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Abstract 

Electricity generation capacity from different renewable sources has been significantly 

growing worldwide in recent years, specially wind power. Fast dispatch of wind power provides 

flexibility for spinning reserve. However, wind is intermittent in nature. Thus, stable grid 

operations and energy management are becoming more challenging with the increasing penetration 

of wind in power systems. Efficient forecast methods can help the scenario. Many wind forecast 

models have been developed over the years. Highly effective models with the combination of 

numerical weather prediction and statistical models also exist at present. This study intends to 

develop a model to forecast hourly wind speed using an artificial neural network (ANN) approach 

for effective and fast operation with minimum data. The procedure is outlined in this work and the 

performance of the ANN model is compared with the persistence forecast model. 
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Chapter 1 - Introduction 

1.1 Introduction 

This document outlines a study of wind speed forecast model with an artificial neural network 

(ANN) approach known as nonlinear autoregressive neural network (NARNET). The model is 

developed for step ahead hourly wind speed forecast using historical data.       

 

Wind is a free source of energy and wind power generation is environment friendly. The 

contribution of wind generated power in the grid has been significantly increasing worldwide in 

recent years. As of the end of 2016, the total installed wind power capacity worldwide amounted 

to nearly 486,790 MW with a growth rate of 12.5% from 2015 [1].  Figure 1.1 shows the growth of 

global cumulative installed wind capacity from 2001 to 2016 [2]. 

 

 

Figure 1.1: Global cumulative installed wind capacity from 2001 to 2016 

 

Environmental benefits as well as incentive policies made wind power more and more popular in 

USA in recent years. In 2013, 4.13% of overall electricity generated in USA came from wind 

power, which would be sufficient to power 15.5 million American homes [3]. In 2016, the 

percentage of wind power (from utility scale facilities) in USA became 8% of the total capacity. 

However, due to low capacity factors of wind turbines, it contributed to approximately 5% of the 

overall generation in the same year; which is the highest for a renewable resource after hydropower 

[4]. The growth of installed wind capacity in USA from 2008 to 2015 is shown in Table 1.1 [5]. 
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Table 1.1: Installed wind capacity in USA from 2008 to 2015 

 Year 

2008 2009 2010 2011 2012 2013 2014 2015 

Total Installed 

Capacity (MW) 

25, 410 34, 863 40,267 46,919 60,007 61, 108 65,754 74,347 

Growth (%)  37.2 15.5 16.5 27.89 1.8 7.6 13 

 

 

Figure 1.2 is a visual representation of the above growth. 

 

 

Figure 1.2: Growth (%) of wind capacity in USA from 2009 to 2015 

   

Despite of installed capacity and advantages of clean and inexpensive production, desired 

generation from wind is not always readily available due to the intermittent nature of wind. 

Consequently, the power system operators are required to deal with largely fluctuating wind 

penetration which affects operation and reliability of the system. Efficient forecasting can 

significantly improve the situations involving stability of the system, dispatch and electricity 

market operations [6].     
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Several methods of wind speed and power forecast have been developed over the past years which 

can be classified in two main categories- statistical and physical methods [7]. Statistical models use 

historical data of wind farms to predict the future power generation outputs, while physical 

methods require different geographic, meteorological and technical considerations such as terrain 

structure, temperature, pressure, density and so on to determine wind speed, and give wind power 

prediction output from characteristics of the turbines [8]. Often the results of these models are 

combined with statistical models to improve the accuracy of the forecast, which are known as 

hybrid models [9]. 

 

Short term wind forecasting is a highly important area of research nowadays. The forecasting 

horizon can typically be few days to hours and minutes. Accurate prediction of wind behavior and 

wind generated power allows the system operators to deal with intermittent penetration of wind 

more reliably by providing better scheduling and dispatch. Long term forecasting is more 

significant to determine the trend and effects in energy markets [10].      

 

This study incorporates a statistical method with an artificial neural network (ANN) approach to 

forecast short term wind speed. The introduction, background and objectives of the study are 

outlined in chapter 1. Chapter 2 describes the relationship between wind speed and power, and 

different methods of forecast. In Chapter 3 the ANN approach, namely the nonlinear 

autoregressive (NAR) model is discussed. Chapter 4 illustrates the methodology followed by 

results of the simulated experiments in Chapter 5. Chapter 6 discusses the possible improvements 

to the model and future work. Chapter 7 gives the conclusion of the project.  

 

 

1.2 Background 

By maximizing the utilization of the renewable resources, it is possible to reduce dependence on 

fossil fuels. Significant focus on biomass, geothermal, hydropower, solar and wind energies has 

been observed worldwide since last few decades. Wind power is becoming a very popular in recent 

years.  
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The power systems are required to handle higher penetration of wind power with its increasing 

contribution. Since wind flow is unpredictable in nature, decent forecasting methods can improve 

the quality of operation of wind farms, hence the power systems. It is possible to further reduce 

the cost of electricity and promote sustainable energy to higher extent by achieving these 

improvements. 

 

Numerous wind forecast models have been developed over the last few decades. Many effective 

models are combinations of physical and statistical methods. However, developing and running 

those models frequently can be very expensive, specially when it comes to short-term or very 

short-term forecasting requirements to aid real time dispatching decisions. Effective statistical 

forecast methods can play a vital role in this scenario. Statistical models typically utilize historical 

data such as wind speed, solar radiation, electricity generation etc. Therefore, these models are 

faster to be trained and more convenient to run frequently. For individual research purpose, it was 

found quite difficult to obtain data from commercial wind farms. Hence publicly available 

meteorological data of wind speed from the National Oceanic Atmospheric Administration 

(NOAA) website are used in this study [11]. For the model development and implementation in this 

experiment, historical wind speed data were obtained from a weather station in Dodge City, 

Kansas. 

 

 

1.3 Objective  

The objective of this project is to develop a wind speed forecast model using an ANN architecture 

known as nonlinear autoregressive neural network (NARNET). The model uses univariate time 

series data (wind speed) to produce hourly wind speed forecast. 
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Chapter 2 - Wind Speed and Power Forecast 

2.1 Relationship between Wind Speed and Power 

The fundamental goal of a power system is to provide sufficient power to meet the demand at any 

given time. Load demands are always varying because of continuous switching on and off by the 

consumers, thus the objective becomes difficult to maintain. As wind is free source of clean energy, 

wind power is becoming more popular in recent years and integration of wind power in the grid 

worldwide has been growing every year. Although wind power has many advantages, the main 

disadvantage of wind is its uncertain nature. As the wind speed varies, so does the generation from 

a turbine accordingly. The theoretical relationship between wind speed and harvestable power at 

the turbine can be expressed by the following equation 2.1. 

 

 P = (1/2) Cp ρ A V3              (2.1) 

 

Where,  

P = Harvested power  

Cp = Capacity factor of the turbine 

ρ = Air density 

A = Area swept by the turbine blades 

V = Wind speed 

 

The above equation is satisfied only between the cut-in speed and rated-power speed of the wind 

turbine due to mechanical inertia and pressures on the turbine and generators. Wind power forecast 

can be generated based on the theoretical relationship and turbine specifications, if wind speed 

forecast is available. Another statistical approach to forecast wind power is based on utilizing 

power generation data for a similar forecast model.   

