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CHAPTER 1

Cox Regression Model

1.1 Introduction

Failure time data consists of data which measures the time until a
certain event occurs. For example, for a electronic component, it is the
time until the component fails to function or for a person who is diagnosed
to have a certain disease it s the time it takes the person to recover.
There are many factors which can influence the failure time of a particular
component. For the electronic component, the temperature and humidity
of the environment could effect the failure time. For the person with a
disease, the recovery time could depend on the age of the person, the
extent the disease and the type of treatment. It is desired to construct
a model to describe fajlure rates as a function of these independent variables.
The Cox model is a model which allows the researcher to incorporate the
information about the independent variables into describing the failure
time. The Cox model is a failure time distribution of the form given
by ng{t)eXf , where x is a vector of explanatory variables and g is
the vector of corresponding regression coefficients. The values of the
elements of g are related to the effect each variables has on the failure
time. Estimates of the parameters, 8, can be obtained to provide an estimate
of the distribution of failure times. The following are some examples
of where the Cox model can be applied.

Example 1. Lawless (1981) gave an example of survival data on 40

advanced lung cancer patients. There were a number of explanatory



variables used, including the effects of two chemotherapy treatments

and type and size of tumor. It is desired to know if the type of treatment
has an effect on the failure time and which of the explanatory variables
are making a significant contribution to the failure times. This can be
done by modeling the failure times as a function of these explanatory
variables using the Cox regression model.

Example 2. In a factory it is desired to know which of the variable
events effect the failure time of a certain component. These explanatory
variables could include years of experience of machine operator, hours
of use per day, temperature and humidity. The failure times then could
be modeled as a function of these explanatory variables using the Cox
regression model. Estimates for g could be obtained, to give the researcher
an idea of the effect of each variable on the failure times.

The rest of this chapter contains a 1iterature review for the Cox
model, followed by a description of the general procedure. The last section
of this chaper contains a couple of examples where the Cox model is analyzed

by the computer programs available in BMD and SAS.

1.2 Definitions

The Cox Regression Model

The Cox regression modei was first suggested by Cox (1972) in order to
analyze censored failure time data. Before looking at this model, it is
necessary to understand what is meant by failure time data and censoring.
The following definitions were taken from Kalbfleisch and Prentice (1980)

and Lawless (1981).



Definition 1.2.1

Failure time data js data that measures the time until an event

occurs.
The event does not have to be when something fails, it can also apply to
other areas, for example the time until a desired response occurs such as
time to recovery for individuals with a heart transplant. The principle use
of this procedure does extends to deaths of individuals under study or the
time to failure of components at a factory. In order to analyze this type
of data, it is necessary to know something about the distribution of these
failure times. This is dealt with next.

Let T be a non-negative random variable representing the failure time
of an individual or a component in a population of similar individuals or
components. T can be either continuous or discrete. The continuous case
is considered first and starting with the definition of the probability
density function of T.

Definition 1.2.2
The probability density function of T is

f(t) = 1im p_&%f;ﬂﬂ
At=0

_ =dF(t)

dt
Here F(t) is the cummulative distribution function of 7. It gives the
probability of failure before some given time t.
Definition 1.2.3
The curmulative distribution of T is

F(t) = Pr(T<t) = ét £(x) dx.




The survivor function is just 1-F(t) and it gives the probability of an
individual not failing until after time t. It is defined as follows.
Definition 1.2.4

The survivor function for_I is

S(t) = Pr(T>t) = Q? f(x) dx.

One other function that is of interest for the Cox model is the hazard
function. It gives the instantaneous rate of death for an individual at
time t, given he is still alive at time t.

Definition 1.2.5

The hazard function for_I is

h(t) = Tim Pr(tﬁ‘t"“)
At>0
(¢
£

This function describes the way the instantaneous probability of death for
an individual changes over time. Shown in figure 1 (on the next page) are
three basic hazard functions and their corresponding probability density
functions. The three shown are a) monotone increasing, b) monotone de-
creasing and c) the U-shaped hazard functions. An example of a U-shaped
hazard function is when the rate of death for an individual is observed
from time of birth until old age. At birth there is a relatively high rate
of death, this lowers for a period of time until about 30, then the rate of
death starts to increase. The most commonly used model involves the mono-
tone increasing function.

For discrete data thedefiniticns are similar with identical inter-

pretations. The definitions are summarized as follows.
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Figure 1

Definition 1.2.6

If T 1is a discrete random variable and it takes on the values

t] < t2 varw € tk’ then its probability function is
f(ti) = P(T=ti) 1=1,2,3,...,k
and its survivor function is

k
FlE.)s

S(t) = Pr(T>t) = 1§t1>t ;



Definition 1.2.7
If T 1is a discrete random variable as described above then its

hazard function is

h(ti) Pr(T = t1.|T > ti)
f(ti)
S(t.) *

1

An example for the use of discrete models is when the failure time data is
grouped or when intervals of a certain length are used (1ike months or years).
Next to be considered is the meaning of censored data.
A major problem in the analysis of failure data is censoring. The
reason the Cox model was developed was to handle censored data.
Definition 1.2.8
Censoring occurs when the exact times of failure are known only for
part of the individuals under study, and for the rest it is only
known that their failure times exceed some value or are less than
some value.
It is desired to gain information from these censored failure times. There
are a number of types of censoring, which need to be defined although for the
analysis of the Cox model only one type of censoring is considered.
Definition 1.2.9

Right censoring occurs when an observation's exact failure time

is not known, but that its failure time is greater than or equal to

a known time L.



Definition 1.2.10

Left censoring occurs when an observation's exact failure time is

not known, but that its failure time is less than or equal to
a known time L.
For failure time data, right censoring is far more common than left censoring.
There are itwo general types of right censoring which are considered next.
Definition 1.2.11

Type Il censoring occurs when only the r shortest failure times

are observed in a random sample of size n individuals.
Experiments of this type are often used. A total of n individuals is put
on a test, when r of these individuals or components have failed the experi-
ment is ended. It is important to select r before the start of the experi-
ment. Another type of right censoring is type I censoring.

Definition 1.2.12

Type I censoring occurs when a predetermined time is selected and

the experiment is ended at that time. Those that have not failed

at this time are said to be type I <censored,
For example in an experiment n individuals are put on a test, but the experi-
ment will be ended after time L has been completed. Exact failure times are
known only for those individuals with failure times less than or equal to L.
A slightly more complicated type I censoring occurs when individuals enter
the experiment at different times, thus when they are censored they have
different censored times, denoted by Li' Unless otherwise specified whenever
censoring is mentioned it refers to right hand type I censoring. Next to

be considered is the model of interest, called the proportional hazards

model.



The following definitions concerning proportional hazard models were
taken from Lawless (1981) and Cox (1975). The proportional hazard model is
an important part of the analysis of failure data.

Definition 1.2.13

A proportional hazard family of models pertain to the class of

models that different individuals have hazard functions that are
proportional to each other, i.e. the ratio of h(tlgq)/h(tlge) for
two individuals with regressor vectors X1 and X5, does not vary
with t.
That is to say, the ratio of h(t[il)/h(t|52) is not dependent on time t,
where X3 and X, are vectors containing the values of the corresponding
regressor variables. Thus the hazard function of T, given a value for x,

can be written as:

n(t]x) = hp(tlx) g(x)

where h0 and g can include unknown parameters, and h0 is referred to as
the baseline hazard function. The baseline hazard function is the hazard
function for an individual with g(x} = 1. For the Cox model, g(x} = eiﬁ-,
where Xx = (x1,x2,...,xp) is a vector of explanatory regression variables for
an individual, which are used to give a better understanding of what is happen-
ing in the data (such as in the case of a cancer patient, x might include

age, tumor size, etc.), and where g = (s],sz,...,sp) is a vector of regres-
sion coefficients. The vector x is then made up the independent variables

that are thought to effect the length of life of an individual and the vector



8 gives an idea of how much effect each variable has on the length of life
of an individual (length of life is referred to as the response variable).
Definition 1.2.14
The Cox Model is the proportional hazard model with g(x) = X8 .

i.e. the Cox model is
h(t]x) = hy(t]x) £ .

Cox (1972) introduced a new approach to the analysis of proportional
hazard models. Before then jt was always necessary to be able to get a good
handle on the underlying distribution associated with the failure time data.
If the wrong distribution was selected, that caused serious problems in the
analysis. Sometimes this underlying distribution is well known, but other
times it is not known. Cox suggested using an approach that is not dependent
on knowing the underlying failure time distribution.

Definition 1.2.14

Distribution-free refers to the analysis of proportional hazards

models without knowledge of the underlying baseline hazard function.
In order to obtain extimates for g, using this distribution-free approach,
it is necessary to incorporate the use of the partial 1ikelihood function.
The partial 1ikelihood function is not the same as is thought of as the usual
1likelihood function. The likelihood function is the joint density of the
observed values as a function of the unknown parameters. In order to define

the partial likelihood function some other definitions are needed.
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Definition 1.2.16

Let y be a vector of observations represented by the random
variable Y, which has density fy(x;g). Now transform Y into
two random variables (V,W) 1in such a way that the transformation

doesn't depend on 8. Then fv(ggg) is referred to as the marginal

1ikelihood function based on V, and fw|v(w|v;g) is referred to

as the conditional 1ikelihood function based on W given V = v,

These are both special cases of the partial likelihood definition.
Definition 1.2.17

Let Y be transformed into (X1,S],X2,32,...,Xm,8m), the full

1ikelihood function of the sequence is

'-1)’5(3'-1);9) m (3-1)

(J _ (3) "
g s @) slam) (5T

m

nf {3-1) (3-1)
521 451X S

(3) . (51,52,...,sj). The

second product is referred to as the partial Tikelihood based on S

(3) _
where x = (xl,xz,...,xj) and s

in the sequence (XJ,SJ).
In general it is not easy to come up with the partial likelihood function.
The purpose is to separate the parameters of interest from the nuisance
parameters in the full 1ikelihood function. In this problem it means working
around the baseline hazard function.

Definition 1.2.18

For the Cox regression model, the partial likelihood function is

Lig) =
i

n = =

[exp(x,8) / = exp(x.8)]
:l’.ta:R_i

1



1

where k = total number of distinct time intervals,

X denotes the regressor variables for the ith individual,
L ¢ Ri is those individuals at risk in time interval ti’
where t] € iii % tk'
Next to be looked at is the literature review for the Cox Regression

Model.

1.2 Literature Review

D. R. Cox (1972) introduced a distribution free method useful in the
analysis of the preoportional hazard model. The proposed approach is suited
to handle censored failure times and a small number of ties. He also proposed
an analysis in discrete time, designed to handle more ties. In the 1972
paper this involved the use of a conditional 1ikelihood function to come up
with estimate for the regressor coefficients.

In the discussion that followed the 1972 paper, Kalbfleisch and Prentice
along with a number of other discussants raised questions about the use of
the conditional likelihood function. They proposed the use of a marginal
likelihood function. In 1973, they came out with an expanded version of this
approach along with an alternate way of handling ties.

