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Abstract 

 

Sand flies (Diptera:Psychodidae) are vectors of parasites if the genus Leishmania, the 

causative agent of leishmaniasis, a neglected tropical disease in several countries around the 

world.  Sand flies transmit Leishmania to suitable vertebrates during the blood meal and 

following a complex development parasites undergo within the fly. Many aspects of the 

Leishmania development within the sand fly vector are well known, however details about how 

sand fly molecules affect the parasite are still not yet known. Our group previously identified that 

RNAi knockdown of PpChit1, a midgut specific chitinase from the sand fly Phlebotomus 

papatasi, led to a significant decrease in the load of Le. major. In this study, we assessed 

potential fitness effects of antisera anti-PpChit1 on three laboratory-reared sand fly species (P. 

papatasi, Phlebotomus duboscqi, and Lutzomyia longipalpis). Our results suggest that feeding 

sand flies with anti-PpChit1 sera led to a one day delay in the onset of oviposition, and also 

suggested that anti-PpChit1-fed flies survived on average up to three days longer that control 

flies. Analyses of the peritrophic matrix (PM) indicated a significant increase in thickness 72 

hours post anti-PpChit1 feeding compared to control sera. Altogether the results suggest that 

feeding sand flies with anti-PpChit1 likely affects the kinetics of sand PM, which in turn affects 

the flow of nutrients and certain aspects of sand fly fitness.  

 

In the course of this study, we also evaluated the ability of American Foxhounds 

naturally infected with Leishmania infantum to transmit these parasites via bites of phlebotomine 

sand flies to suitable vertebrates. Since 1999, an outbreak of canine visceral leishmaniasis (CVL) 

has been reported in the U.S especially among Foxhounds. The ability of sand flies to pick up 

and transmit this pathogen represents an important health risk for companion dogs and humans. 

Our results indicate that Foxhounds naturally infected with Le. infantum are highly infectious to 

sand flies and that the parasites are able to fully develop within these vectors and de successfully 

transmitted during blood feeding. Thus, the risk exists for these parasites to become endemic in 

North America where sand flies are also known to occur. 
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Chapter 1 - Literature Review 

The Peritrophic Matrix (PM) 

 

PM roles 

The peritrophic matrix (PM) in insects is a non-cellular semipermeable layer separating 

the contents of the gut lumen from the digestive epithelial cells. By lining the midgut, the major 

roles ascribed to the PM include protection the midgut epithelium from abrasion, toxic 

compounds, and pathogens, as well as serving as a scaffold for proteases, peptidases, and 

glycosidases (Lehane, 1996; Pimenta et al., 1997; Terra, 2001; Toprak et al., 2010). In addition, 

the PM separates the midgut into the endoperitrophic space containing the food bolus surrounded 

by PM, and the ectoperitrophic space between PM and the midgut epithelium. The PM is 

associated with increasing the efficiency of the digestion process due to its semipermeable 

property allowing the selective migration of small molecules. Further, the porosity of the PM is 

an important determinant in regulating the movement of digestive enzymes from the surface of 

the midgut epithelial cells into the gut lumen (Lehane, 1996). In some hematophagous insects 

such as Aedes aegypti it was shown that the PM or PM-associated molecules are able to bind 

heme, a highly toxic prostetic group which is the byproduct of blood digestion (Pascoa et al., 

2002; Walters et al., 1995). Later, Devenport et al. (2006) demonstrated that the Ae. aegypti PM-

associated AeIMUC1 is able to bind heme. Recent studies by our group identified peritrophin 

PpPer1 and likely PpPer2 (see below) as playing a heme-detoxification role in the sand fly P. 

papatasi (Coutinho-Abreu et al., 2013) 

Regarding its role as a physical barrier against parasites, Lewis (1953) described how 

most microfilariae of Onchocerca volvulus become trapped within the PM of Simulium 

damnosum and are eliminated. Many years later, studies described the role of the PM in 

preventing the escape and subsequent development of Plasmodium parasites in Anopheles 

mosquitoes (Billingsley and Rudin, 1992; Shahabuddin et al., 1993; Sieber et al., 1991). 

Similarly, it has been well documented that in sand flies the PM also serves as a barrier to 

Leishmania development; by trapping parasites within the endoperitrophic space and overpassed 

with the remnants of the blood meal (Coutinho-Abreu et al., 2010; Walters et al., 1992). 
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Synthesis and types of PM 

The insect PM can be classified according to how they are synthesized as types 1 or 2. 

Type 1 PM (PM1) is formed along the entire midgut epithelium, in response to distention of the 

midgut during feeding (Peters, 1992; Toprak et al., 2010). This is a thick extracellular matrix 

secreted around the blood meal by midgut epithelial cells in the posterior midgut. Its thickness is 

approximately 1-20 µm and it is the most common type in bloodsucking insects, such as 

mosquitoes, sand flies, and black flies (Jacobs-Lorena and Maung Oo, 2004). Type 2 (PM2) is 

secreted by the cardia, a specialized organ near the foregut-midgut junction (Toprak et al., 2010). 

PM2 is a thin open-ended sleeve-like structure of approximately 1-2 µm think that lines the 

entire midgut and hindgut and it is secreted independently of the feeding status of the insect.  

Although most hematophagous insects secrete PM1 as adults, the larvae secrete PM2; likewise, 

many non-blood feeding dipterans adults secrete PM2 (Jacobs-Lorena and Maung Oo, 2004; 

Terra, 2001). 

 

PM structure and composition  

The PM2 is the most studied and its structure is characterized by distinct layers originated 

from different regions in the cardia (Jacobs-Lorena and Maung Oo, 2004). The PM1 generally 

does not contain discrete layered structures; instead, it is believed to be constructed by a 

‘template’ generated by chitin fibrils secreted by the microvilli of the epithelial cells and other 

components. The regular arrangement of the microvilli is imprinted on the PM structure given its 

characteristic hexagonal (or honeycomb) and orthogonal texture. The assembly process of PM1 

is thought to occur in several steps, starting with secretion of the chitin fibrils by the microvilli of 

the midgut epithelial cells; continuing with the maturation and formation of cross-linked 

network; and finally, the attachment of the matrix of probably proteins and proteoglycans that 

interlock the chitin fibrils (Lehane, 1996; Merzendorfer and Zimoch, 2003; Walters et al., 1993). 

The PM consist mainly of chitin and proteins including glycoproteins and proteoglycans 

(Peters, 1992). The amount of these components varies depending of the insect species, life 

stage, as well as the maturation stage of the PM in one life stage (Lehane, 1996). 

Proteins account for 21-55% of the total PM mass. PM-associated proteins are classified 

in four groups according to the ease with which they can be removed from the PM (Tellam et al., 

1999; Wang and Granados, 2001). Class I proteins, elucidated from the PM of Lucilia cuprina 



3 

larva (PM2), can be removed with mild detergents as low or high ionic strength and 

physiological buffers, these proteins represent less than 1% of the total PM protein. Digestive 

enzymes can be found in this group. Class II proteins can be released with mild detergents such 

as Triton X-100, the detergent might be able to disrupt the protein-protein, protein-

oligosaccharide, or protein-chitin interactions. Class III proteins are strongly attached to the PM 

but non-covalently, to remove them it requires strong denaturing agents such as urea, SDS or 

guanidine hydrochloride. These proteins are abundant, representing 11% of the total mass of the 

PM and are collectively referred to as peritrophins (Elvin et al., 1996; Tellam, 1996) (see below). 

Class IV proteins are those which are not solubilized with strong denaturants of high 

concentrations; in the case of PM2, this class of proteins is considered to be the most abundant 

after chemical analysis. These proteins are covalently cross-linked to themselves or to other 

constituents of the PM such as proteoglycans and chitin (Tellam et al., 1999). 

 

Chitin 

In the PM1, chitin, a polymer of β-(1,4)-N-acetyl-D-Glucosamine (GlcNAc) is 

considered a major component for structure maintenance (Hegedus et al., 2009; Shao et al., 

2001). Chitin is always present in association as a chitin-protein complex. The chitin content is 

believed to be important for the tensile strength of the PM, while the proteoglycans might protect 

the matrix against enzymes and influence the permeability properties (Peters, 1992). The content 

of chitin in the PM varies between 3.5% to 13% of the total mass of the PM depending on insect 

species (Lehane, 1996). In the case of PM2, Tellam and Eisemann (2000) determined that the 

content of chitin in the larvae of L. cuprina was no more than 5.3% and the low content of chitin 

was responsible for the inability of chitinase and chitin synthesis inhibitors to disrupt the PM. In 

contrast, in other insects, chitin may be a greater component of the PM as chitin synthesis 

inhibitors and certain chitin binding compounds disrupt the integrity of the PM (Pimenta et al., 

1997; Villalon et al., 2003; Wang and Granados, 2000). 

Chitin is synthesized by chitin synthase (CS) through the addition of units of GlcNAc to 

the elongating end of the growing chain. Chitin can form three conformational structures: α-

chitin composed of antiparallel chains; β-chitin, composed of parallel chains; and γ-chitin 

composed of three chitin chains in different orientations. The α- and γ-chitin chains seem to 

predominate in insect PM (Hegedus et al., 2009; Peters, 1992). 
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Proteoglycans 

Proteoglycans consist of a core protein to which linear polysaccharides components are 

attached, in particular glycosaminoglycans (GAGs). GAGs are a family of macromolecules 

constituted by polymers of repetitive disaccharide units consisting of hexosamine and L-iduronic 

acid. Proteoglycans are present in most PMs and are evenly distributed. However, in dipterans, 

proteoglycans are concentrated into electron-dense layers which give the lamellar appearance to 

these PMs (Tellam et al., 1999). Proteoglycans are the filling molecules in the PM. The 

hydration of proteoglycans is believed to help in the formation of a gel-like meshwork in the PM 

which contribute to the strength of the PM and might be at the same time a determinant of PM 

permeability (Lehane, 1997).   

 

Peritrophins 

Peritrophins are integral and structural PM proteins that interact with the chitin matrix 

and are likely involved in determining the porosity, strength and elasticity of the PM. 

Peritrophins must have at least one chitin-binding domain (CBD) (see below), but also one or 

more mucin domains (MD) or commonly referred to as insect intestinal mucins (IIMs) (Toprak 

et al., 2010). 

The molecular structure of three intrinsic PM proteins (perithropin-44, perithropin-48 and 

perithropin-95) was determined from L. cuprina (Elvin et al., 1996; Tellam et al., 1999). The 

amino acid sequences of perithropin-44, perithropin-48 shows some limited homology; each 

protein contains five domains of approximately 65-70 amino acids in length. Each domain is 

characterized by six cysteine residues likely forming three intra-domain disulphide bonds. 

Besides the conserve cysteine, there is a strong conservation of three hydrophobic amino acids or 

aromatic residues located at specific positions between cysteine residues. The common feature of 

these domains and other PM proteins is the strong conservation of the structure although not the 

overall amino acid sequences. All the amino acid sequences contain sites for potential for N-

linked glycosylation but at different positions (Tellam, 1996; Tellam et al., 1999). 

Three different types of CBD are known as Peritrophin-A, -B or –C domains and have 

motifs with six, eight, and 10 cysteine residues forming between three to five intra-domain 

disulphide bonds (Tellam et al., 1999) plus several conserved aromatic/hydrophobic amino acids. 



5 

The disulphide bonds in the PM contribute to protein stability and resistance to proteolysis in the 

gut (Devenport and Jacobs-Lorena, 2004). Peritrophin-A domains (PAD) are present among all 

insects, while Peritrophin-B (PBD) and Peritrophin-C (PCD) domains have been found only in 

dipteran larvae (Toprak et al., 2010). The potential for multiple CBDs in the PM may give them 

the capability to cross-linking with chitin fibrils in the PM in order to create a protein network 

throughout the chitin fibrils.  The multiple ways of cross-linking of the peritrophins within the 

PM give strength and elasticity with limited thickness (Tellam, 1996; Wang and Granados, 

2001). 