 

2.2 Wind Power Forecast 

Wind speed is a natural phenomenon and it is uncontrollable, hence the power produced by wind 

turbines is uncontrollable as well. Higher integration of wind power in the systems will cause more 

difficulties regarding the reliability, as the systems will be unable to control all generated power 
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well. With high wind penetration (e.g. >5%), wind forecasts are especially essential for effective 

grid management [12]. The power systems have their reserve units to cover any variation in load 

demands, however given the uncertainty of contributions from the integrated wind turbines or 

farms, the spinning reserves will be required to satisfy different specification and as a result of that 

effective costs of the units are likely to be higher. These problems can further raise the price of 

energy following the regulations of energy market [13].  

 

Power systems have been achieving goals of efficient and stable operation with load demand 

variabilities by load predictions. Similar approaches can be utilized for wind power generation, 

which will certainly ease the difficulties of large wind power integration into power systems. 

Proper forecasting can further advance the market and operation strategies of wind farms by 

improving the scheduling and management of generation units. Additionally, by managing wind 

power more efficiently it is possible to decrease the consumption of fossil fuel in the traditional 

plants. Subsequently electricity price is also possible to be reduced as the production cost, spinning 

reserve cost etc. would go lower. 

 

2.3 Different Methods for Wind Forecasting 

In last few decades several methods of wind power forecasting have been developed. The 

forecasting methods can be generally classified into two large categories – physical and statistical. 

Physical models, also known as numeric weather prediction (NWP) models, are primarily 

developed for large-scale area weather prediction [14]. These models consider terrain, obstacles, 

temperature, pressure etc. to predict wind speed at a future time. Although NWP models are well 

established through years of extensive research, when it comes to site specific and very short term 

and short-term forecasting, these models usually provide less accuracy [15]. Often NWP models 

utilize site specific numerical conversion equations and digital elevation models that produce more 

accurate forecast results. 

 

Statistical methods provide forecast results by learning from past data or patterns. The past wind 

data may include wind speed, direction, temperature, power generation etc. as variables. Among 

the statistical methods the most basic approach is persistence model which are typically good for 
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stable weather conditions. Persistence model states that the next value in time is same to the 

previous value. This can be expressed by equation 2.2 below. 

 

Pt +1 = Pt               (2.2)  

Where, 

Pt+1 = next value in time 

Pt = current observation (at time t) 

  

Autoregressive (AR) models and autoregressive integrated moving average (ARIMA) models are 

found to outperform persistent models [14, 16]. With the emergence of artificial intelligence 

techniques, wind forecasting methods with artificial neural network, fuzzy logic system, support 

vector machines etc. have also been evolving in last few decades. It has been observed that ANN 

models performed reasonably in multistep-ahead prediction of mean wind speed [18]. Studies also 

showed that nonlinear autoregressive ANN models perform better compared to ARIMA models 

in multi-step ahead hourly wind speed prediction on several occasions [18]. 

 

2.4 Time Horizon of Wind Forecasting  

The standard of time horizon for wind speed/power forecasting is quite equivocal. In many 

literatures, the forecast horizons were defined in different ways. The convention taken for this 

study is summarized below in Table 2.1 along with the applications of different forecast horizons 

[19].  

Table 2.1: Forecast time horizons and applications 

Type Time Horizon Application 

Very short-term 5-60 minutes ahead Operating reserve, real-time dispatch decisions 

Short-term 1-6 hours ahead Unit commitment for next hour operation, load 

following 

Medium-term 1 day ahead Day ahead unit commitment and scheduling, 

energy market trading 

Long-term Seasonal Contingency analysis and resource planning 
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Chapter 3 - Artificial Neural Network Approach 

3.1 Introduction 

Artificial neural networks (ANN) are quite effective in solving nonlinear problems where inputs 

and outputs lack well-defined relationship. In ANN, related parameters are usually characterized 

by learning from sample data rather than following a fixed model. ANN are based on the concept 

of computation performed by human brain [20]. It can be termed as simplified imitation of biological 

nervous system consisting of highly interconnected units for parallel distributed processing. These 

units are called neurons. Weighted sum of inputs is produced in each neuron and a bias is added 

to it. Then the summation is passed through a thresholding unit or transfer function. Figure 3.1 

shows the formation of a simple artificial neuron.  

 

 

Figure 3.1: Simple model of an artificial neuron 

 

The operation of a discrete neuron can be mathematically expressed with the following equations. 

 

𝑛𝑒𝑡 = b + ∑(wk. xk)

𝑀

𝑘=1

 

 

y = ϴ(net) =  {
0, 𝑛𝑒𝑡 ≤ 0
1, 𝑛𝑒𝑡 > 0

             (3.1) 

Here, b =  Bias 

wk = weight between k-th input and the neuron 
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xk = k-th input 

ϴ = thresholding function  

y = output of the neuron 

σ = activation or transfer function 

 

The threshold ϴ can be replaced with a differentiable nonlinear transfer function σ and equation 

(3.1.1) can the rewritten as y = σ (net). There are several types of transfer functions. Two 

commonly used nonlinear transfer functions are sigmoid and hyperbolic tangent functions. 

 

Sigmoid function: Figure 3.2 shows sigmoid function. Sigmoid function can be expressed with 

the following equation. 

 

σ(net) =  
1

1+𝑒−𝑛𝑒𝑡 ,  0< σ(net)<1 

 

Derivative: σ'(net) = σ(net)(1- σ(net)) 

 

 

Figure 3.2: Sigmoid function 
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Hyperbolic tangent function: Figure 3.3 shows hyperbolic tangent function. The function can be 

expressed with the following equation. 

 

σ(net) =  
1−𝑒−𝑛𝑒𝑡

1+𝑒−𝑛𝑒𝑡 ,  -1< σ(net)<1 

Derivative: σ'(net) = 1- σ2(net) 

 

 

Figure 3.3: Hyperbolic tangent transfer function 

 

 

3.2 Neural Network Architecture 

There are three fundamental classes of neural networks: single layer feedforward network, 

multilayer feedforward network and recurrent network. Feedforward network is a formation where 

every input neuron is connected to output neurons through synaptic links carrying weights. The 

connections are not allowed in the opposite direction; hence they are called feedforward networks. 

