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CHAPTER 1

INTRODUCTION

Interest in the flow properties of concentrated suspensions has
increased in the last few years. It 1s important not only from the point
of view of basic research but alsc for design applications to several cur-
rent industrial processes. Also, silica suspensions may be a suitable test
fluid for model blood flow experiments., The flow of blood has been the
subject of a considerable amount of research. Some of these studies will
be briefly presented in Chapter 2.

A basic understanding of the rheological behavior of concentrated sus-
pensions is Important to manufacturing processes in which large volumes of
concentrated suspensions are handled. It is also important in the hydraulic
transportation of solids by pipelines and for the design of pipelines where
such materials are transported (13).

Some of the industries where this type of transportation has been used
are the following:

The coal industry, in which slurried coal has been transported with
success in several places of the world (39, 48).

Other materials such as iron concentrates (24), limestone (47), metal
ores (18), phosphates and fertilizers, can be economically transported as
slurries. Application of slurry transportation is also important in the
slurry-fueled nuclear reactors (49). Another important application of slurry
transportation is the transport of solid wastes (18).

Many researches have worked in the field of rheology of suspensions. A

brief review of some important studies in this field will be considered in



Chapter 2. Most of these studies have been carried out using rotational
viscometers. The approach in this study was to employ a modified form of
the capillary viscometer of Benis (2) to examine the rheological behavior of
suspensions. This viscometer has the features of being (1) low cost and
(2) easy to operate. A detailed description of the apparatus will be con-
sidered in Chapter 4.

Since most suspensions behave as non-Newtonian fluids, some general
considerations concerning this field will follow.

1.1 General Considerations of Non-Newtonian Fluids

Consider a thin layer of fluid between two parallel planes a distance
dy apart as in Figure 1. A shearing force F is applied to one of the plates,
the other being maintained fixed. At steady state, the force F will be
balanced by an internal force in the fluid due to its viscosity. A Newtonian
fluid is defined as one for which the shear stress, Tyx’ or the force per

unit area, is directly proportional to the velocity gradient.

F_ du duy _ _
The proportionality constant u is the viscosity of the fluid, %3 is the

velocity gradient or commonly called the shear rate vy.

The Newtonian viscosity i, depends only on temperature and pressure and
is independent of the rate of shear. The diagram relating shear stress and
rate of shear for Newtonian fluids (called "flow curve'), is therefore a
straight line passing through the origin and having a slope u.

Fluids for which the flow curve (1 vs y) is not linear or does not pass
through the origin or both for a given temperature and pressure are called

non-Newtonian.
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between two parallel planes.



Non-Newtonian fluids are classified into three broad groups as follows
(3, 40, 51):

1. Time independent fluids. These fluids are those in which the rate of
shear at a given point is solely dependent upon the instantaneous shear stress
at that point.

2. Time-dependent fluids. These fluids are those in which the shear
rate is a function of both the magnitude and the duration of shear and pos-
sibly of the time lapse between consecutive applications of shear stress.

3. Viscoelastic fluids. These are fluids that show partial elastic
recovery upon the removal of a deforming shear stress.

Since most suspensions can be classified as time-independent non-New-
tonian fluids a brief review of this group follows.

Fluids of this type are described by a rheological equation obtained by
simplifying the constitutive equation for the hypothetical Stokesian fluid.

This equation is given below.
vy = f (7). (1.1-2)

The details concerning this equation are given in Chapter 3. This
equation states that the rate of shear at any point in the fluid is a simple
function of the shear stress at that point. Sometimes, these fluids are
referred to as ''mon-Newtonian viscous fluids." The rheological models of
this type which were of direct concern to the present investigation will be
considered in Chapter 3.

Time-independent fluids can be further classified into those which
exhibit a yield stress and those which do not.

a) Fluids with a Yield Stress: A substance that belongs to this category

has the property of remaining rigid when the applied shear stress is of a



smaller magnitude than the yield stress Ty, but flows when the shear stress
exceeds Ty' The physical explanation of this behavior is that the fluid at
rest contains an internal three dimensional structure which is capable of
preventing movement for values of shear stress less than the yield value.
For a stress greater than Ty the internal structure breaks down, allowing
fluid to move.

Some of the mathematical models describing this class of fluids are
presented in detail, by Skelland (40). Typical flow curves for fluids with
and without a yield stress are shown in Figure 2.

b) Fluids without a yield stress: The flow curves for these fluids pass

through the origin and are divided in two categories, pseudo plastic and
dilatant fluids. Most non-Newtonian fluids without a yield stress are pseudo
plastic. The flow curves of these materials are characterized by linearity
at very low and very high shear rates. The apparent viscosity of these
materials decreases progressively with increasing shear rate. A logarithmic
plot of Tyx versus Yy is often observed to be linear over a wide range of
shear rate. The physical interpretation of this phenomenon is that with
increasing shear rates the particles or molecules are progressively aligned.
Instead of the random intermingled state which exists when the fluid is at
rest, the major axes are brought into line with the direction of flow. The
apparent viscosity decreases with increasing shear rate until no further
alignment along the streamlines if possible and the flow curve then becomes
linear.

Some of the mathematical models for this class of fluids are presented
by Skelland (40).

With dilatant fluids, the apparent viscosity increases with increasing
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shear rate. The physical explanation of this behavior can be given in the
following terms; at low rates of shear, the liquid lubricates the motion of
one particle past another and the stresses are consequently small. At higher
rates of shear, the initial structure is broken up and the material expands
providing an increase in the voids between particles. In this situation
there is insufficient liquid in the new structure to lubricate the particles
as they flow past each other and the applied stresses have to be much greater.
The behavior results in an increase in the apparent viscosity with increasing
rates of shear.

Typical flow curves for dilatant fluids are also included in Figure 2.
1.2 Objectives

The main objectives of the present investigation were; (1) to obtain
rheological data for silica suspensions, with a capillary viscometer, and
(2) to fit the data to a model or models which described the flow curves.

Secondary objectives of this investigation were; (1) the formulation of
a pressure flow relation for a Casson fluid (which can describe flow curves
for silica suspensioms), (2) the development of a friction factor correlation
for Casson fluids and (3) the investigation of some approximations to the
Casson model.

1.3 Organization of the Thesis

A brief review of some representative studies concerned with the
rheclogy of suspensions, and the instruments and methods employed in the
evaluation of flow properties are considered in Chapter 2.

A theoretical analysis of the viscometer and methods of data analysis
are presented in Chapter 3. Also some pressure flow relations and friction

factor correlations are considered.



A detailed description of the instrument, the methods of calibration and
the experimental procedures, are presented in Chapter 4. This is followed,
in Chapter 5, by a description of the data analysis and the results obtained.

Some conclusions, discussion and recommendations are presented in Chapter 6.



CHAPTER 2

LITERATURE SURVEY

A brief review of some representative studies on the rheology of sus-
pensions, the instruments and methods employed in the evaluation of flow
properties of suspensions and methods for correlating friction factor data
will be presented in this chapter.

The rheclogical studies of suspensions can be divided in three main
groups as follows:

1. The first group corresponds to those studies in which the viscosity
is related to the concentration and other properties of the suspensions by
means of theoretical or empirical methods. No shear dependence is considered
here, and hence the suspension is treated as a Newtonian fluid.

2. The second group corresponds to those studies in which the suspen-
sions are considered as homogeneous fluids, Shear dependence is taken into
account and the constitutive equations for homogeneous non-Newtonian fluids
are applied to describe the rheological behavior of the suspensions. The
coefficients in these expressions must be evaluated experimentally and no
attempt is made to relate them to the concentration and other properties of
the suspension.

3. The third group is a combination of the above two approaches. In
this case, semi-theoretical expressions have been developed which relates the
shear stress and the shear rate. These expressions contain parameters which
are dependent on the concentration and other properties of the suspension,
and can be, at least partially, expressed in terms of basic properties. The
complete evaluation of these parameters usually requires experimental data.

9
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A wide list of references concerning the work done on disperse systems
is given by Mill (29) and Scott Blair (38). Also an extensive review has
been presented by Gay (12). Some representative studies corresponding to
each of the above groups will follow:

Group 1

The first theoretical equation describing the viscosity of suspensions
was formulated by Einstein, who obtained the following equation for very
dilute suspensions of non-interacting small rigid spheres. This equation,
stated below, has been discussed by a number of authors including Frisch and

Simha (10):

S
Mee = =k 2.3 0 (2.1)
o

where

Mol is the relative viscosity

u is the absolute viscosity of the suspension (poise)

uy is the absolute viscosity of the suspending medium (poise)
and ¢ is the volume fraction occupied by the solids.

Equation (2.1) is frequently written in terms of the specific viscosity

(nsp = nrel

- 1) as nsP = 2.5 ¢.

Since the Einstein equation is generally applicable only to dilute sus-
pensions (with a few exceptions), many attempts have been made to extend this
approach to higher concentrations. Scott Blair (37) has pointed out that
more than fifty modifications of the Einstein equation have been proposed.

Hatschek, as discussed by Scott Blair, has proposed an equation appli-

cable to high solid concentrations of the form
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- (2.2)
rel 1‘3"@—1{
where K was called the voluminosity factor. "Voluminosity" implies that some

of the continuous phase is attached to the dispersed particles, thus increas-
ing their volume.

Two other equations discussed by Scott Blair are the Arrhenius and the
Guth equations. Arrhenius has proposed an equation in 2#n(n) that is linear
in C (the concentration in weight per unit volume). This equation provides a
good representation of the data for many systems if they are free of electro-

lytes. Guth has expanded the Einstein equation in a power series in C,

n =AC+BC2+..... (2.3)
sp

Here C is used in place of ¢. It has been pointed out that the first two
terms are often sufficient to describe a variety of data. If the above

equation is divided by C the following expression results:

n
~2 = [n] = A + BC, (2.4)

where [n] is called the reduced viscosity. Plots of reduced viscosity

against C will often be straight lines for regions of low concentrations and

may be extrapolated to zero concentration to evaluate the value of A. The

parameter A is a generalization of the factor 2.5 in the Einstein equation.
Vand (44), has developed a theoretical equation which accounts for

collision effects. This equation is given below:

No= 14 2.56+7.369 6% 4+ . . . . (2.5)

rel

Experimental data for spherical particles obtained with Ostwald and
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Couette viscometers are in good agreement with the above equation.

Robinson (10) has considered the "free volume" of 1iquid through which
the particles can pass each other and proposed that this "free volume'" is
less than the actual volume due to immobilization of the solvent between the
suspended particles. The following relation was proposed to account for

this.

k

rel 1-s' ¢° (2.6)

n

here s' is the relative sediment volume, defined as the volume which the
sediment will occupy when the particles themselves occupy unit volume. The
coefficient k is a frictional coefficient dependent on the shape, surface
roughness, etc. of the particle.

Mooney (32), using a functional method, has derived an equation which
described a suspension of finite concentration and accounts for interaction

effects between the particles. This equation is

nre.]_

- e (0 (2.7)

where k is a constant (the self-crowding factor) which can only be approxi-
mately predicted by theory.
Ting and Luebbers (43) have proposed the following relation for suspen-

sions of glass spheres in a liquid medium of nearly equal density:

n (2.8)

>

= B
rel a1+ ¢, ~ ¢)
where ¢_ is the volume fraction of solids required for infinite viscosity of
the suspension.

Ford (9) presents a number of theoretical and empirical relationships
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for the viscosities of suspensions of spheres. He has suggested that these
relationships are closer to experimental data when they are written in terms
of fluidities, that is the inverse of the wviscosity.

Moreland (34) has studied suspensions of coal particles in mineral oils,
using a Brookfield viscometer. He has shown that the Einstein equation or
modifications thereof represent the data closely for volume concentrations of
less than 30 per cent. However no empirical equation was reported for higher
concentrations.

Thomas (42) has proposed the following equations for dilute and concen-

trated suspensions respectively:

= 2 ; 1.875
Ne1 = 1+ 2.5¢ 4+ 10.05 ¢~ + 0.062 exp (1 =1 595 ¢) (2.9)
and
=1+ (54 ) ¢2 1 (2.10)
Mrel g3 Q- e/e )" '

where f is a dimensionless factor which varies between 1 and 2 for the entire
range of solids concentration.

Thomas tested the above equations with a collection of data from the
literature. These data scattered about +207 at ¢ = 0.20 to about *75% at
¢ = 0.50 for Equation (2.9).
Group 2

The approach followed in the present investigation is considered in this
group. Some studies of suspensions concerned with the homogeneous approach
will be considered here.

Several investigators in the field of blood rheology have considered
blood as a homogeneous fluid (7, 17). Most of the experimenters have con-

cluded that blood can be described as a Newtonian fluid under conditions of
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high shear and a non-Newtonian fluid at lower shear rates. The non-Newtonian
region can be described by both Power law model and the Casson model over
limited ranges of shear. Whitmore (50) and Scott Blair (37) discuss some of
the major studies that have been conducted in this field. An extensive list
of references may be found in the above mentioned sources.