Besides chitin-binding domains in PM, some proteins also display mucin-like domains.  

These domains display serine and threonine residues that frequently are the sites of O-linked 

glycosylation (Devenport and Jacobs-Lorena, 2004). An example is Peritrophin-95 which 

contains an additional carboxy-terminal domain of 100 amino acids characterized for proline and 

threonine- rich domains but absence of cysteine residues. The proline and threonine domains are 

extensively glycosylated with O-linked oligosaccharides (Tellam, 1996). Mammalian intestinal 

mucins are widely studied and known to have numerous functions such as protection from 

abrasion, hydrolytic enzymes, heavy metals, and pathogens, while allowing the passage of 

digestion products for absorption by intestinal epithelium. It is thought that insect intestinal 

mucins might play some of the same functions (Devenport and Jacobs-Lorena, 2004). In fact, the 

first insect intestinal mucin (IIM) identified in the lepidopteran Trichoplusia ni resembles 

mammalian intestinal mucins in aspects including high O-glycosylation, high concentrations of 

threonine, alanine, and proline, and resistance to proteases and probably shield other PM 

components from digestive enzymes (Wang and Granados, 1997). Insect intestinal mucins 

interact with chitin fibrils to create the PM, which facilitates the digestion process and protects 

the digestive tract form toxins (Rayms-Keller et al., 2000). In adult Ae. aegypti females, an 

intestinal mucin, AeIMUC1, protects against toxic reactive oxygen species produced during the 

process of hemoglobin degradation. To prevent the accumulation of these toxic metabolites, the 

cysteine-rich peritrophin-A domains (heme-regulatory motifs) in AelMUC1 promote binding of 

heme to the PM and thus its excretion (Devenport et al., 2006). Recent studies from our group on 

sand fly peritrophins led to the characterization of P. papatasi PpPer1, PpPer2, and PpPer3 

(Coutinho-Abreu et al., 2013) and the identification of several putative peritrophins from 

Lutzomyia longipalpis (not shown). PpPer1 and PpPer2 display, respectively, four and one 
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chitin-binding domains (CBDs). PpPer3 on the other hand has two CBDs, one mucin-like 

domain, and a putative domain with hallmarks of a CBD, but with changes in key amino acids. 

Temporal and spatial expression analyses show that PpPer1 is expressed specifically in the 

female midgut after blood feeding. PpPer2 and PpPer3 mRNAs were constitutively expressed in 

midgut and hindgut, with PpPer3 also being expressed in Malpighian tubules. PpPer2 was the 

only gene expressed in developmental stages. Our results also demonstrated that recombinant 

rPpPer1 and rPpPer2 bind chitin, and that HRM identified as cysteine-proline dipeptides also 

were present in the predicted sequences for these proteins two proteins. Two HRM were 

identified (i.e., predicted) in PpPer1, one in CBD3 and one HRM in CBD4. A single HRM was 

identified in PpPer2. HRM also are predicted in the peritrophins identified form Lu. longipalpis. 

Collectively, these data suggest that sand fly peritrophins not only are part of the PM scaffold but 

also that they play a role in heme detoxification mechanism in sand flies.  

 

Degradation of the PM 

The degradation of the PM occurs as consequence of chitin degradation.  Chitinolytic 

enzymes that fulfill this role include chitinases and β-N-acetyl-D-glucosamidases. Insect 

chitinases belong to the family 18 of the glycosylhydrolases superfamily and share a high degree 

of amino acid similarity. In contrast, β-N-acetyl-D-glucosamidases belong to family 20. 

Together, the synergistic action of family 18 and family 20 lead to rapid depolymerization of 

chitin in insects (Arakane and Muthukrishnan, 2010; Merzendorfer and Zimoch, 2003). 

Chitinases catalyze the random hydrolysis of internal bonds in chitin to produce smaller 

oligosaccharides. These oligosaccharides are further cleaved by β-N-acetyl-D-glucosamidases to 

liberate GlcNAc- from the non-reducing end of oligosaccharide (Suginta et al., 2000; Terra et al., 

1996). Chitinases display molecular mass ranging from 20 to 90 kDa (Bhattacharya et al., 2007) 

and are present in broad group of organisms including bacteria, fungi, yeast, plants, humans, and 

arthropods. Chitinases are also involved in a variety of roles from digestion, to arthropod 

molting, to defense and innate immunity, and pathogenicity (Arakane and Muthukrishnan, 2010). 

The structural organization of chitinases consists of multi-domains that include a catalytic 

region of 1-5 domains, a serine/threonine-rich linker region that can be highly glycosylated, and 

a 0-7 chitin-binding domain rich in cysteine. It is also predicted that chitinases have a 

hydrophobic signal peptide preceding the N-terminal region of the mature protein. The signal 
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peptide mediates secretion of the enzyme into the endoplasmic reticulum and it is cleaved off by 

signal peptides after the protein has been transported across the membrane (Arakane and 

Muthukrishnan, 2010; Merzendorfer and Zimoch, 2003). 

In the case of the P. papatasi chitinase PpChit1, it belongs to family 18 of 

glycosylhydrolases and a highly conserve catalytic site FDGLDMDWEYPA besides several 

domains common of members of this family. Moreover, a signal peptide of 18 amino acids at the 

N-terminal comprises PpChit1; cleavage of this signal peptide results in the mature protein 

consisting of 452 amino acid residues and a molecular mass of 50.5 kDa. The C-terminal region 

has a Ser/Thr/Pro (S/T/P) rich region with multiple O-linked glycosylation sites. The S/T/P 

region if followed by a chitin-binding domain, with six highly conserved Cys residues (Ramalho-

Ortigao et al., 2005). 

In Lu. longipalplis, an ortholog of PpChit1 also has been identified (Ramalho-Ortigao 

and Traub-Cseko, 2003). The Lu. longipalpis Llchit1 complete cDNA sequence spans 1600 bp 

with an open reading frame (ORF) of 1425 bp encoding a mature protein of 474 amino acids and 

a mass of 51.6 kDa. The predicted LlChit1 displays the highly conserved catalytic domain 

FDGL(I/F)DV(L/I)DWEYP at the N-terminal indicative of family 18 glycosylhydrolases. The 

signal peptide is predicted to be cleaved at position Thr19 indicating the protein is secreted. Two 

Lys residues (Lys21 and Lys22) are potential trypsin activation sites. Furthermore, at the C-

terminal, a small domain composed of serine/threonine/proline (STP) is a target region for O-

linked glycosylation. After the STP region, there is a putative chitin binding domain (CBD) with 

three conserved cysteines and two aromatic residues similar to the CBD of A. gambiae AgChi-1 

and those present in several other chitinases and PM binding proteins. Three N-glycosylation 

sites are predicted in the mature protein. Importantly, LlChit1 is secreted upon blood feeding 

with maximum expression level at approximately 72 h PBM (Ramalho-Ortigao and Traub-

Cseko, 2003). Thus, LlChit1 is presumed to have similar function in PM type 1 formation and 

degradation as PpChit1 in P. papatasi and AgChi-1 in A. gambiae. 

 

 

 

 



8 

References 

 

Arakane, Y., Muthukrishnan, S., 2010. Insect chitinase and chitinase-like proteins. Cellular and 

Molecular Life Sciences 67, 201-216. 

Bhattacharya, D., Nagpure, A., Gupta, R.K., 2007. Bacterial chitinases: properties and potential. 

Critical Reviews in Biotechnology 27, 21-28. 

Billingsley, P.F., Rudin, W., 1992. The Role of the Mosquito Peritrophic Membrane in 

Bloodmeal Digestion and Infectivity of Plasmodium Species. J Parasitol 78, 430-440. 

Coutinho-Abreu, I.V., Sharma, N.K., Robles-Murguia, M., Ramalho-Ortigao, M., 2010. 

Targeting the midgut secreted PpChit1 reduces Leishmania major development in its 

natural vector, the sand fly Phlebotomus papatasi. PLoS Negl Trop Dis 4, e901. 

Coutinho-Abreu, I.V., Sharma, N.K., Robles-Murguia, M., Ramalho-Ortigao, M., 2013. 

Characterization of Phlebotomus papatasi peritrophins, and the role of PpPer1 in 

Leishmania major survival in its natural vector. PLoS Negl Trop Dis 7, e2132. 

Devenport, M., Alvarenga, P.H., Shao, L., Fujioka, H., Bianconi, M.L., Oliveira, P.L., Jacobs-

Lorena, M., 2006. Identification of the Aedes aegypti peritrophic matrix protein 

AeIMUCI as a heme-binding protein. Biochemistry 45, 9540-9549. 

Devenport, M., Jacobs-Lorena, M., 2004. The Peritrophic Matrix of Hematophagous Insects, in: 

Marquardt, W.C. (Ed.), Biology of Disease Vectors. Elsevier Academy Press. 

Elvin, C.M., Vuocolo, T., Pearson, R.D., East, I.J., Riding, G.A., Eisemann, C.H., Tellam, R.L., 

1996. Characterization of a major peritrophic membrane protein, peritrophin-44, from the 

larvae of Lucilia cuprina. cDNA and deduced amino acid sequences. The Journal of 

Biological Chemistry 271, 8925-8935. 

Hegedus, D., Erlandson, M., Gillott, C., Toprak, U., 2009. New Insights into Peritrophic Matrix 

Synthesis, Architecture, and Function. Annu Rev Entomol 54, 285-302. 

Jacobs-Lorena, M., Maung Oo, M., 2004. The peritrophic matrix of insects, in: Beaty, B.J., 

Marquardt, W.C. (Eds.), The Biology of Disease Vectors, Second ed, University Press of 

Colorado. 

Lehane, M.J., 1997. Peritrophic matrix structure and function. Annu Rev Entomol 42, 525-550. 

Lehane, M.J.a.B., P.F, 1996. Biology of the Insect Midgut. Chapman & Hall, Lodon. 

Lewis, D.J., 1953. Simulium-Damnosum and Its Relation to Onchocerciasis in the Anglo-

Egyptian Sudan. Bulletin of Entomological Research 43, 597-&. 



9 

Merzendorfer, H., Zimoch, L., 2003. Chitin metabolism in insects: structure, function and 

regulation of chitin synthases and chitinases. The Journal of Experimental Biology 206, 

4393-4412. 

Pascoa, V., Oliveira, P.L., Dansa-Petretski, M., Silva, J.R., Alvarenga, P.H., Jacobs-Lorena, M., 

Lemos, F.J., 2002. Aedes aegypti peritrophic matrix and its interaction with heme during 

blood digestion. Insect Biochemistry and Molecular Biology 32, 517-523. 

Peters, W., 1992. Peritrophic Membranes. Springer-Verlag, Germany. 

Pimenta, P.F., Modi, G.B., Pereira, S.T., Shahabuddin, M., Sacks, D.L., 1997. A novel role for 

the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand 

fly midgut. Parasitology 115 (Pt 4), 359-369. 

Ramalho-Ortigao, J.M., Kamhawi, S., Joshi, M.B., Reynoso, D., Lawyer, P.G., Dwyer, D.M., 

Sacks, D.L., Valenzuela, J.G., 2005. Characterization of a blood activated chitinolytic 

system in the midgut of the sand fly vectors Lutzomyia longipalpis and Phlebotomus 

papatasi. Insect Molecular Biology 14, 703-712. 

Ramalho-Ortigao, J.M., Traub-Cseko, Y.M., 2003. Molecular characterization of Llchit1, a 

midgut chitinase cDNA from the leishmaniasis vector Lutzomyia longipalpis. Insect 

Biochemistry and Molecular Biology 33, 279-287. 

Rayms-Keller, A., McGaw, M., Oray, C., Carlson, J.O., Beaty, B.J., 2000. Molecular cloning 

and characterization of a metal responsive Aedes aegypti intestinal mucin cDNA. Insect 

Molecular Biology 9, 419-426. 