Feedforward networks are of two types, namely single layer and multilayer networks. Single layer 

feedforward network consists of one input layer and one output layer. The computations are 

performed in the output layer only, therefore it is called a single layer network.  
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Multilayer feedforward network or multi-layer perceptron (MLP) structure have one or more 

hidden layers in between the input and the output layers. The hidden layers accommodate 

intermediate calculations in the units called hidden neurons before sending the inputs to the output 

layer. The weights assigned between input and hidden layers and between output and hidden layers 

are termed as input-hidden and hidden-output layer weights. Both flexibility and complexity of a 

network increases with increase in number of hidden neurons as well as number of layers [21]. The 

simplest form of MLP is a three-layer network. Sometimes it is termed as two-layered network 

since there is usually no computation performed in the input layer.  In this document, the three-

layer convention is used. This configuration has been found robust and specially suitable for 

forecasting purposes [22]. This structure efficiently allows the system to learn from retroactive data 

through supervised learning. 

 

Figure 3.4 shows a generic model of three-layered feedforward ANN with L number of inputs, M 

number of hidden neurons and 1 output. WHX and WYH represent input-hidden weights and hidden-

output weights respectively. 

 

 

 

Figure 3.4: Generic model of three-layered feedforward ANN 

 

In recurrent neural networks, there are feedback loops from the output layer to the input layer. 
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3.3 Learning Methods 

There are two main types of learning methods in machine learning, which are supervised and 

unsupervised learning.  

 

Supervised Learning: Supervised learning is a kind of machine learning algorithm which utilizes 

historical data, also known as training dataset, where each input data or pattern is associated with 

some output form. The algorithm forms a prediction model from this input-output relationship.  

From comparison of the network outcome and expected output, error of the model is determined. 

This error is then used to modify weights and biases to improve performance. Supervised learning 

is useful for classification and regression problems [23]. 

 

Unsupervised Learning: Unsupervised learning incorporates learning from dataset that do not 

have labeled responses associated with the input data. Unsupervised learning is usually used in 

cluster analysis, finding hidden patterns etc. [24]. 

 

3.4 Nonlinear Autoregressive Neural Network (NARNET) 

NARNET is a type of dynamic neural network, suitable to for time series prediction using delays 

of a univariate time series. The architecture is a combination of multilayer perceptron and 

nonlinear filtering. 

 

The prediction operation of NARNET can be mathematically expressed as a function of previous 

observed values. The expression can be written with the following equation.  

 

y(t) = f { y(t-1), y(t-2), …… , y(t-d) }           (3.2) 

 

Here, 

y(t) = the value in the series at time t,  

d = number of delays 

Open loop architecture is used to train NARNET. This architecture is similar to a three-layered 

feedforward structure described in section 3.2. If there are more associated variables in the model, 
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the nonlinear autoregressive neural network with exogenous inputs (NARX) architecture can be 

used. Figure 3.5 shows a block diagram of NARNET, generated during MATLAB simulation. 

 

 

Figure 3.5: NARNET construction 

 

In Figure 3.5, the block y(t) is the input series consisting of hourly wind speed observations. The 

number ‘1’ at the bottom of the block indicates univariate time series. The series can be expressed 

as below. For simplicity of explanation, input series y(t) will be expressed as yi(t). 

 

yi(t) = yt-n, yt-(n-1), yt-(n-2), ……… , yt                                      (3.3)  

 

Where,  

yt = observation at time t 

n = number of observations 

 

The hidden layer of the network is illustrated in the second block, namely ‘Hidden’. The inner 

boxes ‘w’ and ‘b’ represent input-hidden weight and input-hidden bias respectively for a single 

neuron in the hidden layer. The term ‘1:27’ denotes the number of delays used (27). The larger 

box after the summation sign indicates the transfer function of each neuron, as described in section 

3.1. The number ‘4’ at the bottom of the ‘Hidden’ block denotes the number of hidden neurons. 

 

The ‘Output’ block in Figure 3.4 represents the output layer of the network. The inner boxes ‘w’ 

and ‘b’ represent the hidden-output weights and biases respectively. The transfer function of the 

output layer is linear. There is only one output neuron, which is denoted below the ‘Output’ block. 
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The last block y(t) represent the predicted output. This output y(t) is different from the input y(t) 

i.e. yi(t). Since the output of the network is a prediction of the input time series, MATLAB signifies 

both with the same variable. The output y(t) can be expressed with equation 3.3. 

 

For example, if the input series contains observations of 100 hours and the delay is set to 10, the 

output of the network will be the predicted values for the last 90 hours of the input series. Based 

on these predicted outputs, the network can be used to forecast the value for the 101st hour and so 

on.   

 

3.5 Network Parameter Selection 

The selection of input size and tapped delay are described in chapter 4. For training of the 

NARNET, open loop feedforward structure is used, as seen in Figure 3.3. Hyperbolic tangent and 

pure linear functions are used as the transfer functions for the hidden and the output layers. Data 

division method is chosen to be in blocks of training, validation and test sets to maintain lag 

correlations. 

 

There is no explicit explanation about how to choose the optimal number of hidden neurons in the 

hidden layers of a neural network. However, it is a common practice to keep this number as low 

as possible to ensure simplicity and robustness of the model. Simulations were run with different 

numbers of hidden neurons and best results were obtained with 4 hidden neurons for input size of 

744 (hours).  

 

3.6 Training Algorithm 

A supervised method is generally used to train feedforward networks. A training set from historical 

data containing inputs and corresponding outputs are given to the network in this process. The 

success of training largely depends on the adequate selection of input for training. An ANN maps 

input and output relationship in the learning process by adjusting weights and biases to minimize 

error between produced output and desired output at each iteration. The iterations are repeated 

until the results converge. 

 



15 

Backpropagation algorithm is an efficient and most popular learning algorithm. In 

backpropagation algorithm, inputs are processed through the neurons to calculate final outputs and 

those results are compared with given outputs. The determined error is propagated back to the 

input and weights and biases in each layer are globally adjusted to minimize the error. Conjugate 

gradient algorithm is considered as a standard backpropagation algorithm incorporating sum of 

square error. However, it has been observed that Levenberg-Marquardt algorithm is capable to 

train an ANN much faster than gradient descent algorithm and considered as one of the most 

efficient training algorithms [25]. Therefore, Levenberg-Marquardt algorithm is used for the model 

developed in this project to train a three-layered feedforward ANN.  

 

The Levenberg-Marquardt method can be mathematically expressed as following. 

  

To minimize a function V(x) with respect to vector x, Newton’s update is given by equation 3.4. 

 

∆(x) = -[∇2 V(x)] -1 ∇ V(x)             (3.4) 

 

Where,  

V(x) = Sum of square error 

∇ V(x) = Gradient vector 

∇2 V(x) = Hessian matrix 

The expressions can be given with the following equations. 

 

V(x) = ∑ e(x)^2               (3.5) 

∇ V(x) = 2 JT(x) e(x)              (3.6) 

∇2 V(x) = 2 JT(x) J(x) + 2 S(x)            (3.7) 

 

The Jacobian matrix J(x) is given by equation (3.6.5). 

