS_TITLE, Y_AXIS_TITLE, X_AXIS_ UNITS,
+ Y_AXIS_ UNITS, PLOT_ TITLE



CHARACTER* ( 1) BLANK, STZ E

*INTIALIZE PLOT DEVICE

FACTOR=1.0
BLANK=' '

SrZE='A'

CALL PINIT (DEVICE, BLANK, FACTOR, SEE)

*SET PEN VELOCITY

VEL=10.0

CALL PSTVEL(VEL)

ESTABLISH ORIGIN

X=4.5
Y=4.5

CALL PORIG(X,Y)

*SET OFFSETS FOR AXIS ROUTINES (RELATIVE TO ORIGIN)

X=O.0
Y=0.0

*DRAW Y-AXIS AND LABEL

LENGTH=12.0

CALL PSCALE(Y_DATA, NUM. POINTS, LENGTH, FIRSTX,
+ DELTAX,DIVLNY)

FIRDEL( 3) FIRSTX
FIRDEL ( 4) =DELTAX
FORLAB=110
FORTIC=1001
ANGLE=90.0

CALL PAXIS (X, Y, Y_AXIS_TITLE, Y_AXIS_ UNITS, FORLAB,
+ FORTIC, LENGTH, ANGLE, FIRSTX, DELTAX, DIVLNY)

*DRAW X-AXIS AND LABEL

LENGTH=18

CALL PSCALE(X_DATA, NUM. POINTS, LENGTH, FIRSTX,



+ DELTAX,DIVLNX)

FIRDEL(1)=FIRSTX
FIRDEL(2)=OELTAX
F0RLAB=211
F0RTIO2001
ANGLE=0.0

CALL PAXIS (X, Y, X_AXIS_TITLE, X_AXIS_ UNITS, POKLAB

,

+ FORTIC, LENGTH, ANGLE, FIRSTX, DELTAX f DIVLNX)

*DRiW CURVE

SCNTL=0

CALL PLINE(X_DATA, Y_DATAf NUM_ POINTS, FIRDEL, SCNTL,
+ BLANK, DIVLNX,DIVLNY)

*TITLE THE PLOT

UPDOWN=0
X=9.0
Y=13.0

INFO(l)=FIRDEL(l)
rNFO(2)=FIRDEL(2)
INFO(3)=FIRDEL(3)
INFO(4)=FIRDEL(4)
INFO(5)=OIVLNX
rNFO(6)=Dr7LNY

CALL PPLOT(X,Y, UPTOWN)

CALL PTXTLN(PLOT_TITLE,LENSTR)

WrDrH=-LENSTR/2
HEIGHT=0.0

CALL PCHRPL (WIDTH, HEIGHT)

CALL PTEXT (PLOT.TITLE)

* CALL PCLOSP

RETURN

END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: MULLER.FOR *

*****************************************************************
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ROUTINE: SUBROUTINE
MULLER(POLYf DEG,X)

DESCRIPTION: This program uses Muller' s method
(page 262, Numerical Recipes) to
find a root of a polynomial.

DOCUMENTATION
FILES

:

None.

ARGUMENTS:

POLY

DEG

FACTOR

NUM

DEGF

MULT

RETURN:

ROUTINES
CALLED:

The following arguments are passed
to the subroutine:

(input) real
is an array containing the coefficients
of the polynomial of interest.

(input) integer
is the degree of the above polynomial.

(input/output)
is an array containing known roots of

the polynomial represented by POLY.

(input/output)
is the number of factors in FACTOR.

(input/output)
is an array containing the degree of

each corresponding factor in FACTOR.

(input/output)
is an array containing the multiplicity
of each corresponding factor in FACTOR

Not used.

DEFVAL, COMPOSE



*

*

* AUTHOR: James F. Stafford
*

*

* DATE CREATED: 28May87 Version 1.0
*

*

* REVISIONS: 30Jun88 Added deflation and factor table
* updating.
*

*

*****************************************************************

SUBROUTINE MULLER (POLY, DEC, FACTOR, NUM, DEGF, MULT)

IMPLICIT NONE

INTEGER DEG, NUM, DEGF (*) ,MULT(*) , I, NO_ ITERATIONS, MAX

REAL*8 POLY(0:*) ,ZERO,FACTOR(10,0:2)

COMPLEX*16 X(-2:l) ,Q,A,B,C,D,P(-2:0) ,DEFVAL

PARAMETER (ZERO=l .OE-12)

PARAMETER (MAX=200)

NO_ ITERATIONS=0

X(-2)=DCMPLX(1.,1.)
X(-1)=DCMPLX(1.,0.)
X(0)=DCMPLX(1.,-1.)

DO WHILE ((CDABS(X(0)-X(-1)).GT.CDABS(X(0))*2ERO)
+ .AND. (CDABS(X(0)-X(-2)) .GT.CDABS(X (0) )*ZERO)
+ . AND. ( NQ_ ITERATIONS. LT. MAX)

)

NO_ ITERATIONS=NO_ ITERATIONSH
B=DCMPLX(0.,0.)
D=DCMPLX(0.,0.)

DO WHILE ((D.EQ.DCMPLX(0.,0.)).AND. (B. EQ.DCMPLX(0. ,0.) )

)

DO I=-2,0

P (I ) =DEFVAL (POLY, DEG, FACTOR, NUM, DEGF, MULT, X (I )

)

ENDDO

Q=(X(0)-X(-l))/(X(-l)-X(-2))



A=Q*P(0)-Q*(l+Q)*P(-l)+Q*Q*P(-2)
B=(2*C+l)*P(0)-((l+Q)**2)*P(-l)+Q*Q*P(-2)
C=(1+Q)*P(0)
D=SQRT(B*B-4*A*C)

IF ( (D. EQ. DCMPLX(0. ,0.)).AND. (B.EQ. DCMPLX(0. ,0.) ) ) THEN

X(-l)=(X(0)+X(-l))/2.
X(-2)=(X(0)+X(-2))/2.