Shahabuddin, M., Toyoshima, T., Aikawa, M., Kaslow, D.C., 1993. Transmission-Blocking 

Activity of a Chitinase Inhibitor and Activation of Malarial Parasite Chitinase by 

Mosquito Protease. Proceedings of the National Academy of Sciences of the United 

States of America 90, 4266-4270. 

Shao, L., Devenport, M., Jacobs-Lorena, M., 2001. The peritrophic matrix of hematophagous 

insects. Arch Insect Biochem 47, 119-125. 

Sieber, K.P., Huber, M., Kaslow, D., Banks, S.M., Torii, M., Aikawa, M., Miller, L.H., 1991. 

The peritrophic membrane as a barrier: its penetration by Plasmodium gallinaceum and 

the effect of a monoclonal antibody to ookinetes. Exp Parasitol 72, 145-156. 

Suginta, W., Robertson, P.A., Austin, B., Fry, S.C., Fothergill-Gilmore, L.A., 2000. Chitinases 

from Vibrio: activity screening and purification of chiA from Vibrio carchariae. Journal 

of Applied Microbiology 89, 76-84. 

Tellam, R.L., 1996. The peritrophic matrix, Biology of the Insect Midgut. Chapman & Hall, 

London. 

Tellam, R.L., Wijffels, G., Willadsen, P., 1999. Peritrophic matrix proteins. Insect Biochemistry 

and Molecular Biology 29, 87-101. 



10 

Terra, W.R., 2001. The origin and functions of the insect peritrophic membrane and peritrophic 

gel. Arch Insect Biochem Physiol 47, 47-61. 

Terra, W.R., Ferreira, C., Jordao, B.P., Dillon, R.J., 1996. Digestive Enzymes, in: Lacerda, H.G., 

Billingsley, P.F. (Eds.), Biology of the Insect Midgut. Chapman & Hall, London. 

Toprak, U., Erlandson, M., Hegedus, D.D., 2010. Peritrophic Matrix Proteins. Trends in 

Entomology 6, 28. 

Villalon, J.M., Ghosh, A., Jacobs-Lorena, M., 2003. The peritrophic matrix limits the rate of 

digestion in adult Anopheles stephensi and Aedes aegypti mosquitoes. Journal of Insect 

Physiology 49, 891-895. 

Walters, L.L., Irons, K.P., Guzman, H., Tesh, R.B., 1993. Formation and composition of the 

peritrophic membrane in the sand fly, Phlebotomus perniciosus (Diptera: Psychodidae). 

Journal of Medical Entomology 30, 179-198. 

Walters, L.L., Irons, K.P., Guzman, H., Tesh, R.B., 1995. Peritrophic envelopes of Lutzomyia 

spinicrassa (Diptera: Psychodidae). Journal of Medical Entomology 32, 711-725. 

Walters, L.L., Irons, K.P., Modi, G.B., Tesh, R.B., 1992. Refractory barriers in the sand fly 

Phlebotomus papatasi (Diptera: Psychodidae) to infection with Leishmania panamensis. 

The American Journal of Tropical Medicine and Hygiene 46, 211-228. 

Wang, P., Granados, R.R., 1997. An intestinal mucin is the target substrate for a baculovirus 

enhancin. Proceedings of the National Academy of Sciences of the United States of 

America 94, 6977-6982. 

Wang, P., Granados, R.R., 2000. Calcofluor disrupts the midgut defense system in insects. Insect 

Biochemistry and Molecular Biology 30, 135-143. 

Wang, P., Granados, R.R., 2001. Molecular structure of the peritrophic membrane (PM): 

identification of potential PM target sites for insect control. Arch Insect Biochem Physiol 

47, 110-118. 

 
 



11 

 

Chapter 2 - Effect of Anti-PpChit1 on sand fly fitness 

 

Abstract 

Following a blood meal, sand flies (Diptera:Psychodidae) secrete a peritrophic matrix 

(PM) type 1 that compartmentalizes the blood meal, protects the epithelium, and serves as a 

barrier against parasites. It has been shown that sand flies also secrete a midgut-specific chitinase 

that modulates and degrades the PM. In Phlebotomus papatasi, knockdown of the midgut 

chitinase PpChit1 led to a reduction in the load of the parasite Leishmania major in the midgut of 

sand flies, but effects on the fitness of the flies were not investigated. The current study was 

focused on identifying potential fitness effects of feeding anti-PpChit1 to sand flies. 

Phlebotomus papatasi, P. duboscqi and Lutzomyia longipalpis were fed on red blood cells 

reconstituted with naïve or anti-PpChit1 sera and assessed for various parameters including, 

blood digestion, egg laying (oviposition) onset, number of eggs laid, egg bouts, average number 

of eggs per bout, and survival. No statistically significant differences were observed between 

treatments for blood digestion in all three species investigated. Similarly, no statistically 

significant differences were observed for the fitness parameters in P. duboscqi and Lu. 

longipalpis. However, in P. papatasi, the onset of egg laying was delayed by one day when 

comparing anti-PpChit1-fed to naïve serum-fed flies; likewise, the survival of treated flies was 

approximately three days longer compared to that of the control group. In P. papatasi, these 

differences approached significance in the analyses performed.  Interestingly, feeding on anti-

PpChit1 had a negative effect on overall ability of flies to lay eggs, as several gravid females 

from all three species were unable to lay any eggs despite having lived longer than control flies. 

Overall, this study suggests little, if any, effects on sand fly fitness by feeding anti-PpChit1.  

Notwithstanding, the inability of females that fed on anti-PpChit1 to lay eggs might have been 

due to changes in PM permeability affecting nutrient absorption. 
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Introduction 

 

Sand flies (Diptera:Psychodidae) are vectors of leishmaniasis, a major neglected tropical 

disease caused by parasites of the genus Leishmania (Kinetoplastida:Trypanosomatida). 

Leishmania spp. are transmitted to a suitable vertebrate during the bite of an infected female sand 

fly. Leishmaniasis encompasses a spectrum of diseases that include cutaneous, mucocutaneous, 

and visceral forms. Currently, leishmaniasis  is endemic in 98 countries putting 350 million 

people at risk, and with 2 million human cases worldwide and 40, 000 deaths estimated to occur 

annually (WHO, 2010).  

There are over 40 species of Leishmania known (Ramalho-Ortigao et al., 2010), with 

more than 20 species involved in human infections (Esch and Petersen, 2013). Multiple animals, 

sylvatic and domestic, serve as hosts or reservoirs for the parasite. Dogs, in particular, are the 

most important risk factor predisposing human to infection with Leishmania infantum, a 

visceralizing parasite (Petersen and Barr, 2009) 

Leishmania display a digenetic life-cycle, cycling between a suitable vertebrate host and 

sand fly vectors (Dostalova and Volf, 2012). In the vertebrate, Leishmania are obligatory 

intracellular parasites (amastigote form) and commonly found in macrophages and neutrophils, 

although other cells such as dendritic cells and mononuclear cells can also be infected. During 

blood feeding on the infected vertebrate, parasites are acquired by the female sand fly. Within 

the sand fly, Leishmania undergo a complex development. First, parasites burst out from the 

infected macrophages and change from the typically non-motile amastigotes to motile, and 

highly replicative, procyclic promastigotes. These two events take place within the 

endoperitrophic space that is formed by the secretion of the peritrophic matrix (PM) type 1 by 

the epithelial cells that line the female sand fly gut. 

To complete their development, Leishmania encounter several barriers that must be 

overcome for successful establishment and subsequent transmission. First, parasites have to 

survive the proteolytic attack of digestive proteases secreted in the sand fly gut after blood 

feeding. Then, they must escape from the endoperithrophic space and attach to the midgut 

epithelia, in both cases to prevent excretion with remnants of the blood meal. Finally, parasites 

must detach from the midgut epithelia lining and migrate towards the thoracic midgut or to the 

foregut of the vector. During this final development stage, parasites transform into the infective 
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metacyclic promastigotes which will be deposited in the skin of the vertebrate host when the now 

infectious fly attempts the next blood meal (Bates, 2007). 

The inability to evade one or more barriers within the sand fly gut has been associated 

with the vectorial capacity in sand flies. One classical example comes from the characterization 

of PpGalec, a receptor for Leishmania major lipophosphoglycan (LPG) identified in the midgut 

of the natural vector Phlebotomus papatasi (Kamhawi et al., 2004). PpGalec was shown to be 

responsible for L. major ability to attach to P. papatasi midgut preventing excretion. These data 

highlighted the close relationship that exists between Leishmania and sand flies, to the extent 

that some species of sand flies are able to transmit some species of Leishmania. Hence, sand fly 

species that are capable to sustain experimental infection of different Leishmania species are 

referred to as non-specific, or permissive; sand flies that are only infected with a single species 

of  Leishmania, even under laboratory conditions, are referred to as  specific or restrictive 

(Ramalho-Ortigao et al., 2010). A LPG-independent midgut attachment, driven by the level of 

glycosylation of midgut proteins expressed on the surface of the midgut epithelial cells, has been 

demonstrated for non-specific sand flies (Volf et al., 2007).   

No vaccine is available to prevent human leishmaniasis despite much research. Protection 

against visceral and cutaneous leishmaniasis has been achieved in mice, hamster, dogs, and non-

human primate using crude or defined antigens with appropriate adjuvants (Raman et al., 2012). 

Moreover, antigens derived as vectored DNA, plasmid DNA or recombinant proteins have been 

proven effective in animal models (Bethony et al., 2011). Nonetheless, an effective human 

vaccine that induces a strong and persistent Th1 immune response is yet to be developed.  

One approach that has attracted attention in the last few years concerns the development 

of transmission blocking vaccines (TBVs). TBVs prevent pathogen transmission by targeting 

molecules expressed on the surface of pathogens essential to its development, or by targeting 

molecules expressed by the vector. By inducing the expression of specific antibodies in a 

suitable vertebrate host, vaccination with parasite or vector molecules (TBVs) lead to blocking of 

parasite development within the vector when acquired during the blood meal in the vaccinated 

individuals (Coutinho-Abreu and Ramalho-Ortigao, 2010). The sand fly PM, like its counterpart 

in mosquitoes, is a semipermeable layer formed by chitin fibrils, proteins and glycoproteins 

(Elvin et al., 1996; Pascoa et al., 2002; Peters, 1992). Generally, the PM’s primary function 

involves compartmentalization of the blood meal and protection of the midgut epithelia against 
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abrasion during digestion of the food bolus (Elvin et al., 1996; Schlein et al., 1991; Secundino et 

al., 2005a). However, the sand fly PM was also shown to serve a dual role with regards to 

Leishmania infection: as a barrier and as protection to transitional amastigotes (when they are 

most vulnerable to the proteolytic attack). Leishmania development depends in part by the action 

of sand fly midgut chitinases (Ramalho-Ortigao et al., 2005) which can hydrolyze chitin in the 

PM, allowing the escape of the parasites.  

PpChit1 is a midgut-specific chitinase presumably involved in modulation and 

degradation of the PM in P. papatasi (Ramalho-Ortigao et al., 2005), and escape of parasites 

from the endoperitrophic space (Dostalova et al., 2011). It has been demonstrated that anti-

PpChit1 sera inhibited chitinolytic activity in the midgut of P. papatasi. Interestingly, these same 

antibodies displayed a cross-species effect, inhibiting chitinolytic activity in the midgut of P. 

duboscqi and P. argentipes (Ramalho-Ortigao et al., 2005). Recently, our group demonstrated 

that RNAi-induced knockdown of PpChit1 leads to a significant reduction of L. major within P. 

papatasi midgut (Coutinho-Abreu et al., 2010). The results supported the potential use of 

PpChit1 as a TBV against transmission of Leishmania by sand flies. 