Finally, Cox (1975) addressed this topic once again. He introduced the
partial likelihood function. As it turned out both the conditicnal 1ikelihood
and the marginal 1ikelihood are special cases of the partial 1ikelihood. The
purpose of the partial Tikelihood is to divide the regular likelihood function
so that the part that deals only with g8 can be isolated separate from the

nuisance parameters,



12

Lawless (1981) gives a justification for the use of all three of these
likelihood functions. In the following section each type of likelihood

function will be looked at and some uses and examples provided.

1.4 General Procedures

The proportional hazard model proposed by Cox (1972) is
h (tix) = exp (x g) hy(t).

There are several approaches as to how one can analyze the Cox regression
model.

The simplest approach is to assume that ho(t) is constant, which
implies an underlying failure distribution is exponential. Lawless (1981)
discusses the approach in chapter 6 of his book. Another parametric approach
discussed by Lawless involves the Weibull distribution. He used standard
estimation methods such as maximum likelihood. The advantage of the ML
approach is that both the probability density and survivor function can
generally be found easily. Another possibility is to restrict ho(t) quali-
tatively, by assuming it to be monotone. A1l of these above procedures are
mentioned by Cox (1972), but he also concentrates on another approach that
is considered next.

The emphasis of Cox's analysis was to be able to get good estimates of
the regression parameters. His approach involves leaving ho(t) arbitrary
or even completely unknown. The nuisance parameters are contained in the

hazard function ho(t). Cox states that it seems possible that the loss of
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information about 8 when ho{t) is left arbitrary is most often slight, if
this is true then the procedure to be discussed here is a reasonable way of
looking at g. A major problem that would arise from leaving ho(t) arbitrary
or completely unknown is there could be a major loss of efficiency in estima-
ting g. A couple of authors have addressed this problem and their findings
are discussed later in this section.

Assume that ho(t) is arbitrary to the point where no information can

[[]
—

be obtained about 8 in an interval in which no failures occur, as h_ (t)

of
Cox uses an argument conditional on the set of ti's. By conditioning on

the risk set Ri’ he defined a conditional likelihood function,

k

L,(8) = z [exp(x;8)/

I exp(x,8)]
i=1 eR.

d R_I

where x is the vector of regressor variable for the ith individual.

is the vector of regressor coefficients.

=~ |w

the number of time intervals and Ri denotes the set of all

individuals alive at time interval ti'

Cox (1975) points out that he incorrectly referred to this as a conditional
1ikelihood function. Thus more accurately this should be referred to as a
partial likelihood function. Also Kalbfleisch and Prentice (1973) show that
the above function is a marginal likelihood function of ranks under the
assumptions of no censoring and that x doesn't depend on time. Cox (1975)
analysis of the partial likelihood has a wider range of application than just

the proportional hazards model, but that is the only case considered here.
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Before going on to the actual estimation of B for this partial Tikeli-
hood the definition for partial likelihood as given by V. T. Farewall (1979)
is presented.

Efron (1977) looked at the efficiency of this partial likelihood for
censored data. In section 3 of his paper, it is shown that if the class of
nuisance functions hU(t) is moderately large, then inferences about g
based on the partial likelihood are asymptotically equivalent to those based
on all of the data, which solves the major problems of this procedure as
were presented in the discussion that followed Cox (1972). In addition,
Tsaitis (1981) proves the asymptotic consistency and normality of the maximum
partial likelihood estimator. The next topic dealt with is estimation for
the Cox regression model.

The unknown components for the Cox model are the regression parameters
and the baseline hazard function. It is possible to think of the baseline

hazard in terms of the baseline survivor function.

sp(t) = exp(-étho(u) du) = exp[-Hy(t)]

where Ho{t) is the baseline cummulative hazard function. The survivor func-

tion for T, given x, (Lawless (1581)) can be written as
S(t;x) = exp(-sth(usx) du) = [so(t)]exp(ié)
0

The goal then is to get an estimate for g when hO(t) is unknown

and test equality of survivor functions in the m sample case.
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The estimator of B 1is obtained by maximizing the partial 1ikelihood
equation. This function allows for Type II censoring, but adjustments are
needed for ties. In order to handle more than a small number of ties, it is

necessary to modify the partial lTikelihood function L](g) as

[ (==
—

Lp(e) = 1 [exp(s;8)/( = exp(x,8)) %1 ,

Y i
where d1. is the number of lifetimes equal to ti and 31. is the sum of
the regression vector x for these d, individuals. If all d; are equal

to one then Lz(g) reduces to L1(§). The log partial 1ikelihood function is

e x
nm x

lag Lz(_s_) =

; S8 -

T 'z djYog( = exp(x 8)), (3)
j

] f.ER.i

and the first derivatives of Log L2 with respect to B T = VawnsPs Sre

—g—— = I[85, - d; 1 x, exp(x,p)

/L
1T 1£sRi LeR,

r i

where p = the number explanatory variables being used, and Sir in the rth

component in Si = (S - S].p). The matrix I, which contains the negative

ir *°
of the second partial derivatives of Jog L2(§) has entries,

-32109 L,(8) k
= ———— = 1d.[ 1 x,x,exp(x,8)/

98,98 i=1 1 feR, 2eR,

exp(x,8)

- (2 xgpexplx8)) (2 xpeexp(x,8))/(2 exp(x,8))°1.
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The maximum 1ikelihood equations 3log L / 38, =0 (r=1,...,p) can
generally be solved without difficulty by using the Newton-Raphson method.

There are a number of programs available that calculate the value of é
for the partial likelihood function using the Newton-Raphson method. SAS has
two programs that do this COXREGR and PHGLM. Both of these programs yield
similar results, but PHGLM has more options, so it was used in the example
that follows the next section. BMD also has a program P2L that computes the
value for é. One other thing that is available in these two programs, is a
stepwise procedure that helps to determine which explanatory variables are
significant in describing the failure time of an individual. This is much
the same as the stepwise procedure in ordinary regression. Because the BMD
stepwise procedure is expensive to run for more than a few independent vari-
ables PHGLM was used first. Then the BMD procedure was started using the
variables that were included by PHGLM. Before considering examples the
procedure for comparing twoc or more survivor functions is discussed.

Consider the comparison of two 1ife distributions, by testing the

hypothesis

Ho: S1(t) = S,(t)

that the two survival distributions are the same. This can be done by assum-
ing that all observations come from a single population and defining an in-

dicator regressor variable x,

0 if from population 1

1 if from population 2
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The resulting hazard functions are then h1(t) = ho(t) and hz(t) = ho(t) eB,

Thus the two are identical if and only if g = 0. This is the same as saying
5,(t) = s, (t)2*P(B)
2 1
So by testing g = 0, it is the same as testing
: & - - )
H.Sz(t) 51(t) vs H, Sz(t) 31(t) , 5§ #1

where § = exp(B).

Let K be the number of distinct observed failure times and let di repre-
sent the number of failures at time ti' Also Tet LI and Ny denote the
number of individuals in the risk set Ri at time ti’ from each population
and d]i and d2i are the number of deaths for each population it time ti‘
In addition let Nyt Moy = n, and d]i % d21 = di and r, = if1d2f is
the total number of deaths from population 2. Then the log 1likelihood of

Lz(a) becomes

~

3).

log LZ(B) = ry ~ E d; 1og(nH *n,.e

i=1
The first derivative and negative of the second derivative of log LZ(SJ are

B
3log L,(8) k d.n,.e
U(B):._._._.__.z_=r2_-z__1_21__-ﬁ_ .

i=1 N5 + "21e

and
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2 B
R log L,(8) ) k dinyin, e
Ie) === £ — g

3B i=1 iy + n,;e

The 1ikelihood equation U(g) = 0 can be solved by Newton Raphson Method.
Confidence intervals and test statistics can be obtained by the likelihood
ratio method by treating 8 as approximately normal with mean g8 and
variance I(s)'l or by treating U(8) as normal with mean 0 and variance
I(g).

U(g) gives a simple test for the equality of S](t) and Sz(t) with-

out having to calculate 8. Thus for H.:8 = 0 the test statistic is

0
7 = u(e) -0 _ u(0)
standard deviation (1(0))1/2 d
where
u(o) = r, - 151 d; 2%5-, and
11(0) ) igl dinl%nZi

i
If there are a substantial number of ties, then U(0) remains the same, but

11(0) is replaced by

d;(n;-dy)ngny,
5
1 ni("i'])

1

k
5(0) = 5

i

12(0) reduces to 11(0) when all di = 1. A useful way of looking at U(0)

is by rewriting it as
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0) & d3M55
ug) = ¢ (d,. - )
=1 4N
diM24
If RS is thought of as the expected value of the number of deaths from

3
population 2 at time t;, then U(0) s the sum of the differences between

the expected and the observed values over the k distinct failure times.

To test that more than two lifetime distributions are equal, the 2
sample test can be expanded. Define a vector of m-1 indicator regressor
variables x = (xl,...,xm_]) as follows, individuals in population 1,...,m-1

have vectors x = (1,0,...,0),...,(0,...,0,1), respectively, and individuals

in population m have x = (0,...,0). Assume the survivor functions Si(t)

are given by (3) where 1 =1,...m, so that

= 61 (t =z § (t)am-—T
S1(t) = s4lt) ,....S () = S

where §; = exp(si). In testing the equality of these m distributions, it
is the same as testing B8 = (31""’Sm-1) = 0. Let N be the total number
of individuals, and Nr is the total number in the rth population. In the
total sample of N there are k distinct failure times t1 < ... < tk. Let

L be the number at risk at time t. in the rth population and I N =Ny
i

where n, is the total number at risk at fime ti (this would be the total
number alive at time ti’ except some of the observations maybe censored).
Also let dri be the number of deaths in population r at time ti and

rd., = d.- Thus the first derivatives and information matrix with 8= 0 is
i

alog L,(8)

u.(0) = (

0 = r=1,...,m-1, and

—)
r g=0 i



L= s diris <D pgs e
rs'= yingtrsong i e '
i=1 i j
where Bipg = 1 if r=s5, or Bpe = 0 if r # s. Under the hypothesis
g =0, U= (U;(0),...,U ;(0)) can be treated as approximately normal with

mean 0 and covariance matrix I[(0). The test statistic for 8 =0 is

x2

- 010U,
Thus the hypothesis of equal distributions for the m populations would be
rejected for values greater than xi(m-1). As in the 2 sample case if the

number of ties is substantial 0) needs to be adjusted by setting

Ll

di(ni'di)nrifa - =) r,s =1 m-1
1 ni(hi-lTA" rs n. : ronte

k
1..(0) = 2

This test can be done equivalently with the SAS program SERVTEST, although
this exact procedure is not followed, it does yield test statistics for
equal survival functions. The section that follows gives examples of this
procedure, along with an example for the procedures discussed in section

2.2 for estimation of g.

