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INTRODUCTION

This report is primarily a summarization of "A new ana-

lytic approach to hyperbolic geometry" by Wanda Szmielew and

Appendix III of "Grundlagen der Geometrie" by David Hilbert.

Also, a brief comparison of the two articles is made. In each

of these articles the author develops a field and bases an ana-

lytic geometry for hyperbolic geometry on that field. However,

the method of developing the fields is quite different in each

case. Szmielex* defines a much smaller system and shows how to

extend this system to the field; Hilbert simply defines a set

of elements with certain operations and shows that this system

forms a field. The analytic geometry developed by Hilbert has

apparently acted as a basis or starting point for other writers

on this subject. He was the first one to construct a field in

plane hyperbolic geometry without the axiom of continuity and

to develop an analytic geometry over it (Ij., p.' 129). However,

the set of elements over which the field is defined does not

include all of the elements necessary to give a sufficient

basis for an analytic geometry for hyperbolic geometry. More

will be said about this point later.

SUMMARY OF AN ARTICLE BY SZMIELEW

An ordered field £=(S, +., #, <) is constructed in plane

hyperbolic geometry by Szmielew. This field is generated by

the algebraic system $=(S, +., *, <) in which the elements of

S are segments. The operations +. and * are defined in terms



of the Lambert quadrangle 1 and the right triangle, while the

relation < coincides with the usual less-than relation for seg-

ments. She then shows how a rectangular coordinate system can

be constructed over |T.

The problem of constructing an ordered field is reduced

to that of construcing a unit interval algebra. A system

#=(S, + , • , <) is a unit interval algebra if and only if it

satisfies the following postulates (Ij., p. 130):

1. If xeS, then x^x.

2. If x, y e S, then x=y or x<y or else y<x.

3. If x, *y, x+y £ S, then x+y=y+x.

k. If x, y, z, x+y, (x+y)+zcS, then y+z £ S and

(x+y)+z=x+(y+z)

.

5. If x, z e S, then x<z iff2 x+y=z for some yeS.

6. If x, ye S, then x«y e S and x»y=y.x.

7. If x, y, z e S, then (x»y) .z=x« (yz)

.

8. If x, z € S, then z<x iff z=x»y for some y<S.

9. If x, y, z, x+y€S, then (x+y) »z=x*z+y.z.

It can easily be seen that for any arbitrary ordered field

y with the zero element and the unit element 1, the open in-

terval (0,1) forms a unit interval algebra. Szmielew shows

that any unit interval algebra can be extended to an ordered

field.

y — — — —
xThe Lambert quadrangle is a quadrangle with three right

angles. In hyperbolic geometry, this means the fourth angle
is acute.

2iff is used for if and only if



It can be shown (k, p. 131) that for every x in S there

is a unique element x» in S such that x-t+x'-t^t for every t

in S. The element x» is called the complement of x. It can

also be shown that the equation x=x* has a single solution in

S. The element that satisfies this is denoted by |rj hence, it

follows that for any x in 3, |*x+| is in S since for every

y<x», x+y is in S. Also, if x and y are in S, then z'X+h'7

is in S.

If In addition to the postulates 1-9 the following state-

ment holds, then ^ is said to be a Euclidean unit interval

algebra.

10. If x€S, then x=yy for some ye S.

The equation x=y»y then has a unique solution for y for a given

x. It is denoted by */x..

Then if a new operation +' is introduced by putting x+'y=z

if and only if ^/x+ \/y= </z, the algebraic system

$ ,= (S», +', , <) is referred to as the square root derivative

of ^. It can be shown that the function f(x)=-\/x maps the

system $ isomorphically onto the system $» (!(., p. 133). The

following theorem is a result of this

.

Theorem 1. The square root derivative $» of a Euclidean

unit interval algebra # is again a Euclidean unit Interval

algebra.

The following theorem is then proved (I)., p. 133). It

establishes the fact that any unit interval algebra can be

extended to an ordered field.
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Theorem 2. (I) Any unit interval algebra #=(S, +", •, <)

can be embedded in a commutative ordered field |f=(S, + ., #, <)

in such a way that S consists of all those elements x in S for

which 0<x<l, where is the zero element and 1 is the unit

element of the field ?. (II) In fact, J? is up to an isomor-

phism uniquely determined by i in the following sense: if fx

and g2
are two ordered fields generated by #, then there is an

isomorphic mapping of ^ onto ^2 which leaves all elements of

# unchanged. (Ill) In addition, if # is Euclidean then f is

also Euclidean.

As an example of this theorem one may consider the unit

interval algebra #=(S, +, •, <) consisting of the set of ra-

tionals greater than and less than 1 with the operations of

ordinary addition and multiplication and the usual relation of

less-than. Then consider ordered pairs (a,b), a is in S, b is

in S, where (a,b) is interpreted as the quotient a/b. By

proper definitions for a new addition and multiplication and

a congruence relation = and a less-than relation on the or-

dered pairs, one can form a quotient algebra #/=. The system

$/= will be isomorphic to the system f, consisting of the set

of all positive rationals with the usual operations of addition

and multiplication and the relation of less-than. Also, there

is a subsystem of $/= isomorphic to #. In other words, the ra-

tionals between and 1 can be extended to all positive ra-

tionals. In a similar manner (i.e., constructing ordered pairs

and properly defining operations and relations) one can extend



all positive rationals to all rationals. Actually one extends

j? to the ordered field "J2f/v which is isomorphic to the ordered

field of rationals ~$=(S, + , •, <). This could be represented

graphically as follows.

lUnit interval!
(algebra; set:!"""

irationals be-
itween and 1

Form ordered pairs

and define operations
and relations

>:

Form ordered pairs

and define operations
and relations

Quotient algebra i§o»
morphic to second
system; set: all
positive rationals

Subsystem isomorphic
to original unit in-
terval algebra

Second quotient algebra isomorphic
to ordered field; set: all ra-
tionals

Subsystem isomorphic to system over
all positive rationals; hence, or-
dered field is extension of original
unit interval algebra

Statement (I) of Theorem 2 is proved as followss: Consider

the algebraic system ^=(1^, +,, •,, <, ) defined in the fol-

lowing manner. The set S is the Cartesian product S x S of

S, and the operations «K , •, and the relation <-, for any two

elements (a,b) and (c,d) of S^ are defined by the following

formulas (the operations + and • are the operations in #, and

similarly for the relation <)

.