ENDIF

ENDDO

IF (CDABS(Bt-D).GT.CDABS(B-D)) THEN

X(l)=X(0)-(X(0)-X(-l))*2*C/(BfD)

ELSE

X(1)=X(0)-(X(0)-X(-1))*2*C/(B-D)

ENDIF

DO I=-2,0

X(I)=X(I+1)

ENDDO

ENDDO

PRINT VI MADE IT HERE' / NO_ ITERATIONS

NUM=NUMfl
CALL COMPOSE (X ( 1) , FACTOR, NUM, DEGF f MULT)

RETURN

END



*****************************************************************

DESCRIPTION:

* Department °f Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: PART.FRAG FOR *

************************************************************
*

* ROUTINE: PROGRAM
* TEST
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

DOCUMENTATION
FILES:

ARGUMENTS:

This program computes the partial
fraction expansion of a rational
function using the method described in
the thesis. The user is prompted
for a filename under which the factored
form of the rational function has been
stored. The user is prompted again
for a filename under which to store the
partial fraction expansion.

None.

None.

RETURN:

ROUTINES
CALLED:

AUTHOR:

Not used.

SPEC. READ, PART.WRITE, EXPAND

James F. Stafford

DATE CREATED: 10Jun87 Version 1.0

REVISIONS: None.

**************************************************************

PROGRAM TEST

IMPLICIT NONE



INTEGER I, J, K,DEGN,DEGD(10) ,N0_ FACTS, MULTS(IO) ,

+ DEGX(10,5)
REAL*8 NUM(0:15) ,DEN(0:2,10) ,X(0:1,10,5) ,

+ FACT (0:2)

LOGICAL EASY, HARD

CALL SPEC_READ ( NUM, DEGN, DEN, DEGD, MULTS, NO. FACTS

)

CALL EXPAND ( NUM, DEGN, DEN, DEGD, MOLTS, X,DEGX,NO_ FACTS)

DO 1=1, NO_ FACTS

DO J=1,MULTS(I)

PRINT *,I,J

DO K=0,DEGX(I,J)

PRINT *,X(K,I,J)

ENDDO

ENDDO

ENDDO

CALL PART_WRITE (NO_ FACTS, MULTS, X, DEGX, DEN, DEGD)

END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: PART.WRITE. FOR *

*****************************************************************
*

ROUTINE: SUBROUTINE
PART.WRITE (NO_ FACTS, MULTS, X, DEGX, DEN,

DEGD)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

NO FACTS

MULTS

X

DEGX

DEN

This program writes the partial fraction
expansion into a file. The user is

prompted for a filename.

None.

The following arguments are passed to
the subroutine:

(input) integer
is the number of factors in the
denominator polynomial.

(input) integer
is an array containing the
multiplicities of each factor in
the denominator polynomial.

(input) real
is a three-dimensional array. X(I f J f K)

represents the Ith coefficient of the
numerator of the (J, K)th term in the
partial fraction expansion. Namely,
that term with the Jth factor of DEN
to the Kth power as denominator.

(input) integer
is an array. DEGX (I, J) represents the
degree of the numerator of the (I,J)th
term in the partial fraction expansion.
See the description of X.

(input) real
is a two-dimensional array. DEN(I,J)
represents the coefficient of the Ith
power of x in the Jth factor of the
denominator polynomial.



DEGD

RETUEN:

ROUTINES
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

(input) integer
is an array. DEGD (I) represents the
degree of the Ith factor of the
denominator polynomial.

Not used.

None.

James F. Stafford

7Jun87 Version 1.0

None.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

************************************************************

SUBROUTINE PART.WRITE (NO_ FACTS, MULTS f X, DEGX f DEN, DEGD)

IMPLICIT

INTEGER

NONE

I, J, K, DEGD (10) ,NO_FACTS,MULTS(10) ,

DEGX(10,5)

REAL*8

CHARACTER*15

200

DEN(0:2,10) ,X(0:1,10,5) ,ALPHA,BETA, A,

B

FILENAME

PRINT *,
' Enter filename. •

READ (* f 200) FILENAME

FORMAT (A15)

OPEN (UNIT=1, FILE=FILENAME, STATUS^ NEW'

)

WRITE (1,*) NO_ FACTS

DO 1=1 ,NO_ FACTS

WRITE (1,*) DEGD(I)
PRINT *,' ORDER = ',DEGD(I)

WRITE (1,*) MULTS(I)
PRINT *, ' MULTIPLICITY = I

/MULTS(I)



IF (DEGD(I).EQ.l) THEN

WRITE (1,*) DEN(0,I)
PRINT *,' ALPHA =',DEN(0,I)

ELSE

ALPHA=DEN(l,I)/2
BETA=DSQRT(DEN( 0, 1) -ALPHA* *2)

WRITE (1,*) ALPHA
PRINT V ALPHA =',ALPHA
WRITE (1,*) BETA
PRINT *,

' BETA =
'
,BETA

ENDIF

DO J=l,MOLTS(I)

IF (DEGD(I).EQ.l) THEN

WRITE (1,*) X(0,I,J)
PRINT *, 'A =',X(0,I,J)

ELSE

A=X(1,I,J)

B= (X ( , 1 , J) -A*ALPHA) /BETA
WRITE (1,*) A
PRINT *,*A ='

fA
WRITE (1,*) B
PRINT VB =',B

ENDIF

ENDDO

ENDDO

CLOSE (UNIT=1, STATUS= I KEEP'

RETURN

END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: PLOT. FOR *

*****************************************************************
*

* ROUTINE: PROGRAM
PLOT*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

RETURN:

ROUTINES
CALLED:

AUTHOR:

This program makes plots of time
domain response functions computed
by the inverse transform program.

None.

None

Not used.

FIRST. PLOT, READ, PLOT,

PCLOSP (contained in the P System
of Generalized Plotting Routines)

James F. Stafford

DATE CREATED: 24May8 7 Version 1.0

REVISIONS: None.

