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Abstract 

Wind energy is becoming one of the most widely implemented forms of renewable 

energy worldwide. Traditionally, wind has been considered a non-dispatchable source of energy 

due to the uncertainty of wind speed and hence the variable availability of wind power. 

Advances in technology allow the consideration of the impact of distributed wind turbines and 

farms on distribution systems. It is possible to combine the clean energy attributes of wind with 

the quickly dispatchable nature of a storage facility in order to provide the maximum amount of 

locally available power economically to the loads present on the distribution feeder. However, a 

monitoring and control system needs to be provided that is capable of detecting the changes 

associated with the distribution feeder load and also the variable generation output from the wind 

farms. This task can be accomplished using a Phasor Measurement Unit (PMU) which has very 

high sampling rates and hence can measure very rapid and dynamic changes in power levels 

associated with distribution feeder load and wind generation. The data which is obtained from 

these PMUs can be used to calculate the amount of distributed generation and storage that can be 

dispatched locally at the distribution feeder, thus resulting in a reduction in the peak load levels 

associated with the distribution feeder as seen by the substation monitoring system. Simulations 

will work to balance load requirements, wind generation output, and distributed storage 

providing a stable system utilizing maximum renewable resources. The standard IEEE 37-node 

distribution test feeder is used in the study. Probabilistic models are implemented for distribution 

feeder load, and the models are analyzed through simulations. Four different combinations of 

charging and discharging methods have been investigated. Two analytically different algorithms 

have been used for wind and battery dispatch, one based on forecasted load information and the 

other based on historical measurements obtained from PMUs. The strategies being investigated 

can also be used to implement other important applications such as distribution system state 

estimation, protection and instability prediction. 
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Chapter 1 - Introduction 

 1.1 Introduction and Motivation 

The electric power distribution network is often the most overlooked but also the most 

complex part of the entire power system. While the measurements currently available from the 

power system are sufficient to ensure the proper working of the generation and transmission 

system infrastructure, under contingency issues, the distribution system often bears the brunt of 

all emergency measures taken to bring the system back to its original stable state. This includes 

measures such as load shedding leading to branch outages, and more recently, islanding of 

certain parts of the distribution grid to local distributed generation. For quite a few years now, 

there has been an increasing interest in the installation of renewable energy generation at the 

transmission as well as the distribution levels, but these still constitute a very small percentage of 

all the power generated in North America [28]. Under current NERC regulations [29], all forms 

of renewable generation are currently required to disconnect from the system under abnormal or 

emergency conditions. The main reason for this regulation is that most renewable energy 

resources, such as wind and solar, are non-dispatchable due to uncertainty associated with the 

respective natural resources of wind and sunlight. This leads to a variable availability in power 

generated from these sources. The focus of this thesis research is on issues faced when working 

with interconnected wind energy. When wind energy is considered, the issues encountered relate 

to dynamic changes associated with system voltages and other parameters that would make the 

system stability a challenge. The challenges arise also due to lack of sufficiently dynamic 

measurement information required to assess the state of the system. Under present day 

conditions, the only measurements available from the distribution system may include 

aggregated load demand of the distribution feeder as seen by the substation monitoring system. 

Utilities have started to realize that observability of the distribution system is important in 

order to have a clear understanding of load dynamics and to assess the state of the system. So, 

many utilities across North America have begun installing smart meters in the form of Advanced 

Metering Infrastructure (AMI) in their distribution grids [30]. But this only gives a detailed 

picture in terms of load demand but not in terms of the actual state of the system. Also, these 

measurements are not time stamped in any way. In this research, the utilization of Phasor 

Measurement Units (PMU) in order to ensure the proper working of distributed wind generation 

with storage has been investigated. The smart grid initiative was taken to improve the efficiency 
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and reliability of the overall power system. This research aims to improve efficiency by working 

at the lowest level of the power system hierarchy. In a smart grid environment, some of the 

available aspects are renewable energy and advanced measurement infrastructure giving 

enormous amounts of data. This research aims to make use both of these aspects of the smart 

grid at the distribution level. The emphasis is on the use of dynamic measurements in order to 

control the amount and instance of consumption of wind energy or storage. Distributed storage 

aids this process by working to use stored power from wind energy when it is most required. 

Even a slight reduction in an individual feeder’s load at a given instance of time due to wind and 

storage can result in aggregated savings of many megawatts of power for the upper generation 

and transmission system levels, resulting in benefits such as reducing overloads of transmission 

lines, reduction of required spinning reserve and installed capacity, and improvements in the life 

expectancy of various equipment including the delaying of buying new equipment. 

The penetration of wind energy in the U.S. in the distribution system has been increasing 

steadily over the last few years partly because of the smart grid initiative. Established practices in 

the distribution system consist of directly connecting the wind turbines to the distribution grid so 

that they are always online. But this approach may not yield satisfactory results when the wind 

generation profile and the load profile in a given distribution feeder are negatively correlated. 

This research aims to solve this problem with the addition of distributed storage. The batteries 

directly store the wind energy by taking the turbines offline when the load is below a certain 

predetermined level. When the load is above this level, the wind turbine energy is directly 

supplied in order to satisfy load requirements, but the battery is also discharged in order to 

minimize the part of the load that needs to be satisfied by the bulk power from the source node at 

the substation. This effectively results in the system trying to keep the substation monitored load 

as close to a predetermined value as possible. The peak load of the feeder reduces, resulting in 

various benefits as described earlier when this solution is implemented for multiple feeders. 

The other aim of this research is to demonstrate that the usage of dynamic measurements 

recorded by PMUs will help to reduce the capacity of the storage system required for a certain 

penetration of wind energy. This is an important problem to investigate as storage is one of the 

most expensive technologies to implement in a distribution system. The fact remains that 

presently, PMUs are also expensive to implement, but the benefits that PMUs provide to any part 

of the power system can outweigh economic costs as the use of the technology becomes more 

widespread. 
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 1.2 Summary of Results 

The change in the profile of the substation monitored feeder load due to direct connection 

of the wind farm to the distribution feeder is presented initially. We consider the initial wind 

generation penetration as 30% of the peak feeder load. This number can be increased in future 

studies. The initial capacity of distributed storage is considered as equal to the installed wind 

generation capacity. The improvements in the load profile of the distribution feeder are presented 

for co-ordination between wind generation and distributed storage. The analysis is done for 15-

minute forecasted load and wind generation data for a 24 hour period initially and then later for a 

one second basis load and wind generation profile. Four different combinations of charging and 

discharging methods of the batteries are investigated in this research. They are given below and 

will be explained in more detail in the thesis 

i. Wind charging and Free-run discharging 

ii. Wind charging and Conservative discharging 

iii. Sustained average load charging and Free-run discharging 

iv. Sustained average load charging and Conservative discharging 

All the four combinations described above are investigated and the results presented for both 15-

minute basis data as well one-second basis data. The use of wind energy and storage in a 

distribution system with three-phase unbalanced backward and forward sweep power flow 

algorithm has been undocumented so far in literature and has been newly implemented in this 

research. Additionally, conservative discharging of the battery based on instantaneous stored 

energy level or state of charge, wind generation availability and load requirement is an approach 

that has been newly investigated in this research. Two methods have been implemented to do this 

process, one without the direct use PMU measurements and one with the use of direct historic 

PMU measurements. In all cases, the results presented pertain to the following. 

 Load profile of the distribution feeder as seen by the substation monitoring system 

 Voltage profile of the node where the wind farm and the storage have been installed 

  Charging and discharging of the battery for each time instant 

 Energy level curve of the battery based on charging and discharging 

 Line losses of the distribution feeder due to installation of the wind farm and battery 

storage. 
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 All of these results give a detailed picture of the dynamics of load, wind generation and storage, 

and also provide the results required in order to reduce required battery capacity as dynamic 

measurements become more available. 

 

 1.3 Outline 

The first chapter provides an introduction into the problem that the research will try to 

address and also an explanation of the results that are obtained. Chapter 2 will explain some 

background about various concepts and methods used in this research and also present literature 

review about various methods and solutions that have been implemented before in order to solve 

the problem addressed here. There will also be an explanation of new contributions including 

techniques and methods developed. Chapter 3 will explain in greater detail the objectives of this 

research, and the approach and steps in the process of achieving this objective. Chapter 4 will 

present the creation of test cases and the data that was used in the analysis part of the research. 

Chapter 5 will explain the tools, such as algorithms for backward forward sweep power flow and 

battery charging and discharging. Chapter 6 will discuss in detail the results that were obtained in 

the analysis and research and give the explanation of these results. Chapter 7 will provide 

conclusions and suggest possibilities for future work. 
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Chapter 2 - Background and Literature Review 

 2.1 Background 

This section will explain some background about various concepts and methods used in 

this research. Some fundamentals about various components of this research such as distribution 

systems, wind generation and storage techniques and parameters, and PMUs, have been 

explained. 

 2.1.1 Distribution System Structure 

In North America, distribution systems are usually constructed in a radial structure as 

they are very easy to implement and also are the least expensive and easy to operate and 

maintain [26]. The other important attribute of the North American distribution systems is that 

the three phase loads are predominantly unbalanced. So, a single phase equivalent analysis using 

methods such as the Newton Raphson power flow algorithm would yield inaccurate or 

unsatisfactory results. So, in distribution system analysis of unbalanced radial feeders, backward 

forward sweep power flow algorithm is often used [31]. This method follows a three phase 

equivalent programming structure for voltage, current and impedance and is based on the 

iterative solution of the basic ladder network from circuit theory. It also considers factors such as 

mutual impedance between phase conductors. A detailed explanation of this algorithm will be 

given in chapter 4. 

 2.1.2 Distribution System Load Profile 

In a typical distribution system, the loads vary according to the time of day, day of the 

week, weather, and season. The load profiles are different for different nature of loads. The 

profile or shape of the load curve varies based on the type of load and they are classified into the 

following types: 
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i. Residential load 

 

Figure 2.1 Aggregated Residential load curve [26] 

ii. Commercial load 

 

Figure 2.2 Aggregated Commercial load curve [26] 

iii. Industrial load 

 

Figure 2.3 Aggregated Industrial load curve [26] 
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As it can be seen from the figures given above, the residential load is the maximum contributing 

factor to the dynamics of the distribution feeder load curve. So, the 15-minute average 

normalized load profile of a group of houses has been used in order to create the test cases for 

this research. A detailed explanation will be provided in chapter 4. 

 2.1.3 Wind Energy Generation 

Wind energy generation is usually modeled using a Rayleigh or Weibull probability 

distribution [9]. But in order to clearly observe the effects of different levels of wind generation 

on the storage system of the distribution feeder, actual data from a wind turbine has been used in 

this research. Data was recorded for a low wind day, medium wind day, and high wind day on a 

15-minute basis for a 24 hour period. There is also a one-second basis wind data file for a 24 

hour period [27]. For a wind turbine, the reactive power generated is not a function of rotor 

dynamics and is produced by the converter that helps connect the wind turbine to the power 

system. This converter’s reactive power output can be controlled between set minimum and 

maximum values independent of wind power generation. So, for the study of behavior of 

distributed storage, reactive power generation at constant power factor is considered, i.e., it is 

always a given fraction of the real power generation. Also, due to this assumption, in the power 

flow study, wind generation node is considered as negative load node instead of voltage 

controlled node. If the wind node were to be considered as a voltage controlled node, the reactive 

power generation of the turbine would have to be a variable for every time instant, as the 

objective of reactive power generated would be to maintain the positive sequence voltage of the 

node as close to the nominal value as possible [2]. 

 2.1.4 Distributed Storage 

In order to operate a battery as distributed storage, the specifications required are rated 

power, energy capacity, charging and discharging efficiency, and time delay. The rated power 

limits the charging and discharging rate of the battery. The energy capacity is a measure of the 

state of charge and determines the efficient operation of battery for the given load requirement. 

The efficiency of the battery determines the fraction of wind power that actually charges the 

battery and the losses through the power converter when the battery is online or connected to 

wind farm. The time delay is of importance in this study as PMU measurements are involved. 

PMUs can sample data at 30 samples per second, but the delay of the battery is a few 
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milliseconds to one second [21]. So, the apparent average of 30 measurements from one PMU 

has been simulated in this study and used in the analysis as one second measurements. 

 2.1.5 Phasor Measurement Units 

Phasor measurement units measure the voltage and phase angle of a node using a time-

synchronized GPS (Global Positioning System) signal. 

 

Figure 2.4 Functional block diagram of PMU [6] 

 The device uses digital signal processors and measures voltage signals at 30 samples per 

second [12]. This is a huge improvement over earlier systems such as SCADA (Supervisory 

Control and Data Acquisition) which used to provide a measurement every four seconds. So, a 

very clear and informative picture about the state of the system can be obtained because direct 

information about the system state is available. In earlier methods, phase angle would have to be 

estimated using iterative methods. The values of voltage and phase angle can now be directly 

plugged into power flow programs as they are readily available. Thus, power flow solutions are 

greatly accelerated. Instantaneous dynamic information about load and wind generation can be 

extracted by processing these measurements, which also aids in the progress of this research. 

 

 2.2 Literature Review 

Some of the major elements of power systems handled in this research work are 

distribution systems and their unbalanced power flow, wind generation, battery storage 

technologies, and Phasor Measurement Units (PMU). The work done relies heavily on the usage 

of the unbalanced backward forward sweep power flow method which was first introduced in 

[1]. The abilities of the algorithm to handle different types of distributed resources was 

investigated in [2] and [17] using actual system information from a Shipboard Power System 
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(SPS). Although the abilities of backward forward sweep power flow to handle distributed 

generation as both PQ as well as PV have been demonstrated, the negative PQ load version has 

been used in this research taking into account the wind generation dynamics that have been used 

here. The IEEE 37 node test feeder has been selected as the case for study in this research work. 

The information regarding IEEE test feeders is available on the website of the IEEE Power and 

Energy Society [32]. A clear understanding of the data required for analysis of these feeders can 

be obtained in [3]. Wind generation and its interconnection with the distribution systems provide 

some exciting challenges. The impact of different kinds of wind generators and increasing 

penetration into a distribution system has been discussed in [8]. A detailed probabilistic analysis 

of changes in voltage profile of a distribution system with increasing wind generation penetration 

has been done in [7]. The optimal allocation of wind generation at multiple locations in a 

distribution system based on probabilistic approaches applied to the loss minimization function 

has been discussed in [9]. However, for the scope of this research which deals with a case study 

of a small distribution feeder, we consider the centralized location of all the wind generation and 

storage at a single weakest node in the system. This node has the lowest voltage profile among 

all the nodes in the system when a base case of power flow is run on it. In distribution systems, 

the load modeling used to handle various types of loads plays a major role as they affect the 

system voltage dynamics. This has been investigated in [11] and the various load models have 

already been incorporated into the backward forward sweep power flow. The relationship 

between wind generation penetration levels and the effect that they have on distribution system 

have been discussed in [13]. With the right amount of penetration of wind generation, it has been 

shown that incorporating wind generation into the distribution system can have beneficial 

effects. 

The Phasor Measurement Units have many benefits for the distribution system as a clear 

view of system dynamics can be obtained using this technology. Phadke and Thorp first 

pioneered this technology and the benefits of usage of PMU have been discussed in [6]. The 

placement of PMUs for maximum observability in a distribution system has been discussed in 

[4], but the utility standard is to place PMUs at the point of interconnection of wind farms to the 

system in order to clearly observe wind farm dynamics. Since the test system used in this 

research work is a small distribution system, we consider a centralized wind farm location and so 

we have PMUs installed there. We also have a PMU installed at a node closest to the source 

node in order to have a clear picture about dynamic bulk amounts of power delivered to the 
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distribution system even in the presence of support from energy storage. A stochastic analysis of 

PMU placement for maximum observability has also been done in [5] along with consideration 

to state estimation functions. The overall benefits that can be obtained by the usage of PMUs in 

power distribution networks have been discussed in detail in [12]. A major interest in present day 

power systems, namely the usage of PMUs in a distribution system for interconnection of 

islanded systems has been discussed in detail in [10]. This is one of the reasons that PMU could 

become beneficial in future installations when high penetration of renewable energy is expected.  

The utility standard NAS battery has been considered as the energy storage system in this 

research. The NAS (Sodium Sulfur) battery has been used widely across the world in utility 

operations. The basic specifications and properties of NAS battery have been explained in [14]. 

The effective utilization of a NAS battery at a large installation in a university in Japan has been 

demonstrated in [15], proving the operational efficiency and advantages of the NAS battery. The 

methods used in the basic charging and discharging operations of NAS battery, on which the 

methods used in this research are loosely based, have been discussed in [22]. A comparison of 

different storage technologies suitable for storage of wind power has been discussed in [20], and 

the NAS battery has more benefits among other battery technologies. The benefits of using 

storage technologies in order to support wind generation operations has been discussed in [16] 

and [23]. The potential for battery technologies for combined usage with wind generation, 

including the special benefits of using the NAS battery have been discussed in [19]. The actual 

simulation of NAS battery with wind generation based on forecasted load operation has been 

discussed for a balanced system in [18], and the unbalanced mode of operation of NAS battery 

with wind generation in order to achieve the same functions discussed in this research work have 

been based on this work. The operation of a wind farm with the specific case of an NAS battery 

has been investigated in [21]. The applications of combining wind power generation with energy 

storage in a smart grid environment have been discussed in [24]. The actual simulation of a wind 

farm with battery storage has been done in detail in [25]. 

As it can be seen, all of the individual components of the processes being analyzed in this 

research work have been discussed in literature, but investigations of the combination of these 

technologies for effective control of the problem addressed here have been undocumented. The 

usage of PMUs in order to integrate wind energy and storage into the distribution system has 

been undocumented. Also, there is no published literature on the combined operation of wind 
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generationand storage instantaneously in order to achieve load reduction and dispatch of 

distributed renewable resources. All of these issues have been investigated in this research. 
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Chapter 3 - Research Objectives and Proposed Solution 

This section will explain the problem that this research tries to address and the steps that 

are proposed to solve this problem. 

 3.1 Research Objectives 

Typically, in a distribution system, the wind turbines are directly connected to the 

distribution feeder and always stay interconnected except in case of contingencies, during which 

they are required to disconnect from the main system. There is no correlation between 

distribution feeder load and wind generation profiles. With increasing penetration of wind energy 

into the distribution grid, there are worst cases of load to wind profile relationship where there is 

negative correlation. If the load profile is close to base load and there is high wind generation, 

the part of the load to be supported by the conventional generation from source node may 

become alarmingly low, and if there is heavy loading while there is very little wind generation, 

there is maximum possible need for the generation from the centralized energy source node to 

satisfy. This problem has been addressed in this research. The approach of using storage to help 

balance this situation requires results to reduce the size of the battery in order to support wind 

energy storage and peak power reduction effectively. The criteria that are used to charge and 

discharge the battery play a major role in the capacity utilization of the storage system. This 

research also provides insight into strategies used to utilize the energy storage system effectively. 

The availability of dynamic load information also decides the capacity utilization of the battery. 

This has also been tested using instantaneous measurement information from PMUs. 

3.2 Proposed Solutions 

The solution to the problem explained above is studied by using the forecasted load data 

for a given distribution feeder. The assumption is 30% wind generation penetration in the 

system. This amount of wind generation penetration has been assumed so as to be significant 

enough to suit modern day smart grid standards, but also to not dominate the energy consumed 

from the centralized energy source node. The initial assumption is to start with a battery capacity 

equal to the installed wind generation. The strategy uses the average load of the feeder as the 

deciding criterion for charging or discharging the battery. Two different charging schemes have 

been studied. 
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i. In one approach, when the value of feeder load at any given instant is below the average 

load, the wind energy generation for that instant of time is used completely to charge up 

the battery. The load is satisfied completely using the conventional generation only. 

 

Figure 3.1 Wind charging only 

 

ii. In the other approach, as long as the load is below the average value, the wind energy is 

fully used to charge up the battery, but the difference between the average load and the 

instantaneous load value is also extracted from conventional generation to charge the 

battery such that the feeder load is always at the average value. This method could be 

suitable for low wind generation days in particular, but assumes a more advanced charge 

controller that can determine the instances when battery charging using conventional 

generation is necessary. 

 

Figure 3.2 Sustained average load charging 
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In both of these charging methods, the battery can only be charged up to its maximum energy 

capacity, and if battery has been completely charged up, the wind energy is directly supplied to 

the system to satisfy the load irrespective of whether load at that instant is above or below the 

average value. 

 Similarly, the discharging of the battery can be done in two ways, the Free-running 

discharge method, or the Conservative discharging method. 

i. In the Free-running method, during the discharging of the battery under instantaneous 

load being higher than average, the wind energy is directly provided to the feeder to 

satisfy load requirements, and the battery is discharged such that the substation monitored 

feeder load is as close to the average value as possible. This ensures peak reduction when 

battery capacity is available for discharge, but under low wind conditions, the risk of the 

battery being in idle state for longer periods of time than preferred is possible. This may 

result in unsatisfactory peak reduction when there is low wind generation and the battery 

capacity has hit minimum. 

 

Figure 3.3 Free running discharge 

 

ii. The problem that arises from the above method can be solved using the Conservative 

discharging method. The amount of discharge for a given feeder load instance beyond the 

wind generation is determined considering the average load requirement starting from 

that time instant up to the final time instant, the energy capacity left in the battery for that 

instant of time, and the maximum possible power rating of the battery. This ensures that 



15 

 

there is at least a minimum possible reduction in the peak load of the feeder, and also 

ensures that the battery capacity is fully utilized, irrespective of size of the battery. 

 

Figure 3.4 Conservative Discharging 

 

In both of these discharging methods, the battery can only be discharged up to the minimum 

level fixed, and if the battery has hit the minimum level, the wind generation is connected 

directly to the feeder if the load is above the average value. 

 The charging and discharging techniques discussed above are implemented for the 15-

minute average forecasted 24 hour load profile of the IEEE 37-node test feeder initially while 

considering low wind, medium wind and high wind generation data taken from a real Northwind 

100 kW wind turbine [27]. The data is multiplied by a factor of 8 in order to account for 30% 

wind generation penetration given that the capacity of the feeder under test is 2500 kVA. So, the 

installed wind generation capacity is 800 kW. The reactive power is generated by the converter 

under constant power factor, i.e., the reactive power is always a constant fraction of the real 

power of the wind turbine. Here, 45 kVAR of reactive power for 100 kW of real power is 

considered as per the specifications of the wind turbine. This gives a power factor of 0.912 

uniformly used throughout this research. The peak reduction performance of the feeder, voltage 

profile, battery power charging and discharging values, and energy capacity utilization of the 

battery are investigated for all the cases. 
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Figure 3.5 Conversion of 15-minute load profile into One-second load profile 

 

 The one-second data is created for the feeder by using the 15-minute data and using a 

Gaussian distribution to create one second load fractions for every 15-minute period. The mean 

of the Gaussian distribution for a given 15-minute period is the value of the 15-minute average 

load fraction for that period. The value of standard deviation is chosen such that the values of 

load fraction are always positive. For this, the minimum value of the 15-minute load fractions is 

selected and this is divided by a factor of 3. The resulting value is the maximum value of 

standard deviation that can be used. The decided value is usually a little lesser than this 

maximum value in order to have all of the probabilistic values positive. The calculation 

described is based on the fact that most of the values fall within the six-sigma interval of the 

Gaussian distribution. Using the one second data, it is possible to demonstrate that as 

instantaneous values are available due to use of PMUs, the battery capacity initially assumed is 

never used completely as many instances of intermittent charging and discharging of the battery 

are observed as we have more measurements within a given time period. 