(a,b)+
1
(c,d) = (|-.(a.d)+|.(b.c),^'(b.d)), where J is that

element in S satisfying the equation x=x»,

(a,b).
]L
(c,d)«(a-c,b«d),

(a,b) < (c,d) iff a-d<b.c.

Also, the relation = is defined as follows:



(a,b)=(c,d) iff a«d=b-c.

One can show that = Is a congruence relation in ^,. Also, the

set S-j_ forms a commutative group under the operation of »-,.

The operation +j_ on S, is closed, associative and commutative,

and the operation •-, distributes with respect to addition.

The system J^/= will be called a quotient algebra.

The unit element of the group (S^, •}_)/= coincides with

the coset consisting of all elements (a,b) with a=b. Let S-,

be a subset of Sx consisting of all elements (a,b) with a<b.

Then (ij., p. 13ij.) the algebraic subsystem (S-^ +., •
ll <,)/=

of ^]V= is isomorphic to the unit interval algebra #. The

correspondence is (a,b)*—*c where c is that element of S such

that a=b*c (see postulate 8 for unit interval algebra). The

element c is unique for a given a and b. Also, >£•,/= can be

modified to an isomorphic system j^=(S*, + , •, <); hence, ^ is

an extension of #. The set S consists then of all those el-

ements x of S for which x<l.

By an analogous procedure one constructs an ordered field

F=(S, +, •, <) which is an extension of J such that S consists

of all positive elements of S. This is accomplished in the

following manner. Consider the system ^»=(S"', +', •», <').

The set S* is the Cartesian product S x S of S, and the op-

erations + », •' and the relation <* are defined as follows for

any two elements (a,b) and (c,d):

(a,b)+t( c ,d)=(a+c,b+d),

(a,b)

•

, (c,d)=(a.c+b.d,a.d+b.c),



(a,b)<»(c,d) iff a+d<b+c.

The relation /-v is defined by the next statement.

(a,b)/-u (c,d) iff a+d=b+c.

The relation ^vis a congruence relation is jf». The set S'

forms a commutative group under the operation of + ». The set

S* minus the element (a, a) forms a commutative group under the

operation of • ', and •« distributes with respect to + '. With

the order relation, the system ]£'/u is an ordered field.

The zero element of the group (S», + f )/ru coincides with

the coset consisting of all elements (a, a) while the unit for

(S», • I ,)A' is the coset consisting of all elements of the form

(a+l,a) where 1 is unity in J, Since the elements in "8 have

inverses with respect to multiplication, the inverse for non-

zero elements of S 1 with respect to •« are defined as follows:

If b<a, then the inverse of (a,b) is ( (d+l)/c,d/c) where c is

that element of S such that b+c=a. If a<b, the inverse of

(a,b) is (d/c, (d+l)/c) where c is that element of S such that

a+c=b. In either case d is any element of S. Since a=b im-

plies (a,b) is the zero element, this defines the inverse for

all non-zero elements. If S ' is the subset of S» consisting

of all elements (a,b) with a>b, then the algebraic subsystem

(S», +», . ', < , )A> is isomorphic to the system ^. The corre-

spondence is (a,b)«—>c where c is that element such that a=b+c.

Also, ^'/w can be modified to an Isomorphic system

F=(S, +, •, <); hence, J? is an extension of "%. The set S con-

sists of all those elements x of S for which x>0. Therefore,
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the ordered field j? is an extension of $ such that for every

x in S, x is in S if and only if 0<x<l, where is the zero

element and 1 is the unit element of ~%. This completes the

proof of statement (I).

With this theorem as a basis, one is then ready to con-

struct the algebraic system 2=(S, + ., -::-, <). As was mentioned

earlier, the ordered field ]?=(S, + ., •*, <) follows from this,

and finally the rectangular coordinate system based on the

ordered field. It will actually turn out that the system $ is

a Euclidean unit interval algebra. Then it will follow imme-

diately that f is an ordered field by Theorem 2.

The definition of the elements of S is as follows: These

are the free segments. By a segment is meant any non-ordered

pair p, q of distinct points of the hyperbolic plane. Then the

set of all segments congruent to a given segment pq is called

the free segment determined by pq and is denoted (pq). Free

segments will be represented by the variables A, B, C, X, Y,

Z, ..., with subscripts at times. The order relation < is ex-

tended to free segments bj the following condition.

(i) X<Y iff q is between p and r, X=(pq), Y=(pr) for

some distinct points p, q, r.

Statement (i) implies the next three statements.

(ii) X^X;

(iii) X=Y or X<Y or else Y<X;

(iv) if X<Y and Y< Z, then X< Z.

An angle is defined as any non-ordered pair GH of half



lines G" and H which are supposed to be non-collinear and to

have a common origin. The set of all angles congruent to a

given angle GH is called the free angle determined by GK and

is denoted (G"H) . Free angles will be represented by variables

**# P* V* S, — . The relation of less-than for free angles

is completely analoguous to that for free segments.

Consider any line Z and any point p on f. Let I be a

half-line extending from p and not coinciding with L\ The

point p separates XJ into two half-lines; call these l"-, and I?.

Then L^ and H determine (TjH), and L"2 and H determine (T2H)

.