1.5 Examples

The first example was taken from the BMD manual (1981) and originally
was reported by Krall, Uthoff and Harley (1975) and is given on page 58.
The data consists of the survival times of 65 multiple mayeloma patients

with 16 explanatory variables. Forty-eight of the observations represent

20
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deaths and 17 individuals were censored. Initially it is desired to determine
which of these explanatory variables are contributing to the estimates of the
survival times. This is done by using the STEPWISE procedure available in
SAS PROC PHGLM first, then using the model arrived at under this approach

as the starting medel for the BMD program P2L. The Key for the variables
used in these programs is also given on page - 56. The PROC PHGLM has two
options for model building, STEPWISE and BACKWARD. STEPWISE starts witi no
variables in the model and adds the most sign variables one at a time as long
as P < .10 for at least one variable. If all P-values are greater than .10
it says that no variable gives significant information about the survival

time for an individual. After a variable is added the procedure then goes
back and checks to see if all of the variables meet the .05 1level for stay-
ing in the model. In order to use PROC PHGLM, it is necessary to sort the
data in descending order by the survival times. PROC SORT will sort the data
in descending order simply by putting descending before the variable survival.
In this example the only variable that was significant by the STEPWISE option
was LOGBUN. The BACKWARD option was used next. This approach starts with

all of the variables in the model and removes the least sign variables if its
P-va]ué is greater than .05. The model selected by STEPWISE in this example
included only the variable LOGBUN, so the BACKWARD approach was also used.

The model selected by the BACKWARD approach included the variables LOGBUN,
PLATELET, INFEC, LOGWBC, PROTEIN, BJP, TSP and SGLOBIN. This program also
prints out the estimates for B8, their standard errors, and their P-values

for their individual significances to the model. Then this model was used

as the starting model for the program BMDPZ2L STEPWISE procedure. This is
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accomplished by use of the START = statement. The STEPWISE procedure used

is MPLR, which stands for the maximum partial likelihood ratio. The enter
1imit for this model is .10 the same as for PROC PHGLM, but the remove limit
is .15. The model entered was not changed. Besides printing out estimates
for g, their standard errors and P-values as before, the procedure also |

prints out estimates for the survival, hazard and commulative hazard functions

at x

X. These results are on pages 66 - 67. From all of this it can be
concluded that when LOGBUN, INFEC, LOGWBC, PROTEIN, BJP and TSP are increased
they reduce the probability of survival for an individual. Also that as
variables PLATELET and SGLOBIN are increased they add to the probability of

survival. Recall that the proportional hazard model is

h(t]x) = ho(t) &,

X.8

Thus if e ' |

is greater than one, it means that the ith variable
increases the instantaneous rate of death at time t given that the indi-

vidual is still alive at time t, i.e. h(t{x) 1is increased. Similarly if
R B
e 11 is Tess than one, it means that the 1ith variable reduces the in-

stantaneous rate of death at time t given that the individual is still
X:B.
alive at time t. It is always true for this example that e L greater
X:B:
than or equal to one if B is greater than or equal to zerc, and e LALIE

less than or equal to one if B5 is Tess than or equal to zero. Thus since
the g-values for PLATELET and SGLOBIN are less than zero, these are the only
values that increase the probability of survival, as the value of X;

increases for these variables.
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The probability of survival at given survival times are on pages 69 -70.
Also included on these pages are some summary statistics like cumulative
deaths and those that remain at risk for each time period, plus the estimates
for the hazard function and cumulative hazard function evaluated at x = x ,
just as the probability of survival is evaluated at x = x . Thus when
t = 6.00, the estimated probability of an'individua1 whose regression vector
is equal to x = x , not dying until after time t 1is .8780. The estimated
rate of instantaneous death at time t for this individual is .0561 and the
estimated cumulative hazard rate is .1302. The computer programs and results
for this problem are on pages 57 - 70.

The next example deals with the test for equal survivor functions. It
was taken from Cox (1972). This test was done using SAS PROC SERVTEST. The
procedure used is not exactly the same as the procedure described in Section
2.2, but yields similar results. The data for this problem is on the bottom
of the page. The SURVTEST procedure tests for differences between for two
or more survivor functions. Three tests are performed on this data:

1) Gehan-Wilcoxon test {a permutational test based on ranks)

2) logrank test (equivalent to Mantel-Haenzel)

3} likelihood ratio test (based on the exponential model).

Times of remission (weeks) of leukemia patients
(Gehan, 1965, from Freireich et al.)

Sample 0 (drug 6-MP) 6*, 6, 6, 6, 7, 9%, 10*, 10, 11*, 13, 16, 17*, 19*,
20=, 22, 28, 25%, 3&%, 3&%, 4%, 5%

Sample 1 (control) 1,1,2,2,3,4,4,5,5, 8, 8, 8, 8 11, 11, 12, 12,
15, 17, 22, 23

* Censored



For each test, a score sum is reported and a two-tailed test is printed on
page 73, also the SAS program is printed here. As it turns out all three
tests have P-values less than .01, it can be concluded that these two
treatments do not have equal survivor functions. It would appear that
treatment 1 does increase the survival rate over the control group. In the

next chapter cross-classified categorical failure data is studied.
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CHAPTER 2

The Loglinear Model

2.1 Introduction

Categorical failure data is discrete data generated by observing whether
an experimental unit survived (lived) or failed (died), during the course of
the study or possibly in time intervals such as 1-5 years, 6-10 years, and
more than 10 years. For example, a two-way table is obtained when the
researcher observes whether individuals treated by one of two treatments lived
or died. The expected number of experimental units in the 1i,j cell, denoted
by ﬁij can be modeled or a function of the effects of each variable plus

the effect of the combination of the two variables. The model then has the

forn M, - S TY205) T 2

u1(i) is the effect of variable 1, uz(j) is the effect of variable 2 and

, where u 1is the overall mean effect,

U12(i4) is the interaction of the effects of variable 1 and variable 2.

The probability of survival is then marginal total of expected cell freguencies,
MI , divided by the overall sample size. The following are examples of

where the loglinear model can be applied.

Example 1. A researcher desires to know if vitamin C really does reduce
the probability of catching a cold (a failure), this example was taken from
Feinberg (1981), originally taken from Pauling (1971). The probability of
catching a cold (failure) is modeled as a function of what treatment the

skiers receijved, either placebo or vitamin C.
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Example 2. It is desired to know what effect boot fittings and the
blood-alcohol Tlevel of an individual have on whether a skier has an accident
{failure) or no accident (survival). The rate of accidents (failures) can be
modeled as a function of type of boot fittings and the blood-alcohol level
of an individual using a loglinear model.

The remainder of Chapter 2 contains the literature review, general

procedure and an example for the loglinear model.

2.2 Definitions

The loglinear model has as one of its uses the analysis of cross-classi-
fied categorical failure data., The following definitions, in part, come from
Feinberg (1981).

Definition 2.2.1

Categorical Data is data that has been classified into distinct

groups for each variable.
There are a variety of values that categorical variables can take on. For
example for categorical failure data, there are two kinds that are looked
at. This type of failure data is of the discrete form as opposed to the
continuous type that is dealt with for the Cox regression model. Categorical
variables that take on one of two values (such as survived or died) is referred
to as dichotomous, one that can take on one of three or more values is referred
to as polytomous.

Definition 2.2.2

Cross-classified tétegorica] data is data that has been classified

such that every level of one variable occurs with every level of

each of the other variables.
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Thus for the case when two variables are used, cross-classified corresponds
to a usual contingency table. The cells then contain the number of individ-
uwals that fall into each particular combination of variable 1 and 2. The
object of this approach is to model the expected cell frequencies using a
loglinear approach. For the two-way table the test statistic for the log-

2

linear model is asymptotically equivalent to the x~ test statistic for the

test of independence in a two-way contingency table, where

2 _ (observed cell frequences - expected cell frequencie;)2

i a11£cells expected cell frequencies

The main difference lies in the fact that once past the two-way table to a
three-way table, it is still possible to use this loglinear model test
statistic to test for complete independence among all three variables, plus
test for other possible types of independence between the three variables.
These other types are discussed in Section 2.A.

In order to define the loglinear model for the two-way table as defined
by Feinberg (1981), it is first necessary to present some notation. The
expected cell frequencies under the independence assumption, denoted by ﬂij,
for a two-way contingency table, where i=1,...,I, j=1,...,d are

» n. n .

m,. = ———J where n,., n.., and n.. are shown in Table 1. By taking
iJ n.. i 3 b di .

the logarithm of both sides of &ij = _%f_;l ,
log mij = log n;. + Tog n.j - log n..

Definition 2.2.3

The loglinear model for categorical data from a two-way table 1is
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where u s Z Zlogm,. is the overall mean,
IJ i ij

ul(i) = —%—-z log m1.j - u , corresponds to the main effect of Variable 1
J
u2(j) = —%—-z log mij - u , corresponds to the main effect of variable 2.
i
Table 1
Frequency Distribution of
Population Data Category Response
(factors) 1 2 s w 2 W Total
! "1 M2 LT
2 Moy Mope « o Ny n,.
3 T Mz SHL
n.y N, n., n.
-~ !‘1...1"!...!‘)..k
For the three way table, the expected frequencies are mijk o] . J "
where n... 1is the overall sample size and n. g involves summing over

variables 1 and 3 for each level of variable 2 and likewise for "i"

and Do - Taking the Tlog of both sides of the above equations for expected

frequencies yields,
log m].‘].k = log Ny-. ¥ log n.j. + log Mooy = log n...

Definition 2.2.4

The saturated (meaning all interactions and main effects are
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included) loglinear model for categorical data for the three

way table is

109 Mygp = U+ Uy(q) * Ua5) * ¥3gk) * Yiz(is) * Y1s(ik) * Y23(3k)
* U123(i5k) @

where 1

1]
—
-
-
—
[ )
n
—
-

[ =9
~
1]
—
-~
u
3
[=%

_ 1 .
U= T §§E log mijk , is the overall mean,

= - : ;
Uri) ° IR ; E log mijk u measures the main effect of variablel,

5.t -
Uio(i3) = K & log m, . (u + Up(gy * u2(j)) measures the

interaction between varjable 1 and variable 2,

Upp3(igk) = 109 Mygp = (U % Uppgy + Uyesy + gy * Uypris)
*Up304K) T Y23(5K)]
measures the interaction between all three variables.

Restrictions are explicitly introduced into the parameter definitions as

J K

P4 TR e T g Y T O

1 —

1‘

§ U12(ij) © ? Y12¢i5) T F Mi3(ik) T E Y3(ik) T ? Usz(jk) = @

- ™

¢ Y2330 T F M2t T E Maacige) T Mstign T O
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Estimates can be obtained for each of the u-terms by substituting the ﬁijk‘s
for the mijk|s in the equations for the u-terms from (2). The above defini-

tions can be expanded to an n-way table.



2.3 Literature Review

Loglinear Model

Fienberg (1981) deals with the analysis of cross-classified categorical
data. This procedure can be used for failure time data that has been categor-
ized, although it works for all types of cross-classified data regardless if
one of the variables takes on discrete values of the time of failure of an
individual or component, or not. The example that is considered in the last
section of this chapter does involve a discrete failure time variable. The
general procedure used is the loglinear model. Once past a three-way table
to a higher order table, it becomes harder to define the types of independence
present in the models. The majority of the discussion that follows concerns
a three-way table.