**************************************************************

PROGRAM TEST

IMHilCIT

INTEGER

REAL

NONE

DEVICE, NUM_ POINTS, I, NUM_ FILES

X_DATA(1000) ,Y_DATA(1000) ,

INFO (6) ,TONE,TTWO

CHARACTER* ( 15) X_TITLE, Y_TITLE, X_ UNITS, Y_ UNITS,

+ TITLE, FILES (5)



PRINT *,' INPUT <7475> FOR PLOTTER OR <4014> FOR TERMINAL'

READ (*,*)DEVICE
NUM_POINTS=1000
X_TrrLE='TIME'
Y_TITLE= 'VALUE'

X_UNITS= ' INTERVALS'
Y_UNTTS=' UNITS'
TnLE='TEST PLOT'

PRINT *,' Input number of files to plot'

READ (*,*) NUM.FILES

DO 1=1, NUM_ FILES

PRINT *,' Input name of file number ' ,1

READ (*,200) FILES (I)

ENDDO

200 FORMAT (A15)

PRINT *,' Input initial time'

READ (*,*) TONE

PRINT *,' Input final time'

READ (*,*) TTWO

DO 1=1 ,NUM_ POINTS

X_DATA(I ) =TONE+ (TTWO-TONE) *

( FLOATJ ( 1-1 ) /FLOATJ ( NUM_ POINTS )

)

ENDDO

CALL READ (NUM_ POINTS, X_DATA, Y_DATA, FILES ( 1)

)

CALL FIRST. PLOT (DEVICE, NUM. POINTS, X_DATA, Y.DATA,
X_TITLE, X_ UNITS, Y_TITLE,Y_ UNITS, TITLE, INFO)

DO 1=2,NUM_FILES

CALL READ ( NUM. POINTS, X_DATA, Y_ DATA, FILES ( I )

)

CALL PLOT (DEV ICE , NUM_ POINTS , X_ DATA, Y_DATA, INFO

)

ENDDO

CALL PCLQSP



END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: PLOT.Q_MATIC. FOR *

*****************************************************************
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

DEVICE

subroutine
PLOT (DEV ICE , NUM_ POINTS , X_DATA,

Y_DATA, INFO)

Makes a plot using X_DATA as abscissa
and Y_DATA as ordinate. The axes are
assumed to be already drawn in
accordance with INFO.

None.

(input) integer
is the device type to display the plot

7475 for plotter
4014 for terminal (Selanar only)

NUM_POINTS (input) integer
is the number of data points to
be plotted

X DATA

Y DATA

RETURN:

INFO

(input) real
is the array of abscissa values for the
data to be plotted

(input) real
is the array of ordinate values for the
data to be plotted

(output) real (6)

is the information necessary to make
subsequent plots on the same axes.



*

* ROUTINES
* CALLED: P System of Generalized Plot Routines
*

*

* AUTHOR: James F. Stafford

*

* DATE CREATED: 24May86 Version 1.0
*

*

* REVISIONS: None.
*

*

****************************************************************

SUBROUTINE PLGT(DEVICE, NUM_POINTS, X_DATA, Y_DATA,
+ INFO)

IMPLICIT NONE

INTEGER DEVICE, NUM_ POINTS, FORLAB r FORTIC r NEGFLG f FORM,

+ SCNTL , LENSTR, UPDOWN

REAL X_DATA(*) ,Y_DATA(*) ,FACTOR,VEL,X,Y, LENGTH,
+ FIRSTX,DELTAX,ANGLE,CLEN,FIRDEL(4) ,

+ DIVLNX,DIVLNY, WIDTH, HEIGHT, INFO (6)

CHARACTER* ( 1) BLANK, SE E

*INTIALIZE PLOT DEVICE

FACTOR=1.0
BLANK=' '

SIZF^'A'

* CALL PINIT (DEVICE, BLANK, FACTOR, SEE)

*SET PEN VELOCITY

VEL=10.0

CALL PSWEL(VEL)

ESTABLISH ORIGIN

X=4.5
Y=4.5



CALL PORIG(X,Y)

*SET OFFSETS FOR AXIS ROUTINES (RELATIVE TO ORIGIN)

X=0.0
Y=0.0

ESTABLISH INFORMATION FOR DOTTING SUBROUTINE

FIRDEL(1)=INF0(1)
FIRDEL(2)=INFO(2)
FIRDEL(3)=INFO(3)
FIRDEL(4)=INFO(4)
DIVLNX=INFO(5)
DIVLNY=INFO(6)

*DRAW CURVE

SCNTL=0

CALL PLINE (X_DATA, Y_DATA, NUM_ POINTS , FIRDEL , SCNTL

,

+ BLANK, DIVLNX,DIVLNY)

RETURN

END



*****************************************************************
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Department of Electrical and Computer Engineering
Kansas State University

*

*

*

VAX FORTRAN source filename: POLADD.FOR *

***************************************************************

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

DEGA

B

DEGB

RETOBN:

ROUTINES
CALLED:

SUBROUTINE
POLADD (A, DEGA, B, DEGB)

This program subtracts on polynomial
from another, replacing the first addend
with the difference.

None.

The following arguments are passed to
the subroutine.

( input/output ) r eal

is an array containing the coefficients
for a polynomial on input and the
coefficients for the difference on
return.

( input/output ) integer
is the degree of the above polynomial
on input and the degree of the
difference on return.

(input) real
is an array containing the coefficients
of the polynomial to be subtracted
from A.

(input) integer
is the degree of the above polynomial.

Not used.

None.