If Cl-^Tl) (r
2H), then (T^H) is said to be an acute free angle,

and flyi) is said to be an obtuse free angle. If (l".$) = (l" $),

then (CjR) is called the free right angle. The free right

angle will be denoted by p. All other free angles are either

acute or obtuse. Also, the operation of addition for free seg-

ments and free angles is defined as one would expect. For ex-

ample, X+Y=Z if and only If q is between p and r, X=(pq),

¥=(qr), Z=(pr) for some distinct points p, q, r.

It is well-known in hyperbolic geometry that every free

segment determines a unique angle of parallelism. This can be

seen in the following manner. Take an oriented line 1 and a

point p not on 1. Then let q be the perpendicular projection

of p onto 1. The points p and q determine a free segment X.

Then let GF be the half-line parallel to 1 and with origin p,
and let H be the half-line containing X and with origin p.

The free angle (GH) is called the angle of parallelism for the
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free segment X. It is easily seen then that each free segment

determines a unique free angle, and this free angle will al-

ways be acute. This establishes a one-to-one correspondence

between free segments and acute free angles. This correspond-

ence will be denoted by P(X), and for convience the following

notation will be used: P(A) =^ P(B)=/3, ... . it may also be

noted that as the free segment increases in magnitude the as-

sociated free angle decreases. Then the condition P(A)+P(A«)=p

determines a unique free segment A' called the complement of A.

If A<B, then A»>B», and it also follows that A"=A.

The definitions of a free right triangle and the free

Lambert quadrangle are still needed before one is ready to con-

struct the unit interval algebra. The free right triangle is

defined as follows: Let p, q and r be any points such that pq,

qr and pr form a right triangle with pq and qr as legs and pr

as hypotenuse. Call the acute angles ex and /3. Then the set

of right triangles congruent to triangle pqr will be denoted

X*Z/?Y where X, Y and Z denote the free segments (pq), (qr),

and (pr), respectively. The set X«Z0Y will be called the free

right triangle X«Z/3Y. This will be written symbolically as

T(X*Z/iY). If there exists T(X«Z£Y), then any two of the five

terms X, ex, z, (3, Y determine the other three uniquely. This

is easily seen for the various cases. For example, consider

T(X*Z/3Y) and assume another right triangle with X and Y as

legs, i.e. T(XcrVrY). It is true in hyperbolic, as well as

Euclidean geometry that if two legs of one right triangle are
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equal to two legs of a second right triangle, then the two

triangles are congruent. This means T(X*Z/?Y) and T(XrVrY) are

congruent; hence, <x, z and are unique.

The free Lambert quadrangle is defined very much the same

as the free right triangle. Let p, q, r and s be any points

such that the segments pq, qr, rs and ps form a Lambert quad-

rangle with the acute angle at s. Call the acute angle /3.

Then the set of Lambert quadrangles congruent to pqrs will be

denoted XAZ/3Y where X, A, Z and Y denote the free segments

(pq)> (%?) > (rs) and (ps), respectively. The set XAZ(3Y will

be called the free Lambert quadrangle XAZfZ. The free Lambert

quadrangle will be written symbolically as Q(XAZ/3Y). If there

exists Q(XAZ/3Y), then any two of the five terms X, A, Z, /S, Y

determine uniquely the remaining three. A theorem due to

Liebmann expresses an equivalence between the free right tri-

angle and the free Lambert quadrangle. It is: There exists

T(XcxZ/3Y) iff there exists Q(XA'Z^B). Some consequences of

this theorem are: There exists Q(XA»Z^B) iff there exists

Q(A'XB?iZ) iff there exists TfA^'BJY); hence, the next state-

ment follows.

(a) There exists T(X*Zj3Y) iff there exists T(A»f'BSY).

Statements (b) through (e) are listed without intermediate

steps (i|, p. II4.O)

.

(b) There exists T(X*Z/SY) iff there exists T(A'^X , ^ , Z»)

;

(c) for every X and y9 there exists <x, Z, Y such that

T(X«Z^Y) exists?
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(d) if Z >Y, then there exists X, ex, p such that

T(X*Z£Y) exists;

(e) if cx-ty?<f, then there exists X, Y, Z such that

T(Xo<Zp*Y) exists.

Three operations are now defined in terms of the free

right triangle and the free Lambert quadrangle. The first of

these three operations, denoted by ©, is defined as follows:

Given three free segments X, Y and Z, X©Y=Z if and only if

there exists T(Xc*Z£Y) for some ex and p (Pig. 1). It follows

from the previous discussion that for any given X and Y there

exists a unique Z such that X©Y=Z. Also, if X is in S, then

X=Y©Y for a unique Y in S.

Y X#Y

Pig. 1 Pig. 2

The second operation, denoted by -::-, is defined as follows:

X*Y=Z if and only if there exists T(A,2X^Z) for some A and f
(Fig. 2). The definition of a implies the following statements,

(v) If X, YeS, then X-::-Y c S;

(vi) X-::-Y=Z implies X> Z.

Also, with the help of the Liebmann theorem (Ij., p. Uj.1), the
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next two statements follow:

(vii) If X>Z, then X-*Y=Z for some Y e S;

(viii) X-::Y=Y-::-X; i.e., the operation * is commutative.

The associativity of « is expressed by the next statement.

( ix ) (X-::Y ) -::-Z=X* (Y-::-Z )

.

The proof of this is a good exercise in working with the op-

ation, but it will not be reproduced here (ij., p. 1^2) . Prom

(b) and the definitions of © and •* the next statement follows:

(f) X©Y=Z iff X«-::-Y'=Z'.

This implies X-::Y=Z if and only if X»©Y'=Z». Statement (f) is

proved as follows. Prom the definition of -*, X'-x-Y^Z 1 is

equivalent to T(A»/3X'?j'Z' ) . But T (A^X't^Z' ) is equivalent

to T(X*Z,3Y) by statement (b), and the latter implies X@Y=Z,

and conversely. Then the systems (S, *) and (S, ©) are iso-

morphic; hence,

(x) if XeS, then X=Y*Y for a unique Ye S.