The analysis involves the use of maximum likelihood estimates, denoted
by MLE, for the expected cell frequencies, based on the selected mcdel. The
types of models that can be present in a 3-way table are

1) The model of complete independence, where there is no relationship

present between any of the three variables. The model then is the
same as the saturated 3-way model with Upp = Upg = Upg = Ujpg = 0.

2) The model of joint independence occurs when one variable is independ-

31
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ent of both of the other two variables, this is when

Upp = Uyg = Ujp3 = 0 for example from the saturated model and if
this model fits well implies variable 1 is jointly independent of
variables 2 and 3.

3) The model of conditional independence occurs when fixing one variable
at any level, the other two variables are independent, one possibility
of this is where Uy = Uyp3 = 0, thus implying if variable 3 is
fixed at any level variables 1 and 2 are independent.

4) The model of constant association occurs when each two variable
interaction is uneffected by the third variable, here Uy = 0 and
this implies no three-way interaction present.

5) The saturated model is the model selected if none of the above
models fit the data well and implies there is three-way interaction
present.

The model with the lowest number from above 1ist that adequately fits the data
is the one usually selected. In higher order tables it becomes harder to
interpret the results in the above manner. Chapter 4 of Fienberg's book deals
extensively with the topic of model selection, which is much the same as step-
wise model selection in regression. After the model has been selected, a
number of procedures for computing the MLE can be used, based on the sampling
procedure utilized (this can be either Poisson, multinomial or product
multinomial). A1l three of these procedures provide the same MLE. The

method that always guarantees arriving at the MLE for the expected cell fre-
quencies is an iterative approach. The program BMDP4F is capable of doing

the iterations for computing the MLE for the expected cell frequencies and
also calculating the goodness of fit test for each model of interest, Once

a model is selected, then the expected cell frequencies and estimates for the

u-terms can be printed out.
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2.4 General Procedure

Loglinear Model

The saturated model for the three way table was given in Section 2.2. If
for this model all of the two-way interactions and the three-way interaction
are set equal to zero (i.e. Ujp = Ugg = Upg = 0), the model that is left in-
cludes only the overall mean plus the main effects for the three variables.

If this model

109 Myge = U % Uiy * V() T Y3
k=1,...:K,

1]
-
-
-
—
-
.
1]
EaL
-
-
.

fits the data well, then it is concluded that the three variables are com-
pletely independent. The first step in this analysis is to compute the max-
imum 1ikelihood estimates (MLE) for the expected cell frequencies. This part
is straight forward as it is identical to the methods used for the two-way
contingency tables to obtain a test for independence. The expected cell
frequencies for the two-way table are the product of the marginal probabil-
ities times the overall sample size, or the product of the marginal frequency
counts divided by the over all sample size. Then if the observed values differ
too much from the expected the hypothesis of independence is rejected, using
a chi-square approximation. The same is true for the test of independence
for the three-way table. The initial step is to compute the MLE for the
expected cell frequencies. Once again the mijk'S equal the product of the

marginal probabilities and the overall sample size denoted by n..., i.e.
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1« 4
where Pj--- = ﬁl—— are the marginal probabilities for variable 1, p.j. are

the marginal probabilities for variable 2 and p..p are the marginal probabil-
ities for variable 3. This is a rather simple case since it follows directly
from the two-way contingency table for computing the expected cell frequencies.
It is always true that the expected cell frequencies for a given model involve
the marginals totals for the highest order u-terms present in the model, i.e.
the u-terms that correspond to the highest order interactions present in the
model. For this model, the marginal totals that corresponded to the main
effect u-terms are used. Once the expected cell frequencies are calculated,
the general procedure is the same for estimating the values of u-terms and for
testing for goodness-of-fit of each model.

For another example of computing expected cell frequencies, consider
the model of constant association. This is the model with Uyp3 = 0, that

tests for no three-way interaction. The model for this is

109 Mygp = U Upgy * Ugrg)y ¥ Usrry F U208 Uragik) Tt Y23(5K)

where the u-terms are as defined in Section 2.4 andi=1,...,I, 3 =1,...,J,
k = Tyews 5K
The following general procedure is used to get the estimated expected
frequencies for all models, including this one;
1) Tor each variable, determine the highest order effect in the log-
Tinear model involving that variable.
2) compute the observed marginal totals corresponding to the highest
order effects in 1) - eg. , Nieg 131001, k=1,

corresponds to U13(ik) i 2 Vgsnwsds B 2 Lawes K5
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3) estimate the expected values for the model using only the sets of
observed marginal total from 2), or totals that can be computed
from them.

In order to get the MLE for the expected cell frequencies an iterative
approach is used. Using the above procedure, the ﬁijk's are a function of

Nisealonys and n'jk’ since these are the marginal totals that correspond

J
to the highest order effects in the model. According to Appendix II in

Fienberg (1980), using the maximum 1ikelihood method provides estimates,

~

mijk » which satisfy:

mij‘ = nij' for all i,J
i3 = Ny for all i,k
m‘jk = n‘jk for all  j,k.

The following iterative procedure yields the MLE

1) set mt9) = for all 1.5k

ijk
Then for v = 0 compute
2)
SE I FEEY
ijk o ijk
~(3v)
ij’
" af
the values for mggy) are calculated by using the values of m%?t) .
3) _
aww2)=”rk &QWJJ
ijk 6(3V+]) ijk
Ttk
the values for ﬁ€§:+1) are calculated by using the values of ﬁg?i+1)

from 2)
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4)
e Dk f(av2)
ijk ‘;1(3\’_'_2) ijk
-jk
the values for ﬁ€§V+2) are calculated .by using the values of ﬁ(?V+2)
Jk ijk
from 3).

The above procedure is repeated, v being increased by 1 each time through

the cycle, until these three equations are satisfied to the desired decimal

place. This means that ﬁ?§Y+1) must be within say .1 of nij' s ﬁ?(§+])
must be within .1 of n and ﬁ?(V+1) must also be within .1 of n

i%j ijk
at the end of a given cycle in order for the procedure to stop.

ik

After the ﬁijkls for any model have been calculated, the next step
is to test for goodness-of-fit for that model. The method used is the like-

lihood-ratio statistic, where

2 . ( observed, _ nijk
G- =2 a%1 (observed) 1°g(expected) 2 a?T nijk1og(5‘. -
cells cells ijk

This test statistic has an approximate xz-distribution with degrees of

freedom as follows
d.f. = (number of cells; - (number of parameters fitted).
The degrees of freedom for the model of complete independence are
d.f. = 1K - (1 + (I-1) + (3-1) + (K-1)).

The degrees of freedom for the model of constant association from above are
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d.f.

IJK = (1+(I-1)+(J-1)+(K-1)+(I-1)(J=1)+(I-1)(K-1)+(I-T) (K-1)

n

(K=1)(IJ-1).

[f the mode] of constant association fits the data, then U123 is concluded
to equal zero, i.e., that there is no three-way interaction present.

Using the computer program BMD4F, it is easy to fit 11 possible models
for the three-way table. Then select the simplest model that has an adequate
fit. Once a model has been selected, the estimates for the u-terms (model
parameters) can be obtained by using the aijkls from the appropriate model.
These estimates can be obtained from BMDP4F.

In the case of four-way and higher order tables, it becomes costly to
fit all possible models. The program BMDP4F has available a procedure
called Stepwise. There are two ways to go about looking for an adequate or
supposed 'best' model. First by starting with the simplest model of interest,
BMDP4F stepwise will add the most significant higher order term not previous-
ly included in the model, until it comes up with a model that adequately fits
the data. The other approach starts with the model of constant association
and deletes the least significant u-term. The approach stops after the
model no longer fits the data for some predetermined level of significance.
It is then necessary to go back to the model that fits the data adequately.
These approaches do not necessarily arrive at the same model. It is then up
to the experimenter to choose the better model. Also by obtaining the esti-
mates for the u-terms of the saturated model, one might be better able to get
a feel for which u-terms are important. Thus by using these u-terms it can
help the experimenter get a better idea of what model to choose for the start
of the additive stepwise approach.

An example is given in the next section of a four-way table for the
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failure time of patients with breast cancer. The stepwise procedure could

be used, if it was desired to come up with a 'best' model.

2.5 Examples

The first example uses lifetime data to illustrate the applications of
the loglinear model as proposed by-Fienberg (1980). The data was obtained
from the BMDP manual (1981), (the original data comes from Morrison et. al.
(1973)) and was also analyzed in Bishop et. al. (1975). The data deals with
the three year survival of breast cancer patients with variables age, diag-
nostic center, and inflammation summarized as follows

Variable 1. Degree of inflammatory reation and appearance

1. minimal - malignant appearance
2. minimal - benign appearance

3. greater - malignant

4. greater - benign

Variable 2. Survival for three years
1. No
2. Yes
Variable 3. Age at diagnosis
1. under 50 years
2. 50 - 69 years
3. 70 or older
Variable 4. Center where patient was diagnosed
1. Tokyo
2. Boston

3. Glamorgan
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[t is of interest to the experimenters to know the effect of the first vari-
able in the survival at different centers. Bishop et. al. (1975) proposed a

couple of models to test this, first, model A is,

108 Mign = 87 gy * Y2(g) T U30k) * a0t Miagis) T Y23tak)

*Uigginy T Y2a(51) t Ysaqkn) t M2acikn)

whefe 1= Vowwnuls § 2 Ty o iy B = LpeenaRy T = Vyu s o sbes

This model has all three-way interactions, except Ui0g set equal to zero,
plus Uy = 0. If this model fits,it says that there is no three or four-
way interaction present, except possibly Ujog » the three-way interaction
of interest. The next model tests for no three or four-way interaction

at all.

Model B is

109 Myapy = U+ Upgy ¥ o) Fusk) Y Ya(n) t Yiaeis) T Y23(k)

Uiyt Ysakr) T Yr4¢i) 0

where 1 =1,...,I,3=1,...,d, k=1,...,K, 1T =1,...,L.

These two models differ by only the term, Ur2a(ij1): Thus if both models
give an adequate fit, it can be concluded that Uyog = 0, and that it is not
necessary for a good fit of the model. It also says that if age is fixed
then the relationship between survival and inflammation doesn't differ among

centers. By looking at the xz(model B) minus Xz(mode1 A), this difference
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is a Xz value for the significance of Uyog» since it is the only term
different in the two models. To actually test the significance of Uyogs it

is necessary to compare this X2 value to a xz percentage point with degrees
of freedom equal to d.f. model B minus d.f. model A. The results of the
analysis on page 77, indicates that both models provide an adequate fit.

Model A has X2
2

36.21 with 40 d.f. and a P-value equal to .6418 and

model B has X 41.39 with 46 d.f. and a P-value equal to .6654, thus for

both models the null hypothesis of an adequate fit can not be rejected. The
X% value for the diffence is 41.39 - 36.21 = 5.18 with 46 - 40 = 6 d.f.
Thus the effect of U124 is not significant implying Uypg = 0, and it can
be concluded that when age is fixed that the interaction of survival and
inflammation doesn't differ among centers.

