AN ALGEBRAIC APPROACH TO COMPUTING INVERSE LAPLACE TRANSFORMS OF RATIONAL FUNCTIONS
by
JAMES FLOYD STAFFORD
B.S. Kansas State University, 1986

A MASTER'S THESIS
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas
1989

Approved by:
Table of Contents
c .2
Chapter I Introduction 1
Chapter II Some Preliminaries 3
Chapter III Factoring 5
Chapter IV Partial Fraction Expansion 8
Chapter V Inverse Laplace Transform 19
Chapter VI Applications 22
Chapter VII Conclusion 25
Appendix I List of References 26
Appendix II Glossary of Terms 27
Appendix III FORTRAN Programs 29
List of Tables
Table (4.1) Operation summary of Case 1 11
Table (4.2) Operation summary of Case 2 12
Table (4.3) Operation summary of Case 3 13
Table (4.4) Operation summary of Case 4 14
List of Figures
Figure (6.1) Control system diagram of SST aircraft 23
Figure (6.2) Step response with $K_{1} K_{2}=0,0.2,0.4$, and 0.6 23
Figure (6.3) Step response with $K_{1} K_{2}=0.8,1.08$, and 1.10 24
Figure (6.4) Padé approximants of order $2,3,4$, and 6 24

Chapter I

Introduction

The electrical engineer must often solve linear, constant-coefficient, differential equations, especially in such fields as circuit analysis and control theory. The usual method of solution involves use of the Laplace transform. Although this method of solution is well-known [1], computing solutions to such equations often involves many tedious calculations. The most difficult step in this method of solution is performing the inverse Laplace transform of a rational function. The object of this thesis is to describe an algorithm for solving large problems of this kind.

Solving such equations is not necessarily a numerical analysis problem. We are not trying to approximate the solution to a differential equation. We already know the general form of the solution, and are simply seeking coefficients for the solution. Thus the problem is actually algebraic, rather than analytic.

There are three distinct steps in computing the inverse Laplace transform of a rational function. They are: factoring the denominator polynomial, finding the partial fraction expansion of the rational function, and computing the inverse Laplace transform of each of these partial fractions. Except for the factoring, these are not analytic problems, and even the factoring algorithm presented here makes use of an algebraic technique to speed up the finding of multiple roots.

Special concern was devoted to the partial fraction expansion portion of the algorithm in order to reduce the number of calculations. The method presented herein is based on one developed elsewhere [4] and modified to further reduce the number of calculations. The effort to minimize the number of calculations required constitutes the main contribution of this research.

As the title declares, this thesis concerns itself with computing the inverse Laplace transform of a rational function, but not with obtaining the rational func-
tion in the first place. The algorithm consists of four parts. The first part of the algorithm accepts a rational function as input and outputs the rational function with the denominator expressed as a product of irreducible factors. The next part accepts as input a rational function with a factored denominator. It outputs the partial fraction expansion of the given rational function. The third stage accepts this expansion and computes the inverse Laplace transform. The final stage evaluates the inverse transform over a desired interval and plots a graph, if desired.

Chapter II

Some Preliminaries

We first review the definition of the Laplace transform and its usefulness in solving linear, constant-coefficient, differential equations. Given a real-valued function $f(t)$ of a real variable, its one-sided Laplace transform, $F(s)$, is given by [1]:

$$
F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{+\infty} f(t) e^{-s t} d t,
$$

where s is complex and hence $F(s)$ is, in general complex-valued. This transform has two important properties which can be used to transform a differential equation in t into an algebraic equation in s. Both of these properties are easy to derive and proofs are given elsewhere. These properties are [1]:

Linearity. Suppose $f_{1}(t)$ and $f_{2}(t)$ are such that their Laplace transforms, $F_{1}(s)$ and $F_{2}(s)$, exist. Also, let $c_{1}, c_{2} \in \mathbf{R}$. Then

$$
\mathcal{L}\left\{c_{1} f_{1}(t)+c_{2} f_{2}(t)\right\}=c_{1} F_{1}(s)+c_{2} F_{2}(s) .
$$

Forward Derivative Property. Suppose that $f(t)$ is $(n-1)$ times continuously differentiable and that the nth derivative, $f^{(n)}(t)$, is such that its Laplace transform exists. Then

$$
\mathcal{L}\left\{f^{(n)}(t)\right\}=s^{n} F(s)-\sum_{j=1}^{n} s^{n-j} f^{(j-1)}(0) .
$$

Given an n th-order linear differential equation with constant coefficients

$$
\sum_{j=0}^{n} a_{j} f^{(j)}(t)=b(t),
$$

and the initial conditions, $f(0)=c_{0}, f^{(1)}(0)=c_{1}, \ldots, f^{(n-1)}(0)=c_{n-1}$, we can take the Laplace transform of both sides of the equation and end up with [1]

$$
\begin{equation*}
F(s)=\frac{B(s)+\sum_{i=1}^{n} c_{i-1} \sum_{j=i}^{n} a_{j} s^{j-i}}{\sum_{j=0}^{n} a_{j} s^{j}}, \tag{2.1}
\end{equation*}
$$

where $B(s)=\mathcal{L}\{b(t)\}$.
We see that if $b(t)$ is such that $B(s)$ is a rational function, then $F(s)$ will also be a rational function. Thus, the problem is reduced to finding the inverse Laplace transform of $F(s)$. What might be done when $b(t)$ is such that $B(s)$ is not a rational function will be discussed later.

The method employed here to find the inverse Laplace transform of (2.1) is, first, to factor the denominator; next, to expand the rational function into partial fractions; and finally, by applying the linearity property of the inverse Laplace transform, to find the inverse Laplace transform of each of the partial fractions. The algorithms presented in the next three chapters accomplish each of these steps by using elementary concepts of polynomial ring theory, and recursion where possible.

Chapter III

Factoring

The form of the inverse Laplace transform of a rational function depends on the factors in the denominator polynomial. The problem of factoring polynomials is an important area of numerical analysis. The algorithm presented here relies on elementary algebraic considerations. It should be pointed out that any other factoring algorithm could be used with the rest of the programs listed in the appendix by providing suitable interfacing software.

The algorithm presented here is based on the root-finding method of D. E. Muller [2], a brief description of which follows. Given a polynomial, p, start with three initial estimates for a root: x_{-2}, x_{-1}, and x_{0}. At the nth stage ($0 \leq n \in \mathbf{N}$), fit a quadratic equation to the points $\left(x_{n-2}, p\left(x_{n-2}\right)\right),\left(x_{n-1}, p\left(x_{n-1}\right)\right)$, and $\left(x_{n}, p\left(x_{n}\right)\right)$. Then find the root of this quadratic equation nearest x_{n}. This root becomes x_{n+1}. Repeat this procedure while n is less than a given upper bound, or subsequent estimates fail to improve by a given small amount. To find other roots, deflate p by the appropriate factor and reapply Muller's method if necessary.

Suppose we are given a polynomial with real coefficients and distinct complex roots. Apply Muller's method to obtain a root. Deflate the polynomial by a factor containing the root just found (and its complex conjugate, if necessary) to obtain a polynomial of smaller degree with real coefficients and distinct complex roots. Repeat this process until the degree of the deflated polynomial is of degree 0 , at which point all the roots of the original polynomial have been found.

The above process works quite well if all the roots are distinct. If Muller's method is applied to find a multiple root, it converges more more slowly than it does for a single root. That is, it runs through many more iterations before the difference between successive estimates becomes as small. So we turn to abstract
algebra for a way to speed things up. By using the method described below, we can ensure that we will always be searching for distinct roots.

Consider a monic polynomial $p \in \mathbf{R}[x]$, with $r \in \mathbf{C}$ a root of p. Then there exists $q \in \mathrm{C}[x]$ such that $p=(x-r) q$. Now consider the first derivative of $p, \quad p^{\prime}=$ $q+(x-r) q^{\prime}$. Observe that $p^{\prime}(r)=0$ if and only if $q(r)=0$. Thus r appears more than once as a root of p if and only if $p^{\prime}(r)=0[3]$.

Now look at $g_{1}=\operatorname{gcd}\left(p, p^{\prime}\right) \in \mathbf{R}[x]$. If $\operatorname{deg}\left(g_{1}\right)=0$ then the roots of p are all distinct. If $\operatorname{deg}\left(g_{1}\right)>0$ then each root of g_{1} is also a root of p and appears more than once as a root of p. Now define $g_{n}=\operatorname{gcd}\left(p, p^{(n)}\right)$. If $\operatorname{deg}\left(g_{n}\right)>0$ then each root of g_{n} is also a root of p and its multiplicity is at least $n+1$.

Since the multiplicity of any root is at most $\operatorname{deg}(p)$ there exists a minimal $k \in \mathbf{N}$ such that $\operatorname{deg}\left(g_{k}\right)=0$. This k can be found by repeated differentiation of p and application of the Euclidean algorithm to obtain each gcd. The first gcd obtained with degree 0 is g_{k}.

The only roots of g_{k-1} will be all the roots of p with multiplicity k. These roots can be found using Muller's method on g_{k-1}. These roots will be distinct in g_{k-1} but of multiplicity two in g_{k-2}. But the remaining roots of g_{k-2} will be distinct, and can be found by deflating g_{k-2} by all known roots and then applying Muller's method on the deflated polynomial. Similarly, all roots of p of multiplicity n or higher will be roots of g_{n-1}. Say a root has multiplicity $m \geq n$; this root will have multiplicity $m-n+1$ in g_{n-1}. Thus, we can find all roots of p by working backward from g_{k} to p using Muller's method and deflation. Most importantly, Muller's method is never used to search for a root of multiplicity greater than 1.

It should be pointed out that repeated polynomial divisions occur in the Euclidean algorithm. A loss of precision is inherent in this process. If one cannot make this sacrifice of accuracy of the results in favor of increased rate of convergence, realize that any other factoring algorithm will work with the rest of the programs in
the appendix. The interfacing software would be easy to write.

Chapter IV

Partial Fraction Expansion

One objective in designing a partial fraction expansion algorithm was to minimize the amount of calculation done. Chin and Steiglitz [4] devised an algorithm capable of accomplishing the expansion in $N(N-1)$ multiplications and $\frac{3}{2} N(N-1)$ additions, where N is the degree of the denominator of the given rational function. This algorithm has a disadvantage: it requires use of complex arithmetic. Chin and Steiglitz count complex divisions as equivalent in time to complex multiplications. While this may be true for real divisions and multiplications it certainly is not true for complex ones. Observe that,

$$
\frac{a+i b}{c+i d}=\frac{(a c+b d)+i(b c-a d)}{c^{2}+d^{2}}
$$

has 6 real multiplications, 2 real divisions and 3 real additions. Call this 8 multiplications and 3 additions. Furthermore,

$$
(a+i b)(c+i d)=(a c-b d)+i(b c+a d)
$$

requires 4 real multiplications and 2 real additions. Finally, note that

$$
(a+i b)+(c+i d)=(a+c)+i(b+d)
$$

consists of 2 real additions.
Examination of Chin's and Steiglitz's algorithm reveals that the expansion actually involves $\frac{3}{2} N(N-1)$ complex additions, $\frac{1}{2} N(N-1)$ complex multiplications, and $\frac{1}{2} N(N-1)$ complex divisions. Using the above calculations, this results in $6 N(N-1)$ real multiplications and $\frac{11}{2} N(N-1)$ additions. So if complex arithmetic can be avoided and the operation count can be held lower than this, the algorithm will be improved.

It is clear that the reason Chin and Steiglitz chose to work with complex numbers is that a polynomial in $\mathbf{R}[x] \subset \mathbf{C}[x]$, splits in \mathbf{C}. This makes the partial fraction expansion algorithm simple to describe and analyze. But $\mathbf{R}[x]$ has the property that an irreducible element is either linear or quadratic. If we use this property we can avoid complex arithmetic and thus reduce the number of calculations at the cost of complicating the algorithm a bit.

The key to adapting the algorithm of Chin and Steiglitz is finding a nice way to generalize the following problem. Let $s, r, K \in \mathbf{C}$, for $s \neq r$ and find $A, A^{*} \in \mathbf{C}$, such that

$$
\frac{1}{x-s}\left[\frac{K}{(x-r)^{n}}\right]=\frac{A^{*}}{(x-s)(x-r)^{n-1}}+\frac{A}{(x-r)^{n}}
$$

This problem generalizes to: Let $s, r \in \mathbf{R}[x] \backslash \mathbf{R}$, with $\operatorname{gcd}(s, r)=1$; and $K \in$ $\mathbf{R}[x]$, with $\operatorname{deg}(k)<\operatorname{deg}(r)$. Find $A, A^{*} \in \mathbf{R}[x]$ such that $\operatorname{deg}(A)<\operatorname{deg}(r)$, and $\operatorname{deg}\left(A^{*}\right)<\operatorname{deg}(s)$, and

$$
\begin{equation*}
\frac{1}{s}\left[\frac{K}{r^{n}}\right]=\frac{A^{*}}{s r^{n-1}}+\frac{A}{r^{n}} \tag{4.1}
\end{equation*}
$$

First multiply through by r^{n-1} to reduce the problem to:

$$
\begin{equation*}
\frac{1}{s}\left[\frac{K}{r}\right]=\frac{A^{*}}{s}+\frac{A}{r} \tag{4.2}
\end{equation*}
$$

We know that since $\operatorname{gcd}(s, r)=1$, there exists $a, b \in \mathbf{R}[x]$ such that $a s+b r=1$ and so $K=K[a s+b r]=K a s+K b r$. Apply the division algorithm to obtain the following:

$$
\begin{gather*}
K a=r q+A \quad \text { such that } \quad \operatorname{deg}(A)<\operatorname{deg}(r), \\
K b=s q^{*}+A^{*} \quad \text { such that } \quad \operatorname{deg}\left(A^{*}\right)<\operatorname{deg}(s) . \tag{4.3}
\end{gather*}
$$

Now write

$$
\begin{aligned}
K=K a s+K b r & =(r q+A) s+\left(s q^{*}+A^{*}\right) r \\
& =\left(q+q^{*}\right) r s+A s+A^{*} r
\end{aligned}
$$

By hypothesis we have $\operatorname{deg}(K)<\operatorname{deg}(r)<\operatorname{deg}(r s)$ and from (4.3) we get $\operatorname{deg}(A s)<$ $\operatorname{deg}(r s)$ and $\operatorname{deg}\left(A^{*} r\right)<\operatorname{deg}(r s)$. So $q+q^{*}=0$ and $K=A s+A^{*} r$, which yields (4.2) as required.

Now we must determine how to calculate A and A^{*} in (4.1) [5], and the necessary number of calculations. First consider the following adaption of the Euclidean algorithm. Let $s, r \in \mathbf{R}[x]$. The division algorithm gives:

$$
\begin{array}{cc}
s=r q_{1}+x_{1} & \operatorname{deg}\left(x_{1}\right)<\operatorname{deg}(r) \\
r=x_{1} q_{2}+x_{2} & \operatorname{deg}\left(x_{2}\right)<\operatorname{deg}\left(x_{1}\right) \\
x_{1}=x_{2} q_{3}+x_{3} & \operatorname{deg}\left(x_{3}\right)<\operatorname{deg}\left(x_{2}\right) \\
\vdots & \vdots \\
x_{n-2} & =x_{n-1} q_{n}+x_{n} \\
& \operatorname{deg}\left(x_{n}\right)<\operatorname{deg}\left(x_{n-1}\right)
\end{array}
$$

And also define $x_{0}=r$. If, furthermore:

$$
\begin{array}{cl}
a_{0}=0 & b_{0}=1 \\
a_{1}=1 & b_{1}=-q_{1} \\
\vdots & \vdots \\
a_{n}=a_{n-2}-q_{n} a_{n-1} & b_{n}=b_{n-2}-q_{n} b_{n-1}
\end{array}
$$

then $a_{n} s+b_{n} r=x_{n}$, for all $n \geq 0$.
Proof: $a_{0} s+b_{0} r=r=x_{0} . a_{1} s+b_{1} r=s-r q_{1}=x_{1}$. Assume the hypothesis is true for $n-2$ and $n-1$ for some $n \in \mathbf{N}$.

$$
\begin{aligned}
x_{n} & =x_{n-2}-q_{n} x_{n-1} \\
& =a_{n-2} s+b_{n-2} r-q_{n}\left(a_{n-1} s+b_{n-1} r\right) \\
& =\left(a_{n-2}-q_{n} a_{n-1}\right) s+\left(b_{n-2}-q_{n} b_{n-1}\right) r \\
& =a_{n} s+b_{n} r,
\end{aligned}
$$

as claimed.
We can use the above procedure to develop a method for evaluating A and $-A^{*}$. There are four cases to consider since either s or r can be of degree 1 or 2 . Let us begin with the most difficult case:

Case 1: Both s and r are quadratic

We have $s=r q_{1}+x$ and $r=x_{1} q_{2}+x_{2} . x_{2}$ is a unit so $a_{2} s+b_{2} r=-q_{2} s+$ $\left(1+q_{1} q_{2}\right) r=x_{2}$, and we can get the following.

$$
\begin{aligned}
\frac{K}{s r} & =\frac{\frac{1}{x_{2}} K\left(-q_{2} s+\left(1+q_{1} q_{2}\right) r\right)}{s r} \\
& =\frac{-\frac{1}{x_{2}} q_{2} K}{r}+\frac{\frac{1}{x_{2}}\left(1+q_{1} q_{2}\right) K}{s} .
\end{aligned}
$$

By the division algorithm, $q_{2} K=Q r-x_{2} A$ for some $Q \in \mathbf{R}[x]$. The quotient, Q, does not matter as was shown in the derivation of (4.1). The remainder is the important thing. Now we need to add up all the calculations required to evaluate A.