 The final part of the research is an attempt to predict the required  dispatch from the 

battery using previous time instances’ recorded load information from PMUs for real time 

operation as opposed to earlier attempts which use forecasted load information. It is possible to 

set different values for the window of time for which historical load information obtained by 

processing PMU measurements can be calculated. For the sake of uniformity, the time window 

used in the study described in this research has been set at five minutes. The maximum value of 

load above the average value for a period of five minutes prior to a current time instant is 
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calculated using PMU measurements. From this value, the wind generation of the current time 

instant is subtracted in order to yield the battery discharge value for the current time instant. So, 

the need for forecasted load information is completely eliminated. 
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Chapter 4 - Test Cases, Data and Tools 

4.1 Test Cases and Data 

This section will explain about the test cases that were used to analyze the problem 

including the creation of the normalized distribution system load profile, IEEE distribution 

system test feeders and their specifications, standard NAS (Sodium Sulfide) battery 

specifications and so on. 

 4.1.1 Average Normalized Load Profile for a group of houses 

The 15-minute averaged load data for a day for each house in a group of houses present 

in a real distribution feeder is available in a test case file [26]. A Matlab program is used to 

extract this information for each house in the feeder. The load information is extracted for each 

house from a group of ten selected houses that have legitimate realistic load information and then 

aggregated. The final aggregated 15-minute averaged demand histogram for a group of ten 

houses is given below. 

 

Figure 4.1 Aggregated 15-minute demand histogram for ten houses for a day [26] 

 

But for a distribution feeder, beyond a certain value of load, the coincidence factor becomes a 

constant value as shown in the figure below. 
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Figure 4.2 Coincidence factor as a function of number of houses [26] 

 

So, it is possible to normalize the load profile of the group of houses shown before to a factor of 

one or 100% and use it for any distribution feeder as a whole as the demand follows a similar 

profile on a given day for all feeders. After normalization, the 15-minute averaged and 

normalized demand histogram for a distribution feeder may be obtained as given below. 

 

Figure 4.3 15-minute average normalized demand histogram for a day 

When the one second calculation of dispatch operations of storage is considered, the 15-minute 

normalized load profile is converted into an equivalent one second load curve by using the 

normalized demand factor for each fifteen minute interval as the mean of the Gaussian 
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distribution and using a value of constant standard deviation in such a way that the demand 

factor does not become a negative value. For the above fifteen minute normalized demand 

histogram, the lowest value of recorded load factor was 0.2598. In a Gaussian distribution, 97% 

of the values tend to fall between the six-sigma interval [-3σ 3σ]. So, an ideal value for the 

standard deviation can be calculated as follows 

 

Standard Deviation σ < 0.2598/3 = 0.866 

 

On repeatedly plugging in values of σ less than this value and then reducing to get the load factor 

to always be greater than 1, the value of σ is fixed to be 0.065 for this test case. The one second 

normalized load curve that was obtained is given below. 

 

Figure 4.4 One-second normalized demand curve for a day 

It is observed that load factor exceeds one in some intervals for this curve, but this is realistic as 

this load dynamic is not captured in a typical distribution feeder when fifteen minute average 

load is calculated. 

 4.1.2 IEEE 37 node test feeder 

The IEEE 37 node test feeder is selected as a standard case in order to study the dispatch 

operation of battery storage with distributed wind generation. It is an actual test feeder in use in 
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Australia. It is completely underground and has been selected for this research as it is the 

simplest to analyze because of the following reasons: 

i. The limited number of nodes makes it easy to renumber the nodes for backward 

forward sweep power flow analysis 

ii. It is completely composed only of Delta configuration lines and transformers, 

making the study easier. 

iii. It has no additional circuit components such as capacitors, switches and uniformly 

distributed loads, and it also has only four types of line configurations, making the 

analysis very simple and straightforward. 

The information for the feeder is given in appendix A. The figure 4.5 shows the feeder. It may be 

noted that regulator information for the feeder is also available, but has not been used in this 

analysis as there is a need to clearly observe the effects of distributed wind generation and 

storage on the voltage profile of certain nodes in the feeder. The regulator would tend to improve 

the voltage profile and prevent the observation of actual effects. 
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Figure 4.5 IEEE 37 node test feeder 

 

 

The spot load data given with the test feeder specifications is considered as the 15-minute peak 

load corresponding to a load factor of 1. All the other cases are considered as the load fractions 

of this peak load. For the purpose of analysis, this puts forward the assumption that all the loads 

present in the feeder have the same load factor at any given instant. 

 4.1.3 Distributed Wind Generation 

The real power generation data of an actual wind turbine manufactured by Northwind has 

been used in this research. This is a wind turbine present in Riley County, Kansas and the data is 

available online publicly for research purposes [27]. The real power rating of the turbine is 100 

kW although the generation can go up to 120 kW when wind is abundant. The reactive power of 
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the turbine is independent of wind dynamics and is generated by the converter used to connect 

the turbine online. The converter can produce any value between +/- 45 kVAR based on user 

settings. In order to simplify the analysis, generation at constant power factor is considered. A 

value of +45 kVAR of reactive power generation for 100 kW of wind generation is considered. 

So, this constant fraction of active power is maintained throughout the operation of the wind 

turbine. For this analysis, a wind power penetration of 30% of feeder peak load has been 

considered. Given that the peak load of the feeder is about 2500 kVA, 800 kW of installed wind 

generation capacity is assumed by multiplying the generation of one wind turbine by a factor of 

eight. Although the combined wind power generation of eight wind turbines in reality would be a 

lot smoother function of time, the criticality of this case would prove as a test of the abilities of 

the control strategies being tested in this research. This wind generation information for one day 

on a fifteen minute averaged basis is obtained for three different wind scenarios: low wind, 

medium wind and high wind. This is because, fifteen minute analysis is less time consuming and 

so, it is possible to observe the effect of wind generation on the operation of battery very easily. 

The information obtained has been attached in appendix B. 

In order to perform the one second analysis for the test system, one single case of wind 

generation data from the Northwind turbine on a one second basis has been taken. This is 

because; the wind generation information for a day on a one second basis is memory intensive 

and requires about 6 to 7 megabytes of space for an Excel file, containing 86400 rows and 6 

columns. This information cannot be attached to this thesis as the file could consume a large 

amount of space exceeding the allowed length of this document. 

 4.1.4 Standard NAS (Sodium Sulfide) battery specifications 

The battery used to investigate dispatch operations of wind generation in this research is 

the utility standard NAS battery [14]. This is a tried and tested battery popularly used in utility 

load support operations and more recently, islanding. It is widely used in Japan and has some 

very useful advantages making it an attractive option for large scale battery energy storage 

system operations [15]. The battery has almost no self-discharge characteristics. It operates at a 

very high temperature of 285-300 ºC, and the resistance goes down with the increase in 

temperature. It has a high efficiency of more than 81% which is greater than most other battery 

technologies (Table 4.1). It also has a very long life-cycle of about 15 years. The specifications 

of the NAS battery for one unit have been given below. 
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Figure 4.6 NAS Battery Cell module and Cell structure [15] 

 

Output 52.1 kW 

Voltage 58V / 116V 

Current 726A / 363A 

Capacity 375 kWh 

Efficiency ~ 83% 

Weight 3.5 ton 

Energy Density 160 kWh/cu-m 

Number of Cells 320 

Table 4.1 50 kW NAS Battery module specifications [14] 

 

 

Although the specified output rating is 52.1 kW, in actual practice, 50 kW is the observed output 

power. Initially, the installed battery capacity for the test studies is assumed to be equal to the 

installed wind generation capacity of 800 kW. So, the initial value of total installed battery 

capacity is also 800 kW. Sixteen units of the specified battery module are assumed, making the 

energy capacity 6000 kWh which is considered the measure of the state of charge of the battery. 

Initially a realistic value of battery efficiency of 81% is assumed which is close to the actual 

value, so that the charging and discharging efficiencies are 90% each, respectively. In order to 
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ensure effective operation, the limits of the battery are set such that the battery can only be 

discharged up to a minimum charge of 20% of maximum value. Beyond this state, the battery is 

switched off. Also, if the battery is charged up to the maximum value, it is switched off in case 

the load is low and charging operations are still possible. 

 

4.2 Tools 

All of the simulations required for this research are carried out using a standard Dell 

Desktop Personal Computer with the following specifications 

 

Processor Intel® Core™2 Duo @ 3.00 GHz 

Installed Memory 4.00 GB (3.50 GB usable) 

System Type 32 Bit 

Operating System Microsoft Windows 7 Enterprise Service Pack 1 

Table 4.2 Computer Specifications 

 

The software tool used to create the code and run the simulations is Matlab R2011b. Matlab is 

uniquely suited to analyze the problems described in this research as it is effective at handling 

matrices and some of the major components of this research including Backward forward sweep 

power flow and battery storage utilization require large amounts of calculation and logic 

intensive matrix analysis. 

 

 

 

 4.2.1 Backward Forward Sweep Power Flow Algorithm 

The backward forward sweep power flow algorithm is the best method to analyze 

unbalanced radial distribution systems as it is a detailed three phase analysis method that takes 

into consideration even factors such as mutual impedance between phase conductors. It is based 

on the iterative solution of the simple ladder network from circuit theory and provides a high 

level of accuracy in the power flow solution. It is essential in this research as it is a constant part 

of all the analysis approaches used in the solution to the problems addressed here. It also 
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provides the PMU measurements that will be used in the final stages of this research. In actual 

practice, PMU measurements would be measured in the field and then plugged into the power 

flow solution. But here, as the historical PMU measurements of previous time instants are 

primarily utilized to dispatch the battery, the voltage measurements of certain nodes solved by 

using the power flow problem are recorded as PMU measurements. 

 

 4.2.1.1 Node Renumbering 

In the backward forward sweep power flow analysis, the speed of the solution can be 

greatly enhanced by using proper node renumbering as the number of laterals branching off from 

the main feeder determines the number of equations and unknowns in this algorithm. So, a 

breadth first order is followed in the renumbering of the nodes. Whenever a lateral branches off 

from a given feeder, the lateral is numbered first before returning to the main feeder. An 

illustrative example is given below. 

 

Figure 4.7 Node Renumbering [2] 

 

In this way, the IEEE 37 node test feeder is renumbered for analysis in this research and the 

renumbered feeder has been given below in figure 4.8. 
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Figure 4.8 Renumbered IEEE 37 node Test Feeder 

 

 4.2.1.2 Method 

The backward forward sweep power flow algorithm has been explained in great detail in 

[2], but some of its features used in this research have been described in this section. In the 

backward forward sweep power flow analysis, the first step involves the calculation of voltages 

and currents of the feeder starting from the terminal nodes and progressing towards the source 

node. This is called as the forward sweep. In the first iteration, the terminal voltages are assumed 

to be at the three phase nominal voltage of the given feeder. Then, the currents and voltages of 

each node and the line currents between nodes are progressively calculated using the following 

equations. 

                      (4.1) 
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             (4.2) 

Where     is the line current from the given node i to the succeeding node i+1. The line current 

calculations are performed by the summation of node currents and line currents of succeeding 

nodes. The node currents are calculated based on the type of load as given below 

i. Constant Power loads: The real and reactive power injections are kept constant. These are 

similar to the traditional PQ loads in single phase equivalent power flow problems. 

ii. Constant Impedance loads: Using the given real and reactive power values, the node 

impedance at nominal voltage is calculated and kept constant for all the iterations. The 

node current is calculated from this impedance value and the node voltage for that 

iteration. 

iii. Constant Current loads: The magnitude of node current at nominal voltage is calculated 

from the given real and reactive power values and kept constant. The phase angle value is 

calculated for each iteration and attached to this current magnitude value. 

The node current calculation equations for various load models are given in the table below. 
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Table 4.3 Load Model Equations [2] 

 

The second step of every iteration is the backward sweep which assumes the sources node 1 to 

be at nominal voltage and then uses the line currents calculated in the forward sweep process to 

calculate the voltages of all nodes starting from source and progressing towards the terminal 

nodes. The equations used are given below. 

                                                      
                                                             (4.3) 

The above equation applies only for node 1. 
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                                                       (4.4) 

 

There is a possibility of the feeder containing other circuit components such as capacitors, line 

transformers and switches as well. These are modeled in the following ways. 

i. Line transformers are modeled as in [ ] and the update equations from the various 

transformer matrices may be given as follows. These equations can be applied 

irrespective of transformer type. 

Forward Sweep 

                       (4.5) 

                 (4.6) 

            Backward Sweep 

            
               (4.7) 

ii. Switches are modeled as zero impedance branches. 

Forward Sweep 

               (4.8) 

               (4.9) 

 Backward Sweep 

  
                   (4.10) 

          
        (4.11) 

where K could be 0 or 1 depending on the state of the switch. 

iii. Capacitors are modeled as constant impedance matrices similar to constant impedance 

loads. 

For Wye connected capacitor bank 
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For Delta connected capacitor bank 
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        (4.13) 

 

The load flow involves the comparison the source node voltage with the nominal voltage at the 

end of every forward sweep. If the difference is beyond a certain set value of tolerance, the next 
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iteration is calculated. The flowchart for the backward forward sweep power flow algorithm 

follows. 

 

Figure 4.9 Flowchart of the backward forward sweep power flow algorithm 

 

 4.2.1.3 Distributed Generation 

The backward forward sweep power flow algorithm can be used to handle distributed 

generation in the form of voltage controlled or PV nodes where they are installed by slightly 

modifying the calculation process. But in this research, wind energy has been handled as a 

constant power factor input and so, for any given time instant, the value of P and Q are constants. 

So, distributed wind generation has been considered as negative PQ load in the power flow 

process. Wind turbines can be installed at multiple nodes, but for the sake of simplicity, for the 

IEEE 37 node test feeder, centralized location of all the generation has been considered at a 

single node. The wind generation is included into the power flow process by subtracting the 

given values of real and reactive power generation from wind from the actual load of the node 

where it is connected in the feeder. 

 The battery dispatch, which is also a constant three phase value for any given time instant 

is handled in a similar fashion. The difference lies in the fact that battery charging and 

discharging is always a real value. In the case of charging of the battery, the real power 

generation from wind is directly added to the energy level of the battery and not treated as 

negative PQ load. In the case of discharging, the battery dispatch is subtracted from the feeder 

node where the wind farm and battery have been connected as negative P similar to the way 
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wind generation was handled as explained earlier. The power flow is calculated after these 

values have been plugged in to the input data. 

 This chapter has discussed the base cases on which some of the studies were done in 

order to investigate the addition of wind generation and battery storage along with the 

measurements of PMUs. There was also a discussion about the IEEE 37-node test feeder on 

which all the studies were done in this research. The backward forward sweep power flow 

algorithm that was used throughout this research in order to provide measurements required in 

the calculation of dispatch for wind generation and battery storage has also been discussed in 

some detail. The final section also discussed the methods used to include wind generation and 

batteries in the power flow process as negative PQ load. 
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Chapter 5 - Algorithm and Analysis 

5.1 Storage Dispatch Operation Algorithms 

In this section, various approaches that were used in this research in the dispatch 

operation of battery storage with wind generation are discussed. The first method describes the 

use of forecast data in order to perform the ideal operation of battery storage with wind 

generation. This method is tested for both the fifteen minute basis data as well as the one second 

data in order to observe the effects of battery storage operation with wind generation on the 

overall load of the feeder, individual phase loads, three phase voltage profile of the node where 

wind farm and battery have been installed, battery power charging and discharging profile, 

battery energy level profile, losses of the feeder, and the fifteen minute averaged normalized 

demand profile. 

The second method, which is more realistic and suited to real time utility operations, is 

based on calculations done using historical PMU measurements and is tested only for one second 

data. The effects on various system parameters is also observed as discussed above. 

 5.1.1 Test Setup of Feeder Components and Measurements 

The Backward forward sweep power flow algorithm which was described earlier is used 

for the IEEE 37 node test feeder at peak load conditions without any wind generation initially. 

The purpose of this power flow solution is to determine the weakest node, i.e., the node with the 

lowest voltage profile. This node will become the site of installation of the wind farm as 

traditionally followed in real world applications. As the battery storage takes power from the 

wind farm when in charging mode, this node will also be the site of the battery installation. The 

Phasor Measurement Units (PMU) are installed at two locations for this test feeder while larger 

feeders with more number of feeders can have more installations. The PMUs are installed for this 

system at node 738 (renumbered to 32) and node 701 (renumbered to 2) as they are the most 

critical nodes in the system. Node 701 is the node that is present right after the source node. The 

voltage difference between the source node and this node is a direct measure of the net load on 

the feeder at any time instant and so can be very advantageous for monitoring and operations 

purposes. This property has been taken advantage of in this research when real time operation is 

considered. The wind farm and battery node is given a PMU because voltages at this node are a 

direct measure of the wind generation and battery charging or discharging for the system. The 
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test system setup has been given below. It may be mentioned that the PMUs being used are 

distribution level PMUs that have reduced functionalities as opposed to transmission level PMUs 

that have multiple functions. 

 

Figure 5.1 Dispatch Operations Simulation Test Setup* 

*Pictures courtesy of www.macrodyneusa.com, www.zmescience.com, www.wastedenergy.net 

http://www.zmescience.com/
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 5.1.2 Testing for conventional base cases 

The initial testing involves running the power flow algorithm without any wind 

generation and then with wind generation considered in the system. The fifteen minute data is 

analyzed with low, medium and high wind generation data and the one second data is tested for 

one single case of wind generation. The results obtained from these test runs will act as 

comparison data for results that will be obtained later using wind generation and battery 

combined in the system. The flowcharts for algorithms used for instantaneous power flow in 

conventional cases have been given below. 
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Figure 5.2 Flowchart for base case testing with or without wind generation 

 

The only difference in the above method when wind energy is considered is that the given value 

of wind generation for that time instant is treated as negative PQ load and subtracted from the 

actual load of the node where wind generation has been installed. In the case of the IEEE 37 

node test feeder, node 738 (renumbered to 32) has been considered as the wind generation node. 
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 5.1.3 Dispatch operations for forecasted load information 

The dispatch operation of the battery with distributed wind generation using forecasted 

load information can be used to determine the ideal characteristics of battery charging and 

discharging in order to perform load support operations purely using wind generation, as 

described earlier. Two different approaches have been tried in order to discharge the battery and 

additionally, two methods of charging the battery have also been investigated. So, a total of four 

different combinations are possible. These methods have been tested for both the fifteen minute 

forecasted load as well as the one second forecasted load information. The four methods have 

been described below and their respective flowcharts have been presented. 

i. Wind charging with free running discharging mode: In this method (Figure 5.3), for 

all the time instances, if the load for a given time instant is less than the daily average 

load of the feeder, the wind farm is directly connected to the battery for charging. If the 

forecasted load is above the average, the wind farm is connected to the feeder and the 

battery is also discharged in such a way that the overall feeder load seen by the substation 

is equal to the average forecasted load of the feeder. If the battery has hit any of its limits, 

i.e., if maximum level has been reached during charging, or if minimum level has been 

reached during discharging, the battery is switched off and wind generation is directly 

connected to the feeder. This method is subject to the available capacity in the battery as 

beyond a certain time instant, apart from the battery capacity, if wind generation becomes 

reduced as well, peak reduction in feeder load may not be possible if battery is shut off 

too soon. 

ii. Wind charging with conservative discharging mode: In this method (Figure 5.4), for 

all the time instances, if the load for a given time instant is less than the daily average 

load of the feeder, the wind farm is directly connected to the battery for charging. If the 

forecasted load is above the average, the wind farm is connected to the feeder and the 

battery is also discharged, but the availability of battery capacity for all the remaining 

time instances of the day is calculated for every time instant such that the full available 

capacity of the battery is utilized over the entire length of the day. This value is compared 

with the average load requirement of the remaining time intervals and the minimum of 

these values is selected. This method may not succeed in maintaining the feeder load 
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close to the average load all the time, but ensures that there is at least a certain minimum 

value of load reduction at every time instant. There is also full battery capacity utilization 

irrespective of battery size. 
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Figure 5.3 Flowchart for battery dispatch operation for wind charging with free running 

discharge 
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Figure 5.4 Flowchart for battery dispatch operation for wind charging with conservative 

discharge 
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iii. Sustained average load charging with free running discharge: In this method (Figure 

5.5), if the forecasted load is below the average load of the feeder, the battery is charged 

from the wind generation and also the difference between average and forecasted load is 

taken from the main supply in order to charge up the battery. The resulting feeder load 

during times of battery charging is equal to the average load. If forecasted load is above 

average load, the wind farm is directly connected to the feeder, and also load component 

above the average load apart from wind generation is supplied by the battery irrespective 

of available capacity. This method ensures that there is always sufficient battery capacity 

in order to perform efficient peak reduction during heavy load conditions. The catch lies 

in the fact that this method requires a highly advanced charge controller for the battery 

that is currently not available but, this method may become possible in the future. Under 

current conditions, however, this method cannot be implemented in real time. 

iv. Sustained average load charging with conservative discharge: This method (Figure 

5.6) uses the same charging strategy as described above, but if the forecasted load 

becomes greater than the average load, the average load requirement over the remaining 

time instances is calculated along with the available battery capacity over the remaining 

time instances. The minimum of these two calculations is taken as the battery discharge. 

Again, this method also ensures full capacity utilization of the battery irrespective of size. 
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Figure 5.5 Flowchart for battery dispatch operation for sustained average load charging 

with free running discharge 
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Figure 5.6 Flowchart for battery dispatch operation for sustained average load charging 

with conservative discharge 
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 5.1.4 Dispatch operations for historical load information from PMUs 

The actual real time operation of battery storage with wind energy using historical PMU 

measurements can be achieved using this method (Figure 5.7). The only information that this 

method requires during operation is an approximate value of the average load of the distribution 

feeder. This method is applied only for the one second data as the required results cannot be 

obtained with fifteen minute data. The decision of charging or discharging the battery is based on 

the maximum value of the load in a given group of previous load instances. This value of load is 

calculated by taking into account the PMU measurements of the node that is close to the source 

node. 