Other hypotheses of interest can be tested in a similar fashion. The
X2 values for the tests of complete independence and of constant association
are also printed out. From the P-values it can be concluded that the model
of complete independence does not give an adequate fit and that the model
of constant association does provide and adequate fit. It is not surprising
that this last model fits since it implies that there is no four-way inter-

action and from model B it was concluded already that no three or four-way

interactions were present. The next chapter considers the GSK model.



Chapter 3
The GSK Model

3.1 Introduction

This model was proposed by Grizzle, Starmer, and Koch (1969). The
t-year survival rate or probability that an individual with a disease is
alive t-years from the time of diagnosis is used to evaluate the effectiveness
of a given type of therapy. Clinical trials have been used to provide informa-
tion for the estimation of t-year survival rates and to compare survival rates
for different types of treatments. When some of the patients are not traceable
for the entire t-years,due to reasons unrelated to the treatment and/or the
disease, then if the lost to follow up or withdraw patients are removed from
the analysis the estimates of the survival rates will be biased (Koch et. al.
{1972). Also, in a ciinical trial the patients can be classified according
to several other variables such as sex, age, extent of disease, etc., and the
survival rates may differ between classifications. The loglinear model
enables the researcher to incorporate the withdrawn patients information as
well as =stimate the survival rates after accounting for the categorical
effects of variables such as age and sex. For example, a two-way table is
obtained when the researcher observes whether an individual lives, dies, or
witndraws in year 1, year 2, year 3, year 4 or year 5. The expected
probability of an individual being in the 1ith Tlevel of variable 1 and the

jth Tlevel of variable 2, denoted by “ij’ can be modeled as a function of
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time (populations) by taking linear combinations of the rows and possibly
looking at contrasts of these combinations. Then the model has the form

F(z) = K Tog Ar  where the matrix A 1is used to obtain linear combinations
of the LITE such as to incorporate the withdraw information into the survival
rates and the K matrix is used to construct desired contrasts for comparing
t-year survival rates. The following are examples where the GSK model can

be applied.

Example 1. Let variable 1 be whether a patient lives, dies, or withdraws
from the study. Let variable 2 be the number of years of survival. Then
the survival rate can be modeled as a function of time i.e. whether a person
lived 1 year, 2 years up to 5 years.

Example 2. The data is the 5-year survival of women treated for breast
cancer, (Koch et. al. 1972). There are three variables measured on each
woman, degree of skin fixation, node status, and tumor size. The 5-year
survival rate is then modeled as a function of these variables, to see if the

survival rate is different for the different combinations of the variables.

3.2 Definitions

In the Grizzle, Starmer, and Koch (1969) paper, the loglinear model
is used slightly different. It involves the ratio of logarithms of the
expected cell probabilities. Lamm (1981) referred to this model as a
logistic model since it is a comparison between the response {dependent)
variable and each explanatory variable (or independent variable) separately,
and no comparison is made between the independent variables. The GSK model
corresponds more closely to the simple linear regression model, where the

explanatory variables are assumed independent and the loglinear model
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corresponds more closely to an analysis of variance model, where interaction
is tested for in selecting a model. For the GSK model, it is necessary to
present some additional notation and give some definitions before going on to
the general procedure described in Section 3.4. The frequency distribution for
this categorical data is exactly the same as the frequency distribution for
the loglinear model in Table 1 of section 2.1. Table 2 contains the expected
cell probabilities, which are the probabilities used to define the expected

cell freguencies.

Table 2
Expected Cell Probabilities
Population Categories of Response
(factors) 1 2 . .. J Total
1 1 Mo - - = Ty -
2 Tl Tz - v+ Ty T
I T T2 - - - T3 -
1 "2 1 T
Define

E; S [Tri'l’“'iZ""’H-iJ] 1‘ = [E{glé)-.-ng]

which are the true but unknown cell probabilities,

p'ij = nfj/n,i. : E.{ = (pﬂ’piZ""’piJ); p- = (R'["Eé-""’ﬂf);
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which are the estimates for the unknown cell probabilities with variance

mip(T=mig) =m0 - e e ey
"o Ti2llmmi) - o - Ty
var (p;) = ¥(z;) = -
1
g g2 e Tygldemg)
L N

where the diagonal elements correspond to the variance terms for an

ordinary binomial case and the off-diagonal elements correspond tc the

covariance between two proportions;

The matrix S is the sample estimate of the covariance matrix of

)3

v(p) = block diagonal matrix having V(p,) on the main diagonal;

¥(p;) = sample estimate of V(=

fm(z) = any function of the elements of = that have partial deriv-

atives up to second order with respect to the w.., m= 1,...,u,

1]
where u < (J-1)I;
fo(p) = f (1} evaluated at = = p;
(E(E))‘ = (f](E)’fz(l)""’fu(E));
Fr= (E(p))7 = (£,(p)sfo(p)s...of (p))s
3fm(ﬂ)

aT.

iJ

|
¥

T pi;1s and S = HV(p)H~.

|

Definition 3.2.1

The logistic GSK model is

F(m) = Klog A n
tx1 txu  uxIJ IJdx]
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where K and A are matrices of constants to be determined by the

hypothesis of interest and m 1is a vector of cell probabilities.
A is used to combine the desired probabilities and also to weight the
probabilities differently if this is needed. The K matrix is used to make
desired comparisons between the probabilities selected by A and is used to
handle ordered categorical data (such as age). The function F{p] gives the
estimates for the survival times for failure data in an example in Section 3.5,
and since it is expected that survival rates will decrease as time goes on
the K matrix is used to take this into account.

The general procedure to analyze the GSK model is discussed in Section

3.4.

3.3 Literature Review

This approach involves a logistic model to analyze categorical failure
data. The GSK model was developed by Grizzle, Starmer, and Koch (1969),
because of the flexibility in selecting the K and A matrices this procedure
yields itself better to ordered variables than the loglinear model. In the
analysis of this model, the method of least squares is used to test hypotheses
of interest, instead of using the maximum likelihood methods used for the
loglinear model. The program SAS FUNCAT was developed to handle this type
of analysis. In the example in section 3.5, SAS FUNCAT was not used bacause
of the singular covariance matrix that was produced by the derivative approach
used by this program. Because of an idenity that can be used for the logistic
GSK model, it is not necessary to use this derivative approach since SAS
FUNCAT is set up for a number of Tinear models not just the logistic model.

Thus SAS PROC MATRIX was used in the example to test for goodness-of-fit and
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to obtain estimates for the regression parameters. According to GSK (1969),
the least squares method for estimation has been shown to be asymotically
equivalent to the maximum 1ikelihood methods. The GSK method does make it
easier to test for marginal homogeneity (i.e. to test for differences within
a variable), but harder to test for independence of variables. For the
loglinear model discussed previously, this situation is reversed. Lamm {1981)
analyzed a data set that had already been analyzed by Fienberg {1981), using

the GSK approach and found that the resulting estimates were almost identical.

3.4 General Procedure

The model developed by Grizzle, Starmer, and Koch (1969) has many forms.
The specific logistic model, as defined inSection 3.2 is just one of these
linear models proposed by GSK (1969). In a paper by Kock, Johnson, and Tolley
(1972), this logistic model is used to analyze failure time cross-classified
categorical data. The GSK model uses a non-iterative approach to estimate
parameters, via the Teast squares method and uses minimum chi-square statistics
to test for goodness-of-fit.

The appropriate general model under this approach can be expressed as
E(z) =K log A x

where K and A are matrices of constants that are dependent on the hypothe-
sis on interest (as describedinSection3.2)and = is the vector of the true,

but unknown cell probabilities. For this model, GSK have shown that

H=[2n=pl =KD A, thus S =KD 'AV(p)A'D™

K', where K and A are as
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above and D s defined below;

Cap O 0 0
0 ap 0. 0

D = diagonal (A°p) = 0 1]
0 0 ap

where as is the ith row of A-.

Assume F(g) = X B , where X 1is a known design matrix and 3 is a vector of
unknown parameters v < u. In the example to follow a two-way contingency
table is considered, where there is one response variable and one explanatory
variable. The two mgdels have 11 = (1,2,3,4), since the explanatory variable
was ordered (discrete values for length of life of the individual under study)
and _é_ is b obtained by minimizing (F(p) - Xb)~ 5_1(5(3) - Xb).

To test for the adequacy of the model, compare

1 1

SS(F(3) = Xxa) = F*S”

F - b~(X"S~

XJb

with a xz-value with d.f. equal to d.f. = number of elements in F(p) - Rank
(X). Given the model is adeguate from above, it is possible to test any
hypothesis concerning g, i.e. HO:C_B, where C is a dxv matrix of arbitrary

constants of full rank. The test statistic for this is

SS(C 8= 0) = bLr(C(X
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This above procedure is illustrated in the following section.

The example given is a
two-way table and estimates are obtained for the marginal survival rates. In
the case of a three-way table estimates can be obtained for each cell's
survival rate. In essense, we are converting it to a two-way and look at each

treatment combination versus the years of survival.

3.5 Example

This example was taken from a paper by Koch, Johnson and Tolley (1972).
The data consists of five year survival data for 126 cancer patients. One
question of interest was whether the probability of survival is characterized
by an exponential curve. If this is the case then an appropriate model for
the log survival rates, F, is a straight 1ine through the origin. In the
problem it is also desirable to calculate the survival rate for each of the
first four years, since the fourth and fifth years have the same estimate,
j.e. this would cause S to be singular. The data for this example is as

follows in Table 3.

Table 3

Five-year Survival Data for 126 Cases
with Localized Kidney Cancer

Years Survived Died Withdrawn Total alive

after the during the or at the beginning
diagnosis year year 'lost’ of year

0 -1 60 47 19 126

1-2 38 5 17 60

2 -3 21 2 15 38

3-4 10 2 9 21

4 -5 4 -0 : 6 10

In this problem there is an ordering present for the explanatory variable
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years, since it is expected that the probability of surviving five years is
much less than the probability of surviving, say one year. Also the probabil-
ity of surviving five years js dependent on the survival of each of the pre-
vious years. There is a special type of Type II censoring present here. It
is referred to as a withdrawal or 'lost to follow-up'. This occurs when an
individual does not report in for a given period and it is not known if the
individual is dead or alive. A1l that is known is that the individual was
alive at the end of the last period. The way this is handled by Koch, Johnson,
and Tolley (1972), is that it is assumed for all cases that the individual
that withdraws or is 'lost to follow-up' died in the middle of the correspond-
ing time period that they didn't report in. Thus the linear model for this
straight line through the origin is

E{F} = B = X8,

EN I

where the elements of X are the number of years of survival, either 1,2,3,
or 4 years. F corresponds to the log survival rates. The survival rates
are denoted by G where

+ .5 Py

Pss :
ij] 3y 4=1,2,3,4
1 Pij2 ¥ Pij2 * -3 Pyj3

o
1}
3 ot

i

t then equals the number of years survived at the present time interval.
52 corresponds to the survival rate for the first two years where t = 2.