The integrity of the PM is critical to protect the arthropod midgut from toxins, microbial 

infections, digestive enzymes and physical trauma (Ramos et al., 1994; Wang and Granados, 

1997). Thus, we reasoned that feeding sand flies with anti-PpChit1 sera would led to changes in 

the structure of the PM, (i.e., increasing its thickness). As a consequence, the PM would remain 

intact for longer period of time influencing the rate of blood digestion and excretion, with 

possible effects on sand fly fitness. Thus, in order to address whether anti-PpChit1 antibodies do 

indeed affect sand fly fitness, the following study aims are proposed: 

 

(1)  Purify anti-chitinase1 antisera (anti-PpChit1)  

(2)  Assess the digestion of a blood meal in sand flies due to the effect of anti-PpChit1 

 (3)  Study the fitness of three species of sand flies P. papatasi (PPIS), P. duboscqi 

(PDMA), and L. longipalpis (LLJB) upon anti-PpChit1 treatment in terms of egg 

laying onset (start of oviposition), number of eggs, survival, number of egg bouts, 

and average number of eggs per bout.   
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This research will serve to better understand the role of sand fly midgut chitinase in 

controlling the physiology and fitness of the sand fly; hence, it can be accounted towards 

parasite-vector interactions and the development of successful transmission blocking vaccines. 
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Materials and Methods 

Ethics statement 

The use of animals during this study was reviewed and approved by the Kansas State 

University Institutional Animal Care and Use Committee (KSU-IACUC). 

 

PpChit1 antisera production  

 DNA plasmid (VR-2001-TOPO) 

 

Plasmid VR2001-TOPO was derived from VR1020 (Vical, Inc.) a plasmid that has been 

approved for use as a DNA vaccine. VR-2001-TOPO was modified by the addition of 

topoisomerase to obtain a plasmid (“TOPO/TA”) that contains a cloning site at the 3’ end of the 

tissue plasminogen activator signal peptide of the VR1020 plasmid. The signal peptide cleavage 

site is preserved in this plasmid as well as the kanamycin-resistance gene and the 

cytomegalovirus promoter (Oliveira et al., 2006).  

 Plasmid preparation and purification 

A glycerol stock aliquot of E.coli carrying the VR2001-TOPO plasmid with the mature 

PpChit1 cDNA was seeded into 1.5 L of LB kanamycin (50 mg/ml) and incubated overnight on a 

shaker at 37 
o
C. Plasmid purification was performed using the Endofree plasmid Mega Kit 

(Qiagen) following manufacture’s specifications with the exception or the last step. Final 

plasmid purification was done using an Amicon Ultra-15 centrifugal filter unit with a 100 kDa 

cutoff (Milllipore) washed three times with ultrapure cell culture water and concentrated to a 

volume of approximately 500 µl. The cDNA sample concentration was measured on a Biotek 

Epoch Gen5 spectrophotometer (Biotek, Winooski, VT), and stored at -20 
o 

C before 

immunization procedure. Prior to injection, sample was filter sterilized through a 0.2 µM filter 

unit (Millipore). 

 Mice immunization with DNA plasmid  

Female BALB/c mice, 8-12 weeks old were bred in the animal facility of the Division of 

Veterinary Medicine, Kansas State University (Manhattan, KS) and maintained under pathogen-

free conditions. 
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Mice were anesthetized with isoflurane and immunized subcutaneously in the ears using 

a 29.5-gauge needle with DNA plasmids VR2001-TOPO encoding the mature chitinase protein 

(Ramalho-Ortigao et al., 2005). Each mouse ear was injected three times in two-week intervals 

with 10 μg/μl of plasmid in a 10 μl volume. Two weeks after the last DNA immunization, 

approximately 300 μl of blood was collected from the submandibular vein (“cheek bleed”) of 

immunized animals. Sera were separated following centrifugation at 750 rpm for 10 minutes. 

 Antibody titer 

Antibody titer was measured with the Easy-Titer IgG Assay Kit (Pierce, Rockford, IL) 

following manufacturer’s instructions and kept at -20 °C until use. 

 

Sand fly rearing and blood feeding  

Phlebotomus papatasi Israeli strain (PPIS), P. duboscqi Mali strain (PDMA), and 

Lutzomyia longipalpis Jacobina strain (LLJB) were reared in the Biology of Disease Vectors 

laboratory in the Department of Entomology, Kansas State University, at 26 
o 
C and 70% 

humidity in a 12:12 light-dark cycle. Two groups, one experimental and one control, each 

containing  four-to-five day old 150 females and 30 males sand flies were placed in a 500 ml 

plastic container (ø = 6.3 cm, height = 6.5 cm) (Thermo-Nalgene, Waltham, MA) covered with a 

piece of nylon mesh (0.5mm). Sand flies were blood fed in the laboratory using a glass feeding 

apparatus through a pig intestine membrane attached to the glass feeder. Two hours prior to 

blood feeding, a sample of fresh BALB/c mouse blood was collected by submandibular bleeding 

and mixed with heparin (Calbiochem, Billerica, MA) to prevent coagulation. Blood was 

centrifuged at 7500 rpm for 10 minutes (Eppendorf, Hauppauge, NY). The sera were removed 

and red blood cells were reconstituted with 195 µl of anti-PpChit1 (113 µg/ml) in the case of the 

experimental group and, naive sera previously collected for the control group.  

Immediately after feeding for 1.5 h, fully engorged females were separated from the 

partial and non-fed. The presence or absence of blood in the sand fly digestive tract was verified 

by anesthetizing flies with CO2 and observing the midgut distension under a stereomicroscope 

(Carl Zeiss, Thornwood, NY). Only fully fed sand flies of similar size were used for further 

examination. Flies were kept in paper cups (250 ml) (Huhtamaki, Fulton, NY), two cotton strips 
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(2 cm) with 20% sugar solution was added on top, and the containers were kept inside a 

Drosophila incubator (Percival, Perry, IA) at 26 
o 
C and 70% humidity. 

 

Assessment of hemoglobin concentration 

The rate of hemoglobin excretion was assessed with a colorimetric assay using Drabkin’s 

solution. Drabkin’s solution was prepared by adding 5 µl of 30% Brij-35 solution (Sigma, Saint 

Louis, MO) to 10 ml of Drabkin’s Reagent (Sigma, Saint Louis, MO) and mixing by inverting 

the tube several times, gently.  Flies were blood fed as described above; at 24, 30, 36, 48, and 72 

h post-blood meal a group of blood-fed flies from experimental and control groups were 

separated, midguts of sand flies were dissected and transferred into 250 µl of Drabkin’s solution; 

homogenized with a hand-held homogenizer (Kimble Chase, Vineland, NJ) for approximately 30 

sec; transferred to a 96-well microtiter plate and incubated for 15 min at room temperature (24 

ºC). Absorbance at 540 nm was recorded on a Biotek Epoch Gen5 (Biotek, Winooski, VT). 

Known quantities of mouse blood were measured as a standard and each sample was measured 

in triplicate. The mean of individual midguts at each time point were analyzed with a two-tailed 

unpaired t test. Normality was tested with the Kolmogorov-Smirnov test. Pictures of dissected 

midguts were taken using an AM423X Dino-Eye camera (Dinolite, Songshan District.Taipei, 

Taiwan). 

 

Sand fly oviposition 

Flies were blood fed as described above. Three days post blood feed, individual blood-

fed females from the anti-PpChit1 and the control groups were placed in plastic ovipots (ø =

6.3cm, height =6.5 cm) with 1.5-2 mm of laboratory plaster on the bottom, humidity of plaster 

was approximated to 65-70% for all ovipots, and one cotton strip (2 cm) with 20% sugar solution 

was added on top. The start day of oviposition (onset), number of eggs laid and survival of flies 

was recorded daily for each ovipot and until the fly died. 

 

Statistical Analyses 

Statistical analyses were conducted by individual species and then compared across all 

species as well. The general experimental design for an individual species was a randomized 

complete block design (RCBD) with sub-sampling. The anti-PpChit1 was the treatment factor, 
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the run was the blocking factor, and individual flies were the subsamples. The general 

experimental design across species was a randomized complete block design (RCBD) pooled 

over species and with sub-sampling. The anti-PpChit1 is the treatment factor, run nested within 

species was the blocking factor, and individual flies were the subsamples. Careful consideration 

was taken in selecting the type of probability distribution to be used with each response variable 

analyzed as indicated below. Due to an unequal number of replications and subsamples, the 

Between-within denominator degree of freedom method was used. Moreover, to help evaluate 

the antibody treatment by species interaction, simple effects of antibody treatment versus control 

were done for all species. Statistical analyses were conducted using SAS software version 9.3 

(SAS Institute Inc., 2011) and Minitab software version 16. 

 Analysis for blood digestion response 

To investigate the change in hemoglobin concentration over specified time intervals, an 

additional split plot of time had to be added onto the general experimental design described 

above. In detecting differences in the response blood digestion between the control and the 

treatment groups, a Mixed procedure was used as a preliminary analysis. Since the overall 

residuals appeared rightwardly skewed and tests of normality from the Univariate procedure 

(Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling) showed 

residuals to be not normal, a generalized linear mixed model with a gamma distribution and a log 

link function in the Glimmix procedure were used.   

Analysis for fitness responses 

Due to the discrete nature of the measurements for onset of oviposition, survival, and egg 

bouts, the Glimmix procedure in SAS with a Poisson distribution and a Log link function. In the 

case of the fitness response variables for total number of eggs laid and average number of eggs 

per bout, a generalized linear mixed model with a gamma distribution and a log link function 

were used through the Glimmix procedure in SAS to account for upper skew of the data. 

 Flies that never laid eggs 

To investigate differences in the proportion of flies that never laid eggs between the 

control and the experimental group for an individual species, a Fisher’s Exact Test was 

conducted on Minitab software version 16. 
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Results 

Antibody titer 

Antibody was generated by injecting 10 µl of the plasmid for PpChit1 into nine BALB/c 

mice. After several sera collections, the titer of each mouse was measured and the sera 

corresponding to mouse number 4 was used for the analysis (Table 2.2). 

 

Table 2.1 IgG Standards. IgG concentration in anti-PpChit1 sera collected from mice were 

calculated based on values of IgG concentration and absorbance determinate for six different 

concentrations.  

 

ID 
IgG 

Concentration 
(ng/ml) 

Absorbance 
340nm 

Mean Std Dev CV (%) 

STD1 500 0.547 0.562 0.021 3.77 

 
500 0.577 

   
STD2 250 0.676 0.665 0.016 2.45 

 
250 0.653 

   
STD3 125 0.797 0.802 0.007 0.882 

 
125 0.807 

   
STD4 62.5 0.967 0.965 0.003 0.293 

 
62.5 0.963 

   
STD5 31.2 1.13 1.148 0.025 2.22 

 
31.2 1.166 

   
STD6 15.6 1.317 1.311 0.008 0.647 

 
15.6 1.305 
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Figure 2.1 Standard curve for antibody titer. Corresponding IgG concentration for anti-

PpChit1 was determined by extrapolating the absorbance readings shown on the graph. 
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Table 2.2 Antibody titers of nine mice injected with plasmid. The total concentration of IgG 

for each mouse was calculated based on absorbance at 340 nm of a 1:10,000 dilution. ODs were 

plotted on graph of figure 2.1 to determine each individual concentration. Each sample was done 

in duplicate. Standard deviation and coefficient of variance are shown for each pair of sample 

readings. 

