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Abstract

Streaked photoemission from nanostructured surfaces and nanoparticles by attosecond

extreme ultraviolet (XUV) pulses into an infrared (IR) or visible streaking pulse allows for

sub-femtosecond resolution of the plasmonically enhanced streaking-pulse electric field. It

holds promise for the temporally and spatially resolved imaging of the dielectric response

near nanostructures. In this dissertation, I present four distinct yet interconnected aspects

of numerically modeling plasmonic reconstruction by the photoemission from nanoparticles.

First, I present a theoretical model of simulating the IR-streaked XUV photoemission

spectra, by calculating (a) the plasmonic field induced by IR pulses within Mie theory, and

(b) the T-matrix elements for photoemission using a quantum-mechanical model. The sim-

ulation results show significant oscillation-amplitude enhancements and phase shifts, com-

paring to calculations without the induced plasmonic field. These observable effects can be

traced to the dielectric properties of the nanoparticles, demonstrating the applicability of

streaking spectroscopy to the investigation of induced plasmonic effect near nanoparticles

and nanostructured surfaces.

Second, based on this model, I propose a scheme for the reconstruction of plasmonic

near-fields at isolated nanoparticles from streaked photoelectron spectra. The success of this

proposed scheme is demonstrated by the accurate imaging of the IR-streaking-pulse-induced

plasmonic fields at the surface of gold nanospheres and nanoshells with sub-femtosecond

temporal and sub-nanometer spatial resolution.

Third, I further improve the physical accuracy of the model, by developing a semi-classical

approach, ACCTIVE, to solve the time-dependent Schrödinger’s equation in spatially inho-

mogeneous electromagnetic fields. I demonstrate the validation of this method by studying

electron final-state wavefunctions in Coulomb and laser fields, before applying these improved

final photoelectron states to streaked photoemission from hydrogen atoms. The results show



excellent quantitative agreement with direct solution of the Schrödinger’s equation. Imple-

menting this method to simulating the streaked photoemission from Au nanospheres shows

better agreement in plasmonic-field reconstruction for low energy photoelectrons than pre-

vious strong-field-approximation simulations.

Finally, I extend the previous work and explore the non-linear optical response of nanopar-

ticles observed in momentum imaging experiments at the Kansas State University Depart-

ment of Physics. My Mie simulations, by including intensity-dependent index of refraction,

show a significant non-linear effect in SiO2-core-Au-shell nanoparticles in response to 1010 -

1012 W/cm2 intensity and 780 nm central wavelength IR pulses. This effect is responsible

for the change in the experimentally observed photoelectron “cut-off” energies, as a function

of the external pulse intensity, suggesting the non-linear optical response to be a significant

factor in strong-field photoemission from plasmonic nanoparticles.
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Chapter 1

Introduction

1.1 Background and motivation

1.1.1 Recent developments of nanoscience and technology

Significant advances in nano-science and technologies have enabled the design and synthesis

of nanometer-sized structures with a tunable response to electromagnetic radiation [1–3].

Induced by the transient electric field of an incident laser pulse, this plasmonic response

in metals is due to the electromagnetic field generated by the driven collective motion of

conduction electrons (Fig. 1.1). Near the surface of sub-wavelength-size isolated nanopar-

ticles [4–6] and nanostructured surfaces [7–13], the induced plasmonic electromagnetic field

can strongly enhance an incident inducing field, and the plasmonic near-field intensity can

exceed the incident external-field intensity by several orders of magnitude [1]. Extreme

plasmonic light-intensity amplification of several orders of magnitudes is being applied in

well-established surface-enhanced Raman spectroscopy, allowing the spectroscopic charac-

terization of individual molecules [14]. This huge light amplification forms the physical basis

for promising new discipline-transcending techniques, such as attosecond nanoplasmonic-field

microscopy [7], light-harvesting [15], nanoplasmonically enhanced photocatalysis [16], and

photothermal cancer therapy [17]. The continued unfolding of nanoplasmonic imaging tech-

niques and nanoplasmonically-enhanced devices is supported by recent theoretical [5, 6, 18–

1



Figure 1.1: Illustration of collective oscillation of electrons with the incident electromagnetic
field at (a) a flat goldair interface (surface plasmon polariton, or SPP), and in (b) a gold
nanoparticle (localized surface plasmon, or LSP). (c)Typical dispersion curves of SPPs (red)
and LSPs (blue). (Figure from [23])

21] and experimental [4, 22] efforts to help understand and detect induced plasmonic fields

near nanostructures.

1.1.2 Recent developments of laser technology

The dynamical response of atoms, molecules, and solids to electromagnetic radiation is

governed by electronic processes that occur at the timescale of one atomic time unit (24

attoseconds = 24 as = 24 × 10−18 s) [24]. Driven by rapid progress in the development

of tabletop attosecond-duration light sources over the past two decades [3, 25–28], this

timescale has become accessible in laboratories with the availability of intense ultrashort

pulses of electromagnetic radiation in the infrared (IR) and extreme ultraviolet (XUV) spec-

tral range with pulse durations of a few femtoseconds (1 fs = 10−15 s) and a few tens of

2



Figure 1.2: Schematic of the attosecond streaking from atomic gas target. A few-cycle pulse
of laser light, together with a synchronized sub-fs XUV burst, is focused into an atomic gas
target. The XUV pulse knocks electrons free by photoionization. The light electric field EL(t)
to be measured imparts a momentum change to the electrons (black arrows), which scales as
the instantaneous value of the vector potential AL(t) at the instant of release of the probing
electrons. The momentum change is measured by an electron detector, which collects the
electrons ejected along the direction of the linearly polarized EL(t). (Figure from [36])

attoseconds, respectively. Pairs of such pulses can be synchronized, mutually delayed, and

jointly focused on a target to allow the time-resolved investigation, such as nuclear motion

in small molecules [29–31], electronic dynamics during the photoionization of atoms [32–35],

the recording of streaked photoelectron spectra (Fig. 1.2) [33, 36–44] and two-photon-two-

pathway-photoemission interferograms [27, 45]. As this technique is being further refined,

emerging attosecond time-, spin-, energy-, and emission-angle-resolved photoelectron spec-

troscopy is starting to allow, e.g., the imaging of ultrafast bandstructure changes, dynamical

screening effects in solids, and electronic correlation in magnetic materials [28, 46, 47].

3



1.2 Challenges of moving towards complex targets

1.2.1 Physical phenomena beyond atomic and molecular targets

Attosecond time-resolved photoemission spectroscopy, as mentioned previously, has been

successfully demonstrated in experiments for gaseous atomic [32, 33, 48–52] and molecular

[53–55] targets over the years. It is currently being extended to complex targets [26, 38],

such as nanostructures and nanoparticles [6, 22, 43, 56–60], and solid surfaces [27, 28, 41, 44–

46, 61–63], making it possible to examine, for example, the dynamics of photoemission from

a surface on an absolute time scale [64] and suggesting, for example, the time-resolved

observation of the collective motion of electrons (plasmon) in condensed-matter systems

[65–67].

In contrast to time-resolved photoemission studies on isolated atoms in the gas phase,

the experimental execution and theoretical analysis of time-resolved photoemission from nan-

otips [22, 68], solid surfaces, and nanoparticles in sub-optical-cycle time-resolved streaking

[6, 38, 41, 69–71] and RABBITT (reconstruction of attosecond beating by interference of

two-photon transitions) [45, 46, 72–74] experiments add challenges in preparing and charac-

terizing clean and atomically flat solid surfaces and size- and shape-selected nanoparticles.

Compared with photoemission from isolated gaseous atoms, the investigation of such exper-

iments on complex targets requires, in addition, taking into consideration of (i) the complex

electronic band structure [40, 46], (ii) elastic and inelastic scattering of released photoelec-

trons inside the solid [40, 70], (iii) the excitation of surface and bulk collective electronic

excitations [65, 67, 75], (iv) the dielectric screening and reflection [27, 74] of the assisting IR-

laser field at the solid surface, (v) the influence of equilibrating residual charge distributions

on emitted photoelectrons [65], and (vi) the effect of spatially inhomogeneous plasmonic

fields on the photoemission process [4–6, 19–21, 38].
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1.2.2 Challenges in theoretical modeling

Correct theoretical modeling of those phenomena is especially crucial in order to understand

the underlying physics. However, the existing theoretical models for investigating atomic

and molecular targets fall short when moving towards complex targets. First, for exam-

ple, while for atomic photoionization by visible and near UV light, the size of the target

is small compared to the wavelength of the incident light pulse, this is no longer true for

nanoparticles [6, 43, 56–60], (nanostructured) surfaces [40, 63, 71, 76], and layered struc-

tures [41, 42, 62, 63]. Not only the comparability of the wavelength and structure size,

but also the target’s spatially inhomogeneous dielectric response to the incident light pulse

requires careful quantum-mechanical modeling beyond the dipole approximation [40, 71].

Second, most numerical models for streaked and interferometric photoemission from atoms

are based on the so-called “strong-field approximation (SFA)” [38]. The SFA builds on the

assumption that photo-emitted electrons are solely exposed to spatially homogeneous exter-

nal fields. It discards all other interactions photo-released electrons may be subject to (e.g.,

with the residual parent ion) and cannot accommodate spatially inhomogeneous final-state

interactions. While the SFA was shown to deteriorate for lower photoelectron energies [77],

it completely loses its applicability for complex targets as screening and plasmonic effects

expose photoelectrons to inhomogeneous net electromagnetic fields [38, 40, 65, 71]. The con-

venient use of analytically known so-called “Volkov wavefunctions” for the photoelectrons’

motion in homogeneous electromagnetic fields [78] is no longer acceptable, since dielectric

response effects entail screening length and induced plasmonic fields at the nm length scale

[6, 56–60, 63, 65]. Thus, the numerical modeling of photoemission from complex targets

with morphologies or plasmonic response lengths at the nm scale by intense short wave-

length pulses (made increasingly available at new (X)FEL light sources [79]), necessitates

photoemission models beyond the SFA.
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1.3 Dissertation overview

The main focus of this dissertation is to theoretically investigate the photoemission process

from plasmonic nanoparticles, particularly streaked photoemission and velocity map imaging,

as well as improving the theoretical modeling of such investigations.

In Chapter 2, we present a theoretical model of simulating the IR-streaked XUV pho-

toemission spectra, by calculating (a) the plasmonic field induced by IR pulses within Mie

theory, and (b) the T-matrix elements for photoemission using a quantum-mechanical model.

By implementing this model, we also demonstrate the applicability of streaking spectroscopy

to the investigation of induced plasmonic effect near nanoparticles and nanostructured sur-

faces. This chapter lays the foundation for the following work.

In Chapter 3, based on the theoretical model in Chapter 2, we propose a scheme for the

reconstruction of plasmonic near-fields at isolated nanoparticles from streaked photoelectron

spectra. The success of this proposed scheme is demonstrated by the accurate imaging of the

IR-streaking-pulse-induced plasmonic fields at the surface of gold nanospheres and nanoshells

with sub-femtosecond temporal and sub-nanometer spatial resolution.

In Chapter 4, we further improve the theoretical model in Chapter 2, by developing a

semi-classical approach, termed ACCTIVE, to solve the time-dependent Schrödinger’s equa-

tion in spatially inhomogeneous electromagnetic fields, in order to obtain final-state wave-

functions with higher accuracy. We demonstrate the validation of this method by studying

electron final-state wavefunctions in Coulomb and laser fields, before applying these im-

proved final photoelectron states to streaked photoemission from hydrogen atoms and Au

nanospheres. The results show excellent quantitative agreement with direct solution of the

Schrödinger’s equation. Implementing this method to simulating the streaked photoemis-

sion from Au nanospheres shows better agreement in plasmonic-field reconstruction for low

energy photoelectrons than previous SFA simulations.

In Chapter 5, we further extend the linear-optical-response model of simulating the plas-

monic field in Chapter 2, and explore the non-linear optical response of nanoparticles, which

is observed in momentum imaging experiments at the Kansas State University Department
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of Physics. Our simulations, by including the intensity-dependent index of refraction, show

a significant non-linear effect in SiO2-core-Au-shell nanoparticles in response to 1010 - 1012

W/cm2 intensity and 780 nm central wavelength IR pulses. This effect is responsible for the

change in the experimentally observed photoelectron “cut-off” energies, as a function of the

external pulse intensity, suggesting the non-linear optical response to be a significant factor

in strong-field photoemission from plasmonic nanoparticles.

Finally, in Chapter 6, we summarize this dissertation and present a brief outlook.

Atomic units are used throughout this dissertation unless otherwise indicated.
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Chapter 2

Streaked photoemission from

plasmonic nanoparticles

In this chapter, we developed a single-active-electron quantum-mechanical model to the cal-

culation of streaked XUV-photoemission spectra from Au, Ag, and Cu nanospheres (Fig. 2.1)

[6, 58]. We summarize our numerical model in Sec. 2.1, which is subdivided into four

subsections. These describe our calculation of the plasmonic Eplas and total electric field

Etot induced by the incident (visible or IR) streaking pulse within classical electrodynamics

(Sec. 2.1.1), our quantum-mechanical modeling of the photoemission amplitude from a given

initial valence-band state of the nanoparticle (Sec. 2.1.2), an approximated analytical evalu-

ation of the time-integration in our expression for the photoemission amplitude (Sec. 2.1.3),

and our method for sampling over a large number of occupied initial states, required for the

simulation of observable spectra (Sec. 2.1.4). In Sec. 2.2 we present our simulated streaked

photoelectron spectra, starting with the discussion of the dependence of streaked spectra

on the nanoparticle size and streaking-pulse wavelength in Sec. 2.2.1 and following with the

comparison of results from our quantum-mechanical calculation with two independent clas-

sical simulations [19, 57] in Sec. 2.2.2. In Sec. 2.2.3 we compare examples for the accurate

quantitative retrieval of plasmonic-field information, followed by our summary in Sec. 2.3.
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Figure 2.1: Schematic of attosecond streaking from nanoparticles. A single ultrashort at-
tosecond XUV pulse emits electrons into the field of a delayed IR or visible streaking laser
pulse. The linear color/gray scale represents the maximal local electric-field-strength en-
hancement η(r) [cf., Eq. (2.25)] in the x − z plane for the example of 10 nm diameter Ag
nanospheres exposed to 720 nm incident IR pulses with peak intensity 1012W/cm2.
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2.1 Numerical model

In our single-active-electron model, we study photoemission from the conduction band of a

metallic (Au, Ag, or Cu) nanospheres of diameter D by isolated XUV pulses into the electric

field of a delayed IR or visible streaking pulse (Fig. 2.1). We assume both pulses to be

incident along the positive x-axis and linearly polarized along the z-axis of our coordinate

system, the origin of which coincides with the center of the nanosphere. We designate the

center-to-center IR-to-XUV pulse delay time as τ , such that IR pulses precede the XUV

pulses for positive values of τ , and arbitrarily define the time t = 0 as the instant when

the center of the XUV pulse passes the center of the nanosphere. In compliance with laser

and XUV pulse parameters in typical streaking experiments, we further assume that (i) the

XUV pulse length τX is significantly shorter than an optical cycle of the streaking pulse,

and (ii) the intensity of the streaking pulse is too small to induce photoemission from the

target or to noticeably perturb the nanosphere’s electronic structure, thus merely causing a

delay-dependent shift of the photoelectron’s final kinetic energy εf (τ) [38]. This energy shift

is observable by streaked photoemission spectroscopy and carries information on the total

electric field Etot near the nanosphere surface. Etot is given by the incident streaking field

Einc and the spatially inhomogeneous induced plasmonic field Eplas.

2.1.1 Induced plasmonic response to the streaking field

For any given spectral component of the incident streaking pulse

Einc(r, t;ω) = ẑE0(ω) ei(kx−ωt), (2.1)

the corresponding spectral component of the total electric field,

Etot(r, t;ω) = Einc(r, t;ω) + Eplas(r, t;ω)

= Etot,0(r;ω) eiφtot(r;ω) ei(kx−ωt), (2.2)
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Figure 2.2: Real and imaginary components of the complex permittivity ε(ω) for Au, Ag, and
Cu (adapted from Ref. [82]). The white and shaded areas indicate free-electron and interband-
transition regions, respectively. Arrows point to the dipole surface-plasmon frequencies ωD
of sub-wavelength nanoparticles for each material.

is obtained by solving Maxwell’s equations. This is done by expressing both the incident

and plasmonic field in terms of an infinite series expansion and by determining the expan-

sion coefficients by applying the appropriate boundary conditions at large distances from

the nanosphere and for the normal and tangential total electric-field components at the

nanosphere surface following the work of Mie [80, 81]. The phase factor φtot(r;ω) is de-

fined so that the z-component of Etot,0(r, t;ω) is real. φtot(r;ω) thus constitutes the spectral

phase shift of the plasmonically enhanced incident streaking pulse relative to the incident

plane-wave component Einc(r, t;ω).