Merril and coworkers (25) have investigated blood flow in hollow fibers
of varying diameter. The suspensions were also tested in a rotational
viscometer. For purposes of analysis of the experimental data it was assumed
that blood acts as a homogeneous medium and that it obeys the empirical

Casson equation:

172 Tyl/.? #8412, (BT

where Ty is the apparent yield stress and S is a constant. This equation was
found to give an excellent fit to the shear stress-shear rate data.

In different paper, the same author (26) found non-Newtonian and
Newtonian behavior at low and high shear rates respectively. The non-
Newtonian data indicated a yileld stress and were well represented by the
empirical Equation (2-11).

Hershey and Cho (15) have studied the flow characteristics of human
blood in rigid tubes. They have shown that Power law model describes the
data under some flow conditioms.

Tamamushi (41) has made some comparisons between Bingham plastic and
Casson models for the rheological description of blood data, and has suggested
that Bingham model can describe the rheological data over a limited range of
shear. However it was also shown that the Casson model has a wider range of

applicability.
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Other important contributions to the study of non-Newtonian flow proper-
ties of blood were made by Cerny and coworkers (6) who studied blood flow in
a capillary viscometer over a wide range of shearing stresses.

Benis (2), using a capillary viscometer, has tested samples of blood
with hematocrits of 40 and 60, at low shear rate. The Casson model provided
a good description of the data.

Mishra (30, 31) has conducted a study of the flow properties of suspen-
sions of silica and lignite. Viscometric data for these suspensions were
analyzed as a function of shear rate, and the effects of concentration and
electrophoretic mobility were examined. A rotational viscometer was employed
to obtain rheological data and a Zeta-meter to determine electrophoretic
movability. Mishra has found that the flow properties of these suspensions
are dependent on pH of the solution. In addition it was found that the
Bingham plastic model and the Power law model could describe the data. The
Power law model provided a better overall description of the silica suspen-
sion data. The Bingham plastic model described the data well for lignite
suspensions.

Wu (52) has analyzed the rheological data obtained by Mishra. Bingham
plastic, Power law and Casson models were examined. The Casson model was
found to provide the best description of the data.

Group 3

Some studies on the rheology of suspensions concerned with the combined
approach will be considered here.

Gay, Nelson and Armstrong (11) have developed an equation which is
applicable to high solids concentration. A theoretical investigation of the

flow behavior which considered the particle-particle interaction that takes
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place in a settled suspension was conducted. The method takes into account
the effects of liquid viscosity, liquid and solid demnsities, particle size,
size distribution, particle surface area, volume fraction of solids in the
suspension and volume fraction of solids under maximum settling conditions.
The following expression for the apparent viscosity as a function of the

shear rate and properties of the suspension was reported;

n*n,+ on _mn : (2-12)
14+ (56
Be
Here n 1is the viscosity of the suspension

n_ is the viscosity parameter at low shear rates
n_ is the viscosity parameter at high shear rates
g  1is the force-mass conversion factor
G 1is the shear rate
and B 1is a flow parameter which was related with the aid of dimen-
sional analysis to the volume fraction of solids, the yield
stress, the viscosity and density of the suspension, and the

particle diameter.

The following expressions were employed in the evaluation of the para-

meters B, Ty and n,t

B (2-13)
T

y D p_ 1

]
(93
R
P
~~
_e.
B
1
-
~
o
~
o Ni(
o

(2-14)
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n
and n_=uexp {[2.5+ ) 143, (2-15)
o ¢m - ¢ ¢n
where: n = 0.48; this was determined from a least-squares analysis of the
data.

¢ dis the volume fraction solids

¢m is the maximum volume fraction solids for the system
p  is the viscosity of the suspending medium

D_ and

p 7% Pp
Ty is the yield value

are the diameter and density of particles

C 1s a constant of proportionality

k, & are dimensionless constants

Volume fractions of solids from 28 to 55 were employed for testing the
above equations, which were found to provide a good description of the
experimental data.

Casson (5) has considered that the particles in a flocculated suspension
form chain-like groups as a result of the mutual attractions existing between
them. These groups will not in fact be straight chains, but they are treated
as long cylindrical rods. The dimensions of these chains control the vis-
cosity of the suspension. When the suspension flows the groups are subjected
to disruptive stresses, the magnitude of which depends on the shear rate and
the size of a group. Consequently the equilibrium group size, and hence the
viscosity, varies with the shear rate.

Considering the magnitude of the interparticle forces and disruptive

stresses the following equation was developed:

VT = k, +k o, (2-16a)

1
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where ko and k. have been called the square root of the apparent yield stress

1

Ty and the Casson viscosity respectively. These parameters have been defined

as:
k
__a§@g 1
ko e [ 172 ~ 1] , (2-16b)
n
o]
and
; Mo 1/2
Kk, = [————d] 5 (2-16c)
1 a- ¢)aa 1
where Ty is the viscosity of the suspending medium

¢ 1s the volume concentration
a 1is a constant determined by the orientation of the cylindrical
rods
o and B are constants depending on the magnitude of the rod axial
ratio J (length divided by radius of the cylindrical rod).
Obviously, kO and kl can be determined from the intersect and slope of a VT
versus /; plot.

Casson obtalned data with suspensions made by dispersing different pig-
ments in thin lithographic varnish. A cone and plate viscometer was employed.
Experimental data were in good agreement with the theoretical Equation
(2-16a}.

Oka (35) has developed a theoretical model for time-independent non-
Newtonian suspensions. This was based on the assumption that bonds are
formed between particles and that they are broken gradually with increase in
shear stress or shear rate. On the basis of this assumption, Oka has derived
a differential equation to determine the flow curve of suspensions. The

starting point of his development was the following equation:
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ol o e B i (2-17)

(r +6)°%

which represents the percentage decrement of the number of bonds by the addi-
tion of a stress increment dt. This equation is a modification of the follow-

ing equation proposed by Scott Blair (37):

1

-dn=A=d1, (9-16)

where T is the shear stress
n is the number of bonds per unit volume of the suspension at
value of
-dn is the number of bonds broken down per unit volume by addition
of a stress increment dt at any value of T.
A is a proportionality constant
8 is a constant which makes the percentage decrement finite
when 7 = 0
and o is a dimensionless constant, which is less than or equal to

unity.

Since there is a single-valued relation between the shear stress T and
the shear rate ¥y, n can be regarded as a function of y instead of 1, and the
stress increment dt corresponds to the shear-rate increment dy. On the basis

of this consideration, Oka has proposed the following equation:

-dm_p 1 4, (2-19)

(v + )

where B and ¢ are positive constants defined in a fashion similar to that for
A and 8.

The above equation is a modification of the following equation proposed
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by Scott Blair (37):

-.dn =

H|w
=< |~

dY ) (2—20)

where B and m are proportionality constants.
When Equations (2-17) and (2-19) are combined the following equation
results:

—dr kl gy , (2-21)
(r + )% (v + $)°

where kl = B/A. This equation is the fundamental equation proposed by Oka
and is employed to determine the flow curves of time-independent non-
Newtonian suspensions.

When Equation (2-21) is integrated for a < 1, the following expression

is obtained:
(1 + )% =k +ky Gy + )T (2-22)

where ko is an integration constant.
This equation has been called "generalized Casson equation." Two
particular cases of Equation (2-22) are of special interest. For o = 1/2,

and considering that T >> 6 and v >> ¢ the above equation can be reduced to

1/2

1/2
212 K+l 2, (2-23)

which is the Casson equation. For a« = 0 the following expression is

obtained:

T=(k, +k ¢-8)+ k v. (2-24)

If the yield value is considered, that is 1 = Ty at y = 0 the above equation
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becomes:

T = Ty * kl Y, (2-25)

which 1is the Bingham plastic model.
Integration of Equation (2-21) for a = 1, with the boundary conditions

that v = 0 when 1 = 0 gives

k
1
t=0 [EH -1, (2-26)

which has been called "generalized power law." The power law equation can be
obtained from the above expression by assuming either y >> ¢ or y << ¢.
Therefore, Casson, Power law, Bingham and other models can be considered as
particular cases of the equation developed by Oka.

Instruments and Methods for the Study of Suspensions

Two major types of viscometers have been employed in the study of the
rheological behavior of suspensions; rotational and capillary viscometers.

Rotational viscometers allow the determination of the relation between
shear stress and shear rate from torque and angular velocity measurements.
These instruments are divided into a variety of categories among which are
the: coaxial cylinder, rotating bob in an infinite fluid and the cone-plate
viscometers.

In the coaxial cylinder viscometer the material is confined in the gap
between two long vertical coaxial cylinders, one of which can be rotated at
various speeds while the torque on the other is measured. The variation of
torque with speed can be interpreted to give the relation between shear
stress and rate of shear. The coaxial cylinder viscometer is alse called

"couette viscometer.” A modification of this viscometer is the rotating bob
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viscometer which contains only one cylinder that is rotated in a fluid of
infinite extent. The cone and plate viscometer consists of a flat plate and
a cone with a very obtuse angle. The apex of the cone just touches the plate
and the fluid fills the narrow gap formed by the cone and plate. The latter
is rotated and the torque on the cone is measured. In this instrument the
sample can be subjected to nearly constant shear.

Capillary viscometers are used to measure the pressure gradient and the
corresponding volumetric flow rate. From this information, relationships
between wall shear stress and wall shear rate can be obtained. This type of
viscometer has not been as widely used as rotational viscometers for the
study of rheological properties of suspensions. However a capillary viscom-
eter was employed in this study and it did offer some definite advantages.

Benis (2) has developed a simple and inexpensive low shear capillary
viscometer for the rheological study of blood. A modification of this
viscometer was employed in the present investigation and will be considered
in detail in Chapter 4.

Two capillary viscometers (low and high shear), for the study of non-
Newtonian flow, have been developed by Maron and coworkers (22, 23). The
viscometers operate under a continuously varying pressure head and can be
used to obtain flow properties of non-Newtonian fluids with accuracy at low
and high shear rates.

A tube viscometer for the study of non-Newtonian fluids was described by
Caraher (4). The viscometer consists primarily of a 200 ft length, 1/4 in.
ID tygon tubing coiled around a cylindrical support. The liquid under test
is allowed to flow through the tubing while the flow rate and associated

pressure drop are measured. This viscometer is a "macro" version of the
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Benis instrument and was developed several years before the Benis instrument.

A comprehensive description of the commercially available viscometers
that have been employed for rheological flow measurements is given by Van
Wazer and coworkers (45).

Some of the methods for the evaluation of flow curves (t versus y) for
non-Newtonian fluids will be considered here. The details of the methods
which were of direct concern with the present study will be presented in
Chapter 3.

Rabinowitsch (36) and Mooney (33) independently developed an expression
which relates to shear stress and the shear rate for a time-independent fluid
flowing through a tube. This relation will be considered in detail in
Chapter 3.

Krieger and Maron have presented, in three papers (19, 20, 21), methods
for the determination of the flow curves for non-Newtonian fluids. These
methods permit the evaluation of shear stresses and shear rates from data
obtained with rotational and capillary viscometers. The method for capillary
viscometers will be considered in Chapter 3.

Reviews of the methods available for time-independent non-Newtonian
fluids can be found in the books by Wilkinson (51) and Skelland (40).

Friction Factor Correlations

Another topic of concern in the present investigation is the correlation
of friction factor data for time-independent non-Newtonian suspensions.

Metzner and Reed (27, 28) presented a generalized method for correlating
friction factor data in terms of a generalized Reynolds number. Their method
can be used for both Newtonian and non-Newtonian fluids. The correlation has

been tested with data for the flow of non-Newtonian fluids and suspensions in
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pipes and it was found to be theoretically rigorous in the laminar region.
Further details of this method will be considered in Chapter 3.

Hershey and Smolin (18) have employed the generalized method by Metzner
and Reed to correlate blood flow data. Both the laminar and turbulent
regions were investigated. The laminar region was very well described by
the theoretical equation f = 16/NRe' A transition region was observed for
Reynolds numbers greater than 2,400.

Hershey and Grupta (16) have also used the generalized method to analyze
the effect of tube diameter on the transition region for blood flow data.

Hedstrtm (14) has also developed a method for correlating frictiom
factor data in terms of a modified Reynolds number and a third parameter, for
Bingham plastic fluids. This additional parameters, the Hedstrdm number is a
function of the yield stress. An analogous procedure will be employed in
Chapter 3, for the evaluation of friction factors for Casson fluids.

Dodge and Metzner (8) have developed a theoretical analysis for turbu-
lent flow of non-Newtonian fluids through smooth cylindrical tubes. Experi-
mental data were in good agreement with the theoretical equation.