 

J(x) = [

𝑑𝑒1(𝑥)

𝑑𝑥1
⋯

𝑑𝑒1(𝑥)

𝑑𝑥𝑛

⋮ ⋱ ⋮
𝑑𝑒𝑁(𝑥)

𝑑𝑥1
⋯

𝑑𝑒𝑁(𝑥)

𝑑𝑥𝑛

]             (3.8) 
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S(x) =  ∑ e(x) ∇2 e(x)             (3.9) 

 

Neglecting the second order derivatives of the error vector, i.e. assuming S(x) = 0, the hessian 

matrix becomes: 

 

  ∇2 V(x) = 2 JT(x) J(x)           (3.10) 

 

By substituting equation 3.6 and 3.10 into equation 3.4, the Gauss-Newton update is obtained as 

follows.  

 

 ∆(x) = -[ JT(x) J(x)] -1 JT(x) e(x)          (3.11) 

 

The advantage of Gauss-Newton over the standard Newton’s method is that it does not require 

calculation of second order derivatives. Another problem may arise that the Jacobian matrix and 

its transpose may not be invertible. Levenberg-Marquardt algorithm overcomes this issue by 

implementing the following update. 

 

∆(x) = -[ JT(x) J(x) + μ I] -1 JT(x) e(x)         (3.12) 

 

The learning rate parameter μ, is conveniently modified by the network during iterations of the 

algorithm. When μ is very small, the Levenberg-Marquardt algorithm acts as Gauss-Newton 

algorithm and provides faster convergence. When μ becomes higher, the 1st term inside the bracket 

in equation 3.12 becomes negligible with respect to the 2nd term inside the bracket and the 

algorithm acts as a steepest descent algorithm. Thus, the overall algorithm provides a balanced 

compromise between the speed of Gauss-Newton and convergence of steepest descent. For the 

simulations in this project, the learning rate is kept low (0.05) at the beginning. 

 

The input data are divided into 3 sets – training, validation and test. Training set is used for learning 

and adjusting weights and biases. Validation set is used to prevent overfitting. It is crucial for a 

forecast model to avoid overfitting, otherwise it may fail to fit additional data or predict future 

observations reliably. When validation error starts to increase with iterations, the training process 
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is stopped. These two sets are utilized to develop the model. However, the validation set errors do 

not have any impact on adjustments of weights and biases of the training set. Rather it is used only 

as criteria to stop training. The test set is excluded from model development. It is unseen by the 

network, hence used to determine performance of the network. The ratio used for training, 

validation and test sets is 70%, 15%. 15%. This data division is established to be efficient for 

neural networks to approach most of the problems. 

 

3.7 Initialization of Weights and Biases 

The weights and biases are initialized as small numbers between -0.1 and 0.1. The random number 

generations are controlled through ‘rng(n)’ command of MATLAB for 10 different initializations 

to perform 10 different simulations. Where, n = 1, 2, ……. , 10.  
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Chapter 4 - Methodology 

4.1 Data Collection and Pre-processing 

The wind time series data were collected from the NOAA website. The weather station selected is 

located in Dodge City, Kansas. The data contained hourly wind speed measurements of the 

location for 1 year, from January 2010 to December 2010. 

 

Several assumptions were taken for the pre-processing of data. In some cases, there were multiple 

measurements for the same hour with an inconsistence interval of minutes. Those measurements 

were averaged to get a single value, excluding any instance containing extreme difference. To 

develop a forecast model for wind speed, it is important to deal with the extreme fluctuations like 

turbulence due to storm or any other natural phenomena. These measurements can unusually affect 

the generalization process, weights and biases of the neural network at the training stage which 

may lead to entirely wrong prediction. Extreme variations of such kinds which were not there for 

at least 2 hours were replaced by averaging the previous and the next mean measurements. This 

approach was applied if the differences between three consecutive observations were more than 

12 m/s. From the nature of these kinds of fluctuations along with differences of wind speed at 

several previous and further hours, it was assumed that the observations can be affected by storms 

or any other natural phenomena. Also, there were several missing measurements which were filled 

by averaging as no detailed weather condition were available.  

 

The selection of input size is important for the training of the neural network. Insufficient sample 

size can degrade the training process. On the other hand, excessive inputs can result into overfitting 

and misleading predictions. The number of sample data points (hours) for the model was chosen 

to be 744, which was obtained by trial and error with different sample sizes. Although input size 

may vary for location specific problems due to behavior of wind, several other works also 

implemented similar methods of adequate input selection for wind speed prediction models.  

Throwing raw data in the neural network resulted in poor training results, and the forecast 

outcomes were misleading. To improve the training process, the sample data were passed through 

a low pass filter to remove rapid shocks so that the network has improved ability for capturing the 

local trend. 
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To have a better idea about the changing pattern of the data set, statistical properties of the sample 

were analyzed in 3 durations – the entire sample (744 measurements), last 2 weeks (last 336 points) 

and last 2 days (48 points).  A sample of the statistical properties showing actual and filtered series 

are shown in Table 4.1 and Table 4.2 below respectively, with a sample starting from January 1, 

2010.   

 

Table 4.1: Statistical properties of the actual sample 

 Entire Sample Last 2 Weeks Last 2 days 

Maximum 18.5 18.5 18.5     

Minimum 0 0 0 

Mean 5.0586 5.639 4.2437 

SD 2.8997 3.0836 2.2629      

Variation Coefficient 57.323 54.683 53.324 

 

 

Table 4.2: Statistical properties of the filtered series 

 Entire Sample Last 2 Weeks Last 2 days 

Maximum 17.155 17.155 10.27     

Minimum -0.30488 0.26088 0.73324 

Mean 5.3028 5.9112 4.4977 

SD 2.9073 3.0747 2.2571     

Variation Coefficient 54.826 52.015 50.184     

 

 

The inconsistent oscillation of the sample series from the mean value within different intervals in 

Table 4.1 and Table 4.2 give some hint about the non-stationarity of the series. The term ‘Variation 

Coefficient’ used in the tables is a measure of relative variability of the series. It can be defined as 

following. 

 

Variation Coefficient = (Standard Deviation) / (Mean)         (4.1) 
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Filtering was performed as presenting raw data to the neural network resulted in highly erroneous 

training. Figure 4.1 shows the plots for the actual sample and filtered sample. It is difficult to 

visually examine the difference for the entire sample in a smaller space. Therefore, the first 100 

points are shown in the figure below. The small difference between the red series (filtered) and the 

blue series (observed) is a visual indication that the statistical properties of the real data were not 

too much compromised due to filtering, which was explained from Table 4.1 and Table 4.2.    

 

 

Figure 4.1: Observed series vs filtered series plot 

 

 

4.2 Sample Autocorrelation Function 

Sample autocorrelation function (ACF) of a series indicates the correlations of the series with its 

lagged values. For a series y = y1, y2, y3, …. yt, the sample lag-h autocorrelation can be given by 

the following equation.  
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𝐴𝐶𝐹 =  
∑ (yt − ȳ) (yt−h − ȳ)𝑇

𝑡=ℎ+1

∑ (yt − ȳ)2𝑇
𝑡=1

                                                                                                     (4.1) 

 

Here,  

ȳ = mean of the sample 

yt = value at time t 

h = lag/delay 

 

To determine the significance of a single lag -h autocorrelation, the error estimation can be given 

by equation 4.2. 