 

Name OD340 
IgG 

concentration 
(mg/ml) 

Total IgG 
concentration 

(mg/ml) 
Std Dev CV (%) 

mouse1 0.817 1.25 0.59 0.11 9.21 

 
0.788 

    
mouse2 0.875 0.91 0.25 0.01 0.589 

 
0.873 

    
mouse3 0.907 0.78 0.12 0.02 2.01 

 
0.914 

    
mouse4 0.854 1.24 0.58 0.36 28.7 

 
0.762 

    
mouse5 0.815 1.11 0.45 0.1 8.61 

 
0.843 

    
mouse6 0.85 0.98 0.32 0.04 3.89 

 
0.863 

    
mouse7 0.928 0.72 0.06 0.02 2.26 

 
0.936 

    
mouse8 0.867 0.94 0.28 0 0 

 
0.867 

    
mouse9 0.835 1.03 0.37 0.06 6.05 

 
0.855 

    
Naïve 

mouse 
sera 

0.943 0.66 0 0.04 6.43 

 
0.966 
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Effect of anti–PpChit1 on blood digestion 

To test the effect(s) of anti-PpChit1 on blood digestion, two groups of sand flies were 

fed, one with fresh red blood cells (RBCs) reconstituted in naïve sera (control) and the other with 

RBCs reconstituted in anti-PpChit1. As a measure of blood meal loss over time, the hemoglobin 

concentration (of dissected midguts) was determined for each of the three species of sand flies 

included in the study. For each species, five replicates for PPIS and PDMA, and three replicates 

for LLJB were performed. The values were analyzed by pooling together the replicates per each 

species. Overall, there was no statistical significant difference in blood retention in midguts from 

naïve blood-fed flies compared with anti-PpChit1 blood-fed flies when examined over time (Fig. 

2.2 and Table 2.3 - 2.5). 

Interestingly, we observed a faster excretion of the blood meal in treated PDMA flies at 

the beginning with a decrease later during digestion. Twenty-four hours PBM, the blood retained 

in the midgut of treated flies was equivalent to the control group, at 30 h and 36 h PBM these 

treated flies begun to excrete the blood meal faster than the control group. However, at 48 h they 

seemed to slow down the digestion process compared to the control group; yet, these results are 

not statistically significant. 

 

 

 

Figure 2.2 Sand fly midgut digestion process over time. Midguts of sand fly fed on RBCs 

reconstituted in naïve (A) or anti-PpChit1 (B) sera and dissected at 24 h, 30 h, 36 h and 48 h post 

blood ingestion (PBM). 
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Table 2.3 Amount of blood in control and anti-PpChit1 groups for P. papatasi (PPIS). Five replicates were measured and pooled 

to generate the average of hemoglobin concentration in whole midgut at different time points PBM. 

 

Digestion 
time (h) 

Control 
 

anti-PpChit1 

P-value Sand fly 
PPIS (n) 

[Hb] 
mg/ml 

95% CI  Sand fly 
PPIS n) 

[Hb] 
mg/ml 

95% CI 

 
30 30 0.268 0.200 - 0.359 

 
32 0.262 0.196 - 0.351 0.863 

36 30 0.258 0.193 - 0.346 
 

32 0.282 0.211 - 0.378 0.497 

48 36 0.221 0.165 - 0.295 
 

36 0.221 0.165 - 0.296 0.982 

72 32 0.132 0.098 - 0.177 
 

52 0.15 0.112 - 0.200 0.326 

 

 

 

Table 2.4 Amount of blood in control and anti-PpChit1 groups for P. duboscqi (PDMA). The amount of hemoglobin in whole 

midgut was calculated by testing five replicates and pooling them to calculate the average hemoglobin concentration at different time 

points PBM. 

 

Digestion 
time(h) 

Control 
 

anti-PpChit1 

P-value Sand fly 
PDMA (n) 

[Hb] 
mg/ml 

95% CI 
 Sand fly 

PDMA (n) 
[Hb] 

mg/ml 
95% CI 

 
24 25 0.261 0.216 - 0.315 

 
25 0.261 0.216 - 0.316 0.987 

30 25 0.266 0.220 - 0.322 
 

25 0.244 0.202 - 0.295 0.364 

36 26 0.247 0.204 - 0.298 
 

26 0.215 0.178 - 0.260 0.142 

48 26 0.198 0.164 - 0.239 
 

26 0.222 0.183 - 0.268 0.225 
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Table 2.5 Amount of blood in control and anti-PpChit1 groups for Lu. longipalpis (LLJB). Three replicates were performed and 

pooled to generate the average of hemoglobin concentration in whole midguts at different time points PBM. 

 

Digestion 
time (h) 

Control 
 

anti-PpChit1 

P-value Sand fly 
LJB (n) 

[Hb] 
mg/ml 

95% CI 
 Sand fly 

LLJB (n) 
[Hb] 

mg/ml 
95% CI 

 
24 20 0.265 0.189 - 0.371 

 
22 0.283 0.202 - 0.396 0.620 

30 20 0.272 0.194 - 0.381 
 

20 0.307 0.219 - 0.43 0.368 

36 20 0.252 0.180 - 0.354 
 

22 0.304 0.217 -0.425 0.179 

48 22 0.261 0.186 - 0.366 
 

21 0.281 0.201 - 0.394 0.577 
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Sand fly fitness 

To test the effect of anti-PpChit1 on the PM and its relationship to the fitness of sand 

flies, the onset of oviposition, survival, total number of egg laid per female, egg bouts, and the 

average number of eggs per bout were recorded and compared between females of the control 

and the anti-PpChit1 group for each sand fly species. In this case, four replicates were completed 

for PPIS, three replicates for PDMA, and three replicates for LLJB. The values were analyzed by 

pooling the replicates corresponding to each species. Based on statistical analyses, a difference 

was observed for onset of oviposition (p = 0.074) for PPIS (Table 2.6). This difference indicates 

that the group of flies treated with anti-PpChit1 take one extra day to start oviposition (7.5 days) 

compared to the control group (6.4 days). Similar difference  was observed for the survival of 

PPIS (p= 0.077), indicating that treated flies with anti-PpChit1 live almost three days longer 

(10.6) compared the control group (7.73), no significant difference was detected for the other 

fitness parameters. The analysis for PDMA and LLJB species did not show a statistically 

significant difference in any of the fitness parameters between the control and the anti-PpChit1 

groups (Tables 2.6).  

 

Gravid sand flies that never laid eggs 

One of the effects observed following feeding with anti-PpChit1 was that several gravid 

sand flies from all three species (PPIS, PDMA, and LLJB) never laid any eggs even if these sand 

flies were able to survive for several days in the laboratory (Table 2.7). Statistical analyses using 

the Fisher’s exact test, suggested an approaching level of significance for the results obtained for 

at least two sand fly species: PDMA (p = 0.058) and LLJB (p = 0.06). Because of the 

experimental design used in our studies, and due to the data obtained it was not possible to 

statistically compare the survival of the flies that never laid eggs with the flies that did lay eggs. 

Nevertheless, the average number of days that the flies lived under the experimental conditions 

assessed are indicated in Table 2.7. 
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Table 2.6 Effect of anti-PpChit1 on fitness parameters for P. papatasi (PPIS), P. duboscqi (PDMA), and Lu. longipalpis (LLJB). 

Fitness parameters were calculated by combining four, five, and three experimental replicates for each species respectively. 

 

Species  Group 
Sand 
flies 
(n) 

Egg 
laying 
onset 
(days) 

P 
Survival 
(days) 

P 
No. 

eggs 
P 

Egg 
bouts 

P 
Average No.    

eggs per 
bout 

P 

             

PPIS 
Control 53 6.40 

0.074 
7.73 

0.077 
45 

0.064 
1 

0.304 
37 

0.230 
Anti-PpChi1 53 7.49 9.60 55 1 43 

                          

PDMA 
Control 44 9.27 

0.560 
9.44 

0.561 
28 

0.227 
1 

0.948 
25 

0.249 
Anti-PpChi1 47 8.14 8.42 36 1 31 

                          

LLJB 
Control 32 5.54 

0.469 
7.01 

0.8052 
32 

0.999 
2 

0.513 
19 

0.513 
Anti-PpChi1 36 5.27 6.9 32 2 16 
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Figure 2.3 Graphical representation of the effect of anti-PpChit1 on egg laying onset for 

PPIS, PDMA, and LLJB. The effect of the antibody on PPIS is approaching significance level 

(p=0.074), on average the treated flies take one day longer (7.5 days) to start laying eggs 

compared to the control group (6.4 days). PDMA and LLJB flies are not being affected. 
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Table 2.7 Gravid sand flies that never laid eggs. Comparing the number and percentage of 

flies that never laid eggs, and the survival (days) for flies that never laid eggs vs. flies that laid 

eggs per species. 

 

Sand fly 
species 

Group 
Sand 
flies 
(n) 

# flies never 
laid eggs 

Proportion 
(%) 

Lifetime not laying: 
Mean (SD) 

Lifetime laying: 
Mean (SD) 

       
PPIS Control 53 7 13.2 15.14 (4.14) 7.49 (1.23) 

 
Treatment 53 3 5.66 15.66 (4.72) 9.6 (1.7) 

PDMA Control 44 1 2.27 10 (-) 9.27 (2.34) 

 
Treatment 47 7 14.89 12.71 (5.53) 8.14 (1.9) 

LLJB Control 32 1 3.13 10 (-) 7.0117 (0.86) 

 
Treatment 36 7 19.44 11.1 (3.39) 6.9 (0.82) 

 

 

Table 2.8 Approximate number of eggs that sand fly did not lay. After each sand fly died, it 

was dissected and the number of eggs still in ovaries were counted. 

 

 
Species 

Group Sand flies (n) 
 

Average # eggs 
in fly 

PPIS 
control 7 62 

anti-PpChit1 3 72 

PDMA 
control 1 33 

anti-PpChit1 2 81 
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Effect of anti-PpChit1 across sand fly species 

The effect of anti-PpChit1 was also evaluated across the three species of sand flies for the 

blood digestion and all the fitness parameters mentioned above. After statistical analysis it was 

only obtained an approaching significance level (p=0.0647) on the survival of PPIS (Fig.2.4). 

The blood digestion and other fitness parameters were not statistically significant. 
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Fig 2.4 Graphical representation of the effect of anti-PpChit1 on survival of LLJB, PDMA 

and PPIS. It is noticeable that survival of PPIS treated flies is longer (10.6 days) than the control 

group (7.75 days).  LLJB and PDMA are minor affected. 

 

 

Discussion 

In adult sand flies, secretion of the PM type I occurs following distention of the midgut 

during blood feeding. However, the kinetics of PM secretion and formation can change 

according to species (Pimenta et al., 1997; Sadlova and Volf, 2009). Indication that the PM is 

modulated by the action of chitinases was obtained by feeding chitinase inhibitors, such as 

allosamidin to insects. This led to thicker and more persistent PMs, similarly observed in sand 

flies (Pimenta et al., 1997) and mosquitoes (Shahabuddin et al., 1993; Shen and Jacobs-Lorena, 
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1997). Following the characterization of sand fly midgut chitinases (Ramalho-Ortigao et al., 

2005; Ramalho-Ortigao and Traub-Cseko, 2003), and more recently, our RNAi knockdown 

studies of PpChit1 (Coutinho-Abreu et al., 2010) and PpPer1 (Coutinho-Abreu et al., 2013), we 

reasoned that changes in the PM permeability caused either by silencing (RNAi) or blocking 

(antibodies) of chitinase or other PM-related molecules affect digestion/excretion of the blood 

meal process in sand flies and consequently impact the fitness of the sand fly. The studies 

described here were focused on the effects of feeding antibodies specific to PpChit1, a midgut-

specific chitinase secreted in the midgut of the sand fly vector P. papatasi. Anti-PpChit1 sera 

was fed to three different sand fly species, P. papatasi (PPIS), P. duboscqi (PDMA), and to Lu. 

longipalpis (LLJB) using an artificial blood feeding apparatus. Parameters assessed included 

physiological responses, such as blood digestion, or excretion; fitness response was evaluated 

using parameters such as onset of oviposition, total number of egg laid, eggs bouts, number of 

eggs per bout, and sand fly overall survival. Suggestive differences were observed between the 

three species with regards to several parameters assessed. However, it may be important to keep 

in mind that the flies used in this study are colony flies, with free and continuous access to sugar 

and maintained at constant temperatures. Moreover, fluctuation in colony numbers of sand fly 

species happens and that some experimental replicates were done at different periods. Thus, 

certain results obtained through the analyses should be taken in that context. Results obtained 

from the various parameters investigated are further discussed below.  