The dielectric properties of the nanosphere materials are given by the complex permittiv-

ity ε(ω) = ñ(ω)2 or, alternatively, the complex index of refraction ñ(ω), for which we adopt
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the experimental values for bulk Au, Ag, and Cu of Ref. [82]. Figures 2.2(a), 2.2(b), and

2.2(c) show the real and imaginary components of the permittivity for Au, Ag, and Cu, re-

spectively. Two distinguishable frequency domains can be identified in these figures [83, 84]:

the ‘free-electron region’ (white) at low frequencies and the ‘interband region’ (shaded) at

higher frequencies. In the free-electron region, the incident field oscillates sufficiently slowly

for conduction electrons to behave like free electrons as described by the Drude model [85].

In this domain,
∣∣Re[ε(ω)]

∣∣ and
∣∣Im[ε(ω)]

∣∣ decrease as the frequency of the incident field in-

creases, followed by a strong increase of Im[ε(ω)] near the threshold of interband transitions

at frequency ωI . The interband-transition-threshold frequencies (wavelengths) are approxi-

mately 2.3 eV (530 nm) for Au, 4.0 eV (310 nm) for Ag, and 2.1 eV (580 nm) for Cu. In

the interband region, the loss function −Im[ε(ω)]−1 tends to be large, indicating the likely

loss of photon energy to interband excitations [83].

For sub-wavelength nanoparticles (D << λ) the quasi-static electric-field approximation

applies. Within this approximation, the dipole surface plasmon frequency ωD, i.e., the nat-

ural frequency of the induced collective electron oscillation, can be obtained at the maximal

polarizability of the nanoparticle according to the Fröhlich condition [85]

Re[ε(ωD)] = −2εm, (2.3)

where εm (=1) is the permittivity of the surrounding medium (vacuum in this study). The

dipole surface plasmon frequencies ωD = 2.3 eV (530 nm) for Au, 3.4 eV (360 nm) for

Ag, and 3.3 eV (375 nm) for Cu are indicated as arrows in Figs. 2.2(a), 2.2(b), and 2.2(c),

respectively. The resonant behavior of the polarizability at ωD also depends on Im[ε(ω)] and

tends to be most pronounced for small or slowly varying Im[ε(ω)] in the free-electron region.

In contrast, the resonant polarization enhancement may be suppressed and hardly, if at all,

recognizable if ωD lies in the interband region: while the polarization enhancement in Ag is

characterized by a pronounced resonance in the free-electron region at ωD, for Cu ωD - as

determined based on the real part of ε(ω) only according to Eq. (2.3) - lies in the interband

region where interband excitations damp the surface-plasmon resonance and strongly red-
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Figure 2.3: (a) Plasmonic field enhancement η(rp) and (b) phase shift φtot(rp;ω) at the
electric-field poles rp on Au nanospheres with diameters D as a function of the incident
plane wave’s wavelength λ.

shift ωD to a broad resonance near ωI . These profound differences in the dielectric response

of Au, Ag, and Cu are reflected in the calculated electric-field enhancements discussed next.

The ratio of the total and incident electric-field intensity,

η(r) = |Etot,0(r;ω)|/E0, (2.4)

defines the plasmonic electric-field enhancement. By calculating the total electric field within

Mie theory [80, 81], we find the largest electric-field enhancement η(rp) at the electric-field

‘poles’ [rp = (0, 0, zp)] of the nanosphere along the IR and XUV polarization direction shown

in Fig. 2.1. Figures 2.3(a), 2.4(a), and 2.5(a) show η(rp) as a function of the incident pulse

wavelength λ = 2π/k = 2πc/ω for 10 to 200 nm diameter Au, Ag, and Cu nanospheres,

respectively, where c is the speed of light in vacuum.

For nanosphere diameters smaller or equal to D = 100 nm, Au displays a pronounced

plasmon resonance at λ = 530 nm (ω = 2.3 eV) [Fig. 2.3(a)]. In light of the preceding
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discussion, this can be expected, since ωD is just at the threshold for interband excitations

ωI . The largest enhancement factor of η(rp) ≈ 6 is found for D = 100 nm. For Ag, on

the other hand, ωD = 3.4 eV lies within the free-electron region and is well separated from

ωI [Fig. 2.4(a)]. Accordingly, Ag nanoparticles have a comparatively narrow (undamped)

plasmon resonance near 360 nm (3.4 eV) with large amplitude enhancement. We find the

largest enhancement η(rp) ≈ 6 for D = 30 nm. Silver has the largest enhancement among the

three transition metals compared in this work. For Cu, in sharp contrast to Ag, ωD = 3.3 eV

lies deeply within the interband region. Consequently, the enhancement maximum for Cu

nanospheres is strongly red-shifted from ωD to the interband-transition threshold and appears

as a very broad resonance profile in Fig. 2.5(a). The strongest enhancement η(rp) ≈ 5 occurs

near 580 nm (2.1 eV) for D = 100 nm.

For Au, Ag, and Cu nanopheres with diameters larger than D = 100 nm, the maximal-

enhancement frequencies are strongly red-shifted and the enhancement maxima are smaller

as compared to particles with D < 100 nm [Figs. 2.3(a), 2.4(a), and 2.5(a)]. This is due

to the fact that as D approaches λ, the quasi-static approximation begins to fail, such

that Eq. (2.3) is no longer valid. These large size-dependent red-shifts are accounted for

by corrections to the Fröhlich condition Eq. (2.3) [85] and are confirmed by strongly red-

shifted size-dependent absorption peaks in measured photoabsorption spectra [86]. These

size-dependent redshifts are also in full compliance with the intuitively expected redshift of

confinement resonances in quantum wells of increasing width [cf. Fig. 2 in Ref. [87]].

The local phase shift φtot(rp;ω) at the poles rp of the total electric field Etot(rp, t;ω)

(2.2) relative to the incident field Einc(rp, t;ω) (2.1) is shown in Figs. 2.3(b), 2.4(b), and

2.5(b) for Au, Ag, and Cu nanospheres, respectively. For Au and Ag, the size- and material

dependence of the plasmon resonance appears in φtot(rp;ω) in the same fashion as in the

field enhancement η(rp), while for Cu the broad plasmon resonance visible in η(rp) near

λ = 580 nm in Fig. 2.5(a) translates into a more rapid decrease of φtot(rp;ω) in Fig. 2.5(b).

The maximal phase shifts in Figs. 2.3(b), 2.4(b), and 2.5(b) are φtot(rp;ω) ≈ 1.3 rad for

Au, 2.1 rad for Ag, and 1.2 rad for Cu. These phase shifts correspond to time delays of

the wavefronts of the plasmonically enhanced spectral components Eq. (2.2) relative to the
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plane waves Eq. (2.1) of 360 as for Au, 400 as for Ag, and 370 as for Cu. For λ >> D

the phase shift vanishes, as expected, since conduction electrons respond adiabatically to

sufficiently slow external field oscillations.

The plasmonically enhanced streaking pulse is given by the superposition of its spectral

components Eq. (2.2),

Etot(r, t) =

∫
dω Etot,0(r;ω) eiφtot(r;ω) e−iωt. (2.5)

In our numerical applications below, we consider incident streaking pulses

Einc(r, t) =

∫
dω Einc(r;ω) (2.6)

with Gaussian temporal profiles, 2.47 fs full width at half intensity maximum (FWHIM),

corresponding to a spectral width of Γinc = 0.73 eV, and a peak intensity of 1012 W/cm2.

2.1.2 Quantum-mechanical photoemission amplitude

In typical streaking experiments, electrons are emitted upon absorption of a single photon

of the ionizing isolated XUV pulse [38]. We assume XUV pulses with a Gaussian temporal

profile,

EX(r, t) = ẑEX exp

[
− 2 ln 2

(t− tx
τX

)2]
e−iωX(t−tx), (2.7)

a central photon energy of ωX = 105 eV, and (unless specified otherwise) a pulse length

(FWHIM) of τX = 200 as, where tx = x/c. We further may assume that the nanosphere is

transparent to the XUV pulses, since ñ(ωX) ≈ 1 at XUV frequencies [82]. Thus, the vector

potential of the XUV pulse can be written in Coulomb gauge as

AX(r, t) =

∫ ∞
t

dt′ EX(r, t′). (2.8)

The quantum-mechanical transition amplitude for single-XUV-photon emission of an
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electron from an initial state Ψi into the final state Ψτ
kf

in the velocity gauge as a function

of the final photoelectron momentum kf and time delay τ is given by [6, 58, 88],

Ti(kf , τ) = i

∫
dt

∫
drΨτ∗

kf
(r, t)AX(r, t) · p̂Ψi(r, t), (2.9)

where p̂ = −i∇ is the electron momentum operator. We model initial conduction-band

states,

Ψi(r, t) = Ψi(r)e−iωit, (2.10)

as bound states of a spherical square well of radius D/2 and set the depth of the spherical

square-well potential equal to the sum of the work function and conduction-band width. The

work function and conduction-band width used in our numerical simulations for Au, Ag, and

Cu are listed in Tab. 2.1.2.

We represent the final continuum state as the exponentially damped ‘Volkov’ continuum

wave function [6, 58]

Ψτ
kf

(r, t) =
1√
2π
f [l(r);λi)]e

ikf ·re
iφτkf

(r,t)
(2.11)

with the position-dependent generalized Volkov phase

φτkf (r, t) =

∫ ∞
t

dt′p2(r, t′; τ)/2. (2.12)

The damping factor f(l;κ) = exp[−l/(2κ)] accounts for inelastic scattering of the photo-

electron inside the nanoparticle after being excited (‘born’) by the XUV pulse at position

r. Due to scattering, photoelectrons born inside the nanosphere are less likely to be regis-

tered by the detector (Fig. 2.1). In addition to the inelastic mean free path (MFP) κ, the

damping factor depends on the path length l(r) of photoelectrons inside the nanosphere. κ

changes by about 2% for the energy range and pulse parameters and for each of the three

transition metals considered in this work. We can therefore neglect its dependence on the

photoelectron kinetic energy and consider it as constant. The MFPs used for our numerical

simulations are listed in Tab. 2.1.2. We calculate the path length l(r) numerically, based on
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classical photoelectron trajectories r̃τ (t
′) for each given XUV-IR time delay τ , with initial

positions r̃τ (t) = r at time t and initial momenta

p(r, t; τ) = kf +

∫ ∞
t

dt′ Etot[r̃τ (t
′), t′ + τ ]. (2.13)

Table 2.1: Workfunctions, conduction-band widths, and mean-free-paths (MFP) for Au, Ag,
and Cu.

Work function [eV] Bandwidth [eV] MFP [Å]
Au 5.1 [89] 8 [90] 4.4 [91]
Ag 4.5 [89] 8 [90] 4.9 [91]
Cu 4.7 [89] 6 [92] 5.1 [91]

2.1.3 Evaluation of the photoemission amplitude

The central energy of the XUV pulses (2.7) assumed in this work (105 eV) corresponds to

an optical period of 39.39 as. This period being significantly shorter than the XUV-pulse

duration (τX = 200 as) allows the representation of the XUV-pulse vector potential (2.8) in

slowly-varying-amplitude approximation as the Gaussian pulse

AX(r, t) =

∫ ∞
t

dt′ EX(r, t′)

≈ −ẑ
iEX
ωX

exp

[
− 2 ln 2

(t− tx
τX

)2]
e−iωX(t−tx). (2.14)

Thus, even though the time integral in Eq. (2.9) extends over the entire real axis, noticeable

contributions to it only arise near the center of the XUV pulse at t = tX .

The visible and IR streaking pulses we consider have wavelengths between 350 and

800 nm. Their corresponding optical cycles lie between 1.06 and 2.66 fs and are signifi-

cantly longer than the XUV pulse duration. Compared to the envelope of the XUV pulse,

the temporal variation of the streaking field and generalized Volkov phase (2.12) is thus very

slow. Consistent with the remark following Eq. (2.14), we therefore Taylor expand Eq. (2.12)

18



as a function of time about tx,

φτkf (r, t) = φτkf (r, tx) + φτkf
′(r, tx)(t− tx)

+
1

2
φτkf

′′(r, tx)(t− tx)2 +O
(
(t− tx)3

)
, (2.15)

where the primes refer to time derivatives. Equation (2.9) then becomes

Ti(kf ,τ) = −iEX
ωX

ẑ ·
∫
d3r

[
∇Ψi(r)

]
Ψτ∗

kf
(r, tx)e

−iωitx

×
∫
dt exp

[
−
(2 ln 2

τ 2X
+
i

2
φτkf

′′(r, tx)
)

(t− tx)2
]

× e−i
(
φτkf

′(r,tx)+ωX+ωi

)
(t−tx))

. (2.16)

The time integral now represents the Fourier transformation of a Gaussian function and can

be performed analytically with the result

Ti(kf , τ) =

√
πEX
iωX

ẑ ·
∫
d3r
[
∇Ψi(r)

]
Ψτ∗

kf
(r, tx)e

−iωitx

× 1

bτkf (r)
exp

[
−
(
φτ∗kf

′(r, tx) + ωX + ωi

2bτkf (r)

)2
]
, (2.17)

where

bτkf (r) =

√
2 ln 2

τ 2X
+
i

2
φτ∗kf

′′(r, tx). (2.18)

We perform the three remaining integrations in Eq. (2.17) numerically. In numerical tests

we confirmed that the approximation Eq. (2.16) to the amplitude Eq. (2.9) does not induce

noticeable changes in any of the numerical results shown and discussed in Sec. 2.2 below.

2.1.4 Summation over initial states

Equation (2.17) gives the transition amplitude for photoemission out of a particular initial

state Ψi. Allowing for photoelectron emission from any occupied conduction-band state,
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we incoherently add contributions to the total photoelectron yield from initial states with

energies εi at and below the Fermi energy,

P (Ef , τ) =
∑
i∈occ

|Ti(kf , τ)|2. (2.19)

Electronic confinement in nm-size objects results in a very large number of energeti-

cally very narrowly spaced initial conduction-band states. For example, a D=10 nm Au

nanosphere, the smallest diameter considered in our numerical applications below, contains

26,551 bound states with maximal angular-momentum quantum number lmax = 65 below

the Fermi level, and this number increases with the size of the nanosphere. We therefore

carried out the summation in Eq. (2.19) by dividing the conduction band into m equal seg-

ments, Sj = 1, ....m, each segment having n(j) occupied states. Equation (2.19) can then be

rewritten as

P (Ef , τ) =
m∑
j=1

n(j)×

[
1

n(j)

∑
i∈Sj

|Ti(kf , τ)|2
]

=
m∑
j=1

n(j)× Pj(Ef , τ), (2.20)

where Pj(Ef , τ) is the average yield in segment Sj.

For numerical efficiency, we evaluated Eq. (2.20) approximately by replacing Pj(Ef , τ)

with the averaged yield in segment Sj,

P ave
j (Ef , τ) =

1

q

q∑
i=1

|T[N(i)∗n(j)](kf , τ)|2. (2.21)

We obtained P ave
j (Ef , τ) by calculating the transition amplitude for q randomly sampled oc-

cupied states in Sj, with the sampling function N(i) returning uniformly distributed random

numbers in the interval [0, 1]. For m = 10 and q = 10 and all numerical examples discussed

in this work, we found Eq. (2.21) to approximate the photoemission yields Eq. (2.19) with

a relative error below 5%.
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2.2 Streaked photoelectron spectra

In this section, we discuss our simulated streaked photoelectron spectra for Au, Ag, and Cu

nanospheres with diameters of 10 and 50 nm. For each material, we consider two streaking-

pulse wavelengths of 720 nm and the respective plasmonic-enhancement-resonance wave-

length (530 nm for Au, 360 nm for Ag, and 580 nm for Cu).