Harris and Quader (13) have recently published a general relationship
for predicting pressure drops for non-Newtonian fluids and solid-liquid
systems flowing in pipelines. The relation accounts for the slip phenomenon
and is applicable to both laminar and turbulent flow. The same authors have
pointed out that their relation has advantages over the generalized friction
factor methods given by Metzner and Reed and by Dodge and Metzmer. Reviews

of other methods are given by Wilkinson (51).



CHAPTER 3

THEORY

The rheological models that were used in this investigation, a general
description of the instrument, and the analysis of unsteady state Newtonian
and non-Newtonian flow are presented in this chapter. Some pressure flow
relations for Power law and Casson fluids, some approximations to the Casson
equation, and friction factor versus Reynolds number relationships for non-

Newtonian flow are also included in the following sectiomns.

3.1 Rheological Models

Silica suspensions can be classified as time-independent non-Newtonian
fluids in the appropriate flow range. The general rheoclogical model employed
to describe these fluids can be obtained by simplification of the general
constitutive equation for the hypothetical Stokesian fluid (1). The assump-
tions used for this simplification are:

1. Incompressible fluid

2. Simple shear flow

3. Neglect of normal stresses effects.

With these assumptions the model for the Stokesian fluid can be simplified to

T=-n4, (3.1-1)
where
; is the wviscous tensor
5 is the rate deformation tensor
n is the apparent viscosity.
For steady state laminar flow, im a cylindrical tube, with v, = ve = 0,

25
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Equation (3.1-1) can be further simplified to give:

dv

= - —2y = -
T,-nlEg)=ny (3.1-2)

The details of this simplification are readily available (3).

For Newtonian fluids the apparent viscosity n, depends on the local
pressure and temperature but mot on 1 or y. For time-independent non-
Newtonian fluids the apparent viscosity is in addition to a scalar function
of y. Under conditions of constant pressure and temperature, these fluids

can be described by the relation:

Y = f(Trz) : (3.1-3)

that is, the rate of shear y at any point in the fluid depends only on the
shearing stress Trs at that point. This relation is employed as the start-
ing point by most investigators for the analysis of time-independent non-
Newtonian flow.

A variety of empirical functions relating the shear rates to shear
stress have been proposed, and have been summarized by Skelland (40).

The following empirical rheological models have been employed in the
present study.

1. Newtonian fluid

y= £ =, (3.1-4)

Here p is the absolute "Newtonian" viscosity of the fluid,
2. Power law or Ostwald-deWaele model:

T 1/n
y=£(1) = ) s (3.1-5)
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Here n and k represent the flow behavior and consistency indices of the fluid
respectively.

3. Casson model
vy = f(1) = l'-2~-['r -2vr_t+ 1] . (3.1-6)
S y ¥
Here S represents the slope of a plot of v7 versus vy, (sometimes called the

Casson viscosity) and Ty is the apparent yield stress.

3.2 The Rabinowitsch and Mooney Equation

This equation, developed by Rabinowitsch (36), and independently by
Mooney (33), has been widely employed to evaluate the shear rate at the tube
wall for a given value of the wall shear stress in capillary viscometers.
Three assumptions are required for the development of this equation:
1. Flow is laminar, so that each particle moves in a straight line,
at constant velocity, parallel to the axis of the tube.

2. The fluid is time-independent under the prevailing conditions;
this means that the fluid obeys Equation (3.1-3).

3. There is no slip at the tube wall.

The volumetric flow rate through a cylindrical tube is given by the well

known expression,

2m R R
Q=r5 7 v, I dr d6 = 2 « [ v, T dr . (3.2-1)
0 0 0

The volumetric flow rate (Q) and the velocity gradient can be related by

integrating the above equation by parts. Integration gives:

R R 2 dv

r z
Q=2 [vz é rdr - é T drl . {3.2-2)
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The first integral of Equation (3.2-2) vanishes because of assumption 3.

Therefore:
R r2 dvz
Q=2nmw/ 57 (- E;—Odr s (3.2-3)
0
dvz
where = (-'E;— . (3.2-4)

Substitution of Equation (3.1-3) into Egquation (3.2-3) gives:

R 2
Q=2m/ %— £ (r_) dr . (3.2-5)
0

Consideration of Figure 3 shows that T., can be expressed in terms of r with
the aid of a momentum balance on a cylindrical shell of thickness Ar. This

balance gives after integration:

r AP
vz T 2L (3.2-6)
The shear stress at the wall (r = R) is:
_ R AP _
Ty = 21 * (3.2-7)
Combination of Equation (3.2-6) and (3.2-7) gives:
r
Ttz T Tw R (3.2-8)
differentiation with respect to r gives:
dr = d{t_ ) . (3.2-9)

Substitution of Equations (3.2-4), (3.2-8), and (3.2-9) into Equation

(3.2-3) gives on simplification:



0

Fig.3. Stress acting on a cylindrical fluid element
of Radius R in steady flow through a vertical tube.
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w
fo T f (Trz) dTrz s (3.2-10)

1
mR 13
w
The quantity Q/'er3 can be called the reduced average velocity and has

the dimensions of sec_l.

From the above equation it can be seen that Q/ﬂR3 is a function only of

Tw. Therefore one can write:

-g—=F(T)=
TTR3 w

% W o e g4 (3.2-11)
T
W

Differentiation of the above equation with respect to T, (with the aid of the

Leibnitz Rule) gives

d[F(t. )] f(t) F(t.)
LA A . Sy (3.2-12)
dt T T
W w w
or
d[F(Tw)]
f(Tw) = 3F(Tw) 4= T dr (3.2-13)
W

Since F(Tw) = Q/ﬂR3 and f(Tw) = Yy the above equation can be expressed as:

dv
—= = 3(—g§) + T
TR

Y = (= dr w

3
Jh_d(di“R ) (3.2-14)
w

This is the expression obtained by Rabinowitsch (36) and Mooney (33). It can
be employed to evaluate wall shear rates from pressure drop and volumetric
flow rate data. However modified forms of this equation are generally more

suitable for this purpose.
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3.3 Modification of Rabinowitsch Equation

Modified forms of the Rabinowitsch equation have been employed for the
analysis of non-Newtonian flow data. One of the most useful is the modifica-
tion of Krieger and Maron (20, 21), which is considered below.

Division of both sides of Equation (3.2-10) by o give:

Tw
s
0

1 2
——%——— B T, f(Tr)d T, » (3.3-1)
T
W

"R T
W

where the subscript z has been eliminated for simplificationm.
Substitutioﬁ for T [Equation (3.2-7)] on the LHS of Equation (3.3-1)

gives

%’-—=1— F¥ 28 ) d v (3.3-2)
TR’ AP ror o

An effective fluidity may be defined by the relation:

4
4, = SLQ/TR" AP, = t ; (3.3-3)

where n, can be called the effective viscosity.
In the case of Newtonian fluid ¢a is identical with the true fluidity,
which is the reciprocal of the coefficient of viscosity.

Substitution of Equation (3.3-3) into Equation (3.3-2) gives:

T
w

_ 4 2
¢, = 7 J L f(tr)d T, - (3.3-4)
T 0
W
This equation implies that ¢a is independent of instrumental dimensions, a

plot of ¢, versus T for the same fluid in tubes with different dimensions

should give a single curve and this is found to be the case with time



independent fluids. Differentiation of Equation (3.3-4) with respect to Ty

(with the aid of the Leibnitz Rule) gives on simplification of the result;

1 9
=¢ +—-—‘
a 44 in(rw)

A|S-<

£

Factoring ¢, from the right side of the above equation gives:
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2 (3.3-5)

Y d log (¢_)
W o_ 1 a _
. =4, [1+ % T 1o () (TW)] (3.3-6)
1 d log (¢a)
Defining AF = Z-E—Igg—?;;y in Equation (3.3-6), find: (3.3-7)
Ya
== ¢_(1 + 8F) . (3.3-8)
W

The "correction factor," AF (AF = 0 for Newtonian fluids) can be calculated
from the slope of a plot of log(¢a)vs log (rw) plot. Equations (3.3-6) and
(3.3-8) were proposed by Krieger and Maron (20, 21). The general form of
Equation (3.3-8) has also been applied to concentric cylinder viscometers
{19, 21). A modification of this relation was used in the analysis of the
instrument employed in the present study.

3.4 Description of the Viscometer and the Analysis of Flow

A new, simple, and inexpensive low shear capillary viscometer has been
recently described by Benis (2). The apparatus employed in this study is
similar in construction to the above mentioned (see Chapter 4 for details).
A simplified schematic diagram of the viscometer is shown in Figure 4,

The operating procedure described by Benis was different from the
procedure used in this investigation. Benis suggests operation of the

viscometer under quasi-steady state conditions. However, unsteady state
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Fig.4. Simplified schematic diagram of the viscometer.
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operation appears to be more practical and can be used to advantage under
certain conditions. This mode of operation was employed in the present
study. The details of operation are considered in Chapter 4 and only a brief
description will be given here.

With reference to Figure 4, a selected pressure APm is applied to the
LHS flowmeter. As the test fluid moves through the capillary the rate of
rise of the fluid in the RHS flowmeter is observed by timing the liquid
meniscus at several heights (y or h*). From these data (h* and t) and the
pressure drop (APm), the volumetric flow rate, the wall shear stress and the
wall shear rate can be evaluated.

Two major simplifications were employed in the analysis and they are
considered below. Because the capillary is coiled, curvature effects should
be taken into consideration. However, according to the analysis of Benis for
Newtonian flow, these effects are not significant and they were not consid-
ered in this investigation. In addition, Benis also showed that the time
required for fully developed flow to be established was wvery short. This
conclusion was based on Newtonian flow. The criteria of Benis (2) was applied
to the instrument used in the present study and it was found that effects of
developing flow could be neglected.

Maron and coworkers (22, 23) have described a capillary viscometer with
continuously varying pressure head which employs mercury, or liquids of lower
density, to drive the test fluids through the capillary. Their apparatus is
different in construction and operation to the Benis instrument. However,
their method of analysis can be applied to the Benis instrument and it will
be used here to determine the relation for the actual pressure across the

capillary as a function of time.
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With reference to Figure 4, let x and y be the heights of the fluid imn
the flowmeters at any time and X and Yo the heights at equilibrium (i.e. when
the pressure is the same on each side).

Define:

AP as the total pressure drop across the capillary,

AP_ as the pressure applied to the LHS flowmeter,

Rb, as the LHS flowmeter tube radius,

1
sz as the RHS flowmeter tube radius,

%
h as the meniscus height in the RHS flowmeter, relative to the
*
equilibrium height (h =y - Yo),
h as the total difference in the column heights on each side
%
(h=y-xor h=2h).

At any instant when the fluid is flowing through the capillary, the pressure

drop AP across the capillary is given by

AP = AP+ pgx - pgy - (3.4-1)
When the system is in hydrostatic balance, x = X5s ¥ = Y and AP = 0; then

0 = egxy - P8y, - (3.4-2)
Subtracting Equation (3.4-2) from Equation (3.4-1) gives:

AP = AP - pgl(y - y5) - (x - x5)] . (3.4-2)

Since the volume of the fluid in the system remains constant the increase in
volume on the RHS must equal the decrease in volume on the LHS, thus
Rb

Y= Yy = —‘Egg (x - xo) . (3.4-3)

= b

o
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The flowmeters used in this investigation had the same radius. For this case

Equation (3.4-3) reduces to

5o P = - (x - xo) 3 (3.4-4)

Substitution of this result into Equation (3.4-2) gives:

AP

AP - 208(y - y5) . (3.4-5)

Letting y - Vo = h*, Equation (3.4-5) can be expressed as

AP

APm - 2pgh#* , (3.4-6)

or alternatively as
AP = APm - pgh , (3.4-7)
where h (h = 2h#*) is the total difference between the fluid levels (i.e.,

y = x). The volumetric flow rate through the right hand flowmeter can be

expressed as:

*
Q= R; %%— s (3.4-8)
or in terms of h
G o e AR (3.4-9)
il RF dt

here RF has been substituted for sz the radius of the flow meter tube. In
case under consideration RF = Rbl = sz.

Maron and Belner (22) have pointed out that the ratio of the capillary
radius to the flowmeter radius raised to the fourth power (Rc/RF)4 should be
maintained below 0.004 in order to make the resistance to flow in the

flowmeter negligible compared to that in the capillary. However no theoretical
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basis for this criteria was given.
For the case of Newtonian flow through the instrument, the volumetric
flow rate in the capillary tube is given by the well known Poiseuille equa-

tion:

T R4 AP
c

Q = — i (3.4-10)

Substitution of Equation (3.4-7) for the pressure drop across the capillary

in the above relation gives:

ﬂR4 (AP_ - pgh)
Q= C m
8nlL

(3.4-11)

Combining Equation (3.4-9) with Equation (3.4-11) gives on simplificaticn:

4
dh R

(APm - pgh) 4 2

n L Ry

dt . (3.4-12)

The above equation can be integrated to give:

i - Py ' o
oe n (APm pgh) t+c', (3.4-13)

B
or loglO(APm - pgh) = - Eg-t -c, (3.4-14)
g X'
where B=s ——5 (3.4-15)
9.212 L RF

and ¢ is a constant of integration.
From Equation (3.4-14) it follows that for a Newtonian fluid a plot of

1og(APm - pgh) versus t should be linear. The viscosity of the fluid can be
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evaluated from the slope of the line, the density of the fluid, and the
instrumental dimensions.