Table (4.1) Summary of Case 1

To obtain x_{1} requires	2 adds,		
to obtain q_{2} and x_{2} requires	2 divs	2 mult	2 adds,
to obtain $q_{2} K$ requires		4 mults	2 adds,
to divide by r to get $x_{2} A$ requires	2 mults	2 adds,	
and to evaluate A requres	$\underline{2 \text { divs }}$		$\underline{1 \text { add. }}$
Resulting in	4 divs	8 mults	9 adds.

Now we have A. We need $-A^{*}$ as well. Since we know that $I=A s+A^{*} r$, write $K=k_{1} x+k_{0}, A=a_{1} x+a_{0}, A^{*}=a_{1}^{*} x+a_{0}^{*}, s=x^{2}+s_{1} x+s_{0}$, and $r=x^{2}+r_{1} x+r_{0}$. We obtain

$$
k_{1} x+k_{0}=\left(a_{1} x+a_{0}\right)\left(x^{2}+s_{1} x+s_{0}\right)+\left(a_{1}^{*} x+a_{0}^{*}\right)\left(x^{2}+r_{1} x+r_{0}\right) .
$$

Equating coefficients for cubes and constants results in $-a_{1}^{*}=a_{1}$, and $-a_{0}^{*}=$ $\left(a_{0} s_{0}-k_{0}\right) / r_{0}$. So $-A^{*}$ can be calculated using one multiplication, one division. and one addition. All told, calculation of A and $-A^{*}$ requires the equivalent of 14 multiplications and 11 additions.

Case 2: s is quadratic and r is linear
We have $s=r q_{1}+x_{1}$. Since x_{1} is a unit, we stop.

$$
\begin{aligned}
\frac{K}{s r} & =\frac{\frac{1}{x_{1}} K\left(s-q_{1} r\right)}{s r} \\
& =\frac{\frac{K}{x_{1}}}{r}-\frac{\frac{1}{x_{1}} q_{1} K}{s}
\end{aligned}
$$

$\frac{K}{x_{1}}=A$, and both K and x_{1} are units, so
Table (4.2) Summary of Case 2

to obtain x_{1} requires		1 mult	2 adds,
and to obtain A requires	$\frac{1 \text { div. }}{}$		
The result is	1 div	1 mult	

Now we have, as before,

$$
k_{1} x+k_{0}=A\left(x^{2}+s_{1} x+s_{0}\right)+\left(a_{1}^{*} x+a_{0}^{*}\right)\left(x+r_{0}\right) .
$$

Equating coefficients of squares and constants gives $-a_{1}^{*}=A$ and $-a_{0}^{*}=\left(A s_{0}-\right.$ $\left.k_{0}\right) / r_{0}$. So $-A^{*}$ is computed with one multiplication, one division, and one addition. All together, calculation of A and $-A^{*}$ requires the equivalent of 4 multiplications and 3 additions.

Case 3: s is linear and r is quadratic
We have $s=r q_{1}+x_{1}$, and $r=x_{1} q_{2}+x_{2}$. But $q_{1}=0$, thus $x_{1}=s$ and notice that x_{2} is then a unit, so $-q_{2} s+r=x_{2}$ and then

$$
\begin{aligned}
\frac{K}{s r} & =\frac{\frac{1}{x_{2}} K\left(-q_{2} s+r\right)}{s r} \\
& =\frac{-\frac{1}{x_{2}} q_{2} K}{r}+\frac{\frac{1}{x_{2}} K}{s} .
\end{aligned}
$$

This time we will compute $-A^{*}$, a unit, first. Observe that $K=Q s-$ $\left(x_{2}\left(-A^{*}\right)\right)$. Now we do as before and write $k_{1} x+k_{0}=\left(a_{1} x+a_{0}\right)\left(x+s_{0}\right)+$
$A^{*}\left(x^{2}+r_{1} x+r_{0}\right)$. Equate coefficients of squares and constants to get $a_{1}=-A^{*}$ and $a_{0}=\left(k_{0}-A^{*} r_{0}\right) / s_{0}$. Now we summarize.

Table (4.3) Summary of Case 3

To obtain x_{2} requires		1 mult	2 adds,
to obtain $x_{2} A^{*}$ requires		1 mult	2 adds,
to obtain $-A^{*}$ requires	1 div		1 add,
and to obtain a_{0} requires	$\underline{1 \text { div }}$	$\underline{1 \text { mult }}$	$\underline{1 \text { add. }}$
The result is	2 divs	3 mults	5 adds.

All together calculation of A and $-A^{*}$ requires the equivalent of 5 multiplications and 5 additions.

Case 4: r and s are both linear
This case is, of course, the simplest. $s=q_{1} r+x_{1}, x_{1}$ is a unit and $q_{1}=1$. So

$$
\begin{aligned}
\frac{K}{s r} & =\frac{\frac{1}{x_{1}} K(s-r)}{s r} \\
& =\frac{\frac{K}{x_{1}}}{r}+\frac{-\frac{K}{x_{1}}}{s} .
\end{aligned}
$$

Thus $A=-A^{*}=K / x_{1}$, which requires 1 multiplication and 1 addition. Now that each case has been examined, the following table summarizes the preceding information:

Table (4.4) Number of operations required to evaluate (4.2)
$\operatorname{deg}(s) \quad \operatorname{deg}(r)$ multiplications additions

1	1	1	1
2	1	4	3
1	2	5	5
2	2	14	11

The following is essentially Chin's and Steiglitz's algorithm in $\mathbf{R}[x]$ instead of $\mathbf{C}[x]$. Let $p \in \mathbf{N}$ be given and $d_{j} \in \mathbf{R}[x]$, for each $1 \leq j \leq p$ and each d_{j} irreducible over \mathbf{R}. Let $m_{j} \in \mathbf{N}$ denote the multiplicity of each d_{j}. Also let $Q_{0}, D \in \mathbf{R}[x]$ be given such that $D=\prod_{j=1}^{p}\left(d_{j}\right)^{m_{j}}$ and $\operatorname{deg}\left(Q_{0}\right)<\operatorname{deg}(D)=\sum_{j=1}^{p} \operatorname{deg}\left(d_{j}\right) m_{j}$. Thus we have a proper rational function and wish to find $K_{i j} \in \mathbf{R}[x]$ such that

$$
\begin{equation*}
\frac{Q_{0}}{D}=\frac{Q_{0}}{\prod_{j=1}^{p}\left(d_{j}\right)^{m_{j}}}=\sum_{j=1}^{p} \sum_{i=1}^{m_{j}} \frac{K_{i j}}{\left(d_{j}\right)^{i}} \tag{4.4}
\end{equation*}
$$

Define $m_{0}=0$ and $n=\sum_{j=0}^{p} m_{j}$. Now, for $1 \leq l \leq n$, define

$$
\begin{gathered}
u_{l}=1+\min \left\{x \in \mathbf{N} \cup\{0\} \mid \sum_{j=0}^{x} m_{j}<l\right\} \\
v_{j}^{l}= \begin{cases}m_{j}, & \text { if } j<u_{l} \\
l-\sum_{i=0}^{u_{l}-1} m_{i}, & \text { if } j=u_{l}\end{cases}
\end{gathered}
$$

for $1 \leq j \leq u_{l}$. Also, for each l, define $f_{l}=d_{u_{l}}$, and $R_{l}, Q_{l} \in \mathbf{R}[x]$ such that $Q_{l-1}=Q_{l} f_{l}+R_{l}$. Again define $A_{l j}(K), A_{l j}^{*}(K): \mathbf{R}[x] \mapsto \mathbf{R}[x]$ by

$$
\frac{K}{f_{l} d_{j}}=\frac{A_{l j}^{*}(K)}{f_{l}}+\frac{A_{l j}(K)}{d_{j}}
$$

Now the partial fraction expansion can be obtained as below in n steps, the l th step being:

$$
\begin{align*}
\frac{Q_{0}}{\prod_{j=1}^{p} d_{j}^{m_{j}}} & =\frac{1}{\prod_{j=1}^{n} f_{j}}\left[Q_{0}\right] \\
& =\frac{1}{\prod_{n \geq k>l} f_{k}}\left[Q_{l}+\sum_{j=1}^{u_{l}} \sum_{i=1}^{v_{j}^{l}} \frac{K_{i j}^{l}}{\left(d_{j}\right)^{i}}\right] \tag{4.5}
\end{align*}
$$

where it is understood that $\prod_{n \geq k>n} f_{k}=1$ and

$$
K_{i j}^{l}= \begin{cases}0, & \text { if } i>v_{j}^{l} \text { or } j>u_{l} \text { or } l=0 ; \tag{4.6}\\ A_{l j}\left(K_{i j}^{l-1}\right), & \text { if } j<u_{l} \text { and } i=v_{j}^{l} ; \\ A_{l j}\left(K_{i j}^{l-1}+A_{l j}^{*}\left(K_{(i+1) j}^{l-1}\right)\right), & \text { if } j<u_{l} \text { and } i<v_{j}^{l} ; \\ K_{(i-1) j}^{l-1}, & \text { if } j=u_{l} \text { and } i>1 ; \\ R_{l}+\sum_{0 \leq k<1} A_{l k}^{*}\left(K_{1 k}^{l-1}+A_{l k}^{*}\left(K_{2 k}^{l-1}\right)\right), & \text { if } j=u_{l} \text { and } i=1 .\end{cases}
$$

Now we must count operations to compare this method with Chin's and Steiglitz's method. It turns out that the number of operations depends on the number of quadratic factors in the denominator of the rational function. Let $. V=\operatorname{deg}(D)$ and then denote the number of quadratic factors in D as q. Thus $N=n+q$.

First consider the number of calculations necessary to compute $\left\{R_{l} \mid 1 \leq l \leq\right.$ $n\}$. The l th stage involves dividing Q_{l-1} by f_{l}. Two facts are necessary: To divide an M-degree polynomial by a monic linear factor requires M multiplications and M additions and to divide the same polynomial by a monic quadratic factor requires $2(M-1)$ multiplications and additions. Note that the largest that $\operatorname{deg}\left(Q_{0}\right)$ can be is $N-1$. We shall prove that in this worst case it requires no more than $\frac{1}{2} N(N-1)-q$ multiplications and additions to compute $\left\{R_{l} \mid 1 \leq l \leq n\right\}$.

We shall use induction on N. For $N=1$ we must have $n=1$, and $q=0$. and of course, $\operatorname{deg}\left(Q_{0}\right)=0$ thus $\frac{1}{2} N(N-1)-q=0$, which reflects the fact that there is really nothing to do in this case. We will also need to examine the case where $N=2$, with $n=1$ and $q=1$. We still get $\frac{1}{2} N(N-1)-q=0$, which again indicates that there is really no partial fraction expansion to carry out. Now assume the result for a given N.

First assume that we add a linear factor to D and increase $\operatorname{deg}\left(Q_{0}\right)$ to $(N+$ 1) $-1=N$. So divide Q_{0} by this new linear factor to get $\operatorname{deg}\left(Q_{1}\right)=N-1$, which will require N multiplications and additions. Now apply the induction hypothesis to Q_{1}. It will require $\frac{1}{2} N(N-1)-q$ multiplications and additions to obtain $\left\{R_{l}\right\}$
$2 \leq l \leq n+1\}$. Adding up, we get

$$
N+\frac{1}{2} N(N-1)-q=\frac{1}{2}(N+1) N-q .
$$

Now assume that we add a quadratic factor to D and increase $\operatorname{deg}\left(Q_{0}\right)$ to $(N+2)-1=N+1$. Dividing Q_{0} by the new quadratic factor requires $2 N$ multiplications and additions. We are left with $\operatorname{deg}\left(Q_{1}\right)=N-1$. By induction, to compute $\left\{R_{l} \mid 2 \leq l \leq n\right\}$ requires $\frac{1}{2} N(N-1)-q$ multiplications and additions. Summing, we get

$$
2 N+\frac{1}{2} N(N-1)-q=\frac{1}{2}(N+2)(N+1)-(q+1),
$$

as required.
We must also consider the necessary number of calculations required to compute $\left\{K_{i j}^{l} \mid 1 \leq j \leq u_{l}\right.$, and $\left.1 \leq i \leq v_{j}^{l}\right\}$ for some $1 \leq l \leq n$. It turns out that the number of operations needed to compute this set depends on $\operatorname{deg}\left(d_{u_{1}}\right)$, on $m_{u_{1}}$, and on the number of quadratic factors preceding $d_{u_{t}}$

Notice that computation of $K_{i u_{1}}^{l}$ requires no calculation for $i>1$. This means that the largest operation count for the partial fraction expansion algorithm occurs when all the factors of D are distinct, that is, when $m_{j}=1$ for all $1 \leq j \leq p=n$. Consequently, $u_{l}=l$, so $f_{l}=d_{l}$ and $v_{j}^{l}=m_{j}=1$ for all admissable l and j. Now write (4.5) as

$$
\frac{Q_{0}}{\prod_{k=1}^{n} f_{k}}=\frac{1}{\prod_{n \geq k>1} f_{k}}\left[Q_{l}+\sum_{j=1}^{l} \frac{K_{1 j}^{-1}}{f_{j}}\right] .
$$

And we can also write (4.6) as

$$
K_{1}^{l} j= \begin{cases}0, & \text { if } l=0 \\ A_{l j}\left(K_{1 j}^{l-1}\right), & \text { if } 1<j<l \\ R_{l}+\sum_{0 \leq k<l} A_{l k}^{*}\left(K_{1 k}^{l-1}\right), & \text { if } j=l .\end{cases}
$$

Calculation of $\left\{K_{1 j}^{l} \mid 1 \leq j \leq l\right\}$ for a given l requires that $A_{l j}$ and $-A_{l j}^{*}$ be determined $l-1$ times along with $(l-1) \operatorname{deg}\left(f_{l}\right)$ additions. Consider the number of
calculations in computation of $A_{i j}$ and $A_{l j}^{*}$. Table (4.4) gives us this information if we let $s=f_{l}$ and $r=f_{j}$. Notice that, given f_{l}, it will take the most operations if f_{j} is quadratic. Hence, the number of calculations in computing $\left\{K_{1 j}^{l} \mid 1 \leq j \leq l\right\}$ will be largest if $\operatorname{deg}\left(f_{k}\right)=2$ for all $k \leq l$.

In order to find an upper bound on the number of calculations in this algorithm, assume all factors of D are distinct and ordered such that all quadratic factors appear first. Then the entire algorithm would require

$$
\begin{gather*}
\frac{1}{2} N(N-1)-q+\sum_{k=1}^{q} 14(k-1)+\sum_{q+1}^{n}(5 q+(k-(q+1)) \tag{4.7}\\
=N(N-1)-q^{2}+3 N q-7 q
\end{gather*}
$$

multiplications. This formula also works for $q=0$ and $q=N / 2$. The result in each case is $N(N-1)$ and $\frac{9}{4} N(N-2)$, respectively which is easily verified. Also the algorithm will require

$$
\begin{align*}
\frac{1}{2} N(N-1)-q & +\sum_{k=1}^{q}(11+2)(k-1) \\
& +\sum_{q+1}^{n}((5+2) q+(1+1)(k-(q+1)) \tag{4.8}\\
& =\frac{3}{2} N(N-1)-\frac{7}{2} q^{2}+3 N q-\frac{11}{2} q
\end{align*}
$$

additions. Again, for the special cases $q=0$ and $q=N / 2$, the formula yields $\frac{3}{2} N(N-1)$ and $\frac{17}{4} N(N-2)$ respectively. In fact it is quite easy to show that for all $N \geq 2$ and $N / 2 \leq q \leq 0$ we get the following:

$$
6 N(N-1)>\frac{9}{4} N(N-2) \geq N(N-1)-q^{2}+3 N q-7 q
$$

This shows that the greatest number of multiplications occurs when $q=n$, and is still less than the number required by Chin's and Steiglitz's algorithm. Also observe

$$
\frac{11}{2} N(N-1)>\frac{17}{4} N(N-2) \geq \frac{3}{2} N(N-1)-\frac{7}{2} q^{2}+3 N q-\frac{11}{2} q .
$$

Which tells the same story for additions.
These results show that this adaption of Chin's and Steiglitz's algorithm saves calculations. To be fair, however, one must realize that the output of this adaptation is not the same as that of Chin and Steiglitz. Which algorithm is better will depend on the application. Partial fractions expansions can be useful in a wide scope of problems involving integrals of rational functions [6].