2.2.1 Size and streaking-wavelength dependence

Figures 2.6 - 2.8 show our numerical results for streaked photoemission spectra from Au, Ag,

and Cu nanospheres, respectively. The streaking traces oscillate with amplitudes δεf (D,λ)

due to the XUV-IR-pulse-delay-dependent energy shift imposed by the total electric field Etot

(2.5) on the emitted electron. Their delay-dependence thus resembles the temporal profile

of Etot as explained above, relative to which they are phase shifted. δεf (D,λ) varies with

the size of the nanosphere and the center wavelength of the streaking pulse. Independent

of the transition metal investigated, δεf (D,λ) increases with the size of the nanosphere

for a given streaking-pulse wavelength, consistent with and proportional to the respective

size-dependent plasmonic enhancements shown in Figs. 2.3(a), 2.4(a), and 2.5(a).

With regard to the streaking-pulse-wavelength dependence, δεf (D,λ) remains approxi-

mately the same for 720 and 530 nm Au nanospheres of a given diameter, as the compar-

ison of Fig. 2.6(a) with Fig. 2.6(b) and of Fig. 2.6(c) with Fig. 2.6(d) demonstrates. This

wavelength-independence of the streaking amplitude disagrees with a well-known common

feature of streaked photoelectron spectra from gaseous atomic targets [38], for which the

streaking-oscillation amplitude,

δεf (D,λ) ∼ λE0, (2.22)

is proportional to the incident wavelength and incident streaking field amplitude, resulting

in larger oscillation amplitudes for larger wavelength. The approximate λ-independence of

δεf (D,λ) for Au nanospheres is due to the cancelation of two effects: while the λ-dependence

in Eq. (2.22) carries over from gaseous atoms to nanospheres, the incident-streaking-pulse
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amplitude E0 needs to be replaced by the amplitude of the plasmonically enhanced streaking

field (2.5) at the nanoparticle surface,

δεf (D,λ) ∼ λ|Etot,0|. (2.23)

According to Fig. 2.6, the plasmonic-field enhancement at 720 nm is weaker than for 530 nm

(Fig. 2.3) and (accidentally) happens to balance the increase of δεf (D,λ) with λ found

for gaseous atomic targets. The degree of sensitivity of the streaking-trace amplitude to

the nanoparticle size is thus indicative for plasmonic-field enhancement at the nanoparticle

surface.

We find the same approximate independence of the streaking amplitude on the streak-

ing wavelength for 10 and 50 nm Cu nanospheres (Fig. 2.8). For a given diameter, Cu

nanospheres reveal approximately the same streaking-oscillation amplitude δεf (D,λ) as Au

nanospheres, both on resonance (580 nm) and off-resonance (720 nm). In contrast, the

apparent streaking amplitude for 10 and 50 nm Ag nanospheres is noticeably larger near

the plasmon-resonance wavelength (360 nm) than off-resonance at 720 nm (Fig. 2.7). The

less-then-perfect cancelation of the λ dependence of the two factors in Eq. (2.23) for Ag

nanospheres is an expression of the (i) polarizability of Ag being much larger than the po-

larizability of Au and Cu and (ii) strong material dependence of the streaking amplitude.

Figures 2.6 - 2.8 show a pronounced difference in photoemission yield for different pho-

toelectron energies. This energy-dependence of photoemission yield is due to the photoe-

mission cross section σ(εf ), which strongly emphasizes the yield at lower energies,as shown

in Fig. 2.9(e). The difference in photoemission yield increases with the energy span of the

streaked photoelectron spectra, thus directly depends to the streaking amplitude, and in-

directly depends on the incident wavelength, the size, and the material of nanospheres, as

discussed above.
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2.2.2 Comparison with classical calculations

In Fig. 2.9 we compare streaked photoelectron spectra for 10 nm diameter Au nanospheres

and 720 nm streaking-field wavelength, resulting from independently performed classical-

trajectory Monte-Carlo simulations of Süßmann and Kling [19] and Saydanzad et al. [57],

with our quantum-mechanical simulation. For this comparison only, we changed the XUV-

pulse length from 200 to 287 as, in order to employ the same XUV parameters as in the two

classical calculations. The classical spectra in Figs. 2.9(b) and 2.9(c) are calculated for the

same streaking and XUV parameters used in our numerical model [Fig. 2.9(a)]. At a first

glance, the classical and quantum-mechanical results in Figs. 2.9(a-c) appear to be in good

agreement, however, examination of their centers of energy (CoE) reveals three noticeable

differences:

First, the CoE in the classical simulation by Süßmann and Kling lies approximately

4 eV higher than in the two other calculations. This is a result of the classical model

in Ref. [19] being restricted to photoemission from the Fermi level only, while both our

quantum-mechanical model and the classical model in Ref. [57] allow for photoemission from

all occupied conduction-band states.

Second, the energy-dependence of the photoemission-yield as a function of the XUV-

IR-pulse delay is different for all three simulations. Consistent with the photoelectron-

energy-dependence of the quantum-mechanically calculated XUV-photoemission cross sec-

tion σ(εf ) [88] shown in Fig. 2.9(e), the energy dependence of the quantum-mechanical

streaking spectrum in Fig. 2.9(a) strongly emphasizes photoemission at lower energies. This

effect is absent in both classically calculated spectra.

Third, streaking amplitudes and streaking phases predicted by all three calculations are

noticeably different, as shown for the CoE of all spectra in Fig. 2.9(d). The quantum-

mechanical model predicts the largest and the classical model in Ref. [19] the smallest os-

cillation amplitude. The difference between the two classical calculations appears to be due

to different model assumptions. While the classical calculations of Saydanzad et al. [57] al-

low for photoelectron release from inside the nanoparticle with a dipolar angular distribution
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and include electron scattering of released photoelectrons inside the nanosphere, the classical

model of Ref. [19] restricts conduction-band-electron release to the surface, does not allow

for scattering of photo-released electrons inside the nanoparticle, and assumes photoemission

probabilities that do not depend on the emission location on the sphere. To some extent the

differences in the classical and quantum mechanical CoE streaking amplitudes and phases

are due to fundamental dissimilarities of classical and quantum-mechanical dynamics, such

as the inclusion/absence of coherence in quantum/classical calculations.

2.2.3 Plasmonic-field-information retrieval

In order to investigate the extent to which plasmonic field information is imaged in streaked

photoelectron spectra, we calculated streaked spectra with and without including the induced

plasmonic field Eplas(r, t) in Eq. (2.2), while leaving all nanosphere, XUV-, and IR-pulse

parameters unchanged. The CoE of these spectra for 10 nm Au, Ag, and Cu nanospheres

and various wavelengths are shown in Fig. 2.10. They reveal a significant increase and phase

shift of the streaking amplitude due to the induced plasmonic field.

In order to retrieve the plasmonic-field enhancement and phase shift, we fit our numeri-

cally calculated CoE to a sinusoidal function with Gaussian envelope,

ε(τ) = ε0 + A exp

[
− 2 ln 2

( τ
σ

)2]
cos(ωτ + φ), (2.24)

and adjust the values of ε0, A, σ, ω, φ. To quantify the effects of the plasmonic-field en-

hancement on streaked spectra, we introduce the wave-length-resolved (spectral) streaking-

oscillation-amplitude-enhancement factor

ηstreak(λ) =
Aw
Aw/o

∣∣∣∣
λ

, (2.25)

where Aw and Aw/o are the oscillation amplitudes adjusted according to Eq. (2.24) with and

without including the induced plasmonic field, respectively. We further define the spectral
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phase-shift difference

∆φstreak(λ) =
(
φw − φw/o

)∣∣∣
λ
, (2.26)

where φw and φw/o are the phases in Eq. (2.24), adjusted with and without including the

induced plasmonic field, respectively.

Figures 2.11(a), 2.12(a), and 2.13(a) show the retrieval of the plasmonic field enhance-

ment η defined in Eq. (2.4) and plotted in Fig. 2.3(a), 2.4(a), and 2.5(a), respectively, as a

function of the streaking-pulse wavelength λ for 10 nm diameter Au, Ag, and Cu nanospheres,

respectively. The solid red lines show the electric field-strength enhancement η(rp) obtained

using Mie theory at the poles rp of the nanospheres. The dashed red lines show the field-

strength enhancement η(r), averaged over the nanosphere surface with the weight factor

| cos θ|2, approximating the relative contributions of photoelectrons emitted at different an-

gles as dipolar. The blue markers show the streaking-oscillation-amplitude enhancement

ηstreak we retrieved from our calculated spectra by using Eqs. (2.24) and (2.25). The re-

trieved streaking-oscillation amplitude enhancement is in good agreement with the averaged

plasmonic field-strength enhancement η(r). It not only (i) correctly reproduces the shape of

the field-enhancement factor for each element as a function of streaking-pulse wavelength,

(ii) matches the enhancement maxima at 530 nm for Au, 360 nm for Ag, and 580 nm for

Cu, but also (iii) quantitatively reproduces the numerical value of the averaged enhancement

η(r). Ag nanospheres yields the highest averaged amplitude enhancement η(r) ≈ 8, while

for Au and Cu nanospheres we find η(r) ≈ 3.

Figures 2.11(b), 2.12(b), and 2.13(b) show the retrieval of the plasmonic phase shifts as a

function of the streaking-pulse wavelength for 10 nm diameter Au, Ag, and Cu nanosphere,

respectively. The red solid lines show the relative plasmonic phase shift

ϕMie(λ) = φtot(rp)
∣∣
λ
− φtot(rp)

∣∣
720 nm

, (2.27)

obtained using Mie theory at the nanosphere poles rp and defined as the phase shift caused by

the induced plasmonic field for a central streaking-field wavelength λ, φtot(rp)
∣∣
λ
, relative to
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the induced plasmonic phase shift at λ = 720 nm [cf. Eq. (2.2)]. In contrast to the averaged

field-strength enhancement, averaging the phase shift over the surface with the same weight

factor | cos θ|2 does not have a noticeable effect on ϕMie. This is due to the fact that as

long as the nanosphere is sufficiently small compared to the streaking-pulse wavelength, the

phase shift is approximately homogeneous near the nanosphere surface.

The blue markers in Figs. 2.11(b), 2.12(b), and 2.13(b) show

ϕstreak(λ) = ∆φstreak(λ)−∆φstreak(720 nm), (2.28)

that is, the streaking-phase shifts ∆φstreak(λ) defined in Eq. (2.26) relative to their values

at λ = 720 nm. We retrieved ϕstreak by fitting Eq. (2.24) to our calculated streaked spectra.

For all three materials, the retrieved relative phase shifts are in excellent agreement with

the prediction of classical electrodynamics (‘Mie theory’). In particular, the retrieved phase

differences accurately reproduce (i) the distinct plasmon resonance peak for Ag [Fig. 2.12(b)],

(ii) the step-like shape of the relative phase shift as a function of streaking-pulse wavelength

for Cu [Fig. 2.13(b)], and a (iii) combination of both, step and peak structure, for Au

[Fig. 2.11(b)].

The successful retrieval of the plasmonic phase shifts for all three materials provides

strong evidence for the accumulation of streaking-wavelength-independent contributions

∆φprop during the propagation of photoelectrons, leaving the plasmonic phase shift in the

electric field, φtot(rp, ω), as the only λ-dependent component. Writing the net accumulated

phase difference in streaked photoelectron spectra as

∆φstreak(λ) = φtot(rp)
∣∣
λ

+ ∆φprop, (2.29)

and taking the difference of Eq. (2.29) for any given λ and λ = 720 nm yields,

ϕstreak(λ) = ϕMie(λ). (2.30)
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This confirms our numerical evidence presented above that induced plasmonic-field informa-

tion can be reconstructed from streaked photoelectron spectra.

The plasmonic streaking phase shift ϕstreak(λ) can be assigned to the photoemission time

delay ϕstreak(λ)/ω induced by the collective electronic response of the nanoparticle to the

streaking pulse. Maximal streaking phase shifts of 0.5 rad for Au, 2 rad for Ag, and 0.2 rad

for Cu correspond to streaking time delays of 140 as, 380 as, and 60 as, respectively.

In Sec. 2.1.1 we demonstrated that the magnitude of the plasmonic field enhancement

and phase shift are related to the dipole surface plasmon-resonance and interband transi-

tions. The reconstruction of plasmonic field enhancements and phase shifts from attosecond

streaked photoelectron spectroscopy may thus provide a not-yet-explored way of studying

not only the dielectric response of nanoparticles, but also more intricate properties of their

electronic structure, such as interband transitions.

2.3 Summary

We developed a quantum-mechanical model to numerically simulate streaked photoelectron

emission from metallic nanospheres and used this method to simulate streaked photoelec-

tron spectra from Au, Ag, and Cu nanospheres. Our study of plasmonic streaking-oscillation-

amplitude enhancements and phase shifts revealed in streaked photoemission spectra, relative

to simulated spectra that exclude the induced plasmonic field, show how plasmonic near-

field information of metallic nanospheres can be retrieved from streaked electron spectra.

Our comparative study of element-specific differences in streaking-oscillation-amplitude en-

hancements and phase shifts reveals the different dielectric properties of the three transition

metals. This further substantiates the potential of streaked photoelectron spectroscopy for

imaging plasmonic near fields, as well as the dielectric response, surface plasmon resonances,

and interband transitions of different materials.
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Chapter 3

Imaging plasmonic fields with atomic

spatiotemporal resolution

In Chapter 2, we demonstrate that the plasmonic near-field information of metallic nanospheres

is embedded and can be retrieved from streaked photoelectron spectra. Yet complete spa-

tiotemporal imaging of the plasmonic fields near metallic nanostructures has not been

achieved. The detailed analysis of spatiotemporally-resolved photoemission experiments at

the sub-fs and nm scales and the exploration of novel nanoplasmonic applications rely on

discipline-transcending numerical modeling within the emerging field of quantum plasmonics

[6, 38, 57, 58, 93–95].

In this chapter, based on the theoretical study of streaked photoemission in Chapter 2,

we propose a scheme for the reconstruction of plasmonic near-fields of isolated nanoparticles

from IR-streaked XUV photoemission spectra with sub-fs temporal and nm spatial resolu-

tion [60]. We first present our proposed experimental setup in Sec. 3.1. Then in Sec. 3.2, we

summarize the numerical model of simulating the streaked photoelectron spectra within this

setup (Sec. 3.2.1), and present the simulated spectra containing the spatiotemporal informa-

tion (Sec. 3.2.2). In Sec. 3.3, we develop the method to reconstruct the spatiotemporally-

resolved plasmonic field from the streaked photoelectron spectra, which is subdivided into

three subsections. The mathematical derivation of the reconstruction method is presented
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Figure 3.1: Schematic of attosecond nanoplasmonic imaging. An attosecond XUV pulse
emits electrons into the field of a delayed IR streaking laser pulse, whose polarization di-
rection can be rotated by a variable angle ϕ relative to the XUV-pulse polarization. The
linear color/gray scale represents the electric-field-strength enhancement for 50 nm radius
Au nanospheres in 720 nm incident IR pulses.

in Sec. 3.3.1. Then we demonstrate the validation of this method by reconstructing the

spatiotemporally-resolved plasmonic field at the surface of an Au nanosphere (Sec. 3.3.2)

and an Au nanoshell (Sec. 3.3.3), before summarizing this chapter in Sec. 3.4.

3.1 Suggested experimental setup

In order to image the plasmonic field with spatiotemporal resolution, we employed a modified

setup from Chapter 2 (Fig. 2.1). Figure 3.1 shows the proposed experimental setup using

streaked photoemission [60]. Both XUV and IR pulses propagate along the z-axis of the

laboratory-fixed xlabyz coordinate system that is centered in the nanosphere. The XUV

and IR pulse are linearly polarized along the xlab- and x-axis, respectively, with adjustable

relative polarization direction ϕ. Their time delay τ is assumed positive if the IR pulse

precedes the XUV pulse. Photoelectrons are detected in the xlabz-plane under the angle
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θ with respect to the z-axis, i.e., in direction n̂ = (θ, ϕ). Adjusting the direction n̂ and

time delay τ allows for the characterization of the spatiotemporal plasmonic field Etot(r, t),

induced by the IR pulse.

In this work, the XUV pulse is a Gaussian pulse with central photon energy ωX = 50 eV

and FWHIM τX = 200 as. The IR streaking pulse has 720 nm central wavelength, 2.47 fs

FWHIM, and 1010 W/cm2 peak intensity. Under those laser parameters, two conditions are

implied which are crucial in the later discussion of this chapter.

1) The Au nanosphere has a radius R = 50 nm. The large streaking pulse wavelength

compared to the size of the nanosphere implies “quasi-static” conditions for which Mie cal-

culations show the net IR field to be efficiently screened inside and oriented perpendicular

to the metallic nanoparticle surface, as for static external fields [80, 81].