In the present study, Equation (3.4-14) was used in the calibration of
the capillary. The capillary radius (Rc) can be evaluated from the slope of
a plot of log(APm - pgh) versus t provided that the fluid viscosity, density,
and the other geometric dimensions are known. In the calibration distilled
water was employed as the fluid.

For the case of a non-Newtonian fluid, a plot of log(APm - pgh) versus t
may be non-linear. The log(APm - pgh) versus t data can be used to evaluate
the rate of shear at the wall (Yw) as a function of the shear stress (TW). A
method similar to that of Krieger and Maron (20) (outlined in Section 3.3)
was used to obtain the relation between T and Yyt Differentiation of Equa-

tion (3.4-14) with respect to t gives:

d log(APm - pgh) _

= - LA4=-16
dt 3 )

el
Il
=]

where m is the slope of a plot of log(APm ~ pgh) versus t. Since ¢a = llna

[see Equation (3.3-3)], Equation (3.4-16) becomes:
Lo (3.4-17)
The derivative appearing in Equation (3.3-7) can be evaluated for the instru-

ment under consideration with the aid of Equations (3.2-7), (3.4-7), and

(3.4-17) as follows:

m dm
d log(¢,) d 1 (- 55 .

d log(r ) 2.303 d 1°g[%f (P - s )] 2.303 d log(AP - pgh)
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d log(APm - pgh)

since d log(APm - pgh) = it dt = mdt,

then, the above equation becomes:

d 1°g(¢a) 1 dm
d log(rw) - 2 dt °

(3.4-18)
2.303 m

Substitution of Equations (3.4-17) and (3.4-18) into Equation (3.3-6) gives:

\ 1 dm
Y. = - o [1 +——m—m—— —] , (3.4-19)
v Bp 9,212 o> ©oF
where
R(L\.Pm - pgh)
Ty = 5T . (3.4-20)

Equation (3.4-19) is used to evaluate Vi from the first and second derivatives
of the log(APm - pgh) versus t plot, the applied pressure across the capil-
lary, and the dimensions of the instrument.

3.5 Pressure Flow Relations for Non-Newtonian Suspensions

Relationships hetween the pressure drop and the reduced average velocity
for both Power and Casson fluids will be considered in this section.

The Power law equation was given in Section 3.1 as

. 1/n
f(r) = i (3.1-5)
where n and k are as defined in Section 3.1.
Substitution of this equation into Equation (3.2-11), following by

integration between the limits 0 and T, gives

1/n
Q . __"'w (3.5-1)
R %+ 1)
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This can also be expressed in terms of T, 88 the dependent variable as
(3n+l) =
T, = k B () (3.5-2)
n
TR
Equation (3.5-3) can also be expressed in terms of the pressure drop on

substitution of Equation (3.2-7). The result of this operation is:

_ 2Lk ((3n#l) Q"
AP = =& [ = (ﬁR3)] (3.5-3)

The Casson equation has also been defined in Section 3.1 as:

1
f(r) == [t -2 V7 Tl + 1] (3.1-6)
g2 y y

where, S and Ty are as defined in Section 3.1. Substitution of above equa-
tion into Equation (3.2-11), followed by integration between the limits Ty

and Ty gives after simplification:

Ix.l/Z 1 :1-4
= ) -y (_r ) 1. (3.5-4)
W w W

—

"
¥y _ &
(T ) 7

a_.

+
ﬂRB

~~

[

=
Wl

UkJS

Inspection of Equation (3.5-4) reveals that it cannot be expressed in terms
of T, 29 the dependent variable.

Consideration of the magnitudes of the terms within the brackets on the
T &
RHS of the above equation reveals that the term (;x) can be neglected for
T W
G;z) < 0.4, (46) and thus Equation (3.5-4) can be approximated as:
W

T T T 1/2
Q _ w.l _ 1 .y, _4,.¥y 9
Fag gy CReT e 1, (3.5-5)
mR S W w

for a wide range of Ty (Tw > 2.5 Ty). A similar approximation has been
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employed for the Bingham plastic model (14).
Equation (3.5-5) can be expressed as a quadratic in Vtw and solved to
give an expression for Tw in terms of Q. The algebraic manipulations result

in

2 1/2

32 87t T 2
. =388 4 X \[ : N TP, - 8 (3.5-6)
TR

= T
w 147 'y 7 382 14754 TrR3

T
When —— is small compared to ——%—E as was the case with the experimental

14784 TR™S
data in this investigation, Equation (3.5-6) can be further approximated by:
1/2 2
nT Ty ey L (3.5-7)
w147 'y 7 'y TIR3 TrR3

The above equation can be expressed in terms of the pressure drop (AP), by

using Equation (3.2-7); this results in

1/2

328 1 2

ap = 2L (188 y R, 450, (3.5-8)
R 147 'y 7 nR3 nR3

Equations (3.5-5) and (3.5-7) can also be expressed in terms of the variable

U (a variable employed by Merril and coworkers). This variable is called the

average flow velocity and it is expressed in tube diameters per unit time,

although it has the dimensions of sec-l. This variable is defined as:

% (3.5-9)
TR

M|

U =

Substitution of this equation into Equations (3.5-5) and (3.5-7) gives:

% T . 1/2 T_ 4
=23+t D-3D - D1, (3.5-10)

28 1 W w
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and
188 32/5_811/2/_~ .
Tw=m'ry+—-———z7 g +85 U (3.5-11)
respectively.

Approximation to the Casson Equation

The Casson Equation (3.1-6) can be expressed as:
Yoo =¥t + S¥y_, (3.5-12)
W v W

where /?;'is the square root of the apparent yield stress and S is the Casson

viscosity. These variables are sometimes denoted by ko and kl respectively.
Merril and coworkers (25), have derived an approximation to the Casson

equation using the following procedure. From the Rabinowitsch equation, Yy

can be expressed in terms of U as

Y, =2U0@B+N , (3.5-13)
_dfn U
where N = i in T

Combining Equations (3.5-12) and (3.5-13) gives:

1/2 _ T;/2 1/2 51/2

L + S[2(3 + N)] (3.5-14)

Merril made the assumption that N can be considered constant over limited
ranges of Ty in this basis he has arbitrarily set N = 1 (the case of New-

tonian behavior). With this assumption Equation (3.5-14) becomes:

T‘1¢/2 = 1';/2 +2/2 s 1'11/2 ; (3.5-15)

When this equation is squared the following equation results:
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v =1, + 47| s 2f? g+ 85> T . (3.5-16)
Wy y

/2 =1/2

This is an approximation to Equation (3.5-10). A plot of Ti versus U
allows the evaluation of Ty and S with the aid of Equation (3.5-15).

An alternate approximate Casson equation can be obtained with the aid of
Equation (3.5-11). The objective of the following analysis is to find an

expression relating VTW and /ﬁ such that when it is squared, Equatiom

(3.5-11) results. The required expression is of the form:

Tilz =X T;’z +v §tf? , (3.5-17)

where X and Y are the coefficients to be determined. Squaring both sides of

the above equation results in:

r =x2 o +oxy 22425, (3.5-18)
W y y

Comparison of the coefficients of this equation with the coefficients of
Equation (3.5-11) should permit the evaluation of X and Y. This comparison
indicates that Equation (3.5-11) is not an exact square of an equation of
the form of Equation (3.5-17). Three possibilities result from this
comparison:

1. Comparison of the coefficients of U and T;/Z /ﬁ results in:

Y° = 88 or Y=2/238

and

or X = 1.143.

sxy = 32 ;E S

Therefore the corresponding equation is:

rilz = 1.143 T;/z +2/3 s g2, (3.5-19)
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2. Comparison of the coefficients of Ty and U results in:

2 188 _
X = Ta7 or X=1.131
and v2 =852 or Y =2/7s.

Therefore the corresponding equation is
ALY T;/z +2/7 5 T2 (3.5-20)

1/2

3. Comparison of the coefficients of t_ and <t /ﬁ results in:

2 188 i}
X = 127 or X 1..131
andl XY = 23—;Z—§ or Y = 2.021 V7 S.

The corresponding equation is:

1/2

Tl/z = 1.131 =
y

w

1/2

+2.021 V2 ST (3.5-21)

Equations (3.5-19), (3.5-20) and (3.5-21) will be compared for a wide range
of conditions in Chapter 5.

1/2

A plot of 1 gl/2
W

versus U can be emploved for the evaluation of TY and
S. One way to evaluate TY is by dividing the intercept of this plot by
1.143, and S can be evaluated by dividing the slope of this plot by 2/5, in
accordance with Equation (3.5-19). The other Equations (3.5-20) and (3.5-21)
can be employed in a similar way for the evaluation of these parameters.

3.6 Friction Factor Relations for Non-Newtonian Suspensions

Theoretical expressions for the laminar friction factors of Power law
and Casson fluids, flowing in cylindrical tubes, will be developed in this

section. The generalized method of Metzner and Reed is also included.
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The usual definition of the friction factor in terms of the applied

pressure AP is given by

pUZ
g8 _B, (3.6-1)
where Um is the average velocity of the fluid in EEE given by
v = Q/nR2 . (3.6-2)

Substitution of Equations (3.6-2) and (3.2-7) into Equation (3.6-1), results
in an expression for the friction factor (f) in terms of the wall shear
stress and the reduced average velocity Q/ﬂR3.

This expression is given by

2 Tw
£ = et (3.6-3)

i ; ; )2 :
3
TR

The usual definition for the Reynolds number for a Newtonian fluid is

D Um p
Re = —'-'1;'—'—"' . (3.6-4)

or in terms of Q/ﬁR3

2
pow B f Oy (3.6-5)
3
¥ R

l. Power Law Fluid. An expression for the friction factor of a power law

fluid in laminar flow can be obtained by multiplying both sides of Equation
1.D 1 2 . -
{3.5-3) by [z(i?] / [E-p Uﬁ]. The result can be simplified with the aid of

Equation (3.6-2) and the definition for the friction factor, Equation (3.6-1)
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to give

_ 16
"R
e

£ (3.6-6)

where Ré is the modified Reynolds number for a power law fluid, defined as:

2-n
2
e D (—O‘_;;)
1 TR B
Re = N o 1o = - (3.6-7)
2n+1 [ n ]

This expression is analogous to the equation for the friction factor of
Newtonian fluids in laminar flow. It is also analogous to the generalized
friction factor relation for laminar flow developed by Metzner and Reed (28).

2. Casson Fluid. The development given here is similar in principle to that

given by Hedstrdm (14) for Bingham plastic fluids.
An expression for the friction factor of a Casson fluid in laminar

flow can be obtained by multiplying both sides of Equation (3.5-8) by
1 D 1 2 o p
[z @] /50 U ]. The result can be simplified with the aid of Equations

(3.6-1) and (3.6-2) to give

x 5 et 1/2
_ 1 376 ,He 64v2 ,He
£ o [14? —) =+ 7 t—= + 16] , (3.6-8)

Re Re Re

* %
where Re and He are the modified Reynolds and Hedstrtm numbers defined as:

2
*
Be~ = Z—RZ—P— (—93) (3.6-9)
TR
* T D2 p
and He = _E—Z___ (3.6-10)
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3. Generalized Method by Metzner and Reed. Metzner and Reed (28) have

developed a universal correlation for friction factor--generalized Reynolds
number data. This correlation is theoretically rigorous in the laminar flow
region and is applicable to all fluids, Newtonian and non-Newtonian alike.