Chin's and Steiglitz's output differs from the one presented here in that $\mathrm{C}[x]$ is the ambient polynomial ring and each denominator in the partial fractions expansion is thus linear. With the adapted algorithm, $\mathbf{R}[x]$ is used and the denominators can be linear or quadratic. It happens that in computing inverse Laplace transforms, either form is acceptable and it is better to have fewer operations; however, this may not always be so for other applications of partial fraction expansion.

Chapter V

Inverse Laplace Transform

The most elementary approach to finding the inverse Laplace transform of a given function is to use a table of transform pairs. Indeed, large tables of transform pairs have been prepared. In particular, a popular table [7] lists the following transform pair:

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\frac{1}{\left(s^{2}+a^{2}\right)^{k}}\right\}=\frac{\sqrt{\pi}}{\Gamma(k)}\left(\frac{t}{2 a}\right)^{k-1 / 2} J_{k-1 / 2}(a t), \quad k \in \mathrm{~N} . \tag{5.1}
\end{equation*}
$$

The functions J_{p} are known as the Bessel functions of half-integral order. They have the following recursive definition [8]:

$$
\begin{aligned}
J_{-1 / 2}(t) & =\sqrt{\frac{2}{\pi t}} \cos t \\
J_{1 / 2}(t) & =\sqrt{\frac{2}{\pi t}} \sin t \\
J_{p+1}(t) & =\frac{2 p}{t} J_{p}(t)-J_{p-1}(t)
\end{aligned}
$$

Let us simplify things somewhat by defining:

$$
H_{k}(a t)=\sqrt{\pi}\left(\frac{t}{2 a}\right)^{k-1 / 2} J_{k-1 / 2}(a t) .
$$

We thus obtain the recursive relationship:

$$
\begin{aligned}
H_{0}(a t) & =\frac{2}{t} \cos (a t), \\
H_{1}(a t) & =\frac{1}{a} \sin (a t), \\
H_{k+1}(a t) & =\frac{2 k-1}{2 a^{2}} H_{k}(a t)-\left(\frac{t}{2 a}\right)^{2} H_{k-1} .
\end{aligned}
$$

Hence the Laplace transform pair (5.1) becomes:

$$
\mathcal{L}^{-1}\left\{\frac{1}{\left(s^{2}+a^{2}\right)^{k}}\right\}=\frac{1}{\Gamma(k)} H_{k}(a t) .
$$

If we use a well-known property of the Laplace transform, we can derive another important Laplace transform pair. Use

$$
\mathcal{L}^{-1}\left\{\frac{d}{d s} F(s)\right\}=-t f(t)
$$

to get

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{d}{d s}\left(\frac{1}{\left(s^{2}+a^{2}\right)^{k}}\right)\right\} & =-\frac{t}{\Gamma(k)} H_{k}(a t) \\
\mathcal{L}^{-1}\left\{\frac{-2 k s}{\left(s^{2}+a^{2}\right)^{k+1}}\right\} & =-\frac{t}{\Gamma(k)} H_{k}(a t) \\
\mathcal{L}^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{k+1}}\right\} & =\frac{t}{2 \Gamma(k+1)} H_{k}(a t) .
\end{aligned}
$$

Which is equivalent to

$$
\mathcal{L}^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{k}}\right\}=\frac{t}{2 \Gamma(k)} H_{k-1}(a t)
$$

This would be true for $k \geq 2$ but also holds for $k=1$. Again make use of a Laplace transform property, namely $\mathcal{L}^{-1}\{F(s+\tau)\}=e^{-\tau t} f(t)$ to get one of the Laplace transform pairs useful in this problem:

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\frac{A(s+\tau)+B}{\left((s+\tau)^{2}+a^{2}\right)^{k}}\right\}=\frac{e^{-\tau t}}{\Gamma(k)}\left[B H_{k}(a t)+\frac{A t}{2} H_{k-1}(a t)\right] . \tag{5.2}
\end{equation*}
$$

We also make use of another often-tabulated Laplace transform pair [7]:

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\frac{A}{(s+\tau)^{k}}\right\}=\frac{A e^{-\tau t} t^{k-1}}{\Gamma(k)} \tag{5.3}
\end{equation*}
$$

One of these two Laplace transform pairs will apply to each term in the partial fraction expansion of a rational function. From (4.3) and we have

$$
\begin{gather*}
\mathcal{L}^{-1}\left\{\frac{Q_{0}}{\prod_{j=1}^{p}\left(d_{j}\right)^{m_{j}}}\right\}=\mathcal{L}^{-1}\left\{\sum_{j=1}^{p} \sum_{i=1}^{m_{j}} \frac{K_{i j}}{\left(d_{j}\right)^{i}}\right\} \\
=\sum_{j=1}^{p} \sum_{i=1}^{m_{j}} \mathcal{L}^{-1}\left\{\frac{K_{i j}}{\left(d_{j}\right)^{i}}\right\} . \tag{5.4}
\end{gather*}
$$

Now if $\operatorname{deg}\left(K_{i j}\right)=1$ use (5.3), and if $\operatorname{deg}\left(K_{i j}\right)=2$ use (5.2).
Using (5.2), and induction it can be shown that:

$$
\mathcal{L}^{-1}\left\{\frac{A(s+\tau)+B}{\left((s+\tau)^{2}+a^{2}\right)^{k}}\right\}=e^{-\tau t} \sum_{j=0}^{k-1} t^{j}\left(\alpha_{j} \cos (a t)+\beta_{j} \sin (a t)\right)
$$

And also note that (5.3) can be written

$$
\mathcal{L}^{-1}\left\{\frac{A}{(s+\tau)^{k}}\right\}=e^{-\tau t} t^{k-1}(A \cos (0))
$$

Thus we can express (5.4) in the form:

$$
\begin{equation*}
\sum_{j=1}^{p} \sum_{i=1}^{m_{j}} \mathcal{L}^{-1}\left\{\frac{K_{i j}}{\left(d_{j}\right)^{i}}\right\}=\sum_{j=1}^{p} e^{-\tau_{j} t} \sum_{i=1}^{m_{j}} t^{i}\left(\alpha_{j i} \cos \left(a_{j} t\right)+\beta_{j i} \sin \left(a_{j} t\right)\right) \tag{5.5}
\end{equation*}
$$

This is the way the inverse Laplace transform is computed by the program in the appendix. The output is simply an array of coefficients for an expression of the form (5.5).

Chapter VI

Applications
One of the most probable applications of this algorithm will be to evaluate transient responses of control systems with a known transfer function. Figure (6.1) shows a control diagram for an automatic flight control system for a supersonic aircraft [9]. The transfer function corresponding to figure (6.1) will depend on the values of K_{1} and K_{2}. It is simple to compute this transfer function using the coefficient values shown in figure (6.1).

The above transfer function was inverse transformed using various values for K_{1} and K_{2}. The transient response functions so obtained are graphed in figures (6.2) and (6.3). Notice how the response improves until the onset of instability.

It was mentioned before that sometimes we want the inverse transform of something other than a rational function. One common example arises when a control system contains time delays. We have the following transform pair.

$$
\mathcal{L}\{u(t-T)\}=\frac{e^{-s T}}{s}
$$

In order to apply the algorithm, we must approximate $e^{s T}$ by a rational function. This can be done using the Padé approximant [9]. We have

$$
e^{-s T} \simeq P_{n}(s T)=\frac{\sum_{j=0}^{n}(-1)^{j} b_{j}(s T)^{j}}{\sum_{j=0}^{n} b_{j}(s T)^{j}}
$$

where

$$
b_{j}=\frac{\binom{n}{j}}{\binom{2 n}{j} j!} .
$$

Using the Padé approximant, the algorithm was used to invert $\frac{e^{-\dot{\circ}}}{s}$. Padé approximants of order $2,3,4$, and 6 were used. These approximants are shown graphically in figure (6.4).

Figure (6.1) Control system diagram of SST aircraft. Adapted (9).

Figure (6.2) Step response of above control system for $K_{1} \Pi_{2}=0,0.2,0.4$. and 0.6.

Figure (6.3) Step response of above control system for $K_{1} K_{2}=0.8,1.08$, and 1.10.

Figure (6.4) Padé approximants to unit time delay.

Chapter VII

Conclusion

This paper has presented an algorithm for computing inverse Laplace transforms of rational functions as might arise in practical electrical engineering problems. Programs written to demonstrate the algorithm follow in the appendix.

Numerical analysis aspects of the problem were not dealt with, but, except for root-finding, the problem was shown to be an algebraic one. Results from elementary abstract algebra were used to derive the methods described. Special effort was made to reduce the number of calculations in the partial fraction expansion.

Some applications were presented to show practical results. These applications also made it clear that assuming that the Laplace domain function, $F(s)$, in (2.1) is a ratio of polynomials is not always valid. Future work on this problem should concern itself with this assumption.

Appendix I

List of References

[1] Ross, S. L. Introduction to Ordinary Differential Equations, pp. 427-458, New York:John Wiley \& Sons, 1980.
[2] Muller, D. E. "A Method for Solving Algebraic Equations Using an Automatic Computer," Mathematical Tables and Other Aids to Computation, vol. 10, pp. 208-215, 1956.
[3] Herstein, I. N. Topics in Algebra, p. 233, New York:John Wiley \& Sons, 1975. [4] Chin, F. Y., and Steiglitz, K. "An $\mathrm{O}\left(N^{2}\right)$ Algorithm for Partial Fraction Expansion" IEEE Transactions on Circuits and Systems, vol. 24, pp. 42-45, 1977.
[5] Hamming, R. W. Calculus and the Computer Revolution, pp. 49-51, Boston:Houghton Mifflin, 1968.
[6] Birkhoff, and Mac Lane A Survey of Modern Algebra, pp. 17-19 and 103-105, New York:MacMillan, 1941.
[7] Beyer, W. H. (editor) CRC Standard Mathematical Tables, pp. 469, Boca Raton, FL:CRC Press, 1984.
[8] Simmons,G. F. Differential Equations with Applications and Historical Footnotes, pp. 242-243, New York:McGraw-Hill, 1972.
[9] Dorf, R. C. Modern Control Systems, pp. 186-187, Reading, MA:AddisonWesley, 1974.
[10] Hausner, A. Analog and Analog/Hybrid Computer Programming, pp. 275-278 and 282-283, Englewood Cliffs, NJ:Prentice Hall, 1971.
[11] Press, W. H., et al. Numerical Recipes, pp. 137-140 and 259-262, Cambridge, U.K.:Cambridge University Press, 1986.

Appendix II

Glossary of Terms

C denotes the field of complex numbers.
$\mathbf{C}[x]$ denotes the ring of polynomials with coefficients in \mathbf{C}.
deg: If $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \neq 0$ and $a_{n} \neq 0$ then $\operatorname{deg}(p(x))=n$.
Division algorithm: Given two polynomials $p(x), q(x) \in F[x]$, where $F[x]$ is the ring of polynomials with coefficients in the field F and $q(x) \neq 0$, there exist two polynomials $t(x), r(x) \in F[x]$ such that $f(x)=t(x) q(x)+r(x)$ where $r(x)=0$ or $\operatorname{deg}(r(x))<\operatorname{deg}(q(x))$. The process by which $t(x)$ and $r(x)$ are found is known as the division algorithm and is simply the "long-division" process everyone knows to divide one polynomial by another.

Euclidean algorithm: Given two polynomials $p(x), q(x) \in F[x]$, where $F[x]$ is the ring of polynomials with coefficients in the field F and $p(x)$ and $q(x)$ are not both 0 , then $\operatorname{gcd}(p(x), q(x)) \in F[x]$ exists and there exist polynomials $m(x), n(x) \in F[x]$ such that $\operatorname{gcd}(p(x), q(x))=m(x) p(x)+n(x) q(x)$. The process used to determine these special polynomials is called the Euclidean algorithm and is shown explicitly in Chapter IV.
Γ : A sufficient definition of the function Γ for $n \in \mathbf{N} \cup\{0\}$ is

$$
\Gamma(n)= \begin{cases}0, & \text { if } n=0 ; \\ (n-1)!, & \text { if } n>0\end{cases}
$$

gcd: Let $a, b \in F[x]$. If $c \in F[x]$ satisfies:

1. c is monic.
2. c divides a and b.
3. Any other divisor of a and b divides c.
then c is called the greatest common divisor of a and b and is denoted $\operatorname{gcd}(a, b)$.
irreducible: Let $p \in F[x]$ be such that $p=a b$ for some $a, b \in F[x]$ if and only if $\operatorname{deg}(a)=0$ or $\operatorname{deg}(b)=0$. Such a p is said to be irreducible over F. Note that
irreducibility depends on the field, $F . x^{2}+1$ is irreducible over $\mathbf{R}[x]$ but not over $\mathrm{C}[x]$.
\min is a function that operates on a well ordered set and whose value is the minimum element of that set. The well ordering property of \mathbf{N} asserts that if $A \subset \mathbf{N}$ then $\min A$ exists.

N denotes the ring of natural numbers.
\mathbf{R} denotes the field of real numbers.
$\mathbf{R}[\mathrm{x}]$ denotes the ring of polynomials with coefficients in $\mathbf{R} . u(t):$ Let $t \in \mathbf{R}$.

$$
u(t)= \begin{cases}0, & \text { if } t<0 \\ 1, & \text { if } t \geq 0\end{cases}
$$

unit: $u \in F[x]$ is called a unit iff $\operatorname{deg}(u)=0$.

Appendix III

FORTRAN Programs

The following programs are intended to merely demonstrate the algorithms described in the previous chapters. Specifically, they were used to evaluate the example applications mentioned in Chapter VI. No guarantee of their usefulness to any other application is implied.

These programs could certainly be made more user-friendly. There are no error handling routines, the user interaction is minimal, and file management is cumbersome. Such things are left to a better programmer. Nevertheless, the programs serve their purpose of demonstrating the algorithms.

The programs fall into four slightly overlapping categories: those associated with Chapters III through V and those for creating data files and making plots. The following is a brief categorical index of the programs. Subroutine dependence is indicated by indentions.

Factoring Program

ROOT_FIND
POLY_READ
FACTORER
DERIV
EUCLID
POLDIV
FIND_EM MULLER

DEFVAL COMPOSE
SPEC_WRITE

Partial Fraction Expansion Program

```
PART_FRAC
    SPEC_READ
    EXPAND
        TRANSFER
        POLDIV
        ALIKE
        TRANSFER
            DIFFERENT
                TRANSFER
                EUCLIDEAN
                        TRANSFER
                POLDIV
                    POLMULT
            POLADD
    PART_WRITE
```

 Inverse Laplace Transform Program
 INVERT
INV2
INIT
BESSEL
GAMMA
Plotting Program
PLOT
READ
LOTS_O_PLOTS
PLOT_O_MATIC

Data Entry Routines

INPUT_RAT
SPEC_INPUT
SPEC_WRITE
The programs that follow are listed in alphabetical order according to their VAX FORTRAN filenames. Each program is preceded by a header that explains the purpose of the program, and describes the variables passed to and from the program. I have tried to make each header as complete as required to be all the documentation necessary to comprehend the program it describes.
*

Department of Electrical and Computer Engineering Kansas State University

VAX FORTRAN source filename: ALIKE.FOR

ROUTINE: SUBROUTINE
AL IKE (I, J, X, DEGX, REM, DEGR)

DESCRIPTION: Refer to equation (4.6) in the main thesis. This program computes $\mathrm{K}^{\wedge} 1$ _ij when $j=u \quad l$, hence the name ALIKE.

FILES: None.

ARGUMENTS: The following arguments are passed to the subroutine:
(input) integer corresponds to j in (4.6)
(input) integer corresponds to i in (4.6)
(input) real
is a three dimensional array, X(I, J, K) represents to Ith coefficient of the numerator of the (J, K) th term in the partial fraction expansion. Namely, that term with the Jth factor of DEN to the Kth power as denominator.