2) For the assumed XUV and IR pulse parameters, photoelectrons are exposed to the

streaking field over less than 10 nm. Since the field strength of the IR-pulse-induced nanoplas-

monic field decays outside the particle as ∼ (R/r)3, the spatial range of the enhancement

is ∼ R [19]. The streaking pulse length is therefore short compared to the time it takes

photoelectrons to escape the plasmonic near-field. The “slow-escape” condition [5] is thus

met, under which photoelectrons do not experience the spatial variation of the streaking

field after being emitted from nanoparticle surface.

3.2 Simulation of photoelectron spectra

3.2.1 Numerical model

We simulate the streaked photoelectron spectra following the quantum-mechanical model in

Sec. 2.1 by calculating the transition amplitude using Eq. (2.9),

Ti(kf , τ) = i

∫
dt

∫
drΨτ∗

kf
(r, t)AX(r, t) · p̂Ψi(r, t), (2.9 revisited)
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with XUV pulse in the new coordinates,

EX(r, t) = x̂labEX exp

[
− 2 ln 2

(t− tz
τX

)2]
e−iωX(t−tz), (3.1)

where the retardation tz = z/c, and vector potential AX(r, t) =
∫∞
t
dt′ EX(r, t′).

The initial conduction-band states,

Ψi(r, t) = Ψi(r)e−iωit, (2.10 revisited)

are modeled as bound states of a spherical square well of radius R = 50 nm and depth

V0 = −Wf−σc = −13.1 eV, given by adding the work function Wf = 5.1 eV and conduction-

band width σc = 8 eV (Tab. 2.1.2).

The final continuum states are modeled as the exponentially damped ‘Volkov’ continuum

wave function,

Ψτ
kf

(r, t) =
1√
2π
f [l(r);λi)]e

ikf ·re
iφτkf

(r,t)
, (2.11 revisited)

which is calculated following Sec. 2.1.2 with the presence of the IR-induced inhomogeneous

streaking field Etot(r, t), simulated by employing Mie theory [80, 81] within the new coordi-

nates in Fig. 3.1.

The total photoemission yield from all occupied conduction-band states is then calculated

by incoherently adding contributions from initial states with energies εi at and below the

Fermi energy,

P (Ef )
∣∣
τ,n̂

=
1√
2Ef

∑
i∈occ

|Ti(kf , τ)|2 =
1√
2Ef

∑
i∈occ

|Ti(kf n̂, τ)|2, (3.2)

where the photoemission yield is obtained as photoelectron kinetic energy spectra for various

XUV-IR time delays τ and detection directions n̂.
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Figure 3.2: Simulated streaked photoelectron spectra for 50 nm radius Au nanospheres at
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and (d) ϕ = 0◦, (e) 90◦, (f) 180◦. The linear color/gray scale gives the photoemission yield
normalized to the maximum yields in (a)-(f).

3.2.2 Simulated spectra

Figure 3.2 shows streaked photoelectron spectra for various detection angles (θ, ϕ). For a

given relative polarization direction ϕ, the detected peak photoemission yield is largest along

the XUV polarization direction (θ = 90◦) and decreases proportional to cos2(θ−90◦), follow-

ing a dipole-emission pattern [Figs. 3.2(a)-3.2(c)]. The streaking-oscillation amplitude also

reaches its maximum at θ = 90◦, due to emission across the maximally enhanced plasmonic

near-field (Fig. 3.1). For the same detection angle θ, streaking oscillations for emission in

forward ϕ = 0◦ and backward ϕ = 180◦ direction have opposite phase due to the dipole

character of the induced plasmonic field [Figs. 3.2(d)-3.2(f)]. Streaking traces calculated

according to Sec. 3.2.1 follow the instantaneous net electric IR field Etot, in the same way
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as streaked spectra from atoms [33, 38] and surfaces [41, 42], retracing the instantaneous

electric-field velocity potential of the incident streaking pulse.

3.3 Plasmonic field reconstruction

3.3.1 Mathematical derivation

The reconstruction of the net electric field Etot at the nanoparticle surface constitutes a

challenging inversion problem, primarily since the spatial inhomogeneity of Etot prevents the

separation of Eq. (2.13) in spatial and temporal terms. However, as will be shown next,

the accurate imaging of Etot becomes possible since both the quasi-static and slow-escape

conditions addressed earlier are met in Sec. 3.1. Following the mathematical derivation in

Sec. 2.1.3, evaluation of the time integral in Eq. (2.9) at n̂ = (θ, ϕ) yields,

Ti(kf , τ) =

√
πEX
iωX

x̂lab ·
∫
d3r
[
∇Ψi(r)

]
Ψτ∗

kf
(r, tz)e

−iωitz

× 1

bτkf (r, tz)
exp

{
−
[ ∂
∂tz
φτkf (r, tz) + ωX + ωi

2bτkf (r, tz)

]2}
, (3.3)

where,

bτkf (r, t) =

√
2 ln 2

τ 2X
+
i

2

∂2

∂t2
φτkf (r, t). (3.4)

In spherical-wave approximation, the spatial integral in Eq. (3.3) can be approximated as

(see Sec. A.1 for mathematical derivation),

Ti(kf , τ) ≈ Ci

√
2πEXR e

−ikfR−iφτkf (n̂R,t̃z)

ωXkf bτkf (n̂R, t̃z)

× exp

{
−
[ ∂
∂tz
φτkf (n̂R, t̃z) + ωX + ωi

2bτkf (n̂R, t̃z)

]2}
, (3.5)
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where t̃z = R cos θ/c and

Ci =

∫
dr
[
x̂lab · ∇Ψi(n̂r)

]
· f [l(n̂r);κ)]. (3.6)

Compliance with the slow-escape condition justifies the approximation,

∂

∂t̃z
φτkf (n̂R, t̃z) ≈ −Ef −

√
2Ef n̂

∫ ∞
t̃z

dt′ Etot(n̂R, t
′ + τ)

= −Ef −
√

2Ef n̂ ·Atot(n̂R, t̃z + τ), (3.7)

where Atot(n̂R, t̃z + τ) is the vector potential, whose quadratic (ponderomotive) term can

be neglected at typical streaking-IR-field intensities [38]. Since Etot can be assumed perpen-

dicular to the nanoparticle surface (quasi-static condition), n̂ ·Atot = Atot, and thus,

∂

∂t̃z
φτkf (n̂R, t̃z) ≈ −Ef −

√
2EfAtot(n̂R, t̃z + τ) (3.8)

∂2

∂t̃2z
φτkf (n̂R, t̃z) ≈

√
2Ef Etot(n̂R, t̃z + τ). (3.9)

The photoemission probability can now be written integral-free as,

P (Ef )
∣∣
τ,n̂
≈
∑
i∈occ

∣∣πCiEXR/ωX∣∣2E−3/2f√
8 ln2 2/τ 4X + EfE2

tot(n̂R, t̃z + τ)

× exp

{
−
[
Ef +

√
2EfAtot(n̂R, t̃z + τ)− ωX − ωi

]2√
16 ln2 2/τ 4X + 2EfE2

tot(n̂R, t̃z + τ)

}
, (3.10)

revealing that, despite being excited at different locations in the nanosphere, photoelec-

trons emerging at the surface in detection direction dominate the spectrum. This lays the

foundation for retrieving plasmonically enhanced electric fields using streaked photoelectron

spectra.

For the numerical application in this work, the XUV-pulse spectral range is limited by

2ln2/τX = 4.56 eV, such that the center of energy (CoE) can be approximated as (see
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Sec. A.2 for mathematical derivation),

Ef (τ)
∣∣
n̂

=

∫
dEf EfP (Ef )∫
dEf P (Ef )

∣∣∣∣
τ,n̂

≈ ωX + V0 + (3/5)σc − Atot(n̂R, t̃z + τ)

√
2Ef (τ)

∣∣∣∣
n̂

. (3.11)

This enables the inversion of Eq. (3.11) to an analytical expression for the net electric field

at position n̂ = (θ, ϕ) on the surface and time t,

Etot(n̂R, t) =
∂

∂t

Ef (t−R cos θ/c)− ωX − (3/5)σc − V0√
2Ef (t−R cos θ/c)

∣∣∣∣∣
n̂

. (3.12)

Applying Eq. (3.12) allows for the spatiotemporal reconstruction of the surface plasmonic

field from obtained streaked photoelectron spectra.

3.3.2 Plasmonic field reconstruction of Au nanospheres

Figure 3.3 shows the reconstruction of the time-dependent electric fields at the nanosphere

surface from the streaked photoelectron spectra in Fig. 3.2. The time derivative in Eq. (3.12)

is calculated using B-spline interpolation. The exact and retrieved electric fields are in excel-

lent agreement. As observed in Fig. 3.2, (i) for given ϕ, maximum plasmonic enhancement

occurs at the IR electric-field poles at θ = 90◦, and (ii) for given θ, the electric fields in

forward (φ = 0◦) and backward (φ = 180◦) directions have opposite phases.

For the spatiotemporal reconstruction of Etot(n̂R, t) only angles θ for which the maximum

photoemission yield is no less than half of the maximum yield obtained at θ = 90◦ are

included. While not mandatory, this restriction improves the accuracy of the field retrieval

since the photoemission yield decreases with θ proportional to cos2(θ − 90◦). We assume

a uniformly spaced angular grid with (nθ × nϕ) points for θ ∈ [45◦, 135◦] and [0◦, 360◦).

Figure 3.4(a)-(e) show the spatiotemporal profiles of the incident pulse and the reconstructed

plasmonically enhanced electric field at the nanosphere surface at the times t indicated in

Fig. 3.4(f). The field is provided on an (nθ × nϕ) = (6 × 8) angular grid and B-spline

interpolated over the entire θ ∈ [0◦, 180◦] angular range. Both the temporal oscillation and
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Figure 3.3: Time-resolved reconstruction of the net plasmonic field Etot(n̂R, t) at the sur-
face of 50 nm radius Au spheres from the streaked photoelectron spectra in Fig. 3.2. Red
solid lines show surface electric fields calculated within Mie theory. Positive values indicate
fields pointing outward. Blue markers represent the electric-field reconstruction according
to Eq. (3.12).
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Figure 3.4: Spatiotemporal reconstruction of the net plasmonic field Etot(n̂R, t) at the sur-
face of 50 nm radius Au (a)-(e) spheres and (g)-(k) shells with 45 nm inner radius at times
indicated by arrows in (f). (f) Etot(n̂R, t) at the poles [n̂ = (90◦, 0◦)] of the spheres (red
solid) and shells (blue dashed line). Incident IR pulses with peak intensities of 1011 (thin red
dot-dashed line) and 1010 W/cm2 (not shown) are applied to spheres and shells, respectively.
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spatial propagation are observed in the reconstructed fields. A comparative animation of

the spatiotemporally-resolved exact and reconstructed electric field at the surface of the

nanosphere is found in the Supplementary Material of [60].

The plasmonic-field-retrieval accuracy for Au nanospheres is quantified in Fig. 3.5 in

terms of the average error (including all times and the entire nanoparticle surface)

Err =

∫
dn̂
∫
dt
∣∣Etot(n̂R, t)− Eexa(n̂R, t)∣∣

max
{
|Eexa(n̂R, t)|

} ∫
dn̂
∫
dt

(3.13)

as a function of the angular grid size. The error does not exceed 1.5%, and quickly converges

in nθ and nϕ. The 1.36% residual (systematic) error cannot be reduced by further increasing

the number of angular grid points, due to the physical and mathematical approximations

introduced in our reconstruction method.

3.3.3 Plasmonic field reconstruction of Au nanoshells

Plasmonic nanoshells are attracting increasing research interest due to promising applications

in controlled drug release, biosensing, and imaging [96, 97]. As a second demonstration of

our imaging method, we therefore investigated plasmonically enhanced electric fields near

Au nanoshells with 50 nm outer radius and 45 nm inner radius. The plasmonic response of
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Figure 3.6: Mie-theory simulated electric field-strength distribution of 50 nm radius Au (a)
nanospheres and (b) nanoshells with 45 nm inner radius. The driving field has a wavelength
of 720 nm.

nanoshells differs from the plasmonic response of nanospheres of equal outer radius and is

tunable by variation of the shell thickness. For appropriate sizes and thicknesses, metallic

nanoshells reach larger plasmonic-field enhancements and resonate at a longer wavelength in

the experimentally more convenient near IR range.

Figure 3.6 shows the Mie-theory-calculated electric near-field-strength distribution of 50

nm radius Au nanospheres and nanoshells with 50 nm outer and 45 nm inner radius in

response to a 720 nm wavelength driving field. While exhibiting a similar quasi-dipole dis-

tribution as nanospheres, the maximum field-strength plasmonic enhancement of the spheres

is ∼16, dramatically exceeding the factor ∼4 enhancement of the solid spheres.

Figure 3.7 shows the maximum plasmonic field-strength enhancement, found at the

electric-field poles n̂ = (90◦, 0◦) as a function of the driving-field wavelength. In addi-

tion to the higher enhancement compared with nanospheres of the same size, the nanoshell

plasmonic resonance is red-shifted to ∼710 nm, close to the 720 nm wavelength assumed in

our work and in Ref. [96].

Since the Au nanoshells used here also satisfy the quasi-static and slow-escape conditions,

our imaging method, without significant modification, is equally applicable to Au nanoshells

by changing the initial-state potential from a spherical square well to the spherical-shell
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Figure 3.7: Mie-theory simulated maximum plasmonic field-strength enhancement as a
function of the driving-field wavelength for 50 nm radius Au nanospheres (red solid) and
nanoshells with 45 nm inner radius (blue dashed line).

square well potential,

V (r) =


V0 = −13.1 eV 45 nm < r < 50 nm

0 r < 45 nm or r > 50 nm.

(3.14)

Additionally, since the plasmon resonance of the nanoshells is near the streaking-pulse wave-

length, leading to a large plasmonic field enhancement, we reduced the IR-pulse intensity

to 1010 W/cm2 for the investigation of nanoshells, in order to yield comparable peak field

strengths for spheres and shells for the purpose of demonstration.

Applying the same procedure, Fig. 3.8 shows the time-dependent net plasmonic electric

fields at the surface of Au nanoshells for various detection angles (θ, ϕ), reconstructed from

simulated streaked photoelectron spectra from Au nanoshells. The reconstructed fields are

in excellent agreement with directly Mie-calculated plasmonic fields. The spatiotemporal re-

construction of the shell-plasmonic-field distribution is shown in Fig. 3.4(g)-(k). Compared

to the results of Au nanospheres, a phase shift equivalent to ∼0.33 fs time-delay is observed

in the reconstructed field at the surface of the Au nanoshell, due to the incident wavelength

near the plasmonic resonance. An animation of the comparison among reconstructed and
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exact electric fields at the surface of Au nanospheres and nanoshells is found in the Supple-

mentary Material of [60], demonstrating the excellent agreement between reconstructed and

exact fields, and the time delay between the reconstructed fields of the Au nanosphere and

nanoshell.

3.4 Summary

Based on the quantum-mechanical model developed in Chapter 2, we show that under quasi-

static and slow-escape conditions, the spatiotemporally-resolved plasmonically enhanced elec-

tric field at the surface of metallic nanospheres and nanoshells can be reconstructed with high

accuracy from streaked photoelectron spectra based on a simple analytical expression. This

suggests the usage of streaked photoelectron spectroscopy to image the spatiotemporally

resolved electric fields at nanoparticles and nanostructured surfaces.
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Chapter 4

A semi-classical approach for solving

the time-dependent Schrödinger

equation in spatially inhomogeneous

electromagnetic pulses

In the previous chapters, we employ heuristically generalized Volkov states to model pho-

toemission from plasmonic nanoparticles,

Ψτ
kf

(r, t) =
1√
2π
f [l(r);λi)]e

ikf ·re
iφτkf

(r,t)
. (2.11 revisited)

While this allows us to numerically model streaked photoemission spectra and to recon-

struct plasmonic fields near Au nanospheres, a systematic mathematical solution of the

time-dependent Schrödinger (TDSE) for a single active electron exposed to inhomogeneous

external fields remains to be explored. In this chapter, we discuss a semiclassical model

for obtaining such solutions [98]. While being approximate, our complex-phase Wentzel-

Kramer-Brillouin (WKB)-type approach lends itself to systematic iterative refinement. Our

proposed method, termed ACCTIVE (Action Calculation by Classical Trajectory Integration
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in Varying Electromagnetic fields), employs complex classical trajectories to solve the TDSE

in the presence of spatially inhomogeneous electromagnetic pulses that are represented by

time-dependent inhomogeneous scalar and vector potentials. Our approach is inspired by

the semiclassical complex-trajectory method for solving the TDSE with time-independent

scalar interactions of Boiron and Lombardi [99] and its adaptation to time-dependent scalar

interactions by Goldfarb, Schiff, and Tannor [100].