For the test system, as described earlier, the PMU is at node 701 (renumbered to 2). This 

method also ensures that there is always some measure of reduction in the load of the feeder 

during heavy load conditions. This is ensured by changing the discharging of the battery to the 

conservative discharging mode described earlier when the battery capacity falls below a certain 

set value that is still above the minimum level of the battery. The mixed approach is adopted for 

the discharging of the battery as it is observed in the forecasted load studies that free running 

mode seems to perform relatively well for one second data except during the last time instances 

of the day. 

The charging of the battery is done using only the wind generation in this case as it is 

intended for real time purposes and the sustained average load approach is currently not suitable 

for real time operation. The simulation of this method does not utilize the full capabilities of the 

PMU however. PMUs can sample data at up to thirty samples a second, while the scope of this 

study is limited to a much lower rate of one sample per second. This is because actual wind 

generation information obtained is available for research on a minimum basis of one second, and 

also, the operational dynamics of distribution system load do not require the resolution offered 

by the full potential of PMU sampling information. This is evidenced by the fact that 

conventional utility standards rely on a minimum averaged load sampling of one sample every 

fifteen minutes, which is much higher than the sample periods being investigated in this research. 

The initial condition followed in the implementation of this algorithm is that for the first 

sample period, the wind generation is used to charge up the battery irrespective of load. This is in 

order to ensure that PMU measurements are available for any given sampling interval as soon as 

the initial sampling interval has been crossed. The flowchart for this method has been given 

below 
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Figure 5.7 Flowchart for real time battery operation with wind generation using PMUs 
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Chapter 6 - Results and Discussion 

6.1 Results obtained for base cases of load flow 

The base cases of load flow for both the 15 minute as well as one second data serve as a 

measure of comparison of the benefits of using battery storage with wind generation. The most 

basic load flow without any wind generation or battery gives the peak load of the feeder and also 

the heavy power losses that are encountered because of the usage of source power alone. In the 

next sub-sections, the base cases of load flow with and without wind generation have been 

shown for the fifteen minute basis demand as well as the one second basis demand data. 

 

 6.1.1 Results obtained for base cases of load flow without wind generation 

The following results were obtained for the 15-minute basis forecasted load data for the 

IEEE 37 node test feeder. The analysis was carried out for all the load instances over a period of 

24 hours. The results obtained here will serve as a comparison to the peak reduction achieved 

using direct wind connection as well as the dispatch operation of the battery storage as it is a case 

of maximum source power usage from the conventional generation. In order to clearly observe 

the effects of using PMU information in the battery dispatch process, the results need to be 

presented in such a way that they can be compared to the simplified fifteen minute normalized 

demand histogram. The final comparison of all the methods tested in this research work is with 

the normalized histogram of the base case. The other comparison factor is the power loss in the 

feeder without any wind generation or battery storage. All the other results are obtained in order 

to check for normal operation without any unstable or irregular conditions. The voltage profile 

plot shown for all cases is that of the node where the wind generation and battery storage have 

been installed. This node is selected as it is subjected to maximum irregularity at every time 

instant as both the wind generation and the battery storage keep changing. If this voltage is 

within allowable limits, it can be said with confidence that the other nodes in the feeder are also 

within normal operating voltages. The plots obtained for base case of feeder load without any 

form of distributed generation are given below. 
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Figure 6.1 Individual demand of phases a, b and c of the feeder for 15 minute data 

 

 

 

Figure 6.2 Individual voltages of phases a, b and c for node 32 for 15 minute data 
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Figure 6.3 Power losses for the entire feeder for 15 minute data 

 

 

 

Figure 6.4 Average normalized 15-minute load profile of the feeder without wind 

generation 
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As it can be seen from the above plots, the load on the feeder follows a standard pattern which 

results in base load as well as peak load conditions. The above results are for a standard three 

phase backward forward sweep power flow for all the 96 fifteen minute time intervals of the day. 

It is also seen that the losses of the feeder are directly related to the amount of power drawn from 

the conventional generation. The objectives to be achieved are to reduce the peak load conditions 

that are seen in the 15-minute demand histogram, and also the minimization of losses that arise 

from more power consumption from conventional generation. It will be observed later that when 

the first objective is met, the second objective is also met as a result. 

 The 15-minute load data is multiplied with a Gaussian distribution in order to get one 

second forecasted data for the purpose of analysis as explained in chapter 4 on test cases. The 

base case without any distributed wind generation or battery is also run for the one second data. 

The results obtained are used to show the actual operational dynamics of the load of the feeder 

and the increase in actual peak load of the feeder when one second data is used. The fifteen 

minute averaged demand histogram is also created from the one second demand data in order to 

provide a direct comparison to 15-minute data. The results obtained are given below in figures 

6.5 through 6.9. 

 

 

Figure 6.5 Individual demand of phases a, b and c of the feeder for one second data 
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Figure 6.6 Individual voltages of phases a, b and c for node 32 for one second data 

 

 

 

Figure 6.7 Power losses of the entire feeder for one second data 
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Figure 6.8 Total three phase demand of the feeder for one second data 

 

 

 

Figure 6.9 Average normalized 15-minute demand histogram for the feeder obtained from 

one second demand 

 



49 

 

It is observed from the one second approximation of the 15-minute load profile that actual values 

of load seen by the distribution feeder are much higher than the planned average 15-minute load 

capacity of the feeder. Although load differences in actual cases may not be as high as the 

probabilistic case tested here, there is a need to address the problem of increasing load levels 

with time. This is one of the reasons why peak reduction algorithms are of great importance in 

modern power system studies. The criticality of the one second basis test case being analyzed in 

this research will help in the design of robust and foolproof algorithms in the future when actual 

utility implementation of the algorithms using PMU become possible. 

 

 6.1.2 Results obtained for base cases of load flow with wind generation 

Current approaches used in utility operation of wind turbines mostly involve the direct 

online connection of wind farm generation. The load is partially satisfied all the time by the 

available value of wind power. There is no control strategy involved except in the case of 

contingencies such as excessive wind during which the turbines are offline. Wind energy in this 

case can be used up when its requirement is not of great importance and alternatively, there 

might be no support when there are heavy load conditions. It is also rare to observe an idealized 

characteristic for wind generation for a given day when load and wind are positively correlated, 

i.e., the wind generation is highest when the load levels are high. This is the only scenario when 

maximum peak reduction using wind generation alone is possible. The fifteen minute direct wind 

connected case power flow data have been presented below for low wind, medium wind and high 

wind conditions. It does not make sense to calculate peak reduction metrics for direct wind 

connection as the peak reduction in this case is a function of magnitude, and also the time of 

wind availability which can be different on different days. 

The power flow results obtained for a given day with high wind generation are given 

below. The results obtained are for the individual phase demands after wind connection (Figure 

6.10), voltage profile of the feeder where wind farm and battery have been connected (Figure 

6.11), the losses of the feeder after wind generation (Figure 6.12), and the normalized fifteen 

minute demand after wind connection (Figure 6.13). 
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Figure 6.10 Individual phase demands with direct wind generation connection and high 

wind for fifteen minute data 

 

 

Figure 6.11 Individual phase voltages for node 32 with direct wind connection and high 

wind for fifteen minute data 
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Figure 6.12 Power losses for the feeder with direct wind connection and high wind for 

fifteen minute data 

 

 

Figure 6.13 Normalized fifteen minutes load histogram as seen by the substation with direct 

wind connection and high wind 
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As it can be seen from the results above, direct wind connection yields good results when high 

wind generation is available, but there is a direct relation between the amount of wind generation 

and peak reduction achieved in a given instance. During instances when the feeder is lightly 

loaded, the load can drop to dangerously low levels so as to cause unstable conditions such as the 

Ferranti effect, although this is a rarity as it has to happen simultaneously in multiple feeders. 

 The power flow results for medium wind generation for a given day for fifteen minute 

data have been given below from figure 6.14 through 6.17. 

 

 

Figure 6.14 Individual phase demands with direct wind generation connection and medium 

wind for fifteen minute data 
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Figure 6.15 Individual phase voltages for node 32 with direct wind connection and medium 

wind for fifteen minute data 

 

 

Figure 6.16 Power losses for the feeder with direct wind connection and medium wind for 

fifteen minute data 
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Figure 6.17 Normalized fifteen minutes load histogram with direct wind connection and 

medium wind 

 

From the results obtained above, we see that the losses encountered in a distribution feeder 

decrease with the increase of locally generated power. The power flow results for the same data 

for low wind generation have been given in figures 6.18 through 6.21. The results obtained in the 

case of low wind generation prove that increase of locally generated power, especially 

renewables, reduces feeder losses. 

 

Amount of Wind 

Generation 

Average Feeder 

losses (kW) 

High wind 12.4448 

Medium wind 17.1213 

Low wind 20.9120 

No wind 22.9694 

Table 6.1 Comparison of feeder losses for different wind generation levels 
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Figure 6.18 Individual phase demands with direct wind generation connection and low 

wind for fifteen minute data 

 

 

Figure 6.19 Individual phase voltages for node 32 with direct wind connection and low 

wind for fifteen minute data 
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Figure 6.20 Power losses for the feeder with direct wind connection and low wind for 

fifteen minute data 

 

 

Figure 6.21 Normalized fifteen minutes load histogram with direct wind connection and 

low wind 
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The power flow results for one second basis forecasted load information and wind generation 

data have been given below in figures 6.22 through 6.26. It is seen that as in all the above cases, 

the peak load reduction is a direct function of wind generation availability, and the actual one 

second load of the feeder in spite of wind generation can be much higher than the average fifteen 

minute forecasted load. The peak reduction is also not very effective for one second wind 

generation as seen in the normalized demand plot. All the problems being observed in this 

section have been addressed in the next section. 

 

 

Figure 6.22 Individual phase load demand for one second basis data with direct wind 

generation connection 
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Figure 6.23 Individual phase load voltages for one second basis data with direct wind 

generation connection 

 

 

Figure 6.24 Feeder power losses for one second basis data with direct wind generation 

connection 
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Figure 6.25 Overall demand of the feeder for one second basis data with direct wind 

generation connection 

 

 

Figure 6.26 Fifteen minute average normalized demand of the feeder for one second basis 

data with direct wind generation connection 
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 6.2 Results obtained for wind generation and battery storage integration for 

forecasted load information 

In this section, results that were obtained for battery integration along with wind 

generation into the test feeder have been discussed. The results have been obtained for both 

fifteen minute data as well as one second data. In the results that follow, the plots obtained for 

individual phase loads, feeder losses and voltage profile of the critical feeder are not shown due 

to similarity and redundancy of results when battery storage is integrated into the system. The 

initial results shown are for wind and battery integration in case of fifteen minute data for low 

wind, medium wind and high wind conditions. The two methods of charging and discharging the 

battery that were described earlier, namely wind charging, sustained average load charging, free 

running discharge and conservative discharge methods and their results have been presented 

below for the fifteen minute data. The results shown only pertain to battery power of charging 

and discharging, energy level of the battery, overall one second actual load demand after storage 

integration, and the 15-minute normalized demand of the feeder. In all the energy plots, the black 

line indicates the minimum capacity beyond which the battery cannot be discharged any further.  

The results for high wind generation for fifteen minute data are given in figures 6.27 to 6.29. 

 

Figure 6.27 Battery charging and discharging for fifteen minute data with high wind 

generation in free-running discharge and wind charging 
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Figure 6.28 Battery state of charge for fifteen minute data with high wind generation in 

free-running discharge and wind charging 

 

 

Figure 6.29 Normalized overall feeder load demand for fifteen minute data with high wind 

generation in free-running discharge and wind charging 
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The peak reduction achieved in case of even the fifteen minute low resolution data for battery 

discharging is high in cases of high wind generation. But the battery capacity cannot be 

effectively utilized as wind generation is available abundantly but cannot be stored effectively 

due to the non-availability of high resolution information. The results for free running discharge 

and sustained average load charging are given in figures 6.30 to 6.32. 

 

 

 

 

 

Figure 6.30 Battery charging and discharging for fifteen minute data with high wind 

generation in free-running discharge and sustained average load charging 



63 

 

 

Figure 6.31 Battery state of charge for fifteen minute data with high wind generation in 

free-running discharge and sustained average load charging 

 

Figure 6.32 Normalized overall fifteen minute demand histogram with high wind 

generation in free-running discharge and sustained average load charging 
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The results obtained above are similar to the case without sustained average load charging. There 

is also no scope for the efficient utilization of wind generation due to lack of data resolution. The 

results obtained for conservative discharging mode with wind charging have been given in 

figures 6.33 to 6.35. 

 

 

 

 

 

 

Figure 6.33 Battery charging and discharging for fifteen minute data with high wind 

generation in conservative discharge and wind charging 
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Figure 6.34 Battery state of charge for fifteen minute data with high wind generation in 

conservative discharge and wind charging 

 

Figure 6.35 Normalized demand histogram for fifteen minute data with high wind 

generation in conservative discharge and wind charging 
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The peak reduction achieved in the case of conservative discharging with high wind generation 

and free running discharge is appreciable, but the battery is charged up to the highest level 

possible and also discharged to minimum in a single day. So, this method of discharge is only 

suitable for days during which wind generation is low in order to conserve battery capacity such 

that it is available for all the load intervals. The results obtained in case of high wind generation 

with sustained average load charging and conservative discharging are given in figures 6.36 to 

6.38. 

 

 

 

Figure 6.36 Battery charging and discharging with high wind generation in conservative 

discharge and sustained average load charging 

 

 

 

 

 

 

 

 



67 

 

 

Figure 6.37 Battery state of charge with high wind generation in conservative discharge 

and sustained average load charging 

 

Figure 6.38 Normalized demand histogram with high wind generation in conservative 

discharge and sustained average load charging 

 

The same results for all the four combinations of charging and discharging methods for the 

battery have been shown below for medium wind generation and low wind generation in figures 

6.39 to 6.44. 
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Figure 6.39 Battery charging and discharging for fifteen minute data with medium wind 

generation in free-running discharge and wind charging 

  

Figure 6.40 Battery State of charge for fifteen minute data with medium wind generation in 

free-running discharge and wind charging 
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Figure 6.41 Normalized overall feeder load demand for fifteen minute data with medium 

wind generation in free-running discharge and wind charging 

 

Figure 6.42 Battery charging and discharging for fifteen minute data with medium wind 

generation in free-running discharge and sustained average load charging 
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Figure 6.43 Battery state of charge for fifteen minute data with medium wind generation in 

free-running discharge and sustained average load charging 

 

Figure 6.44 Normalized overall fifteen minute demand histogram with medium wind 

generation in free-running discharge and sustained average load charging 
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The difference that is clearly observed in this case is that on a given day during which an average 

amount of wind generation is available, if sustained average load charging is used, the average 

load tends to be higher than other cases. But the peak reduction is better than in other 

combinations of charging and discharging. The results for conservative discharging with wind 

charging as well as sustained average load charging have been given in figures 6.45 through 

6.50. 

 

 

 

 

Figure 6.45 Battery charging and discharging for fifteen minute data with medium wind 

generation in conservative discharge and wind charging 
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Figure 6.46 Battery state of charge for fifteen minute data with medium wind generation in 

conservative discharge and wind charging 

 

 

Figure 6.47 Normalized overall fifteen minute demand histogram with medium wind 

generation in conservative discharge and wind charging 
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Figure 6.48 Battery charging and discharging for fifteen minute data with medium wind 

generation in conservative discharge and sustained average load charging 

 

 

Figure 6.49 Battery state of charge for fifteen minute data with medium wind generation in 

conservative discharge and sustained average load charging 
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Figure 6.50 Normalized overall fifteen minute demand histogram with medium wind 

generation in conservative discharge and sustained average load charging 

 

The results given below in figures 6.51 through 6.56 are for low wind generation with all the 

four combinations of charging and discharging methods for fifteen minute data. 

 

Figure 6.51 Battery charging and discharging for fifteen minute data with low wind 

generation in free-running discharge and wind charging 
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Figure 6.52 Battery state of charge for fifteen minute data with low wind generation in 

free-running discharge and wind charging 

 

 

Figure 6.53 Normalized overall feeder load demand for fifteen minute data with low wind 

generation in free-running discharge and wind charging 
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Figure 6.54 Battery charging and discharging for fifteen minute data with low wind 

generation in free-running discharge and sustained average load charging 

 

 

Figure 6.55 Battery state of charge for fifteen minute data with low wind generation in 

free-running discharge and sustained average load charging 
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Figure 6.56 Normalized overall fifteen minute demand histogram with low wind generation 

in free-running discharge and sustained average load charging 

 

As it can be seen from the results described above, free-running mode of discharging does not 

perform well under low wind conditions. This is one of the reasons that the sustained average 

load approach was developed in this research as a future alternative to solving the low wind 

generation problem. But it is also seen that, there are more losses associated with the distribution 

feeder when sustained average load approach is used to charge up the battery. The results given 

from figures 6.57 through 6.62 are for low wind generation using conservative discharging with 

both the kinds of charging methods. 
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Figure 6.57 Battery charging and discharging for fifteen minute data with low wind 

generation in conservative discharge and wind charging 

 

 

Figure 6.58 Battery state of charge for fifteen minute data with low wind generation in 

conservative discharge and wind charging 
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Figure 6.59 Normalized overall fifteen minute demand histogram with low wind generation 

in conservative discharge and wind charging 

 

 

Figure 6.60 Battery charging and discharging for fifteen minute data with medium wind 

generation in conservative discharge and sustained average load charging 
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Figure 6.61 Battery state of charge for fifteen minute data with medium wind generation in 

conservative discharge and sustained average load charging 

 

Figure 6.62 Normalized overall fifteen minute demand histogram with medium wind 

generation in conservative discharge and sustained average load charging 
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Many observations are made overall when fifteen minute data are used. The battery capacity is 

used completely most of the time even to the point of not effectively being able to store wind 

energy when its importance is not high. This is mainly due to the absence of dynamic load 

information which results in a fifteen minute averaged value of either charging or discharging the 

battery. The free running mode works best when medium to high level of wind generation is 

available. The conservative discharging mode of operation is best suited to days on which wind 

generation is very limited as it becomes possible to conserve battery capacity. Similarly, wind 

charging mode of operation is ideal for most days as wind generation is available, but if there is 

little or no wind generation, there might be no storage of wind energy in the battery to ensure 

peak reduction. This problem is overcome using sustained average load charging. This method is 

especially suitable for areas where wind generation is low, but under current technology trends, 

the advanced controller required for the operation in this method may not be available as yet. So, 

this is not a real time mode of operation. 

 The differences in performance that can be achieved when one second forecasted load is 

used are tremendous. The peak reduction, the reduction in average load, and the reduction in the 

battery capacity used are improved greatly when one second load forecast is used. The four 

combinations of charging and discharging methods described before have been tested here as 

well, for one case of wind generation data. Again, results obtained for individual phase demand, 

losses and voltage profile are not displayed due to redundancy and similarity in results, making 

then indistinguishable. However, battery charging and discharging, battery state of charge, 

overall one second demand of the feeder, and fifteen minute average normalized demand have 

been displayed. Also, the results for all cases have been tabulated for comparison at the end of 

this section. 
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Figure 6.63 Battery charging and discharging for one second forecasted load data in free-

running discharging and wind charging modes 

 

 

Figure 6.64 Battery state of charge for one second forecasted load data in free-running 

discharging and wind charging modes 
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Figure 6.65 Overall one second actual load demand after peak reduction for one second 

forecasted load data in free-running discharging and wind charging modes 

 

 

 

Figure 6.66 Fifteen minute average normalized load demand after peak reduction for one 

second forecasted load data in free-running discharging and wind charging modes 
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Figure 6.67 Battery charging and discharging for one second forecasted load data in free-

running discharging and sustained average load charging modes 

 

 

 

Figure 6.68 Battery state of charge for one second forecasted load data in free-running 

discharging and sustained average load charging modes 
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Figure 6.69 Overall one second actual load demand after peak reduction for one second 

forecasted load data in free-running discharging and sustained average load charging 

modes 

 

 

Figure 6.70 Fifteen minute average normalized load demand after peak reduction for one 

second forecasted load data in free-running discharging and sustained average load 

charging modes 
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Figure 6.71 Battery charging and discharging for one second forecasted load data in 

conservative discharging and wind charging modes 

 

 

 

Figure 6.72 Battery state of charge for one second forecasted load data in conservative 

discharging and wind charging modes 
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Figure 6.73 Overall one second actual load demand after peak reduction for one second 

forecasted load data in conservative discharging and wind charging modes 

 

 

 

Figure 6.74 Fifteen minute average normalized load demand after peak reduction for one 

second forecasted load data in conservative discharging and wind charging modes 
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Figure 6.75 Battery charging and discharging for one second forecasted load data in 

conservative discharging and sustained average load charging modes 

 

 

Figure 6.76 Battery state of charge for one second forecasted load data in conservative 

discharging and sustained average load charging modes 
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Figure 6.77 Overall one second actual load demand after peak reduction for one second 

forecasted load data in conservative discharging and sustained average load charging 

modes 

 

Figure 6.78 Fifteen minute average normalized load demand after peak reduction for one 

second forecasted load data in conservative discharging and sustained average load 

charging modes 
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The following observations were made for the average and maximum demand factors of the 

feeder and also for the battery capacity utilization. The table containing the comparison of the 

four methods with the base case of load flow without any wind generation has been given below. 

 

Mode 
Charging 

Method 

Discharging 

Method 

Average load 

factor 

Peak load 

factor 

Battery 

utilization 

factor 

Base -- -- 0.6668 1.0000 -- 

Mode 1 Wind Free – running 0.5631 0.6914 0.6431 

Mode 2 SAL Free – running 0.6237 0.6918 1.0000 

Mode 3 Wind Conservative 0.5422 0.8713 0.4376 

Mode 4 SAL Conservative 0.5767 0.8144 1.0000 

(SAL – Sustained Average Load) 

Table 6.2 Summary of results obtained for one second load forecasted operation of wind 

generation with battery storage 

 

 In the above table, the calculations of average and peak load factors and battery 

utilization factor were done as given below 

Average load factor = Mean(Normalized demand of all time instances during the period of 

operation) 

(6.1) 

Peak Load factor = Max(Normalized demand of all time instances during the period of 

operation) 

(6.2) 

Battery Utilization factor = (Max(    ) – Min(    )) / Emax 

(6.3) 

In equation 6.3,      is the operational energy level of the battery during all the instances 

of operation, and Emax is the full capacity of the battery. From the results displayed in the table 

above, we observe that all the methods cause a reduction in the average load as well as the peak 

load of the feeder. At any given instant of time during the operation of dispatch of battery storage 

in order to perform peak reduction operations with wind generation, it can be extended from the 

above results that during discharging, if the battery capacity is substantially available for usage, 
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it is better to use free-running mode of operation. However, if the battery capacity falls below a 

certain set minimum value necessary for dispatch operations, the performance of the 

conservative discharging mode seems to be better at reducing peak load by at least a slight 

margin over the remaining periods of time of the day. The charging methods used prove that 

battery capacity needs to be used to the highest extent possible within set maximum and 

minimum levels in order to effectively aid in the peak reduction process. In this regard, the 

sustained average load approach of battery charging makes sure that absence of wind generation 

does not render the battery unusable. But, the battery is charged up to maximum levels very 

quickly and usage of the battery becomes very limited and inefficient especially when wind 

generation is available. Also, the method is not suited for real time operations at this point of 

time due to non-availability or commercial unviability of the technology required to make the 

process a reality. Wind charging is a very viable option as the strategy used makes sure that wind 

generation is stored when close to base load conditions prevail irrespective of the amount 

available. Also, only a fraction of the overall battery capacity is always used, providing scope for 

battery size reduction leading to cost benefits. The lessons learned from the results presented in 

this section are that in order to have an effectively working real time strategy for dispatch 

operations of distributed wind generation using battery storage and PMUs in a distribution 

system, the charging of the battery needs to be done using only wind generation, free-running 

mode of operation has to be used in the discharging of the battery if capacity is available, and if 

the battery capacity falls below a certain set minimum value based on wind generation 

characteristics, conservative discharging of the battery should be carried out for all the remaining 

time intervals of the day. 