Then the log survival rates are

F = [log Gy, log G,, log G,, log G,].
r 1 x 3 4
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Gi gives the survival rates based on weighting the withdrawals half as
much as deaths and survivals. Taking all of the above factors into account

yields the following model,

where K = -1 0 0
-1 1 -1
-1 1 -]

1 -1

-1

— b o}

Thus the estimated survival rate for the first year, F(p;) = Tog(

this is the logarithm of the probability of being alive or withdrawn over the
overall probability of being alive at the start of the first year. The
estimated survival rate for the second year averages over the first two years
for the logarithms of the above ratio. For each year the estimated survival
rate involves averaging over the previous years plus the current year, this
averaging is accomplished by the use of the K matrix. The A matrix pulls
out the desired ratio for each year.

Using the above model, F(p) = K log A p yields the following results,

-.51653é] 56.44 56.44 56.44 656.44

F -1612735 , g = 56.44 74.72 74.72 74.72| x 10'4
-.680523 56.44 74.72 97.52 97.52
-.809682 56.44 74.72 97.52 178.7

where S = kD™ A V(p) AD K-,

If the exponential model does describe the data adequately, then the variation
of the elements in F can be described by the model E{F} = Xg,as shown next,

where B8 1is the constant mortality rate parameter.
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E {F} =

=Wy —
w
n
>
™
-

1,41 -1

where 8 = b = (X°S™" X)” X°S” F. Here b = -.147569 and the goodness-of-
fit test statistic as given in section 3.2 equals XZ = 27.92 with d.f. = 3.
This is significant at = .01, thus the exponential model does not adequately
describe the data. Another model proposed by Koch et. al. (1972) was a

suppressed exponential, meaning it included the an intercept parameter as

follows

11

I =
E{Fr=|; 3| (B =Xs8

1 4

Now b = |[-.427916 and the goodness-of-fit statistic is x2 = .47 with
-.088622

d.f. = 2 which is not significant. Thus this suppressed exponential provides

b
an adequate fit for the data. Also the value e © - 0.65 is interpreted as

the probability of being alive at the beginning of the experiment and

b
5 1

.91 is the rate that the probability of survival decreases each add-
itional year of risk. As stated earlier in this chapter, PROC MATRIX of SAS
was used in order to carry out the above calculations. Table 4 contains the
key to the variables used in this program and the program with results are
printed on pages 78-82. The PROC MATRIX program given with the results on
the following page, deal with the suppressed exponential model. In order to
use PROC MATRIX to get b and the goodness-of-fit test statistic for the
first model looked at simply substitue X = 1/2/3/4; for the line that has
X=11/12/1 3/1 4;. This will give the results for
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Table 4

the K matrix from the model used

the A matrix from the model used

vector of estimated cell probabilities

estimated survival rates

the design matrig from the suppressed exponential model
the matrix V(p)

the diagonal matrix D0 as defined earlier

the inverse of D

the matrix S

the inverse of matrix S

xs x
b the estimate for B8

the goodness-of-fit test statistic
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the exponential model. Next to be considered is the summary, which briefly

is a review of what has been covered in this paper.



Chapter ¢

Summary

In this paper, the analysis of both continuous and discrete failure
data was dealt with. Definitions were given first, concerning the models
that were considered. This was followed by the analysis of the continuous
data. The discrete data was in the form of cross-classified categorical
data, and this was dealt with last.

The Cox regression model was used to analysis the continuous failure
time data. The analysis involved using the partial likelihood equations,
to obtain estimates for the regression parameters. The SAS program PROC
PHGLM and BMDP2L were used in the model selection procedure, to determine
which explanatory variables were important. BMDP2L also gave the estimates
for the survival, hazard and cumulative hazard functions evaluated at x=x,
the average of the vectors of explanatory variables. SAS PROC SERVTEST was
used to test for equal survivor functions for a treatment and a control in
an example in section 1.5,

The loglinear model and the GSK model were used to analysis cross-
classified categorical failure data. These models are found in chapters
2 and 3, respectively, with definitions, general procedures and examples.

The procedures given do not exhaust all of the ways to handle failure

time data. Although they do provide a number of ways to look at this type
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of data. Three books that were used for the procedures considered in this
paper, that would be valuable to those interested in more details and in
more ways of handling failure time data are Lawless (1981), Kalbfiesch and

Prentice (1980), and Fienberg (1981).
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APPENDIX

Computer examples from sections 1.5, 2.5, and 3.5
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KEY (for the following example) :

KASEID
SURVIVAL
FOLLOWUP
LOGBUN
HGB
PLATELET
INFEC
AGE

SEX
LOGKBC
FRAC
LOGPBM
PLYMPH
PMYELOID
PROTEIN
BJP

TSP
SGLOBIN
SCALC

Case identification

Survival time

Censoring status (0 = censored, 1 = complete,i.e. dead)
Log blood urea nitrogen

Hemoglobin

Platelets (0 = abnormal, 1 = normal)
Infections (0 = none, 1 = present)

Age at diagnosis

Sex (1 = male, 2 = female)

Log white blood cell count

Fractures (0 = no, 1 = yes)

Log percent plasma cells in bone marrow
Percent lymphocytes in peripheral blood
Percent myeloid cells in peripheral blood
Proteinuria at diagnosis

Bence Jones preotein in urine

Total serum protein

Serum globin

Serum calcium
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CCHVLRGENCFE CATAINED IN 5 ITLRAVIUNS. N=0.5113.
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PAX ADSCLUTE DERIVATIVE=U.LT400-02, -2 LCG
NUNEL Chi-SUUART = 3120 Wit 12 D.F.

THE (UL CHLING VARTABLES 00 NCT MELT THE 0Q.u0b6G0
STIGNTH ICANCE LEVEL FOR STAYING IN THE MUNCL AND AKRE REMOVEL:
1 AL
SHe 5.
CUNVERGENC L DATAINEC IN Y JTERATIONS.

MAX ABSCLUTL ODLRIVATIVE U144 10-04, -2 LUG
AUEL CHL=SCUARE= A¢.24 WlIH 11 D.T.

THE FGLLCWING VARTABLL S 00 NGT MELT THE 0.0%00
SIGHIFICAICE LEVED tOR STAYING IN ToE DI L AND ARC REMIVLD:

scal

PRLLEDURL,

D=C.490G.
L= 212.24,
P=1).00G0 3.

U=0.482.
L= 2T72.52.
P=0.0002.

N=0.444.
L= 273.417.
P=0.0002.

lesCl WEDKI SDAY,

AULLST 25,

1502

K]
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ST WS

DEPIRNDENT VARTABLLE: SURVIVAL

FVENT TNDRCATUR: TULLURLF

STLP ¢
CUNVERGEMCL OBIAINCD IN 4 [VLRATICNS.

MAX ADBSOLUTE ULRIVATIVE=20,.64220-01.
MONEL CHI-SCUAR L= 35.C6 Wlin 10 n.r.

THE FULLEWING VARTANIES ] AT MEET THIF 0.0%00

Ot LehiAl FAZARDS GENERAL L LA AR

ML TTPEE MYLLUMA

AODEL P ROCCDUR

[IER VALY B
=2 LCo L= 214.06.
Ps0.0CO0,

SIGHEN JCAGCL LEVEL 10P STAYING &N TIn MODEL AND ARE REMIVECE

ST X
siee 1.
CUHVERGENCE ODTAIND IN 4 TTERATLUNS.

MAX ADSCIUTE DFRIVATIVE=D.690TD-04.
MUDLL ChI-SQUARE = 13,22 WITH 9 D.F,

THE FLLLOATIG VARTARLE > U NOT MEET TE 0.0%00

D=0.4306,
=2 LLG L= 2To0.50.
P=0.0DU1.

SIGMIN TCANCL LIVEL 1ol STAYING IN THE MGLEL AMD AHE REMIVIG:

Huf
STEP 8.
COHNVLRGLHCL NuTAINLEG IN 4 JTERATIUNS,

MAX ABSLLUTE DERIVATIVE=0.69700-07.
HUDEL CHI-SUQUARL= 311.96 WlIN 8 D.}.

D=0.421.
=2 LGG L= 271,70,
P=0.0C01.

HU AUDGITIONAL VARTABLES MET THE 0.1000 SIGNINICANCE LEVEL FIR ENTRY.

BATA

Lot LT wtDNL SBAY,

AIGLST 2b,

1942

5

62



MULTI

PLEL MYTLUGMA DATA

STEPWISE PROFURTIONAL PATARDS GENTPAL LIMAR MDGTL PRUCI

VARTADLE

LCGhUM
PLATELET
INTEC
LLGHWBC
PROTEIN
nae

sr
SGLUDIN

NEPENDEH]T

RETA

215420061
=L.54131195%
0.541400T6
1.2458681820
0.05716487
1.27037669
0.30452496
-0.26552449

ITNDICATOR 2

SID. CREROR

0.62519114
0.520669°060
0.21980065
0.36%4%31317
0.0222261%9
0.41742550
0.12244562
0.13309075

VARTABLE:®

SURVIVAL

rmLLewue

PARANETER ESTTIMATES

CHI-SUUARE

11.50
H,NA
6.20

11.68
Hel5
9,38
6.20
3.93

c.cnot
0.003u
a.n12a
0. Cotin
0.007%
.02
0.0128
U ChTu

AR

]

0.207
1 Y
Val2a
0210
0.133
V.1l7n
0.124
V.08

1600 WLDNE SOAY,

AGLST

2N

| RTT

]
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LCGRUM
PLATLLEY
INFFC
LUGHDC
PROTEIN
BJP

TSP
SGLURIN

MULTIPLE MYCLOMA DATA

STEPWISE PRUPDRTIUNAL HALZARDS GENERAL LINEAR HOECEL PROCEDURE
OEPFADENT VARIARLE: SURVIVAL
FYENRT INDICATOR: TOLLCWUP
COVARLIANCE MATRIN CF FATIMATLS
LeGuun PLATELET INI L LoGwic PROVEIN nJpe

0.40344T8 G.0006T6HA4TI U.00630302 Co05T6UT6N 0002763159 D.03924115%
0.0006T6847) 0.2710963 “0,03115719 -U. Co92197 ~U. UG 2ZHZ2H ~0.0nSHT Y3
0.00620302 -0.01311519 0.06n31222 0. U0L264717 G.C0060R3TS -0.00020L 714
0., 05760960 ~0.0692197 0.01264317 N.1328263% 0.0023715521 V.05 GRG0 4
4.0027163159 -0.,0022826 V. 0006083756 G.00237%521 C.0D04940QU03T 0.004600353
0.03924115 -0.0698933 -0.000201774 0.05T684¢64 0.004E2C353 V.LT11244
0.00008L0664 -0.0100e79 0.002185843 0.004610290 0.0002034055% 0,0037126362
-0.0101527 0.02623821 =0.0051R62¢6 -0.00480838 C.00014929LT 0.00042A198]3

Lo:GT WENNI SDAY, AUGLST 25,

15P
F.OUBUA OGS
-U.0l0ee 7S
0.0C21B5%042 =0.0CH1d0.24
Q. OLHELE250  -0D..CCHNININ
0.0002C34055 0 0000492907

SGLunLM
=0.0001%27
0. 02633621

0.003726367 0.,000428190)
C.L14992%53 =Nl 31602
-0.013lce2 d.0179207 )

1'hHe2

!
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AMDP 2L — REGRESST0ON WITH THCOMPLETE SURVIVAL DATA
AUOP STATISTICAL SO TWARE, IHU.