Following the mathematical formulation of ACCTIVE in Sec. 4.1, we validate this method

by discussing five examples in Sec. 4.2. We first compare ACCTIVE calculations with ab

initio numerical solutions by scrutinizing electronic states in a (i) homogeneous laser field

(Sec. 4.2.1), (ii) Coulomb field (Sec. 4.2.2), and (iii) combination of laser and Coulomb

fields (Sec. 4.2.3). Next, we apply ACCTIVE to streaked photoemission from (iv) hydro-

gen atoms (Sec. 4.2.4) and (v) plasmonic nanoparticles (Sec. 4.2.5). In the application

to Au nanospheres, we examine final states for the simultaneous interaction of the pho-

toelectron with the spatially inhomogeneous plasmonically enhanced field induced by the

streaking infrared (IR) laser pulse and demonstrate the improved reconstruction of the in-

duced nanoplasmonic IR field from streaked photoemission spectra. Section 4.3 contains our

summary.

4.1 Theory

We seek approximate solutions of the TDSE for a particle of (effective) mass m and charge

q in an inhomogeneous time-dependent electro-magnetic field given by the scalar and vector

potentials φ(r, t) and A(r, t) and an additional scalar potential V (r, t),

i~
∂

∂Ψ
(r, t) =

{
1

2m

[
i~∇+ qA(r, t)

]2
+ ϕ(r, t)

}
Ψ(r, t), (4.1)

where ϕ(r, t) = qφ(r, t) + V (r, t) and V (r, t) is any scalar potential. Representing the

wavefunction in eikonal form, Ψ(r, t) = eiS(r,t)/~, Eq. (4.1) can be rewritten in terms of the
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complex-valued quantum-mechanical action S(r, t),

∂

∂S
(r, t) +

1

2m

[
∇S(r, t)− qA(r, t)

]2
+ ϕ(r, t) =

i~
2m
∇ ·
[
∇S(r, t)− qA(r, t)

]
. (4.2)

Expanding the action in powers of ~ [99, 100],

S(r, t) =
∞∑
n=0

~nSn(r, t), (4.3)

substituting Eq. (4.3) into Eq. (4.2), and comparing terms of equal order, results in the set

of coupled partial differential equations

∂

∂S 0
(r, t) +

[
∇S0(r, t)− qA(r, t)

]2
2m

+ ϕ(r, t) = 0 (4.4a)

∂

∂S 1
(r, t) +

[
∇S0(r, t)− qA(r, t)

m

]
· ∇S1(r, t) =

i

2
∇ ·
[
∇S0(r, t)− qA(r, t)

m

]
(4.4b)

∂

∂S n
(r, t) +

[
∇S0(r, t)− qA(r, t)

m

]
· ∇Sn(r, t) =

− 1

2m

n−1∑
j=1

∇Sj(r, t) · ∇Sn−j(r, t) +
i

2m
∇2Sn−1(r, t) (n ≥ 2), (4.4c)

where the lowest-order contribution S0(r, t) is the classical action of a charged particle moving

in the electromagnetic field given by E(r, t) = −∇ϕ(r, t)/q − ∂A(r, t)/∂t and B(r, t) =

∇×A(r, t).

Solving the classical Hamilton-Jacobi equation (HJE) Eq. (4.4a) leads to Newton’s Sec-

ond Law,
d

dt
v(r, t) =

q

m

[
E(r, t) + v(r, t)×B(r, t)

]
, (4.5)

where the classical velocity field v(r, t) and kinetic momentum,

p(r, t) ≡ mv(r, t) ≡ ∇S0(r, t)− qA(r, t), (4.6)

are given in terms of the canonical momentum ∇S0(r, t) [101]. The combination of the HJE
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(4.4a) and Eq. (4.6) provides the Lagrangian L
[
r,v(r, t), t

]
as a total time differential of

S0(r, t),

d

dt
S0(r, t) = L

[
r,v(r, t), t

]
=

1

2
mv2(r, t) + qv(r, t) ·A(r, t)− ϕ(r, t). (4.7)

Similarly, by substituting Eq. (4.6) into Eqs. (4.4b) and (4.9), we find the total time

derivatives of the first-order contribution to S(r, t),

d

dt
S1(r, t) =

i

2
∇ · v(r, t), (4.8)

and of all higher order terms,

d

dt
Sn(r, t) = − 1

2m

n−1∑
j=1

∇Sj(r, t) · ∇Sn−j(r, t) +
i

2m
∇2Sn−1(r, t) (n ≥ 2). (4.9)

Approximate solutions to S(r, t) can be obtained by iteration of Eq. (4.9), after integrating

the total time derivatives in Eqs. (4.7), (4.8), and (4.9) along classical trajectories r̃(t) that

are defined by
d

dt
r̃(t) ≡ v

[
r̃(t), t

]
(4.10)

with respect to a reference time (integration constant) tr. The wavefunction at tr, Ψr(r) =

Ψ(r, tr), provides initial (tr � 0) or asymptotic (tr � 0) conditions in terms of the action

S(r, tr) = −i~ ln[Ψr(r)] (4.11)
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and the velocity field

v(r, tr) = − 1

m
∇S0(r, tr)−

q

m
A(r, tr)

≈ − 1

m
∇S(r, tr)−

q

m
A(r, tr)

= −i~∇Ψr(r)

mΨr(r)
− q

m
A(r, tr). (4.12)

The semiclassical solution of Eqs. (4.7), (4.8), and (4.9) requires an appropriate classical

trajectory r̃(t′) - for any given “current” event (r, t) - that connects the ‘current’ coordinate

and velocity,

r = r̃(t), v =
dr̃(t′)

dt′

∣∣∣∣
t

, (4.13)

to the proper coordinate and velocity at tr,

rr = r̃(tr), (4.14a)

vr =
dr̃(t′)

dt′ tr
= −i~∇Ψr(rr)

mΨr(rr)
− q

m
A(rr, tr). (4.14b)

The known quantities in Eqs. (4.13) and (4.14) are r, t, and tr, while v, rr, and vr are to

be determined. To numerically calculate the undetermined quantities, we employ a shooting

method, starting with a “trial” velocity vtrial at position r and time t. Propagating r to the

reference time according to Eq. (4.5) results in rtrialr = r̃trial(tr) and vtrialr = dr̃trial(t′)/dt′ |tr
(Fig. 4.1).

The velocity field v that satisfies Eq. (4.5) can now be found numerically by finding the

roots of the function

f(vtrial) =

∣∣∣∣∣vtrialr +
i~∇Ψr(r

trial
r )

mΨr(rtrialr )
+

q

m
A(rtrialr , tr)

∣∣∣∣∣ (4.15)

for an appropriate range of start trial velocities. In our numerical applications this is accom-

plished by an efficient multi-dimensional quasi-Newton root-finding algorithm (Broyden’s

method) [102, 103]. Once the correct trajectories r̃(t′) are determined by finding the roots of
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Figure 4.1: Illustration of the shooting method used for determining classical trajectories.
For any given event (r, t) and a predetermined reference time tr, trajectories are classi-
cally propagated from trial points in phase space, (r, vtrial), at time t along trial trajectories
r̃trial(t′). The velocity field v and appropriate trajectory r̃(t′) are determined by iterating the
trial velocity vtrial, in order to find the roots of f(vtrial) in Eq. (4.15).

Eq. (4.15), the actions in Eqs. (4.7), (4.8), and (4.9) are integrated along these trajectories

and composed - by truncating Eq. (4.3) - into an approximate solution of Eq. (4.1).

Since each term Sn(r, t) in Eq. (4.3) depends only on terms of lower orders, ACCTIVE

enables, in principle, the systematic iterative refinement of approximate solutions of Eq. (4.1)

by including successively higher orders n. The iteration is started with S0(r, t), which is

determined by the velocity field v(r, t), and continued by integrating Eqs. (4.8) and (4.9).

In the numerical examples discussed in Sec. 4.2 below, we find that retaining only the

zeroth- and first-order terms, S0(r, t) and S1(r, t), provides sufficiently accurate and physi-

cally meaningful solutions at modest numerical expense. Thus, according to Eqs. (4.7) and

(4.8), we apply

Ψ(r, t) ≈ exp
{
iS0(r, t)/~ + iS1(r, t)

}
= eiS(rr,tr)/~ exp

{
− 1

2

∫ t

tr

∇ · v
(
r̃(t′), t′

)
dt′ +

i

~

∫ t

tr

L

[
r̃(t′),v

(
r̃(t′), t′

)
, t′
]
dt′

}
.

(4.16)
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For real classical trajectories and potentials, the integral of S0(r, t) is real, representing a

local phase factor, while S1(r, t) is purely imaginary and defines the wavefunction amplitude,

as in the standard WKB approach [88]. The quantum-mechanical probability density ρ(r, t)

then satisfies the continuity equation,

dρ(r, t)

dt
=

d

dt
|Ψ(r, t)|2 = −ρ(r, t)∇ · v(r, t), (4.17)

for the classical probability flux ρ(r, t) v(r, t) [104].

4.2 Examples

We validate the ACCTIVE method by discussing five applications to electron wavefunctions

in Coulomb and laser fields.

4.2.1 Volkov wavefunction

For the simple example of an electron in a time-dependent, spatially homogeneous laser field,

the potentials in Eq. (4.1) and reference wavefunction are (in the Coulomb electromagnetic

gauge [88])

A(r, t) = A(t), ϕ(r, t) = 0, Ψr(r) = eip·r/~, (4.18)

and the first-order wavefunction in Eq. (4.16) reproduces the well-known analytical Volkov

solution [78],

ΨV (r, t) = exp

{
i p · r
~
− i

2m~

∫ t

tr

[
p− qA(t′)

]2
dt′
}
. (4.19)

For details of the derivation of Eq. (4.19) within ACCTIVE see Appendix B.1.
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4.2.2 Coulomb wavefunction

As a second simple example and limiting case, we consider an unbound electron in the

Coulomb field of a proton. In this case the potentials in Eq. (4.1) are

A(r, t) = 0, ϕ(r, t) = −ke
e2

r
, (4.20)

where e is the elementary charge and ke the electrostatic constant. Assuming outgoing-wave

boundary conditions, we define the reference wavefunction at a sufficiently large reference

time tr as the ‘outgoing’ Coulomb wave

Ψr(r, tr)
tr→∞, z→+∞−−−−−−−−−−→ e

i
(
kz− ~k2

2m
tr
)
. (4.21)

Here r = (x, y, z) and p = ~k > 0 is the final electron momentum. In this case the TDSE is

solved exactly by the well-known Coulomb wavefunction

ΨC
k (r, t) =

e
π
2kΓ(1− i/k)

(2π)3/2
1F1(i/k, 1, ikr − ikz)e

i
(
kz− ~k2

2m
t
)

(4.22)

in terms of the confluent hypergeometric function 1F1. Note that for finite distances from the

z-axis (i.e., for finite coordinates x and y), the asymptotic form of the Coulomb continuum

wavefunction for z → +∞ is just a plane wave (without a logarithmic phase term) [88, 105].

Applying ACCTIVE to the outgoing-wave Coulomb problem, tr must be chosen suffi-

ciently long after t, so that each classical trajectory r̃(t′) propagates far enough towards the

z → +∞ asymptotic limit for the reference velocity to become

vr
tr→∞, z→+∞−−−−−−−−−−→ ẑp/m, (4.23)

in compliance with Eq. (4.14b). In this and for the following numerical example, we use

as reference velocity the initial trial velocity for points of the spatial numerical grid that

are sufficiently far away from the Coulomb singularity at the origin. The correct ‘current’
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dition given by an outgoing wave propagating along the z-axis. (a) Numerically calculated
semi-classical 1st order ACCTIVE wavefunction. (b) Analytical Coulomb wavefunction in
the y = 0 plane. (c) Real part of the wavefunctions in (a) and (b) along the z-axis for
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velocities, v(r, t) at the most distant coordinates are subsequently used as trial velocities at

the nearest neighbor spatial grid points. This scheme is continued until classical trajectories

for the entire spatiotemporal numerical grid are calculated. Further details of the numerical

calculation of Coulomb wavefunctions within ACCTIVE are given in Appendix B.2.

Figure 4.2 shows the very good agreement between the numerically calculated 1st order

ACCTIVE wavefunction (4.16) and the analytical Coulomb wavefunction (4.22) for a final

electron kinetic energy of p2/2m = 50 eV. The color/gray scale represents the real part of the

wavefunction in the x−z plane. Figures 4.2(a) and 4.2(b) show the same scattering pattern.

Good quantitative agreement of the 1st order ACCTIVE wavefunction and the analytical

Coulomb wavefunction is demonstrated in Fig. 4.2(c).

4.2.3 Coulomb-Volkov wavefunction

A more challenging third example is given by the motion of an electron under the com-

bined influence of a point charge (proton), located at the coordinate origin, and a spatially

homogeneous laser pulse, subject to the boundary condition Eq. (4.21). In this case, the
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potentials in Eq. (4.1) are (in Coulomb gauge [88])

A(r, t) = A(t), ϕ(r, t) = −ke
e2

r
. (4.24)

Considering a laser pulse of finite duration, tr must be chosen such that the laser electric

field vanishes at tr. This combination of the two previous examples in Secs. 4.2.1 and 4.2.2

constitutes the Coulomb-Volkov problem, for which merely approximate solutions [106–109],

but no analytical wavefunction are known. We assume a laser pulse with 15 eV central

photon energy, a cosine-square temporal intensity envelope with a pulse length of 0.5 fs

full width at half intensity maximum (FWHIM), and 3 × 1015 W/cm2 peak intensity. At

time t = 0, the temporal pulse profile is centered at z = 0. We enforce the outgoing-wave

boundary condition (4.21) for an asymptotic photoelectron kinetic energy of p2/2m = 50 eV.

This energy is reached at a sufficiently large distance of the outgoing electron from the proton

and long after the pulse has vanished.

In Fig. 4.3 we compare the ACCTIVE-calculated Coulomb-Volkov wavefunction with

Coulomb and Volkov wavefunctions for identical outgoing-wave boundary condition and

50 eV asymptotic photoelectron kinetic energy. The Coulomb and Volkov wavefunctions are

given for a positive elementary charge and the same laser parameters as the Coulomb-Volkov

wave, respectively. The color/gray scale represents the real part of the wavefunctions. We

determined all numerical parameters (numerical grid size, spacing and propagation time

step) to ensure convergence of the wavefunctions.

Figures 4.3(a), 4.3(b), and 4.3(c), display snapshots at time t = 0 of the Coulomb,

ACCTIVE-calculated Coulomb-Volkov, and Volkov wavefunctions, respectively. The Coulomb-

Volkov wavefunction shows a similar (inverse) Coulomb scattering pattern for the incident

wave (z < 0) as the Coulomb wave. Its outgoing part (z > 0) closely matches the phase of

the Volkov wave. On the other hand, the time-dependent evolution of the Coulomb-Volkov

wavefunction in the y = 0 plane in Fig. 4.3(e) shows laser-induced wavefront distortions -

similar to the Volkov wave in Fig. 4.3(f). The time evolution of the ACCTIVE-calculated

Coulomb-Volkov wavefunction reveals the acceleration of the incoming and deceleration of
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laser-pulse center is at z = 0. (d-f) Time evolution along the z-axis.

the outgoing wave near the proton at z = 0 of the pure Coulomb wave in Fig. 4.3(d).

4.2.4 Streaked photoemission from hydrogen atoms

As a fourth example, we employ ACCTIVE final-state wavefunctions to calculate IR-streaked

XUV photoelectron spectra from ground-state hydrogen atoms [38]. We assume the ionizing

XUV and streaking IR pulse as linearly polarized along the z axis. The relative time delay

between the centers of the two pulses, τ , is assumed positive in case the IR precedes XUV

pulse. The electric field EX(t) of the XUV pulse is characterized by a Gaussian temporal

profile, 55 eV central photon energy, and a pulse length of 200 as (FWHIM). The IR pulse

has a cosine-squared temporal profile, 720 nm central wavelength, pulse duration of 2 fs

FWHIM, and 1011 W/cm2 peak intensity.