The third operation, denoted by ©, is defined as follows:

Given three free segments X, Y and Z. X6Y=Z if and only if

X=A-*Z, Y=A»-::-Z for some A in S. This means there exists a free

Lambert quadrangle with X and Y as two adjacent sides and with

its acute angle opposite the vertex determined by X and Y.

Then Z is the segment joining this vertex with the one at the

acute angle. It can be seen that X©Y is not defined for every

X and Y. As an example consider the case where «' corresponds

to the angle of parallelism for Y. Then there would not exist

a free Lambert quadrangle satisfying the conditions.
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The definition of © implies A-"-Z<BA »-::-Z=Z , which may be

treated as a particular case of the distributive lav;.

(xi) If X«l£S, then X-::-Z<BY-::-Z=(X$Y)*Z.

The distributive law can be proved as follows: Let X6Y=B.

Then X=A*B and Y=A »-::-B for some A in S, and (X©Y)*Z=B-*Z

=A-x (B*Z ) ©A '•* (B*Z ) = (A*B )-::-Z« (A »*B )-*Z=X*Z$Y*Z . The definition

of $ implies the following statements,

(xii) If XeYeS, then X$Y=Y$X;

(xiii) X©Y=Z implies X<Z.

The definition of and (vii) imply the converse of (xiii):

(xiv) If X<Z, then X©Y=Z for some YeS.

Also, the associative law can be developed:

(xv) If X$Y, (X$Y)«ZeS, then Y$Z eS and (X6Y ) «Z=X© (Y$Z )

.

If formulas (i)-(xv) are compared to the postulates for

a unit interval algebra, it will be seen that they imply the

following theorem.

Theorem 3. The system # =(S, ©, *, < ) is a Euclidean

unit interval algebra.

If the operation of & is modified by putting X+.Y=Z if

and only if yX$ \/T= \/z , then the resulting system is the

square root derivative of $Q . Using Theorem 1, one obtains

the following theorem.

Theorem h. The system #=(S, + ., *, <) is a Euclidean

unit interval algebra.

The next theorem follows from Theorem 2.

Theorem $. The system #=(S, +., -x, <) can be embedded in
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a commutative Euclidean field ^=(S, + ., -::-, <), with the zero

element and the unit element 1, such that the following

statement is true.

(1) For every X e S, XcS iff 0<X<1.

The field ^ is uniquely determined up to an isomorphism by $

in the sense of Theorem 2.

It will be assumed from now on that the field has been

fixed. The operations +. and -:c- and the relation < are now

understood to be defined for arbitrary elements of the field

and not only for free segments. Also, the variables A, B,

C, ... range over all elements of S. The operations of addi-

tion, subtraction, and scalar product on the elements of the

Cartesian product S x S are defined as follows: Let (X1 ,X2 )

and (Y-,,Y
2 ) be in S x S. Then

(X
1
,X

2
) + .(Y

1
,Y

2
) = (X

1
+.Y

1
,X

2
+.Y

2 ),

(X
1
,X

2 )_
(Y

x
,

Y

2
) = (X

1
__Y

1
,X

2
_Y

2 )

,

(X
]
_,X

2
)-::-(Y

1
,Y

2
)=X

1
-xY

1
+.X

2
-::-Y

2 ,

(X
1
,X

2 )
2=(X

1
,X

2
)-::-(X

1
,X

2
).

Expressions vrill now be developed for ordinary addition

and subtraction in terms of +. and -::-. Since \/x® y
/c

T= "/z if

and only if X+.Y=Z, this implies X$Y=Z if and only if

X2+.Y2=Z2 . If this is applied to A-::-Z©A »-::-Z=Z, one obtains

(A*Z)2+. (A'-::-Z) 2=Z2 for any arbitrary A and Z since the first

equation holds for any arbitrary A and Z. This implies

A2+.A' 2=1; hence, A'= Vl_A^. Since X©Y=Z if and only if

X'*Y'=Z' and X"=X, it is true that X©Y=Vx^+.Y* X^s-Y*. This
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is shown as follows: X©Y=Z=Z"=(X »-»Y» )
t= l/l_(X«^Y»T2

'

= Vi__( V'U?-"-VOz )
2= Vi_(i_x2 )*(ijr2 )= Vx^+.y^jc2**2 .

Since Q(XAZj9Y) implies X6A=A©Z, it follows that if there exists

Q(XAZ|9Y), then X= Vl_A^-"-Z

.

Assume X+Y=Z where + is now ordinary addition of segments.

Then X< Z; hence, ^/%<^L and ^/l=k* */z for some A in S.

Then Vx-::-Z=A-::-Z and X=A-::- V^*Z . Therefore, there exists a right

triangle 8
1
b

]L
c£ with the right angle at c-

L
(the angle at a., is

<x) such that (a
1
b
1
)=Z, (&

1
c
1
)= j/ZxZ, and (a

1
d
1
)=X, provided

6^ is the perpendicular projection of c, on a,b, . Then

(b
1
d
1
)=Y. By a similar argument there is a second right tri-

angle a
2
b
2
c
2

such that (a
2
b
2
)=Z, (b

2
c
2)=V^Z, (b

2
d
2
)=Y, pro-

vided d
2

is the perpendicular projection of c
2

on a„b
? . It

is easily seen that triangles a-jb^ and a
2
b
2
c2 are congrue nt;

hence, (b^)** VY#Z. Therefore, V&&Q\/Wz=Z, which is

equivalent to X+.Y_X-::-Y*Z=Z by the proceeding argument. It

follows from this that X+Y=(X+.Y)/(1+.X#Y) and Z-X

= (ZJC)/(1JC*Z) for X<Z (where l/X is the inverse of X with

respect to -::-). Then X+Y<X+.Y for every Wo free segments

X and Y.