1964 RLSTROOD BLVD. Sulll 202

(21230 4715-5700

PROGEAM KCEVYISED APRIL 1982

HANMUAM REVISED -- 1901

CUPYRIGUT (C) 1982 REGUMTS OF UNIVERSITY OF CALIIUGRHIA

1My SEi KEMARKS AN A SUMMARY OF MEW FLATURES BUR
THIS PROGIKAM, STATE NEWS. TN THE PRINT PARAGRAPH.

AUGUST 23, 1982 Al 22:5B:43

PEOGRAM CONIRIN INFCRMAY ION

2 rEnslEn TITLE IS "MULTIPLE MYELOMA DATA*,
NPT VARTABLES ARE 19, FORMAT 1S FREF,
VARTABLE  NAMES ARC KASEID, SURVIVAL, FOLLOWUR,LCGDUIN,
INFEC o AGE, SEX, LOGWBC s FRAL LOGPEBM,
PRUTEIN, DJP, TSP, SGLOBIN, SCALC.
t FUFM TIME IS SURVIVAL,., STAIUS IS FOLLOWUP,
FESPFUNSE IS 1.
/ RIEGRESSILN COVARIATES ARE 4 TOD 19,
STEPWISE IS MPLR.

Y

START = IN.OUT oI H, TMNOUT ,,0UT o [H, CUT «0UY, CUT, UUT
MOVE=2 3242 424232024242429242020242 02

/ FRINT CASES = &%. SURVIVAL.

/ LND

FROBLEM TITLE 1%
MUL TIPLE MYELOMA DATA

NUMSER OF VARTABLES 10 READ INe o o & « . . 19
MUMLY K UF VARTABLES ADDED BY _.mbzm.n_:_zb-_n_z"-. - Q
INTAL HUMBER OF VARIABLES » o = &+ o o o o « &+ « 19
HUMBER GF CASES TO READ INs o ¢ o = o s v o o » TO END

CASE LADEL ING VARIABLES « « & . » e & @

HLSSIHL, VALUES CHECKED BEFORE —..n >_.:.r IRANS. « NEITHFR
BLAMKS AR e o o o o « o s s o s 2 o s o = o & « MISSING
INPUT UNIT NUMBLR . . . s s s s s e 5
CEWIRD THPUT UNIT PRIUR .:,- zmbc_zo. « DATA. . . Ho
HUMBER UF WORDS OF DYNANIC STORAUCE. o o o o & o 240694

VAKTARLES TO HE USED

1 KASELD 2 SURVIVAL 3 FOILLOWUP 4 LLGBUM
G PIATELET f INFEC 8 AGE 9 SEX
11 FRAC 12 LOGPBM 13 PLYMI*H 14 PRYELUID

e Bap 17 Tsp 10 SGLUBIN 19 SCALC

1HGHy PLATELET,
PLYMPH, PMYELOLD,

s INAING TN TN, GUT.

5 nun
10 LUGKHAC
15 PROTEIN
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HUMBER O

DESCEIPTIVE

VARTABLE
NCa MW A ML
4 Lo
5 hui
b PLATELET
7 INFEC
8 AGF
9 St X
10 LiGWBL
11 FrAC
12 LtGPBA
13 PLYyMPH
14 PMYELOID
15 PRUTEIN
16 BaP
17 180
18 SGLUBIN
19 SCALC

STAT

a

CASES RLAD. .

R LD

CENS

TSTICS

MINTHOH

0,7782
449000
0.0
0.0
8.0000
1.0000
3.,3017
0.0
0u4aTTl
D.0

(=] =1

0.
0.
1.0000
4. 0000
1.0000
Ta0000

L

NNSE CONF S

OKED CODES

FUP FIXED COVARIATES

e = =

STAHDARE

MAX 1MUH MLAN DEV IATIGH
2.2355 1.3970 U.5111
l4.6000 10,1923 2.5535
1.0000 0. H615 0.3481
3.0000 0.2615 0.61%4
82.0000 60.1530 10.3338
2. 0000 1.4154 G.4966
67243 3.8155 0.4368
1.0000 0.7538 0.4324]
2.0000 1.54497 0.3642
24.0000 6. TH4SO he2612
68.0000 3044000 19.9¢28
33.0000 3.a3ue b.b641¢6
2.0000 l.6462 0.4819
17.0000 8.6154 2.2419
12.0000 Ge 1692 2.2410
18.0000 10.1231 1.8]1458

STATUS CODE FREQUEMNCIES
PEKCENT
AD CENSORED CENSORED

TUTAL

&5

DE

44

17

0.2615

65

1 UEAD

V] CLNS

SKERNESS

0.
~0.28
-2.05

24089

0. 06

0e 34

4419
~1la415
-CaT6

0.89
-G0.31

2.51
~0a060

0.78

Q.17

1.84

NRED

KURTOLS IS

€6



PAGF SOBMUIMAE MU PUL MYLLLMA DATA

L

STEP MMl R (4

TOG LK LEvotey = -1 bl BTdY
GLITAL LD -STUARE = Shelu
STANDAKRD

VAL JAULE cocrriciny 1R COLF
4 LIGLU ol 392
6 PLATLILLCT D PRI
T 1IN C O.4T4 u,tlan
10 L1Gnin 1.24%8 (| YT
15 PROITLCIN V.0578 0.0222
16 v 1.2784 U.4lT4
17 e U. 3044 N, 1224
s SuLunthk -1.26%5 0.17339

STATISTICS Th CHTER o REMOVE VARLABLLES

APPRGX, APPRUX.
VARTABLL CHE-sq. CHE- 50 .
HC. M A M E FHILP REAUVE
4 L ULl 11.4%
5 uon 1.20
& PLATLELED I.do
T INNLC 4ali)
0 Al n.ot
9 50X 1.12
LU LLuatt T.49
L fraL 0.4
12 LtutLiepy "1y
13 pPLYM 0,09
14 PMytLoID 0.07
15 PRUTELN G.hT
16 BJIP 10.3%
Lt Ise Ga)e
18 SulOliN Youl
19 SCALY u.HO

MO TEPM PASSES THE REACVE AND LHTER LIAMITS & 0.1%

Bot.=

FolSala
B RN
-2.0119
Pa4a0h
3.4143
2a5990
100625
24403
-1.2411]

P-VALUF

0.0007

dB22
t.uu%0
0.0283
CaTM9
0.2891
U,0062
0.1316
N.00620
C, IS5
u.T909
R R Y]
0.0013
V.10 140
LUas 0410
0,.3%248

o 0. 1900

)

P-vaAL Ut

[ A LR N ORT 2 I I |

Hah219
n.2124
1. 1200
A.4T908
1.U595%
TaH4%U8
1.3%5
. Té€nN

LnG

=0. U0

LIKEL THUUL

-l44.602)0
—Lid. 2499
-1a2,8110
~lale b4l
=148,4d451
-13d.)141
~1%2.62730
-130. 40102
~1s0. 1430
=1%0.u31L7
~1iNn.n4 34
=141, 14
~144,0483
=141 .9000
-140. 48150
-13B.4409
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PAGI 6 BMDEZL MULVIPL D PYELCYA DATA

SUMMARY DV STCPWISE RESULTS

STEP  VARIADLE VAR TARLE LG TMPRIIVE M MY GLOBAL
NO FHNTLRFD o EEMvLD LI FEl Thogp CHI-5QUARF P-¥YALUE

L] ] -1, 874 e dh? 0.C00
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PAGE I BROP2L AULTEPLe MYDLG LA DATA

THH VARTABLE 15 SUBMIVAL

' b APLAN m—===  PHROIPCRTICKHAL HAZANCYS MODEL -----
CASE CASL [MTA] [KI1L] FEaadn Mt kY SURVI VAL HALIAPL LU ITAZARD
LAdEL LUkl R SV IVAL STATUS DLATHY  INLFRI Al RISK  SURVIVAL EVALUATED 10k 2 = ZBAR HESTULUAL
¥ 1.2% DLAD ] ] Gh PAUT LYY 0.0147 U.u6l
1 1.2% Drap 2 o ) (LTI P US4 0.0LL T Badls T Ual9in
5 S DAL 3 0 o [TGTH Y 0.0395 (UMY
4 00 DLAD 4 0 [ 0.9611 U.u395 v. 3105
3 JaU DEAD L] (4] 1 Oa w2 31 J.9611 0,030 0.u3I45 0.0257
A J. 10 DEAD 3 0 99 G.oul? 0.9527 0.0u%0 C.04H5 0,92208
4“0 4ad1) CONSUEED b 1 51 [V YT C.0b13 7304
49 4400 CENSCHRED O 2 57 Ba406 0.0613 Uaelait
8 5.0 DCAD T 2 56 0.92H6 0,041 v.13a0
! H.U00  BLAD ] 2 55 G.0d5y 0.92236 G.ully Q.0r41 U.35%42
12 6. 00 DEAR 7 s 54 u.al80 C.l3u2 Jel&ol
11 4. 00 CEAD 10 2 53 Q.U780 0.1302 0.0548
10 f. U0 LEAD 11 7 52 v.ATRO 0.l302 | . Y T
b L, UOU DUAD 12 pe 51 Jatlll V.8ld0 0.0561 01302 U.0887
15 T.u0  BAD 13 2 50 J. Al g,la2 J.9d493
4 7. 00  DLAD 4 K 54 VNIRTS o.1812 0.3706
1) 1,00  BLAD 15 ? 4H V. Fohn 0.4114) 0.0510 0.1812 V.62
he Ta)  CENSLEED 15 3 Wt U.lidhl U.1812 Dec 170
51 FoUUd  CHNSURED 15 4 LA 0.,8343 0.1812 0.0641
53 o0 CENSCRFD 1% 5 44 UeN2490 0.1924 0,098 7
16 Tai) DEAD 16 5 L] Oulaln .8154 U,il2 Q.2036 lathils
21 Li.00 CcLAD Lr 5 42 (I RN ] U,.3410 dal119
20 1100  DLAD 1 5 at UeT110 £.3410 0. 3034
17 1l.aw OLAL 149 5 LY 0.710 0.3410 Q. 28069
m L. 00 LCAD 20 5 40 0.7110 0. 3410 0.0014
it L. 21 ] 9 D.602 QeT110 0.0687 0.3410 1.0165
5% L1.00 CeLsSCPLD 21 ¢ Ll Ja 7110 0.3410 Valh93
Sh 12.00 CUHSURLD s 1 a7 . 6909 0.3583 t.3830
5% 12,00 CENSUHED 21 ] 36 Da b4y 0.35d3 O.1613
22 14.00 IMAD e 8 35 0.6441 J.6069 0.0113 0,371%% Ut 2]
57 13.00  GCENSORIED 22 5 34 0.6169 0.3755 0.72114
23 Lo, 00 DLAD 23 v ER] V.6251 V. 6L09 C.03n¢ C.dlal u.2 0%
24 15.00  DEAD 24 Y 17 0.6062 0,61353 0.0396 0.4547 0.62%4
26 10.U0  ELAL 24 9 11 0.5043 N.531% 1.0%24
29 16,00 DLAD L U] 30 0.5004 V%5043 0.UH37 G.%37% 1.4%63
51 1600 CENSUKCD S 10 24 1.50413 [US-S Y £ Da3bln
29 1 1.0 CCAY 27 1L 2n De24a7 1.545%0 [P AR
21 17.00 nLap 28 10 2t 0.5/ 0.%2a4f Us.1076 0.04%0 U500
24 10,00  OFAD 29 53] 26 0, 5J9% D437 €.0609 7059 YA
3t 17. 00 OLAD 3o 1o 79 M4 349 v.4327 0.11315%5
30 19.00  CELAD 31 10 24 Q.43 D430y 0.12649 0.0327 1.3944
€a LW Ul LLNSCRIL 1 11 21 Uah 349 0.u327 Vet 3B0