We model streaked photoemission from the ground state of hydrogen, |Ψi〉, based on the
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quantum-mechanical transition amplitude [38, 71, 88]

T (kf , τ) ∼
∫
dt
〈
ΨC−V

kf ,τ

∣∣zEX(t)
∣∣Ψi

〉
, (4.25)

where the IR-pulse-dressed final state of the photoelectron,
∣∣ΨC−V

kf ,τ

〉
, is a Coulomb-Volkov

wavefunction [77] that we evaluate numerically using the ACCTIVE method. In a com-

parison calculation, we replace the Coulomb-Volkov state by the Volkov state
∣∣ΨV

kf ,τ

〉
and

assume otherwise identical physical conditions. As mentioned in the Introduction, the use

of Volkov states [78] in photoionization calculations is referred to as SFA [38] and amounts

to neglecting the interaction of the released photoelectron with the residual ion (proton in

the present case). We scrutinize streaked photoemission spectra obtained with ACCTIVE-

calculated Coulomb-Volkov final states and in SFA against ab initio bench-mark calculations.

In these exact numerical calculations we directly solve the three-dimensional TDSE using

the SCID-TDSE time-propagation code [110].

Numerical results are shown in Fig. 4.4. The streaked photoemission spectra obtained

with ACCTIVE-calculated Coulomb-Volkov final states [Fig. 4.4(a)], in SFA [Fig. 4.4(b)], and

by direct numerical solution of the TDSE [Fig. 4.4(c)] show very similar ‘streaking traces’,

i.e., oscillations of the asymptotic photoelectron energy with delay τ . For a quantitative

comparison, we plot in Fig. 4.4(d) the centers of energy (CoEs) of the spectra in Figs. 4.4(a-

c). While the three calculations result in identical photoemission phase shifts (streaking time

delays) relative to the streaking IR field, within the resolution of the graph, the ACCTIVE-

calculated spectra agree with the exact TDSE calculation, while the SFA calculation predicts

noticeably smaller CoEs due to the neglect of the Coulomb potential in the final photoelectron

state [6].

4.2.5 Streaked photoemission from metal nanospheres

As a final, fifth, example, we apply the ACCTIVE method to model photoelectron states in

spatially inhomogeneous, plasmonically enhanced IR electromagnetic fields. For this purpose,
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we investigate streaked photoemission and the reconstruction of plasmonic near-fields for

Au nanospheres with a radius of R = 50 nm, as proposed in Chapter 3. We calculate

the transition amplitude following the theory in Sec. 3.2.1, with the important difference of

employing numerically calculated semiclassical ACCTIVE final photoelectron wavefunctions,

while SFA is used in Sec. 3.2.1, applying heuristically generalized Volkov final states and thus

neglecting of the photoelectron interactions with the residual nanoparticle.

For the ACCTIVE calculation we thus solve the TDSE (4.1) with the potentials

A(r, t) =

∫ ∞
t

Etot(r, t
′) dt′ (4.26a)

ϕ(r, t) =


V0 r < R

0 r ≥ R

, (4.26b)

and the boundary condition Eq. (4.21). Here, the asymptotic wavefunction in Eq. (4.21)

also serves as reference wavefunction for the classical trajectory computation. The net time-

dependent inhomogeneous field Etot(r, t) is given by the superposition of the homogeneous IR

field of the incident streaking pulse and the inhomogeneous plasmonic field produced by the

nanoparticle in response to the incident IR pulse Sec. 2.1.1. For the streaking calculation,

we assume an XUV pulse with 30 eV central photon energy and Gaussian temporal profile

with a width of 200 as (FWHIM). We further suppose a delayed Gaussian IR pulse with 720

nm central wavelength, 2.47 fs (FWHIM) pulse length, and 5× 1010 W/cm2 peak intensity.

Figure 4.5 shows simulated streaked photoelectron spectra obtained with ACCTIVE-

calculated and Volkov final states for electron emission along the XUV-pulse polarization

direction. In this direction, the effect of the induced plasmonic field on the photoelectron

is strongest (See Sec. 3.3.2). The corresponding spectra in Figs. 4.5(a) and 4.5(b) show

very similar temporal oscillations of the photoelectron yield and CoE as a function of both

asymptotic photoelectron energy and XUV-IR pulse delay τ . As for streaked photoemission

from hydrogen atoms discussed in Sec 4.2.4 above, we find that the SFA shifts the CoE to

lower kinetic energies [Fig. 4.5(b), cf. Fig. 4.4(d)]. Here, the SFA results in an approximately
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1.5 eV lower CoE than the ACCTIVE calculation. This energy shift is due to the fact that

the SFA, by neglecting the potential well of the nanosphere in the final photoelectron state,

leads to an unphysical enhancement of the photoemission cross section at lower photoelectron

kinetic energies, thereby increasing the weight of low energy yields in the CoE average.

Additional comments on the comparison of streaked photoelectron spectra within either

ACCTIVE or based on Volkov wavefunctions can be found in Appendix B.3.

From streaked photoemission spectra the plasmonic near-field at the nanoparticle surface

can be reconstructed, as detailed in Sec. 3.3.1. Figure 4.5(d) shows the reconstructed net

electric field Etot along the XUV-pulse polarization direction, i.e., at the surface and on the

positive z axis of the nanosphere. The reconstruction of net plasmonically enhanced near-

fields from the simulated spectra in Figs. 4.5(a) and 4.5(b) was performed using Eq. (3.12).

The obtained reconstructed fields are compared in Fig. 4.5(d) with the net electric IR near-

field obtained within Mie theory [80] and used as input in the streaking calculations. As is

seen in Fig. 4.5(d), the ACCTIVE method improves the near-field reconstruction in com-

parison with the SFA calculation. The least-square deviation between the reconstructed and

Mie-theory calculated fields, assembled over the entire IR pulse length, amounts to 1.62%

using the ACCTIVE wavefunction and 3.05% using the SFA. The ACCTIVE method thus

extends the applicability of the plasmonic near-field reconstruction scheme in Chapter 3 to

lower XUV photon energies.

4.3 Summary

In summary, we propose a semi-classical method, ACCTIVE, to solve the TDSE for one

active electron exposed to any spatially inhomogeneous time-dependent external force field.

We validate this method by comparing ACCTIVE-calculated electronic wavefunctions with

known Coulomb and Volkov wavefunctions for the electronic dynamics in Coulomb and

intense laser fields, respectively, and by scrutinizing ACCTIVE-calculated final-state wave-

functions in streaked photoemission (i) from hydrogen atoms against ab initio numerical

solutions of the TDSE, and (ii) from metallic nanospheres in plasmonic-field imaging.
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For streaked photoemission from hydrogen atoms, we demonstrate excellent agreement

of our ACCTIVE calculation with a benchmark ab initio TDSE calculation, while a com-

parative calculation using the SFA systematically deviates from the exact TDSE solution.

For streaked photoemission from Au nanospheres we find that ACCTIVE final-state wave-

functions improve the reconstruction of plasmonic near-fields over SFA calculations (based

on Volkov final states) at comparatively low photoelectron energies.
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Chapter 5

Tracking the non-linear optical

response in plasmonic nanoparticles

with strong-field photoemission

spectroscopy

In previous chapters, streaked photoemission is studied with the plasmonically enhanced net

field Etot simulated using Mie theory. However, only linear optical response is considered for

these simulations. This approximation is valid as long as the external fields have low intensi-

ties. Since high-intensity lasers are made available in modern experiments, as well as nanos-

tructures with high plasmonic enhancement (such as nanoshells discussed in Chapter 3.3.3),

non-linear optical response can also impact the photoemission processes. Studying such ef-

fect thus becomes increasingly important in both theoretical and experimental research of

strong-field photoemission [111–113].

In this chapter, in contrast to the streaked photoemission setup up used in previous

chapters, we use high-energy velocity map imaging (VMI) as a tool to analyze the optical

response of nanoparticles. The experiments are performed in James R. MacDonald labora-

tory. In Sec. 5.1 we describe the experimental setup of this study. We then use the VMI
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spectrometer to study the size-dependent photoelectron cut-off energy in Sec. 5.2, demon-

strating the usage of VMI photoelectron cut-off energy as a probe of near-field enhancement

of nanoparticles. Based on this knowledge, in Sec. 5.3, we discuss in detail the intensity

dependence of photoelectron spectra, both experimentally and theoretically, to demonstrate

the effects of non-linear optical response in strong-field photoemission from SiO2-core-Au-

shell nanostructures, before we summarize this chapter in Sec. 5.4.

5.1 Experimental setup

The experiments carried out by Dr. Jeffrey Powell at James R. Macdonald Laboratory make

use of intense 25 fs, λ = 780 nm laser pulses produced with a chirped pulse amplification

(CPA) Ti:Sapphire laser system coupled to a VMI spectrometer to measure energy- and

angle-resolved photoelectron emission. A custom-built nanoparticle source delivers a con-

tinuous nanoparticle beam of nanoparticles to the vacuum. The overall configuration of the

experiment is described in [114] and similar to [19].

A colloid of Au nanoparticles are aerosolized and subsequently dried by a solid-state

counter-flow membrane dryer to remove the solvent (water) from the carrier gas (N2). The

in-vacuum beam density is increased using an aerodynamic lens system to focus the gas-phase

nanoparticles while a three-stage differentially pumped arrangement removes excess carrier

gas. Two types of spherical Au nanoparticles with diameters ranging from 5 nm to 400 nm are

selected for their narrow size distribution (<12%), solvent choice and overall purity. Solid Au

nanoparticles, stabilized with citric acid, are customized products of Cytodiagnostics, Inc,

while SiO2-core-Au-shell structures (addressed as ”core-shell structures”), stabilized with

polyethylene glycol (PEG, 5kDa), are products of nanoComposix, Inc.

Angle and energy resolved photoelectron spectra are acquired using a thick-lens, high-

energy VMI spectrometer paired with a microchannel plate (MCP) and phosphor assembly

capable of imaging up to 350 eV electron energy. The use of a fast, single-shot CCD cam-

era coupled with a real-time hit finding software routine allow for the electron spectra to

be captured for each laser shot. The highest observable energy photoelectrons, or “cut-off”
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Figure 5.1: High energy velocity map imaging (VMI) spectrometer coupled to nanoparticle
source. The dilute beam of isolated gas-phase nanoparticles is injected into the vacuum and
focused by an aerodynamic lens to interact with a 780 nm, 25 fs laser source. Emitted
electrons are focused onto the MCP/phosphor assembly where a single-shot camera records
the electron spectra for each laser shot. (Figure from [114])
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electrons, can be obtained from the non-inverted VMI images where the upper energy bound-

aries of the full 3D momentum sphere and the 2D projection are essentially the same as in

[114].

The peak laser intensity is determined by analyzing the above-threshold (ATI) photo-

electron energy distribution of atomic Xe with the aforementioned VMI under the exact

experimental parameters. The ponderomotive shift of the Xe ATI comb is measured as a

function of the input laser pulse energy in order to derive the ponderomotive energy Up ∝ I0λ
2

and thus, the peak laser intensity I0.

5.2 Size-dependent photoelectron cut-off energies

We first investigate the optical response of nanoparticles by studying the size-dependent

photoelectron cut-off energy for different nanoparticles. Figures 5.2(a) and 5.2(b) show the

size-dependent photoelectron cut-off energies for Au and SiO2 nanospheres, respectively,

for diameters D ranging from 5 nm to 400 nm at various intensities between 2.7 and 17.6

TW/cm2. Here, in units of electron volts, the maximum detected photoelectron energy

is plotted with respect to particle size and peak laser intensity. It can clearly be seen

that the photoelectrons from Au nanoparticles are significantly faster than for their SiO2

counterparts. By normalizing the measured cut-off energy to Up, Fig. 5.2(c) allows for a

comparison independent of laser intensity (as Up ∝ I0λ
2 is proportional to the laser intensity).

As can be seen for both the Au and SiO2 samples, the electron cut-off energy scales linearly

with peak driving laser intensity, within the diameter and intensity range studied here. The

electron cut-off energy increases monotonically for both samples up to D = 200 nm, where

the Au particle energy decreases.

We attribute this change in cut-off energies to the size dependence of the near-field

enhancement, as addressed in Sec. 2.1.1. Figure 5.2(d) shows the Mie-simulated plasmonic

field enhancement |η|2 as a function of nanosphere diameter, where

|η|2 = max
[
|η(r)|2

]
(5.1)
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is the maximum field enhancement near the nanoparticles, and η(r) is defined in Eq. (2.4).

A qualitative similarity in Fig. 5.2(d) can be seen in the shape of the respective curves in

Fig. 5.2(c). The SiO2 nanosphere cut-offs show a slow monotonic increase mimicked in the

near-field calculations. For the Au nanospheres, the Mie simulation of the near-field predicts

a maximum at d = 200 nm, followed by a drop in the local intensity for larger sizes. The

experimental data in Fig. 5.2(c) follow this same trend, suggesting that the electron cut-off

energy is proportional to the magnitude of the respective near-field. An increase in the

near-field intensity reasonably leads to higher electron energies as the photoelectron will

experience this enhanced field in the continuum. Photoelectrons are therefore a sensitive

probe of the near-field enhancement of their parent nanoparticle.

5.3 Intensity-dependent photoelectron cut-off energies

In the previous section, we established the relation between cut-off energy and near-field en-

hancement. Based on this knowledge, we now discuss the intensity-dependent photoelectron

cut-off energy for different nanoparticles. Figure 5.3(a) shows the intensity-dependent pho-

toelectron cut-off energies in eV, at 780 nm incident wavelength, of three independent exper-

imental measurements of SiO2-core-Au-shell structures, and two independent measurements

of solid Au nanospheres. The core-shell structures have an outer diameter of D2 = 147± 7

nm and an inner diameter of D1 = 118±4 nm. The solid Au nanospheres have a diameter of

150± 5 nm. All measurements show an overall increase in photoelectron cut-off energy with

incident-field intensity. At very low intensities (∼ 0.1 TW/cm2), the electromagnetic field

is too weak for solid Au nanospheres to induce any photoemission. However, a significant

amount of photoelectrons with approximately 10 eV cut-off energy are still observed from

core-shell structures, as annotated in Fig. 5.3(a), indicating that a large field enhancement

is induced by core-shell structures at this intensity. As the intensity increases, photoemission

starts to appear for solid Au nanospheres at approximately 0.5 TW/cm2, and increases with

incident-field intensity. However, the photoelectron cut-off energies are still significantly

smaller than for core-shell structures at this intensity. This difference in cut-off energies be-
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for core-shell structures (red dotted line) and solid Au nanospheres (blue solid line). (c) the
sketch of the Au-SiO2 interface in radial coordinates, and an estimated IR skin depth (blue
dashed line and darkened area, scale on the right). (d) shows the transmitted-electric-field
intensity at the Au-SiO2 interface, in units of incident-field intensity I0. The red shaded
area in (b) and (d) are the uncertainty caused by the manufacturing dispersity of the inner
and outer radii of the core-shell structures, shown as the hatched area in (c). All taken at
wavelength λ = 780 nm.
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tween core-shell structures and solid Au nanospheres decreases and becomes less significant

when incident-field intensity exceeds 1 TW/cm2.

This effect can again be further investigated by re-scaling the cut-off energy in units of

incident-field ponderomotive energy Up, which is shown with the same markers in Fig. 5.3(b).

The re-scaled cut-off energy for solid Au nanospheres remains approximately unchanged (∼

500 Up) for different incident-field intensities, indicating that the field enhancement near

solid Au nanospheres is nearly independent of incident-field intensity. The same cut-off

energy for core-shell structures, however, is significantly larger (2000 ∼ 3000 Up) at low

incident intensities, but drops rapidly as the intensity increases and converges to that of

solid Au nanospheres beyond 1 TW/cm2. This indicates the plasmonic field enhancement

near core-shell structures is significantly larger than for solid Au spheres at low intensities.

However, as the intensity increases, this difference in field enhancement drops rapidly, and

vanishes above 1 TW/cm2.