The Rabinowitsch equation was the starting point of the analysis given
by Metzner and Reed. The Rabinowitsch equation was expressed in terms of Um’
as given below,

d 8u 8U_ d 2n (8U /D)
D  d %n (D AP/4L) °

(3.6-11)

where the variables here are as defined previously. In order to simplify the
above equation, the derivative on the RHS of Equation (3.6-11) was denoted by

the symbol 1/n', that is:

8Um
1 4% 50
= = . (3.6-12)
n d &n (P-AE
4L
“*Rearrangement of Equation (3.6-11) gives:
d 8U
u, _ 3n' +1 m
- (:1—-) = An' D - (3-6-13)
rw
' D AP
where n' can be obtained from the slope of a log-log plot of i1 (rw)
8Um BUm 3
versus —=. The term D _ c¢an be expressed in terms of the variable Q/mR™ by
using Equation (3.6-2):
8u
24 . (3.6-14)
D 3
TR

Experimental observations indicate that n' is very nearly a constant over
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wide ranges of shear stress for a variety of non-Newtonian fluids. Under
conditions of constant n', the expression given below applies. For constant

n', Equation (3.6-12) can be integrated to give:

n'

8u
DAP _ ., . m -
AL - k' ( D ) s (3.6-15)

where k' is a constant.
On substituting for 8Um/D in Equation (3.6-15) from Equation (3.6-13)
and denoting the shear stress at the wall of the tube (D AP/4L) by T, Oone

obtains:

n' d n'
- . (3.6-16)
rw

ot (tm'
o=k Gy

If n' is constant and has the value of unity, the above equation becomes:

d
T, = k' (- d—“) , (3.6-17)
r w

which is, the familiar linear relationship between shear stress and shear
rate for a Newtonian fluid. Here k' is obviously equal to u, the Newtonian
viscosity.

If n' is constant the power law model results:
T = k(- _u , (3.6-18)

Comparison of Equations (3.6-16) and (3.6-18) gives the following relation-

ships (over ranges of shear stresses for which n' is constant):

n=n' (3.6-19)
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and

nl

om g (et (3.6-20)

3n' +1

Equation (3.6-15) can also be expressed in terms of the friction factor, as

defined by Equation (3.6-1). The resulting expression is:

£ = ;6 , (3.6-21)
Re
where
' !
Dn Ui n p
N, = ———— . (3.6-22)
Re gt 1 K’

This relation indicates that all fluids, Newtonian and non-Newtonian, must
follow the f versus NRe relationship in the laminar-flow region when one uses
the generalized Reynolds number defined by Equation (3.6-22).

According to Metzner and Reed, the above development is completely
rigorous and may in fact, be used to check the accuracy of experimental

data. If perfect coincidence with the f = lG/NRe line is not obtained in the

laminar flow region then either the data or calculations are in error.



CHAPTER 4

EXPERIMENTAL

The experimental studies of this investigation consisted of the measure-
ment of the pressure drop across a long length of coiled capillary tube and
the corresponding average flow velocity through a flowmeter tube, for the
flow of a time independent non-Newtonian suspension. From this information
the volumetric rate through the capillary, the wall shear stress and the
wall shear rate can be evaluated.

The apparatus, shown schematically in Figure 5, consists primarily of a
coiled polyethylene capillary connected between two flowmeters graduate
tubes. Application of a pressure to the LHS results in flow through the
capillary to the RHS. The average velocity of flow in the flowmeter camn be
evaluated from the rate of travel of the fluid in the RH tube. The apparatus
employed was a low-shear capillary viscometer, basically similar in construc-
tion to the apparatus recently described by Benis (2).

The components of the experimental apparatus, the methods of calibra-
tion, the operating procedures, the limitations and the range of variables
will be considered in this chapter.

4.1 Apparatus

The experimental apparatus is shown schematically in Figure 5. The
components of the apparatus and their functions are the following:

Capillary tubing: An 800 cm length of "Intramedic'" polyethylene tubing (size

P.E. 190 and I.D. 0.047") was employed as the viscometer capillary.

Plexiglass spool: The capillary tubing was coiled around this spool which

was 11.5 cm in diameter. The design was such that it could be readily filled

50
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Fig. 5 . Sketch of the apparatus.
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with water for rapid immersion in the constant temperature bath.

Luer-Lok adapters: These adapters [size B(7551)] were used to connect the

capillary tube to the flowmeters.

Flowmeters: These were used to obtain average velocity data. Two flowmeter
tubes of the same diameter were connected to the capillary as indicated in
Figure 5. Three types of flowmeters were used. The relevant geometric data

are presented in Table 1.

TABLE 1

PHYSICAL DIMENSIONS OF THE FLOWMETERS

Fizssezirs Tota%miglume Insid?ciiameter Divisions
Graduate 25 0.940 25 ml x i% th
Graduate 10 0.798 10 ml x 57 th
Capillary 3 0.278 —_—

The 25 ml graduate flowmeters were used for suspensions of high concen-
tration, in the region of shear rate (50 - 500) sec—l. The 10 ml graduate
flowmeters were used, with suspensions of low concentration, in the shear
rate region of (30 - 1500) secﬂl. Both 25 and 10 ml graduate flowmeters had
a side arm which was used for connecting a bypass between them.

The capillary flowmeters were "true bore" capillary glass tubes and they
were used for low solid concentration in shear rate region of (4 - 150) sec_l.
Two small "T" tubes were joined to the "true bore'" capillaries, in order to

bypass the polyethylene capillary.
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Bypass: A piece of tubing with a two way stopcock in the middle was connect-
ing between the RHS and LHS flowmeters to provide a bypass. This was
employed primarily to facilitate mixing of the suspension in between experi-
mental runs.

Pressure supply: A 3000 cc chamber was employed as an air reservoir. Air

was introduced using a rubber inflation bulb. (See Figure 5, rubber infla-
tion bulb 1.) The air pressure was read on a "U" tube manometer connected to
the air chamber as indicated in Figure 5. The pressure was applied across
the capillary, by connecting the air reservoir to the LHS flowmeter, as
indicated in the same figure.

Stopcocks: The pressure line connecting the air chamber and the LHS flow-
meter contained three stopcocks. (See Figure 5.) The first one, a three way
stopcock, was used to connect the pressure chamber to the manometer. This
stopcock was used in place of a "T" connector.

Stopcock No. 2, was a three way stopcock which permitted venting of the
reservoir and the viscometer as well as application of a pressure to the
capillary.

Stopcock No. 3, also a three way stopcock was used to connect the viscometer
to an additional rubber inflation bulb. This bulb (see Figure 5, rubber
inflation bulb 2) was employed for the agitation of the suspensions in
between runs. This minimized settling of silica suspensions without changes
in the air pressure in the air chamber. This feature represents an improve-
ment over the Benis viscometer.

Constant temperature bath: The viscometer was thermostated at 25°C * 0.2°C

in a constant temperature bath. Only the coiled capillary was immersed in

the bath, as suggested by Benis (2).
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Connecting tubing: Rubber tubes, 1/4" ID, were used to connect the manometer,

air chamber and the viscometer together.

Cathetometer: A Griffin intermediate cathetometer with an accuracy of + 0,01

cm, was used for measuring the rate of travel of the meniscus in the flow-
meter tube when working at low rates, as well as for reading the pressure
difference from the manometer.

Stopwatch: A Meylan stopwatch, Model 410, was used for timing the rate of
travel of the meniscus up the flowmeter. This stopwatch can be read to 0.1
second.

pH Meter: A Fisher Accumet pH meter, model 210 was used for making measure-
ments in the pH of the suspensions.

4.2 Materials

The suspensions were prepared by mixing silica particles with demineral-
ized water. The silica was obtained from Illinois Minerals Company. The
silica employed (grades IMSIL A-10 and IMSIL A-15) had an average specific
gravity of 2.65. Tables 9, 10 and 11 in Appendix A show the most important
characteristics, chemical analysis and physical properties.

The demineralized water was prepared by passing tap water through a
Barnstead demineralizer containing a mixed resin bed cartridge. The pH of
the demineralized water was 6.4.

The silica particles were spherical with varying diameters from 5 to 40
microns, dependent on the grade. Table 9 shows particle size for two differ-
ent grades of silica.

The pH of the suspensions was fixed at 7.0 for all experiments because
it has been shown that the flow properties of the silica suspensions are

dependent on this parameter (30).
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The silica suspensions were prepared by placing a given weight of silica
in a beaker and adding demineralized water to obtain the desired solid con-
centration.

The concentration was expressed in terms of volume fraction of solids,
¢, defined as volume of solute in ml over total volume of solution. For low
solid concentration, 54 gr of silica were mixed with 380 ml of water. Since
the average specific gravity of silica was 2.65, and assuming no change in
volume of mixing the corresponding solid concentration was ¢ = 0.05. For
high solid concentration, 212 gr of silica were mixed with 320 ml of water.
The corresponding solid concentration was ¢ = 0.20. The mixture was first
stirred thoroughly with a glass rod and then with a magnetic stirrer in a
closed container for more than one hour.

After mixing, a sample was taken for a pH measurement. The remaining
solution was continuously stirred. The pH of the suspensions ranged between
7.2 and 7.4. It was adjusted to a pH of 7.0 by adding 1IN HCl dropwise.

Settling of silica suspensions was present after approximately 200
seconds without stirring, as indicated by comparisons with flow data.

4.3 Calibration Procedure

The methods of calibration of the flowmeters and the capillary tubes are
presented in this sectiom.

Calibration of capillary flowmeters. The radius of the "true bore" capillary

flovmeter tube was determined by filling with mercury and weighing the thread
of mercury contained in the capillary. The capillary radius was calculated
after measurement of the capillary length with the aid of the formula for the
volume of a cylinder and the density of mercury at the temperature of the

filling. Three different lengths of capillary were used and the average
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radius was calculated.

Calibration of the graduate flowmeters. The purpose of calibrating the

capillary tube is to precisely determine its inside diameter. The cross
sectional area of the graduate flowmeters was calculated after measurement

of the length between two graduate divisions by using the cathetometer. The
readings were taken between 0 and 25 marks for the 25 ml flow meters and
between 0 and 10 marks for the 10 ml flowmeters. Several readings were taken
and the results were averaged.

Calibration of the capillary tube. An 800 cm length of capillary tube was

coiled onto the spool and connected to the flowmeters by means of Luer-Lok
connectors. Distilled water was used as the calibrating fluid. The calibra-
tion was conducted with both the capillary and graduated flowmeter tubes.

The apparatus was filled with approximately 20 ml of water (when gradu-
ate flowmeters were used) and approximately 10 ml (when capillary flowmeters
were used). With the bypass closed, water was introduced by means of a
syringe through the RHS of the capillary with the LHS and being connected to
the flowmeter. After the liquid had been injected, the free end of the
capillary was connected to the RHS flowmeter. The meniscus was permitted to
travel a few centimeters in the RHS flowmeter before opening the bypass, thus
minimizing the trapping of bubbles in the filling process.

The apparatus was then examined for trapped air bubbles which, if neces-
sary, were eliminated before proceeding. Stopcock 3 and the bypass were
closed and care was taken to insure that the liquid levels in the two flow-
meters were equal. The viscometer was then placed in the constant temperature
bath. A selected pressure was then applied to the air reservoir, this pres-—

sure was read on the manometer by means of the cathetometer.
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Stopcock 2 was then opened allowing the fluid to flow through the
capillary. The stopwatch was started at the instant stopcock 2 was opened.
The average velocity of the fluid in the RHS flowmeter was measured by timing
the meniscus at several points as it flowed up the flowmeter. When the flow-
time was of the order of 200 sec, stopcock 2 was closed and the bypass was
opened allowing the liquid levels in both flowmeters to be restored to the
equilibrium level. This procedure was repeated at the same pressure, to
obtain another set of flowtimes. The average of these flowtimes was employed
in the calculations.

A wide range of pressures was employed. These ranged from 28 cm Hg to

20 em of H

20 when working with graduate flowmeters and from 10 cm of Hg to

12 cm of HZO when the capillary flowmeters were used.

The cathetometer was used to take readings in the graduate flowmeter at
low pressures, and for all readings in the capillary flowmeters.

At low pressures (water manometer) there was a perceptible small change
in the pressure after stopcock 2 was opened to the system. Therefore a new
reading of the pressure was necessary to make the appropriate correction in
the applied pressure.

At the end of each run, another reading of the pressure was taken
because it did not stay sufficiently constant in some of the experiments.
Variations of pressure with time can be calculated to make the corrections
to the pressure at every point where the meniscus was timed.

4.4 Procedure with Silica Suspensions

The procedure for filling the viscometer and for taking flow data for
silica suspensions was identical to the procedure followed for the calibra-

tion of the capillary tube using distilled water, as was pointed out in
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Section 4.3.

However, one additional operation was used here to minimize settling.
In between runs the suspension was mixed with the aid of the pressure applied
with the extra rubber inflation bulb. This operation was repeated over time
intervals no longer than four minutes.

Two sets of data were obtained at the same pressure and the average of
flowtimes was employed in the calculations.

Cleaning of the viscometer. The following steps were carried out for clean-

ing the viscometer.

1. The Luer-Lok connectors were disconnected, allowing the liquid
inside the flowmeter to drain.

2. The flowmeters, bypass and Luer-Lok connectors were flushed with
distilled water.

3. Distilled water was forced through the capillary tube by means of a
syringe. The silica suspension was displaced completely and the capillary
was flushed several times with distilled water.

Range of variables. Table 2 shows the range of variables encountered in the

experimental study.

Limitations. The maximum applied pressure that can be employed with this
instrument with flﬁids of low consistency is of the order of 30 em Hg.