 

 6.3 Real time operation of storage dispatch with wind generation based on 

historical PMU measurements 

This section explains the most important results that have been obtained in this research 

work. The real time operations of battery storage with distributed wind generation using 

historical data obtained from PMU measurements of previous time instances has been 

investigated. In the study done here, PMU samples have been taken at the rate of one sample per 

second. For the purpose of research, PMU measurements have been recorded using the backward 

forward sweep power flow for every time instant. The sampling interval required to assess the 
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battery dispatch for the next time instant has been set at five minutes or 300 seconds of previous 

PMU data. The maximum load including wind generation and battery dispatch is calculated from 

each of these previous 300 time instances, and the difference between this maximum value, 

average load and wind generation of the immediately preceding time instant has been calculated 

to be the battery dispatch for the present time instance. For example, for a given time instance k, 

the battery discharge is calculated as follows. 

        = Max[(     +       +      ) | k-1:k-301] -      -           

(6.4) 

For all the cases, for a given power rating and energy rating of the battery, the following 

assumptions have been followed: 

 The minimum permissible energy level of the battery has been set at 20% of the 

maximum value, and the switching level for this case of wind generation profile has been 

set at 30% of maximum value after analysis based on forecasted load. Higher switching 

energy levels may be assumed if wind generation profiles are weaker. 

 The maximum power charging and discharging rate of the battery have been set as the 

power rating of the battery. For the case of 30% wind generation penetration into the 

feeder described in this research, the battery specifications have been discussed in chapter 

4 section 4.1.4. 

 The only input information that the real time method described here would use are the 

average load of the feeder, and the switching energy level of battery capacity after which 

conservative dispatch operations can begin. Both of these values are feeder specific. The average 

load of the feeder is the recorded average value of load of an immediately preceding day for the 

given distribution feeder. The switching value of battery capacity can be decided based on the 

wind generation levels. The switching value of battery capacity and wind generation levels are 

inversely related, i.e., if wind generation levels are high, the switching capacity can be set at a 

smaller value and vice-versa. 

The results shown below are for full capacity of battery storage. The maximum charge 

and discharge rates of the battery are equal to the full power rating of the battery equal to 

installed wind generation capacity. The initial analysis is done completely in free running mode 

without any conservative discharge in order to demonstrate the ineffective nature of the battery 

once it hits its minimum level. The total battery capacity and specifications have been tabulated 

below. The PMU based operation is also time specific as there is a fixed sampling rate associated 
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with the measurements. So, an effort has also been made to recover the execution time required 

to operate for all the one second intervals in a given day. 

 

 

Power Rating (P) 800 kW 

Maximum Energy Level  (Emax) 6000 kWh 

Minimum Energy Level (Emin) 20% 1200 kWh 

Initial Energy Level (E0) 30% 1800 kWh 

Execution time (t) 58 minutes 

Table 6.3 Battery Specifications for real time test system in free-running mode only at full 

capacity 

 

The results obtained for free-running mode of operation of real time storage dispatch based on 

historical PMU information have been displayed in figures 6.79 through 6.82. 

 

 

 

Figure 6.79 Battery power charging and discharging under real time operation at full 

capacity in free-running mode only 
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Figure 6.80 Battery state of charge under real time operation at full capacity in free-

running mode only 

 

 

 

 

Figure 6.81 Overall actual one second demand under real time operation at full battery 

capacity in free-running mode only 
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Figure 6.82 Fifteen minute average normalized demand under real time operation at full 

battery capacity in free-running mode only 

 

 

The next step in the analysis involves the introduction of conservative discharge into the dispatch 

process once the battery energy level drops below a set minimum switching value. The table 

containing the specifications of the test battery is given below. The results are obtained in figures 

6.83 through 6.86. 

 

Power Rating (P) 800 kW 

Maximum Energy Level  (Emax) 6000 kWh 

Minimum Energy Level (Emin) 20% 1200 kWh 

Initial Energy Level (E0) 30% 1800 kWh 

Switching Energy level (Es) 30% 1800 kWh 

Execution time (t) 58 minutes 

Table 6.4 Battery Specifications for real time test system in free-running mode and 

conservative discharge at full installed capacity 
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Figure 6.83 Battery power charging and discharging under real time operation at full 

capacity in free-running mode and conservative discharging 

 

 

 

 

 

Figure 6.84 Battery state of charge under real time operation at full capacity in free-

running mode and conservative discharge 
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Figure 6.85 Overall actual one second demand under real time operation at full battery 

capacity in free-running mode and conservative discharge 

 

 

 

Figure 6.86 Fifteen minute average normalized demand under real time operation at full 

battery capacity in free-running mode and conservative discharge 
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From the results obtained above, it is observable that with the implementation of conservative 

discharge when the battery energy capacity falls below a set minimum switching value, the 

utilization of battery over the entire time interval of the day becomes possible. There are also 

better peak reduction characteristics with respect to the average fifteen minute normalized load. 

More clarity in this regard will be thrown when the results of all the real time analyses are 

tabulated at the end of this section. 

 The next analysis involves the reduction of the battery power and energy capacities to 

half of the actual values. The battery capacity is very minimally utilized in the previous two 

cases, and this provides the scope for the reduction of battery capacity in the next stage.  The 

battery specifications for this analysis have been given below. The results are obtained in figures 

6.87 through 6.90. 

 

 

 

 

 

 

 

Power Rating (P) 400 kW 

Maximum Energy Level  (Emax) 3000 kWh 

Minimum Energy Level (Emin) 20% 600 kWh 

Initial Energy Level (E0) 30% 900 kWh 

Switching Energy level (Es) 30% 900 kWh 

Execution time (t) 58 minutes 

Table 6.5 Battery Specifications for real time test system in free-running mode and 

conservative discharge at half capacity 
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Figure 6.87 Battery power charging and discharging under real time operation at half 

capacity in free-running mode and conservative discharging 

 

 

 

 

 

Figure 6.88 Battery state of charge under real time operation at half capacity in free-

running mode and conservative discharge 
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Figure 6.89 Overall actual one second demand under real time operation at half battery 

capacity in free-running mode and conservative discharge 

 

 

Figure 6.90 Fifteen minute average normalized demand under real time operation at half 

battery capacity in free-running mode and conservative discharge 
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It is seen from the results obtained for half battery capacity real time operation that there is a 

higher peak reduction ratio because of higher capacity utilization of the battery. Also, the 

average load of the feeder falls slightly more because of the same reason. The result shows that 

there is scope for further reduction in size of the battery. However, as this research work involves 

the usage of one particular type of battery, namely, the NAS battery, the effects of battery 

specific properties can be considered. The specialty of NAS batteries is to be able to pulse 

discharge at up to four times their rated power capacity for short periods of time. As the scope of 

real time operation investigated in this research work involves the change of battery discharge 

level at every second, pulsed operation can be considered in this case. Battery installed capacity 

is retained as in the previous case at half the original initial value, while the power level is 

bumped up to twice its value in the previous analysis. The battery specifications used are given 

below along with the execution time. The results have been obtained in figures 6.91 through 

6.94. 

 

 

 

 

 

Power Rating (2P) 800 kW 

Maximum Energy Level  (Emax) 3000 kWh 

Minimum Energy Level (Emin) 20% 600 kWh 

Initial Energy Level (E0) 30% 900 kWh 

Switching Energy level (Es) 30% 900 kWh 

Execution time (t) 58 minutes 

Table 6.6 Battery Specifications for real time test system in free-running mode and 

conservative discharge at half capacity for double pulse operation 
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Figure 6.91 Battery power charging and discharging under real time operation at half 

capacity and double pulse operation in free-running mode and conservative discharging 

 

 

 

 

 

 

Figure 6.92 Battery state of charge under real time operation at half capacity and double 

pulse operation in free-running mode and conservative discharge 
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Figure 6.93 Overall actual one second demand under real time operation at half battery 

capacity and double pulse operation in free-running mode and conservative discharge 

 

 

Figure 6.94 Fifteen minute average normalized demand under real time operation at half 

battery capacity and double pulse operation in free-running mode and conservative 

discharge 
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The results obtained above show that the improvements in peak reduction or mean load reduction 

of the feeder are not very appreciable. There is a slight improvement in the capacity usage of the 

battery although the battery is mostly unused. So, it may be inferred that the double pulse 

operation of the battery is unwarranted as there are no significant improvements, and also, 

prolonged operation of the battery in the double pulse mode could reduce the life span of 

operation. 

 The next step in the analysis involves using the battery in the same configuration as 

before without the double pulse operation. The only difference in this case is that the initial 

battery capacity is assumed to be at 60%. The analysis is done in this way in order to investigate 

if any changes occur in capacity utilization with higher initial battery energy level. The 

specifications in this case are given below. The results are obtained in figures 6.95 through 6.98. 

 

 

 

 

 

 

 

Power Rating (P) 400 kW 

Maximum Energy Level  (Emax) 3000 kWh 

Minimum Energy Level (Emin) 20% 600 kWh 

Initial Energy Level (E0) 60% 1800 kWh 

Switching Energy level (Es) 30% 900 kWh 

Execution time (t) 58 minutes 

Table 6.7 Battery Specifications for real time test system in free-running mode and 

conservative discharge at half capacity for higher initial energy 
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Figure 6.95 Battery power charging and discharging under real time operation at half 

capacity and higher initial energy in free-running mode and conservative discharging 

 

 

 

 

 

 

Figure 6.96 Battery state of charge under real time operation at half capacity and higher 

initial energy in free-running mode and conservative discharge 
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Figure 6.97 Overall actual one second demand under real time operation at half battery 

capacity and higher initial energy in free-running mode and conservative discharge 

 

Figure 6.98 Fifteen minute average normalized demand under real time operation at half 

battery capacity and higher initial energy in free-running mode and conservative discharge 
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It is observed that in the above case where battery capacity starts at a higher initial energy level, 

there are no significant improvements in peak reduction and mean load reduction, and also the 

capacity utilization of the battery reduces as surplus amount of energy is available in the battery. 

This proves again that the capacity of the battery can be reduced further, which forms the basis 

for the next and final step in the battery size reduction process investigated along with dispatch 

operations in this research. 

 The battery is now reduced to one-fourth or 25% of its original capacity and the real time 

operation in free-running mode and conservative discharge is done under the following battery 

specifications. The results are obtained in figures 6.99 through 6.102. 

Power Rating (P) 200 kW 

Maximum Energy Level  (Emax) 1500 kWh 

Minimum Energy Level (Emin) 20% 300 kWh 

Initial Energy Level (E0) 30% 450 kWh 

Switching Energy level (Es) 30% 450 kWh 

Execution time (t) 58 minutes 

Table 6.8 Battery Specifications for real time test system in free-running mode and 

conservative discharge at quarter capacity 

 

 

Figure 6.99 Battery power charging and discharging under real time operation at quarter 

capacity in free-running mode and conservative discharging 
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Figure 6.100 Battery state of charge under real time operation at quarter capacity in free-

running mode and conservative discharge 

 

 

 

Figure 6.101 Overall actual one second demand under real time operation at quarter 

battery capacity in free-running mode and conservative discharge 
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Figure 6.102 Fifteen minute average normalized demand under real time operation at 

quarter battery capacity in free-running mode and conservative discharge 

 

The final results obtained for 25% of original assumed battery capacity show appreciable peak 

reduction and average load reduction and also high capacity utilization for the battery when 

compared to all of the previous results. So, it can be inferred that this could be the best case of 

battery sizing as the wind generation average for this case is between the medium and high levels 

and constantly high wind generation could actually end up utilizing the full capacity of the 

battery on such days. 

 A final tabulation of the results obtained for all the real time storage dispatch cases 

discussed so far has been presented below. 
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Mode Specifications 
Average load 

factor 

Peak load 

factor 

Battery 

utilization 

factor 

Time of 

execution 

(minutes) 

Base case -- 0.6668 1.0000 -- -- 

Free-running 

only 

Full capacity + 

30% initial 
0.5393 0.9050 0.3681 58 

Free-running 

and 

conservative 

discharge 

below 

switching 

energy level 

Full capacity + 

30% initial 
0.5397 0.8716 0.4036 58 

Half capacity 

+ 30% initial 
0.5433 0.8641 0.4418 58 

Half capacity 

+ 30% initial 

+ double pulse 

operation 

0.5434 0.8866 0.4940 58 

Half capacity 

+ 60% initial 
0.5421 0.8679 0.4681 58 

Quarter 

capacity + 

30% initial 

0.5539 0.8981 0.6939 58 

 

Table 6.9 Summary of results obtained for real time operation of wind generation with 

storage dispatch using historical PMU information 

 

In the analysis that has been done in this research work, PMU information of the previous 300 

time instances or seconds is used to calculate the battery dispatch for the current time instant. So, 

it can be inferred that during every one second interval, one calculation for dispatch of the 

battery happens. For a total processing time of 58 minutes for all the 86400 time instances of 

dispatch calculation, the processing time per instance is calculated by dividing the total time by 

the total number of time instances. The processing time per time instant is calculated to be 40.27 

milliseconds, which is slightly higher than the maximum PMU sampling time of 33.33 

milliseconds. So, for this particular test feeder, it is possible to work with a high resolution of up 

to 15 samples per second of PMU data. This proves the dynamic real time characteristics of the 
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calculations analyzed in this research. Actual on field applications could be much faster with 

system components such as distribution SCADA computers which could put the full potential of 

the dynamic nature of PMU measurements to use. 
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Chapter 7 - Conclusions and Future Work 

7.1 Conclusions 

The integration of distributed storage into the distribution system in order to support wind 

generation provides some exciting advantages. The following contributions have been made in 

this research work. 

 The possibility of storing wind generation and using it when it is most required is a 

valuable asset in the proper and efficient operation of a distribution system and has been 

accomplished with some degree of success in this research work. 

 The unbalanced operation of power flow in a distribution system for dynamic load 

intervals in order to regulate storage and wind generation has been undocumented so far 

in literature and has been investigated in this research. 

 The advantages of using dynamic load information available from advanced 

measurement devices in order to effectively achieve wind generation storage and dispatch 

operations have been established. The usage of Phasor Measurement Units (PMU) in 

order to perform the same function, especially in a distribution system has been handled 

newly in this research work. 

 Some of the battery charging and discharging strategies developed in order to effectively 

support wind generation and achieve peak reduction in feeder load such as sustained 

average load approach and conservative discharging are unique to this research. 

 The real time operation of battery storage dispatch using historical PMU information has 

also been newly developed in this research work. All of the methods developed here are 

purely based on math functions and involve no optimization, making them well suited to 

on field real time applications. 

 When battery storage is to be used with wind generation in order to perform load support 

operations, battery size and cost can be a concern to be addressed. The step by step 

attempts made in the reduction of battery size for real time applications of load support, 

and the results obtained in the process greatly addressed this issue, and the stage is now 

set for other researchers trying to improve the methods and resources developed in this 

research even further. 
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7.2 Future Work 

The usage of PMUs in distribution systems is still a relatively unexplored area of study, 

and there might be a lot more scope for future research work in this area. As the PMU 

technology becomes cheaper, its usage in distribution systems can be expected to increase, as the 

benefits of this technology far outweigh the costs involved. Talking specifically in terms of the 

research done so far, the techniques and strategies used in this research can be applied through 

simulation to larger test feeders as well as for on field operation through test beds and actual 

experimental feeders. The techniques developed in this research have been applied primarily to 

centralized location of wind generation and storage technologies due to the size of the test feeder. 

But present trends in distributed generation are growing towards placement of distributed 

resources at multiple locations. So, there might be avenues for further studies in multiple sighting 

as well as measurement locations for PMUs, wind farms and storage. There is also scope for 

further optimization of storage installations with increasing penetration of renewables such as 

wind and solar energy. The entire power system has been moving towards smart grid 

technologies, and all the elements of the power system addressed in this research will need 

further investigation and validation with time. 
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Appendix A – Test Feeder Information 

A.1 Test feeder Line, Load and Transformer details 

Configuration Phasing Cable Spacing ID 

721 A B C 

1,000,000 

AA, CN 515 

722 A B C 

500,000 

AA, CN 515 

723 A B C 2/0 AA, CN 515 

724 A B C #2 AA, CN 515 

Table A.1 Underground Cable Configuration 

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3 

  Model kW kVAR kW kVAR kW kVAR 

701 D-PQ 140 70 140 70 350 175 

712 D-PQ 0 0 0 0 85 40 

713 D-PQ 0 0 0 0 85 40 

714 D-I 17 8 21 10 0 0 

718 D-Z 85 40 0 0 0 0 

720 D-PQ 0 0 0 0 85 40 

722 D-I 0 0 140 70 21 10 

724 D-Z 0 0 42 21 0 0 

725 D-PQ 0 0 42 21 0 0 

727 D-PQ 0 0 0 0 42 21 

728 D-PQ 42 21 42 21 42 21 

729 D-I 42 21 0 0 0 0 

730 D-Z 0 0 0 0 85 40 

731 D-Z 0 0 85 40 0 0 

732 D-PQ 0 0 0 0 42 21 

733 D-I 85 40 0 0 0 0 

734 D-PQ 0 0 0 0 42 21 

735 D-PQ 0 0 0 0 85 40 

736 D-Z 0 0 42 21 0 0 

737 D-I 140 70 0 0 0 0 

738 D-PQ 126 62 0 0 0 0 

740 D-PQ 0 0 0 0 85 40 

741 D-I 0 0 0 0 42 21 

742 D-Z 8 4 85 40 0 0 

744 D-PQ 42 21 0 0 0 0 

Total   727 357 639 314 1091 530 

Table A.2 Spot Loads 
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  kVA kV-high kV-low R - % X - % 

Substation: 2,500 230 D 4.8 D 2 8 

XFM -1 500 4.8 D .480 D 0.09 1.81 

Table A.3 Transformer data 

Node A Node B Length(ft.) Configuration 

701 702 960 722 

702 705 400 724 

702 713 360 723 

702 703 1320 722 

703 727 240 724 

703 730 600 723 

704 714 80 724 

704 720 800 723 

705 742 320 724 

705 712 240 724 

706 725 280 724 

707 724 760 724 

707 722 120 724 

708 733 320 723 

708 732 320 724 

709 731 600 723 

709 708 320 723 

710 735 200 724 

710 736 1280 724 

711 741 400 723 

711 740 200 724 

713 704 520 723 

714 718 520 724 

720 707 920 724 

720 706 600 723 

727 744 280 723 

730 709 200 723 

733 734 560 723 

734 737 640 723 

734 710 520 724 

737 738 400 723 

738 711 400 723 

744 728 200 724 

744 729 280 724 

775 709 0 XFM-1 

799 701 1850 721 

Table A.4 Line Segment data 
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A.2 Phase Impedance Matrices for various configurations 

Configuration 721: 

           Z (R +jX) in ohms per mile 

[ 0.2926+j0.1973 0.0673-j0.0368 0.0337-j0.0417 

  0.0673-j0.0368         0.2646+j0.1900   0.0673-j0.0368 

  0.0337-j0.0417          0.0673-j0.0368 0.2926+j0.1973 ] 

 

Configuration 722: 

           Z (R +jX) in ohms per mile 

[ 0.4751+j0.2973 0.1629-j0.0326 0.1234-j0.0607 

  0.1629-j0.0326 0.4488+j0.2678    0.1629-j0.0326  

  0.1234-j0.0607  0.1629-j0.0326   0.4751+j0.2973 ] 

 

Configuration 723: 

           Z (R +jX) in ohms per mile 

[ 1.2936+j0.6713 0.4871+j0.2111 0.4585+j0.1521 

  0.4871+j0.2111 1.3022+j0.6326 0.4871+j0.2111 

  0.4585+j0.1521 0.4871+j0.2111 1.2936+j0.6713 ] 

 

Configuration 724: 

           Z (R +jX) in ohms per mile 

[ 2.0952+j0.7758 0.5204+j0.2738 0.4926+j0.2123 

  0.5204+j0.2738 2.1068+j0.7398    0.5204+j0.2738 

  0.4926+j0.2123        0.5204+j0.2738 2.0952+j0.7758 ] 
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Appendix B – Input Files and Software Code 

B.1 Code for Input file used in Fifteen-minute Analysis 

%Data Files creation for 3-ph load flow BFS method with wind and storage 
%combined in the system - Manoaj Vijayarengan 
clear all 
clc 

  
Sb = 2500000; 
    Vb = 4800; 
    Zb = (Vb^2)/Sb; 
                            %Load    
    %   Node  Renum     Model   kW  kVAr    kW  kVAr    kW  kVAr 
Node = [701     2       1       140 70      140 70      350 175 
        712     5       1       0   0       0   0       85  40 
        713     7       1       0   0       0   0       85  40 
        714     9       3       17  8       21  10      0   0 
        718     10      2       85  40      0   0       0   0 
        720     11      1       0   0       0   0       85  40 
        722     13      3       0   0       140 70      21  10 
        724     14      2       0   0       42  21      0   0 
        725     16      1       0   0       42  21      0   0 
        727     18      1       0   0       0   0       42  21 
        728     20      1       42  21      42  21      42  21 
        729     21      3       42  21      0   0       0   0 
        730     22      2       0   0       0   0       85  40 
        731     24      2       0   0       85  40      0   0 
        732     36      1       0   0       0   0       42  21 
        733     26      3       85  40      0   0       0   0 
        734     27      1       0   0       0   0       42  21 
        735     30      1       0   0       0   0       85  40 
        736     29      2       0   0       42  21      0   0 
        737     31      3       140 70      0   0       0   0 
        738     32      1       126 62      0   0       0   0 
        740     34      1       0   0       0   0       85  40 
        741     35      3       0   0       0   0       42  21 
        742     6       2       8   4       85  40      0   0 
        744     19      1       42  21      0   0       0   0   ]; 

 

S_peak = [0;0;0]; 
for i = 1:size(Node,1); 
        S_peak = S_peak + 1000*[Node(i,4)+1j*Node(i,5) Node(i,6)+1j*Node(i,7) 