The distance between two points is defined as follows:

Given two arbitrary points p and q,

[0 if p=q
d(p,q)=<

,

L(pq) ±t p^q

and the element d(p,q) is the distance between the points p

and q. It is noted that d(p,q) is always an element of "§,
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and d(p,q)<l for any two points p and q.

The rectangular coordinate system is the next consider-

ation. Consider an arbitrary point p and two arbitrary ori-

ented lines Lt_ and L2 perpendicular to each other at a point

a. Lot p. be the perpendicular projections of p upon L.

(1=1,2). Then for 1=1,2,

r
Q if p^a,

XP="j(ap
i ) if a falls before p^_ on 1^,

[-(ap^) if p^ falls before a on L .

Then X2 and X§ are elements of S. The function 0(p) = (xP,X|)

is defined for every point p, and it is called the rectangular

coordinate system with the axes L-, and L
2

. The elements X?

and X^ are the first and second coordinates of the point p in

the system 0. 'The point a_ is called the origin of 0.

Svery rectangular coordinate system establishes a one-

to-one correspondence between the points p of the hyperbolic

plane and the elements (X^,X
2 ) of the Cartesian product S x S

2 2satisfying the condition X
1+.X2 <1. For every point p,

0(p)#0(p)<l, or
2 (p)<l. Since jZ>

2 (p)<l, 2 (q)<l, it fol-

lows that (^(p)-:c-]2f(q))
2
^:^

2
(p)-::-^

2 (q)<l. Then the following

definition for P(p,q) correlates with every two points p and q

an element of S, and it is easily seen that 0<P(p,q)< 1:

P(?,q) = ((lj2f
2
(p))-:c-(l_^

2 (q)))/(lj^(p)^( q ))
2

. since

#(a)=(0,0), jtf

2
(a)=0, then P(a,p)=P(p,a)=lj2f2 (p) for every

point p.

To develop an expression for the distance between two
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points p and q, let $(p)=(X?,X|) and 0(q)=(xj,x|) . Assume

that 0<X?<X°- and 0<xP<X^. Denote the perpendicular pro-

jections of points p and q upon L and L~ by p., q. (i=l,2).

Let r be the perpendicular projection of p upon the line qq_

(Pig. 3). It should be noted Lo

that figures aq qq and qp "pp
?

are Lambert quadrangles.

Since Q(XAZ/3Y) implies

X=Vl A^:-Z, then

Q(X?XP(pp
1
)r(pp

2
)) implies

PTZ
> L.

Fig. 3(pp
n
)=X|/Vl_(X|)^ where

r is the angle at p. In the same manner, ( qq-, ) =0$/ Vl__ (X?
)
*

.

Also, from Z-X=(Z_X)/(1+.X-*Z) it follows that

(P 1
q-

L
) = (xJ_xP)/(l__xJ::-xP). In the same manner as for (pp^ and

(qq
1
), it follows that (q

1
r) = /

\/ll(P
;L

cl1
)^ :*(pp

1
) and

(pr) = (p
1
q
1
)/^~(q~rTZ , and as for (qq^

,

(qr) = ((qq
1 )_(q1

r))/(l_(qq
1
)^(q

1
r)). Since X©Y= //x2+ .Y2_X2*X2 ,

then (pq)= V(pr) 2+. (qr) 2_(pr) 2-x(qr) 2
. Szmielew indicates that

by use of these formulas, an analytic formula for distance can

be obtained. It is d (p,q)= Vl_F(p,q) , and the formula holds

for the general case; i.e., without the original assumption as

to the relative positions of p and q.

If the angle pqr is a right angle, then the figure pqr is

a right triangle; hence,

(pq)©(qr) = (pr) = V(paJ 2+.(qr) 2
_(pq) 2*(qr) 2

.

For p^q, (pq)=d(p,q); therefore,
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V
/

(pq) 2+.(qr") 2_(pq) 2-"-(qr)2=yi_F(p,q)-::-P(q,r) = Vl_?(P^)-

The result is then that the angle pqr is a right angle if and

only if P(p,q)---P(q,r)=P(p,r) . If p and a (the origin) coin-

cide, then by use of the formula for P(p,q) and from the fact

that F(a,p)=P(p,a)=ljzf2 (p) , it follows that angle aqr is a

right angle if and only if #(q)#(#(r) J2f(q) )-0. If the points

q and a coincide, 0(p)-::-0(r)=O is the condition for perpen-

dicularity.

The last problem to be considered is an analytic formula

for collinearity. Let K be an arbitrary straight line. If

the line K does not go through a_, then the perpendicular

projection of a upon K is denoted b, and if the line does go

through a,, then b is an arbitrary point different from o_ and

lying on the perpendicular to K at a. Then for 0(b) = (B..,Bp)

and an arbitrary point p with 0(p) = (X. ,X
? ) , p will lie on K

if and only if #(b)#(0(p) J2$(b) )=0 in the first case, and

$(b)-::-j25(p)=0 in the second case. Then the straight line K has

the equation B^cX.+.BpXp+.B =0 if it is agreed that B =jZr(b)

if K goes through a_ and that B =0 if K does not go through £.

Since ^(b^B^+.B2^ 1 if JZf(b) = (B
]L

,B
2
), then _B =B

2
+ .

B

2
>

B

2

Also, every linear equation B^OL+.B-x-Xp+.B =0 with B2+.B2 >B2

describes a line K. Then if 0(p) = (xP,x|), 0(q)=(xj,x|),

^(r)=(X^,X
2 ), p, q, and r will be collinear if and only if

Xp Xp

1 xj x|

X X;

=0.
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This consludes the summary of the article by Szmielew.