Applied pressures-of this magnitude and higher results in significant inertial
losses which are not attributable to the capillary alone. This was indicated
by the calibration procedure noting that at pressures higher than 30 cm of

Hg, an additional resistance to the flow was presented. This was mainly due
to inertial pressure losses in the connectors, resulting from the high flow

and the abrupt expansions and contractions in this region.
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The maximum flow time that can be employed with this instrument is of
the order of 200 sec. It was found that significant settling of the silica
particles took place for flow times which exceeded this value. This effect
gives a false indication of non-Newtonian behavior. This situation was
observed for ¢ = 0.05. The criteria for flow time less than 200 sec was

also applied to silica concentrations of ¢ = 0.20.



CHAPTER 5

RESULTS AND DATA ANALYSIS

The results of the calibration of the flowmeters and capillary tubes,
and the analysis of silica suspension data, are presented in this chapter.
From these data, the flow curves are constructed and the various approximate
equations and expressions for friction factors developed in Chapter 3 are

examined.

5.1 Calibration and Data Analysis

Calibration of flowmeter tubes. The procedure for the calibration of the

three types of flowmeters used in this investigation was outlined in Section

4.3. The results of these calibrations are presented in Table 3.

TABLE 3

CALIBRATION OF FLOWMETERS

Flowmeter Type Cross Sectional Area (cmz) Radius (cm)
) (R)
Capillary 0.0607 0.139
10- ml 0.500 0.399
25- ml 0.694 0.470

General procedure for the analysis of data. The data analysis outlined below

applies to both the calibration of the capillary tube and the analysis of

silica suspension flow data.
*
Measurements of h (the height of the fluid in the RHS flowmeter rela-

tive to its equilibrium position) versus time were made at several applied

61
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pressures APm. The details of this procedure have been presented in Sections
4,3 and 4.4,

The pressure drop across the capillary, Apm - pgh, was then calculated
at each t (recall h = Zh*). In addition the wall shear stress values were

calculated from the relation:

R(AP_ - pgh)

Tw = 2L (3.4=-20)

Data were plotted in the form of log (APm - pgh) versus t, and the slope
(m) was evaluated. For some data, the plots were linear (particularly the
calibration data) and for other data the plots were non-linear. In the case
of non-linear plots the slope was evaluated at each t.

Calibration of the capillary tube. This calibration was carried out with

*
distilled water as described in Section 4.3. Data (h versus t) were obtained
with both the capillary and graduate flowmeters on a wide range of applied

pressure (11 cm H,0 < AP < 28 cm Hg). The log (L\Pm - pgh) versus t plots

2
resulted in straight lines, as expected. The capillary radius was calculated
from the slope of the plot for each applied pressure with the aid of Equa-

tions (3.4-14) and (3.4-15). The following relation was used to find the

capillary radius:

9.212 L R% U m
R = (5.1-1)
c g P

where p and p are the reported values of the viscosity and the density of
water at 25°C. The average (arithmetic) experimental radius was then cal-
culated for the data with each flowmeter. Two capillaries (both 800 cm long)
obtained from the same spool were employed in this study. The results of the

calibration are presented in Table 4. Good agreement in the capillary radius
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was obtained over the wide range of pressures employed as indicated in

Table 4.

TABLE 4

CALIBRATION OF THE CAPILLARY TUBES

Flowmetiar Tube 1 Tube 2
L Type Rc (Average) (cm) Rc (Average) (cm)
Graduate 0.0523 (10 ml1) + 0.0002 0.0550 (25 ml) = 0.0002
Capillary 0.0526 = 0.0002

A small difference in the capillary radius (Tube 1) was obtained with
both flowmeters. However this difference was small enough and can be
attributable to experimental error. The capillary radius obtained with the
graduate flowmeters was used in the calculations because results obtained at
high pressure are less subject to experimental errors.

A small difference was obtained in the calibration of tubes 1 and 2, in
spite of being obtained from the same spool. However this variation is
expected because the capillary tube is not a "true bore."

Figures 6 and 7 illustrate typical results of log(APm - pgh) versus t
plots for distilled water at 25°C. The results presented here are for both
types of flowmeters at high and low pressure. Excellent straight lines were
obtained as can be seen in Figures 6 and 7. For pressures of 30 cm of Hg and
higher, plots of log(APm - pgh) versus t were not straight lines. This was a
result of additional contributions to the resistance from the Luer-Lok con-
nectors under conditions of fast flow (inertial losses). As a consequence

applied pressures above 30 cm of Hg were not employed in this study.



64

PPWMOy W O U4
Buisn 1ajom pajusip Joy awy 'sA (ybd*dv)bo; jo joid - 9614

«———— (008) }

o2l ool 08 09 o 02
»0'g
-0l X56'9 — = dolS S0'g
OH wd 00l = dv
90
20%
80




log &P, Pgh)

a4

38

37

36

3.5

34

33

AP=23.35 cmH,0

slope =59.38x10" 4

Lt L aN L L

20 40 60 80 I00 120 140 160 (B0 200 220 240 260 280
‘t{sec)

Fig.7 Plot of log (AR, ~fgh) vs time for distilled water, using the
capillary Flowmeters.

65



66

%
Silica suspension data. Data (h versus t) were obtained with silica suspen-

sions (¢ = .05 and ¢ = .2) as described in Section 3.4, and plotted in the
form of log(APm - pgh) vs t for each applied pressure. When these plots
resulted in straight lines, the shear rate values (yw) can be calculated

from:

y = -2m (5.1-2)

The above equation is a simplification of Equation (3.4-19) for the case of
dm/dt = 0. Linear data resulted for Newtonian flow and also for non-New-
tonian flow over a limited range of shear stress.

When the log(APm - pgh) versus t plots were not straight lines the slope
m was determined at every t. These plots did not have much curvature and
therefore slopes could not be obtained directly with accuracy. To obviate
this difficulty, the following treatment of data given by Maron and coworkers
(22) was employed. First, a known straight line lying close to the
log(APm - pgh) vs t plot is constructed. Next differences (§) are calculated
between the 1og(APm - pgh) curve and the constructed line at selected values
of t.

If the equation of the constructed straight line is designated by:
log(H) = a + bt (5.1-3)

where a and b are constants that can be readily evaluated from the constructed

line, then

(=]
]

log(4P - pgh) - log(H)

log(APm - pgh) - a - bt (5.1-4)

Differentiation of the above equation with respect to t gives:
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d log(APm - pgh)

dé
dt - at -b, (5.1-5)
and hence
d log (AP_ - pgh)
m = = 98 -

On plotting & vs t and differentiating the curve at various points,

%%-is obtained; and this quantity when added to b yields m. A plot of %%

versus t can be employed to evaluate the second derivative (dm/dt).

Following this method values of § were determined at the experimental
values of t for each plot. A standard least squares computer program,
presented in Appendix B, was used to fit the best polynomial for the obtained
8 vs t values. The data were also examined by graphical analysis. Values of
m and dm/dt were calculated at every t, and the wall shear rates (yw) were

then evaluated by using Equation (3.4-19).

Twm 1 dm
v = [1 +_._._.-__-.-] (3.4—19)
w EHp §.212 %° OF

Figures 8 and 9 illustrate typilcal results of log(APm - pgh) vs t plots
for solid concentrations of ¢ = 0.05 and ¢ = 0.20 respectively. TFigure 8 was

obtained for AP = 44,11 cm H, 0, using the capillary flowmeters. Deviation

2
from the Newtonian behavior is seen clearly from this plot.

Two different lines corresponding to AP = 23,13 cm Hg and AP = 20.17 cm
Hg respectively, are presented in Figure 9. They were obtained for high
solid concentration and using the 25 ml flowmeters. Note that although both

plots are linear, the slopes at each applied pressure are different, thus

indicating non-Newtonian behavior.
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For low solid concentrations and high applied pressures it was observed
that the log(APm - pgh) versus t plots were straight lines having the same
slope. This indicates Newtonian behavior,

For low solid concentration and low applied pressures these plots showed
curvature thus indicating non-Newtonian behavior. It should also be noted
that a wide range of T, Was covered for every applied pressure in this
region, in comparison with the case of high ABm. For high solid concentra-
tions the range of T, covered was small. Log(APm - pgh) vs t were straight
lines but their slopes decreased in absolute value as the applied pressure
decreased. TFor this case, Ty and the corresponding Y, were calculated for
t = 0. This procedure was employed since T, may change slightly with h*
whereas the slope does not change perceptibly.

A maximum flow time of 200 sec was not exceeded in any of the reported
data. Observations indicated that significant settling of silica particles
took place for higher values of flow times. This behavior is indicated by
comparison of overlapping data in which the 200 sec flow time is exceeded.

5.2 TFlow Curves and Rheological Behavior of Silica Suspensions

The experimental wvalues of By and Y, were examined for fit to both the
Power law and Casson models. In addition the Casson model approximations
developed in Section 3.5 were examined.

Power law model analysis. The experimental values of T and Y, were plotted

in the form of log(rw) versus 1og(Yw). For a power law fluid a straight line
should result. Lines were obtained for both values of solids concentration.
The results indicate regions of power law behavior.

In Figure 10 the results are shown for a solids concentration of

¢ = 0.05. Two well defined regions can be seen. A Newtonian region with
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Power law parameters of n = 1.0 and k = 0.01 [gm cm_l sec—n], and a non-New-
tonian region with n = 0.676 and k = 0.0368 [gnm cmﬂl sec-n]. With ¢ = 0.20
only the non-Newtonian region was observed with Power law parameters of n =
0.712 and k = 0.1389 [gm cm-l sec_nI. The experimental data appear to be

reasonably well described by the Power law model in the non-Newtonian region

over the range of shear rates which were examined.

Evaluation of Q/ﬂRz and U. The reduced average velocity Q/ﬂRg was calculated

from the following equation:

2

*

a _BHa _

R3 ol (5.2-1)
[ 4

where RF and Rc are the flowmeter and the capillary radii respectively. The
above equation is obtained by dividing both sides of Equation (3.4-9) by nRz.

Plots of h* versus t were prepared for each set of data. The slope
C%%—J was evaluated from the plot when it was linear. If a curve was
obtained, a least squares computer program presented in Appendix 2 was used
to find the best polynomial fit between h* and t. Derivatives %%~ were then
calculated at the experimental values of t.

Values of U were calculated by multiplying Q/wRi by 0.5 in accordance
with Equation (3.5-9). These additional values were employed in the data
analyses to follow in the remaining sections of this chapter.

Casson model analysis. The experimental values of Ty and Y, were plotted in

the form of VTW versus VYW for each solids concentration. The lower curve in
Figure 11 shows the results for a solids concentration of ¢ = 0.05. These
data were obtained with both, 10 ml and capillary flowmeters. As can be

seen, two well defined regions exist. At the higher shear rates the
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experimental points fall on a straight line passing through the origin
indicating Newtonian behavior. The square of the slope of this line is equal
to 0.01; this is the Newtonian viscosity and is identical to that obtained

by the Power law analysis. The slope was calculated by fitting a polynomial
of the form y = bx, using the least squares computer program presented in
Appendix B.

For /?;'< 0.8 and /;; < 8.0, the experimental points fall on a different
straight line having a slope S = 0.0789 and an intercept of /;;'= 0.168.
These parameters were also calculated with the aid of the least squares
computer program. Hence, non-Newtonian behavior is present in this region,
and the experimental data appear to be well described by the Casson model
over the range examined.

For the case of ¢ = 0.20 only the non-Newtonian region was observed and
it was well described by the Casson model as it can be seen in the lower
curve of Figure 12. The values of the parameters /E; and s were also cal-
culated by computer fit. The results were Yt_ = 0.662 and S = 0.126.

y

Plots of /?;'versus /ﬁ-were obtained for both solids concentration. For
¢ = 0.05 the experimental points in the non-Newtonian region fall on a
straight line having a slope m' = 0.221 and an intercept of b = 0.205. The
corresponding plot is shown as the upper curve of Figure 1l. For ¢ = 0.20 a
straight line was also obtained as can be seen from the upper curve of Figure
12. This line had a slope m' = 0.365 and an intercept of b = 0.753. These
parameters were obtained in both cases by computer fit.

According to Section 3.5, values of /T_ and S can be obtained from the

y
/?;-versus /ﬁ-plot, with the aid of Equations (3.5-19), (3.5-20) and (3.5-21).

Values of the Vty and S were obtained by dividing the intercept b, and the
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slope m' of /¥; versus Jﬁ‘plots by the corresponding coefficients in each of
the three equations.

Calculated values of Ty and s from J;;-versus /;; and from /;;'versus
nﬁf plots for both solids concentrations are compared in Table 5 for each of

the three forms and Equation (3.5-12).