Node(i,8)+1j*Node(i,9)].'; 
end 

  
                            %Branch 
   %        NodeA  RenumA   NodeB  RenumB   Length(ft.) Config. 
Branch = [   701    2       702     3       960         722 
             702    3       705     4       400         724 
             702    3       713     7       360         723 
             702    3       703     17      1320        722 
             703    17      727     18      240         724 
             703    17      730     22      600         723 
             704    8       714     9       80          724 
             704    8       720     11      800         723 



122 

 

             705    4       742     6       320         724 
             705    4       712     5       240         724 
             706    15      725     16      280         724 
             707    12      724     14      760         724 
             707    12      722     13      120         724 
             708    25      733     26      320         723 
             708    25      732     36      320         724 
             709    23      731     24      600         723 
             709    23      708     25      320         723 
             710    28      735     30      200         724 
             710    28      736     29      1280        724 
             711    33      741     35      400         723 
             711    33      740     34      200         724 
             713    7       704     8       520         723 
             714    9       718     10      520         724 
             720    11      707     12      920         724 
             720    11      706     15      600         723 
             727    18      744     19      280         723 
             730    22      709     23      200         723 
             733    26      734     27      560         723 
             734    27      737     31      640         723 
             734    27      710     28      520         724 
             737    31      738     32      400         723 
             738    32      711     33      400         723 
             744    19      728     20      200         724 
             744    19      729     21      280         724 
             709    23      775     37      0           1 
             799    1       701     2       1850        721   ]; 

 
           % Impedance matrices 
z721 = [ 0.2926+1j*0.1973   0.0673-1j*0.0368   0.0337-1j*0.0417 
         0.0673-1j*0.0368   0.2646+1j*0.1900   0.0673-1j*0.0368 
         0.0337-1j*0.0417   0.0673-1j*0.0368   0.2926+1j*0.1973 ]; 
     z721 = {z721}; 

      
z722 = [ 0.4751+1j*0.2973   0.1629-1j*0.0326   0.1234-1j*0.0607 
         0.1629-1j*0.0326   0.4488+1j*0.2678   0.1629-1j*0.0326 
         0.1234-1j*0.0607   0.1629-1j*0.0326   0.4751+1j*0.2973 ]; 
     z722 = {z722}; 

      
z723 = [ 1.2936+1j*0.6713   0.4871+1j*0.2111   0.4585+1j*0.1521 
         0.4871+1j*0.2111   1.3022+1j*0.6326   0.4871+1j*0.2111 
         0.4585+1j*0.1521   0.4871+1j*0.2111   1.2936+1j*0.6713 ]; 
     z723 = {z723}; 

      
z724 = [ 2.0952+1j*0.7758   0.5204+1j*0.2738   0.4926+1j*0.2123 
         0.5204+1j*0.2738   2.1068+1j*0.7398   0.5204+1j*0.2738 
         0.4926+1j*0.2123   0.5204+1j*0.2738   2.0952+1j*0.7758 ]; 
     z724 = {z724}; 

      
Z = [z721;z722;z723;z724]; 

  
ftmi = 1.8939e-4; 

  

  
% Transformer matrices 
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% For D-D transformer (in branch 709-775),  
% at = (nt/3)*[2 -1 -1;-1 2 -1;-1 -1 2] 
% bt = W*AV*Zabc*G1 
% where W = (1/3)*[2 1 0;0 2 1;1 0 2] 
%       AV = [nt 0 0;0 nt 0;0 0 nt] 
%       Zabc = diagonal(Zab,Zbc,Zca) 
%       G1 = (1/(Zab+Zbc+Zca))*[Zca -Zbc 0;Zca Zab+Zca 0;-Zab-Zbc -Zbc 0] 
% dt = (1/nt)*eye(3) 
% At = (1/(3*nt))*[2 -1 -1;-1 2 -1;-1 2 -1] 
% Bt = W*Zabc*G1 
nt = 10; 
Zab = 0.0009+1j*0.0181; 
Zbc = Zab; 
Zca = Zab; 
W = (1/3)*[2 1 0;0 2 1;1 0 2]; 
AV = [nt 0 0;0 nt 0;0 0 nt]; 
Zabc = [Zab 0 0;0 Zbc 0;0 0 Zca]; 
G1 = (1/(Zab+Zbc+Zca))*[Zca -Zbc 0;Zca Zab+Zca 0;-Zab-Zbc -Zbc 0]; 
at = (nt/3)*[2 -1 -1;-1 2 -1;-1 -1 2]; 
bt = W*AV*Zabc*G1; 
dt = (1/nt)*eye(3); 
At = (1/(3*nt))*[2 -1 -1;-1 2 -1;-1 -1 2]; 
Bt = W*Zabc*G1; 

  
         %Normalized Load fractions for 15-min divisions from profile 1 
AggDem_Norm_1 = [   0.5667 
                    0.3805  
                    0.4207 
                    0.4425 
                    0.4138 
                    0.4586 
                    0.5828 
                    0.4057 
                    0.4529 
                    0.3690 
                    0.3655 
                    0.4506 
                    0.3632 
                    0.3080 
                    0.4954 
                    0.2598 
                    0.3908 
                    0.3391 
                    0.3161 
                    0.4540 
                    0.3230 
                    0.5207 
                    0.4977 
                    0.3954 
                    0.4264 
                    0.2966 
                    0.4414 
                    0.3241 
                    0.3851 
                    0.5034 
                    0.4943 
                    0.4138 
                    0.2885 
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                    0.5310 
                    0.4126 
                    0.3057 
                    0.5103 
                    0.5241 
                    0.5299 
                    0.6138 
                    0.5276 
                    0.5460 
                    0.8218 
                    0.9080 
                    0.8299 
                    0.8402 
                    0.7586 
                    0.9897 
                    0.7667 
                    0.7989 
                    0.9529 
                    0.7379 
                    0.8080 
                    1.0000 
                    0.7667 
                    0.9126 
                    0.8770 
                    0.8943 
                    0.8149 
                    0.9230 
                    0.9149 
                    0.8690 
                    0.7943 
                    0.8736 
                    0.9598 
                    0.9310 
                    0.9414 
                    0.8782 
                    0.9207 
                    0.7552 
                    0.9069 
                    0.9241 
                    0.7609 
                    0.8552 
                    0.8310 
                    0.7931 
                    0.9954 
                    0.7989 
                    0.8598 
                    0.9471 
                    0.8977 
                    0.9448 
                    0.9506 
                    0.7816 
                    0.8644 
                    0.6920 
                    0.8529 
                    0.7713 
                    0.8149 
                    0.7494 
                    0.7839 
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                    0.9080 
                    0.6460 
                    0.7793 
                    0.7805 
                    0.8414 ]; 

 
%                 %Medium wind generation for a single day - 8 100kW 
%                 %Northwind Turbines 
MedGen = [     69.6000   68.1067   69.4133   31.3200   30.6480   31.2360 
               68.8533   67.3600   68.7200   30.9840   30.3120   30.9240 
               66.4267   64.9333   66.3200   29.8920   29.2200   29.8440 
               83.8133   82.2133   83.9200   37.7160   36.9960   37.7640 
               73.4133   72.1067   73.5200   33.0360   32.4480   33.0840 
               68.6667   67.4667   68.7733   30.9000   30.3600   30.9480 
               55.5200   54.4800   55.7333   24.9840   24.5160   25.0800 
               45.7067   44.5600   45.6533   20.5680   20.0520   20.5440 
               43.2533   42.1600   43.1200   19.4640   18.9720   19.4040 
               61.4933   60.2400   61.4667   27.6720   27.1080   27.6600 
               80.1067   78.7200   80.2400   36.0480   35.4240   36.1080 
               94.1867   92.4267   94.2133   42.3840   41.5920   42.3960 
              101.7600  100.0533  101.8133   45.7920   45.0240   45.8160 
              122.1867  120.5867  122.4533   54.9840   54.2640   55.1040 
              151.9200  149.7067  152.0533   68.3640   67.3680   68.4240 
              153.1467  150.8267  153.0667   68.9160   67.8720   68.8800 
              160.2133  157.9733  160.0000   72.0960   71.0880   72.0000 
              161.8667  159.5733  161.6000   72.8400   71.8080   72.7200 
              132.1333  129.9733  131.8133   59.4600   58.4880   59.3160 
              129.5733  127.5733  129.0933   58.3080   57.4080   58.0920 
              127.2800  125.6000  127.0133   57.2760   56.5200   57.1560 
              132.7200  131.0400  132.4000   59.7240   58.9680   59.5800 
              144.6933  143.0133  144.5600   65.1120   64.3560   65.0520 
              141.3867  139.5467  141.2533   63.6240   62.7960   63.5640 
              146.9867  145.2000  146.9067   66.1440   65.3400   66.1080 
              132.0533  130.4267  131.8667   59.4240   58.6920   59.3400 
              117.2267  115.7867  117.1467   52.7520   52.1040   52.7160 
               93.1733   91.7867   93.0933   41.9280   41.3040   41.8920 
               83.7067   82.5333   83.7067   37.6680   37.1400   37.6680 
               87.3333   86.1600   87.3867   39.3000   38.7720   39.3240 
               82.2133   80.8800   82.0267   36.9960   36.3960   36.9120 
              110.8000  109.1467  110.4533   49.8600   49.1160   49.7040 
               95.5467   93.5467   95.1200   42.9960   42.0960   42.8040 
               99.8667   97.9200   99.4933   44.9400   44.0640   44.7720 
              101.8667  100.0267  101.4667   45.8400   45.0120   45.6600 
              106.9867  105.0400  106.6933   48.1440   47.2680   48.0120 
              111.4933  109.4400  111.2800   50.1720   49.2480   50.0760 
               95.6533   93.8133   95.4400   43.0440   42.2160   42.9480 
               86.8000   85.1467   86.6667   39.0600   38.3160   39.0000 
               72.4000   70.9600   72.2667   32.5800   31.9320   32.5200 
               70.1333   68.8000   70.1600   31.5600   30.9600   31.5720 
               53.5467   52.4800   53.6800   24.0960   23.6160   24.1560 
               60.9867   59.6800   61.0400   27.4440   26.8560   27.4680 
               61.3067   60.1067   61.4667   27.5880   27.0480   27.6600 
               82.6933   80.9333   82.3733   37.2120   36.4200   37.0680 
               70.2667   68.8267   70.0533   31.6200   30.9720   31.5240 
               65.3067   64.1867   65.1733   29.3880   28.8840   29.3280 
               76.7733   75.4933   76.8533   34.5480   33.9720   34.5840 
               76.1333   74.4000   76.2667   34.2600   33.4800   34.3200 
               67.0133   65.2800   66.9333   30.1560   29.3760   30.1200 
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               43.7067   42.6133   43.3867   19.6680   19.1760   19.5240 
               42.7467   41.9733   42.5333   19.2360   18.8880   19.1400 
               40.4533   39.7867   40.3200   18.2040   17.9040   18.1440 
               53.4133   52.2133   52.9600   24.0360   23.4960   23.8320 
               47.1733   46.0800   46.8267   21.2280   20.7360   21.0720 
               46.8000   45.8133   46.2933   21.0600   20.6160   20.8320 
               59.8933   58.8267   59.6000   26.9520   26.4720   26.8200 
               59.4667   58.3467   59.2267   26.7600   26.2560   26.6520 
               54.1867   52.9333   53.5733   24.3840   23.8200   24.1080 
               56.1600   54.9600   55.8133   25.2720   24.7320   25.1160 
               64.7467   63.3067   64.4533   29.1360   28.4880   29.0040 
               78.5067   76.8533   78.0000   35.3280   34.5840   35.1000 
               80.4533   79.3600   80.4000   36.2040   35.7120   36.1800 
               73.5733   72.3733   73.6800   33.1080   32.5680   33.1560 
               79.7600   78.2933   79.7067   35.8920   35.2320   35.8680 
               90.0533   88.6933   89.8933   40.5240   39.9120   40.4520 
              110.5333  108.5867  110.2933   49.7400   48.8640   49.6320 
               85.6267   84.0533   85.3867   38.5320   37.8240   38.4240 
               62.8000   61.4133   62.5867   28.2600   27.6360   28.1640 
               62.5867   61.0933   62.2667   28.1640   27.4920   28.0200 
               63.9467   62.4267   63.4933   28.7760   28.0920   28.5720 
               77.3867   75.7067   76.9867   34.8240   34.0680   34.6440 
               80.5600   78.9067   80.0533   36.2520   35.5080   36.0240 
              102.3200  100.4533  101.9200   46.0440   45.2040   45.8640 
               63.9733   62.4800   63.4133   28.7880   28.1160   28.5360 
               63.3333   62.1600   63.1467   28.5000   27.9720   28.4160 
               60.4267   59.2800   60.4000   27.1920   26.6760   27.1800 
               71.3600   70.1600   71.3867   32.1120   31.5720   32.1240 
               38.1067   37.3600   38.0267   17.1480   16.8120   17.1120 
               52.0800   51.2800   52.0533   23.4360   23.0760   23.4240 
               87.5733   86.3733   87.7867   39.4080   38.8680   39.5040 
               60.0000   59.1200   60.1600   27.0000   26.6040   27.0720 
               47.0400   46.1067   46.8533   21.1680   20.7480   21.0840 
               35.2533   34.3200   34.7467   15.8640   15.4440   15.6360 
               38.9067   37.9733   38.4800   17.5080   17.0880   17.3160 
               26.8000   26.0267   26.4267   12.0600   11.7120   11.8920 
               36.8000   35.7600   36.5067   16.5600   16.0920   16.4280 
               30.7733   29.7867   30.4800   13.8480   13.4040   13.7160 
               36.8800   35.9733   36.6133   16.5960   16.1880   16.4760 
               41.7333   40.7733   41.6800   18.7800   18.3480   18.7560 
               32.8533   32.1333   32.8000   14.7840   14.4600   14.7600 
               37.7067   36.7733   37.4400   16.9680   16.5480   16.8480 
               18.8267   18.0800   18.4533    8.4720    8.1360    8.3040 
               30.0267   29.0667   29.7067   13.5120   13.0800   13.3680 
               24.5867   23.5733   24.0800   11.0640   10.6080   10.8360 
               30.7733   29.6533   30.2133   13.8480   13.3440   13.5960 ]; 

            
%            %     High wind generation for a single day - 8 100kW 
%                 %Northwind Turbines  
HighGen = [       281.5501  275.5605  279.9189  126.6976  124.0022  125.9635 
                  257.9286  252.7216  256.1336  116.0679  113.7247  115.2601 
                  258.8540  254.7260  257.4784  116.4843  114.6267  115.8653 
                  249.5892  245.2773  248.4009  112.3151  110.3748  111.7804 
                  166.1852  163.1836  166.3977   74.7834   73.4326   74.8790 
                  246.7829  242.1951  245.9837  111.0523  108.9878  110.6927 
                  289.5928  285.1840  288.8539  130.3168  128.3328  129.9843 
                  259.3332  255.5449  258.7695  116.6999  114.9952  116.4463 
                  251.2633  247.5916  250.6554  113.0685  111.4162  112.7949 
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                  241.1937  237.3907  240.4628  108.5372  106.8258  108.2083 
                  220.4890  216.7499  220.5590   99.2200   97.5374   99.2515 
                  170.5276  167.2932  170.4710   76.7374   75.2819   76.7119 
                  194.6946  190.9874  193.6259   87.6126   85.9443   87.1317 
                  201.4305  197.2865  200.4182   90.6437   88.7789   90.1882 
                  166.5257  163.6487  166.1027   74.9365   73.6419   74.7462 
                  173.8276  171.2013  173.1800   78.2224   77.0406   77.9310 
                  157.8256  155.1120  157.0649   71.0215   69.8004   70.6792 
                  160.5729  157.9383  159.8133   72.2578   71.0722   71.9160 
                  156.6348  154.0328  155.9338   70.4856   69.3148   70.1702 
                  132.6656  130.3142  131.9406   59.6995   58.6414   59.3733 
                  146.6556  143.6675  145.5267   65.9950   64.6504   65.4870 
                  166.8968  163.6652  165.5689   75.1036   73.6493   74.5060 
                  195.1793  191.8074  194.5388   87.8307   86.3133   87.5425 
                  182.2967  179.2603  181.3677   82.0335   80.6672   81.6155 
                  135.7996  133.3230  135.1459   61.1098   59.9954   60.8157 
                  181.2490  177.8670  180.0255   81.5620   80.0401   81.0115 
                  139.0507  136.1839  137.9074   62.5728   61.2828   62.0583 
                  147.1830  144.2861  146.3829   66.2323   64.9288   65.8723 
                  180.0165  176.5430  178.3378   81.0074   79.4444   80.2520 
                  192.7610  189.0588  191.4471   86.7424   85.0765   86.1512 
                  219.4664  215.4934  217.7267   98.7599   96.9720   97.9770 
                  205.5480  201.7413  203.5906   92.4966   90.7836   91.6158 
                  188.9781  186.0578  187.8556   85.0401   83.7260   84.5350 
                  185.5239  182.8132  184.8639   83.4858   82.2659   83.1887 
                  214.6119  211.3663  213.8163   96.5753   95.1148   96.2173 
                  169.9298  166.8443  169.4745   76.4684   75.0799   76.2635 
                  151.4000  148.5034  150.7789   68.1300   66.8265   67.8505 
                  158.1906  155.3850  157.6438   71.1858   69.9232   70.9397 
                  154.8747  152.3742  154.9013   69.6936   68.5684   69.7056 
                  145.7215  143.2940  145.5506   65.5747   64.4823   65.4978 
                  119.7136  117.7068  119.7499   53.8711   52.9681   53.8875 
                  107.8217  106.1186  108.0676   48.5198   47.7534   48.6304 
                  109.1439  107.3334  109.4081   49.1148   48.3000   49.2337 
                  119.0752  116.7744  119.0558   53.5839   52.5485   53.5751 
                  120.4739  117.9034  120.2289   54.2133   53.0565   54.1030 
                  167.4364  164.3039  166.7815   75.3464   73.9368   75.0517 
                  201.9840  199.1634  201.9390   90.8928   89.6235   90.8725 
                  164.5809  162.0136  164.4520   74.0614   72.9061   74.0034 
                  121.5801  119.6726  121.5301   54.7110   53.8527   54.6885 
                  160.3128  157.8708  160.2114   72.1408   71.0418   72.0951 
                  154.5830  152.1322  154.5418   69.5623   68.4595   69.5438 
                  136.8201  134.5896  136.7365   61.5690   60.5653   61.5314 
                  192.0582  188.4824  191.3688   86.4262   84.8171   86.1160 
                  192.5512  188.6248  191.3867   86.6480   84.8812   86.1240 
                  177.6566  174.1032  177.0777   79.9455   78.3464   79.6850 
                  186.3555  182.8996  185.9392   83.8600   82.3048   83.6726 
                  223.9334  219.7368  222.7411  100.7700   98.8815  100.2335 
                  202.5944  198.5224  201.8154   91.1675   89.3351   90.8169 
                  207.0331  203.2247  206.2358   93.1649   91.4511   92.8061 
                  201.2881  197.6263  200.5627   90.5796   88.9318   90.2532 
                  248.7264  244.3014  248.0414  111.9269  109.9356  111.6186 
                  247.3148  242.4722  245.9475  111.2917  109.1125  110.6764 
                  248.9380  244.0643  247.3982  112.0221  109.8289  111.3292 
                  250.8993  245.9372  249.3291  112.9047  110.6717  112.1981 
                  242.5997  238.1248  241.7165  109.1698  107.1561  108.7724 
                  248.3843  243.9465  247.2201  111.7730  109.7759  111.2490 
                  273.0356  267.9197  271.5799  122.8660  120.5639  122.2110 
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                  282.2504  277.0619  280.8363  127.0127  124.6779  126.3763 
                  280.8353  275.4991  279.5669  126.3759  123.9746  125.8051 
                  249.7466  245.0150  248.9040  112.3860  110.2567  112.0068 
                  222.9976  219.4022  222.7584  100.3489   98.7310  100.2413 
                  233.4804  229.5232  233.4604  105.0662  103.2855  105.0572 
                  240.6930  236.2265  240.3427  108.3119  106.3019  108.1542 
                  239.6281  235.0626  239.1987  107.8327  105.7782  107.6394 
                  253.7524  249.1953  253.1141  114.1886  112.1379  113.9014 
                  267.4458  262.6631  266.6065  120.3506  118.1984  119.9729 
                  250.3672  245.8844  249.7498  112.6652  110.6480  112.3874 
                  223.5473  219.6609  223.3517  100.5963   98.8474  100.5083 
                  209.9352  206.4430  209.7836   94.4708   92.8994   94.4026 
                  210.1597  206.7353  209.8198   94.5719   93.0309   94.4189 
                  175.5417  172.6081  174.9504   78.9937   77.6737   78.7277 
                  194.6614  191.3548  194.0840   87.5976   86.1096   87.3378 
                  182.8304  179.4926  182.4156   82.2737   80.7717   82.0870 
                  158.5451  155.5843  158.4632   71.3453   70.0129   71.3085 
                  162.9233  160.0625  162.9225   73.3155   72.0281   73.3151 
                  170.2485  167.0910  169.9036   76.6118   75.1910   76.4566 
                  159.4286  156.3825  159.0667   71.7428   70.3721   71.5800 
                  139.9951  137.1489  139.8089   62.9978   61.7170   62.9140 
                  146.8990  144.0561  146.6753   66.1046   64.8253   66.0039 
                  114.5270  112.1761  114.4074   51.5372   50.4793   51.4833 
                   86.0956   83.9931   86.1375   38.7430   37.7969   38.7619 
                   77.5236   75.4881   77.3301   34.8856   33.9697   34.7985 
                   99.6748   97.2950   99.3048   44.8536   43.7827   44.6871 
                   93.7251   91.4118   93.2710   42.1763   41.1353   41.9720 
                   88.5965   86.6787   88.0478   39.8684   39.0054   39.6215 
                   71.7157   70.0427   71.3719   32.2721   31.5192   32.1174 

]; 