* AUTHOR: James F. Stafford
*

*

* DATE CREATED: 6Jun87 Version 1.0
*

*

* REVISIONS: None.
*

*

****************************************************************

SUBROUTINE FOLADD (A, DEGA f B, DEGB)

IMPLICIT NONE

INTEGER I , DEGA, DEGB , ADDS

REAL*8 A(0:*),B(0:*)

ADDS=0

IF (DEGA. GE. DEGB) THEN

DO 1=0 ,DEGB

A(I)=A(I)-B(I)
ADDS=ADDS+1

ENDDO

ELSE

DO 1=0,DEGA

A(I)=A(I)-B(I)
ADDS=ADDS+1

ENDDO

DO I=DEGA+1,DEGB

A(I)=-B(I)
ADDS=ADDS+1

ENDDO

ENDIF

DEGA=JMAX0 (DEGA, DEGB)

PRINT *, ADDS, 'additions'



RETURN

END



*****************************************************************

Department of Electrical and Computer Engineering
Kansas State University

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

*

*

* *

* VAX FORTRAN source filename: POLDIV.FOR *

*****************************************************************
*

* ROUTINE: SUBROUTINE
* POLDIV(NUMf N_DEG f DEN f D_DEG f QUOf DEGQ,
* REM, DEGRf EASY, HARD)
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

NUM

N DEG

DEN

D DEG

QUO

DEGQ

REM

This program performs the division
algorithm on two input polynomials
to obtain a quotient and remainder.

None.

The following arguments are passed to
the subroutine.

(input) real
is an array containing the coefficients
of the numerator polynomial.

(input) integer
is the degree of the numerator polynomial.

(input) real
is an array containing the coefficients
of the denominator polynomial.

(input) integer
is the degree of the denominator
polynomial.

(output) real
is an array containing the coefficients
of the quotient polynomial.

nomial,
(output) integer
is the degree of the quotient poly

(output) real

is an array containing the coefficients
of the remainder polynomial.



*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

DEGR

EASY

HARD

RETURN:

ROUTINES
CALLED:

AUTHOR:

(output) integer
is the degree of the remainder
polynomial.

(input) logical
should be set to .TRUE, if both the
numerator and denominator are monic
polynomials. This will save calculations.

(input) logical
must be set to .TRUE, if the
denominator is not a monic polynomial.
Otherwise leave it false to save
calculations.

Not used.

None.

James F. Stafford

DATE CREATED: 6Jun87 Version 1.0

REVISIONS: 27Jul87 Added calculation-saving.

****************************************************************

SUBROUTINE POLDIV ( NUM, N_DEG, DEN, D_DEG f QUO, DEGQ,
+ REM, DEGR, EASY, HARD)

IMPLICIT NONE

INTEGER J,K,N_DEG,D_DEE,DB^,DEGR,MULT,ADD,DIV

REAL*8 NUM(0:*) ,DEN(0:*) ,QUO(0:*) ,REM(0:*) ,ZERO

LOGICAL EASY, HARD

PARAMETER ( ZERO=l . E-5

)

DEGQ=N_DEG-D_DEG
MULT=0
DIV=0
ADD=0



DO J=0,N_DEG

REM(J)=NUM(J)

ENDDO

IF (DEGQ.GE.O) THEN

DO K=DEGQ,0,-1

IF (HARD) THEN

QUO(K) =REM(D_DEGf K)/DEN(D_DEG)
DIV=DIV+1

ELSE

QUO(K)=REM(D_DEG+K)

ENDIF

DO J=D_DEG+K-1,K,-1

IF (EASY) THEN

REM(J) =REM(J) -DEN( J-K)
ADD=ADDfl

ELSE

REM (J) =REM (J) -QUO (K ) *DEN ( J-K

)

ADD=ADDH
MULT=MULT+1

ENDIF

ENDDO

EASY=. FALSE.

ENDDO

IF (D_DEG.EQ.O) REM(0)=0.

DEGR=JMAXO ( , D_ DEG-1

)

DO WHILE ( (DABS (REM (DEGR) ) .LT. ZERO). AND. DEGR.CT.0)

DEGR=DEGR-1



ENDDO

ELSE

DEGR=N_DEG
DEGQ=0
QUO(0)=0.

ENDIF

* PRINT *,njLT, 'multiplies 1

* PRINT * , ADD, ' addi tions

'

* PRINT *,DIV, 'divisions'

RETURN

END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: FOLMULT. FOR *

*****************************************************************
*

ROUTINE: SUBROUTINE
FOLMULT (FOL1 , DEGl , FOL2 , DEG2 , PROD, DEGP,

EASY)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

P0L1,P0L2

DEG1,DEG2

PROD

DEGP

EASY

RETURN:

ROUTINES
CALLED:

This program multiplies two polynomials
and returns their product.

None.

The following arguments are passed to
the subroutine.

(input) real
are arrays containing the coefficients
of the polynomials to be multiplied.

(input) integer
are the degrees of the above
polynomials.

(output) real
is an array containing the coefficients
of the product polynomial.

(output) integer
is the degree of the product
polynomial.

(input) logical
should be set to .TRUE, only if POL1
is monic in order to save calculations.

Not used.

None.



* AU1H0R: James F. Stafford
*

*

* DATE CREATED: 7Jun37 Version 1.0
*

*

* REVISIONS: 20Jul87 Added calculation-saving.
*

*

****************************************************************

SUBROUTINE POLMULT(POLl , DEGl , FOL2 , DEG2 , PROD, DEGP, EASY)

IMPLICIT NONE

INTEGER J, K, DEGl, DEG2, DEGP, ADD, MULT

REAL*8 FOLl(0:*) f POL2(0:*),PRCD(0:*)

LOGICAL EASY

ADD=0
MULT=0
DEGP=DEG1+DEG2

DO J=DEG2,0,-1

IF (EASY) THEN

PRCD(DEG1+J) =POL2 ( J)

ELSE

PRCD(DEG1+J) =P0L1 (DEGl) *POL2 ( J)

MULT=MULT+1

ENDIF

ENDDO

DO J=DEG1-1,0,-1

DO K=€)EG2,1,-1

PROD ( J+ K) =PROD (J+ K) +POL1 ( J) *POL2 (K)

ADD=ADDfl
MULT=MULT+1

ENDDO



FRCD (J) =P0L1 ( J) *P0L2 ( 0)

MULT=MULT+1

ENDDO

PRINT *, ADD, additions 1

PRINT *, MULT, 'multiplies'

RETURN

END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: POLY_ READ. FOR *

*****************************************************************
*

*

*

*

*

*

*

*

*

*

*

*

*

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

SUBROUTINE
POLY. READ (POLY, DEC

)

This program reads a polynomial from

a data file. The user must enter
the data file name from the keyboard.