TABLE 5

COMPARISONS OF Ty AND S5 VALUES

Eq. No. Equation Ty 2

¢$=0.05 ¢=0.20 ¢=0.05 ¢=0.20

(3.5-12) /i’= /-Ty‘+ sﬁ(; 0.0280 0.438 0.0789 0.126
(3.5-19) T, = 1.143 /§+ 2/2| sv/g 0.0322 0.434  0.0781 0.129
(3.5-20) T, = 1.131 /-Ty'+ 2v2 sy 0.0329  0.443 0.0781 0.129
(3.5-21) T, = 1.131 ./i+ 2.021 V2 SYg 0.0329  0.443 0.0773 0.128

As can be seen from the above table fairly good agreement in Ty and s was
obtained between the three approximate forms of Casson fluid and Equatiomn
(3.5-12). 1t may be of interest to mention here that Merril and coworkers
(25) working with blood flow have obtained identical wvalues for Ty from /?;
versus /ﬁ and /?; versus /?; plots. Their approximate equation relating /?;
with /ﬁ'is given by Equation (3.5-15).

The experimental data were also plotted in the form of T, versus Q/wR3.
These data are presented in Figures 13 and 14 for low and high solids con-

centrations respectively.
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The approximate relation:

1/2 2
_ 188 325 [‘ T, 45 Q _
Ty = 147 Ty + 7 TY Q/?TRC + “R3 . (3.5-7)
c

which was developed for the Casson fluid in Section 3.5 is indicated by the
solid line in these plots. The parameters TY and S appearing in the above
equation were obtained from /?;.versus /;;Wplots. As is indicated in the
Figures, the experimental data show good agreement with Equation (3.5-7) in
the non-Newtonian regiom.

For ¢ = 0.05, some of the experimental data appear to deviate from the
theoretical equation for T < 0.8. This deviation is expected, because of
the Newtonian nature of the flow in this region as indicated previously.

The Casson model appears to be equally applicable to the description of
the rheological behavior in the non-Newtonian region.

It may also be of interest to compare the various relations between T
and U for the Casson fluid which were presented in Section 3.5. Equations
(3.5-10), (3.5-11), (3.5-19), (3.5-20), and (3.5-21) were compared for a wide
range of U (0.001 - 10 sec_l) for both low and high solids concentration.
The values of Ty and S used in these calculations were the experimental
values determined from the /;;.versus /;;'plots. In Tables 6 and 7 the
results of this comparison are presented for low and high solids concentra-
tion respectively.

Equations (3.5-11), (3.5-19), and (3.5-20) were in good agreement with
the exact Casson Equation (3.5-10) for wvalues of U above 0.1 sec. For high
values of U, U > 10, % values calculated from Equation (3.5-21) deviate from

those obtained from the other equations. For lower values of U slight
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deviations were observed as can be seen from these tables. This is due to
the term (Ty/rw)a, neglected in Equation (3.5-10) for values of TY < 0.4 T,
At low values of U this term becomes important and hence the above wvariation

is observed.

TABLE 6

COMPARISONS BETWEEN t_ AND U FOR $=0.05

dyne/cmZ
W
T e 5 Eq(3.5-10) Eq(3.5-11) Eq(3.5-19) Eq(3.5-20) Eq(3.5-21)
10.000 0.804 0.804 0.805 0.801 0.814
1.000 0.171 0.171 G172 0.170 0.172
0.100 0.0661 0.0678 0.0686 0.0675 0.0679
0.010 0.0414 0.0448 0.0456 0.0448 0.0449
0.001 0.0335 0.0385 0.0393 0.0385 0.0386
TABLE 7

COMPARISONS BETWEEN T AND U FOR ¢$=0.20

T laes Eq(3.5-10) Eq(3.5-11) Eq(3.5-19) Eq(3.5-20) Eq(3.5-21)
50.000 10.7 10.7 10.7 10.7 10.9
10.000 3,54 3.54 3.55 3.52 3.56

1.000 1.21 1.23 1.24 1.22 1.23
0.100 0.695 0.743 0.755 0.742 0.744
0.010 0.541 0.615 0.627 0.615 0.616

0.001 0.482 0.577 0.589 0.577 0.578
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5.3 Friction Factor Correlation

The experimental data were compared with the friction factor expression
for the Casson fluid and the generalized method of Metzner and Reed. The
friction factor expression for the Power law fluid was not considered because
of the similarity with the generalized method.

Casson fluid. In Figure 15 a typical plot of the friction factor (f) versus

*
modified Reynolds number (Re ) is presented for a solids concentration of
¢ = 0.05.
*
The experimental values for f and Re were calculated by using Equations

(3.6-3) and (3.6-9) respectively which are restated below:

2 T

w
2 2 2
or” ()
TR

£ = (3.6-3)

2
dni R ¥ = 3—5§J9 o—gg) X (3.6-9)
5 TR

The theoretical line obtained from Equation (3.6-8) is also presented in this
figure. As can be seen there is agreement between the experimental values
and the theoretical line in the non-Newtonian region.

The experimental points corresponding to the Newtonian region, follow
the theoretical equation f = 16/Re*. The experimental points corresponding
to the non-Newtonian region deviate from this theoretical line as can be seen
in Figure 15. Reynolds numbers for this region were calculated by using
Equation (3.6-9) but with the Newtonian viscosity p in place of 52.

For high solids concentration, ¢ = 0.20, only the non-Newtonian regiocn
was observed; good agreement with the theoretical Casson expression, Equation

(3.6-15) was obtained.
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Generalized method of Metzner and Reed. The following procedure was employed

for obtaining friction factor plots by this method.

1. Plots of log(rw) versus log(yw) for low and high solids concentra-
tion were obtained.

2. Values of n (slope) and k (intercept) were calculated for the linear
portions in such plots.

3. Values of n' and k' were calculated from the following equations:

n=n' (3.6-19)

and

nl

_ __4n' _
k= k' GG (3.6-20)

4, Experimental values of f were calculated by using the same equation
as for the Casson fluid. Experimental wvalues of Reynolds numbers were cal-

culated by using Equation (3.6-22), which is restated below;

v .
Dn U2 n

- m —
Ny, = —Fl (3.6-22)

where Um can be obtained from Equation (3.6-14) as:

U = R(ﬂg) (5.3-1)
TR

5. The calculated values of friction factors (f) and Reynolds numbers
NRe were plotted on a log-log scale.

Figure 16 is the friction factor plot by the method of Metzner and Reed,
for both, low and high solids concentration. The experimental values of f

and NRe for both Newtonian and non-Newtonian regions were in good agreement

with the theoretical equation for laminar flow f = 16/NRe'
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85

According to Metzner and Reed (28) the concordance between experimental
points in the laminar region and the theoretical equation f = 16/NRe’ pro-
vides a good criteria for the reliability of the data of time-Independent
fluids.

In addition, Metzner and Reed have considered that any fluid can be
described by Power law model over limited regions. In this case, the
Reynolds number expressed in terms of the Power law parameters becomes
identical to the Reynolds number defined for a Power law fluid. Therefore
the method for friction factor using the Power law model is in principle
gimilar to the method by Metzner and Reed and is not necessary to be con-

sidered here.



CHAPTER 6
CONCLUSIONS, DISCUSSION AND RECOMMENDATIONS

The conclusions of this study and some discussion concerning the
rheoclogical behavior of silica suspensions are presented in this chapter.

In addition the approximations to Casson equation and friction factor curves
are discussed. Some comments about the instrument and recommended modifica-
tions are also included.

The observations of the rheological behavior of silica suspensions
indicate that:

1. At low solids concentration and high shear rates, Newtonian behavior
is present. In particular for ¢ = 0.05 the range of Newtonian behavior was
for shear rates values of Yu > 64 sec_l.

2. At low solids concentration and low shear rates, non-Newtonian
behavior is present. For ¢ = 0.05 this behavior was observed for shear
rates of Ty = 64 secﬂl.

3. At high solids concentration, ¢ = 0.20, non-Newtonian behavior was
observed over the entire range of shear investigated.

4. Both, Power law and Casson models described the data well in the
non-Newtonian region but not in the Newtonian region.

The physical explanation of the first three observations can be given in
the following terms; at rest, the suspension contains a three dimensional
structure of sufficient rigidity to resist any stress less than the yield
stress Ty' When a stress greater than Ty is applied the suspension will flow
and the initial structure is broken down into substructure of particles. The
behavior observed depends on the intensity of the intraparticle attractive

86
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forces. These groups are subjected to disruptive stresses by the flowing
medium, the magnitude of which increases with increasing shear rate. For
every shear rate a different viscosity of the suspension is obtained; hence
non-Newtonian behavior results. Contrary to thixotropic behavior the change
in structure with changes in shear take place so fast that no dependence on
time is observed. At higher shear rates a condition is reached in which the
structure or groups of particles no longer breaks down. The viscosity of the
suspension remains constant with further increase in shear rate., This is the
region of Newtonian behavior.

It may also be of interest to compare the results obtained in the
present investigation with those obtained by Merril and coworkers (26) for
human blood. The following similarities between silica suspensions and blood
flow have been observed:

1. Newtonian behavior is observed in both, at sufficiently high shear
rates.

2. At lower shear rates both can be described by the Casson and Power
law models over the appropriate range of shear rates.

3. A transition region from Newtonian to non-Newtonian flow is observed
in both of them. However, the characteristics are different for each fluid.

In Figure 17 a qualitative comparison of the transition regions obtained
by Merril and that obtained in the present investigation is shown in the form
of square root coordinates. The transition region obtained by Merril and
coworkers is represented by a smooth curve which separates the Newtonian and
the non-Newtonian regions. The special feature of this plot is that the line
describing non-Newtonian behavior has approximately the same slope to that

obtained for the Newtonian region. In the present work, an abrupt change from
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Newtonian to non-Newtonian behavior was observed with silica suspension (con-
centration of ¢ = 0.05). The slope of the line describing non-Newtonian
behavior was substantially different from that obtained in the Newtonian
region.

On the basis of the above comparisons, it is suggested that silica
suspension may be a good test fluid for model blood flow studies.

It may be also of interest to present some discussion concerning the
various approximations to Casson equation considered in Chapters 3 and 5.

For convenience to the reader these equations are restated in Table 8. The
approximate Equation (3.5-7), relating the wall shear stress Ty and the
reduced average velocity Q/nR3, was in very good agreement (as indicated by
numerical comparison) with the exact Casson equation, Equation (3.5-4). It
was also in good agreement with the experimental data in the non-Newtonian
region, as indicated in Figures 13 and 14.

For low values of Q/wRS, or U (see Tables 6 and 7) Equation (3.5-7)
deviates from the exact Casson equation. This deviation is due to the condi-
tion imposed on Equation (3.5-4), that Ty/Tw < 0.4. This condition is no
longer satisfied at low values of Q/ﬁR3 and hence the deviation occurs. The
magnitude of Q/ﬂR3 below which this condition is no longer satisfied depends
on the parameters Ty and 8. As can be seen from Figure 13, the experimental
data of this study deviate considerably from the Casson equation in the
Newtonian region, indicating that this equation is not applicable in this
region. This deviation would be expected on the basis of the results
presented in Figure 11 which indicate that the square of the Casson viscosity
52 is different from the Newtonian viscosity uy. Hence the Casson equation

would not be expected to describe the data in the Newtonian region.
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TABLE 8

APPROXIMATE CASSON EQUATIONS

No. Equation
1/2 T 4
3_"woi, 1ty 4y 1y
(3-5-4) QI“R = 2[4+3(T)—7(T) -84 (T)]
S W W W
188 325 1/2 [Q 2 Q
(3.5-7) T = T + T + 487 ——
w =17 3 TTT % .wa3 3
_ 188 32v2 8 1/2 7 =
(3.5-11) = Ta7 Gyt T3 T VG + 88° T
(3.5-12) Y22, g 12
W y w
(3.5-15) Y2 W2, s g2
w y
(3.5-16) Il AT /g + 8 s? §
w oy y
(3.5-19) TW1/2 = 1.143 ryl/z +2/7 s g2
(3.5-20) W1/2 - 1,151 Tyllz +2/3 s T2
(3.5-21) Tw1/2 - 1.131 Tyllz + 2.021/7 § /2
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In contrast, Merril and coworkers (26) observed from blood flow data
that the square of the Casson viscosity was approximately the same as the
Newtonian viscosity. In this case the Casson model can be extended to the
Newtonian region with negligible error. The applicability of the Casson
equation to the Newtonian region has been observed by several other workers
(38).

Numerical comparisons between Equation (3.5-7) and Merril's approximate
Equation (3.5-16) expressed in terms of Q/nR3, were made. It was found that
Equation (3.5-7) provides a better description than the approximation of
Merril and coworkers for blood flow data.