 

Eρ =  √[ 
1 + (2 ∑ ρi

2)ℎ−1
𝑖=1

N
 ]                                                                                                                    (4.2) 

 

Here,  

N = number of observations 

 

Approximate 95% confidence intervals are at ±2Eρ. Figure 4.2 illustrates and example of 

autocorrelation function for the sample used in section 4.1. 
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Figure 4.2: Sample autocorrelation function 

 

The red horizontal lines in figure 4.2 indicate 95% confidence level. From the ACF plot, it is 

observed that the sample series is nearly non-stationary as strong correlations exist at 

comparatively high lags. Optimal lag for the NARNET is chosen from subsets of positive peaks 

higher than the confidence limit lines. For large datasets, complex error minimization algorithm 

needs to be formed in order to determine optimal lag, as there might be numerous options for better 

efficiency. Conventionally it is chosen from the subset of the 1st peak, which was followed in this 

study for simplicity. Seasonality is not observed in the sample series. For the stability of the 

forecast model, stationarity is important, specially when implementing ARIMA model. However, 

it was observed during the project that NARNET can deal with nonstationary time series. 

 

In Figure 4.2, sample correlation falls below 95% confidence level at lag 29. Different lags before 

29 were used to perform network training and the best result in terms of mean squared error (MSE) 

was observed at lag 28 for the above simulation. Lags after 28 did not improve MSE, rather the 

predictions went worse. Similar observations were seen during other simulations. All the 

simulations were performed in MATLAB 2017b. 
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Chapter 5 - Performance Analysis and Forecast Results 

5.1 Performance Analysis 

In the training algorithm, the mean squared error (MSE) is minimized and the test set MSE is used 

to evaluate performance of the NARNET model. The term can be expressed by equation 5.1. 

 

MSE = (
1

n
) ∑ (ypi −  yoi)

2n

i=1
        (5.1)  

 

Here,  yo = observation at time t 

yp = prediction for the same time period 

n = number to observations 

 

The performance of the NARNET model is compared with that of the persistence model. In the 

persistence model, the next predicted value is equal to the previous observation. This is a basic 

prediction model and found to perform very well in stable weather conditions. The statistical error 

measures evaluated for the comparison are MSE, mean absolute error (MAE) and mean absolute 

percentage error (MAPE). MSE is expressed in equation 5.1. The equations for MSE and MAPE 

are shown below.  

 

MAE = (
1

n
) ∑ |(ypi −  yoi)|

n

i=1
            (5.2) 

 

MAPE = (
1

n
) ∑ (|PEt|)

n

i=1
             (5.3) 

 

Where,  

PEt = [(yp – yo)/yo]*100 

 

MAE is a measure to identify the difference between a model and real observations as it measures 

the average of error’s absolute value. Although similar in nature to MAE, using MSE is more 

useful to handle optimization problems. MAPE can indicate higher degree of certainty to compare 

different models, specially when the other terms are relatively closer.  
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Several simulations were performed with different lag values. Figure 5.1 shows the ACF plot of 

the series and Table 5.1 shows the improvement of MSE with lags for one step ahead (hourly) 

forecast with data starting from January 2010. The forecasted value is the wind speed of the first 

hour of February 1, 2010 (hour 745 of the dataset). 

 

 

Figure 5.1: ACF plot of input data 

 

The ACF plot shows correlations or dependence of the series with a delayed version of itself, as a 

function of delay. Lag in Figure 5.1 represent the sequence of observations from previous 

timesteps. For instance, sample autocorrelation at lag 10 indicates the significance of the (t-10)th  

observation to obtain the observation at time t. It is learnt during the project that the optimal delay 

for the nonlinear autoregressive neural network should exist among the subset of lags containing 

sample autocorrelation peak higher than 0.20. MATLAB code can also generated to find the 

subsets of these desired lags. Table 5.1 shows the improvement of errors in training, validation 

and test sets with the increase of lags.   
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Table 5.1: Simulation performance 

 

 

 

 

 

 

 

 

 

Starting point: 

1 

Input size: 744 

Lag MSE (train) MSE (validation) MSE(test) 

1 0.0030 0.0082 0.0035 

2 0.0050 0.0107 0.0047 

3 0.0018 0.0045 0.0023 

4 0.0012 0.0035 0.0015 

5 9.08 x 10-4 0.0024 0.0012 

6 6.66 x 10-4 0.0020 9.12 x 10-4 

7 5.01 x 10-4 0.0015 6.41 x 10-4 

8 4.11 x 10-4 0.0014 5.34 x 10-4 

9 3.29 x 10-4 0.0011 4.48 x 10-4 

10 2.63 x 10-4 0.0013 4.11 x 10-4 

11 2.08 x 10-4 6.90 x 10-4 3.17 x 10-4 

12 1.83 x 10-4 6.73 x 10-4 2.72 x 10-4 

13 1.33 x 10-4 5.91 x 10-4 2.08 x 10-4 

14 1.04 x 10-4 5.81 x 10-4 1.76 x 10-4 

15 1.27 x 10-4 3.74 x 10-4 1.85 x 10-4 

17 1.62 x 10-4 7.29 x 10-4 2.27 x 10-4 

18 1.36 x 10-4 4.48 x 10-4 1.97 x 10-4 

19 1.17 x 10-4 3.83 x 10-4 1.75 x 10-4 

20 8.68 x 10-5 4.25 x 10-4 1.51 x 10-4 

21 3.23 x 10-5 1.67 x 10-4 7.04 x 10-5 

22 6.79 x 10-5 2.18 x 10-4 8.81 x 10-4 

23 2.08 x 10-4 4.45 x 10-4 2.18 x 10-4 

 

 

From Table 5.1 it is observed that the best performance of the model is obtained at lag 21 in terms 

of training, validation and test MSE values. 
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5.2 Simulation Results 

Simulations were performed with 10 randomly initialized weights and biases for the same input 

data. These weights and biases were generated between -0.1 and 0.1. The random generations were 

controlled through rng() command in MATLAB to reproduce the results. For example, rng(1) 

generated a set of values within the above range. Similarly rng(2) generated a different set of 

numbers. The function rng can be also set to ‘default’. The network worked properly without 

setting the random number generator, but it was done to reproduce the results for comparison. It 

was observed that different initialization of input node weights and biases impacted the outputs. 

Simulation results are illustrated in this section.  