DEGX (input) integer
is an array. DEGX(I,J) represents the degree of the numerator of the (I, J) th term in the partial fraction expansion. See the description of X .

REM (input) real corresponds to R_l in (4.6).
(input) integer
is the degree of R_l in (4.6).
REIURN:

Not used.

```
*
*
* ROUTINES
* CALLED: PUIX
*
*
* AUMHOR: James F. Stafford
*
*
*
*
*
*
*
*
*
SUBROUTINE ALIKE (I, J, X, DEGX, REM, DEGR)
IMPLICIT NONE
INTEGER \(\quad\) DEGR, I, J, K, L, DEGX (10,*)
REAL*8 \(\quad X(0: 1,10, *), \operatorname{REM}(0: 10)\)
DO \(K=J, 2,-1\)
\(\operatorname{DEGX}(\mathrm{I}, \mathrm{K})=\operatorname{DEGX}(\mathrm{I}, \mathrm{K}-\mathrm{I})\)
DO L=O, \(\operatorname{DEGX}(I, K)\)
\[
X(L, I, K)=X(L, I, K-1)
\]
ENDDO
ENDDO
CALL PUTX (I, I,REM, DEGR, X, DEGX)
REIURN
END
```

```
*
*
*
*
**
*
*

IMPLICIT NONE
INTEGER N, J, K
REAL*8 A, F (-2:0,0:1,-1:9)
DO \(\mathrm{J}=-\mathrm{l}, \mathrm{N}-2\)
DO K=-2,-1
\[
F(K, 0, J)=F(K+1,0, J)
\]
\[
F(K, 1, J)=F(K+1,1, J)
\]

\section*{ENDDO}

ENDDO
DO J=0, N-2
\[
\begin{aligned}
& F(0,0, J)=F(-1,0, J) \star(2 \star N-3) / A \\
& F(0,1, J)=F(-1,1, J) \star(2 \star N-3) / A
\end{aligned}
\]

ENDDO
DO J=-l, N-3
\[
\begin{aligned}
& F(0,0, J+2)=F(0,0, J+2)-F(-2,0, J) \\
& F(0,1, J+2)=F(0,1, J+2)-F(-2,1, J)
\end{aligned}
\]

ENDDO
RETURN
END
* Department of Electrical and Computer Engineering *

VAX FORTRAN source filename:COMPOSE. FOR

ROUTINE:COMPOSE(X, FACIOR, NUM, DEGF, MULT)

DESCRIPIION: This program acœpts a complex-valued root, \(X\) as input, decides whether \(X\) is purely real or not, and updates the factor array, FACIOR, accordingly.

DOCUMENTATION
FILES: None.

ARGLMENTS:
\(\left.\left.\begin{array}{cl}\text { X } & \begin{array}{l}\text { (input) complex } \\
\text { Is a complex-valued root of a polynomial. }\end{array} \\
\text { FACTOR } & \begin{array}{l}\text { (input/output) real } \\
\text { Is an array containing each factor of the } \\
\text { above polynomial. }\end{array} \\
\text { NUM } \\
\text { (input/output) integer } \\
\text { Is the number of factors in FACTOR. NUM } \\
\text { is already incremented before calling } \\
\text { COMPOSE. }\end{array}\right\} \begin{array}{l}\text { (input/output) integer } \\
\text { Is an array specifying the degree of each } \\
\text { corresponding factor in FACTOR. }\end{array}\right\}\)\begin{tabular}{l} 
(input/output) integer \\
Is an array specifying the multiplicity of \\
each factor in FACIOR.
\end{tabular}
```

DATE CREATED: 30Jun88 Version 1.0
REVISIONS: None.

```
SUBROUTINE COMPOSE (X, FACIOR, NUM, DEGF, MULT)
IMPLICIT NONE
INTEGER NUM, DEGF (*),MULT(*)
REAL*8 \(\operatorname{FACIOR}(10,0: 2)\),SMALL
COMPLEX*16 X
LOGICAL REAL
PARAMETER (SMALL=10E-4)
REAL=. FALSE.
IF (DREAL (X).NE.O.) THEN
    IF (DABS(DIMAG(X)/DREAL(X)).LT. SMALL) THEN
        REAL=. TRUE.
        \(\operatorname{FACTOR}(N U M, 1)=1\)
        \(\operatorname{FACTOR}(N U M, 0)=-\) DREAL \((X)\)
        DEGF \((\mathrm{NUM})=1\)
    ENDIF
ELSE IF (CDABS(X).LT. SMALL) THEN
    REAL=.TRUE.
    \(\operatorname{FACIOR}(N U M, 1)=1\).
    \(\operatorname{FACIOR}(N U M, 0)=0\).
    DEGF \((\) NUM \()=1\)
ENDIF
IF (REAL. EQ..FALSE.) THEN
    \(\operatorname{FACIOR}(\operatorname{NUM}, 2)=1\)
    FACTOR (NUM, 1) \(=-2\). *DREAL ( X )
    FACTOR (NUM, 0 ) \(\Rightarrow\) IMMAG ( X ) *DIMAG ( X ) +DREAL ( X ) *DREAL ( X )
    DEGF \((\) NUM \()=2\)

ENDIF
\(\operatorname{MULT}(\) NUM \()=1\)
REIURN
END
```

* Department of Electrical and Computer Engineering *
VAX FORTRAN source filename: DEFVAL. FOR
DESCRIPTION: This program evaluates a polynomial at a given complex argument, X, all known factors are divided out.
DOCUMENTATION
FILES: None.
ARGUMENTS: The following arguments are passed to the function:
POLY (input) real
is an array contalning coefficients of the polynomial to be evaluated.
DEG (input) integer
is the degree of POLY.
FACIOR (input) real
is an array containg the coefficients of all known factors of POLY.
NUM (input) integer
is the number of factors in FACTOR.
DEGF (input) integer
is an array specifying the degree of each corresponding factor in FACIOR.
MULT (input) integer
is an array specifying the multiplicity of each corresponding factor in FACTOR.
X
(input) complex
is the argument at which the polynomial is to be evaluated.

```
```

REIURN: Not used.
ROUTINES
CALLED: None.
AUIHOR: James F. Stafford
DATE CREATED: 30Jun88 Version 1.0
REVISIONS: None.

```

COMPLEX*16 FUNCTION DEFVAL(POLY, DEG, FACIOR, NUM, DEGF,MULT, X)
IMPLICIT NONE
INTEGER DEG, I, NUM, DEGF (*) ,MULT (*)
REAL*8 \(\operatorname{POLY}(0: *), \operatorname{FACTOR}(10,0: 2)\)
COMPLEX*16 X, EVAL
DEFVAL \(=\) POLY (DEG)
DO I=DEG-1,0,-1 DEFVAL=DEFVAL*X+POLY(I)

ENDDO
DO I=1,NUM IF (DEFVAL.NE.0) THEN

DEFVAL=DEFVAL/EVAL (FACIOR, I, DEGF (I) , MULT (I) , X)
ENDIF
ENDDO
REIURN
END
COMPLEX*16 FUNCTION
EVAL (FACIOR, I, DEGF, MULT, X)
```

IMPLICIT NONE
INTEGER J, I, DEGF,MULT
REAL*8 FACIOR(10,0:2)
COMPLEX*16 X,VALUE
EVAL=1
VALUE=FACIOR (I, DEGF)
DO J=DEGF-1,0,-1
VALUE=VALUE*X+FACIOR(I,J)
ENDDO
DO J=1,MULT
EVAL=EVAL *VALUE
ENDDO
REIURN
END

```
*

VAX FORTRAN source filename:DERIV.FOR *
Department of Electrical and Computer Engineering *

ROUTINE: SUBROUTINE DERIV (POLY, DEG)

DESCRIPIION: This program computes the derivative of a given polynomial.

DOCUMENTATION
FILES: None.

ARGUMENTS: The following arguments are passed to the routine.

POLY (input/output) real On return, this array contains the coefficients of the derivative.

DEG (input/output) integer input and the degree of the derivative on output.

REIURN: Not used.

ROUTINES
CALLED: None.

AUIHOR: James F. Stafford

DATE CREATED: 30Jun88 Version 1.0

REVISIONS: None.

Kansas State University * is an array containing the coefficients of the polynomial to be differentiated. is the degree of the polynomial on

\section*{SUBROUTINE DERIV (POLY, DEG)}

IMPLICIT NONE
INTEGER I, J, DEG
REAL*8 POLY(0:*)
DO J=0, DEG-1
\(\operatorname{POLY}(J)=(J+1) \star \operatorname{POLY}(J+1)\)
ENDDO
POLY \((D E G)=0\).
DEG=DEG-1
REIURN
END
Department of Electrical and Computer Engineering
VAX FORTRAN source filename: DIFFERENT. FOR *
```


(input) real
is a three-dimensional array. $X(I, J, K)$ represents the Jth coefficient of the numerator of the (J, K) th term in the partial fraction expansion. Namely, that term with the Jth fact or of DEN to the Kth power as denominator.
DEGX (input) integer is a two-dimensional array. DEG(I,J) represents the degree of the numerator of the (I, J) th term in the partial fraction expansion. See the description of X .
REIURN: Not used.
ROUTINES
CALLED: EUCLID, PUTX, GETD, GETX, POLADD
AUIHOR: James F. Stafford
DATE CREATED: 8 Jun8 7 Version 1.0
REVISIONS: None.

```

SUBROUTINE
IMPLICIT
INTEGER
\(+\)
REAL*8
\(+\)

DIFFERENT ( \(\mathrm{I}, \mathrm{B}\), DEGB, DEN, DEGD, MULTS, X, DEGX)
NaNE
DEGD (*) , MULTS (*) , I, J, K, L, DEGS, DEGT, DEGX \((10, *)\), DEGA, DEGB, DEGF
\((0: 2, *), X(0: 1,10, *), A(0: 2), B(0: 2)\), S(0:1), T(0:1), F(0:1)
```

DO J=I-1,1,-1
PRINT *,'J=',J
CALL GEID (J, A, DEGA, DEN, DEGD)
CALL GETX (J, MULTS (J) ,F, DEGF, X, DEGX)

```

DO K=MULTS(J) \(-1,1,-1\) PRINT *,' K=',K

CALL EUCLID (A, DEGA, B, DEGB, F, DEGF, S, DEGS, T, DEGT)
CALL PUTX (J, K+l, T, DEGT, X, DEGX)
CALL GETX (J, K, F, DEGF, X, DEGX)
CALL POLADD (F, DEGF, S, DEGS)
ENDDO
CALL EUCLID (A, DEGA, B, DEGB, F, DEGF, S, DEGS, T, DEGT)
CALL PUTX (J, 1, T, DEGT, X, DEGX)
CALL GETX (I, I, F, DEGF, X, DEGX)
CALL POLADD (F, DEGF, S, DEGS)
CALL PUTX (I, 1, F, DEGF, X, DEGX)
ENDDO
RETURN
END
```

*
*
*
*
*
*

```
Department of Electrical and Computer Engineering *
```

Department of Electrical and Computer Engineering *
Kansas State University *
Kansas State University *
VAX FORTRAN source filename:EUCLID.FOR *
VAX FORTRAN source filename:EUCLID.FOR *
ROUTINE: SUBROUTINE
ROUTINE: SUBROUTINE
EUCLID(POL1,DEG1,POL2,DEG2,GCD,DEGG)
EUCLID(POL1,DEG1,POL2,DEG2,GCD,DEGG)
DESCRIPTION: This program computes the greatest
DESCRIPTION: This program computes the greatest
common divisor of two given polynomials.
common divisor of two given polynomials.
DOCUMENTATION
DOCUMENTATION
FILES:
FILES:
None.
None.
ARGUMENTS:
ARGUMENTS:
POLl (input) real
POLl (input) real
is an array representing one input
is an array representing one input
polynomial.
polynomial.
DEGl (input) integer
DEGl (input) integer
is the degree of POLl.
is the degree of POLl.
POL2 (input) real
POL2 (input) real
is an array representing the other
is an array representing the other
input polynomial.
input polynomial.
DEG2 (input) integer
DEG2 (input) integer
is the degree of POL2.
is the degree of POL2.
(output) real
(output) real
is the gcd of the two input polynomials
is the gcd of the two input polynomials
DEGG (output) integer
DEGG (output) integer
is the degree of GCD.
is the degree of GCD.
REIURN: Not used.
REIURN: Not used.
ROUTINES
ROUTINES
CALLED: POLDIV
CALLED: POLDIV
AUIHOR: James F. Stafford

```
AUIHOR: James F. Stafford
```

DATE CREATED: 30Jun88 Version 1.0

REVISIONS: None.

SUBROUTINE EUCLID (POL1, DEG1, POL2, DEG2, GCD, DEGG)

IMPLICIT
NONE
INIEGER
REAL *8 $A(0: *), B(0: *)$

DEGA=DEGB
DO $\mathrm{I}=0, \mathrm{DEGA}$
$A(I)=B(I)$
ENDDO
REIURN
END

```
*
Department of Electrical and Computer Engineering * Kansas State University *
VAX FORTAN *
VAX FORTRAN source filename: EUCLIDEAN.FOR *
```


SUBROUTINE
EUCLID (A, DEGA, B, DEGB, F, DEGF, S, DEGS, T, DEGT)

DESCRIPTION: This program computes A and A^{\wedge} * in equation (4.l) given K, s and r via the methods discussed in chapter IV.

```
ARGUMENTS: The following arguments are passed to the subroutine:
A (input) real
is an array containing the coefficients of \(s\) in (4.2).
(input) integer
is the degree of \(s\) in (4.2).
(input) real
is an array containing the coefficients of \(r\) in (4.2).
(input) integer
is the degree of \(r\) in (4.2).
(input) real
is an array containing the coefficients of \(K\) in (4.2).
DEGF (input) integer
is the degree of \(K\) in (4.2).
S (output) real
is an array contaıning the coefficients of \(A\) in (4.2).
DEGS (output) integer
is the degree of \(A\) in (4.2).
```

```
*
\begin{tabular}{|c|c|}
\hline T & (output) real is an array containing the coefficients of \(A^{\wedge}\) * in (4.2). \\
\hline DEGT & \begin{tabular}{l}
(output) integer \\
is the degree of \(A^{\wedge} *\) in (4.2).
\end{tabular} \\
\hline REIURN: & Not used. \\
\hline ROUTINES & \\
\hline CALLED: & POLDIV, POLMULT, GET(contained in TRANSFER) \\
\hline AUTHOR: & James F. Stafford \\
\hline DATE CREATED: & 9 Jun 87 Version 1.0 \\
\hline REVISIONS: & None. \\
\hline
\end{tabular}
```

SUBROUTINE $+$

IMPLICIT NONE
INTEGER I, DEGA, DEGB, DEGF, DEGT, DEGS, DEGQ,DEGR
$+$
REAL*8 $A(0: 2), B(0: 2), F(0: 1), S(0: 1), T(0: 1)$,
$+$
EUCLID (A, DEGA, B, DEGB, F, DEGF, S, DEGS, T, DEGT) DEG1,DEG2, ADD, MULT, DIV $\operatorname{QUO}(0: 1), \operatorname{REM}(0: 2), \operatorname{BUFF}(0: 3), \operatorname{BUFF} 2(0: 3)$

LOGICAL EASYDIV, HARD, EASYMULT, SWITCH
$A D D=0$
DIV=0
MULT=0
EASYDIV=.TRUE.
HARD=. FALSE.
DEGR=1
IF (DEGA. LE. DEGB) THEN
SWITCH=.TRUE.

```
    CALL GET(BUFF2,DEG2,A, DEGA)
    CALL GET(BUFFl,DEGl,B,DEGB)
    ELSE
    SWITCH=.FALSE.
    CALL GET(BUFFl,DEGl,A,DEGA)
    CALL GET(BUFF2,DEG2,B,DEGB)
    ENDIF
    I=0
    DO WHHLE (DEGR.GT.O)
    CALL POLDIV (BUFF1,DEG1,BUFF2,DEG2,QUO,DEGQ,REM,DEGR,
    EASYDIV,HARD)
    CALL GET(BUFFl,DEG1,BUFF2,DEG2)
    CALL GET(BUFF2,DEG2,REM,DEGR)
    EASYDIV=.FALSE.
    HARD=.TRUE.
    I=I+1
ENDDO
IF (I.LT.2) THEN
    EASYMULT=.TRUE.
    DEGQ=0
ELSE
    EASYMULT=.FALSE.
    BUFF2(0) =-BUFF2(0)
    ADD=ADD+l
ENDIF
CALL POLMULT(QUO,DEGQ,F,DEGF,BUFFl,DEGl,EASYMULT)
DO I=0,DEGl
    BUFF1(I)=BUFFI(I)/BUFF2(0)
    DIV=DIV+1
ENDDO
```

HARD $=$. FAL SE.
IF (SWITCH) THEN
CALL POLDIV (BUFFl,DEGl, A, DEGA, QUO, DEGQ,T, DEGT, EASYDIV, HARD)

DEGS=DEGB-1
$S(D E G S)=T($ DEGT $)$
DO I=DEGS-1,0,-1
$S(0)=T($ DEGT $) *(B($ DEGB -1$)-A($ DEGA-1) $)$
MULT $=$ MULT4 1
$\mathrm{ADD}=\mathrm{ADD}+1$
IF (DEGT.GT.0) THEN
$S(0)=S(0)+T(0)$
ADD=ADD+1
ENDIF
ENDDO
ELSE
CALL POLDIV (BUFFl,DEGl ,B, DEGB, QUO, DEGQ,S, DEGS, EASYDIV, HARD)

DEGT=1
$S(0)=-S(0)$
$T(1)=S(0)$
$T(0)=(A(1)-B(0)) * S(0)+F(1)$
ADD=ADD 3
MULT=MULT4 1
ENDIF
PRINT *,ADD,'additions'
PRINT *,MULT,'multiplies'
PRINT *,DIV,'divisions'
REIURN
END
Department of Electrical and Computer Engineering
VAX FORTRAN source filename: EXPAND. FOR *
*
*
*

ROUTINE: SUBROUTINE
EXPAND ((NUM, DEGN, DEN, DEGD, MULTS, X, DEGX, NO_FACTS)

DESCRIPTION: This program performs a partial fraction expansion on a rational function using Chin's and Steiglitz's algorithm.