The three approximate relations between /¥;'and /ﬁ, equations (3.5-19),
(3.5-20), and (3.5-21) when squared provide reasonable approximation to
Equation (3.5-11). These equations and also the exact Casson equation,
Equation (3.5-10), were compared numerically for a wide range of U values.
The results are presented in Tables 6 and 7. For low values of U (dependent
on the magnitude of 1_ and S) deviations between the approximate equations
and the exact equation were observed. These are due to the fact that

/t.. < 0.4. For high values of U the approximation from Equation (3.5-21)

T /T
vy ow
also showed a deviation from the exact Casson equation. This was due to the
error in leading term. For this reason, Equation (3.5-21) is not suggested
as good approximation. The remaining forms obtained, Equations (3.5-19) and
(3.5-20), were in good agreement with the exact Casson equation and with the
approximation (3.5-11), provided that Tlew < 0.4. Equation (3.5-19) pre-
dicted slightly higher values of o whereas Equation (3.5-20) predicted

slightly lower wvalues of T, However both equations can be considered to be

reasonable approximations.
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Since it is much easier to evaluate U than Yo from experimental data
these relations offer the advantage of providing a simple method for the
evaluation of the Casson parameters J;; and § (from J?;-versus /ﬁ plots). A
similar expression relating the /¥;'and YU was given by Merril and coworkers
[see Equation (3.5-15)]. This equation was formulated on the basis of the

%—%%4%% can be considered constant over limited
W

assumption that N (N =
ranges of L Merril and coworkers arbitrarily setted N = 1 (the case of
Newtonian behavior).

With this assumption, identical values of /;; will be obtained from
/E; versus vjj and /?;'versus /;;'plots. This is illustrated by comparison of
Equation (3.5-15) and Equation (3.5-12). Their equation also provided a good
description of blood flow data and extrapolated data showed the same inter-
cept on the /?;'axis.

On the other hand Equations (3.5-19) and (3.5-20) provided a better
description of the data obtained in the present investigation. In this case
intercepts obtained from J?;'versus Jﬁ'and /?;.versus V?;-plots, were not the
same, This would be expected on the basis of a comparison of Equations
(3.5-19) and (3.5-20) with Equation (3.5-12). Recall, that the former equa-
tions were obtained from the exact Casson equation by approximations based
only on order of magnitude considerations in contrast to the somewhat ques-
tionable assumption of Merril and coworkers. On this basis, the approxima-
tions developed here appear to be more reasonable than Merril's approxima-
tion.

The generalized method of Metzner and Reed, for the correlation of
friction factor data and the method developed in this study for a Casson

fluid both described the experimental data of the present investigation. The
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latter was not valid for the Newtonian region. As discussed in Chapter 5 the
method of Metzner and Reed offers the particular feature of providing an
indication of the accuracy of both Newtonian and non-Newtonian experimental
data for the laminar flow region. The friction factor correlation for a
Casson fluid also provided a good criteria for the accuracy of the experi-
mental data in the non-Newtonian region. By using this method, the presence
of Newtonian behavior is indicated by the deviation of the experimental data
from the theoretical friction factor curve. This behavior is illustrated in
Figure 15.

When a fluid is known to follow Casson behavior, a minimum of two
measurements of shear stress and volumetric flow rate (to evaluate U) are
required to evaluate the Casson parameters TY and S. With this information
pressure drops in tube flow can be predicted by using either the expression
for pressure drop [Equation (3.5-8)], or, the corresponding friction factor
versus Reynolds number curve for the appropriate modified Hedstrdm number.
Either of the above procedures should offer some advantage over the general-
ized method by Metzner and Reed which requires a more extensive treatment of
the data to evaluate the pressure drop.

However, if friction factor methods are to be compared with pressure
flow theoretical expressions for the prediction of pressure drops in pipelines
transporting a particular non-Newtonian fluid (i.e. Power or Casson fluid),
Harris and Quader (13) have recently pointed out that rearranging data in the
form of friction factor correlations offer no special advantage to the
designer and in general makes experimental data more inaccessible. The
correlation does provide a method for the comparison of data, however for the

purpose of design it is probably best to employ the pressure flow relation
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directly when the flow behavior is known.

The viscometer and the methods developed in this investigation have
several desirable features. These are summarized as follows:

1. The apparatus is simple in both construction and operation.

2. The cost is relatively low.

3. The calibration is straightforward.

4. Settling of suspensions can be readily detected if overlapping data
are employed in the measurements. When slopes m of log(APm - pgh) versus t
plots were compared at same values of wall shear stress T? it was found that
they had identical values for flow times less than 200 sec. For higher
intervals of flow times these slopes were greater in absolute value indicat-
ing that settling was present.

5. The data analysis is simple and reliable. At high shear rate the
log(APm - pgh) versus t plots are straight lines, the slope m is directly
determined and wall shear rates can easily be calculated from Equation
(5.1-2). 1If they are not straight lines (low shear rates) slopes are deter-
mined at several selected points and the corresponding wall shear rates are
calculated from Equation (3.4-19).

Although this instrument is similar in construction to the instrument
described by Benis (2), the method of operation and analysis is considerably
different. The unsteady state method of operation employed in this study
provides data that are considerably more consistent and reliable over a much
wider range of shear than can be obtained by the quasisteady state method
used by Benis.

The construction of the instrument is not entirely suitable for high

shear measurements with suspensions of low consistency. For example it was
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observed for ¢ = 0.05 that the maximum applied pressure that can be employed
was 30 cm of Hg. Applied pressures of this magnitude and higher resulted in
significant pressure losses which are not attributable to the capillary alone.
This situation was indicated by the calibration data with distilled water
which resulted in non-linear log(APm - pgh) versus t plots for APm > 30 Hg.
The main reason for this deviation was the inertial pressure losses in the
connectors, resulting from the high flow and the abrupt expansions and con-
tractions in this region. Further work can be geared towards resolving this
difficulty. Proper design of the connectors should help to eliminate this
problem.

Other minor difficulties with the instrument employed in these studies
can be resolved with a minimum of effort. Some suggestions are listed below.
1. Changes in pressure when stopcock 2 is opened can be reduced by

using a larger air chamber.

2. Since some settling problems arise in the instrument when high
solids concentration suspension are employed, the following change is recom-
mended. A syringe connected to the by-pass tube can be employed for mixing
the suspension in between runs. This should provide a good agitation and
hence a good mix prior to each run. In this way the need for repeats of data
because of settling can be avoided.

3. A polynomial approach was employed in the curve fittings to describe
both the 1og(APm - pgh) versus t and the h* versus t data. With the former
data the polynomial relationships provided a good value for the slopes m as
indicated by comparison with graphically determined values. However, reason-
able values of the second derivatives (dm/dt) could not always be obtained

from these polynomials. This was indicated by comparison with graphical
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evaluations of the second derivatives. With the latter, the polynomial rela-
tions did not give reasonable initial values of h*.

On the basis of the above mentioned difficulties further work should be
conducted to find a better functional relationship for the description of

the data.



NOMENCLATURE

2
cross section area, cm .
constant in Equation (2.16b), dimensionless.

2 -
instrument physical parameters, cm sec 2.

intercept from a /?;'vs Aﬁ plot, gmllz c:n_l/2 sec_l.
concentration in weight per unit volume, gm cm ~.
integration constant in Equation (3.4-14), dimensionless.
tube diameter, cm.

particle diameter, cm.

friction factor, dimensionless.

gravity acceleration, cm sec .

variable in Equation (5.1-13), dimensionless.
modified Hedstrtm number, dimensionless,

total difference between flowmeter meniscii, cm.
mensicus height in one flowmeter, cm.

-1 -n
power law parameter, gm cm = sec .

1/2 cm—l/Z -1

Casson parameter, gm sec .

Casson parameter, gml/2 c:m"l/2 secqllz.

constant defined in Equation (3.6-15), gm cm-l sec” ~°.
capillary length, cm.

slope defined in Equation (3.4-16), sec-l.
slope obtained from a /?;-versus /ﬁ plot, gm”2 cm_'l/2 secnl/z.

factor defined in Equation (3.5-13), dimensionless.

generalized Reynolds number defined in Equation (3.6-22), dimensionless.
power law parameter, dimensionless.

variable defined in Equation (3.6-12), dimensionless.
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Q volumetric flow rate, cm3 sec_l.
R constant radius, cm.
Rbl LSH flowmeter tube radius, cm.
sz RHS flowmeter tube radius, cm.
R capillary radius, cm.
RF flowmeter radius, cm.
R' Power law modified Reynolds number defined in Equation (3.6-7),
dimensionless.

R Casson model modified Reynolds number defined in Equation (3.6-9),

dimensionless.
r variable radius, cm.
S Casson viscosity, gm]'/2 cm_1/2 sec—llz.
s' relative sediment volume, dimensionless.
t time, sec.
U relative average fluid velocity, sec—l.
Um average flow velocity cm sec .
u variable velocity, cm sec .
V. radial velocity, cm sec .
Vg tangential velocity, cm sec .
X distance, cm.
X equilibrium distance, cm.
y distance, cm.
Vs equilibrium distance, cm.

GREEK LETTERS

o constant in Equation (2.16b), dimensionless.



AF
AP

AP
m
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constant in Equation (2.16b), dimensionless.

shear rate, sec .

wall shear rate, sec .

rate of deformation tensor.

correction factor defined by Equation (3.3-8), dimensionless,
applied pressure across the capillary, dyne cm-z.

applied pressure to the LHS flovmeter, dyne cm_z.

variable defined by Equation (5.1-4), dimensionless.

-1 -1
apparent viscosity, gm cm sec .

effective viscosity, gm cm_l sec-l.
relative viscosity, dimensionless.
specific viscosity, dimensionless.
constant in Equation (2.1-7), dyne cmfz.
voluminosity factor, dimensionless.

. . \ -1 -1
Newtonian viscosity, gm ecm = sec .

i : ¢ y -1 -1
viscosity of the suspending medium, gm cm =~ sec .
s -3
density, gm cm ~.
particle density, gm cm_3.
viscous tensor.
-2
shear stress, dyne cm .
-2
shear stress in the z direction, dyne cm ~.
yield stress, dyne cm_z.
wall shear stress, dyne cm_z.
volume fraction of solids, dimensionless

effective fluidity, gm-l cm sec.

volume fraction of solids for infinite viscosity, dimensionless.
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APPENDIX A

Chemical and Physical Characteristics of Silica
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TABLE 9

CHEMICAL ANALYSIS (TYPICAL) OF SILICA ( )

TEer IMSIL IMSTL

A-15 A-10

Silica (8102) 99.0% 99.0%
Iron Oxide (Fe203) 0.025% 0.025%
Titanium Oxide (T10,) 0.005% 0.005%
Aluminium Oxide (A1203) 0.009% 0.009%
Calecium Oxide (Ca0O) 0.15% 0.15%
Magnesium Oxide (MgO) 0.008% 0.008%

Loss on Ignition 0.30% 0.30%




TABLE 10

PARTICLE SIZE DISTRIBUTION FOR SILICA (

)
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Grade Grade
Particle Size IMSIL IMSIL
A-15 A-10

40 Micron Diameter, Below 100.0% 100.0%
20 Micron Diameter, Below 100.0% 100.0%
15 Micron Diameter, Below 99.0% 100.0%
10 Micron Diameter, Below 96.0% 99.0%
7.5 Micron Diameter, Below 87.0% 91.0%
5.0 Microm Diameter, Below 70.0% 76.0%
Average Particle Size 1.82 1.55

(Fisher Sub-Sieve)
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TABLE 11

PHYSICAL CHARACTERISTICS (TYPICAL) OF SILICA ( )

Item IMSIL IMSIL
A-15 A-10

Specific Gravity 2.65 2.65
Weight per Solid Gallon, LBS 22.07 22.07
pH value 7 7
Moisture limit at 105°C 0.25% 0.25%
Molecular Weight 60.09 60.09
Melting Point 1722°C 1722°C

Specific Surface Area cmzfg 12440 14607
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APPENDIX B

Least Squares Computer Program
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Silica suspension rheoclogical data (shear stress and shear rate) were
obtained with a capillary viscometer similar to the one recently described
by Benis.

The experimental data were examined for fit to both the Power law and
the Casson models. With suspensions of low solids concentration both New-
tonian and non-Newtonian behavior was observed at high and low shear rates
respectively. Only non-Newtonian behavior was observed with high solids
concentration over the limited range of shear investigated. The Casson and
Power law models appear to be suitable for the description of the data in the
non-Newtonian region.

The capillary viscometer employed in this investigation appears to
possess some definite advantages over other types of viscometers employed in
the study of suspensions rheology. An unsteady state mode of operation was
employed and appears to be superior to the quasi steady state mode of opera-
tion proposed by Benis.

An approximate pressure flow relationship for a Casson fluid was
examined. This relation was also expressed in terms of the friction factor
for comparison with the experimental data. Flow data were also compared
with the generalized friction factor correlation of Metzner and Reed. In

addition, some approximations to the Casson model were examined.