                
%                    %Low wind generation for a single day - 8 100kW 
%                 %Northwind Turbines 
LowGen = [     28.8333   27.6133   28.5033   12.9750   12.4260   12.8265 
               25.3200   24.1000   25.1033   11.3940   10.8450   11.2965 
               20.8133   19.6267   20.5167    9.3660    8.8320    9.2325 
               18.1467   17.3067   17.9833    8.1660    7.7880    8.0925 
               20.3633   19.6500   20.3867    9.1635    8.8425    9.1740 
               22.7167   21.8700   22.5933   10.2225    9.8415   10.1670 
               20.1600   19.2833   20.0900    9.0720    8.6775    9.0405 
               25.6467   24.6367   25.7167   11.5410   11.0865   11.5725 
               31.1167   29.8367   30.9600   14.0025   13.4265   13.9320 
               25.2833   24.1633   25.2800   11.3775   10.8735   11.3760 
               19.9667   19.1700   20.0600    8.9850    8.6265    9.0270 
               17.9733   16.9500   17.8533    8.0880    7.6275    8.0340 
               21.0533   19.8467   20.9733    9.4740    8.9310    9.4380 
               22.7133   21.5533   22.3533   10.2210    9.6990   10.0590 
               14.2600   13.6800   14.2167    6.4170    6.1560    6.3975 
                7.8333    8.1200    7.8233    3.5250    3.6540    3.5205 
                3.2933    3.6833    3.0633    1.4820    1.6575    1.3785 
                2.5667    2.8100    2.2767    1.1550    1.2645    1.0245 
                8.3900    8.4900    8.3567    3.7755    3.8205    3.7605 
                8.1833    8.5633    8.3233    3.6825    3.8535    3.7455 
               11.9600   11.7833   12.1900    5.3820    5.3025    5.4855 
               15.6400   15.0767   15.6500    7.0380    6.7845    7.0425 
                9.8967    9.6967    9.8567    4.4535    4.3635    4.4355 
                9.5700    9.3300    9.6367    4.3065    4.1985    4.3365 
               17.4833   16.8033   17.0933    7.8675    7.5615    7.6920 
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               35.5367   34.3500   35.1733   15.9915   15.4575   15.8280 
               46.2867   44.8000   45.9500   20.8290   20.1600   20.6775 
               38.4333   37.1333   38.3300   17.2950   16.7100   17.2485 
               39.6133   38.2333   39.4100   17.8260   17.2050   17.7345 
               38.3133   36.9467   38.2100   17.2410   16.6260   17.1945 
               31.4667   30.2600   31.3933   14.1600   13.6170   14.1270 
               42.4000   40.9867   42.1467   19.0800   18.4440   18.9660 
               42.2300   41.0067   42.0600   19.0035   18.4530   18.9270 
               50.4767   49.0533   50.1667   22.7145   22.0740   22.5750 
               47.1867   46.0767   47.0733   21.2340   20.7345   21.1830 
               34.2733   33.2900   34.1600   15.4230   14.9805   15.3720 
               35.7900   34.8733   35.9100   16.1055   15.6930   16.1595 
               38.2500   36.9933   38.2633   17.2125   16.6470   17.2185 
               48.4467   47.0167   48.6500   21.8010   21.1575   21.8925 
               28.0533   27.0500   28.3367   12.6240   12.1725   12.7515 
               20.0133   19.3900   20.3933    9.0060    8.7255    9.1770 
               29.5467   28.5567   29.7733   13.2960   12.8505   13.3980 
               26.7867   25.9400   26.9633   12.0540   11.6730   12.1335 
               24.3600   23.3933   24.4433   10.9620   10.5270   10.9995 
               22.4233   21.2067   22.2700   10.0905    9.5430   10.0215 
               26.9567   26.0133   26.8900   12.1305   11.7060   12.1005 
               36.5900   35.3233   36.5700   16.4655   15.8955   16.4565 
               30.4100   29.3233   30.4567   13.6845   13.1955   13.7055 
               34.5200   33.2500   34.8100   15.5340   14.9625   15.6645 
               41.2800   39.9367   41.5500   18.5760   17.9715   18.6975 
               40.6333   39.7967   41.2233   18.2850   17.9085   18.5505 
               39.7267   38.7900   40.2500   17.8770   17.4555   18.1125 
               32.3500   31.3000   32.6700   14.5575   14.0850   14.7015 
               24.8833   24.0467   25.0167   11.1975   10.8210   11.2575 
               26.0467   25.0467   25.9567   11.7210   11.2710   11.6805 
               31.2333   30.4600   31.1767   14.0550   13.7070   14.0295 
               21.6933   20.9500   21.7567    9.7620    9.4275    9.7905 
               22.6800   21.8300   22.6033   10.2060    9.8235   10.1715 
               26.0967   25.4233   26.1867   11.7435   11.4405   11.7840 
               28.1433   27.3967   28.3933   12.6645   12.3285   12.7770 
               24.5467   23.8067   24.7300   11.0460   10.7130   11.1285 
               27.2200   26.3733   27.4700   12.2490   11.8680   12.3615 
               21.0100   20.3833   21.2867    9.4545    9.1725    9.5790 
               18.5700   17.9033   18.9067    8.3565    8.0565    8.5080 
               16.3667   15.8300   16.4267    7.3650    7.1235    7.3920 
               20.6400   20.0300   20.7067    9.2880    9.0135    9.3180 
               27.2433   26.4700   27.1733   12.2595   11.9115   12.2280 
               27.8900   27.0500   28.0933   12.5505   12.1725   12.6420 
               28.1833   27.3467   28.4633   12.6825   12.3060   12.8085 
               28.9367   28.3200   29.2567   13.0215   12.7440   13.1655 
               17.0367   16.5533   17.2300    7.6665    7.4490    7.7535 
               15.5900   15.3533   15.8767    7.0155    6.9090    7.1445 
                9.8733    9.9533    9.8933    4.4430    4.4790    4.4520 
               10.7467   10.6600   10.7467    4.8360    4.7970    4.8360 
                8.3633    8.5033    8.2533    3.7635    3.8265    3.7140 
                7.0700    7.2100    6.8333    3.1815    3.2445    3.0750 
                4.7967    5.1167    4.5167    2.1585    2.3025    2.0325 
                5.7233    6.0633    5.2700    2.5755    2.7285    2.3715 
                5.6633    6.1333    5.4300    2.5485    2.7600    2.4435 
                4.9700    5.4467    4.7433    2.2365    2.4510    2.1345 
                0.9867    1.0933    0.5833    0.4440    0.4920    0.2625 
                0.9800    1.1000    0.5633    0.4410    0.4950    0.2535 
                0.9800    1.0967    0.5633    0.4410    0.4935    0.2535 
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                0.9800    1.1033    0.5633    0.4410    0.4965    0.2535 
                0.9900    1.1100    0.5733    0.4455    0.4995    0.2580 
                0.9900    1.1100    0.5867    0.4455    0.4995    0.2640 
                0.9900    1.1167    0.5733    0.4455    0.5025    0.2580 
                0.9900    1.1167    0.5733    0.4455    0.5025    0.2580 
                0.9933    1.1167    0.5933    0.4470    0.5025    0.2670 
                0.9933    1.1100    0.5933    0.4470    0.4995    0.2670 
                0.9900    1.1100    0.5767    0.4455    0.4995    0.2595 
                3.8767    3.9967    3.4967    1.7445    1.7985    1.5735 
                7.5000    7.9433    7.4333    3.3750    3.5745    3.3450 
                9.1400    9.1833    9.0400    4.1130    4.1325    4.0680 
               18.8133   18.2167   18.8200    8.4660    8.1975    8.4690 
               27.0667   26.0567   26.9267   12.1800   11.7255   12.1170 ]; 

            
%            %Load file creation for 24 hours on 15-minute basis with wind 
%            %included 
L = Node(1:size(Node,1),1:3); 
C_Low = []; 
C_Med = []; 
C_High = []; 
MeanDem = mean(AggDem_Norm_1); 
S_avg = MeanDem.*S_peak; 
for i = 1:length(AggDem_Norm_1) 
    Load = [L(1:13,1:3) Node(1:13,4:9).*AggDem_Norm_1(i); L(14:25,1:3) 

Node(14:25,4:9).*AggDem_Norm_1(i)]; 
    Load = [Load; 1000  32  1  LowGen(i,1)  LowGen(i,4)  LowGen(i,2)  

LowGen(i,5)  LowGen(i,3)  LowGen(i,6)]; 
    Load = {Load}; 
    C_Low = [C_Low;Load]; 
    Load = cell2mat(Load); 
    Load = [L(1:13,1:3) Node(1:13,4:9).*AggDem_Norm_1(i); L(14:25,1:3) 

Node(14:25,4:9).*AggDem_Norm_1(i)]; 
    Load = [Load; 1000  32  1  MedGen(i,1)  MedGen(i,4)  MedGen(i,2)  

MedGen(i,5)  MedGen(i,3)  MedGen(i,6)]; 
    Load = {Load}; 
    C_Med = [C_Med;Load]; 
    Load = cell2mat(Load); 
    Load = [L(1:13,1:3) Node(1:13,4:9).*AggDem_Norm_1(i); L(14:25,1:3) 

Node(14:25,4:9).*AggDem_Norm_1(i)]; 
    Load = [Load; 1000  32  1  HighGen(i,1)  HighGen(i,4)  HighGen(i,2)  

HighGen(i,5)  HighGen(i,3)  HighGen(i,6)]; 
    Load = {Load}; 
    C_High = [C_High;Load]; 
    Load = cell2mat(Load); 
end 

  
%Proximity matrix creation 
N = max(max(Branch(:,2)), max(Branch(:,4))); 
Prox = zeros(N,N); 
for i = 1:N-1 
    if Branch(i,6) == 1 
        Prox(Branch(i,2),Branch(i,4)) = 0.5; 
    else 
        Prox(Branch(i,2),Branch(i,4)) = 1; 
    end 
    Prox(i,i) = 1; 
end 



131 

 

Prox(N,N) = 1; 

  
Zline = {N}; 
    for i = 1:size(Branch,1) 
        if Branch(i,6) ~= 1 
            Zline{Branch(i,2),Branch(i,4)} = 

Branch(i,5)*ftmi*cell2mat(Z(Branch(i,6)-720))./Zb; 
        end 
    end 

 

B.2 Code for Input file used in One-second Analysis 

%Data Files creation for 3-ph load flow BFS method with wind and storage 
%combined in the system - Manoaj Vijayarengan 
clear all 
clc 
tic 
Sb = 2500000; 
    Vb = 4800; 
    Zb = (Vb^2)/Sb; 
                           %Load     
    %   Node  Renum     Model   kW  kVAr    kW  kVAr    kW  kVAr 
Node = [701     2       1       140 70      140 70      350 175 
        712     5       1       0   0       0   0       85  40 
        713     7       1       0   0       0   0       85  40 
        714     9       3       17  8       21  10      0   0 
        718     10      2       85  40      0   0       0   0 
        720     11      1       0   0       0   0       85  40 
        722     13      3       0   0       140 70      21  10 
        724     14      2       0   0       42  21      0   0 
        725     16      1       0   0       42  21      0   0 
        727     18      1       0   0       0   0       42  21 
        728     20      1       42  21      42  21      42  21 
        729     21      3       42  21      0   0       0   0 
        730     22      2       0   0       0   0       85  40 
        731     24      2       0   0       85  40      0   0 
        732     36      1       0   0       0   0       42  21 
        733     26      3       85  40      0   0       0   0 
        734     27      1       0   0       0   0       42  21 
        735     30      1       0   0       0   0       85  40 
        736     29      2       0   0       42  21      0   0 
        737     31      3       140 70      0   0       0   0 
        738     32      1       126 62      0   0       0   0 
        740     34      1       0   0       0   0       85  40 
        741     35      3       0   0       0   0       42  21 
        742     6       2       8   4       85  40      0   0 
        744     19      1       42  21      0   0       0   0   ]; 

 

S_peak = [0;0;0]; 
for i = 1:size(Node,1); 
        S_peak = S_peak + 1000.*[Node(i,4)+1j*Node(i,5) 

Node(i,6)+1j*Node(i,7) Node(i,8)+1j*Node(i,9)].'; 
end 

  
                            %Branch 
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   %        NodeA  RenumA   NodeB  RenumB   Length(ft.) Config. 
Branch = [   701    2       702     3       960         722 
             702    3       705     4       400         724 
             702    3       713     7       360         723 
             702    3       703     17      1320        722 
             703    17      727     18      240         724 
             703    17      730     22      600         723 
             704    8       714     9       80          724 
             704    8       720     11      800         723 
             705    4       742     6       320         724 
             705    4       712     5       240         724 
             706    15      725     16      280         724 
             707    12      724     14      760         724 
             707    12      722     13      120         724 
             708    25      733     26      320         723 
             708    25      732     36      320         724 
             709    23      731     24      600         723 
             709    23      708     25      320         723 
             710    28      735     30      200         724 
             710    28      736     29      1280        724 
             711    33      741     35      400         723 
             711    33      740     34      200         724 
             713    7       704     8       520         723 
             714    9       718     10      520         724 
             720    11      707     12      920         724 
             720    11      706     15      600         723 
             727    18      744     19      280         723 
             730    22      709     23      200         723 
             733    26      734     27      560         723 
             734    27      737     31      640         723 
             734    27      710     28      520         724 
             737    31      738     32      400         723 
             738    32      711     33      400         723 
             744    19      728     20      200         724 
             744    19      729     21      280         724 
             709    23      775     37      0           1 
             799    1       701     2       1850        721   ]; 

 

           % Impedance matrices 
z721 = [ 0.2926+1j*0.1973   0.0673-1j*0.0368   0.0337-1j*0.0417 
         0.0673-1j*0.0368   0.2646+1j*0.1900   0.0673-1j*0.0368 
         0.0337-1j*0.0417   0.0673-1j*0.0368   0.2926+1j*0.1973 ]; 
     z721 = {z721}; 

      
z722 = [ 0.4751+1j*0.2973   0.1629-1j*0.0326   0.1234-1j*0.0607 
         0.1629-1j*0.0326   0.4488+1j*0.2678   0.1629-1j*0.0326 
         0.1234-1j*0.0607   0.1629-1j*0.0326   0.4751+1j*0.2973 ]; 
     z722 = {z722}; 

      
z723 = [ 1.2936+1j*0.6713   0.4871+1j*0.2111   0.4585+1j*0.1521 
         0.4871+1j*0.2111   1.3022+1j*0.6326   0.4871+1j*0.2111 
         0.4585+1j*0.1521   0.4871+1j*0.2111   1.2936+1j*0.6713 ]; 
     z723 = {z723}; 

      
z724 = [ 2.0952+1j*0.7758   0.5204+1j*0.2738   0.4926+1j*0.2123 
         0.5204+1j*0.2738   2.1068+1j*0.7398   0.5204+1j*0.2738 
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         0.4926+1j*0.2123   0.5204+1j*0.2738   2.0952+1j*0.7758 ]; 
     z724 = {z724}; 

      
Z = [z721;z722;z723;z724]; 

  
ftmi = 1.8939e-4; 

  

  

  
% Transformer matrices 
% For D-D transformer (in branch 709-775),  
% at = (nt/3)*[2 -1 -1;-1 2 -1;-1 -1 2] 
% bt = W*AV*Zabc*G1 
% where W = (1/3)*[2 1 0;0 2 1;1 0 2] 
%       AV = [nt 0 0;0 nt 0;0 0 nt] 
%       Zabc = diagonal(Zab,Zbc,Zca) 
%       G1 = (1/(Zab+Zbc+Zca))*[Zca -Zbc 0;Zca Zab+Zca 0;-Zab-Zbc -Zbc 0] 
% dt = (1/nt)*eye(3) 
% At = (1/(3*nt))*[2 -1 -1;-1 2 -1;-1 2 -1] 
% Bt = W*Zabc*G1 
nt = 10; 
Zab = 0.0009+1j*0.0181; 
Zbc = Zab; 
Zca = Zab; 
W = (1/3)*[2 1 0;0 2 1;1 0 2]; 
AV = [nt 0 0;0 nt 0;0 0 nt]; 
Zabc = [Zab 0 0;0 Zbc 0;0 0 Zca]; 
G1 = (1/(Zab+Zbc+Zca))*[Zca -Zbc 0;Zca Zab+Zca 0;-Zab-Zbc -Zbc 0]; 
at = (nt/3)*[2 -1 -1;-1 2 -1;-1 -1 2]; 
bt = W*AV*Zabc*G1; 
dt = (1/nt)*eye(3); 
At = (1/(3*nt))*[2 -1 -1;-1 2 -1;-1 -1 2]; 
Bt = W*Zabc*G1; 

  
         %Normalized Load fractions for 15-min divisions from profile 1 
AggDem_Norm_1 = [   0.5667 
                    0.3805  
                    0.4207 
                    0.4425 
                    0.4138 
                    0.4586 
                    0.5828 
                    0.4057 
                    0.4529 
                    0.3690 
                    0.3655 
                    0.4506 
                    0.3632 
                    0.3080 
                    0.4954 
                    0.2598 
                    0.3908 
                    0.3391 
                    0.3161 
                    0.4540 
                    0.3230 
                    0.5207 
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                    0.4977 
                    0.3954 
                    0.4264 
                    0.2966 
                    0.4414 
                    0.3241 
                    0.3851 
                    0.5034 
                    0.4943 
                    0.4138 
                    0.2885 
                    0.5310 
                    0.4126 
                    0.3057 
                    0.5103 
                    0.5241 
                    0.5299 
                    0.6138 
                    0.5276 
                    0.5460 
                    0.8218 
                    0.9080 
                    0.8299 
                    0.8402 
                    0.7586 
                    0.9897 
                    0.7667 
                    0.7989 
                    0.9529 
                    0.7379 
                    0.8080 
                    1.0000 
                    0.7667 
                    0.9126 
                    0.8770 
                    0.8943 
                    0.8149 
                    0.9230 
                    0.9149 
                    0.8690 
                    0.7943 
                    0.8736 
                    0.9598 
                    0.9310 
                    0.9414 
                    0.8782 
                    0.9207 
                    0.7552 
                    0.9069 
                    0.9241 
                    0.7609 
                    0.8552 
                    0.8310 
                    0.7931 
                    0.9954 
                    0.7989 
                    0.8598 
                    0.9471 
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                    0.8977 
                    0.9448 
                    0.9506 
                    0.7816 
                    0.8644 
                    0.6920 
                    0.8529 
                    0.7713 
                    0.8149 
                    0.7494 
                    0.7839 
                    0.9080 
                    0.6460 
                    0.7793 
                    0.7805 
                    0.8414 ]; 

 

pmudem = []; 
for i = 1:length(AggDem_Norm_1) 
    pmudem = [pmudem; AggDem_Norm_1(i) + 0.065.*randn(900,1)]; 
end 

  
WindGen = [10.25572044  9.80057883  10.33032044 4.615074197 4.410260473 

4.6486442 
10.28637074 9.783267048 10.1704822  4.628866834 4.402470172 4.576716992 
10.46965067 9.722066756 10.32026748 4.7113428   4.37493004  4.644120368 
% 86400 lines of data 
10.61390701 9.938559808 10.51708218 4.776258154 4.472351914 4.732686981 
10.33531363 9.640236161 10.28735141 4.650891136 4.338106272 4.629308135 ]; 

                 

            
%            %Load file creation for 24 hours on 1-second basis with wind 
%            %included 
L = Node(1:size(Node,1),1:3); 
C = []; 
MeanDem = mean(AggDem_Norm_1); 
S_avg = MeanDem.*S_peak; 
for i = 1:length(pmudem) 
    Load = [L(1:13,1:3) Node(1:13,4:9).*pmudem(i); L(14:25,1:3) 

Node(14:25,4:9).*pmudem(i)]; 
    Load = [Load; 1000  32  1  WindGen(i,1)  WindGen(i,4)  WindGen(i,2)  

WindGen(i,5)  WindGen(i,3)  WindGen(i,6)]; 
    Load = {Load}; 
    C = [C;Load]; 
    Load = cell2mat(Load); 
end 

  
%Proximity matrix creation 
N = max(max(Branch(:,2)), max(Branch(:,4))); 
Prox = zeros(N,N); 
for i = 1:N-1 
    if Branch(i,6) == 1 
        Prox(Branch(i,2),Branch(i,4)) = 0.5; 
    else 
        Prox(Branch(i,2),Branch(i,4)) = 1; 
    end 
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    Prox(i,i) = 1; 
end 
Prox(N,N) = 1; 
Zline = {N}; 
    for i = 1:size(Branch,1) 
        if Branch(i,6) ~= 1 
            Zline{Branch(i,2),Branch(i,4)} = 

Branch(i,5)*ftmi*cell2mat(Z(Branch(i,6)-720))./Zb; 
        end 
    end 

 

B.3 Code for Analysis used for fifteen-minute forecasted load data 

% 3-ph load flow BFS method %% with wind and storage combined in the system 
% - Manoaj Vijayarengan 
tic 
VRes_Low = []; 
VRes_Med = []; 
VRes_High = []; 
IRes_Low = []; 
IRes_Med = []; 
IRes_High = []; 
Iplot = zeros(96,3); 
Vplot = zeros(96,3); 
P = 800; 
Emax = 6000; 
Emin = 1200; 
E0 = 1800; 
E_ess = [E0; zeros(96,1)]; 
P_ess = zeros(96,1); 
State = zeros(96,1); 
count = zeros(96,1); 
ILoss = zeros(96,1); 
% S_batt = [0;0;0]; 
for m = 1:96 
%     Node = cell2mat(C_Low(m)); 
%     Node = cell2mat(C_Med(m)); 
    Node = cell2mat(C_High(m)); 
    V = ones(3,N); 
    I = zeros(3,N); 
    Inode = zeros(3,N); 
    znode = zeros(3,N); 
    S = zeros(4,N); 

     
    V_nom = [1; exp(-1j*120*pi/180); exp(1j*120*pi/180)]; 
    Wind = size(Node,1); 
    for i = 1:Wind-1 
        S(1:3,Node(i,2)) = 1000*[Node(i,4)+1j*Node(i,5) 

Node(i,6)+1j*Node(i,7) Node(i,8)+1j*Node(i,9)].'; 
        S(4,Node(i,2)) = Node(i,3); 
    end 
%     % Battery integration 
    % % Charging 
    % % % Always charging in Free-running mode 
%     if E_ess(m)>Emin && E_ess(m)<=Emax && AggDem_Norm_1(m) <= MeanDem 
%         State(m) = -1; 
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%         %Sustained Average load approach in next 2 lines 
% %         P_mains = max([[0;0;0] S_avg - 

1000.*[Node(Wind,4)+1j*Node(Wind,5) Node(Wind,6)+1j*Node(Wind,7) 

Node(Wind,8)+1j*Node(Wind,9)].' - sum(S(1:3,:),2)], [], 2); 
% %         P_ess(m) = 0.9*(max(-1*P, (-1.*real(Node(Wind,4)+1j*Node(Wind,5) 

+ Node(Wind,6)+1j*Node(Wind,7) + Node(Wind,8)+1j*Node(Wind,9)) - 

(1/1000).*real(sum(P_mains,1))))); 
%         P_ess(m) = 0.9*(max(-1*P, (-1.*real(Node(Wind,4)+1j*Node(Wind,5) + 