The explanation of this effect must take the non-linear optical response of the material

into consideration. In previous chapters, the plasmonically enhanced electromagnetic fields

are simulated with Mie theory [80, 81] and only including the linear optical response, by

considering the complex index of refraction of Au and SiO2 based on the experimental data

[82, 115]. To introduce the non-linear response, we now consider the intensity dependence

of the complex index of refraction n for Au [112],

n = n0 + n2I0, (5.2)

where n0 = 0.15 + 4.74i is the complex index of refraction for the linear response at 780

nm, taken from Ref. [115], and I0 is the intensity of the incident pulse. n2 is related to the

third-order susceptibility χ(3), and given, in SI units, by [111],

n2(m
2/W) =

283

n0<(n0)
χ(3)(m2/V2), (5.3)

where <(n0) is the real part of n0, and |χ(3)| = 7.71 × 10−19 m2/V2, according to Bloem-
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bergen’s measurement [116]. We determine the complex phase of χ(3) so that n2 is purely

imaginary, since it is known that the real part of n2 is negligible compared to the imaginary

part [111]. Therefore, Eq. (5.2) can be rewritten as,

n = nR + inI (5.4)

where nR = <(n0) is the real part, and nI = =(n0) + =(n2) ∗ I0 is the imaginary part. At

low intensity, particularly when =(n2) ∗ I0 → 0, we obtain n ≈ n0. Therefore the optical

response is mostly linear. As intensity increases, nI starts to increase, and the non-linear

effect can become significant.

We can estimate the normal-incident IR skin depth σ using [117],

σ =
c

2ωnI
=

c

2ω
[
=(n0) + =(n2) ∗ I0

] , (5.5)

where c is the speed of light, and ω = 2πc/λ is the IR angular frequency. Thus, the IR

skin depth decreases with external field intensity. Figure 5.3(c) shows a sketch of Au-SiO2

interface and the intensity-dependent IR skin depth. At low intensities (< 0.1 TW/cm2), the

skin depth is approximately 13 nm, comparable to the Au-shell thickness used in our exper-

iments, suggesting a considerable amount of IR field should reach the SiO2 core. However,

as the intensity increases, σ quickly drops and approaches 2 nm at 10 TW/cm2, well below

the Au-shell thickness, preventing the IR field from penetrating the Au shell, i.e., shielding

the SiO2 core.

A more quantitative investigation of the intensity dependence can be done by employing

Mie theory [80, 81] to simulate the electric field inside and outside the nanoparticles, using the

intensity-dependent Au index of refraction in Eq. (5.2). We neglect the non-linear response

of the SiO2 core in the core-shell structures in this study, because the field near the SiO2 core

is shown to be greatly dampened by the Au shell, thus too weak to induce any significant non-

linear response. Therefore only the index of refraction for the linear response is considered

for SiO2, shown to be 1.45 [82]. Figure 5.3(d) shows the maximum field intensity at the
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Au-SiO2 interface (transmitted field) with respect to the incident field intensity I0, with an

uncertainty range as a result of the dispersity of the inner and outer radii. The transmitted

field intensity reaches up to 0.3 times the incident field at low intensities, but rapidly drops

and nearly vanishes as the intensity increases. Thus, at low intensities, since a considerable

amount of the field reaches the Au-SiO2 interface for core-shell structures, the boundary

conditions at both inner and outer surfaces significantly affect the optical response, causing

it to respond drastically different from solid Au nanospheres of the same diameter. But at

high intensities, the IR field is nearly totally screened by the Au shell and does not reach the

SiO2 core. Thus the optical response of core-shell structures appears to be indistinguishable

to solid Au nanospheres of the same sizes.

To compare with the experimental results, Figure 5.3(b) also shows the Mie simulated

field-intensity enhancement |η|2 for core-shell structures and solid Au nanospheres at 780 nm

incident wavelength, with scales on the right. The enhancement of solid Au nanospheres only

decreases slightly from 18 to 14 as I0 increases, indicating that the effect of the non-linear

response, while presents in solid Au nanospheres, is insignificant. The core-shell structures,

on the other hand, start with a field enhancement up to 60 at 780 nm wavelength and low

intensities, where the linear response dominates. This large enhancement is responsible for

the photoemission observed from core-shell structures at low intensities, which does not occur

in solid Au nanospheres. As I0 increases, the non-linear response starts to become significant,

and the field-intensity enhancement decreases drastically, eventually converging with the

solid Au nanospheres at |η|2 = 14. The intensity dependence of the theoretically simulated

field-intensity enhancements is in excellent agreement with the behavior of the experimentally

measured cut-off energies for core-shell structures relative to solid Au nanospheres. This

provides evidence that the measured photoelectron cut-off energy carries a signature of the

changing field enhancement. While Coulomb interactions definitely play an important role in

determining the absolute values, the cut-off energy is shown to be sensitive to the magnitude

of the near-field enhancement. This enables us to track the non-linear optical response of

the core-shell structures as a function of incident-field intensity.

We further investigate the intensity dependence by studying the wavelength-dependent
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Figure 5.4: Mie simulated spatial distribution of electric field intensity, shown as side-
by-side comparison between core-shell structures (left half) and solid Au nanospheres (right
half), for the incident-field wavelength of 780 nm and intensities of (a) 0.08 TW/cm2, (b)
0.3 TW/cm2, and (c) 8 TW/cm2. (d-f) Simulated field enhancement |η|2 as a function of
incident wavelength, under the same respective incident-field intensities, for core-shell (red
circled lines) and solid Au nanospheres (blue solid lines). The red shaded areas are the
uncertainty range caused by the manufacturing dispersity of the inner and outer radii of the
core-shell structures.
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dielectric response of these two nanostructures. Figure 5.4(a)-(c) compare the Mie simu-

lated electric-field-intensity distribution between core-shell structures (left half) and solid

Au nanospheres (right half) for an incident field of 780 nm wavelength. Figure 5.4(d)-(f)

show the corresponding wavelength-dependent field enhancements. Both columns are simu-

lated at three different incident-field intensities, 0.08, 0.3, and 8 TW/cm2. At 0.08 TW/cm2,

the distribution pattern of a core-shell structure is considerably different from a solid Au

nanosphere, where a weak, yet noticeable, field penetrates the Au shell to reach the SiO2

core. Therefore, matching the boundary conditions at both inner and outer surfaces, even

for field penetration, results in drastically different dielectric responses. The core-shell struc-

tures shows a significantly higher and red-shifted enhancement resonance. Such pronounced

differences in the linear responses are responsible for the observed difference in cut-off ener-

gies between these two structures at low intensities, indicating that the dielectric response

of core-shell structures can be greatly changed by tailoring its geometry without changing

its material properties. As the incident-field intensity increases, due to the increasing non-

linear effect response screening the field inside the shell, the differences between core-shell

structures and solid Au nanospheres in both the electric-field-intensity distribution and the

wavelength-dependent field enhancement vanish and become indistinguishable.

5.4 Summary

In this chapter, we demonstrated the first successful study of VMI spectra on isolated,

gas-phase nanoparticles. We studied the size-dependent photoelectron cut-off energy of Au

and SiO2 nanospheres, and demonstrated the relationship between the cut-off energy and

the simulated plasmonic field enhancement. Based on this knowledge, we then studied the

intensity-dependent photoelectron cut-off energy of SiO2-core-Au-shell structures and solid

Au nanospheres, including the non-linear optical response. Our results suggest that, within

the linear optical response, layered nanostructures such as Au nanoshells can be manipulated

with tailored optical properties. By changing the size of the core and the thickness of the

shell, the absorption spectra can be tuned across the visible and infrared range. This modifi-
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cation of optical properties also indicates the ability to tune and control the magnitude of the

near-field of the nanostructures. Furthermore, we found that, depending on the layer thick-

ness, the non-linear optical response may have a significant impact on thin layered structures

as the intensity increases, causing them to become indistinguishable to corresponding solid

nanostructures of the same sizes. This effect can occur for typical laser parameters, thus

must be taken into consideration in theoretical and experimental intense-field studies. This

effect, however, by properly tailoring the geometry of the layered nanostructures, can also

be used as a method to measure the third-order susceptibility χ(3) of non-bulk material.

80



Chapter 6

Conclusion and outlook

In this chapter, we will summarize the main conclusions of this dissertation, and present a

brief outlook.

6.1 Streaked photoemission from plasmonic nanopar-

ticles

We developed a quantum-mechanical model to numerically simulate streaked photoelectron

emission from metallic nanospheres, and used this method to simulate streaked photoelec-

tron spectra from Au, Ag, and Cu nanospheres. Our study of plasmonic streaking-oscillation-

amplitude enhancements and phase shifts revealed in streaked photoemission spectra, relative

to simulated spectra that exclude the induced plasmonic field, suggests plasmonic near-field

information of metallic nanospheres can be retrieved from streaked electron spectra. Our

comparative study of element-specific differences in streaking-oscillation-amplitude enhance-

ments and phase shifts also reveals the different dielectric properties of the three transition

metals.

With proper modeling of the band structure, this method can be further improved to

quantum-mechanically simulate streaked photoemission from nanostructures with different

geometries (i.e. non-spherical nanoparticles, nanowires, nanotips, and nanostructured sur-
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faces) and different materials (i.e. dielectric nanoparticles).

6.2 Plasmonic field imaging

Based on the previously developed quantum-mechanical model, we showed that under quasi-

static and slow-escape conditions, the spatiotemporally-resolved plasmonically enhanced elec-

tric field at the surface of metallic nanospheres and nanoshells can be reconstructed with high

accuracy from streaked photoelectron spectra based on a simple analytical expression. This

suggests the usage of streaked photoelectron spectroscopy to image the spatiotemporally

resolved electric fields at nanoparticles and nanostructured surfaces.

This imaging technique can be applied to accurately probe the optical response of nanopar-

ticles in the presence of external fields, providing a way to study the dielectric properties,

bandstructures, geometry defects, and electronic dynamics, etc. The idea of this recon-

struction method can also be further applied to imaging plasmonic near field of different

nanostructures, such as nanowires, nanotips, and nanostructured surfaces [22].

6.3 ACCTIVE method

We proposed a semi-classical method, ACCTIVE, to solve the TDSE for one active elec-

tron exposed to any spatially inhomogeneous time-dependent external force field, as an im-

provement of the model in Chapter 2. We validated this method by comparing ACCTIVE-

calculated electronic wavefunctions with known Coulomb and Volkov wavefunctions for the

electronic dynamics in Coulomb and intense laser fields, respectively, and by scrutinizing

ACCTIVE-calculated final-state wavefunctions in streaked photoemission (i) from hydrogen

atoms against ab initio numerical solutions of the TDSE, and (ii) from metallic nanospheres

in plasmonic-field imaging (Chapter 3).

The applications of this method transcend the study of photoemission, giving it the

potential to become a general method of solving the TDSE in spatially inhomogeneous

time-dependent external force field, especially when large targets such as nanostructures
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are involved or when dipole approximation fails, in which cases traditional methods become

increasingly difficult. With further development, it also has the potential to be generalized

to solve the TDSE of many-body systems.

6.4 Non-linear optical response in nanoparticles

Employing VMI technique, we studied the size-dependent photoelectron cut-off energy of

Au and SiO2 nanospheres, and the intensity-dependent photoelectron cut-off energy of SiO2-

core-Au-shell structures and solid Au nanospheres, including the non-linear optical response.

Our results suggest that, within linear optical response, layered nanostructures such as Au

nanoshells can be manipulated with tailored optical properties. We also find that, depending

on the layer thickness, the non-linear optical response may have a significant impact on thin

layered structures with typical experimentally used laser intensity, causing them to become

indistinguishable to corresponding solid nanostructures of the same sizes, which must be

taken into consideration in theoretical and experimental intense-field studies. This effect,

however, can also be used as a method to measure the third order susceptibility χ(3) of

non-bulk materials.
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S. Schössler, B. Ulrich, P. P. Rajeev, et al., Attosecond strobing of two-surface pop-

ulation dynamics in dissociating H2
+, Phys. Rev. Lett. 98, 073003 (2007), URL

https://link.aps.org/doi/10.1103/PhysRevLett.98.073003.
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Appendix A

Mathematical derivation of plasmonic

field reconstruction

In this appendix, we present the detailed mathematical derivation of several key equations

in Chapter 3.

A.1 Evaluation of the spatial integral in Eq. (3.3)

The amplitudes of the initial states Ψi(r) decay exponentially outside of the nanosphere,

and the amplitudes of the final state Ψτ
kf

(r, tz) vanish exponentially inside the nanoparticle

due to the damping factor f(l;κ) = exp[−l/(2κ)]. The spatial integral in Eq. (3.3) is thus

confined within a range of several atomic units near the nanosphere surface which is located

at a distance R of the order 103 a.u. from the center of the sphere. The photoelectron-energy

range in the discussion, lying between ∼ 25 and ∼ 60 eV, then implies that the condition

kfr � 1 is satisfied, allowing the plane-wave factor in Eq. (2.11) to be approximated by its

asymptotic form [88],

eikf ·r ≈ 2π eikf r

ikfr
δ(n̂− r̂)− 2π e−ikf r

ikfr
δ(n̂ + r̂). (A.1)
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The transition amplitude (3.3) is thus approximately given by the 1-dimensional integral

Ti(kf , τ) ≈
√

2πEX
ωX

x̂lab ·
∫
dr r2

[
∇Ψi(n̂r)

]
f [l(n̂r);κ)]

× e
−ikf r−iφτkf (n̂r,tz)

kfr

1

bτkf (n̂r, tz)

× exp

{
−
[ ∂
∂tz
φτkf (n̂r, tz) + ωX + ωi

2bτkf (n̂r, tz)

]2}
, (A.2)

where the ∇ operator does not act beyond the square bracket. Note that the second term in

Eq. (A.1) does not contribute to the spatial integral since the damping factor f(l;κ) prevents

electrons from traversing the nanoparticle with noticeable transmitted amplitude.

The factor
[
∇Ψi(n̂r)

]
f [l(n̂r);κ)] vanishes exponentially inside and outside the nanopar-

ticle, selectively enhancing contribution near the surface at r = R. Therefore, replacing this

term by a factor proportional to δ(r − R) in Eq. (A.2) permits the radial integral to be

approximated as given by Eqs. (3.5) and (3.6) of the main text, i.e., by

Ti(kf , τ) ≈ Ci

√
2πEXR e

−ikfR−iφτkf (n̂R,t̃z)

ωXkf bτkf (n̂R, t̃z)

× exp

{
−
[ ∂
∂tz
φτkf (n̂R, t̃z) + ωX + ωi

2bτkf (n̂R, t̃z)

]2}
, (A.3)

with t̃z = R cos θ/c and

Ci =

∫
dr
[
x̂lab · ∇Ψi(n̂r)

]
f [l(n̂r);κ]. (A.4)

A.2 Evaluation of Eq. (3.11)

A spherical square well of radius R = 50 nm and depth V0 = −13.1 eV, binds approxi-

mately 3 million states below Fermi level at −Wf = −5.1 eV, resulting in a quasi-continuum

of conduction-band states with a density of states that is proportional to
√
ωi − V0. The

incoherent sum over occupied initial states in the photoemission-probability distribution in
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Eq. (3.2) can therefore be converted to the integral

P (Ef )
∣∣
τ,n̂
≈ 1

N

∫ V0+σc

V0

dωi
√
ωi − V0 Pi(Ef )

∣∣∣∣∣
τ,n̂

. (A.5)

with contributions to the photoemission probability from each individual occupied state

Pi(Ef )
∣∣
τ,n̂
≈

∣∣πCiEXR/ωX∣∣2E−3/2f√
8(ln 2)2/τ 4X + EfE2

tot(n̂R, t̃z + τ)

× exp

{
−
[
Ef +

√
2EfAtot(n̂R, t̃z + τ)− ωX − ωi

]2√
16(ln 2)2/τ 4X + 2EfE2

tot(n̂R, t̃z + τ)

}
. (A.6)

This results allows us to write the first line in the center of energy (CoE) of the photo-

electron streaking trace (Eq. (3.11) in the main text) as

Ef (τ)
∣∣
n̂
≈
∫
dEf Ef

∫ V0+σc
V0

dωi
√
ωi − V0Pi(Ef )∫

dEf
∫ V0+σc
V0

dωi
√
ωi − V0Pi(Ef )

∣∣∣∣∣
τ,n̂

=

∫ V0+σc
V0

dωi
√
ωi − V0

∫
dEf EfPi(Ef )∫ V0+σc

V0
dωi
√
ωi − V0

∫
dEfPi(Ef )

∣∣∣∣∣
τ,n̂

. (A.7)

A.2.1 Simplification of Eq. (A.6)