DOCUMENTATION
FILES: None.

ARGUMENTS: The following arguments are passed to the subroutine:
(input) real
is an array containing the coefficients of the numerator polynomial of the rational function to be expanded.
(input) integer
is the degree of the numerator polynomial.
(input) real
is a two-dimensional array. DEN(I,J) represents the coefficient of the Ith power of x in the Jth factor of the denominator polynomial.

DEGD (input) integer
is an array. DEGD(I) represents the degree of the Ith factor in the denominator polynomial.
(input) integer
is an array. MULTS(I) represents the multiplicity of the Ith factor in the denominator polynomial.

NO_FACTS (input) integer
is the number of factors in the denominator polynomial.
X (output) real
is a three-dimensional array. $X(I, J, K)$ represents the Ith coefficient of the numerator of the (J, K) th term in the partial fraction expansion. Namely, that term with the Jth factor of DEN to the Kth power as denominator.

DEGX (output) integer is an array. DEGX(I,J) represents the degree of the numerator of the (I, J) th term in the partial fraction expansion. See the description of X .

REIURN: Not used.

ROUTINES
CALLED:
GEID, POLDIV , ALIKE, DIFFERENT

AUTHOR:
James F. Stafford

DATE CREATED:
6 JunB 7 Version 1.0

REVISIONS: None.


```
HARD=. FALSE.
DO I=1,NO_FACTS
    PRINT *,'I=',I
    CALL GEID (I, B,DEGB, DEN, DEGD)
    DO J=1,MULTS(I)
        CALL POLDIV (NUM,DEGN, B, DEGB, QUO, DEGQ, REM, DEGR,
        EASY, HARD)
        DEGN=DEGQ
        DO K=0,DEGN
            NUM (K)=QUO (K)
        ENDDO
        PRINT *,DEGR,'YES'
        DO K=0,DEGR
        PRINT *,REM(K)
        ENDDO
        CALL ALIKE (I,J,X, DEGX, REM, DEGR)
        CALL DIFFERENT(I,B,DEGB,DEN,DEGD,MULTS,X,DEGX)
    ENDDO
ENDDO
REIURN
END
```

ARG UMENTS:
POLY (input) real
is an array containing the ooefficients
the polynomial to be factored.
DEGP (input) integer is the degree of POLY.
FACIOR (output) real is an array containinng coefficients each factor of POLY.
NUM (output) integer is the number of factors in FACIOR.
DEGF (output) integer is an array specifying the degree of the corresponding factor in FACTOR.
MULT (output) integer
is an array specifying the multiplicity of the corresponding factor in FACrOR.
REIURN: Not used.

```
```

ROUTINE: SUBROUTINE

```
ROUTINE: SUBROUTINE
                                    FACIORER (POLY, DEGP, FACTOR, NUM, DEGF,MULT)
                                    FACIORER (POLY, DEGP, FACTOR, NUM, DEGF,MULT)
DESCRIPTION: This program factors a given input
DESCRIPTION: This program factors a given input
                                    polynomial into irreducible elements of
                                    polynomial into irreducible elements of
                                    R[x].
                                    R[x].
DOCUMENTATION
DOCUMENTATION
FILES:
FILES:
None.
None.
ROUTINES
CALLED: DERIV, EUCLID, FIND_EM
```

```
*
* AUTHOR: James F. Stafford
*
*
*
*
*
* REVISIONS: None.
*
*
**********************************************************************
\begin{tabular}{|c|c|c|}
\hline & SUBROUTINE & FACTORER (POLY, DEGP, FACTOR, NUM, DEGF, MULT) \\
\hline & IMPLICIT & NONE \\
\hline + & INTEGER & I, J, K, DEGP, DEGF (*) , MULT (*) ,NUM, DEGGCD ( \(0: 10\) ) , DEGD, DEGG \\
\hline + & REAL*8 & \[
\begin{aligned}
& \text { POLY }(0: 10), \operatorname{FACTOR}(10,0: 2), G C D(0: 10,0: 10), D(0: 10) \\
& G(0: 10)
\end{aligned}
\] \\
\hline
\end{tabular}
DO I=0,DEGP
\[
\begin{aligned}
& D(I)=\operatorname{POLY}(I) \\
& \operatorname{GCD}(0, I)=\operatorname{POLY}(I)
\end{aligned}
\]
ENDDO
DEGD \(=\) DEGP
\(\operatorname{DEGGCD}(0)=\mathrm{DEGP}\)
\(\mathrm{K}=0\)
DO WHILE (DEGGCD(K).GT.0)
```

```
K=K+1
```

K=K+1
CALL DERIV(D,DEGD)
CALL DERIV(D,DEGD)
CALL EUCLID(POLY,DEGP,D,DEGD,G,DEGG)
CALL EUCLID(POLY,DEGP,D,DEGD,G,DEGG)
DO J=0,DEGG
GCD (K,J) =G(J)
ENDDO
DEGGCD (K) =DEGG
ENDDO
DO $I=K-1,0,-1$

```

DO J=0, DEGGCD (I)
\[
G(J)=G C D(I, J)
\]

ENDDO
DEGG=DEGGCD (I)
CALL FIND_EM(G, DEGG, FACTOR, NUM, DEGF,MULT)
ENDDO
REIURN
END
*
SUBROUTINE FIND_EM (P, DEGP, FACTOR, NUM, DEGF, MULT)
IMPLICIT ..... NONE
INTEGER J, DEGP, NUM, DEGF (*) ,MULT(*) ,SUM
REAL*8 P(0:*), \(\operatorname{FACIOR}(10,0: 2)\)SUM \(=0\)

DO J=1,NUM
```

 MULT(J)=MULT (J)+1
 SUM=SUM+DEGF (J) *MULT (J)
 ENDDO
DO WHILE (DEGP-SUM.GT.0)
CALL MULLER (P, DEGP, FACIOR, NUM, DEGF,MULT)
SUM=SUM+ DEGF (NUM)
ENDDO
RETURN
END

```

INTEGER FUNCTION GAMMA (K)
IMPLICIT NaNE
INTEGER ..... J, K
GAMMA=1

DO \(\mathrm{J}=\mathrm{K}-1,2,-1\)
GAMMA \(=\) GAMMA \(* J\)
ENDDO
REIURN
END
```

* Department of Electrical and Computer Engineering *
NAX FORTRAN SOURCe filename:

```

```

*
* ROUTINE: SUBROUTINE
*
*
* DESCRIPIION: This program initializes the recursively
*
* DOCUMENTATION

```CALLED:None.
```

AUTHOR: James F. Stafford
DATE CREATED: 9Jun87 Version 1.0
REVISIONS: None.
SUBROUTINE

IMPLICIT NONE
INTEGER I, J, K
REAL*8 $\quad F(-2: 0,0: 1,-1: 9)$
DO $\mathrm{I}=-2,0$
DO J=0,1
DO K=-1,9

$$
F(I, J, K)=0 .
$$

ENDDO
ENDDO
ENDDO
$F(-1,0,-1)=1$.
$F(0,1,0)=1$.
REIURN
END

```
* Department of Electrical and Computer Engineering *
* Kansas State University *
* * *
* VAX FORIRAN source filename: INPUT_RAT.FOR *
******************************************************************
*
* ROUTINE: PROGRAM
*
*
* DESCRIPIION: This program allows one to establish a
                                    data file compatible with the inverse
                                    transform package programs containing the
                                    necessary data to describe a rational
                                    function.
    DOCUMENTATION
    FILES: None.
    ARGUMENTS: Not used.
    REIURN: Not used.
    ROUTINES
    CALLED: None.
    AUIHOR: James F. Stafford
    DATE CREATED: 27May87 Version 1.0
    REVISIONS: None.
    IMPLICIT NONE
    INTEGER I,N_DEG,D_DEG,NO_ROOTS,MLTPLCTS (10)
    REAL*8 NUM(0:15),DEN(0:15)
    COMPLEX*16 ROOIS(10)
    CHARACTER*15 FILENAME,YESNO
```

PRINT *,'Are numerator roots known? (Y/N)'
READ (*, 200) YESNO
IF (YESNO. EQ.'Y') THEN
CALL INPUT_FACT (NO_ROOTS, ROOTS, MLTPLCTS)
CALL RECONSTRUCT (NO_ROOTS, ROOTS, MLTPLCTS,

ELSE
CALL INPUT_NONFACT (NUM, N_DEG)
ENDIF
PRINT *,'Are denominator roots known? (Y/N)'
READ (*, 200) YESNO
IF (YESNO. EQ.'Y') THEN
CALL INPUT_FACT (NO_ROOTS, ROOTS, MLTPLCTS)
CALL RECONSTRUCT (NO ROOTS, ROOTS, MLTPLCTS, DEN, D_DEG)

ELSE
CALL INPUT_NONFACT (DEN, D_DEG)
ENDIF
PRINT *,'Enter filename.'
READ (*, 200) FILENAME
FORMAT (Al5)
OPEN (UNIT=1, FILE=FILENAME, STATUS='NEW')
WRITE (1,*) N_DEG
DO I=O,N_DEG
WRITE ($1, *$) NUM(I)
ENDDO

```
        WRITE (l,*) D_DEG
        DO I=O,D_DEG
            WRITE (l,*) DEN(I)
        ENDDO
        CLOSE (UNIT=l, STATUS='KEEP')
        END
            SUBROUTINE INPUT_FACT (NO_ROOTS, ROOTS,MLTPLCTS)
            IMPLICIT NONE
            INTEGER NO_ ROOTS,MLTPLCTS(*),I
            COMPLEX*16 ROOTS(*)
            PRINT *,'Input number of roots'
            READ (*,*) NO_ROOTS
100
            FORMAT (F8.5,F8.5)
            DO I=l,NO_ROOTS
            PRINT *,'Input root number ',I
            READ (*,l00) ROOIS(I)
            PRINT *,'Input corresponding multiplicity'
                                    READ (*,*) MLTPLCTS(I)
                                    PRINT *,ROOTS(I),MLTPLCTS(I)
            ENDDO
            REIURN
            END
            SUBROUTINE RECONSTRUCT (NO_ROOTS,ROOTS,MLTPLCTS,
                                    RESULT, ORDER)
```

IMPLICIT
INTEGER
COMPLEX*16 ROOTS (*) , BUFFER (0:50)

```
REAL*8 RESULT(0:*)
BUFFER (0) =DCMPLX (1.0,0.0)
DO I=1,50
    BUFFER(I)=DCMPLX(0.,0.)
ENDDO
ORDER=0
DO I=1,NO_ROOTS
    ORDER=ORDER+MLTPLCTS(I)
    MULT=MLTPLCTS(I)
    DO WHILE (MULT.NE.O)
        DO J=ORDER,1,-1
            BUFFER(J) =BUFFER (J-1) -BUFFER (J) *ROOIS (I)
        ENDDO
        BUFFER(0) =-BUFFER(0) *ROOTS (I)
        MULT=MULT-1
    ENDDO
ENDDO
DO I=O,ORDER
    RESULT(I)=REAL(BUFFER(I))
ENDDO
REIURN
END
SUBROUTINE INPUT_NONFACT (POLY, DEG)
IMPLICIT NONE
INTEGER DEG,I
REAL*8 POLY(0:*)
```

PRINT *,'Input degree'
READ (*,*) DEG
DO I=O,DEG
PRINT *,' Input coeff. of power ', I READ (*,*) POLY(I)

ENDDO
REIURN
END

SUBROUTINE INV2 (I, J, RESP, OMEGA, A, B)
IMPLICIT NQNE
INTEGER I, J, K, L, M, GAMMA
REAL*8 A, B, OMEGA, $F(-2: 0,0: 1,-1: 9), \operatorname{RESP}(10,0: 1,0: 9)$,

IF (J.EQ.1) THEN
CALL INIT (F)
ELSE
CALL BESSEL(F,OMEGA,J)
ENDIF
ADJ $=$ GAMMA (J) * $(2 *$ OMEGA) ** $(J-1)$
DO K=0, J-1
$\operatorname{RESP}(I, 0, K)=\operatorname{RESP}(I, 0, K)+(F(-1,0, K-1) * A+F(0,0, K) * B)$
$+\quad / A D$

$$
\begin{aligned}
& \operatorname{RESP}(I, 1, K)=\operatorname{RESP}(I, 1, K)+(F(-1,1, K-1) \star A+F(0,1, K) * B) \\
& / A D J
\end{aligned}
$$

ENDDO
REIURN
END

PROGRAM
IMPLICIT NONE
INTEGER
I, J, K, NO_TERMS, ORDER, MULT (10) , GAMMA

```
    REAL*8 TAU(10),OMEGA(10),A,B,F(-2:0,0:1,-1:10),
    RESP(10,0:1,0:9)
    CHARACTER*15 FILENAME
    PRINT *,'Enter filename.'
    READ (*,200) FILENAME
FORMAT (Al5)
OPEN (UNIT=1, FILE=FILENAME, STATUS='OLD')
READ (l,*) NO_TERMS
DO I=l,NO_TERMS
```

READ ($1, *$) ORDER
PRINT *,ORDER
READ (l,*) MULT(I)
PRINT *,MULT(I)
IF (ORDER. EQ.1) THEN
READ ($1, *$) TAU(I)
PRINT *,TAU(I)
ELSE
READ ($1, *$) TAU(I)
PRINT *,TAU(I)
READ ($1, *$) OMEGA(I)
PRINT *,OMEGA(I)
ENDIF
DO J=l,MULT(I)
IF (ORDER. EQ.1) THEN
READ ($1, *$) A
PRINT *,A
$\operatorname{RESP}(I, 0, J-1)=A / G A M M A(J)$

ELSE
$\operatorname{READ}(1, *) A$
PRINT *,'A =', A
$\operatorname{READ}(1, *) B$

PRINT *,'B =', B

CALL IN2 $2(I, J, \operatorname{RESP}, \mathrm{OMEGA}(I), A, B)$
ENDIF
ENDDO
ENDDO
COOSE (UNIT=1, STAIUS='KEEP')
PRINT *,'Enter filename.'
READ (*,200) FILENAME
OPEN (UNIT=1, FILE=FILENAME, STAIUS='NEW')
WRITE (1,*) NO_TERMS
DO $\mathrm{I}=1, \mathrm{NO}$ _TERMS

```
WRITE(*,300) 'exp(',-TAL(I),'t)*'
WRITE (l,*) TAU(I), OMEGA(I)
WRITE (1,*) MULT(I)
```

DO $\mathrm{J}=1, \mathrm{MULT}(\mathrm{I})$

ENDDO
ENDDO
CLOSE (UNIT=1, STAIUS='KEEP')
FORMAT (A5, El 2.4E3, A3)
FORMAT (A2, El 2.4E3, A2, I2, A3, El 2.4E3, A4)
END

Department of Electrical and Computer Engineering *
Kansas State University *
VAX FORTRAN source filename: LOTS_O_PLOTS. FOR *

*
*

ROUTINE: subroutine
FIRST_PLOT(DEVICE, NUM_POINTS, X_DATA, Y_DATA, X_AXIS_TIILE,X_AXIS_UNITS, Y_AXIS_TITLE,Y_AXIS_UNITS, FLOT_TITLE, INFO)

DESCRIPIION: Makes a plot using X_DATA as abscissa and Y_DATA as ordinate. The axes are labelled with titles and units. The plot is also titled.