 

Simulation 1: 

 

Table 5.2: Simulation 1 summary 

Sample 

starting 

point 

(hour) 

Sample 

size 

Forecast 

point 

(hour) 

Significant 

lag 

MSE 

(test 

set) 

Observed 

Wind 

Speed 

(m/s) 

Forecasted 

Speed 

(m/s) 

Step-ahead 

forecast 

error (%) 

7 744 751 20 1.47 x 

10-4 

8.6 8.03 6.93 

 

 

Figure 5.2 shows the plot of predicted outputs vs observed values. For visual clarity, prediction 

results for the last 40 hours are shown in the figure.  
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Figure 5.2: Output prediction (simulation 1) 

 

Figure 5.3 shows the epoch number to obtain the best validation result (circled), followed by next 

epochs where the validation error failed to improve. This criterion determines when to stop the 

training process to avoid overfitting. In this case training is stopped after iteration 55. The best 

result in was obtained at epoch 49. 
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Figure 5.3: Best Validation Performance 

 

 

Figure 5.4 shows the regression plot of the predicted series. A perfect regression should have the 

value R = 1. Figure 5.4 was obtained for the nonlinear regression where the outputs, i.e. the 

prediction at time t (for current observation), was responsive to previous 20 observations as the 

feedback delay of the network was defined as 20 for this case.   
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Figure 5.4: Regression plot 

 

 

Figure 5.5 shows the error histogram plot. This figure shows the distribution of errors in the 

training, validation and test stages. For more efficient forecast model, it is desired that these errors 

will follow a normal distribution. This was not perfectly obtained, which indicates requirement of 

improvement for the model.  
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Figure 5.5: Error histogram plot 

 

 

 

 

 

Figure 5.6: Error correlation plot 

 



31 

Figure 5.6 shows the error co-relation plot. It indicates significant corelations of the error with 

higher lag. These errors are prediction errors at the epoch during which training was stopped by 

the validation criterion. The lags represent the time steps of the observation for corresponding 

predictions. For a good forecast model, the errors should be uncorelated in time. This indicates 

that improvements are required for the reliability of the model. Some scopes of improvements are 

suggested in chapter 6. The graph also indicates stronger impact of correlations, which occured 

during filtering. Prediction pattern can be acheieved with lower significnt lag when the series is 

not filtered, but that results in higher value of traininng error. This problem can probably be solved 

by introducing lower weights and biases or modifying the error function to have smoother response 

of the network. The purpose of this study is to develop the basic formation of the forecast model. 

Implementation of the suggested improvements rquire further in depth analysis, hence included in 

future work possibilities. 

 

Figure 5.7 shows the forcast vs observed wind speed graph for forecast horizon of 8 hours.  

 

 

Figure 5.7: Forecast result for 8 hours horizon 
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Figure 5.8 shows the point errors for forcast horizon of 8 hours.  

 

 

 

Figure 5.8: Error for forecast horizon of 8 hours 

 

 

For the same data set used in simulation 1, further simulations are performed with different 

initializations of small weights and biases, generated by the random number generator in 

MATLAB. The simulation results are illustrated below.   
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Simulation 2: 

 

Table 5.3: Simulation 2 summary 

Hour  MSE 

(test set) 

Observed 

Wind Speed 

(m/s) 

Forecasted 

Wind Speed 

(m/s) 

Step-ahead 

forecast error 

(%) 

751 1.89 x 10-4 8.6 8.2 4.65 

 

 

 
 

Figure 5.9: Output prediction 
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Figure 5.10: Forecast result for 8 hours horizon 

 

 

Figure 5.11 shows the point errors for forcast horizon of 8 hours.  

 

 
 

Figure 5.11: Error for forecast horizon of 8 hours 
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Simulation 3:  

 

Table 5.4: Simulation 3 summary 

Hour MSE 

x 10-4 

(test set)  

Observed 

Wind Speed 

(m/s) 

Forecasted 

Wind Speed 

(m/s) 

Step-ahead 

forecast error 

(%) 

751 8.61 8.6 7.9 8.14 

 

 

 
 

Figure 5.12: Output prediction 

 

 

 

 

 

 

 

 



36 

 
 

Figure 5.13: Forecast result for 8 hours horizon 

 

 

Figure 5.14 shows the point errors for forcast horizon of 8 hours.  

 

 
 

Figure 5.14: Error for forecast horizon of 8 hours 
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Simulation 4: 

Simulation 4 was performed with the same input data and the same forecast points as the first three 

simulations, but the initialization of weights and biases was done with ‘rng(4)’, as explained in 

section 5.2. With this different initialization, the output prediction (Figure 5.15) and the forecast 

result (Figure 5.16) become slightly different from other simulations. All the simulations were 

performed in this manner.  

 

 

 
 

Figure 5.15: Output prediction 
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Figure 5.16: Forecast result for 8 hours horizon 

 

 

 
 

Figure 5.17: Error for multi-step ahead point forecast 
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Simulation 5: 

 

 

 
 

Figure 5.18: Output prediction 

 

 

 

 
 

Figure 5.19: Forecast result for 8 hours horizon 
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Figure 5.20: Error for multi-step ahead point forecast 

 

 

Five additional simulations were performed with random initializations of the weights and biases 

for the neural network which gave similar results. From the simulations results above, it can be 

concluded that the implemented model is quite decent for 1-2 hours ahead wind speed forecast. 

However, the error correlations and the MSE values indicate requirements of improvement in the 

model. Forecast for further hours contained large errors, hence the model cannot be considered 

reliable for longer forecast horizon. 
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5.3 Statistical Analysis 

 

Table 5.5 summarizes the percentage of point forecast errors and corresponding MSE of the test 

sets, obtained from simulations described in the previous section. Table 5.6 shows the standard 

deviations of the errors. 

  

Table 5.5: Error percentage for forecast horizon of 8 hours 

 `Run Number 

 

 

Hour 1 2 3 4 5 6 7 8 9 10 Mean 

1 4.26 6.74 3.10 4.85 6.79 5.99 6.44 4.54 7.78 2.64 5.30 

2 5.07 15.89 5.80 6.97 15.82 12.92 14.56 5.75 21.73 2.04 10.67 

3 6.94 25.53 9.99 8.04 28.01 21.81 23.67 7.25 38.83 7.99 17.80 

4 6.69 26.81 6.19 4.43 43.40 26.67 27.67 8.26 42.25 18.06 21.04 

5 4.55 26.61 1.28 3.27 69.28 31.72 35.46 12.94 29.29 31.52 24.59 

6 6.65 33.13 6.72 11.30 93.45 42.20 52.09 20.35 20.68 37.63 32.40 

7 14.17 37.07 11.64 20.04 87.15 54.12 65.54 27.36 19.19 39.11 37.53 

8 11.83 34.58 5.62 19.38 59.02 61.98 70.09 28.90 5.19 60.25 35.68 

MSE 

(test) 

1.68 

x10-4 

5.65 

x10-5 

6.14 

x10-4 

1.33 

x10-4 

5.99 

x10-5 

1.08 

x10-4 

1.08 

x10-4 

1.62 

x10-4 

2.15 

x10-4 

2.08 

x10-4 

 

 

  

Table 5.6: Standard deviations of errors  

Hour Standard Deviation of Errors 

1 1.70 

2 6.36 

3 11.24 

4 14.65 

5 20.48 

6 26.43 

7 24.68 

8 25.25 

 

 

From Tables 5.5 and 5.6 it can be inferred that 1 hour ahead wind speed forecast result using the 

developed model is quite decent. The performance degrades as the forecast horizon is extended. 