None.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ARGUMENTS:

POLY

DEG

RETURN:

ROUTINES
CALLED:

AUTHOR:

The following arguments are passed to
the subroutine.

(output) real

is an array to receive the coefficients
of the polynomial.

(output) integer

is the degree of the polynomial.

Not used.

None.

James F. Stafford

DATE CREATED: 6Jun87 Version 1.0

*

*

*

*

*

*

*

****************************************************************

REVISIONS: None.

SUBROUTINE POLY_ READ (POLY, DEG

)



IMPLICIT NCNE

INTEGER DBG, I

REAL*8 POLY(0:10)

READ (1,*) DEG

READ (1,*) (POLY (I), 1=0, DEG)

RETURN

END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: READ. FOR *

*****************************************************************
*

SUBROUTINE
READ (NUM. POINTS, X_DATA, Y_DATA, FILENAME)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

This program evaluates a response
function computed by the inverse
transform program. The particular
function parameters are stored in a
data file under FILENAME.

None.

The following arguments are passed to
the subroutine:

NUM. POINTS ( input ) intege

r

is the number of points in X_DATA
at which response values are desired.

X DATA

Y DATA

FILENAME

RETURN:

ROUTINES
CALLED:

AUTHOR:

(input) real

is an array containing the
values of time that the response
function is to be evaluated at.

(output) real

is an array to accumulate the
computed function values.

( input ) character
is the filename of the response
function to be evaluated.

Not used.

None.

James F. Stafford



*

*

* DATE CREATED: 24May86 Version 1.0
*

* REVISIONS: None.
*

*

****************************************************************

SUBROUTINE READ ( NUM_ POINTS, X.DATA, Y_DATAf FILENAME

)

IMPLICIT NONE

INTEGER NUM_ POINTS, I, J,K,NO_ TERMS, MULTS

REAL X_DATA(1000) ,Y_DATA(1000) , EXPONENTIAL,
+ TONE, TTWO, POWEROFT

REAL*8 TAU, OMEGA, RESP (0:1)

CHARACTER* (15) FILENAME

DO 1=1, NUM_ POINTS

Y_DATA(I)=0.

ENDDO

OPEN ( UNTT=1 ,FILE=FILENAME, STATUS= 'OLD'

)

READ (1,*) NO_TERMS

DO 1=1, NQ_TERMS

READ(1,*) TAU, OMEGA
READ(1,*) MULTS

POWEROFT=l

DO J=l,MULTS

READ(1,*) RESP(O)
READ(1,*) RESP(l)

DO K=1,NUM_ POINTS

IF (J-1.GT.0) POWEROFT=X_DATA(K)**(J-1)

Y_DATA (K ) =Y_DATA (K ) +
+ SN3L(DEXP(-TAU*X_DATA(K))*



+ (RESP(0)*DCDS(OMEGA*X_DATA(K)) +
+ RESP(1)*DSIN(0MBGA*X_DATA(K))))*
+ POWEROFT

ENDDO

ENDDO

EM)DO

CLOSE (UNIT=1)

RETURN

END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: ROOT. FIND. FDR *

*****************************************************************
*

PROGRAM
TEST

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

This program factors the denominator of

a rational function with real coefficients
into irreducible polynomials in R[x].
The user is prompted for a filename
under which a rational function has
been stored. The user is again prompted
for a filename to store the result
under.

None.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

****************************************************************

PROGRAM TEST

RETURN:

ROUTINES
CALLED:

AUTHOR:

None.

Not used.

POLY_ READ, FACTORER, SPEC.WRITE

James F. Stafford

DATE CREATED: 8Jun37 Version 1.0

REVISIONS: None.

IMPLICIT

INTEGER

REAL*8

NONE

DEGN,DEGD,DEGF(10) ,MJM_ FACTS, MULT (10) ,1, J

NUM(0:10) ,DENOM(0:10) ,FACTOR(10,0:2)



CHARACTER*15 FILENAME

PRINT *,' Input data file name'

READ (*,200) FILENAME

200 FORMAT (A15)

OPEN ( UNIT=1 , FILE=FILENAME f STATUS= * OLD'

)

CALL POLY_ READ (NUM,DEGN)

CALL POLY_READ (DENOMf DEGD)

CLOSE (UNTT=1)

CALL FACTORER (DENOMf DEGD, FACTOR, NUM_ FACTS, DEGF, MULT)

DO 1=1 ,NUM_FACTS

PRINT V FACTOR NUMBER '
r I

DO J=0,DEGF(I)

PRINT *, FACTOR (I, J)

ENDDO

PRINT /MULTIPLICITY 1

, MULT (I)

ENDDO

CALL SPEC.WRITE ( NUM, DEGN, NUM_ FACTS, FACTOR, DEGF, MULT)

END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: SIMFLE._ILOT.FOR *

*****************************************************************
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

DEVICE

subroutine
SIMPLE. PLOT (DEVICE, NUM_ POINTS, X_DATA,
Y_ DATA, X_AXIS_TITLE, X_AXIS_ UNITS,
Y_AXIS_ TITLE, Y_AXIS_ UNITS, PLOT.TITLE,
PLOT.TYPE)

Makes a plot using X_DATA as abscissa
and Y_DATA as ordinate. The axes are
labelled with titles and units. The
plot is also titled. One of four plot
types can be selected.

None.