Node(Wind,6)+1j*Node(Wind,7) + Node(Wind,8)+1j*Node(Wind,9))))); %This line 

only for no mains compensation 
%         Elevel = E_ess(m) - P_ess(m)*0.25; 
%         if Elevel <= Emax && Elevel > Emin 
% %             S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) + P_mains; % This 

line only for mains compensation 
%             for l = m+1:length(E_ess) 
%                 E_ess(l) = Elevel; 
%             end 
%         else 
%             P_ess(m) = 0; 
%             for l = m+1:length(E_ess) 
%                 E_ess(l) = E_ess(m); 
%             end 
%         end 
%      % % Discharging 
%      % % % Optimal Discharging 
% %      elseif E_ess(m)>Emin && E_ess(m)<=Emax && AggDem_Norm_1(m) > MeanDem 
% %          State(m) = 1; 
% %          S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) - 

1000*[Node(Wind,4)+1j*Node(Wind,5) Node(Wind,6)+1j*Node(Wind,7) 

Node(Wind,8)+1j*Node(Wind,9)].'; 
% %          count(m) = 0; 
% %          Snod = zeros(3,1); 
% %          S_crit = zeros(3,1); 
% %          for ins = m:96 
% % %              Rem = cell2mat(C_Low(ins)); 
% % %              Rem = cell2mat(C_Med(ins)); 
% %              Rem = cell2mat(C_High(ins)); 
% %              Wind = size(Rem,1); 
% %              for i = 1:Wind-1 
% %                 Snod = Snod + 1000.*[Rem(i,4)+1j*Rem(i,5) 

Rem(i,6)+1j*Rem(i,7) Rem(i,8)+1j*Rem(i,9)].'; 
% %              end 
% %              Snod = Snod - 1000.*[Rem(Wind,4)+1j*Rem(Wind,5) 

Rem(Wind,6)+1j*Rem(Wind,7) Rem(Wind,8)+1j*Rem(Wind,9)].'; 
% %              if abs(sum(Snod,1)) >= abs(sum(S_avg,1)) 
% %                  count(m) = count(m) + 1; 
% %                  S_crit = S_crit + Snod; 
% %              end 
% %          end 
% %          S_req = real(S_crit)./count(m); 
% %          P_req = 1000.*(E_ess(m) - Emin)/(count(m)*0.25); 
% % %          Netload(S_batt,S); 
% % %          S_batt = fmincon(@Netload,[-50;-50;-50],[],[],[],[],[-50;-50;-

50],min(S_req./1000,(P_req/(sum(S_req,1))).*S_req./1000)); 
% %          S_batt = 0.9*min([(P./(sum(S_req,1))).*S_req S_req./1000 

(P_req/(sum(S_req,1))).*S_req./1000],[], 2); 
% %          S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) - 1000.*S_batt; 
% %          P_ess(m) = sum(S_batt,1); 
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% %          Elevel = E_ess(m) - P_ess(m).*0.25; 
% %          if Elevel <= Emax && Elevel > Emin 
% %             for l = m+1:length(E_ess) 
% %                 E_ess(l) = Elevel; 
% %             end 
% %          else 
% %             P_ess(m) = 0; 
% %             for l = m+1:length(E_ess) 
% %                 E_ess(l) = E_ess(m); 
% %             end  
% %          end 
%      % % % Free-running mode 
%     elseif E_ess(m)>Emin && E_ess(m)<=Emax && AggDem_Norm_1(m) > MeanDem 
%         State(m) = 1; 
%         S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) - 

1000*[Node(Wind,4)+1j*Node(Wind,5) Node(Wind,6)+1j*Node(Wind,7) 

Node(Wind,8)+1j*Node(Wind,9)].'; 
%         P_ess(m) = 0.9*min(P, (real(sum(sum(S(1:3,:),2) - 

S_avg,1)))./1000); 
%         Elevel = E_ess(m) - P_ess(m)*0.25; 
%         if Elevel <= Emax && Elevel > Emin 
%             S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) - 

0.9*(sum(S(1:3,:),2) - S_avg); 
%             for l = m+1:length(E_ess) 
%                 E_ess(l) = Elevel; 
%             end 
%         else 
%             P_ess(m) = 0; 
%             for l = m+1:length(E_ess) 
%                 E_ess(l) = E_ess(m); 
%             end 
%         end 
%     else 
%         State(m) = 0; 
%         S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) - 

1000*[Node(Wind,4)+1j*Node(Wind,5) Node(Wind,6)+1j*Node(Wind,7) 

Node(Wind,8)+1j*Node(Wind,9)].'; 
%     end 
    %upto here 
    S(4,Node(Wind,2)) = Node(Wind,3); 
    S(1:3,:) = S(1:3,:)./Sb; 
    Iline = {N}; 

     

  
    % Forward sweep 
    for i = 1:N 
        if sum(Prox(i,:)) == 1 || sum(Prox(i,:)) == 0.5 
            V(:,i) = V_nom; 
        end 
    end 
    for i = 1:N-1 
        if S(4,N-i+1) == 1 
            I(:,N-i+1) = conj(S(1:3,N-i+1)./V(:,N-i+1)); 
        elseif S(4,N-i+1) == 2 
            znode(:,N-i+1) = (abs(V_nom).^2)./conj(S(1:3,N-i+1)); 
            I(:,N-i+1) = V(:,N-i+1)./znode(:,N-i+1); 
        elseif S(4,N-i+1) == 3 
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            Inode(:,N-i+1) = conj(S(1:3,N-i+1))./V_nom; 
            I(:,N-i+1) = Inode(:,N-i+1); 
        end 
        Iline{N-i+1,N-i+1} = I(:,N-i+1); 
        if sum(Prox(N-i+1,:)) == 1 || sum(Prox(N-i+1,:)) == 0.5 
            for k = 1:N-i+1 
                if (Prox(k,N-i+1) == 1 || Prox(k,N-i+1) == 0.5) && k ~= N-i+1 
                    Iline{k,N-i+1} = I(:,N-i+1); 
                    if Prox(k,N-i+1) == 0.5 
                        V(:,k) = at*V(:,N-i+1)*0.1 + bt*I(:,N-i+1)*0.1; 
                    else 
                        V(:,k) = V(:,N-i+1) + cell2mat(Zline(k,N-

i+1))*cell2mat(Iline(k,N-i+1)); 
                    end 
                end 
            end 
        elseif sum(Prox(N-i+1,:)) > 1 
            Temp = zeros(3,1); 
            for j = N-i+1:N 
                if Prox(N-i+1,j) == 1 || Prox(k,N-i+1) == 0.5 
                    Temp = Temp + cell2mat(Iline(N-i+1,j)); 
                    if N-i+1~=j 
                        if Prox(N-i+1,j) == 0.5 
                            V(:,N-i+1) = (at*V(:,j) + bt*I(:,j))*0.1; 
                        else 
                            V(:,N-i+1) = V(:,j) + cell2mat(Zline(N-

i+1,j))*cell2mat(Iline(N-i+1,j)); 
                        end 
                    end 
                end 
            end 
            for j = 1:N-i+1 
                if Prox(j,N-i+1) == 1 && j ~= N-i+1 
                    Iline{j,N-i+1} = Temp; 
                end 
            end 
        end 
    end 
    V(:,1) = V(:,2) + cell2mat(Zline(1,2))*cell2mat(Iline(1,2)); 

  
    % Loop for tolerance check of source node 
    for n = 1:5 
        delV = abs(V(:,1) - V_nom); 
        if delV(1)>1e-5 || delV(2)>1e-5 || delV(3)>1e-5 
            %Backward Sweep 
            V(:,1) = V_nom; 
            for i = 1:N 
                for j = i:N 
                    if (Prox(i,j) == 1 || Prox(i,j) == 0.5) && i ~= j 
                        if Prox(i,j) == 0.5 
                            V(:,j) = (At*V(:,i) - Bt*I(:,i))*10; 
                        else 
                            V(:,j) = V(:,i) - 

cell2mat(Zline(i,j))*cell2mat(Iline(i,j)); 
                        end 
                    end 
                end 
            end 
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            %Forward Sweep 
            for i = 1:N-1 
                if S(4,N-i+1) == 1 
                    I(:,N-i+1) = conj(S(1:3,N-i+1)./V(:,N-i+1)); 
                elseif S(4,N-i+1) == 2 
                    I(:,N-i+1) = V(:,N-i+1)./znode(:,N-i+1); 
                elseif S(4,N-i+1) == 3 
                    I(:,N-i+1) = conj(S(1:3,N-i+1)./V(:,N-i+1)); 
                    I(:,N-i+1) = abs(Inode(:,N-i+1)).*exp(1j.*angle(I(:,N-

i+1))); 
                end 
                Iline{N-i+1,N-i+1} = I(:,N-i+1); 
                if sum(Prox(N-i+1,:)) == 1 || sum(Prox(N-i+1,:)) == 0.5 
                    for k = 1:N-i+1 
                        if (Prox(k,N-i+1) == 1 || Prox(k,N-i+1) == 0.5) && k 

~= N-i+1 
                            Iline{k,N-i+1} = I(:,N-i+1); 
                            if Prox(k,N-i+1) == 0.5 
                                V(:,k) = at*V(:,N-i+1)*0.1 + bt*I(:,N-

i+1)*0.1; 
                            else 
                                V(:,k) = V(:,N-i+1) + cell2mat(Zline(k,N-

i+1))*cell2mat(Iline(k,N-i+1)); 
                            end 
                        end 
                    end 
                elseif sum(Prox(N-i+1,:)) > 1 
                    Temp = zeros(3,1); 
                    for j = N-i+1:N 
                        if Prox(N-i+1,j) == 1 || Prox(k,N-i+1) == 0.5 
                            Temp = Temp + cell2mat(Iline(N-i+1,j)); 
                            if N-i+1~=j 
                                if Prox(N-i+1,j) == 0.5 
                                    V(:,N-i+1) = (at*V(:,j) + bt*I(:,j))*0.1; 
                                else 
                                    V(:,N-i+1) = V(:,j) + cell2mat(Zline(N-

i+1,j))*cell2mat(Iline(N-i+1,j)); 
                                end 
                            end 
                        end 
                    end 
                    for j = 1:N-i+1 
                        if Prox(j,N-i+1) == 1 && j ~= N-i+1 
                            Iline{j,N-i+1} = Temp; 
                        end 
                    end 
                end 
            end 
            V(:,1) = V(:,2) + cell2mat(Zline(1,2))*cell2mat(Iline(1,2)); 
        end 
    end 

  
    %Backward Sweep 
    V(:,1) = V_nom; 
    for i = 1:N 
        for j = i:N 
            if (Prox(i,j) == 1 || Prox(i,j) == 0.5) && i ~= j 
                if Prox(i,j) == 0.5 
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                    V(:,j) = (At*V(:,i) - Bt*I(:,i))*10; 
                else 
                    V(:,j) = V(:,i) - 

cell2mat(Zline(i,j))*cell2mat(Iline(i,j)); 
                end 
            end 
        end 
    end 

  
    VRes = [(1:N)' (abs(V))' (angle(V)*180/pi)']; 
    VRes = {VRes}; 
%     VRes_Low = [VRes_Low; VRes]; 
    Vplot(m,:) = abs(V(:,32))'; 
%     VRes_Med = [VRes_Med; VRes]; 
    VRes_High = [VRes_High; VRes]; 
    IRes = zeros(N-1,8); 
    Loss = zeros(3,1); 
    for k = 1:N-1 
        IRes(k,:) = [Branch(k,2) Branch(k,4) 

(abs(cell2mat(Iline(Branch(k,2),Branch(k,4))))*Sb/Vb)' 

(angle(cell2mat(Iline(Branch(k,2),Branch(k,4))))*180/pi)']; 
        if k ~= N-2 
            Loss = Loss + 

real(cell2mat(Zline(Branch(k,2),Branch(k,4))))*((abs(cell2mat(Iline(Branch(k,

2),Branch(k,4))))).^2).*Sb; 
        end 
    end 
    ILoss(m) = sum(Loss,1); 
    Iplot(m,:) = Vb*IRes(size(IRes,1),3:5); 
    IRes = {IRes}; 
%     IRes_Low = [IRes_Low; IRes]; 
%     IRes_Med = [IRes_Med; IRes]; 
    IRes_High = [IRes_High; IRes]; 
end 
toc 
plot(1:96,Iplot(:,1)./1000) 
hold on 
plot(1:96,HighGen(:,1),'b--') 
hold on 
plot(1:96,Iplot(:,2)./1000,'r') 
hold on 
plot(1:96,HighGen(:,2),'r--') 
hold on 
plot(1:96,Iplot(:,3)./1000,'g') 
hold on 
plot(1:96,HighGen(:,3),'g--') 
title('Individual phase load demand and wind generation') 
xlabel('Time in 15 min intervals') 
ylabel('Load and wind generation kVA') 
axis([0 100 0 1600]) 
figure(2) 
plot(1:96,Vplot(:,1)) 
hold on 
plot(1:96,Vplot(:,2),'r') 
hold on 
plot(1:96,Vplot(:,3),'g') 
title('Individual phase voltage profile for wind node & battery node') 
xlabel('Time in 15 min intervals') 
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ylabel('Voltage in p.u.') 
axis([0 100 0.95 1.05]) 
figure(3) 
bar(1:length(P_ess),P_ess) 
title('Battery power charging and discharging') 
xlabel('Time in 15 min intervals') 
ylabel('Battery power -ve(charging) +ve(discharging) kW') 
axis([0 100 -P P]) 
figure(4) 
plot(1:length(E_ess),E_ess) 
hold on 
plot(1:0.1:length(E_ess),1200,'k') 
title('Energy level of battery') 
xlabel('Time in 15 min intervals') 
ylabel('Battery energy level kWh') 
axis([0 100 0 6000]) 
figure(5) 
plot(1:length(ILoss),ILoss./1000) 
title('Power loss of the feeder') 
xlabel('Time in 15 min intervals') 
ylabel('Power loss kW') 
axis([0 100 0 80]) 
figure(6) 
bar(1:96,sum(Iplot(:,1:3),2)./(1000*abs(sum(S_peak./1000,1)))) 
title('Overall 15 minute average normalized feeder load') 
xlabel('Time in 15 min intervals') 
ylabel('Normalized load factor Lf') 
axis([0 100 0 1]) 

 

 

B.4 Code for Analysis used for one-second forecasted load data 

 % 3-ph load flow BFS method %% with wind and storage combined in the system 

% - Manoaj Vijayarengan 
tic 
VRes_1s = []; 
IRes_1s = []; 
Iplot = zeros(86400,3); 
Vplot = zeros(86400,3); 
P = 800; 
Emax = 6000; 
Emin = 1200; 
E0 = 1800; 
E_ess = [E0; zeros(86400,1)]; 
P_ess = zeros(86400,1); 
State = zeros(86400,1); 
count = zeros(86400,1); 
ILoss = zeros(86400,1); 
% S_batt = [0;0;0]; 
for m = 1:86400 
    Node = cell2mat(C(m)); 
    V = ones(3,N); 
    I = zeros(3,N); 
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    Inode = zeros(3,N); 
    znode = zeros(3,N); 
    S = zeros(4,N); 

     
    V_nom = [1; exp(-1j*120*pi/180); exp(1j*120*pi/180)]; 
    Wind = size(Node,1); 
    for i = 1:Wind-1 
        S(1:3,Node(i,2)) = 1000*[Node(i,4)+1j*Node(i,5) 

Node(i,6)+1j*Node(i,7) Node(i,8)+1j*Node(i,9)].'; 
        S(4,Node(i,2)) = Node(i,3); 
    end 
%     % Battery integration 
    % % Charging 
    % % % Always charging in Free-running mode 
    if E_ess(m)>Emin && E_ess(m)<=Emax && pmudem(m) <= MeanDem 
        State(m) = -1; 
        %Sustained Average load approach in next 2 lines 
        P_mains = max([[0;0;0] S_avg - 1000.*[Node(Wind,4)+1j*Node(Wind,5) 

Node(Wind,6)+1j*Node(Wind,7) Node(Wind,8)+1j*Node(Wind,9)].' - 

sum(S(1:3,:),2)], [], 2); 
        P_ess(m) = 0.9*(max(-1*P, (-1.*real(Node(Wind,4)+1j*Node(Wind,5) + 

Node(Wind,6)+1j*Node(Wind,7) + Node(Wind,8)+1j*Node(Wind,9)) - 

(1/1000).*real(sum(P_mains,1))))); 
%         P_ess(m) = 0.9*(max(-1*P, (-1.*real(Node(Wind,4)+1j*Node(Wind,5) + 

Node(Wind,6)+1j*Node(Wind,7) + Node(Wind,8)+1j*Node(Wind,9)))));% This line 

only for no mains compensation 
        Elevel = E_ess(m) - P_ess(m)*(1/3600); 
        if Elevel <= Emax && Elevel > Emin 
            S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) + P_mains; % This line 

only for mains compensation 
            for l = m+1:length(E_ess) 
                E_ess(l) = Elevel; 
            end 
        else 
            P_ess(m) = 0; 
            for l = m+1:length(E_ess) 
                E_ess(l) = E_ess(m); 
            end 
        end 
     % % Discharging 
     % % % Optimal Discharging 
     elseif E_ess(m)>Emin && E_ess(m)<=Emax && pmudem(m) > MeanDem 
         State(m) = 1; 
         S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) - 

1000*[Node(Wind,4)+1j*Node(Wind,5) Node(Wind,6)+1j*Node(Wind,7) 

Node(Wind,8)+1j*Node(Wind,9)].'; 
         count(m) = 0; 
         S_crit = zeros(3,1); 
         Snod = zeros(3,1); 
         for ins = m:86400 
             Rem = cell2mat(C(ins)); 
%              Wind = size(Rem,1); 
%              for i = 1:Wind-1 
%                 Snod = Snod + 1000.*[Rem(i,4)+1j*Rem(i,5) 

Rem(i,6)+1j*Rem(i,7) Rem(i,8)+1j*Rem(i,9)].'; 
%              end 
             Snod = pmudem(ins).*S_peak; 
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             Snod = Snod - 1000.*[Rem(Wind,4)+1j*Rem(Wind,5) 

Rem(Wind,6)+1j*Rem(Wind,7) Rem(Wind,8)+1j*Rem(Wind,9)].'; 
             if abs(sum(Snod,1)) >= abs(sum(S_avg,1)) 
                 count(m) = count(m) + 1; 
                 S_crit = S_crit + Snod; 
             end 
         end 
         S_req = real(S_crit)./count(m); 
         P_req = 1000.*(E_ess(m) - Emin)/(count(m)*(1/3600)); 
%          Netload(S_batt,S); 
%          S_batt = fmincon(@Netload,[-50;-50;-50],[],[],[],[],[-50;-50;-

50],min(S_req./1000,(P_req/(sum(S_req,1))).*S_req./1000)); 
         S_batt = 0.9*min([(P./(sum(S_req,1))).*S_req S_req./1000 

(P_req./(sum(S_req,1))).*S_req./1000],[], 2); 
         S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) - 1000.*S_batt; 
         P_ess(m) = sum(S_batt,1); 
         Elevel = E_ess(m) - P_ess(m).*(1/3600); 
         if Elevel <= Emax && Elevel > Emin 
            for l = m+1:length(E_ess) 
                E_ess(l) = Elevel; 
            end 
         else 
            P_ess(m) = 0; 
            for l = m+1:length(E_ess) 
                E_ess(l) = E_ess(m); 
            end  
         end 
     % % Free-running mode 
%     elseif E_ess(m)>Emin && E_ess(m)<=Emax && pmudem(m) > MeanDem 
%         State(m) = 1; 
%         S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) - 

1000*[Node(Wind,4)+1j*Node(Wind,5) Node(Wind,6)+1j*Node(Wind,7) 

Node(Wind,8)+1j*Node(Wind,9)].'; 
%         P_ess(m) = 0.9*min(P, (real(sum(sum(S(1:3,:),2) - 

S_avg,1)))./1000); 
%         Elevel = E_ess(m) - P_ess(m)*(1/3600); 
%         if Elevel <= Emax && Elevel > Emin 
%             S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) - 

0.9*(sum(S(1:3,:),2) - S_avg); 
%             for l = m+1:length(E_ess) 
%                 E_ess(l) = Elevel; 
%             end 
%         else 
%             P_ess(m) = 0; 
%             for l = m+1:length(E_ess) 
%                 E_ess(l) = E_ess(m); 
%             end 
%         end 
    else 
        State(m) = 0; 
        S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) - 

1000*[Node(Wind,4)+1j*Node(Wind,5) Node(Wind,6)+1j*Node(Wind,7) 

Node(Wind,8)+1j*Node(Wind,9)].'; 
    end 
    %upto here 
    S(4,Node(Wind,2)) = Node(Wind,3); 
    S(1:3,:) = S(1:3,:)./Sb; 
    Iline = {N}; 
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    % Forward sweep 
    for i = 1:N 
        if sum(Prox(i,:)) == 1 || sum(Prox(i,:)) == 0.5 
            V(:,i) = V_nom; 
        end 
    end 
    for i = 1:N-1 
        if S(4,N-i+1) == 1 
            I(:,N-i+1) = conj(S(1:3,N-i+1)./V(:,N-i+1)); 
        elseif S(4,N-i+1) == 2 
            znode(:,N-i+1) = (abs(V_nom).^2)./conj(S(1:3,N-i+1)); 
            I(:,N-i+1) = V(:,N-i+1)./znode(:,N-i+1); 
        elseif S(4,N-i+1) == 3 
            Inode(:,N-i+1) = conj(S(1:3,N-i+1))./V_nom; 
            I(:,N-i+1) = Inode(:,N-i+1); 
        end 
        Iline{N-i+1,N-i+1} = I(:,N-i+1); 
        if sum(Prox(N-i+1,:)) == 1 || sum(Prox(N-i+1,:)) == 0.5 
            for k = 1:N-i+1 
                if (Prox(k,N-i+1) == 1 || Prox(k,N-i+1) == 0.5) && k ~= N-i+1 
                    Iline{k,N-i+1} = I(:,N-i+1); 
                    if Prox(k,N-i+1) == 0.5 
                        V(:,k) = at*V(:,N-i+1)*0.1 + bt*I(:,N-i+1)*0.1; 
                    else 
                        V(:,k) = V(:,N-i+1) + cell2mat(Zline(k,N-

i+1))*cell2mat(Iline(k,N-i+1)); 
                    end 
                end 
            end 
        elseif sum(Prox(N-i+1,:)) > 1 
            Temp = zeros(3,1); 
            for j = N-i+1:N 
                if Prox(N-i+1,j) == 1 || Prox(k,N-i+1) == 0.5 
                    Temp = Temp + cell2mat(Iline(N-i+1,j)); 
                    if N-i+1~=j 
                        if Prox(N-i+1,j) == 0.5 
                            V(:,N-i+1) = (at*V(:,j) + bt*I(:,j))*0.1; 
                        else 
                            V(:,N-i+1) = V(:,j) + cell2mat(Zline(N-

i+1,j))*cell2mat(Iline(N-i+1,j)); 
                        end 
                    end 
                end 
            end 
            for j = 1:N-i+1 
                if Prox(j,N-i+1) == 1 && j ~= N-i+1 
                    Iline{j,N-i+1} = Temp; 
                end 
            end 
        end 
    end 
    V(:,1) = V(:,2) + cell2mat(Zline(1,2))*cell2mat(Iline(1,2)); 