For a typical single attosecond pulse with a temporal FWHIM of ∼ 102 as, the term

16(ln 2)2/τ 4X in Eq. (A.6) is equal to 1.64 × 10−3 a.u. In comparison, for photoelectron

energies Ef ∼ 1 a.u. and IR intensity I = 1011W/cm2 assumed in the main text, the term

2EfE2
tot(n̂R, t̃z + τ) ∼ 10−5 a.u. in Eq. (A.6) is two orders of magnitude smaller, allowing us

to approximate √
16(ln 2)2/τ 4X + 2EfE2

tot(n̂R, t̃z + τ) ≈ 4 ln 2/τ 2X , (A.8)
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such that Eq. (A.6) can be expressed with a Gaussian exponential factor in the final photo-

electron energy,

Pi(Ef )
∣∣
τ,n̂
≈
∣∣πCiEXR/ωX∣∣2E−3/2f

2
√

2 ln 2/τ 2X

× exp

{
−
[
Ef +

√
2EfAtot(n̂R, t̃z + τ)− ωX − ωi

]2
4 ln 2/τ 2X

}
. (A.9)

The center
〈
Ef (τ ;ωi)

〉∣∣
n̂

of the above exponential term is given as the zero of the function

g(Ef )
∣∣
τ,n̂

= Ef +
√

2EfAtot(n̂R, t̃z + τ)− ωX − ωi, (A.10)

or 〈
Ef (τ ;ωi)

〉∣∣
n̂

= −
√

2
〈
Ef (τ ;ωi)

〉∣∣
n̂
Atot(n̂R, t̃z + τ) + ωX + ωi. (A.11)

Taylor expansion of g(Ef )
∣∣
τ,n̂

in terms of the dimensionless parameter

δ =
Ef −

〈
Ef (τ ;ωi)

〉〈
Ef (τ ;ωi)

〉 (A.12)

near
〈
Ef (τ ;ωi)

〉
yields

g(Ef )
∣∣
τ,n̂

=
〈
Ef (τ ;ωi)

〉 {[
1 +

Atot(n̂R, t̃z + τ)√
2
〈
Ef (τ ;ωi)

〉 ]δ
+
√
π
Atot(n̂R, t̃z + τ)√

2
〈
Ef (τ ;ωi)

〉 ∞∑
j=2

δj

j! Γ(3/2− j)

}∣∣∣∣∣
n̂

. (A.13)

For the delay range and initial-state energies ωi relevant in this work, and for all detec-

tion angles ωi,
〈
Ef (τ ;ωi)

〉∣∣
n̂
∼ 1 a.u.. However, |Ef −

〈
Ef (τ ;ωi)

〉
| is effectively limited

by the XUV spectral width 2ln2/τX = 0.168 a.u., as expressed in the denominator of

the exponent in Eq. (A.9). Thus, |δ| is ∼ 10−1 or smaller. Furthermore, the ampli-

tude of Atot(n̂R, t̃z + τ) is about ∼ 10−1 a.u. for a 1011W/cm2 IR pulse, which means
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that |Atot(n̂R, t̃z + τ)
/√

2
〈
Ef (τ ;ωi)

〉
| is at the most about 10−1. The first-order term in

Eq. (A.13) thus dominates all higher-order terms by at least two orders of magnitude, jus-

tifying the truncation of Eq. (A.13) after the first-order term.

Keeping only the first-order term in Eq. (A.13) transforms the exponential factor in Eq. (A.9)

into a Gaussian distribution, casting Eq. (A.9) into the form

Pi(Ef )
∣∣
τ,n̂
≈
∣∣πCiEXR/ωX∣∣2E−3/2f

2
√

2 ln 2/τ 2X

∗ exp

{
−
[
Ef −

〈
Ef (τ ;ωi)

〉]2/[
4 ln 2

√
2
〈
Ef (τ ;ωi)

〉 /
τ 2X√

2
〈
Ef (τ ;ωi)

〉
+ Atot(n̂R, t̃z + τ)

]}∣∣∣∣∣
n̂

. (A.14)

A.2.2 Integration over Ef in Eq. (A.7)

In our numerical application, the pre-exponential factor (v E−3/2f ) does not vary significantly

over the width of the Gaussian exponential in Eq. (A.14). This justifies a ‘peaking approx-

imation’ that consists in replacing E−3/2f in the pre-exponential factor in Eq. (A.14) by its

value
〈
Ef (τ ;ωi)

〉−3/2
at the central energy. This results in the Gaussian distribution centered

at
〈
Ef (τ ;ωi)

〉

Pi(Ef )
∣∣
τ,n̂
≈
∣∣πCiEXR/ωX∣∣2〈Ef (τ ;ωi)

〉−3/2
2
√

2 ln 2/τ 2X

∗ exp

{
−
[
Ef −

〈
Ef (τ ;ωi)

〉]2/[
4 ln 2

√
2
〈
Ef (τ ;ωi)

〉 /
τ 2X√

2
〈
Ef (τ ;ωi)

〉
+ Atot(n̂R, t̃z + τ)

]}∣∣∣∣∣
n̂

. (A.15)

The two integrals over Ef in Eq. (A.7) can now be conveniently evaluated analytically as
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the lowest two moments (of order zero and one) of a Gaussian distribution, with the result

Ef (τ)
∣∣
n̂

=

∫ V0+σc
V0

dωi
√
ωi − V0

〈
Ef (τ ;ωi)

〉∣∣∣
n̂∫ V0+σc

V0
dωi
√
ωi − V0

=
3

2σ
3/2
c

∫ V0+σc

V0

dωi
√
ωi − V0

〈
Ef (τ ;ωi)

〉∣∣∣
n̂

=
⌈〈
Ef (τ ;ωi)

〉⌋∣∣∣∣
n̂

. (A.16)

The CoE of the photoelectron-streaking trace is now seen to be equal to central energy〈
Ef (τ ;ωi)

〉
, averaged over the occupied initial-state energies ωi. The averaging over ωi is

denoted by the brackets d c and evaluated in the following subsection.

A.2.3 Integration over the initial-state energy

The combination of Eq. (A.11) and (A.16) results in

Ef (τ)
∣∣
n̂

=
3

2σ
3/2
c

∫ V0+σc

V0

dωi
√
ωi − V0

[
ωX + ωi −

√
2
〈
Ef (τ ;ωi)

〉
Atot(n̂R, t̃z + τ)

]∣∣∣∣∣
n̂

= ωX + V0 +
3

5
σc − Atot(n̂R, t̃z + τ)

⌈√
2
〈
Ef (τ ;ωi)

〉⌋∣∣∣∣∣
n̂

, (A.17)

where, ⌈√
2
〈
Ef (τ ;ωi)

〉⌋∣∣∣∣
n̂

=
3
∫ V0+σc
V0

dωi
√
ωi − V0

√
2
〈
Ef (τ ;ωi)

〉
2σ

3/2
c

∣∣∣∣∣
n̂

. (A.18)

Taylor expansion of
√

2
〈
Ef (τ ;ωi)

〉∣∣∣
n̂

as a function of
〈
Ef (τ ;ωi)

〉∣∣
n̂

about
⌈〈
Ef (τ ;ωi)

〉⌋∣∣∣∣
n̂

=

Ef (τ)
∣∣
n̂
, in conjunction with Eq. (A.16) leads to

√
2
〈
Ef (τ ;ωi)

〉
=
∞∑
j=0

√
2πEf (τ)

j! Γ(3/2− j)
∗

{〈
Ef (τ ;ωi)

〉
− Ef (τ)

Ef (τ)

}j∣∣∣∣∣
n̂

. (A.19)
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Since Ef (τ)
∣∣
n̂
∼ 1 a.u. and, by solving Eq. (A.11) |

〈
Ef (τ ;ωi)

〉
− Ef (τ)|

∣∣∣
n̂
∼ σc ∼ 10−1 a.u.,

the second order-term in (A.19) is two orders of magnitudes smaller than the zeroth-order

term. This allows us to truncate after the first-order term to obtain first

√
2
〈
Ef (τ ;ωi)

〉
≈
√

2Ef (τ) +

〈
Ef (τ ;ωi)

〉
− Ef (τ)√

2Ef (τ)

∣∣∣∣∣
n̂

, (A.20)

and next, from Eq. (A.18),

⌈√
2
〈
Ef (τ ;ωi)

〉⌋∣∣∣∣
n̂

=
3

2σ
3/2
c

∫ V0+σc

V0

dωi
√
ωi − V0 ×

{√
2Ef (τ) +

〈
Ef (τ ;ωi)

〉
− Ef (τ)√

2Ef (τ)

}∣∣∣∣∣
n̂

=

√
2Ef (τ)

∣∣∣∣
n̂

. (A.21)

Equation Eq. (A.17) can now be written as

Ef (τ)
∣∣
n̂

= ωX + V0 +
3

5
σc − Atot(n̂R, t̃z + τ)

√
2Ef (τ)

∣∣∣∣
n̂

, (A.22)

which is Eq. (3.11) in the main text. Finally, by inverting Eq. (A.22) we retrieve the plas-

monically enhanced electric field at the position n̂ at the nanosphere surface at time t from

the streaked photoelectron spectra,

Etot(n̂R, t) =
∂

∂t

Ef (t−R cos θ/c)− ωX − (3/5)σc − V0√
2Ef (t−R cos θ/c)

∣∣∣∣∣
n̂

, (A.23)

which is Eq. (3.12) in the main text.
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Appendix B

Mathematical derivation and

comments on three applications of the

ACCTIVE method

B.1 Derivation of Eq. (4.19)

We here derive the Volkov wavefunction Eq. (4.19) using ACCTIVE. Starting from the po-

tentials and initial wavefunction in Eq. (4.18), the velocity field along the classical trajectory

r̃(t) is

v(r, t) =
p

m
+

q

m

∫ t

t0

E(t′)dt′ =
p− qA(t)

m
. (B.1)

Therefore,

r̃(t) = r0 +

∫ t

t0

[
p− qA(t)

m

]
dt′, (B.2)

∇ · v(r, t) = 0, (B.3)
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and Eq. (4.16), applied to the example in Sec. 4.2.1, becomes

Ψ(r, t) = exp

{
ip · r0
~

+
i

~

∫ t

t0

[
m

2

(
p− qA(t′)

m

)2

+ q

(
p− qA(t′)

m

)
·A(t′)

]
dt′

}

= exp

{
ip

~
·
[
r−

∫ t

t0

(
p− qA(t)

m

)
dt′
]

+
i

~

∫ t

t0

[
m

2

(
p− qA(t′)

m

)2

+ q

(
p− qA(t′)

m

)
·A(t′)

]
dt′

}

= exp

{
ip · r
~

+
i

~

∫ t

t0

[
m

2

(
p− qA(t′)

m

)2

−m
(

p− qA(t′)

m

)2]
dt′

}

= exp

{
i p · r
~
− i

2m~

∫ t

t0

[
p− qA(t′)

]2
dt′
}
, (B.4)

which is the Volkov wavefunction Eq. (4.19).

B.2 Numerical calculation of Coulomb wavefunctions

using ACCTIVE

The ACCTIVE method links a quantum-mechanical problem of obtaining wavefunctions

Ψ(r, t) to a classical problem of determining velocity fields v(r, t). However, in some cases,

e.g., for Coulomb wavefunctions, such velocity fields are not uniquely defined (Fig. B.1).

This can result in interference patterns in the obtained wavefunctions, as pointed out by

Goldfarb et al. [100].

For each event (r, t), two possible classical trajectories can be found to satisfy the same

boundary condition of an outgoing plane wave in Eq. (4.21), as shown in Fig. B.1. Goldfarb

et al. [100] take this interference into account by approximating the wavefunction as the

superposition of contributions from different trajectories,

Ψ(r, t) ≈
∑
l

exp
[ i
~
Sl
(
r̃(t), t

)]
, (B.5)
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Figure B.1: Two possible classical trajectories passing through (r, t) satisfying the same
outgoing plane wave boundary condition.

where each action Sl(r, t) is associated with a trajectory r̃l(t). In this work, we follow a

different and simpler approach.

The TDSE is a linear partial differential equation. Its solution can be expressed as the

superposition of a set of linearly independent basis functions Ψl(r, t),

Ψ(r, t) =
∑
l

C lΨl(r, t) =
∑
l

C l exp
[ i
~
Sl
(
r, t
)]
, (B.6)

where each Sl(r, t) is uniquely determined by a velocity field vl(r, t) and the coefficients C l

are obtained from the initial condition,

Ψ0(r) =
∑
l

C lΨl(r, t0). (B.7)

Since two possible trajectories can be obtained for each given event (r, t), we can find
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Figure B.2: Two possible velocity fields (a) v+(r, t), and (b) v−(r, t). (c) Ψ+(r, t) and (d)
Ψ−(r, t) are the real parts of the corresponding 1st order ACCTIVE wavefunctions at y = 0
plane, respectively, and (d) Ψ(r, t) is the linear combination of these two wavefunctions.
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two velocity fields, v+(r, t) and v−(r, t), which are defined by

v+(r, t)
z→+∞, x>0−−−−−−−−→ ẑp/m (B.8a)

v−(r, t)
z→+∞, x<0−−−−−−−−→ ẑp/m, (B.8b)

as illustrated in Fig. B.2(a) and B.2(b), respectively. Figures B.2(c) and B.2(d) show the

calculated 1st-order ACCTIVE wavefunctions, Ψ+(r, t) and Ψ−(r, t), associated with these

two velocity fields at t = 0. Numerical calculation shows that,

Ψ+(r, t)
z→+∞−−−−−→


eikz x > 0

0 x < 0

(B.9a)

Ψ−(r, t)
z→+∞−−−−−→


eikz x < 0

0 x > 0

. (B.9b)

Therefore, at t0, Ψ0(r) = Ψ(r, 0) can be written as the linear combination of Ψ+(r, t0) and

Ψ−(r, t0) and satisfies the boundary condition (B.8),

Ψ0(r) = Ψ+(r, t0) + Ψ−(r, t0). (B.10)

The wavefunction at any given time t is then obtained with the same coefficients,

Ψ(r, t) = Ψ+(r, t) + Ψ−(r, t), (B.11)

as shown in Fig. B.2 (e).
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Figure B.3: Real parts of photoelectron final-state wavefunctions near the surface of Au
nanospheres along the XUV polarization direction: (a) 1st order ACCTIVE wavefunction
and (b) SFA modeled wavefunction in Ref. [60], for the electron detection along the XUV
polarization direction and asymptotic photoelectron energy Ef = 5 eV. (c) Initial state wave-
function, modeled as bound state in a spherical square well potential, at the Fermi level. The
vertical dashed line indicates the nanosphere surface. (d) Simulated XUV photoemission
cross sections.

B.3 Comments on streaked photoemission from Au

nanospheres

Figure 4.5 in the main text shows the comparison of simulated streaked photoelectron spec-

tra using either ACCTIVE wavefunctions as final states or Volkov wavefunction in SFA.

ACCTIVE wavefunctions are more accurate at low photoelectron energy, but entail higher

CoEs than Volkov wavefunctions [Fig. 4.5(c)]. In comparison with Fig. 4.4(d), this might

appear as counter-intuitive. An explanation is given below.
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Figure B.3(a) shows the real part of the 1st-order ACCTIVE wavefunction near the Au

nanosphere surface, and Fig. B.3(b) the corresponding Volkov wavefunction in SFA [60].

Both are calculated for photoelectron detection along the XUV polarization direction and

outgoing photoelectron energy Ef = 5 eV. Inside the nanosphere, the Volkov final-state

wavefunction neglects the spherical well potential. It therefore has a longer wavelength than

the ACCTIVE wavefunction and more strongly overlaps with the initial-state wavefunction

shown in Fig. B.3(c). Thus, the cross section, calculated following Ref. [88], is larger in SFA

than if based on ACCTIVE final states.

This effect becomes less significant a larger photoelectron kinetic energies, where both,

ACCTIVE and SFA wavefunctions have shorter wavelengths and overlap less with initial-

state wavefunction. Figure B.3(d) shows that the energy-dependent photoemission cross

sections calculated with ACCTIVE and Volkov final states converge at large photoelectron

energies, while at small energies the SFA leads to larger cross sections. The net effect of this

cross-section difference is to put more weight on photoelectron yields at lower energy and

thus to shift streaking traces and CoEs in SFA photoemission spectra to lower energies as

compared to ACCTIVE-calculated spectra.
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