DOCUMENTATION
FILES: None.

ARGUMENTS:

DEVICE | (input) integer |
| :--- |
| is the device type to display the plot |
| 7475 for plotter |
| 4014 for terminal (Selanar only) |

NUM_POINTS | (input) integer |
| :--- |
| is the number of data points to |
| be plotted |

X_DATA | (input) real |
| :--- |
| is the array of abscissa values for the |
| data to be plotted |

Y_DATA \begin{tabular}{l}

(input) real | is the array of ordinate values for the |
| :--- |
| data to be plotted |

X_AXIS_UNITS (input) character*(*)

\quad

is the name to be given to the units
\end{tabular}

associated with the x-axis
Y_AXIS_TITLE (input) character*(*)
is the title to be placed on the y-axis
Y_AXIS_UNITS (input) character*(*)
is the name to be given to the units associated with the y-axis

PLOT_TITLE (input) character* (*)
is the title to be placed on the plot
REIURN:
INFO (output) real (6)
is the information necessary to make subsequent plots on the same axes.

ROUTINES
CALLED:
P System of Generalized Plot Routines

AUMHOR: James F. Stafford

DATE CREATED: 24May86 Version 1.0

REVISIONS: None.

```
    SUBROUTINE FIRST_PLOT(DEVICE,NUM_POINTS,X_DATA,Y_DATA, X_AXIS_TITLE,X_AXIS_UNITS, Y_AXIS_TITLE, Y_AXIS_UNITS, PLOT_TITLE, INFO)
IMRLICIT NONE
INTEGER DEVICE, NUM POINTS, FORLAB, FORTIC, NEGFLG, FORM, SCNTL , LENSIR, UPDOWN
REAL X_DATA(*),Y_DATA(*),FACIOR,VEL, X,Y,LENGTH, FIRSTX, DELTAX, ANGLE, CLEN, FIRDEL (4), DIVLNX, DIVLNY, WIDIH, HEIGHT, INFO (6)
CHARACIER* (*) X_AXIS_TIILE,Y_AXIS_TITLE,X_AXIS_UNITS, Y_AXIS_UNITS, PLOI_TIILE
```

CHARACTER* (1) BLANK, SIZ E

*INTIALIZE RLOT DEVICE

FACTOR $=1.0$
BLANK=1 '
SIZ $E=1 A^{\prime}$
CALL PINIT (DEVICE, BLANK, FACTOR, SIZ E)
*SET PEN VELOCITY
$V E L=10.0$
CALL PSTVEL (VEL)
*ESTABLISH ORIGIN
$X=4.5$
$Y=4.5$
CALL PORIG (X,Y)
*SET OFFSETS FOR AXIS ROUTINES (RELATIVE TO ORIGIN)
$X=0.0$
$\mathrm{Y}=0.0$
*DRAW Y-AXIS AND LABEL
LENGTH $=12.0$
CALL PSCALE (Y_DATA, NUM_POINTS, LENGTH, FIRSTX,

+ DELTAX,DIVLNY)
FIRDEL (3) =FIRSTX
FIRDEL (4) =DELTAX FORLAB=110 FORTIC=1001
ANGLE $=90.0$
CALL PAXIS (X,Y,Y_AXIS_TITLE,Y_AXIS_UNITS,FORLAB,
+ FORTIC, LENGTH, ANGLE, FIRSTX, DELTAX, DIVLNY)
*DRAW X-AXIS AND LABEL
LENGTH=18
CALL PSCALE (X_DATA, NUM_POINTS, LENGTH,FIRSTX,
+ DELTAX,DIVLNX)
FIRDEL (1) =FIRSIX
FIPDEL (2) $=$ DELTAX
FORLAB=211
FORTIC=2001
ANG LE $=0.0$
CALL PAXIS (X,Y,X_AXIS_TITLE,X_AXIS_UNITS, FORLAB, $+\quad$ FORTIC, LENGIH, ANGLE, FIRSTX, DELTAX, DIVLNX)
*DRAW CURVE
SCNTL=0
CALL PLINE (X_DATA, Y_DATA, NUM_POINTS, FIRDEL, SCNTL, + BLANK,DIVLNX,DIVLNY)

*TITLE THE PLOT

```
UPDOWN=0
X=9.0
Y=13.0
INFO (1) =FIRDEL (1)
INFO (2) =FIRDEL (2)
INFO (3) =FIRDEL (3)
INFO (4) =FIRDEL (4)
INFO (5) =DIVLNX
INFO (6) =DIVLNY
```

CALL PPLOT (X,Y, UPDONN)
CALL PIXTLN(PLOT_TIILE,LENSTR)
WIDIH=-LENSIR $/ 2$
HEIGHT=0.0
CALL PCHRPL (WIDIH, HEIGHT)
CALL PTEXT (PLOT_TITLE)
CALL PCLOSP
REIURN
END
Department of Electrical and Computer Engineering * Kansas State University *

VAX FORTRAN source filename: MULLER.FOR *

SUBROUTINE
MULLER (POLY, DEG, X)

DESCRIPTION: This program uses Muller's method (page 262, Numerical Recipes) to find a root of a polynomial.

FILES:

REIURN:

ROUTINES
CALLED:

ARGUMENTS: The following arguments are passed to the subroutine:

POLY (input) real is an array contalning the coefficients of the polynomial of interest.

DEG (input) integer is the degree of the above polynomial.

FACIOR (input/output) is an array containing known roots of the polynomial represented by POLY.
(input/output) is the number of factors in FACIOR.

DEGF

MULT
None. (input) real is the degree of the above polynomial.
(input/output)
is an array containing the degree of each corresponding factor in FACTOR.
(input/output)
is an array containing the multiplicity of each corresponding factor in FACIOR Not used.

DEFVAL, COMPOSE

AUTHOR:	James F. Stafford		
DATE CREATED:	28 May8 7 Version 1.0	REVISIONS:	30Jun88 Added deflation and factor table
:---			
updating.			

SUBROUTINE
MULLER (POLY, DEG , FACIOR, NUM, DEGF, MULT)
IMPLCIT NONE
INTEGER DEG, NUM, DEGF (*) ,MULT (*) , I, NO_TTERATIONS, MAX
REAL*8 $\operatorname{POLY}(0: *), Z E R O, \operatorname{FACIOR}(10,0: 2)$
COMPLEX*16 $X(-2: 1), Q, A, B, C, D, P(-2: 0), D E F V A L$
PARAMETER (ZERO=1.0E-12)
PARAMETER $\quad(M A X=200)$
NO_ TTERATIONS $=0$
$\mathrm{X}(-2)=\operatorname{DCMFLX}(1 ., 1$.
$X(-1)=\operatorname{DCMFLX}(1 ., 0$.
$X(0)=\operatorname{DCMPLX}(1 .,-1$.
DO WHILE ((CDABS (X (0) -X (-1)).GT. $\operatorname{CDABS}(X(0))$ *Z ERO)
. AND. (CDABS (X (0) -X (-2)) .GT. CDABS (X (0)) *Z ERO)
. AND. (NO_ ITERATIONS. LT. MAX))
NO_ ITERATIONS=NO_ITERATIONS+I
$\mathrm{B}=\mathrm{DCMPLX}(0 ., 0$.
$\mathrm{D}=\mathrm{DCMPLX}(0 ., 0$.
DO WHILE ((D.EQ.DCMPLX(0.,0.)).AND.(B.EQ.DCMPLX(0.,0.)))

```
DO I=-2,0
    P(I) =DEFVAL (POLY, DEG, FACIOR,NUM, DEGF,MULT, X (I))
```

 ENDDO
 \(Q=(X(0)-X(-1)) /(X(-1)-X(-2))\)
    ```
A=Q*P(0)-Q* (1+Q)*P(-1)+Q*Q*P(-2)
B}=(2*Q+1)*P(0)-((1+Q)**2)*P(-1)+Q*Q*P(-2
C=(1+Q)*P(0)
D=SQRT(B*B-4*A*C)
IF ((D.EQ. \(\operatorname{DCMPLX}(0 ., 0)\).\() .AND. (B.EQ. \operatorname{DCMPLX}(0 ., 0))\).\() THEN\)
\[
X(-1)=(X(0)+X(-1)) / 2
\]
\[
X(-2)=(X(0)+X(-2)) / 2
\]
```

ENDIF

ENDDO

```
IF (CDABS(B+D).GT.CDABS(B-D)) THEN
\[
X(1)=X(0)-(X(0)-X(-1)) * 2 * C /(B+D)
\]
```


ELSE

$$
X(1)=X(0)-(X(0)-X(-1)) * 2 * C /(B-D)
$$

ENDIF

$$
\begin{aligned}
\text { DO } I= & =2,0 \\
& X(I)=X(I+1)
\end{aligned}
$$

ENDDO
ENDDO
PRINT *,' I MADE IT HERE',NO_ ITERATIONS
NUM $=$ NUM +1
CALL COMPOSE (X (1) ,FACIOR, NUM, DEGF, MULT)
RETURN
END

```
* Department of Electrical and Computer Engineerıng *
*
*
*
```



```
*
*
*
ROUTINE: PROGRAM TEST
DESCRIPTION: This program computes the partial fraction expansion of a rational function using the method described in the thesis. The user is prompted for a filename under which the factored form of the rational function has been stored. The user is prompted again for a filename under which to store the partial fraction expansion.
REIURN: Not used.
ROUTINES
CALLED: SPEC_READ, PART_WRITE, EXPAND
AUIHOR: James F. Stafford
DATE CREATED: 10Jun87 Version 1.0
RENISIONS: None.
PROGRAM
TEST
IMPLICIT NONE
```

```
    INTEGER I, J, K, DEGN, DEGD (10) ,NO_FACTS,MULTS (10) ,
REAL*8
DEGX(10,5)
NUM(0:15),DEN(0:2,10),X(0:1,10,5),
FACT (0:2)
LOGICAL EASY,HARD
CALL SPEC_READ (NUM, DEGN, DEN, DEGD,MULTS, NO_FACIS)
CALL EXPAND(NUM, DEGN, DEN, DEGD, MULTS, X, DEGX, NO_ FACTS)
DO I=1,NO_FACTS
    DO J=l,MULTS (I)
        PRINT *,I,J
        DO K=0,DEGX (I, J)
            PRINT *,X(K,I,J)
        ENDDO
        ENDDO
    ENDDO
CALL PART_WRITE(NO_FACIS,MULTS, X, DEGX, DEN, DEGD)
END
```

$+$

| Department of Electrical and Computer Engineering Kansas State University | |
| :---: | :---: |
| VAX FORTRAN source filename: PART_WRITE. FOR | |
| ** | |
| ROUTINE: | SUBROUTINE
 PART_WRITE (NO_FACTS, MULTS, X, DEGX, DEN, DEGD) |
| DESCRIPTION: | This program writes the partial fraction expansion into a file. The user is prompted for a filename. |
| DOCUMENTATION FILES: | None. |
| ARGUMENTS: | The following arguments are passed to the subroutine: |
| NO_FACTS | (input) integer is the number of factors in the denominator polynomial. |
| MULTS | (input) integer is an array containing the multiplicities of each factor in the denominator polynomial. |
| X | (input) real
 is a three-dimensional array. $X(I, J, K)$ represents the Ith coefficient of the numerator of the (J, K) th term in the partial fraction expansion. Namely, that term with the Jth factor of DEN to the Kth power as denominator. |
| DEGX | (input) integer
 is an array. DEGX(I,J) represents the degree of the numerator of the (I, J) th term in the partial fraction expansion. See the description of X. |
| DEN | (input) real
 is a two-dimensional array. DEN(I, J) represents the coefficient of the Ith power of x in the Jth factor of the denominator polynomial. | PART_WRITE (NO_FACTS, MULTS, X, DEGX, DEN, DEGD)

IMPLICIT NONE
INTEGER I, J, K, DEGD(10),NO_FACTS, MULTS(10),
REAL*8 $\operatorname{DEN}(0: 2,10), X(0: 1,10,5)$, ALPHA, BETA, A, B
CHARACTER*15 FILENAME
PRINT *,'Enter filename.'
READ (*,200) FILENAME
FORMAT (Al5)
OPEN (UNIT=1, FILE=FILENAME, STATUS='NEW')
WRITE (1,*) NO_FACLS
DO I=1,NO_FACTS
WRITE ($1, *$) $\operatorname{DEGD}(I)$
PRINT *,'ORDER =', DEGD(I)
WRITE (1,*) MULTS(I)
PRINT *,'MULTIPLICITY =',MULTS(I)

```
```

IF (DEGD(I).EQ.1) THEN
WRITE (l,*) DEN(0,I)
PRINT *,'ALPHA =',DEN(O,I)

```

\section*{ELSE}

ALPHA \(=\operatorname{DEN}(1, I) / 2\)
\(\operatorname{BETA}=\operatorname{DSQRT}(\operatorname{DEN}(0, I)-A L P H A * * 2)\)
WRITE ( \(1, *\) ) ALPHA
PRINT *,'ALPHA \(=1\), ALPHA
WRITE (l,*) BETA
PRINT *,'BETA \(=\) ', BETA

\section*{ENDIF}
```

DO J=l,MULTS(I)

```

IF (DEGD(I).EQ.I) THEN
\[
\begin{aligned}
& \text { WRITE ( } 1, \star \text { ) X(0,I,J) } \\
& \text { PRINT }{ }^{\prime} A=1, X(0, I, J)
\end{aligned}
\]

\section*{ELSE}
\[
\begin{aligned}
& A=X(I, I, J) \\
& B=(X(0, I, J)-A \star A L P H A) / B E T A \\
& \text { WRITE (1,*) A } \\
& \text { PRINT *,'A }=1, A \\
& \text { WRITE (1,*) B } \\
& \text { PRINT *, } B=1, B
\end{aligned}
\]

\section*{ENDIF}

ENDDO
ENDDO
CLOSE (UNIT=l, STATUS='KEEP')
REIURN
END
```

* Department of Electrical and Computer Engineering *
*
*
*

```

```

*
* ROUTINE: PROGRAM
PLOT
DESCRIPTION: This program makes plots of time
domain response functions computed
by the inverse transform program.
DOCUMENTATION
FILES: None.
ARGUMENTS: None
REIURN: Not used.
ROUTINES
CALLED: FIRST_PLOT, READ, PLOT,
PCOSSP (contained in the P System
of Generalized Plotting Routines)
AUTHOR: James F. Stafford
DATE CREATED: 24May87 Version 1.0
REVISIONS: None.
*
*

**

```


PRINT *,' INPUT <7475> FOR PLOTTER OR <4014> FOR TERMINAL' READ (*,*)DEVICE
NUM_POINTS \(=1000\)
X_TITLE= 'TIME'
Y_TIILE= 'VALUE'
X_UNITS = ' INTERVALS'
Y_UNITS = ' UNITS'
TITLE='TEST RLOT'
PRINT *,'Input number of files to plot'
READ (*,*) NUM_FILES
DO I=1,NUM_FILES
PRINT *,'Input name of file number ', I READ (*,200) FILES(I)

ENDDO
FORMAT (Al5)
PRINT *,'Input initial time'
READ (*,*) TONE
PRINT *,'Input final time'
READ (*,*) TTWO
DO \(\mathrm{I}=1\),NUM_POINTS
X_DATA \((I)=T O N E+\) (TTWO-TONE) *
\(+\)
(FLOATJ (I-l) /FLOATJ (NUM_POINTS))
ENDDO
CALL READ (NUM_POINTS, X_DATA, Y_DATA, FILES (1))
CALL FIRST_PLOT(DEVICE, NUM_POINTS, X_DATA, Y_DATA, X_TIILE,X_UNITS,Y_TITLE,Y_UNITS,TITLE, INFO)

DO I=2,NUM_FILES

CALL READ (NUM_POINTS, X_DATA, Y_DATA, FILES(I))
CALL PLOT(DEVICE,NUM_POINTS, X_DATA, Y_DATA, INFO)
ENDDO
CALL PCLOSP
*
*
*
*
******* VAX FORIRAN source filename: PLOI_-MATIC. FOR
*

ROUTINE: subroutine
PLOT(DEVICE,NUM_POINTS, X_DATA, Y_DATA, INFO)

DESCRIPTION: Makes a plot using X_DATA as abscissa and Y_DATA as ordinate. The axes are assumed to be already drawn in accordance with INFO.

DOCUMENTATION
FILES: None.