(input) integer
is the device type to display the plot

7475 for plotter
4014 for terminal (Selanar only)

NUM_ POINTS (input) integer
is the number of data points to
be plotted

X_DATA (input) real
is the array of abscissa values for the
data to be plotted

Y_DATA (input) real

is the array of ordinate values for the
data to be plotted

X_AXIS_TITLE (input) character* (*)

is the title to be placed on the x_axis

X_AXIS_ UNITS (input) character* (*)



is the name to be given to the units
associated with the x-axis

Y_AXIS_TITLE (input) character* (*)

is the title to be placed on the y-axis

Y_AXIS_ UNITS (input) character* (*)

is the name to be given to the units
associated with the y-axis

PLOT TITLE

PLOT TYPE

( input ) character* (*

)

is the title to be placed on the plot

(input) character* (*)

is a character string which
specifies the type of plot to be
generated. The following are valid:

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

****************************************************************

RETURN:

ROUTINES
CALLED:

AUTHOR:

'LINEAR'

'LOG_ LINEAR 1

'LINEAR. LOG'

'LOGLLOG'

Not used.

for linear-linear
for log-linear
for linear-log
for log-log

P System of Generalized Plot Routines

James F. Stafford

DATE CREATED: 5Sep36 Version 1.0

RB/IS IONS: None.

SUBROUTINE SIMPLE. PLOT (DEVICE, NUM. POINTS, X_ DATA, Y.DATA,
+ X_AXIS_TITLE, X_AXIS_ UNITS, Y_AXIS_TITLE,
+ Y_AXIS_ UNITS, PLOT. TITLE, PLOT_TYPE

)

IMPLICIT NONE

INTEGER DEVICE, NUM_POINTS,FORLAB,PORTIC,NEGFLG, FORM,



+ SCNTL,LENSTR, UPDOWN

REAL X_DATA(*) ,Y_DATA(*) , FACTOR, VEL,X, Y, LENGTH,
+ FIRSTX, DELTAX, DIVLEN, ANGLE, CLEN, FIRDEL ( 4) ,

+ DIVLNX, DTVLNY, WIDTH, HEIGHT

CHARACTER* (*) X_AXIS_ TITLE, Y_ AXIS.TITLE, X_AXIS_ UNITS,
+ Y_AXIS_ UNITS , PLOT.TITLE, PLOT. TYPE

CHARACTER* (1) BLANK, SIZE

*INTIALIZE PLOT DEVICE

FACTOR=1.0
BLANK=' '

SIZF^'A 1

CALL PINIT (DEVICE, BLANK, FACTOR, SJZ E)

*SET PEN VELOCITY

VEL=10.0

CALL PSTVEL(VEL)

ESTABLISH ORIGIN

X=4.5
Y=4.5

CALL PORIG(X,Y)

*SET OFFSETS FOR AXIS ROUTINES (RELATIVE TO ORIGIN)

X=0.0
Y=0.0

*DRAW Y-AXIS AND LABEL

IF (PLOT. TYPE. EQ. LINEAR' .OR. PLOT.TYPE. EQ. ' LINEAR, LOG 1

)

+ THEN

LENGTH=12.0

CALL PSCALE (Y_DATA, NUM. POINTS, LENGTH, FIRSTX,
+ DELTAX, DIVLEN)

FIRDEL ( 3) =FIRSTX
FIRDEL ( 4) =DELTAX
DTVLNY=DIVLEN



FORLAB=110
PORTIOlOOl
ANGLE=90.0

CALL PAXIS(X,Y,Y_AXIS_TITLE, Y_AXIS_ UNITS, FORLAB,
+ FORTIC, LENGTH, ANGLE, FIRSTX, DELTAX, DIVLEN)

ELSE

LENGTH=12.0

CALL PLOGSC(Y_DATA, NUM. POINTS, LENGTH, FIRSTX,CLEN,
+ NEGFLG)

FIRDEL(3)=FIRSTX
FIRDEL(4)=CLEN
FORM=-1010
ANGLE=90.0

CALL PLGAXS(X,Y,Y_AXIS_TITLE,Y_AXIS_ UNITS, FORM,
+ LENGTH, ANGLE, FIRSTX, CLEN)

ENDIF

*DRAW X-AXIS AND LABEL

IF (PLOT. TYPE. EQ. LINEAR 1 .OR. PLOT. TYPE. EQ. ' LOCLINEAR'

)

+ THEN

LENGTH=18

CALL PSCALE (X_ DATA, NUM_ PO INTS, LENGTH , FIRSTX,
+ DELTAX,DIVLEN)

FIRDEL(1)=FIRSTX
FIRDEL(2)=€»ELTAX
DIVLNX=DIVLEN
FORLAB=211
FORTI02001
ANGLE=0.0

CALL PAXIS(X,Y,X_AXIS_TITLE, X_AXIS_ UNITS, PORLAB,
+ FORTIC, LENGTH , ANG LE, FIRSTX, DELTAX, DIVLEN)

ELSE
LENGTH=18.0

CALL PLOGSC (X_DATA, NUM_ POINTS, LENGTH, FIRSTX, CLEN,

+ NEGFLG)



FIRDEL ( 1) =FIRSTX
FIRDEL ( 2) =CLEN
FORM=+2011
ANGLE=0.0

CALL PLGAXS(X,Y,X_mS_ TITLE, X_AXIS_ UNITS, FORM,

+ LENGTH, ANGLE, FIRSTX,CLEN)

ENDIF

*DFJW CUR/E

IF (PLOT_TYPE.EQ.' LINEAR') THEN

SCNTL=0

CALL PLINE (X_DATA, Y_DATA, NQM_ POINTS, FIRDEL, SCNTL,

+ BLANK, DIVLNX,DIVLNY)

ELSE IF (PLOT. TYPE. EQ.'LOG_ LINEAR' )THEN

SCNTL=0

CALL PLGLIN (X_DATA, Y.DATA, NUM_ POINTS, FIRDEL, SCNTL,

+ BLANK, DIVLEN)

ELSE IF (PLOT. TYPE. EQ. 1 LINEAR. LOG 1

) THEN

SCNTL=0

CALL PLNLCG (X_DATA, Y_DATA, NUM. POINTS, FIRDEL, SCNTL,
+ BLANK, DIVLEN)

ELSE IF (PLOT. TYPE. EQ.'LCG_ LOG') THEN

SCNTL=0

CALL PLGLOG(X_ DATA, Y_ DATA, NUM_ POINTS, FIRDEL, SCNTL,
+ BLANK)

ENDIF

*TITLE THE PLOT

UPDOWN=0
X=9.0
Y=13.0

CALL PPLOT(X,Y,UPDOWN)



CALL PTXTLN(PLOT. TITLE, LENSIR)

WIDTH=-LENSTR/2
HEIGHT=0.0

CALL PCHRPL (WIDTH, HEIGHT)

CALL PTEXT (PLOT.TITLE)

CALL paosp

RETURN
END



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: SPEC. INPUT. FDR *

*****************************************************************
*

PROGRAM
SPEC INPUT

*

*

*

*

*

*

*

*

*

*

*

*

*

•

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

RETURN:

ROUTINES
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

This program allows the user to enter
the specifications for a rational
function already in factored form.