There are several points that might be noted. First of all,

unity (1) in the field developed corresponds to a free segment

of infinite length. This can be seen by considering the def-

inition of the operation -::- and noting that as the length of a

free segment becomes infinite, its corresponding angle of par-

allelism approaches the zero angle. Also, the zero (0) ele-

ment corresponds to a free segment of length 0. Eence, it is

convenient to think of the set S as consisting of the absolute

value of the lengths of all possible finite segments. Then the

set S consists of the lengths (direction taken into account)

of all possible segments, including one of infinite length

in the negative direction and one of infinite length in the

positive direction.

An interesting problem is hoxtf to construct the sum X+.Y,

given X and Y. it will be recalled that this operation was

defined as follows: X+.Y=Z if and only if */m VT= \fz . This

means one must determine i/X and %/Y given X and Y. Since

0<X<1, it is noted that X< Vx and 0< \fx.<l. There does not

appear to be any formal way of determining Vx, but it is not

hard to devise a method to approximate yx~. Once \/7L and \/Y

have been determined, \fz- i/xe \fT can be determined by con-

structing the Lambert quadrangle with ]/x and i/Y as adjacent

sides and the acute angle opposite the angle formed by ]/x

and Vy. The diagonal to the acute angle is -]/z. Then one

constructs a right triangle with hypotenuse \pL and one acute
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angle equal to ?(y/Z), and the side adjacent to P(\/Z) is

Z=X+.Y.

SUMMARY OF AN ARTICLE BY HILBERT

HUbert begins by stating four sets of axioms upon which

he constructs his foundation for hyperbolic geometry. These

four sets are axioms of connection, axioms of order, axioms

of congruence, and axioms of intersecting and non-intersecting

lines. It is noted that any point of a line will divide the

line into two half-lines or halves; hence, to determine a half-

line one simply picks a point and extends a ray from this point.

Then if two different half-lines are extended from the same

point, they determine an angle. Also, it is possible to define

what is meant by the interior of an angle with the help of his

axioms, and it agrees with one's intuitive concept of inte-

rior points. These interior points form the angle space of

the angle.

The following axiom for hyperbolic geometry, as Hilbert

states it, corresponds to the parallel axiom in Euclidean

geometry.

Axiom . If b is an arbitrary line and A a point not lying

on it, then there are always two half-lines a, , a„ through A,

which do not make one and the same line and do not intersect

the line b, whereas all the half-lines that lie on the angle

space made by a, , a
2

and extend from A intersect line b.

The two half-lines a^ and a
2 , and any two lines of which
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a
1

and a? are respectively half-lines, are said to be parallel

to line b. Any line not containing either a-, or ap and having

no point in common with the angle space formed by a-, and a2 is

termed non-intersecting with respect to b. Any line lying

within the angle space is termed intersecting with respect to

b.

Hilbert also constructs an ordered field on which to base

his analytic geometry. Let this field be denoted

^=(B, + , • , <). Then the set E consists of what he calls ends.

These ends are defined as follows: Each half-line determines

an end. This simply means that, for example, each half-line

extending from a point A determines an end, and if two half-

lines are parallel, they determine the same end. In fact,

all half-lines parallel to one another determine the same end.

Some authors consider these ends as points at infinity, and

it is helpful to think of them in this manner. Also, the fact

that a line has two ends is obvious from the definition of an

end. These ends will be denoted by a (or a when no confusion

can arise), b, c, ... , and a half-line extending from A with

the end a will be denoted by (A,a). A line whose ends are a

and b will be denoted by (a,b).

The concept of mirror-images is needed for the defini-

tions of addition and multiplication, and it is defined as

would be expected. That is, the mirror image of a point in

a line is that point which lies on the extended perpendicular

from the point to the line and at the same distance from the
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line as the original point.

Hilbert then establishes a series of five theorems which

he uses for the construction of his analytic geometry. The

proofs of all of these theorems will not be given here.

Theorem IK. If two lines intersect a third line under

equal corresponding angles, then they are not parallel to one

another.

Theorem 2H. If there exists two lines a.. , b.. such that

they are not parallel nor intersect one another, then there

exists a line which is perpendicular to both of them.

Theorem 3H. If there are any two half-lines not parallel

to one another, then there exists one line which is parallel

to both half-lines; that is, there exists a line which pos-

sesses two assumed ends a_ and b.

Theorem \\£L 9 Let a , b be any two lines parallel to one

another and a point lying in the region of the plane between

a.^ and b^. Let Oa be the image of the point in a. and Ob

the image of the point In b and M the midpoint of OaOb;

then there exists a half-line extending from M such that it

is parallel to a and b. and perpendicular to OaOb at M.

Theorem $R. If a , b , c are three lines which possess

the same end w, then there exists a straight line d with the

same end w, so that the consecutive application of the re-

flections in the straight lines a
1

, b, , c, is equivalent to

the reflection In the line d . This is expressed through the

formula RcRbRa=Rd, where Ra denotes reflection of any figure
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a-j_ and similarly for Rb, Re and Rd

.

The following is an illustration of a specific case of

this theorem. There are various possibilities as to the rel-

ative positions of the three lines to one another. The case

in which b-j_ lies in the interior of the region of the plane

between a-^ and c-j_ will be considered. If is a point of b-^,

let Oa and Oc be the reflections of in a-j_ and c-j_ respec-

tively. Then d-j_ is that line joining the midpoint of OaOc

with the end w.

The operation of addition is then defined as follows:

First pick any line and denote its ends as and oo . Choose

any point Q on this line, and erect the perpendicular to (0,oo)

at Q. Denote the ends of this perpendicular as +1 and -1.