51 19,00 CENSOPED il 12 e De4de9 o.0321 o.loTd
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rAGE AORADPL MULTEPLE MYTLUNA DATA

K AP AN —am = PROPGRVLGHAL HAZARES MCOEL -----

CASE CASE LUM LM REMAIN  MIOATP SURVEIVAL HAZARD AN HAZ A D)

LABFY MUHRF P SURV IV AL SUATUS DUATHS  ENEMM AT PISK  SUPVIVAL FVYALDATED Fiae 2 = IBRAR RE s LUAL
12 24,00 DEAD 32 12 21 [T TN] e AhtY 0.0171% 0.9170 Hahu
13 25.00  DFAR 31 12 20 D42 1% TN 4 n.cnmt 1.00RA dan
34 26,00 DILAD 14 12 19 Tatrabl Ua.ddls 0,031 1.10L7 Holrhafe }
61 PN.00  CENSTRTD 14 13 1A V1201 1.1371 U P ™
i 3200 DLAY L 13 1/ U3 0.2 M1 O.ulr? 1.20f7 L.
36 3IG.00 NrAn 36 12 1 n. 1619 Qa5 T a.019, 1.325%4 Db f t
ar At.00  DTAR ar 13 15 (1 1 Y L B ved 3 L6 | R P .2 43
LR Hl.60  LtAn 3l 12 14 Dl Fry 17211 LTI A I
an 41.00 0OrLAD n 1:¥ 11 w2233 O.LT7IB J, 0604 Lol uaLsOhar
62 A41. 00 CLHSUKID a L4 L2 a1 718 1121 TN
40 51.00 ODLAD 40 14 11 0. 7687 [ R Q.ulh4 109714 .15
41 2. 00 DNFAD Al 14 [N) 0, 2%06% Da1202 .21 2.10105 A P R
[ %) 53.00 CENSOPED 41 15 9 U109 PN V.00
42 T4, 00 UFAD “? 1 ] V.20 1) Va4 Gal20) 23112 VR R
vt 571.00 CENSOHTD w2 1¢ T Haullh 2,019 21000
43 54,00 CLAD 41 16 ] n.lne3 D.06%3 g.0922 2.F211 Z.1a010
EL3 GhHa D0 DLAD hiy (18 9 V. 1552 Daly i U.0620 1.0200 L.HOU?
45 61.00 NLAD 45 16 4 0. 1247 00200 C.685%9 LU A .d 90
65 T7.00 CLASCRED a5 17 3 He0120V .42 1.3377
a6 nn.00  DEAD L1 i 2 y.udn WeN06HH 0.0511) 4,900 .60
“f 09.00 DEAD 4T L7 1 N0.0414 DatH)l % 1.'A39 HL5T0) 3 Latn 202
4n 72,00 DLAD 48 17 v 0.0 L0001 0.1028 A.einy 31200
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HOTE

NG TE 2

—

NUTE®
HUTF 2

NOTE:
NOTE®

NGTE:

NCIF:

STATI1I ST 1 CAL AHAIL

Y51 SY ST M

THF g XPRS5 790 HAS AEFKN RUN UNDLR HELLASE T7.5 OF SAS AT KANSAS STATL (WIvIiRSETY (00d0G).

SAS UPTIUNS SPECIFIED ARE:
SORT=&

DATA CUX;
INPUT REMISS CENSCR IRCAT;
CARD

DATA SET WUPK.LUX DAS 42 NBSFRVATINONS AR 3 VARTAJLIS. OHO URSZ1PK.
T UATA STATLMENT USED 0.21 SECONDS AND LeGK.

PRUL PHINT;
1ME PROCTDURFE PRINT USED .57 SECUNDS AND 162K AND PRINVED PAGE 1.
PROC SURVIFST3
CLASS TRCAT;
VAR REMIS5 CENSORG

SURVIEST LS SUPPORPTED AY THE AUTIHUR, MUT RY 5AS.
TME PROCEVURE SURVTIEST USED 0.5%2 SECONDS AND LooK ARD PP INTLD PAGL

SAS USED 1AZK MF MURY,

SAS INSTITUTF IHC.
SAS CIRCLF

BuX ALOO

CARY, N.C. 27511

to:2

Wt DT DAY,

Al

'

a5

1

G

He
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1
()
Ir

1

21

3
-

23
24
206
28
2%

0

A

REMISS

19

L )
NG

L=

R
L R

N~ EC T T BN NS S N R -

——
e B

r.

e
]

AN

ALY

Clsink

R PR PR e T N A N VI R R U R T T il R R T R

TREAT

P NI NN IIANN RN ATIN R R AR AR Pl A e e e s o s o e ol o o e e B o S e e e

16:02 RlUGLSOAY,

AUSULT 25,

1
1902
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s AT 1 ST CGCAL ANAL Y ST S SY S LI nm
GEHAN-WILCOXEN TUST FOR VARFANLL

L MISS, CEHNORD

TRTAT N SUM uF SCHRES
1 21 2mn
2 21

=211

CHESU= 1300 1 DF . rabi>c

150 =0.00013

LUGRANK TF531 FOR VARIAPLE (IREMISS, CINSORD
THEAT N UDNSCRVED EXPECTLD M-t)*e2/E
1 21 9 19.25% Ga iy
2 21 21 1. 1% Q.17
CHISA= 15.23 ON 1 hF,

PROD>CHIESO=0,0001

LIKLIHOOD RATIO TEST TUR VAPTABLE (REMISS, CENSUR)

TRE AT ] DEATHS L AMDDA
1 21 9 0.025070
2 21 21 0.11530%

CHISQ= 16.47 ON 1 DF, PRUBRDCHISY=0.N001

16202 kLT SDAY,

AUGU T

AL

te

P4

ton.
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Thb=Wa¥ TREQUERLY TAGLES —- MLASURLS i ASSGCLAT TN
MULTWAY D REQULHLY JARLES —= LCOULINEAR DLOELS (1HLLUDL

WHUP STATISTECAL SCFTWART, IHL.

1964 wl 5Tq000 DIV, S dlTE 202

{213) 4rs5-5100

PROGRAM KIEVISED APRTL Lan?

MANUAL H'VISTD —- 1%

COPYIIGHT TUCY 1902 RLGINIS CF UNIVERSTIYY o CALTRUKRNL

TS0 a51AF KRS AND A SUNAARY OF NIW FIATUMES Fow
THIS PROGKAM, STATE HEWS. [H THE PRINT PARAGRAPH,

ADLUST 2%, LUnz AL 183558
PrCGR AP CONTEOL ITNFORMAT IUN

PHINT PAGEL = 51.

PRUNLENA VIILE IS PHOPRISHN BHEAST CANCER OATAC,

INPUI VARTARLLS ARL 4.

HURMAT IS HRFIr.

TABLE 15 4424303,

NANMCS AREL *IIHF Lo APPY, SURVIVID, AGE,CENITR.

CATLGORY  MAPLS ELD APL "MINGMALY  "MIMODTH® y "GRELMALY p *GRISDEN".
CObDESELY ARE L TU 4,
HARESTZ2) AME Ny YES.
conesizy ane 1,
NAML 20 3) ARE UNOLESUY . *H0-69", (OVERGY.
CULLESEIY AT L 1D ),
HAMESEa) ARE TOKYU, MISTAON, GLAMURGN.
CUNESt4) ARE L TO ),

/O TABLL INCICLS Ar T YIMNFL.APP', SUKVIVED, AGE, CINILR.

DELTA 15 Vb

/ Fl MUNEL 1% 150,%A,AC.

MUOUEL  I» STe0C.5C,5A,AC.

MUDEL 1y S Ey IC,TARSLSA AL .

MUDEL 1S 1,5,0,A,

- e,

-

S

7 END

PROBLEY TIOLL T4
MURILSLH DREAST CANCER OATA

HUMBER I VAR TABLES T HEAD LHe o o o o o o = = 4
HUMDIF CF VAKLTADLLS ADDLD DY THANSTURMATIUNS. . ]
INTAL AIMBLR OF VARTABLES & & & 4 & 4 o o & o = 4
NUMHER 1 F CASLS T READ IHe & o o o & & & o = « TU LN
CASE LABELIMNG VAKTAJILS o o o 4 o ¢ o = o o = =

HISSHTHG VALULS (CHECKED MFFLRE th ALT TRANS. &« HLITHLE
BLANKS AFFa o o o o o o o = = 2 o = » = » « + » MISSINYG
THPUT ULNTT NUIHF o 4 o 4 o & o 5 & o o o = = = 5
RLWIMD LHPUT UNIT PRIGIE T #REAUING. - DATA. . HNU
NUMEL I O wGKDS UF DYMAMIC STORACGLe o o« « » = = 12

e ST TURAL ZHEFOY)

74



»szss (B3ERVEC FREJQUEMCY TABLE L
CENTER AGE SURVIVED [MFL.APP
MIN,MAL MINJBEN S33T.MAL  3RT.EEN TCTAL
TCKYG UNGERSY O 9 T 4 3| 23
YES 26 &3 25 3 1 128
—— —_— -] —
TOTAL 35 1% 29 12 isti
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ABSTRACT

There are two problems regarding the analysis of failure data considered
in this paper. The first problem looked at is the analysis of censored
failure data. The analysis is straight forward if none of the individuals
are censored. Cox (1972) suggested a distribution-free approach in the use
of the proportional hazards model. Definitions are given for this procedure
along with the motivation for its use and two examples. The second problem
dealt with is the analysis of categorical data. The two approachs used
are the loglinear model as presented by Feinberg (1981) and the GSK model
given by Grizzle, Starmer, and Koch (1969). Once again definitions
are given for these approaches along with the general procedure for the

analysis of these models and an example of each model,