None.

None.

Not used.

None.

James F. Stafford

15Jun87 Version 1.0

None.

****************************************************************

NONEIMPLICIT

INTEGER

REAL

I, J, N_DEG,D_DEG(10) ,NO_RCOTS,MULTS(10) ,

DEG,NO_ FACTS

NUM(0:15) ,DEN(0:2,10) ,X(0:1,10,5) ,

FACT (0:2) ,FOLY(0:20)

PRINT *, Enter numerator information.

'

CALL INPUT. NCNFACT(NUM,N_DEG)



PRINT *,
' Enter denominator information.

'

PRINT *,' Input number of relatively prime irreducible factors. 1

READ (*,*) NO. FACTS

DO 1=1, N0_ FACTS

PRINT *,' Enter information on factor number' ,1

CALL INPUT. NCNFACT (FACT, D_DBG (I))

DO J=0,D_DEG(I)

DEN(Jf I)=FACT(J)

ENDDO

PRINT *,
' Enter number of times this factor appears.

'

READ (*,*) MULTS(I)

ENDDO

CALL SPEC.WRITE ( NUM, N_DEG , N0_ FACTS, DEN, D_ DEG , MULTS

)

END

SUBROUTINE INPUT. NCNFACT (POLY, DEG)

IMPLICIT NONE

INTEGER DEG, I

REAL POLY(0:*)

PRINT *,
' Input degree 1

READ (*,*) DEG

DO 1=0, DEG

PRINT *, 'Input coeff. of power ',1

READ (*,*) POLY(I)

ENDDO

RETURN

END



DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

SUBROUTINE
SPEC_READ (NUM, DEGN, DEN, DEGD f MULTS,
NO_ FACTS)

This program reads data for a rational
function out of a file created by the
program for factoring the denominator.
There is also a program called
SPEC.WRITE that will create a data file
in the proper format.

None.

*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: SPEC_ READ. FOR *

*****************************************************************
*

* ROUTINE:
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* DEGD
*

*

*

*

* MULTS
*

*

NUM

DEGN

DEN

The following arguments are passed to
the subroutine:

(output) real

is an array containing the coefficients
of the numerator polynomial.

(output) integer
is the degree of the numerator
polynomial.

(output) real

is a two-dimensional array. DEN(I f J)

represents the coefficient of the Ith
power of x in the Jth factor of the
denominator polynomial.

(output) integer
is an array. DEGD(I) represents the
degree of the Ith factor in the
denominator polynomial.

(output) integer
is an array. MULTS (I) represents the
multiplicity of the Ith factor in the



NO FACTS

RETURN:

ROUTINES
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

denominator polynomial.

(output) integer
is the number of factors in the
denominator polynomial.

Not used.

None.
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None.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

****************************************************************

SUBROUTINE SPEC. READ ( NUM, DEGN, DEN f DEGD, MULTS, NO_FACTS

)

IMPLICIT

INTEGER

REAL*8

NONE

I, J, DEGN, DEGD (10) ,NO_ FACTS, MULTS (10)

NUM(0:15) ,DEN(0:2,10) ,X(0:1,10,5) ,

FACT (0:2)

200

CHARACTER*15 FILENAME

PRINT *,
' Input data file name'

READ (*,200) FILENAME

FORMAT (A15)

OPEN ( UNTT=1 , FILE=FILENAME, STATUS= ' OLD 1

)

READ (1,*) DEGN

DO 1=0,DEGN

READ (1,*) NUM(I)

ENDDO



READ (1,*) NO. FACTS

DO 1=1, NO_ FACTS

READ (1,*) DEGD(I)

DO J=0,DEGD(I)

READ (1,*) DEN (J, I)

ENDDO

READ (1,*) MULTS(I)

ENDDO

CLOSE (UNTT=1)

* PRINT *,DEGN

* DO I=0,DEGN

* PRINT *,NUM(I)

ENDDO

* PRINT *,NO_ FACTS

* DO 1=1 ,NO_ FACTS

* PRINT *,DEGD(I)

* DO J=0,DEGD(I)

* PRINT *,DEN(J, I)

* ENDDO

* PRINT *,MULTS(I)

* ENDDO

RETURN

END

*



*****************************************************************

* Department of Electrical and Computer Engineering *

* Kansas State University *

* *

* VAX FORTRAN source filename: SPEC.WRITE. FOR *

*****************************************************************
*

SUBROUTINE
SPEC.WRITE (NUM, N_DEG, NO. FACTS, FACTOR,
D_DEG,MULTS)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

NUM

N DEG

NO FACTS

FACTOR

D DEG

MULTS

RETURN:

This program writes out the factored
form of a rational function to a file
specified by the user.

None.

The following arguments are passed to
the subroutine:

(input) real

is an array containing the coefficients
of the numerator polynomial.

(input) integer
is the degree of NUM

(input) integer
is the number of factors in the
denominator polynomial.

(input) real

is an array containing the
coefficients of each factor in

the denominator polynomial.

(input) integer
is an array specifying the
degree of each factor in

the denominator polynomial.

(input) integer
is an array specifying the
multiplicity of each factor in

the denominator polynomial.

Not used.