ARGUMENTS:
DEVICE \begin{tabular}{l} 
(input) integer \\
is the device type to display the plot \\
NUM_POINTS \begin{tabular}{l}
\(7475 \quad\) for plotter \\
\(4014 \quad\) for terminal (Selanar only) \\
(input) integer \\
is the number of data points to \\
be plotted
\end{tabular} \\
X_DATA \\
\begin{tabular}{l} 
(input) real \\
is the array of abscissa values for the \\
data to be plotted
\end{tabular} \\
(input) real \\
is the array of ordinate values for the \\
data to be plotted
\end{tabular}

REIURN:
INFO
(output) real(6)
is the information necessary to make subsequent plots on the same axes.
```

*
* ROUTINES
* CALLED: P System of Generalized Plot Routines
* AUTHOR: James F. Stafford
* DATE CREATED: 24May86 Version 1.0
* REVISIONS: None.

```
    SUBROUTINE PLOT(DEVIGE,NUM_POINTS,X_DATA,Y_DATA,
+
```

 IMPLICIT NANE
 INIEGER DEVICE, NUM_POINTS, FORLAB , FORTIC, NEGFLG, FORM,
 + SCNTL,LENSIR,UPDOWN
REAL X_DATA(*),Y_DATA(*) ,FACIOR,VEL , X, Y, LENGTH,
+ FIRSTX, DELTAX, ANGLE, CLEN, FIRDEL (4),
+ DIVLNX, DIVLNY,WIDIH, HEIGHT, INFO (6)

CHARACTER* (1) BLANK, SIZ E
*INTIALIZE PLOT DEVICE
FACTOR $=1.0$
BLANK=' '
SIZ E='A'
CALL PINIT (DEVICE, BLANK, FACIOR, SIZ E)
*SET PEN VELOCITY

$$
V E L=10.0
$$

CALL PSTVEL(VEL)
*ESTABLISH ORIGIN

```
X=4.5
Y=4.5
```

CALL PORIG(X,Y)
*SET OFFSEIS FOR AXIS ROUTINES (RELATIVE TO ORIGIN)
$X=0.0$
$Y=0.0$
*ESTABLISH INFORMATION FOR PLOITING SUBROUTINE
FIRDEL (1) $=$ INFO (1)
FIRDEL (2) $=$ INFO (2)
FIRDEL (3) =INFO (3)
$\operatorname{FIRDEL}(4)=$ INFO (4)
DIVLNX=INFO (5)
DIVLNY=INFO (6)
*DRAW CURVE
SaNTL $=0$
CALL PLINE (X_DATA, Y_DATA, NUM_POINTS, FIRDEL, SCNTL,
$+$ BLANK, DIVLNX, DIVLNY)

REIURN
END
Department of Electrical and Computer Engineering *
Kansas State University *
AUTHOR: James F. Stafford
DATE CREATED: 6Jun87 Version 1.0
REVISIONS: None.

```
REAL*8 \(A(0: *), B(0: *)\)
ADDS \(=0\)
IF (DEGA. GE. DEGB) THEN
    DO I=0,DEGB
                \(A(I)=A(I)-B(I)\)
                ADDS=ADDS+1
            ENDDO

ELSE
DO I \(=0\), DEGA
\(A(I)=A(I)-B(I)\) ADDS \(=\) ADDS +1

ENDDO
DO I=DEGA+1,DEGB
\(A(I)=-B(I)\) ADDS \(=\) ADDS +1

ENDDO
ENDIF
DEGA= JMAX0 (DEGA, DEGB)
PRINT *,ADDS,'additions'

REIURN
END
```

Department of Electrical and Computer Engineering *
Kansas State University
*
*
VAX FORTRAN source filename: POLDIV.FOR *
ROUTINE: SUBROUTINE
POLDIV (NUM, N_DEG, DEN, D_DEG, QUO, DEGQ,
REM, DEGR, EASY, HARD)
DESCRIPTION: This program performs the division
algorithm on two input polynomials
to obtain a quotient and remainder.
DOCUMENTATION
FILES:
None.
ARGUMENTS: The following arguments are passed to
the subroutine.
(input) real
is an array contalning the coefficients
of the numerator polynomial.
N_DEG (input) integer
is the degree of the numerator polynomial.
DEN (input) real
is an array containing the coefflcients
of the denominator polynomial.
D_DEG (input) integer
is the degree of the denominator
polynomial.
QUO (output) real
is an array containing the coefficients
of the quotient polynomial.
DEGQ (output) integer
is the degree of the quotient polynomial.
REM (output) real
is an array containing the coefficients
of the remainder polynomial.

```
```

 DEGR (output) integer
 is the degree of the remainder
 polynomial.
 EASY (input) logical
 should be set to. TRUE. if both the
 numerator and denominator are monic
 polynomials. This will save calculations.
 HARD (input) logical
 must be set to.TRUE. if the
 denominator is not a monic polynomial.
 Otherwise leave it false to save
 calculations.
 REIURN: Not used.
 ROUTINES
 CALLED: None.
 AUTHOR: James F. Stafford
 DATE CREATED: 6Jun87 Version l.0
 REVISIONS: 27Jul87 Added calculation-saving.
 *

**
SUBROUTINE POLDIV (NUM, N_DEG, DEN, D_DEG, QUO, DEGQ, REM, DEGR, EASY, HARD)
IMPLICIT NONE
INTEGER J, K, N_DEG, D_DEG, DEGQ, DEGR, MULT, ADD, DIV
REAL*8 $\operatorname{NUM}(0: *), \operatorname{DEN}(0: *), Q U O(0: *), R E M(0: *), Z E R O$
LOGICAL EASY, HARD
PARAMETER (ZERO=1.0E-5)
DEGQ=N_DEG-D_DEG
MULT=0
DIV=0
$A D D=0$

```

DO J=O,N_DEG
\(\operatorname{REM}(\mathrm{J})=\operatorname{NUM}(\mathrm{J})\)
ENDDO
IF (DEGQ.GE.0) THEN
DO \(K=D E G Q, 0,-1\)
IF (HARD) THEN
QUO (K) \(=\) REM (D_DEG \(+K\) )/DEN (D_DEG)
DIV=DIV+1
ELSE
QUO (K) =REM (D_DEG \(+K\) )
ENDIF
DO J=D_DEG \(K-1, K,-1\)
IF (EASY) THEN
\(\operatorname{REM}(\mathrm{J})=\operatorname{REM}(\mathrm{J})-\operatorname{DEN}(\mathrm{J}-\mathrm{K})\)
\(\mathrm{ADD}=\mathrm{ADD}+1\)
ELSE
\(\operatorname{REM}(J)=\operatorname{REM}(J)-Q U O(K) * \operatorname{DEN}(J-K)\)
ADD=ADD+1
MULT=MULT+1
ENDIF
ENDDO
EASY=. FALSE.
ENDDO
IF (D_DEG.EQ.0) REM (0) \(=0\).
DEGR=JMAXO \((0\), D_DEG-1)
DO WHHE ((DABS(REM(DEGR)).LT.ZERO).AND. DEGR. GT.0)
DEGR=DEGR-1

ENDDO
ELSE
DEGR=N_DEG
DEGQ=0
\(Q U O(0)=0\).

\section*{ENDIF}

PRINT *,MULT,'multiplies'
PRINT *,ADD,'additions'
PRINT *,DIV,'divisions'
REIURN
END

Department of Electrical and Computer Engineering

SUBROUTINE POLMULT (POLl, DEGl , POL2 , DEG2 , PROD, DEGP, EASY)

DESCRIPTION: This program multiplies two polynomials and returns their product.

DOCUMENTATION
FILES:
None.

ARGUMENTS: The following arguments are passed to the subroutine.

POL1, POL2 (input) real
are arrays containing the coefficients of the polynomials to be multiplied.

DEG1,DEG2 (input) integer
are the degrees of the above polynomials.

PROD (output) real
is an array containing the coefficients of the product polynomial.

DEGP (output) integer
is the degree of the product
polynomial.
EASY (input) logical
should be set to. TRUE. only if POLl
is monic in order to save calculations.

REIURN: Not used.

ROUTINES
CALLED:

None.
```

*
* AUTHOR: James F. Stafford
* REVISIONS: 20Jul87 Added calculation-saving.


```
SUBROUTINE POLMULT(POL1,DEGl,POL2,DEG2, PROD, DEGP, EASY)
IMPLICIT NONE
INTEGER J, K, DEGl,DEG2,DEGP, ADD, MULT
REAL*8 POLl (0:*),POL2(0:*), PROD(0:*)
LOGICAL EASY
ADD=0
MULT=0
DEGP=DEGl+DEG2
DO J=DEG2,0,-1
IF (EASY) THEN
PROD (DEGl+J) =POL2 (J)
ELSE
PROD (DEGl + J) =POLl (DEGl) *POL2 (J) MULT=MULI+1
ENDIF
ENDDO
DO J=DEGl-1,0,-1
DO K=DEG2,1,-1
\(\operatorname{PROD}(\mathrm{J}+\mathrm{K})=\operatorname{PROD}(\mathrm{J}+\mathrm{K})+\mathrm{POLl}(\mathrm{J}) * \operatorname{POL} 2(\mathrm{~K})\) ADD=ADD+1 MULT=MULT+1
ENDDO
```

$$
\operatorname{PROD}(\mathrm{J})=\operatorname{POL1}(\mathrm{J}) * \operatorname{POL} 2(0)
$$ MULT=MULTH 1

ENDDO

PRINT *,ADD,'additions'
PRINT *,MULT,'multiplies'
REIURN
END

SUBROUTINE POLY_READ (POLY, DEG)

| IMPLICIT | NONE |
| :---: | :---: |
| INIEGER | DEG, I |
| REAL*8 | POLY(0:10) |
| $\operatorname{READ}(1, *)$ | |
| READ (1,*) | (POLY(I), I=0,DEG) |
| REIURN | |
| END | |

Department of Electrical and Computer Engineering *
Kansas State University *
VAX FORTRAN source filename: READ.FOR


```*
```



```
\begin{tabular}{ll} 
ROUTINE: & SUBROUTINE \\
& READ (NUM_POINTS, X_DATA, Y_DATA, FILENAME)
\end{tabular}
DESCRIPIION: This program evaluates a response function computed by the inverse transform program. The particular function parameters are stored in a data file under FILENAME.
```

DOCUMENTATION
FILES: None.
ARGUMENTS: The following arguments are passed to

```the subroutine:NUM_POINTS (input) integer
            is the number of points in X_DATA
            at which response values are desired.
            X_DATA (input) real
        is an array containing the
        values of time that the response
        function is to be evaluated at.
            Y_DATA (output) real
        is an array to accumulate the
        computed function values.
            FILENAME (input) character
        is the filename of the response
            function to be evaluated.
            REIURN: Not used.
            ROUTINES
            CALLED: None.
            AUIHOR:
                                James F. Stafford
```

DATE CREATED: 24 May8 6 Version 1.0

REVISIONS: None.

SUBROUTINE READ(NUM_POINTS,X_DATA, Y_DATA, FILENAME)
IMPLICIT NCNE
INTEGER NUM_POINTS, I, J, K, NO_TERMS,MULTS
REAL X_DATA(1000),Y_DATA(1000), EXPONENTIAL,

REAL *8 TAU, OMEGA, RESP (0:1)
CHARACTER* (15) FILENAME
DO $\mathrm{I}=1, \mathrm{NUM}$ _POINTS
Y_DATA $(I)=0$.
ENDDO
OPEN (UNIT=1,FILE=FILENAME, STATUS= 'OLD')
READ (1,*) NO_TERMS
DO $I=1, N O$ _TERMS
READ (1, *) TAU, OMEGA
$\operatorname{READ}(1, *)$ MULTS
POWEROFT=1
DO J=1, MULTS
$\operatorname{READ}(1, *) \operatorname{RESP}(0)$
$\operatorname{READ}(1, *) \operatorname{RESP}(1)$
DO $K=1, N U M$ POINTS
IF (J-1.GT.0) POWEROFT=X_DATA(K)** (J-l)
$Y _D A T A(K)=Y _D A T A(K)+$
SNGL(DEXP (-TAU*X_DATA(K))*
Department of Electrical and Computer Engineering *

```Kansas State University
```

*

```*
```

VAX FORTRAN source filename: ROOT FIND. FOR
PROGRAM

```TEST
```

DESCRIPIION: This program factors the denominator of

```a rational function with real coefficientsinto irreducible polynomials in \(R[x]\).The user is prompted for a filenameunder which a rational function hasbeen stored. The user is again promptedfor a filename to store the resultunder.
```

DOCUMENTATION
FILES:

```None.
```

ARGUMENTS: None.
RETURN: Not used.
ROUTINES
CALLED: POLY_READ, FACTORER, SPEC_WRITE
AUIHOR: James F. Stafford
DATE CREATED: 8Jun87 Version 1.0
REVISIONS: None.

```TEST
```

IMPLICIT NaNE
INTEGER DEGN, DEGD, DEGF (10) ,NUM_FACTS, MULT (10) , I, J
REAL*8 $\operatorname{NUM}(0: 10), \operatorname{DENOM}(0: 10), \operatorname{FACTOR}(10,0: 2)$

CHARACTER*15 FILENAME
PRINT *,'Input data file name'
READ (*,200) FILENAME
FORMAT (Al5)
OPEN (UNIT=1,FILE=FILENAME, STATUS='OLD')
CALL POLY_READ (NUM, DEGN)
CALL POLY_READ (DENOM, DEGD)
CLOSE (UNIT=1)
CALL FACTORER (DENOM, DEGD, FACTOR, NUM_FACTS, DEGF, MULT)
DO $I=1$, NUM FACTS
PRINT *,'FACTOR NUMBER ',I
DO J=0, DEGF (I)
PRINT *, FACIOR (I, J)
ENDDO
PRINT *,'MULTIRICITY',MULT(I)
ENDDO
CALL SPEC_WRITE (NUM, DEGN, NUM_FACTS, FACTOR, DEGF,MULT)
END

```
* Department of Electrical and Computer Engineering *
                    Kansas State University *
VAX FORIRAN source filename: SIMPLE_PLOT.FOR *
ROUTINE: subroutine
SIMPLE_PLOT(DEVICE,NUM_ POINTS,X_DATA,
Y_DATA, X_AXIS_TITLE,X_AXIS_UNITS,
Y_AXIS_TITLE,Y_AXIS_UNITS, RLOT_TITLE,
PLOT_TYPE)
DESCRIPIION: Makes a plot using X_DATA as abscissa
and Y_DATA as ordinate. The axes are
labelled with titles and units. The
plot is also titled. One of four plot
types can be selected.
DOCUMENTATION
FILES: None.
ARGUMENTS:
DEVICE \begin{tabular}{l} 
(input) integer \\
is the device type to display the plot \\
7475 for plotter \\
4014 for terminal (Selanar only)
\end{tabular}
NUM_POINTS \begin{tabular}{l} 
(input) integer \\
is the number of data points to \\
be plotted
\end{tabular}
X_DATA \begin{tabular}{l} 
(input) real \\
is the array of abscissa values for the \\
data to be plotted
\end{tabular}
X_DATA \begin{tabular}{l} 
(input) real \\
is the array of ordinate values for the \\
data to be plotted
\end{tabular}
X_AXIS_UNITS (input) character*(*)
```

is the name to be given to the units associated with the x -axis

Y_AXIS_TITLE (input) character*(*)
is the title to be placed on the y-axis
Y_AXIS_UNITS (input) character* (*)
is the name to be given to the units associated with the y-axis

PLOT_TIILE (input) character*(*)
is the title to be placed on the plot
PLOT_TYPE (input) character*(*)
is a character string which specifies the type of plot to be generated. The following are valid:
'LINEAR' for linear-linear
'LOG_LINEAR' for log-linear
'LINEAR LOG' for linear-log
'LOG_LOG' for $\log -10 g$

REIURN: Not used.

ROUTINES
CALLED: \quad P System of Generalized Plot Routines

AUIHOR: James F. Stafford

DATE CREATED: 5Sep86 Version 1.0

REVISIONS: None.

SUBROUTINE SIMPLE_PLOT(DEVICE, NUM_POINTS, X_DATA, Y_DATA, X_AXIS_TITLE, X_AXIS_UNITS, Y_AXIS_TITLE, Y_AXIS_UNITS, PLOT_TITLE, PLOT_TYPE)

IMPLICIT NONE
INTEGER DEVICE, NUM_POINTS, FORLAB, FORTIC, NEGFLG, FORM,