Those ends which lie on the same side of (0,oo) as +1 are

denoted as positive and those on the same side of (0,oo) as

-1 are denoted as negative. Also, -_a will be the reflection

of _a in (0,oo ). Wow let a and b be any two ends distinct from

oo, Qa be the reflection of Q, in (a,oo), and Qb the reflection

of Q in (b,oo). Then connect the midpoint of QaQb with oo

,

and denote the other end of the resulting line as a+b. The
'

end a+b is called the sum of the ends a and b. Then the

operation + is closed and commutative from the definition;

the identity element is since 0+a=a+0=a for any a different

from oo . It would appear that oo could serve as the identity,

also. However, it should be noted that addition is defined

only for those ends different from oo . Also, a+(-a)=0; hence,



25

-a is the additive inverse of a for any a_ different from co .

The associativity of addition is not so obvious. It can

be proved as follows: Denote the reflections in the lines

(0,oo), (a, co ), (b,oo ) as Ro, Ra, Rb respectively. Then, by

Theorem j?H, there exist 3 a line (d,ao ) such that Rd=RbRoRa.

Consider the point Qa (the reflection of Q in (a, 00)) and

the operation RbRoRa (reflection in (a,oo ) followed by re-

flection in (0,oo) followed by reflection in (b,co)). It is

obvious that Qa will pass into point Qb through this operation.

Hence, Qb is necessarily the reflection of Qa in (d,oo), and

therefore d=a+b. Then R (a+b)=RbRoRa is valid. How let g be

any end different from 00. Then, by use of the formula just

stated, Ra+(b+g)=R(b+g)RoRa=RgRoRbRoRa, and

R(a+b)+g=RgRoR(a+b)=RgRoRbRoRa; hence, Ra+(b+g)=R(a+b)+g and

a+(b+g)=(a+b)+g. It is pointed out by Hilbert that it is not

necessary to start with Qa to develop the formula

R(a+b)=RbRoRa. Any point Q» of (0,oo ) distinct from Q can

be picked, and then Q'a considered the same way Qa was.

The multiplication of ends is defined in the following

manner: Let a_, b be any two ends different from and 00.

Then both of the lines (a, -a) and (b,-b) are perpendicular to

(0,oo). Call the intersection of (a, -a) and (0,co) A, and

the intersection of (b,-b) and (0,co) B. Extend the segment

QA from B to C; i.e., QA=BC and such that the direction from

Q to A is the same as the direction from B to C. Construct

the perpendicular at C to the line (0,oo), and denote the
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positive or negative end of this perpendicular as the product

ab of the ends _a, b according as these ends are either both

positive and both negative respectively or one positive and

one negative.

It is easily seen from the definition of multiplication

that the operation is closed and commutative. The product

(ab)c would be formed by first finding the product ab from the

definition. For example, if the intersection of lines (c,-c)

and (0,oo ) is denoted by C, the product (ab)c would be found

as follows: Extend the segment QA from B to D with the di-

rection of QA taken into account. Then the end of the per-

pendicular to (0,oo) at D is ab. Extend the segment QD from

C to F, once more with direction taken into consideration.

The end of the perpendicular to (0,co) at F is the product

(ab)c. It is easily seen that the segment QF is essentially

the sum QA+QB+QC with direction of all segments taken into

account. If the product a (be) is formed, a point F 1 is ob-

tained, but it follows that the segment QF 1 is also the sum

QA+QB+QC. This means a(bc)=(ab)c; hence, the operation of

multiplication is associative. It is easily seen that

l.a=a«l=a; hence, 1 is the identity of multiplication. To

find the multiplicative inverse of a given element a^O, it is

sufficient to determine a point A* such that A'Q=QA; i.e.,

Q, is the midpoint of AA«. Then the end a' of the perpendicular

to (0,co) at A 1 is the multiplicative inverse of a_. It might

be noted that a 1 is unique since the distance QA and the
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perpendicular to a line at a point are unique. Also, _a and a 1

must both be positive or both negative.

The only postulate for a field that has not been shown

for % is that multiplication distributes with respect to

addition. In order to show this, let a_, b and c be any three

ends and construct the end b+c. Then the multiplication of

any end by the end a_ is essentially a translation of the line

(0,co) by a distance equal to QA. That is, the products ab,

ac, and a (b+c) all result in ends which are determined by a

translation of the lines (c,-c), (b,-b) and ( (b+c) ,- (b+c)

)

by a distance Q^A along (0,oo). Now the sum of two ends can

be determined by a construction originating at A (or any point)

as well as Q, and the sum of b and c is still b+c. Then the

sum of the ends ab and ac will be the same as a (b+c). That is,

ab+ac=a(b+c) , and multiplication distributes with respect to

addition. Hence, #=(E, +, •, <) is an ordered field. The

ordering of the elements is accomplished by agreeing that

a>b if a+(-b) is positive.

There are several properties that should be considered

before considering the equation of a point. First of all,

if the line (a,oo) is reflected in the line (b,co), the re-

sulting line is (2b-a,oo). Let P be any point on the line

which results from the reflection of (a,oo) in (b,oo), and

consider the series of reflections of P: Rb, Ro, R(-a),

Ro, Rb. It is obvious that these reflections will leave P

unchanged. However, the formula for these reflections is
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RbRoR(-a)RoRb=R(2b-a) ; i.e., that composite operation gives

the same results as a reflection in the line (2b-a,co). This

means the point P necessarily lies on the line (2b-a,oo).

Secondly, some properties of multiplication of ends

should be considered. It is fairly obvious that a«0=0«a=0,

and that (-l)a=-a. Also, if the line (a,b) goes through the

point Q,, then ab=-l; and, conversely. For every positive end

p, there is always a positive (and negative) end, whose square

will equal p. This positive end will be denoted Vp»

Hilbert defines coordinates for lines in the plane in

terms of the ends of the line. If e, n are the ends of any

line, then u=en and v=|r(e+n) a^e called the coordinates of

the line. The equation of a point is given in terms of lines

which pass through that point. If a, b, c are ends, such that

the end i+ac-trls positive, then all of the lines whose coor-

dinates u, v satisfy the equation au+bv+c=0 pass through a

point. This is proved In the following manner. Construct the

ends x=2a/ v^ac-b2
, y=b/ yl+ac-b2 . Then by operating on the

equation au+bv+c=0, one arrives at the equation

(xe+y) (xn+y)=-l. This is done as follows: Multiplying

au+bv+c=0 by ij.a and then adding and subtracting b2 one obtains

Ij.a u+I+abv+b =- (ij.ac-b2 ) . Then substituting for u and v In terms

of e and n and dividing (or multiplying by the multiplicative

inverse) by l+ac-b2 ,

(en) (i|a2/(I^ac-b2 ) ) + (e+n) (2ab/(I).ac-b2
) ) + (b2/(l+ac-b2 ) )=-l.