*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

****************************************************************

SUBROUTINE SPEC.WRITE ( NUM, N_DEG , NO. FACTS, FACTOR, D_ DEG , MULTS

ROUTINES
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

None.

James F. Stafford
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None.

IMPLICIT

INTEGER

REAL*8

CHARACTER*15

NONE

I, J, N_DEG f D_DEG(*) ,NO_ FACTS, MULTS (*)

NUM(0:*) ,FACTOR(10,0:2)

FILENAME

PRINT *,' Enter filename.'

READ (*,200) FILENAME

200 FORMAT (A15)

OFEN (UNTT=1, FILE=FILENAME, STATUS^NEW'

)

WRITE (1,*) N_DEG

DO 1=0, N_DEG

WRITE (1,*) NUM(I)

ENDDO

WRITE (1,*) NO_ FACTS

DO 1=1, NO_ FACTS

WRITE (1,*) D_DEG(I)

DO J=0,D_DEG(I)



WRITE (1,*) FACTOR (I , J)

ENDDO

WRITE (1,*) MULTS(I)

ENDDO

CLOSE (UNTT=l f STATUS= * KEEP'

)

RETURN

END



*****************************************************************
*

*

*

*

******
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Department of Electrical and Computer Engineering *

Kansas State University *

*

VAX FORTRAN source filename: TRANSFER. FOR *

***********************************************************

ROUTINE:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

DEN

DEGD

There are actually three programs
in this file:
SUBROUTINE
GETD ( J, A, DEGA, DEN, DEGD)

SUBROUTINE
GETX (J, K, F, DEGF, X, DEGX)

SUBROUTINE
PUTX (J, K, F, DEGF, X, DEGX)

These programs are a substitute for
a more sophisticated data structuring
method. They copy the coefficients
for a polynomial embedded in a
higher dimensional array into a one-
dimensional array, or vice versa.

None.

The following arguments are passed to
GETD:

(input) integer
is a number representing which factor
of the denominator is sought.

(input) real
is a two-dimensional array. DEN (I, J)

represents the coefficient of the Ith
power of x in the Jth factor of the
denominator polynomial.

(input) integer
is an array. DEGD(I) represents the
degree of the Ith factor in the
denominator polynomial.

(output) real



*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

DEGA

J,K

DEGX

DEGF

J,K

is an array to receive the coefficients
of the factor polynomial.

(output) integer
is the degree of the factor polynomial.

The following arguments are passed to
GETX:

(input) integer
are the coordinates of the term in the
partial fraction expansion that is
sought. See the description of X.

(input) real
is a three-dimensional array. X(I, J, K)

represents the Ith coefficient of the
numerator of the (J, K)th term in the
partial fraction expansion. Namely,
that term with the Jth factor of DEN
to the Kth power as denominator.

(input) integer
is an array. DEGX(I,J) represents the
degree of the numerator of the (I, J)th
term in the partial fraction expansion.
See the description of X.

(output) real
is an array to receive the coefficients
of the desired polynomial.

(output) integer
is the degree of the polynomial, F.

The following arguments are passed to
PUTX:

(input) integer
are the coordinates of the term in the
partial fraction expansion that is to
be updated. See the description of X.

(input) real
is a three-dimensional array. X(I,J, K)

represents the Kth coefficient of the
numerator of the (I, J)th term in the
partial fraction expansion. Namely,

that term with the Ith factor of DEN
to the Jth power as denominator.



*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

DEGX

DEGF

RETURN:

ROUTINES
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

(input) integer
is an array. DEGX(I,J) represents the
degree of the numerator of the (I,J)th
term in the partial fraction expansion.
See the description of X.

(input) real
is an array to containing the coefficients
of the polynomial to be embedded in the
partial fraction matrix.

(input) integer
is the degree of the polynomial, F.

Not used.

None.
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None.

**************************************************************

SUBROUTINE GETD(J f A, DEGA f DEN, DEGD)

IMH.ICTT NONE

INTEGER J,K,DEGA,DEGD(*)

REAL*8 A(0:*),DEN(0:2,*)

DEGA=DEGD(J)

DO K=0,DEGA

A(K)=DEN(K,J)

ENDDO

RETURN



END

SUBROUTINE GETX(J,K, F,DEGF, X, DEGX)

IMPLICIT NCNE

INTEGER J,K,L,DEGF,DEGX(10,*)

REAL*8 F(0:*),X(0:1,10,*)

DEGF=DEGX(J,K)

DO L=0,DEGF

F(L)=X(Lf J,K)

ENDDO

RETURN

END

SUBROUTINE

IMPLICIT

INTEGER

REAL*8

DEGX(J,K)=DEGF

DO L=0,DEGF

X(L,J,K)=F(L)

ENDDO

RETURN

END

SUBROUTINE

IMPLICIT

INTEGER

REAL*8

PUTX ( J, K, F, DEGF, X, DEGX)

NONE

J, K f L, DEGF, DEGX ( 10 ,*)

F(0:*),X(0:1,10,*)

GET(A,DEGA,B,DEGB)

NONE

I,DEGA,DEGB

A(0:*),B(0:*)



DEGA=DEGB

DO I=O fDEGA

A(I)=B(i;

ENDDO

RETURN

END
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Abstract

The usual method for solving linear, constant-coefficient, differential equations

involves use of the Laplace transform. The most difficult step in this method of

solution is computing the inverse Laplace transform of a rational function. The

object of this thesis is to describe an algorithm for solving large systems of this

kind. The thesis demonstrates that the problem of solving such systems can be

treated completely algebraically once the denominator of the rational function is

factored. It is shown that the number of operations required to compute a suitable

partial fraction expansion of a rational function can be reduced by factoring the

denominator into irreducible linear and quadratic factors in R[x]. Applications to

control theory are discussed. The algorithms are derived with mathematical rigor.

Working FORTRAN programs implementing the derived algorithms are given in

an appendix. Electrical engineers solving practical problems in circuit analysis and

control theory might find these algorithms useful.