```
    + SQNIL,LENSTR,UPDOWN
    REAL X_DATA(*),Y_DATA(*),FACIOR,VEL,X,Y, LENGIH,
        FIRSIX, DELTAX, DIVLEN, ANGLE, CLEN, FIRDEL (4),
        DIVLNX, DIVLNY, WIDIH, HEIGHT
    CHARACTER*(*) X_AXIS_TIILE,Y_AXIS_TITLE,X_AXIS_UNITS,
        Y_AXIS_UNITS, PLOT_TITLE, PLOT_ TYPE
    CHARACTER*(1) BLANK,SIZ E
*INTIALIZE PLOT DEVICE
    FACTOR=1.0
    BLANK=' '
    SIZ E= 'A'
    CALL PINIT(DEVICE, BLANK,FACIOR,SLE E)
*SET PEN VELOCITY
    VEL=10.0
    CALL PSIVEL(VEL)
*ESTABLISH ORIGIN
    X=4.5
Y=4.5
CALL PORIG (X,Y)
*SET OFFSETS FOR AXIS ROUTINES (RELATIVE TO ORIGIN)
    X=0.0
Y=0.0
*DRAW Y-AXIS AND LABEL
    IF (PLOT_TYPE.EQ.'LINEAR'.OR. PLOT_TYPE.EQ.'LINEAR_LOG')
+ THEN
    LENGTH=12.0
    CALL PSCALE(Y_DATA, NUM_POINTS, LENGTH,FIRSTX,
    + DELTAX,DIVLEN)
        FIRDEL (3) =FIRSTX
        FIRDEL (4) =DELTAX
        DIVLNY=DIVLEN
```

```
            FORLAB=110
            FORTIC=1001
            ANGLE=90.0
            CALL PAXIS(X,Y,Y_AXIS_TITLE,Y_AXIS_UNITS,FORLAB,
    + FORTIC, LENGIH, ANGLE,FIRSTX, DELTAX, DIVLEN)
        ELSE
            LENGTH=12.0
            CALL PLOGSC(Y_DATA, NUM_POINTS, LENGTH, FIRSTX, CLEN,
    NEGFLG)
            FIRDEL (3) =FIRSTX
            FIRDEL (4) =CLEN
            FORM=-1010
            ANGLE=90.0
            CALL PLGAXS (X, Y, Y_AXIS_TITLE, Y_AXIS_UNITS, FORM,
            LENGIH, ANGLE, FIRSIX, CLEN)
ENDIF
*DRAW X-AXIS AND LABEL
        IF (PLOT_TYPE.EQ.'LINEAR'.OR. PLOT_TYPE.EQ.'LOG_LINEAR')
    + THEN
            LENGTH=18
            CALL PSCALE(X_DATA, NUM_ POINTS, LENGTH,FIRSTX,
    + DELTAX,DIVLEN)
            FIRDEL(1) FFIRSTX
            FIRDEL (2) =DELTAX
            DIVLNX=DIVLEN
            FORLAB=2ll
            FORTIC=2001
            ANGLE=0.0
            CALL PAXIS (X,Y,X_AXIS_TITLE,X_AXIS_UNITS,FORLAB,
            + FORTIC, LENGIH, ANGLE,FIRSTX, DELTAX, DIVLEN)
        ELSE
            LENGTH=18.0
                CALL PLOGSC(X_DATA, NUM_ POINTS, LENGTH,FIRSTX, CLEN,
+
        NEGFLG)
```

FIRDEL (1) $=$ FIRSTX
$\operatorname{FIRDEL}(2)=C L E N$
FORM $=+2011$
ANGLE=0.0
CALL PLGAXS (X,Y,X_AXIS_TITLE,X_AXIS_UNITS,FORM,

+ LENGIH, ANGLE, FIRSTX, CLEN)

ENDIF

*DRAW CURVE

IF (PLOT_TYPE. EQ.' LINEAR') THEN
SCNIL=0
CALL PLINE (X_DATA, Y_DATA, NUM_POINTS, FIRDEL, SCNTL,

+ BLANK,DIVLNX,DIVLNY)
ELSE IF (PLOT_TYPE.EQ.' LOG_LINEAR')THEN
SONIL=0
CALL PLGLIN(X_DATA, Y_DATA, NUM_POINTS, FIRDEL, SONTL,
+ BLANK,DIVLEN)
ELSE IF (PLOT_TYPE. EQ.' LINEAR_LOG')THEN
SCNIL=0
CALL PLNLOG (X_DATA, Y_DATA, NUM_POINTS, FIRDEL, SONTL, $+\quad$ BLANK,DIVLEN)

ELSE IF (PLOT_TYPE. EQ.'LOG_LOG')THEN
SQNIL=0
CALL PLGLOG (X_DATA, Y_DATA, NUM_ POINTS, FIRDEL, SCNTI, BLANK)

ENDIF
*TIILE THE RLOT
UPDOWN=0
$\mathrm{X}=9.0$
$Y=13.0$
CALL PPLOT (X, Y, UPDOWN)

```
CALL PIXILN(PLOT_TITLE, LENSIR)
WIDIH=-LENSIR/2
HEIGHT=0.0
CALL PCHRPL (WIDIH, HEIGHT)
CALL PTEXT (PLOT_TITLE)
CALL PCLOSP
REIURN
END
```

```
* Department of Electrical and Computer Engineering *
                    Kansas State University *
VAX FORTRAN source filename: SPEC_INPUT. FOR *
```



```
*
*
*
*
* DATE CREATED: 15Jun87 Version 1.0
INTEGER I, J, N_DEG, D_DEG(10) ,NO_ROOTS,MULTS (10),
REAL \(\operatorname{NUM}(0: 15), \operatorname{DEN}(0: 2,10), X(0: 1,10,5)\),
PRINT *,'Enter numerator information.'
CALL INPUT_NONFACI (NUM, N_DEG)
```

PRINT *,'Enter denominator information.'
PRINT *,' Input number of relatively prime irreducible factors.'
READ (*,*) NO_FACTS
DO $I=1$, NO_ FACIS
PRINT *,'Enter information on factor number',I
CALL INPUT_NONFACT (FACT, D_DEG(I))
DO J=O,D_DEG (I)
$\operatorname{DEN}(J, I)=\operatorname{FACT}(J)$
ENDDO
PRINT *,'Enter number of times this factor appears.'
READ (*,*) MULTS(I)
ENDDO
CALL SPEC_WRITE (NUM, N_DEG, NO_FACTS, DEN, D_DEG, MULTS)
END
SUBROUTINE INPUT_NONFACT (POLY, DEG)
IMPLICIT NaNE
INTEGER DEG, I
REAL POLY(0:*)
PRINT *,'Input degree'
READ (*,*) DEG
DO $\mathrm{I}=0, \mathrm{DEG}$
PRINT *,'Input ∞ eff. of power ',I READ (*,*) POLY(I)

ENDDO
REIURN
END

*

*
*
*
*
*

Department of Electrical and Computer Engineering * Kansas State University

VAX FORTRAN source filename:
_READ. FOR

ROUTINE: SUBROUTINE
SPEC_READ (NUM, DEGN, DEN, DEGD, MULTS, NO_FACTS)

DESCRIPTION: This program reads data for a rational function out of a file created by the program for factoring the denominator. There is also a program called SPEC_WRITE that will create a data file in the proper format.

DOCUMENTATION
FILES:
None.

ARGUMENTS: The following arguments are passed to the subroutine:

NUM (output) real
is an array contalning the coefficients of the numerator polynomial.

DEGN (output) integer
is the degree of the numerator
polynomial.
DEN (output) real
is a two-dimensional array. DEN(I,J) represents the coefficient of the Ith power of x in the Jth factor of the denominator polynomial.

DEGD (output) integer
is an array. DEGD(I) represents the degree of the Ith factor in the denominator polynomial.

MULTS (output) integer
is an array. MULTS(I) represents the multiplicity of the Ith factor in the
SUBROUTINE
IMPLICIT
INTEGER I, J, DEGN, DEGD (10) ,NO_FACTS, MULTS (10)
REAL*8 $\operatorname{NUM}(0: 15), \operatorname{DEN}(0: 2,10), X(0: 1,10,5)$,
CHARACTER*15 FILENAME
PRINT *,'Input data file name'
READ (*, 200) FILENAME
FORMAT (Al5)
OPEN (UNIT=1,FILE=FILENAME, STATUS='OLD')
READ (1,*) DEGN
DO $I=0$, DEGN

$$
\operatorname{READ}(1, *) \operatorname{NUM}(I)
$$

ENDDO

```
```

READ (1,*) NO_FACTS
DO I=l,NO_FACTS
READ (1,*) DEGD(I)
DO J=0,DEGD(I)
READ (1,*) DEN(J,I)
ENDDO
READ (1,*) MULTS(I)
ENDDO
COSE (UNIT=1)
PRINT *,DEGN
DO I=0,DEGN
PRINT *,NUM(I)
ENDDO
PRINT *,NO_FACTS
DO I=1,NO_FACTS
PRINT *,DEGD(I)
DO J=0,DEGD(I)
PRINT *,DEN(J,I)
ENDDO
PRINT *,MULTS(I)
ENDDO
REIURN
END

```

```

*
*
* ROUTINES
* DATE CREATED: 30Jun88 Version 1.0
**

```

SUBROUTINE
IMPLICIT NaNE
```

REAL *8 NUM(0:*),FACIOR (10,0:2)
CHARACTER*15 FILENAME
PRINT *,'Enter filename.'
READ (*, 200) FILENAME
FORMAT (AI 5)
OPEN (UNIT=1, FILE=FILENAME, STATUS='NEN')
WRITE (1,*) N DEG
DO $I=0, N$ DEG
WRITE (1,*) NUM(I)
ENDDO
WRITE (1,*) NO_ FACIS
DO $\mathrm{I}=1, \mathrm{NO}$ _FACTS
WRITE ($1, *$) D_DEG (I)
DO J=0,D_DEG (I)

```

WRITE (1,*) FACTOR (I,J)
ENDDO
WRITE (1,*) MULTS(I)
ENDDO
CLOSE (UNIT=1, STATUS='KEEP')
REIURN
END
```

Department of Electrical and Computer Engineering *
Kansas State University *
Kansas State University *
VAX FORIRAN source filename: TRANSFER.FOR *
ROUTINE: There are actually three programs
in this file:
SUBROUTINE
GEID (J, A, DEGA, DEN, DEGD)
SUBROUTINE
GEIX (J, K, F, DEGF, X, DEGX)
SUBROUTINE
PUTX (J, K, F, DEGF,X, DEGX)
DESCRIPIION: These programs are a substitute for
a more sophisticated data structuring
method. They copy the coefficients
for a polynomial embedded in a
higher dimensional array into a one-
dimensional array, or vice versa.
DOCUMENTATION
FILES: None.
ARGUMENTS: The following arguments are passed to
GETD:
(input) integer
is a number representing which factor
of the denominator is sought.
DEN (input) real
is a two-dimensional array. DEN(I,J)
represents the coefficient of the Ith
power of }x\mathrm{ in the Jth factor of the
denominator polynomial.
DEGD (input) integer
is an array. DEGD(I) represents the
degree of the Ith factor in the
denominator polynomial.
A (output) real

```
\begin{tabular}{|c|c|c|}
\hline * & \multirow{6}{*}{DEGA} & is an array to receive the coefficients of the factor polynomial. \\
\hline * & & \\
\hline * & & (output) integer \\
\hline * & & is the degree of the factor polynomial. \\
\hline * & & The following arguments are passed to \\
\hline * & & GETX: \\
\hline * & & \\
\hline * & \multirow[t]{5}{*}{J, K} & (input) integer \\
\hline * & & are the coordinates of the term in the \\
\hline * & & partial fraction expansion that is \\
\hline * & & sought. See the description of X. \\
\hline * & & \\
\hline * & \multirow[t]{8}{*}{X} & (input) real \\
\hline * & & is a three-dimensional array. \(\mathrm{X}(\mathrm{I}, \mathrm{J}, \mathrm{K})\) \\
\hline * & & represents the Ith coefficient of the \\
\hline * & & numerator of the ( \(\mathrm{J}, \mathrm{K}\) ) th term in the \\
\hline * & & partial fraction expansion. Namely, \\
\hline * & & that term with the Jth factor of DEN \\
\hline * & & to the Kth power as denominator. \\
\hline * & & \\
\hline * & \multirow[t]{6}{*}{DEGX} & (input) integer \\
\hline * & & is an array. DEGX(I,J) represents the \\
\hline * & & degree of the numerator of the ( \(I, J\) ) th \\
\hline * & & term in the partial fraction expansion. \\
\hline * & & See the description of X . \\
\hline * & & \\
\hline * & \multirow[t]{3}{*}{F} & (output) real \\
\hline * & & is an array to receive the coefficients \\
\hline * & & of the desired polynomial. \\
\hline * & \multirow[t]{5}{*}{DEGF} & (output) integer \\
\hline * & & is the degree of the polynomial, F . \\
\hline * & & \\
\hline * & & The following arguments are passed to \\
\hline * & & PUTX: \\
\hline * & \multirow[t]{4}{*}{J, K} & (input) integer \\
\hline * & & are the coordinates of the term in the \\
\hline * & & partial fraction expansion that is to \\
\hline * & & be updated. See the description of X. \\
\hline * & \multirow[t]{7}{*}{X} & (input) real \\
\hline * & & is a three-dimensional array. \(\mathrm{X}(\mathrm{I}, \mathrm{J}, \mathrm{K})\) \\
\hline * & & represents the Kth coefficient of the \\
\hline * & & numerator of the ( \(I, J\) ) th term in the \\
\hline * & & partial fraction expansion. Namely, \\
\hline * & & that term with the Ith factor of DEN \\
\hline * & & to the Jth power as denominator. \\
\hline
\end{tabular}
*
*
*
*
*
*
* * * * * * *
(input) integer is an array. \(\operatorname{DEGX}(\mathrm{I}, \mathrm{J})\) represents the degree of the numerator of the ( \(I, J\) ) th term in the partial fraction expansion. See the description of X .

F (input) real
is an array to containing the coefficients of the polynomial to be embedded in the partial fraction matrix.

DEGF

REIURN: Not used.
(input) integer
is the degree of the polynomial, \(F\).

ROUTINES
CALLED:
None.

AU'IHOR: James F. Stafford

DATE CREATED: 6JunB 7 Version 1.0

REVISIONS: None.


ENDDO
RETURN

END

SUBROUTINE GEIX (J, K, F, DEGF, X, DEGX)
IMPLICIT NONE
INTEGER J, K, L, DEGF, DEGX (10,*)
REAL*8 \(\quad \mathrm{F}(0: *), \mathrm{X}(0: 1,10, *)\)
\(\operatorname{DEGF}=\operatorname{DEGX}(\mathrm{J}, \mathrm{K})\)
DO \(L=0\), DEGF
\[
F(L)=X(L, J, K)
\]

ENDDO
REIURN

END

SUBROUTINE PUTX (J, K, F,DEGF, X, DEGX)
IMPLICIT NONE
INTEGER \(J, K, L, \operatorname{DEGF}, \operatorname{DEGX}(10, *)\)
REAL*8 \(\quad F(0: *), X(0: 1,10, *)\)
\(\operatorname{DEGX}(J, K)=\operatorname{DEGF}\)
DO \(L=0\), DEGF
\(X(L, J, K)=F(L)\)
ENDDO
RETURN

END
\begin{tabular}{ll} 
SUBROUTINE & GET (A, DEGA, B, DEGB) \\
IMPLICIT & NQNE \\
INTEGER & I, DEGA, DEGB \\
REAL*8 & \(\mathrm{A}(0: *), \mathrm{B}(0: *)\)
\end{tabular}

DEGA=DEGB
DO I=0, DEGA
\[
A(I)=B(I)
\]

ENDDO
REIURN
END

AN ALGEBRAIC APPROACH TO
COMPUTING INVERSE LAPLACE TRANSFORMS OF RATIONAL FUNCTIONS

\author{
by \\ JAMES FLOYD STAFFORD
}
B.S. Kansas State University, 1986

\author{
AN ABSTRACT OF A MASTER'S THESIS \\ submitted in partial fulfillment of the \\ requirements for the degree \\ MASTER OF SCIENCE
}

Department of Electrical Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas

1989

Abstract

The usual method for solving linear, constant-coefficient. differential equations involves use of the Laplace transform. The most difficult step in this method of solution is computing the inverse Laplace transform of a rational function. The object of this thesis is to describe an algorithm for solving large systems of this kind. The thesis demonstrates that the problem of solving such systems can be treated completely algebraically once the denominator of the rational function is factored. It is shown that the number of operations required to compute a suitable partial fraction expansion of a rational function can be reduced by factoring the denominator into irreducible linear and quadratic factors in \(\mathrm{R}[\mathrm{x}]\). Applications to control theory are discussed. The algorithms are derived with mathematical rigor. Working FORTRAN programs implementing the derived algorithms are given in an appendix. Electrical engineers solving practical problems in circuit analysis and control theory might find these algorithms useful.```