Then substituting x, x2 , y, y
2 for their equivalent expressions
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and factoring, one obtains (xe+y) (xn+y)=-l.

Now consider the transformation of an arbitrary variable

end w, which is determined through the formula w'=xw+y.

Actually the two transformations w'=xw and w'=w+y will be

considered. According to some previous remarks the multipli-

cation of the arbitrary end w with a constant x is equal to a

displacement of the plane along the line (0,oo) for a fixed

distance dependent on x. Prom the definition of addition of

ends, the addition of the end y to the end w can be seen to

be equivalent to one fixed displacement of the plane dependent

on y. It is a displacement which can be thought of as a ro-

tation of the plane around the end oo . In order to see this,

it is noted that the line (w,oo) passes through reflection in

the line (0,oo) into the line (-w,oo). By a previous remark

again, the line (-w,oo) passes through reflection in (y/2,co)

into the line (w+y,oo). This means the addition of the end y

to the end w becomes equivalent to the successively performed

reflections in the lines (0,oo) and (y/2,oo). Eence, the

transformations e»=xe+y and n »=xn+y of the ends e and n result

in a certain displacement of the plane along the line (e,n)

dependent only on y and x. Then if the line with ends e' and

n' passes through a given point p, line (e,n) must pass through

a point which is determined by point p. The equation

(xe+y) (xn+y)=-l becomes e'n*=-l under the transformation just

mentioned. The equation e'n»=-l is the condition that the line

(e»,n») pass through the point Q. Hence, all lines with ends
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e and n (e and n are treated as variables) that satisfy the

equation (xn+y) (xe+y)=-l pass through a single point.

This completes the summary of the article by Hilbert.

Perhaps the most serious objection to the development by

Hilbert is the way in which he develops the equation of the

point. It should be noted that the set of elements over which

the field $ is defined does not include the end oo . In other

words only lines whose ends are both different from oo have

coordinates. This means that the linear equation of the point

derived by Hilbert does not give a sufficient basis for the

foundations of the analytic geometry (I4., p. 152).

CONCLUSION

In both of these articles formulas are developed which

are sufficient for establishing that a point lies on a line.

This is perhaps because it is known that the condition of

collinearity can serve as the only primitive notion in hyper-

bolic geometry (2, p. 87). That is, the whole of hyperbolic

geometry can be built on the notion of collinearity. However,

the reference to the work supporting this claim is an article

published much earlier than the article by Hilbert. At any

rate, whether Hilbert actually had proved that collinearity

could serve as the only primitive notion or not, he does

develop a formula for a line to pass through a point, and he

leaves it at this. On the other hand, Szmielew states explic-

itly that this is the result she Intends to arrive at. She
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also indicates that the relations of betweenness and equidis-

tance could serve the purpose as well (I4., p. 135) •

There is a modification of Hilbert*s method which is made

by Paul Szasz (3, pp 97-113) . He uses essentially the same

definitions of addition and multiplication; however, he in-

troduces a distance function before defining multiplication.

This distance function is then used in his definition of mul-

tiplication, and he also uses it in assigning coordinates to

a point. This is a one-to-one function which assigns to every

free segment X an end. Szmielew indicates that there actually

is an isomorphism between the systems ]£ and $, and that this

can be shown with the help of the development by Szasz. In

conclusion, then, it is seen that under the proper modifica-

tions (for example, the method of Szasz), the systems "$ and

$ are isomorphic.
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The purpose of this report is to summarize and explain the

results of two articles concerned with analytic models for

hyperbolic geometry. The first article treated is "A new ana-

lytic approach to hyperbolic geometry" by Wanda Szmielew, and

the second article is Appendix III of "Grundlagen der Geomet-

ric" by David Hilbert.

The model constructed by Szmielew is based on an algebraic

system. Actually the system that she develops is a field gen-

erated by an algebraic system in which the set of elements

consists of segments. The operations in the system are defined

in terms of the Lambert quadrangle and the right triangle.

Finally a rectangular coordinate system is constructed over

the field.. An analytic condition for a point to lie on a line

and a formula for the distance between two points are devel-

oped. Other formulas are also developed.

Hilbert's approach is somewhat different than that of

Szmielew. He first defines a set of elements and two opera-

tions on these elements. Although Hilbert does not use the

language of modern algebra, the system that he develops is a

field. He also formulates the conditions for a line to pass

through a given point. There is one serious objection to the

development by Hilbert. It is the fact that his operations

are not defined for all elements in the set; hence, the condi-

tion that he derives for collinearity does not give a suffi-

cient basis for the analytic geometry. The objection can also

be stated by saying that the set does not include all the



elements necessary to give a sufficient basis. This objection

can be overcome by a modification of his method. This is done

in an article by Paul Szasz in "The Axiomatic Method."

Although the methods of Szmielex^r and Hilbert for devel-

oping the analytic models appear to be quite different, it is

interesting to note that they both tend deliberately toward

developing a formula for collinearity. This is to be expected

since the notion of collinearity can serve as a complete basis

for the analytic geometry. Finally It is noted that even

though the two models appear to be quite different, if the

modification of Szasz is made on Hubert's model then the two

systems can be shown to be isomorphic.