The lowest MSE value in the test set is obtained for run 2. Therefore, Range for the 1st deviation 

= mean ± standard deviation = 3.60 to 7.00. The obtained error for the 1st hour forecast for run 2 

is 6.74, which falls within the range of the 1st deviation. Table 5.7 shows the 1st hour errors, sorted 

in ascending order of test set MSE.  
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Table 5.7: Forecast errors in ascending order of MSE 

Sl Run MSE Forecast 

error(%) 

1 2 5.65 x10-5 6.74 

2 5 5.99 x10-5 6.79 

3 7 1.08 x10-4 6.44 

4 6 1.08 x10-4 5.99 

5 4 1.33 x10-4 4.85 

6 1 1.68 x10-4 4.26 

7 8 1.62 x10-4 4.54 

8 10 2.08 x10-4 2.64 

9 9 2.15 x10-4 7.78 

10 3 6.14 x10-4 3.10 

 

 

From Table 5.7, the first seven errors fall within the 1st deviation while rest of the values fall within 

the 2nd deviation. This indicates that the error tendency is likely to follow normal distribution 

pattern.  

 

5.4 Comparison between NAR and Persistence Models 

 

Comparison between the NAR model and the persistence model in terms of error standards 

described in Section 5.1, are summarized in Table 5.8 below. 

 

Table 5.8: Comparison between NAR and Persistence models 

Model 

 

MSE 

 

MAE 

 

MAPE 

 

NAR 1.28 x 10-4 0.0083 3.4962 

Persistence 0.0026 0.0404 15.0156 

 

 

The statistical measures for the NAR model are obtained from simulation 7 of the previous section. 

From the statistical parameters in Table 5.8, it can be concluded that the developed NAR model 

performed better than the persistence model to forecast hour ahead wind speed at Dodge City. 
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Chapter 6 - Conclusion 

6.1 Conclusion 

 

With the emergence of renewable energies at present, efficient forecast methods are becoming 

more and more crucial to deal with intermittent natures of natural resources. Proper forecasting 

methods are no less important in the other energy and renewables related areas such as price 

forecast, solar radiation forecast, economic evaluations etc. The ANN approaches are convenient 

for efficient and frequent implementations. The nonlinear autoregressive model can be effective 

to forecast wind power, solar radiation and similar other problems.   

 

A model is developed in this study using artificial neural network primarily to forecast step-ahead 

wind speed. The main problems faced during this project was collecting quality data and lack of 

sufficient documentations of the methods regarding the implemented architecture. Commercial 

wind firm data were not available in any public domain. Therefore, meteorological data from the 

National Oceanic and Atmospheric Administration (NOAA) website were used in this project. 

 

The forecast model is developed with NARNET, utilizing univariate time series (hourly wind 

speed). The model is intended to work with minimum availability of statistical data to provide 

effective, fast and frequent implementation. These types of models can be trained and run much 

faster than the physical models. These are also cost effective as the approach is statistical and 

requires measurements of fewer variables. Similar approach to can be applied to other problems 

involving time series analysis, since the method is data driven. 

 

Performance of the NARNET model is evaluated in terms of mean squared error (MSE), and 

compared with a persistence model. In the comparison it is observed that the ANN approach 

outperformed the persistence model to forecast hourly wind speed. In the simulations to forecast 

wind speed of any random hour, the developed model showed decent response. However, there 

are several aspects of the model, subject to further improvement, as discussed in section 6.2. 
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6.2 Observations and Possible Improvements of the Model 

There are several scopes to improve the forecast model. Some of the possibilities are discussed in 

this section.  

 

A general observation during this study was importance of the quality of data to develop an 

efficient model. Faulty measurements of inputs are likely to affect the model parameters. There 

were several error flags in the values of data set which were replaced with interpolation as specific 

information of the conditions were not available.        

 

To develop the forecast model, the sample data were passed through a low-pass filter to achieve 

better generalization during the training stage. This was done to simplify implementation of the 

neural network’s training.  Apparently a low-pass filter captures more of the trend of the series and 

removes rapid shocks. Since the model is developed for short term (hourly) wind speed forecast, 

removing rapid changes might result in omitting important information. This was evident during 

the simulations; the network outcomes were better when hourly changes in observed wind speed 

closely resembled the filtered series. This problem can be overcome by improving filtering 

techniques. Implementation of band splitting filter, Kalman filter, Wavelet transformations etc. 

with the developed model can be some possible solutions to improve the scenario. Additionally, 

further analysis of season-wise and month-wise wind behavior of the location will be required to 

improve general performance of the model over more widespread range of dataset.    

 

One of the disadvantages of applying a filter is that, it is almost impossible to reconstruct the 

predictions in the exact same domain. An easier solution to this can be differencing. Differencing 

is typically used to make a series stationary by removing trends. It is easy to reverse the differenced 

series simply by addition. With these particular data used for this project, differencing was not 

much helpful.   

 

No explicit guideline could be found on determining the number of hidden neurons. To keep the 

network simple and stable, the model is developed with low number of hidden neurons by trial and 

error. One convention states that the number of hidden neurons can be chosen as log(T), where T 

is the number of time instance. But sufficient supporting evidence was not found to take this 



45 

convention as a hard and fast rule. Some complex algorithms are possible to be implemented to 

choose the hidden layer size as well as optimal delays for the dynamic network for more efficient 

forecasting. These are subject for further detailed study. More appropriate combination of hidden 

layer size, weights and biases and subsets for optimal delays for this particular problem could be 

different than the used values. 

 

6.3 Future Work: 

There are multiple opportunities for future work with the developed NARNET model for hourly 

wind speed forecast. NARNET architecture is capable to perform multi-step ahead forecast by 

implementing close loop structure which is an advantage over general ARMA, ARIMA or other 

linear models. The closed loop basically provides error feedback to the hidden layer to generate 

forecast of the next point. Higher error margin precision is required in the open loop training to 

achieve desired close loop goals, hence more accurate multistep ahead forecast results. The 

methods discussed in the previous section can be helpful in that regard. However, in this study, 

the multistep-ahead simulations were performed by creating a manual loop to feed the forecast 

result and layer states back to the input. 

 

Another neural network architecture quite similar to NARNET is nonlinear autoregressive neural 

network with exogenous inputs (NARXNET). This architecture can use multiple corelated 

variables, for example wind speed, solar radiation etc. to forecast multi-step ahead wind speed. 