 

Effect of PpChit1 on blood digestion 

No statistical significant differences were observed regarding blood digestion between 

anti-PpChit1 fed or naïve sera fed flies for all three sand fly species tested (PPIS, PDMA and 

LLJB). These results are similar to observations by Pimenta et al. (1997) in which no difference 

in blood meal loss/excretion was observed when comparing between blood fed flies, infected 

blood fed flies, and  blood fed treated with chitinase. However, Pimenta et al (1997) did observe 

differences in blood meal loss in chitinase-treated infected flies compared to the other groups. 

Moreover, greatest decline of hemoglobin occurred between 48 h and 72 h with complete loss of 

the blood meal by 96 h.   

An apparent difference was detected in the excretion of the blood in PDMA flies at 30h 

and 36h PBM (Table 2.4), as indicate by the concentration of hemoglobin in comparison to PPIS 
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and LLJB (Tables 2.3 and 2.5). In this case, in PDMA fed on anti-PpChit1 sera displayed a rate 

of digestion that was faster that naïve sera fed flies whereas the opposite was observed in PPIS 

and LLJB for the same time points. Though no statistical difference was observed in any of the 

treatments in all three flies, it is plausible that in P. duboscqi the PM kinetics affected the results 

observed. Another possibility is that upon feeding, chitinase is secreted into the gut lumen as an 

inactive pro-enzyme that is later activated by trypsin (Shen and Jacobs-Lorena, 1997). Thus, if 

inhibitors of trypsin are present in the gut between 24 h and 48 h PBM, the activation of 

chitinase might not be achieved until the levels of this inhibitors decrease.  

In Anopheles stephensi and Ae. aegypti, lack of PM following feeding with anti-PM 

antibodies led to a faster digestion of the blood meal in these mosquitoes (Villalon et al., 2003) 

In sand flies, digestion of the blood meal appears to be affected by the absence of the PM 

(Oliveira de Araujo et al., 2012). Possibly, digestion may also be affected by either a thicker or 

thinner PM.  

 

Effect of anti-PpChit1 on sand fly fitness 

Sand flies feed on plant nectar and vertebrate blood. Hematophagy provides females with 

essential nutrients used for egg development (Secundino et al., 2005b; Villalon et al., 2003). A 

slower blood digestion, to some extent, expected after feeding with anti-PpChit1, would then 

lead to slower egg production (oviposition) due to longer lasting PM affecting absorption of 

nutrients. In our results, however, no difference in blood digestion between control and 

experimental flies of the three species (PPIS, PDMA, and LLJB) was observed. 

Regarding the number of eggs laid by females fed either with anti-PpChit1 or naïve sera, 

no difference was observed for any of the three sand fly species, PPIS, PDMA, or LLJB. In a 

similar fashion, no difference in reproduction and fecundity (egg production) were observed in 

A. stephensi and Ae. aegypti fed with antisera targeting the PM (Kato et al.(2008); Villalon et al. 

(2003).  

Interestingly, we observed a difference which may be considered as “approaching 

significance” with regards to the onset of oviposition in PPIS flies fed with anti-PpChit1. PPIS 

fed on anti-PpChit1 sera took approximately one extra day to start laying eggs in comparison to 

the flies that were fed the naïve sera. Recently, it has been shown that in Lu. longipalpis fed on 

blood containing exogenous chitinase oviposition onset occurred sooner and produced fewer 
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eggs than control fed flies (Oliveira de Araujo et al., 2012). Taken together these data suggest 

that, following digestion of the blood meal, the presence of the PM in sand flies somehow slows 

down the absorption of nutrients that are used for egg development and egg laying. 

Regarding survival, a slight difference which we considered as “approaching 

significance” (p=0.065) was observed in PPIS flies that fed on blood containing anti-PpChit1 in 

comparison to flies that fed on naïve sera: PPIS flies fed on anti-PpChit1 lived approximately 

three days longer. In contrast, complete removal of the PM by exogenous chitinase (Oliveira de 

Araujo et al., 2012) seems to have no effect. In our case, at least for PPIS, the feeding of anti-

PpChit1 leading to a thicker PM possibly provided additional heme binding sites (HRM from 

peritrophins associated with the PM), to further reduce the toxic effects of this molecule. 

 

Gravid flies that never laid eggs 

Several gravid sand flies in each of the three groups (PPIS, PDMA and LLJB) treated 

with anti-PpChit1 did not lay eggs even when surviving longer than flies that laid eggs. To us, 

that raised the question of whether the effect was due to the anti-PpChit1 treatment. p-values 

“approaching significance” in LLJB and PDMA somewhat suggest that anti-PpChit1 is able to 

affect fertility in these flies. During the process of egg development, secretion of vitellogenin 

(Vg) and other yolk proteins is activated in the fat body, and these proteins are stored in the 

primary oocytes supporting egg maturation. The production of yolk protein is activated by amino 

acids obtained from the digested blood meal, and by the ecdysteroid hormone (EDH) secreted by 

the ovaries. These steps are also regulated by the release of neuropeptides from the brain in 

response to blood ingestion (Gulia-Nuss et al., 2011). Thus, in flies that did not lay eggs perhaps 

one or more of the components of this complex network of proteins, protein signaling molecules, 

hormones, and neuropeptides leading to egg development and egg laying might have been 

negatively affected by feeding with anti-PpChit1. Further studies to clarify the effect of anti-

PpChit1 on treated flies are necessary to address this question.  

Overall, the fitness parameters analyzed in this study complement the observations made 

when treating sand flies with exogenous chitinase that leads to disruption of the PM (Oliveira de 

Araujo et al., 2012). Therefore, it is reasoned that with a thicker and more persistent PM, the 

fitness of the fly is influenced, in this case, a slower acquisition and absorption of nutrients can 

occur; therefore, a delay or absence in egg production is observed.  
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Conclusion  

PpChit1 is a sand fly midgut specific chitinase involved in the modulation and 

degradation of the PM. Specific anti-PpChit1 sera was produced to feed sand flies in order to 

evaluate its effect on the fitness. These results suggest that the structure of sand fly PM was 

modified by anti-PpChit1 causing the PM to be thicker and last longer and that likely interfered 

with certain fitness parameters in the sand fly. Statistical analyses suggest that the digestion 

process of the blood meal is not altered by the treatment with anti-PpChit1. However, for PPIS 

sand flies, the fitness responses such as onset of oviposition, and survival were affected. Despite 

the lack of statistical significance in the fitness parameters between control and anti-PpChit1 for 

PDMA and LLJB, several gravid flies in each of the three species that were treated with anti-

PpChit1 never laid eggs even though these insects live between 3-7 days longer than the flies that 

were able to lay eggs.   

 

Future research  

Future research will be aimed at investigating the rate of absorption of lipids and/or 

proteins by enterocytes (in the midgut) and trophocytes (in the fat body) and how this rate affects 

egg development. We shall also investigate whether the thickening of the PM following feeding 

with anti-PpChit1 changes the profile of expression of certain genes regulated by blood feeding, 

including vitellogenin.  
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Chapter 3 - Literature Review 

Phlebotomine Sand Flies and Leishmania 

 

Sand flies as vectors of leishmaniasis  

Phlebotomine sand flies (Diptera:Psychodidae) are the principal vectors of leishmaniasis 

in tropical and semitropical zones around the World, including Central, South America, the 

Mediterranean, Middle East, and the Indian Subcontinent (Munstermann, 2005; Sacks et al., 

2008). Leishmaniasis is a multi-spectrum disease ranging from self-healing cutaneous lesions to 

visceral disease and in terms of severity, from asymptomatic to fatal cases (Dostalova and Volf, 

2012; Ramalho-Ortigao et al., 2010). The global burden has been estimated to be approximately 

500,000 cases of visceral leishmaniasis (VL) and close to 1.1-1.5 million cases of cutaneous 

leishmaniasis (CL) per year (Reithinger, 2008; WHO, 2010). Sand flies are typically not 

anthropophilic and the preferred host is the easiest available. Thus, humans are an auxiliary host 

for sand flies that have developed the capacity to adapt in urban environments (Munstermann, 

2005). 

Sand flies are essential to support the development of Leishmania parasites (Sacks et al., 

2008). Approximately 900 sand flies species have been identified but only 93 species are proven 

or probable vectors of human and animal diseases (Ramalho-Ortigao et al., 2010). Primarily, 

species and subspecies of Phlebotomus in the Old World and Lutzomyia in the New World 

(WHO, 2010) are involved in the transmission cycle of Leishmania spp. 

 

Sand flies-Leishmania interaction 

Sand flies can be categorized into permissive (or non-restrictive or non-specific), and 

non-permissive (or specific or restrictive). Permissive sand fly vectors are those that support 

development of multiple species of Leishmania. An example is Phlebotomus arabicus which has 

been shown to allow development of such Leishmania species as Le. tropica (Svobodova et al., 

2006), as well as Le. major and Le. infantum (Myskova et al., 2007). The relationship between 

permissive vectors and parasites is due to the role of O-glycosylated proteins that have a terminal 

N-Acetyl-galactosamine and a lectin-like activity on the surface of Leishmania for attachment to 

microvilli surface of the sand fly midgut (Evangelista and Leite, 2002; Myskova et al., 2007). 
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Restrictive or specific sand fly vectors refer to sand flies that only allow the development of a 

single Leishmania species Examples of restrictive sand flies include Phlebotomus papatasi, the 

principal vector of Le. major (Killick-Kendrick et al., 1994; Pimenta et al., 1994), and 

Phlebotomus sergenti, which is a vector of Le. tropica (Kamhawi et al., 2000). Most sand fly 

species support the development of a broad range of Leishmania species making them 

permissive vectors (Myskova et al., 2007). 

When a female sand fly takes an infected blood meal from the host, the blood containing 

amastigotes reach the midgut via the stomodeal valve that regulates the fluid flow into the gut 

(Sacks et al., 2008). Although Leishmania are obligatory intracellular parasites when within the 

vertebrate host, within the sand fly vector Leishmania development occurs in, and is generally 

restricted to the midgut lumen. Moreover, Leishmania development within the lumen can be 

divided according which portions of the sand fly midgut they are localized. Peripylarian parasites 

establish an initial infection in the hindgut (pylorus) with promatigotes, the flagellated and motile 

form, attaching to the cuticular lining. Further during the course of development these parasites 

migrate to the anterior parts including the midgut and foregut. Le. braziliensis (subgenus 

Viannia) is an example of such development. In contrast, suprapylarian parasites development 

takes place strictly in the midgut and foregut of the sand fly host. Most of the Leishmania 

causing human leishmaniasis display suprapylarian development within the sand fly vector 

(Dostalova and Volf, 2012). 

During its development within the sand fly vector, Leishmania parasites are faced with 

some formidable barriers. These barriers include a proteolytic attack by proteases secreted upon 

blood feeding; the need to escape the endoperitrophic space likely through the peritrophic matrix 

(PM) in order to prevent excretion with the blood meal; the required attachment to the midgut 

epithelia also to prevent excretion; followed by detachment from the epithelia and the need to 

migrate to the anterior portion of the midgut (stomodeal valve) and mouth parts for transmission 

during the next blood feeding attempt (Rogers et al., 2008; Schlein et al., 1992; Volf et al., 

2004); (Ramalho-Ortigao et al., 2010; Ready, 2013). 