  
    % Loop for tolerance check of source node 
    for n = 1:5 
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        delV = abs(V(:,1) - V_nom); 
        if delV(1)>1e-5 || delV(2)>1e-5 || delV(3)>1e-5 
            %Backward Sweep 
            V(:,1) = V_nom; 
            for i = 1:N 
                for j = i:N 
                    if (Prox(i,j) == 1 || Prox(i,j) == 0.5) && i ~= j 
                        if Prox(i,j) == 0.5 
                            V(:,j) = (At*V(:,i) - Bt*I(:,i))*10; 
                        else 
                            V(:,j) = V(:,i) - 

cell2mat(Zline(i,j))*cell2mat(Iline(i,j)); 
                        end 
                    end 
                end 
            end 
            %Forward Sweep 
            for i = 1:N-1 
                if S(4,N-i+1) == 1 
                    I(:,N-i+1) = conj(S(1:3,N-i+1)./V(:,N-i+1)); 
                elseif S(4,N-i+1) == 2 
                    I(:,N-i+1) = V(:,N-i+1)./znode(:,N-i+1); 
                elseif S(4,N-i+1) == 3 
                    I(:,N-i+1) = conj(S(1:3,N-i+1)./V(:,N-i+1)); 
                    I(:,N-i+1) = abs(Inode(:,N-i+1)).*exp(1j.*angle(I(:,N-

i+1))); 
                end 
                Iline{N-i+1,N-i+1} = I(:,N-i+1); 
                if sum(Prox(N-i+1,:)) == 1 || sum(Prox(N-i+1,:)) == 0.5 
                    for k = 1:N-i+1 
                        if (Prox(k,N-i+1) == 1 || Prox(k,N-i+1) == 0.5) && k 

~= N-i+1 
                            Iline{k,N-i+1} = I(:,N-i+1); 
                            if Prox(k,N-i+1) == 0.5 
                                V(:,k) = at*V(:,N-i+1)*0.1 + bt*I(:,N-

i+1)*0.1; 
                            else 
                                V(:,k) = V(:,N-i+1) + cell2mat(Zline(k,N-

i+1))*cell2mat(Iline(k,N-i+1)); 
                            end 
                        end 
                    end 
                elseif sum(Prox(N-i+1,:)) > 1 
                    Temp = zeros(3,1); 
                    for j = N-i+1:N 
                        if Prox(N-i+1,j) == 1 || Prox(k,N-i+1) == 0.5 
                            Temp = Temp + cell2mat(Iline(N-i+1,j)); 
                            if N-i+1~=j 
                                if Prox(N-i+1,j) == 0.5 
                                    V(:,N-i+1) = (at*V(:,j) + bt*I(:,j))*0.1; 
                                else 
                                    V(:,N-i+1) = V(:,j) + cell2mat(Zline(N-

i+1,j))*cell2mat(Iline(N-i+1,j)); 
                                end 
                            end 
                        end 
                    end 
                    for j = 1:N-i+1 
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                        if Prox(j,N-i+1) == 1 && j ~= N-i+1 
                            Iline{j,N-i+1} = Temp; 
                        end 
                    end 
                end 
            end 
            V(:,1) = V(:,2) + cell2mat(Zline(1,2))*cell2mat(Iline(1,2)); 
        end 
    end 

  
    %Backward Sweep 
    V(:,1) = V_nom; 
    for i = 1:N 
        for j = i:N 
            if (Prox(i,j) == 1 || Prox(i,j) == 0.5) && i ~= j 
                if Prox(i,j) == 0.5 
                    V(:,j) = (At*V(:,i) - Bt*I(:,i))*10; 
                else 
                    V(:,j) = V(:,i) - 

cell2mat(Zline(i,j))*cell2mat(Iline(i,j)); 
                end 
            end 
        end 
    end 

  
    VRes = [(1:N)' (abs(V))' (angle(V)*180/pi)']; 
    VRes = {VRes}; 
    Vplot(m,:) = abs(V(:,32))'; 
    VRes_1s = [VRes_1s; VRes]; 
    IRes = zeros(N-1,8); 
    Loss = zeros(3,1); 
    for k = 1:N-1 
        IRes(k,:) = [Branch(k,2) Branch(k,4) 

(abs(cell2mat(Iline(Branch(k,2),Branch(k,4))))*Sb/Vb)' 

(angle(cell2mat(Iline(Branch(k,2),Branch(k,4))))*180/pi)']; 
        if k ~= N-2 
            Loss = Loss + 

real(cell2mat(Zline(Branch(k,2),Branch(k,4))))*((abs(cell2mat(Iline(Branch(k,

2),Branch(k,4))))).^2).*Sb; 
        end 
    end 
    ILoss(m) = sum(Loss,1); 
    Iplot(m,:) = Vb*IRes(size(IRes,1),3:5); 
    IRes = {IRes}; 
    IRes_1s = [IRes_1s; IRes]; 
end 
toc 
plot(1:86400,Iplot(:,1)./1000) 
hold on 
plot(1:86400,WindGen(:,1),'b--') 
hold on 
plot(1:86400,Iplot(:,2)./1000,'r') 
hold on 
plot(1:86400,WindGen(:,2),'r--') 
hold on 
plot(1:86400,Iplot(:,3)./1000,'g') 
hold on 
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plot(1:86400,WindGen(:,3),'g--') 
title('Individual phase load demand and wind generation') 
xlabel('Time in one second intervals') 
ylabel('Load and wind generation kVA') 
axis([0 90000 0 1600]) 
figure(2) 
plot(1:86400,Vplot(:,1)) 
hold on 
plot(1:86400,Vplot(:,2),'r') 
hold on 
plot(1:86400,Vplot(:,3),'g') 
title('Individual phase voltage profile for wind & battery node') 
xlabel('Time in one second intervals') 
ylabel('Voltage in p.u.') 
axis([0 90000 0.95 1.05]) 
figure(3) 
bar(1:length(P_ess),P_ess) 
title('Battery power charging and discharging') 
xlabel('Time in one second intervals') 
ylabel('Battery power -ve(charging) +ve(discharging) kW') 
axis([0 90000 -P P]) 
figure(4) 
plot(1:length(E_ess),E_ess) 
hold on 
plot(1:length(E_ess),1200,'k') 
title('Energy level of battery') 
xlabel('Time in one second intervals') 
ylabel('Battery energy level kWh') 
axis([0 90000 0 6000]) 
figure(5) 
plot(1:length(ILoss),ILoss./1000) 
title('Power loss of the feeder') 
xlabel('Time in one second intervals') 
ylabel('Power loss kW') 
axis([0 90000 0 80]) 
F = sum(Iplot(:,1:3),2)./1000; 
figure(6) 
plot(1:86400,F) 
title('Overall one second actual load of the feeder') 
xlabel('Time in one second intervals') 
ylabel('Three phase load kVA') 
axis([0 90000 0 3500]) 
F_15 = []; 
out = 0; 
for i = 1:96 
    out = out + 1; 
    F_15 = [F_15;mean(F(out:i*900))./abs(sum(S_peak,1)./1000)]; 
    out = out + 900; 
end 
figure(7) 
bar(1:96,F_15) 
title('Overall 15 minute average normalized feeder load') 
xlabel('Time in 15 min intervals') 
ylabel('Normalized load factor Lf') 
axis([0 100 0 1]) 
Avg_Dem = mean(F_15) 
Peak_Dem = max(F_15) 
Batt_util = max(E_ess)./Emax 
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B.5 Code for Analysis used for one-second load data based on historical PMU 

measurements 

 % 3-ph load flow BFS method %% with wind and storage combined in the system 

% - Manoaj Vijayarengan 
tic 
VRes_1s = []; 
IRes_1s = []; 
Iplot = zeros(86400,3); 
Vplot = zeros(86400,3); 
P = 200; 
Emax = 1500; 
Emin = 300; 
E0 = 450; 
E_ess = [E0; zeros(86400,1)]; 
P_ess = zeros(86400,1); 
State = zeros(86400,1); 
count = zeros(86400,1); 
ILoss = zeros(86400,1); 
Vpmu2 = []; 
x = 60; 
for m = 1:86400 
    Node = cell2mat(C(m)); 
    V = ones(3,N); 
    I = zeros(3,N); 
    Inode = zeros(3,N); 
    znode = zeros(3,N); 
    S = zeros(4,N); 

     
    V_nom = [1; exp(-1j*120*pi/180); exp(1j*120*pi/180)]; 
    Wind = size(Node,1); 
    for i = 1:Wind-1 
        S(1:3,Node(i,2)) = 1000*[Node(i,4)+1j*Node(i,5) 

Node(i,6)+1j*Node(i,7) Node(i,8)+1j*Node(i,9)].'; 
        S(4,Node(i,2)) = Node(i,3); 
    end 
    % Battery integration 
    if m <= x && E_ess(m) <= Emax % Preliminary 
        State(m) = -1; 
        P_ess(m) = 0.9*(max(-1*P, (-1.*real(Node(Wind,4)+1j*Node(Wind,5) + 

Node(Wind,6)+1j*Node(Wind,7) + Node(Wind,8)+1j*Node(Wind,9))))); 
        Elevel = E_ess(m) - P_ess(m)*(1/3600); 
        if Elevel <= Emax && Elevel > Emin 
            for l = m+1:length(E_ess) 
                E_ess(l) = Elevel; 
            end 
        else 
            P_ess(m) = 0; 
            for l = m+1:length(E_ess) 
                E_ess(l) = E_ess(m); 
            end 
        end 
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    elseif m > x && E_ess(m) >= Emin && E_ess(m) <= Emax 
        S_det = []; 
        for ins = m-x:m-1 
            Inod = (cell2mat(Zline(1,2)))\(V_nom - (Vpmu2(ins,:)).'); 
            Snod = V_nom.*conj(Inod).*Sb; 
            if P_ess(ins) >= 0; 
                S_det = [S_det (Snod + 

1000.*P_ess(ins).*real(Snod)./sum(real(Snod),1)) + 

1000.*[WindGen(ins,1)+1j*WindGen(ins,4) WindGen(ins,2)+1j*WindGen(ins,5) 

WindGen(ins,3)+1j*WindGen(ins,6)].']; 
            end 
        end 
        S_crit = max(S_det, [],2); 
        if abs(sum(S_crit,1)) >= abs(sum(S_avg,1)) % Discharging 
            State(m) = 1; 
            S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) - 

1000*[Node(Wind,4)+1j*Node(Wind,5) Node(Wind,6)+1j*Node(Wind,7) 

Node(Wind,8)+1j*Node(Wind,9)].'; 
            S_batt = 0.9.*min([(1000*P.*real(S_crit - 

S_avg))./(sum(real(S_crit - S_avg))) real(S_crit - S_avg)],[],2) - 

1000.*[WindGen(m-1,1) WindGen(m-1,2) WindGen(m-1,3)].'; 
            if E_ess(m) <= 0.3*Emax 
                S_batt = min([S_batt (0.9*1000.*(E_ess(m) - Emin)/((86400-

m)*(1/3600))).*S_batt./sum(S_batt,1)], [],2); 
            end 
            if sum(S_batt,1)>0  
                P_ess(m) = sum(S_batt,1)./1000; 
                Elevel = E_ess(m) - P_ess(m).*(1/3600); 
                if Elevel <= Emax && Elevel > Emin 
                    S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) - S_batt; 
                    for l = m+1:length(E_ess) 
                        E_ess(l) = Elevel; 
                    end 
                else 
                    P_ess(m) = 0; 
                    State(m) = 0; 
                    for l = m+1:length(E_ess) 
                        E_ess(l) = E_ess(m); 
                    end  
                end 
            end 
        elseif abs(sum(S_crit,1)) < abs(sum(S_avg,1)) % Charging 
            State(m) = -1; 
            P_ess(m) = 0.9*(max(-1*P, (-1.*real(Node(Wind,4)+1j*Node(Wind,5) 

+ Node(Wind,6)+1j*Node(Wind,7) + Node(Wind,8)+1j*Node(Wind,9))))); 
            Elevel = E_ess(m) - P_ess(m)*(1/3600); 
            if Elevel <= Emax && Elevel > Emin 
                for l = m+1:length(E_ess) 
                    E_ess(l) = Elevel; 
                end 
            else 
                P_ess(m) = 0; 
                for l = m+1:length(E_ess) 
                    E_ess(l) = E_ess(m); 
                end 
            end 
        end 
    else % Default 



151 

 

        State(m) = 0; 
        S(1:3,Node(Wind,2)) = S(1:3,Node(Wind,2)) - 

1000*[Node(Wind,4)+1j*Node(Wind,5) Node(Wind,6)+1j*Node(Wind,7) 

Node(Wind,8)+1j*Node(Wind,9)].'; 
    end 
    %upto here 

     
    S(4,Node(Wind,2)) = Node(Wind,3); 
    S(1:3,:) = S(1:3,:)./Sb; 
    Iline = {N}; 

     

  
    % Forward sweep 
    for i = 1:N 
        if sum(Prox(i,:)) == 1 || sum(Prox(i,:)) == 0.5 
            V(:,i) = V_nom; 
        end 
    end 
    for i = 1:N-1 
        if S(4,N-i+1) == 1 
            I(:,N-i+1) = conj(S(1:3,N-i+1)./V(:,N-i+1)); 
        elseif S(4,N-i+1) == 2 
            znode(:,N-i+1) = (abs(V_nom).^2)./conj(S(1:3,N-i+1)); 
            I(:,N-i+1) = V(:,N-i+1)./znode(:,N-i+1); 
        elseif S(4,N-i+1) == 3 
            Inode(:,N-i+1) = conj(S(1:3,N-i+1))./V_nom; 
            I(:,N-i+1) = Inode(:,N-i+1); 
        end 
        Iline{N-i+1,N-i+1} = I(:,N-i+1); 
        if sum(Prox(N-i+1,:)) == 1 || sum(Prox(N-i+1,:)) == 0.5 
            for k = 1:N-i+1 
                if (Prox(k,N-i+1) == 1 || Prox(k,N-i+1) == 0.5) && k ~= N-i+1 
                    Iline{k,N-i+1} = I(:,N-i+1); 
                    if Prox(k,N-i+1) == 0.5 
                        V(:,k) = at*V(:,N-i+1)*0.1 + bt*I(:,N-i+1)*0.1; 
                    else 
                        V(:,k) = V(:,N-i+1) + cell2mat(Zline(k,N-

i+1))*cell2mat(Iline(k,N-i+1)); 
                    end 
                end 
            end 
        elseif sum(Prox(N-i+1,:)) > 1 
            Temp = zeros(3,1); 
            for j = N-i+1:N 
                if Prox(N-i+1,j) == 1 || Prox(k,N-i+1) == 0.5 
                    Temp = Temp + cell2mat(Iline(N-i+1,j)); 
                    if N-i+1~=j 
                        if Prox(N-i+1,j) == 0.5 
                            V(:,N-i+1) = (at*V(:,j) + bt*I(:,j))*0.1; 
                        else 
                            V(:,N-i+1) = V(:,j) + cell2mat(Zline(N-

i+1,j))*cell2mat(Iline(N-i+1,j)); 
                        end 
                    end 
                end 
            end 
            for j = 1:N-i+1 
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                if Prox(j,N-i+1) == 1 && j ~= N-i+1 
                    Iline{j,N-i+1} = Temp; 
                end 
            end 
        end 
    end 
    V(:,1) = V(:,2) + cell2mat(Zline(1,2))*cell2mat(Iline(1,2)); 

  
    % Loop for tolerance check of source node 
    for n = 1:5 
        delV = abs(V(:,1) - V_nom); 
        if delV(1)>1e-5 || delV(2)>1e-5 || delV(3)>1e-5 
            %Backward Sweep 
            V(:,1) = V_nom; 
            for i = 1:N 
                for j = i:N 
                    if (Prox(i,j) == 1 || Prox(i,j) == 0.5) && i ~= j 
                        if Prox(i,j) == 0.5 
                            V(:,j) = (At*V(:,i) - Bt*I(:,i))*10; 
                        else 
                            V(:,j) = V(:,i) - 

cell2mat(Zline(i,j))*cell2mat(Iline(i,j)); 
                        end 
                    end 
                end 
            end 
            %Forward Sweep 
            for i = 1:N-1 
                if S(4,N-i+1) == 1 
                    I(:,N-i+1) = conj(S(1:3,N-i+1)./V(:,N-i+1)); 
                elseif S(4,N-i+1) == 2 
                    I(:,N-i+1) = V(:,N-i+1)./znode(:,N-i+1); 
                elseif S(4,N-i+1) == 3 
                    I(:,N-i+1) = conj(S(1:3,N-i+1)./V(:,N-i+1)); 
                    I(:,N-i+1) = abs(Inode(:,N-i+1)).*exp(1j.*angle(I(:,N-

i+1))); 
                end 
                Iline{N-i+1,N-i+1} = I(:,N-i+1); 
                if sum(Prox(N-i+1,:)) == 1 || sum(Prox(N-i+1,:)) == 0.5 
                    for k = 1:N-i+1 
                        if (Prox(k,N-i+1) == 1 || Prox(k,N-i+1) == 0.5) && k 

~= N-i+1 
                            Iline{k,N-i+1} = I(:,N-i+1); 
                            if Prox(k,N-i+1) == 0.5 
                                V(:,k) = at*V(:,N-i+1)*0.1 + bt*I(:,N-

i+1)*0.1; 
                            else 
                                V(:,k) = V(:,N-i+1) + cell2mat(Zline(k,N-

i+1))*cell2mat(Iline(k,N-i+1)); 
                            end 
                        end 
                    end 
                elseif sum(Prox(N-i+1,:)) > 1 
                    Temp = zeros(3,1); 
                    for j = N-i+1:N 
                        if Prox(N-i+1,j) == 1 || Prox(k,N-i+1) == 0.5 
                            Temp = Temp + cell2mat(Iline(N-i+1,j)); 
                            if N-i+1~=j 
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                                if Prox(N-i+1,j) == 0.5 
                                    V(:,N-i+1) = (at*V(:,j) + bt*I(:,j))*0.1; 
                                else 
                                    V(:,N-i+1) = V(:,j) + cell2mat(Zline(N-

i+1,j))*cell2mat(Iline(N-i+1,j)); 
                                end 
                            end 
                        end 
                    end 
                    for j = 1:N-i+1 
                        if Prox(j,N-i+1) == 1 && j ~= N-i+1 
                            Iline{j,N-i+1} = Temp; 
                        end 
                    end 
                end 
            end 
            V(:,1) = V(:,2) + cell2mat(Zline(1,2))*cell2mat(Iline(1,2)); 
        end 
    end 

  
    %Backward Sweep 
    V(:,1) = V_nom; 
    for i = 1:N 
        for j = i:N 
            if (Prox(i,j) == 1 || Prox(i,j) == 0.5) && i ~= j 
                if Prox(i,j) == 0.5 
                    V(:,j) = (At*V(:,i) - Bt*I(:,i))*10; 
                else 
                    V(:,j) = V(:,i) - 

cell2mat(Zline(i,j))*cell2mat(Iline(i,j)); 
                end 
            end 
        end 
    end 

  
    Vpmu2 = [Vpmu2; V(:,2).']; 
    VRes = [(1:N)' (abs(V))' (angle(V)*180/pi)']; 
    VRes = {VRes}; 
    Vplot(m,:) = abs(V(:,32))'; 
    VRes_1s = [VRes_1s; VRes]; 
    IRes = zeros(N-1,8); 
    Loss = zeros(3,1); 
    for k = 1:N-1 
        IRes(k,:) = [Branch(k,2) Branch(k,4) 

(abs(cell2mat(Iline(Branch(k,2),Branch(k,4))))*Sb/Vb)' 

(angle(cell2mat(Iline(Branch(k,2),Branch(k,4))))*180/pi)']; 
        if k ~= N-2 
            Loss = Loss + 

real(cell2mat(Zline(Branch(k,2),Branch(k,4))))*((abs(cell2mat(Iline(Branch(k,

2),Branch(k,4))))).^2).*Sb; 
        end 
    end 
    ILoss(m) = sum(Loss,1); 
    Iplot(m,:) = Vb*IRes(size(IRes,1),3:5); 
    IRes = {IRes}; 
    IRes_1s = [IRes_1s; IRes]; 
end 
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toc 
plot(1:86400,Iplot(:,1)./1000) 
hold on 
plot(1:86400,WindGen(:,1),'b--') 
hold on 
plot(1:86400,Iplot(:,2)./1000,'r') 
hold on 
plot(1:86400,WindGen(:,2),'r--') 
hold on 
plot(1:86400,Iplot(:,3)./1000,'g') 
hold on 
plot(1:86400,WindGen(:,3),'g--') 
title('Individual phase load demand and wind generation') 
xlabel('Time in one second intervals') 
ylabel('Load and wind generation kVA') 
axis([0 90000 0 1600]) 
figure(2) 
plot(1:86400,Vplot(:,1)) 
hold on 
plot(1:86400,Vplot(:,2),'r') 
hold on 
plot(1:86400,Vplot(:,3),'g') 
title('Individual phase voltage profile for wind & battery node') 
xlabel('Time in one second intervals') 
ylabel('Voltage in p.u.') 
axis([0 90000 0.95 1.05]) 
figure(3) 
bar(1:length(P_ess),P_ess) 
title('Battery power charging and discharging') 
xlabel('Time in one second intervals') 
ylabel('Battery power -ve(charging) +ve(discharging) kW') 
axis([0 90000 -P P]) 
figure(4) 
plot(1:length(E_ess),E_ess) 
hold on 
plot(1:length(E_ess),Emin,'k') 
title('Energy level of battery') 
xlabel('Time in one second intervals') 
ylabel('Battery energy level kWh') 
axis([0 90000 0 Emax]) 
figure(5) 
plot(1:length(ILoss),ILoss./1000) 
title('Power loss of the feeder') 
xlabel('Time in one second intervals') 
ylabel('Power loss kW') 
axis([0 90000 0 80]) 
F = sum(Iplot(:,1:3),2)./1000; 
figure(6) 
plot(1:86400,F) 
title('Overall one second actual load of the feeder') 
xlabel('Time in one second intervals') 
ylabel('Three phase load kVA') 
axis([0 90000 0 3500]) 
F_15 = []; 
out = 0; 
for i = 1:96 
    out = out + 1; 
    F_15 = [F_15;mean(F(out:i*900))./abs(sum(S_peak,1)./1000)]; 
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    out = out + 900; 
end 
figure(7) 
bar(1:96,F_15) 
title('Overall 15 minute average normalized feeder load') 
xlabel('Time in 15 min intervals') 
ylabel('Normalized load factor Lf') 
axis([0 100 0 1]) 
Avg_Dem = mean(F_15) 
Peak_Dem = max(F_15) 
Batt_util = max(E_ess)./Emax 
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