 

Sand fly molecules during Leishmania infection 

Digestive enzymes secreted into the midgut of sand flies following the ingestion of the 

blood meal can contribute to the success of Leishmania development. Trypsins, chymotrypsins 
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(Ramalho-Ortigao et al., 2003), serine proteases, metallocarboxypeptidases, and astacin-like 

metalloproteases (Jochim et al., 2008; Ramalho-Ortigao et al., 2007) are up-regulated after a 

blood meal and known to influence survival of Leishmania in sand fly midgut (Pimenta et al., 

1997). Recently, Sigle and Ramalho-Ortigao (2013) reported two Kazal-type serine proteinase 

inhibitors, PpKzl1 and PpKzl2, in P. papatasi that are up-regulated after a blood meal. Further, 

PpKzl2 was shown to inhibit α-chymotrypsin, α-thrombin and, trypsin, and is likely involved in 

regulating digestive enzymes that can affect Leishmania development within the sand fly. 

 

Leishmania molecules promoting infection  

It has been shown that Leishmania is able alter the behavior of its sand fly host. One 

example of such change is due to the secretion of a proteophosphoglycan (PPG), mucin-like gel, 

known as promastigote secretory gel (PSG) that accumulates in the sand fly gut and mouthparts 

(Rogers, 2012). PSG blocks the lumen of the anterior midgut of the fly and the stomodeal valve, 

which in addition to the damage caused by a chitinase secreted by the parasites (Schlein et al., 

1991), causes the valve to remain open. As the stomodeal valve is no longer able to function 

during attempts to blood feed, regurgitation by the infected sand fly ensues, and infectious 

metacyclic promastigotes, as well as fragments of the PSG are transmitted (Rogers et al., 2002; 

Sacks et al., 2008; Stierhof et al., 1999). As this “blocked” sand fly cannot acquire sufficient 

blood in its attempt, it continues to probe, and transmit parasites during these attempts. Thus, the 

infected sand flies probe more frequently, take more time to feed, and likely ingest incomplete 

blood meals compared to non-infected sand flies (Killick-Kendrick et al., 1977; Maia et al., 

2011; Rogers and Bates, 2007; Rogers et al., 2002).  

It has also been shown that glycosylphosphatidylinositol (GPI)-anchored molecules are 

important for Leishmania attachment to the midgut of sand flies. Hajmova et al. (2004) described 

that a zinc metalloproteinase gp63 on the surface of Leishmania could play an important role in 

early development of parasites and sand fly infection. It was observed that over-expression of the 

gp63 protease promoted early development of parasites compared to slow development with 

down-regulation of gp63. Moreover, sand fly infections using parasites with down-regulated 

gp63 had a low parasite load compared to normal Le. amazonensis in Lutzomyia longipalpis 

(Hajmova et al., 2004). These results were in contrast to Joshi et al. (1998) suggesting that gp63 

was not essential for development and survival of Le. major in P. papatasi and P. argentipes. 
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More recently, Jecna et al. (2013) demonstrated the role of gp63 on Le. amazonensis 

development in Lu. longipalpis by an in vitro competitive binding assay. Down-regulation of 

gp63 in Le. amazonensis transfectants led to non-efficient binding of the parasites to the midgut 

of Lu. longipalpis. Moreover, their results also suggested a critical role for gp63 in Le. mexicana 

attachment to Lu. longipalpis midgut as 99% of wild type (WT) parasites were bound to the 

midgut whereas only 25% of the Le. amazonensis that did not express GPI-anchored proteins 

including gp63, but with normal levels of lipophosphoglycan (LPG), bound to the Lu. 

longipalpis gut. These data together with previous reports on the role of gp63 in Leishmania 

attachment (Sadlova et al., 2006) are a clear indication of the role of these proteins during 

Leishmania development within the sand fly vector. 

One of the best studied molecules responsible for Leishmania attachment to the midgut 

epithelium is LPG. The crucial role of LPG in Le. major binding to microvilli lining the P. 

papatasi midgut has been previously demonstrated (Kamhawi et al., 2000; Pimenta et al., 1994; 

Pimenta et al., 1992; Sacks et al., 1995). LPG is crucial for attachment to the midgut of the 

restrictive vector P. papatasi. It is also apparently important for the binding and development of 

Le. infantum in its natural vector, P. perniciosus (Jecna et al., 2013). However, when this group 

tested the binding of LPG deficient Le. infantum and wild type (WT) in P. sergenti, they 

observed that no parasites in both groups bind to the midgut of P. sergenti. Thus, suggesting that 

in this pair Le. infantum-P. sergenti LPG is not a determinant (or independent of LPG) for 

attachment. Therefore, confirming the specificity of P. sergenti for Le. tropica. In brief, 

Leishmania LPG and protease GP63 are important GPI-anchored components for attachment to 

the sand fly midgut.   
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Chapter 4 - Transmission of Leishmania infantum in American 

Foxhounds by sand fly bite 

 

Abstract 

 

Phlebotomine sand flies are the principal vectors of leishmaniasis, a neglected tropical 

disease caused by parasites of the genus Leishmania. Endemic transmission of leishmaniasis has 

been reported in 98 countries with an annual incidence of 2 million human cases. Since 1999, 

several cases of canine visceral leishmaniasis (CVL) have been reported in Foxhounds in North 

America. Strong evidence points to vertical and horizontal transmission of the parasite 

Leishmania infantum among these dogs, however a sand fly transmission route is also thought to 

occur. To this extent, a model with naturally infected Foxhounds was used to assess the 

development of Le. infantum in a sand fly vector and the subsequent transmission of the parasites 

to a naive vertebrate host following the bite of infected sand flies. The results in this study 

indicate that VL-symptomatic Foxhounds (naturally infected) are highly infectious to laboratory-

reared Lutzomyia longipalpis sand flies. Moreover, parasites fully develop within these flies and 

are transmitted to naïve vertebrate hosts following the bite of infected sand flies. Thus, the 

potential exists for parasite transmission to humans and the risk of visceral leishmaniasis to 

become endemic in North America.  
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Introduction 

Leishmaniasis is a zoonotic disease in which dogs are the most important reservoir of 

human visceral leishmaniasis (VL) caused by Le. infantum (Ashford et al., 1998). Parasites are 

thought to be generally transmitted by phlebotomine sand flies but another rare modes of 

transmission include congenital and parenteral via blood transfusion and, needle injection 

(Magill et al., 1993). An outbreak of canine visceral leishmaniasis (CVL) was reported in 1999 

in North America (Gaskin et al., 2002), especially among Foxhounds. Strong evidence points to 

vertical (Boggiatto et al., 2011) and suspected horizontal transmission of Le. infantum among 

these dogs. However, vector-borne transmission by sand flies could be the mode that explains 

visceral leishmaniasis in foxhounds. 

Fourteen species of Lutzomyia sand flies have been recorded in North America, and at 

least three species (Lutzomyia anthophora, Lutzomyia diabolica, and Lutzomyia shannoni) have 

been shown to be Leishmania vectors. Leishmania mexicana for example is considered endemic 

in south-central Texas (Petersen, 2009) and the cause of cutaneous leishmaniasis in Texas and 

Mexico. Lu. diabolica is believed to be the primary vector for Le. mexicana in the New World 

(Young and Perkins, 1984) but it is uncertain if this sand fly species represent a vector of 

leishmaniasis at this site. However, cats, dogs, and people have been diagnosed with cutaneous 

leishmaniasis in Texas (Trainor et al., 2010; Wright et al., 2008). More recently, Clarke et al. 

(2012) reported the emergence of autochthonous cases of cutaneous leishmaniasis in 

northeastern Texas and southeastern Oklahoma.  

The principal sand fly vector of Le. chagasi, the causative agent of visceral leishmaniasis 

in the New World, is Lu. longipalpis. This sand fly has never been reported in North America. 

Lutzomyia vexator, another native species of sand fly, and Lu. shannoni, have been recently 

identified in two additional states of the U.S. (Weng et al., 2012). As far as we know, Lu. vexator 

is currently found in 23 states in the U.S. and Lu. shannoni have been reported in 16 states 

(Claborn et al., 2009; Haddow et al., 2008; Minter et al., 2009; Price et al., 2011; Young and 

Perkins, 1984). 

The objective of this study was to assess whether the Le. infantum parasites circulating 

among Foxhounds in the U.S are able to fully develop within sand flies vectors and be able to be 

transmitted to a suitable vertebrate host during feeding. 
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Materials and Methods 

Ethics statement 

The use of animals during this study was reviewed and approved by Iowa State 

University Laboratory Animal Resources (LAR). 

   

Experimental animals 

Two Le. infantum-infected American Foxhounds donated to Dr. Christine Petersen’s 

laboratory at Iowa State University were used in this study. The dogs were one 6 years old 

female and one 7 years old male. Both animals had tested positive for Le. infantum by PCR and 

serology via the indirect immunofluorescent antibody test (IFAT) with the recombinant antigen 

K39. Additionally, both dogs were considered polysymptomatic for visceral leishmaniasis, with 

signs including weight loss, rough hair coat, lymphanomegaly, splenomegaly, and cutaneous 

lesions. Healthy hamsters were purchased under the care of Iowa State University-LAR  

  

Sand fly rearing and infection with Le. infantum 

Lutzomyia longipalpis (Jacobina strain -LLJB) was reared in the Biology of Disease 

Vectors laboratory at the Department of Entomology, Kansas State University, at 26 
o 
C and 70 

% humidity in a 12:12 light-dark cycle. In order to evaluate sand fly transmission, two-to-three 

day old female sand flies were fed on the ventral part of the ears of two naturally infected with 

Le. infantum Foxhound housed at Iowa State University. Immediately after feeding, engorged 

females were separated from non-fed flies. The presence or absence of blood in the sand fly 

digestive tract was verified by anesthetizing flies with CO2 and observing the midgut distension 

under a stereomicroscope (Carl Zeiss, Thornwood, NY).  In order to assess parasite 

development, blood fed flies were dissected daily after 72 h post blood meal (PBM). The midgut 

of three flies was dissected, homogenized in 1X phosphate-buffer salt solution (PBS), and 

observed for parasite development in a hemocytometer chamber. The development of the 

parasite in the sand fly was monitored for approximately 12 days. 

 

DNA extraction and PCR to detect Leishmania DNA in sand flies  

Genomic DNA of individual Lu. longipalpis females was extracted using 10 % Chelex 

100 resin beads (Bio Rad). Sand flies were homogenized individually in 20 μl of molecular grade 
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water, heated in 120 μl of 10 % Chelex solution at 95 °C for 30 min, centrifuged briefly (6 sec) 

at 14,000 × g, and the supernatant transferred to a new tube. DNA extraction was confirmed by 

amplification of Leishmania 145 bp fragment targeting kDNA minicircle (10,000 copies) to Le. 

donovani complex using GoTaq Colorless Master Mix (Promega, Madison, WI), 10μM each 

forward RV1 (5’-CTTTTCTGGTCCCGCGGGTAGG-3’) and reverse RV2 (5’-

CCACCTGGCCTATTTTACACCA-3’) primers, in 25 μl reaction. PCR conditions were set at 

94 °C for 2 min, followed by 40 cycles of denaturation  (94 °C; 1 min), annealing (59 °C ; 1 

min), and extension (72 °C; 1 min), with a final extension of 72 °C for 10 min (Lachaud et al., 

2002). PCR products were visualized following electrophoresis on 1.5 % agarose gel with 

ethidium bromide. 

 

Hamster infection through sand fly bite 

On day thirteen, three infected and two non-infected flies were put in a small plastic vial 

(cole-palmer: 47.6 mm height x 19.1 mm diameter) covered with a thin-nylon fabric mesh at one 

end. One vial was placed against the ventral side of the left ear and one on the ventral side of the 

right ear of an anesthetized (isoflurane) hamster. Clamps were used to attach the plastic vial to 

the ear of the hamster and to create a flat surface for easy access of the fly to the site of feeding; 

the process was performed for approximately 1 h in dark. After direct feeding by sand flies, 

animals were monitored daily by LAR staff for five months and examined for clinical signs of 

leishmaniasis. 

 

Hamster blood and tissue collection  

Blood samples were collected prior to sand fly infection followed by collections at 2 

weeks, and 1, 2, 3, 4, and 5 months post-sand fly exposure. 

Hamsters were placed under anesthesia via inhalation of isoflurane. Blood samples 

(roughly 0.33 ml) were collected from the lateral saphenous vein in capillary tubes and cryo-

preserved at -80 
o 
C for further analysis of parasite load by real time quantitative PCR (RT-

qPCR). 

Five months post-sand fly exposure, blood samples were collected and the hamsters were 

humanely sacrificed via intraperitoneal injection of pentobarbital (1 ml/ 10 lbs). Tissues samples 

including those from spleen, liver, and lymph nodes were collected to ascertain parasite 
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infection. Tissue samples were used in impression smears, histopathological examination, RT-

qPCR analysis, and parasite culture.  

 

DNA extraction 

DNA from blood samples was isolated using the Qiagen blood DNA isolation kit (Qiagen 

Sciences, Maryland) according to the manufacturer’s instructions. 

DNA from tissues was extracted using a modification of the Qiagen blood DNA isolation 

kit (Qiagen Sciences, Maryland). Small sections of tissue were placed into a sterile tissue grinder 

with 80 µl of PBS and mechanically disrupted. Samples were transferred to 1.5 ml centrifuge 

tubes and added 100 µl of buffer AL and 20 µl of protease.  The sample was vortex and 

incubated at 56 
o 
C overnight. The sample was briefly centrifuged and 100 µl of buffer AL was 

added. After this point, DNA isolation was performed following the manufacture’s protocol at 

the incubation step. DNA concentration was measured by a NanoDrop ND1000 

spectrophotometer (Wilmington, DE). 

 

Detection of Le. infantum by RT-qPCR 

Le. infantum (LIVT2, ATCC) was grown in complete Grace’s medium (incomplete 

Grace’s supplemented with 20% fetal bovine serum, 100 U/ml penicillin, 100 µg/ml 

streptomycin, and 2 mM L-glutamine). Parasites were harvested by centrifugation at 2500 x g for 

15 min at 4 
o 
C, washed twice with PBS, and resuspended in PBS to a concentration of 10

7
 

parasites per milliliter. Fifty microliters of this solution was spiked into 150 µl of negative canine 

blood. 

Le. infantum kinetiplast DNA (kDNA) was detected using specific primers and probes F 

5’-CCGCCCGCCTCAAGAC, R 5’-TGCTGAATATTGGTGGTTTTGG, (Integrated DNA 

Technologies, Coralville, IA) and, Probe 5’-6FAM-AGCCGCGAGGACC-MGBNFQ (Applied 

Biosystems, Foster City, CA) (FAM: laser-activated reporter dye; MGBNFQ: 3’-minor-groove 

binder non-fluorescent quencher).  BLAST analysis indicated that these primers and probe were 

specific for Le. infantum.  DNA from Le. amazonensis or Le. major parasites did not amplify 

using this primer and probe set.  

Leishmania SSU rRNA was identified using specific fluorogenic probe LEIS.P1 (5’-6-

carboxyfluorescein [6-FAM]-CGGTTCGGTGTGTGGCGCC-3’) and its flanking primers 
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LEIS.U1 ( 5’-AAGTGCTTTCCCATCGCAACT-3’); and LEIS.L1( 5’-

GACGCACTAAACCCCTCCAA-3’ previously designed (Wortmann et al., 2001) and obtained 

from Applied Biosystems, Foster City, CA.  Blood DNA samples were analyzed by qPCR in 

duplicate using a 96-well format of two concentrations, whole blood and a dilution 1:10. 

Amplification was performed using a Stratagene Mx3005P qPCR system, Perfecta qPCR super 

Mix (Quata Biosciences, Gaithersburg, MD), and Low ROX master mix (Quanta Biosciences, 

Gaithersburg, MD). Primers were used at 775 nM and probe at 150 nM with thermocycling at 95 

o 
C for 3 min, followed by 50 cycles at 95 

o 
C for 15 s, and 60 

o 
C for 1 min.  Results were 

analyzed by MxPRO QPCR software version 4.01. 

 

Results 

Sand fly infection 

In order to assess if Le. infantum are able to develop in the sand fly, approximately 300 

female sand flies were fed on a naturally infected Foxhound housed at Iowa State University.  

Seventy two hours post blood feeding (PBF), development of parasites and infection of flies was 

confirmed by observing Le. infantum promastigotes in the midgut of dissected flies. A total of 41 

flies were dissected during 11 days that development of parasites was monitored. Apparently, 11 

flies (27%) did not feed since no blood was observed in the midgut of these flies and no eggs 

were developed. Thirty flies (73%) had at least one parasite in the midgut. Replication of 

parasites and change of stages was observed as the infection was advancing. Ten days PBF, it 

was clearly evident the migration and attachment of metacyclic promastigotes to the stomodeal 

valve (Fig. 4.1) which was a hallmark of infection.  
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Figure 4.1 Hallmark of mature Le. infantum infection of laboratory-reared sand flies (Lu. 

longipalpis). Picture shows parasites colonizing the sand fly stomodeal valve 10 days after 

feeding on naturally infected Foxhound. The pictures illustrate the blockage of the stomodeal 

valve by Le. infantum. Arrow points at a free swimming metacyclic promastigote parasite. 

 

Le. infantum transmission to a vertebrate host 

With the attempt to transmit Le. infantum to a vertebrate host, 13 days PBF and infection 

of sand flies, a group of these flies was brought back to Iowa State University to feed on seven 

naïve hamsters. Four days PBF, the midgut of sand flies that fed on hamsters and were still alive 

were dissected to confirm Leishmania development microscopically or by PCR (Table 4.1). A 

total of 30 flies attempted to feed on hamsters, 11 flies fed and were recovered for Leishmania 

DNA detection. PCR results indicated that five flies were positive for Leishmania. Thus, these 

results confirmed that flies feeding on three hamsters had Le. infantum in the midgut. This was a 

quick analysis that anticipated the possible outcome of infection in the hamsters.   
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Table 4.1 Representation of sand flies that fed on corresponding hamster and were tested 

for Leishmania DNA. Five sand flies were set to feed on the ears of hamsters; three infected and 

two non-infected. Sand flies that fed on the hamster were tested to confirm that the fly had 

parasites and potentially transmitted them to the host. 

 

hamster # 
Total # of sand flies with 
blood assessed by PCR 

Results of sand flies 
assessed by PCR 

   

1 1 1 Negative 

2 2 2 Positive 

3 1 1 Negative 

4 No flies fed on this animal No flies fed on this animal 

   
5 3 2 Positive 

  
1 Negative 

   
6 2 1 Positive 

  
1 Negative 

   
7 2 2 Negative 

   
 

 

Detection of Le. infantum by RT-qPCR 

After infection, blood samples of hamsters were collected at two weeks and each month 

until 5 months. RT-qPCR was performed to test for Le. infantum DNA. Two months after 

infection, Le. infantum was detected in hamster 1 and hamster 5 with a threshold cycle (Ct) of 

43.88 and 34.38 respectively compared to positive control with Ct=25. Three months later, a 

sample of hamster 2 amplified for Leishmania DNA with a Ct=28.27. This indicated that 

hamster 2 had more parasites than hamster 1 and 5. Additionally, three months after infection, a 

single cutaneous lesion became apparent on the nose of hamsters 5, this was consistent with 

signs of Leishmania infection (Fig. 4.2). Four months later, hamster 6 was confirmed positive for 

Le. infantum since a sample amplified for Leishmania DNA given a Ct=45. Five months after 

infection, the facial lesion on hamster 5 appeared to have healed. Hamsters were euthanized at 

this point. No other clinical signs of disease were noted throughout this trial. 
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Figure 4.2 Dermal (skin) lesion on hamster infected with Le. infantum via sand fly bite. 

Pictures shows hamster #5, infected via the bite of sand flies with the Le. infantum strain 

circulating among Foxhounds and responsible for the current outbreak of canine VL in the dogs. 

Arrow points to (unusual) skin lesion caused by the infection with Le. infantum. 

 

Furthermore, section of liver and spleen from each hamster were sent to the center for disease 

control and prevention (CDC) for the culture of parasites; however, there was no growth of 

parasites. 

 

Discussion 

 

The relevance of this study is to understand 1) the potential of Le. infantum strain 

originally from the Mediterranean basin and currently found in infected Foxhounds in the U.S. to 

development in a sand fly vector, 2) to prove the transmission of the parasite to a healthy 

vertebrate host and, 3) to follow the progression of the disease. Results of this study indicate that 

VL-symptomatic Foxhounds, naturally infected, are highly infectious to laboratory-reared sand 

flies. Moreover, parasites fully develop within these flies and are transmitted to naïve vertebrate 

hosts following the bite of infected sand flies. Previous studies have shown that Le. infantum is 
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able to develop within sand flies after blood feeding on naturally infected dogs (Killick-Kendrick 

et al.(1994). According to Killick-Kendrick et al (1994), development of Le. infantum 

promastigotes in Lu. longipalpis was observed between three and nine days after blood feeding. 

In addition, infection of dogs also was performed by needle injection of metacyclic 

promastigotes that developed and were isolated from sand flies. All dogs that were inoculated 

with parasites were confirmed to be infected. Some developed skin lesions between six and 14 

weeks after inoculation, but spontaneously healed three to four months later. In our study, at least 

one of the hamsters used for transmission of Le. infantum by the infected sand flies also 

developed a skin lesion (Fig 4.2) which also spontaneously healed five months later; thus, 

consistent with previous observations. 

The capacity to acquire Le. infantum from naturally infected dogs was compared between  

Lu. shannoni and Lu. longipalpis (Travi et al. (2002). It was shown that in spite of the low 

infection rates observed in Lu. shannoni (9%), the intensity of infection (200-500 

promastigotes/fly) was higher in comparison to Lu. longipalpis. Although that study pointed out 

the ability of Le. infantum to develop in Lu. shannoni, it did not assess the transmission of the 

parasites to vertebrate hosts by sand fly bites. 

Canids such as coyotes (Canis latrans), red fox (Vulpes vulpes), and grey fox (Urocyon 

cinereoargenteus), as well as opossum (Didelphis virginiana) are potential reservoirs of visceral 

leishmaniasis. These animals are widely distributed throughout North America and are 

commonly found near humans (Rosypal et al., 2010; Travi et al., 2002). Lu. shannoni is a native 

sand fly species in North America whose range expansion has been the subject of several studies, 

including recent state records in Kansas and Missouri (Weng et al., 2012). The occurrence of Lu. 

shannoni, potential vectors of Leishmania, in areas where these flies overlap with the distribution 

of the potential reservoirs indicated above, and of naturally infected Foxhounds could bring 

together the components necessary for the establishment of a sylvatic cycle of Le. infantum in 

North America, thus becoming an endemic area for this pathogen. 

 

Conclusion 

This research provides evidence that Le. infantum currently circulating among American 

Foxhounds are able to fully develop in sand flies (i.e. Lu. longipalpis) after blood meal, and be 

transmitted to a suitable vertebrate host. Moreover, it is clear from our results that symptomatic 
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dogs are highly infectious to the sand flies. We reason that the Le. infantum strain (previously 

identified as MON-1) circulating in North America has maintained all the necessary 

requirements or “molecular machinery” (such as LPG and other GPI-anchored proteins) to fully 

develop within sand fly vectors. However, it remains to be determined if these molecular 

signatures are indeed conserved between Le. infantum circulating among the Foxhounds and 

those circulating in Europe or South America. The overlap of potential sand fly vectors such as 

Lu. shannoni and Le. infantum-infected Foxhounds puts domestic or companion dogs and 

humans at a risk, and also poses a risk for the parasite to become endemic in North America. 
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