Also, power generation can be forecasted in this manner. A wind power generation forecast model 

can also be developed using NARNET depending on availability of power generation data. In 

several studies it was found that statistical hybrid methods along with physical methods can 

provide higher accuracy of forecast. The study to develop the NARNET model for step-ahead 

wind speed forecast can be a good starting point for these future work possibilities. 
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Appendix A - MATLAB Code 

 

Main:  

 
clear all; clc; rng(5) 

  
load('date_speed_hour1'); 
%a= Hourly speeds for 7 years. size(M) = 61368 

  
fct_horizon = 8 % Steps ahead0, hours 
% fd = user input from ACF observation      
hidden = 4;  
ip_data = 744; % Number of input data points 
ending = 870; 
starting = ending - ip_data + 1; 
data_series = starting:ending; 
ind1 = ip_data-100; ind2 = ip_data; % ind1, ind2 are plot indices 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%% Define sample data, check statistics %%%%%%%%%%%%%%%% 
A1 = a(data_series)'; % Original comparison set, not normalized  
[Max_all, Min_all, Mean_all, SD_all, Var_coeff_all] = statistical(A1); 
W2 = A1(ip_data-336:ip_data); 
[Max_2W, Min_2W, Mean_2W, SD_2W, Var_coeff_2W] = statistical(W2); 
D2 = A1(ip_data-48:ip_data); 
[Max_2D, Min_2D, Mean_2D, SD_2D, Var_coeff_2D] = statistical(D2); 
display('Statistical properties of observed data'); 
T1 = table([Max_all; Min_all; Mean_all; SD_all; Var_coeff_all],... 
    [Max_2W; Min_2W; Mean_2W; SD_2W; Var_coeff_2W],... 
    [Max_2D; Min_2D; Mean_2D; SD_2D; Var_coeff_2D],... 
    'VariableNames',{'All_points', 'Last_2_weeks', 'Last_2_days'},... 
    'RowNames',{'Max','Min', 'Mean', 'SD', 'Var_coeff'}) 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Applying lowpass filter on the sample, check statistics %% 
d = fdesign.lowpass('Fp,Fst,Ap,Ast',3,4,0.5,50,10); 
Hd = design(d, 'equiripple'); 
A = filtfilt(Hd.Numerator,1,A1); 
b = filtfilt(Hd.Numerator,1,a); 

 
[Max_all_f, Min_all_f, Mean_all_f, SD_all_f, Var_coeff_all_f] = ... 
    statistical(A); 
W2_filt = A(ip_data-336:ip_data); 
[Max_2W_f, Min_2W_f, Mean_2W_f, SD_2W_f, Var_coeff_2W_f] = ... 
    statistical(W2_filt); 
D2_filt = A(ip_data-48:ip_data); 
[Max_2D_f, Min_2D_f, Mean_2D_f, SD_2D_f, Var_coeff_2D_f] = ... 
    statistical(D2_filt); 
display('Statistical properties of filtered data'); 
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T2 = table([Max_all_f; Min_all_f; Mean_all_f; SD_all_f; ... 
    Var_coeff_all_f],[Max_2W_f; Min_2W_f; Mean_2W_f; SD_2W_f;... 
    Var_coeff_2W_f], [Max_2D_f; Min_2D_f; Mean_2D_f; SD_2D_f;... 
    Var_coeff_2D_f], 'VariableNames',{'All_points', 'Last_2_weeks',... 
    'Last_2_days'}, 'RowNames',{'Max','Min', 'Mean', 'SD', 'Var_coeff'}) 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Plot ACF function of the of the original and filtered series 

  
while(1) 
    prompt1 = ('Press any number to start the forecast model, or press 0 to 

quit '); 
    quit = input(prompt1); 
    if quit == 0; 
        clc 
        break; 
    end 

  
    figure(1) 
    plot(1:100, A1(1:100), 1:100, A(1:100)); 
    title('Observed series vs filtered series'); 
    legend('Observed series', 'Filtered series'); 

     
    figure(2);  
    [acf, alags, abounds] = autocorr(A, length(A)-1);  
    bar(acf, 'b'); 
    grid on; grid minor; 
    title('ACF plot'); 
    xlabel('Lags'); 
    ylabel('ACF'); 
    hold on;  
    plot(xlim,[0.2 0.2], 'r', xlim, [-0.2 -0.2], 'r'); 
    axis([-5 100 -0.8 1.2]) 
     

    figure(3) 
    autocorr(A, 100); grid on; grid minor; 

     
    prompt2 = 'Please enter optimal lag number from ACF observation: '; 
    fd = input(prompt2); 
    if fd <1 
        disp('Lag should be greater than or equal to 2, please restart the 

program'); 
        break; 
    end 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%% Normalizing and NN preparation %%%%%%%%%%%%%% 
    p = (A-min(A))/(max(A)-min(A)); % Comparison set, normalized 
    p = con2seq(p); 
    t = p; % Target set 
    t_new = t; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
%%%%%%%%%%%%%%%%%%% Network parameters %%%%%%%%%%%%%%%%%%%%% 
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    net = narnet(1:fd, hidden, 'open', 'trainlm'); 
    net.inputs{1}.processFcns = {}; 
    net.outputs{1}.processFcns = {}; 
    net.inputWeights{1}.initFcn = 'randsmall'; 
    net.biases{1}.initFcn = 'randsmall'; 
    net.biases{2}.initFcn = 'randsmall'; 

     
    net.divideFcn = 'divideblock'; 
    net.performParam.regularization = 10^-5; 
    net.performFcn = 'MSE'; 
    net.trainParam.goal = 1e-10;  
    net.trainParam.epochs = 10000;  
    net.trainParam.show = 10;  
    net.trainParam.max_fail = 6; 
    net.layers{1}.transferFcn = 'tansig'; 
    net.layers{2}.transferFcn = 'purelin'; 

  
    net.trainParam.mu = 0.05; 
    net.trainParam.mu_dec = 0.8;     
    net.trainParam.mu_inc = 1.1; 
    net.trainParam.showWindow = true; 

     
    net.divideParam.trainRatio = 0.7;  
    net.divideParam.valRatio = 0.15; 
    net.divideParam.testRatio = 0.15; 

     
    out1 = zeros(1, fct_horizon); 
    trn_ind = 1: floor(0.7*(length(t)-fd)); 
    val_ind = trn_ind(end)+1:(trn_ind(end) + floor(0.15*(length(t)-fd))); 
    tst_ind = val_ind(end)+1:(val_ind(end) + floor(0.15*(length(t)-fd))); 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
    for m = 1:fct_horizon 
        t = t_new;     
        [Xs_o, Xi_o, Ai_o, Ts_o, EWs_o, shift_o] = preparets(net, {},... 
            {}, t); 
        net = train(net, Xs_o, Ts_o, Xi_o, Ai_o); 

      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Open loop performance 
        [yo, Xfo, Afo] = net(Xs_o, Xi_o, Ai_o); 
        ts_o = cell2mat(Ts_o); 
        ys_o = cell2mat(yo); 
        perf_open_training = perform(net, yo, Ts_o)/var(ts_o, 1) %MSE overall 
%%%%%%%%%%%%%%%%%%%% Open loop training ends %%%%%%%%%%%%%%%%%%%%% 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%% One step ahead %%%%%%%%%%%%%%%%%%%%%%%% 
        nets = removedelay(net); 
        [Xs, Xis, Ais, Ts] = preparets(nets, {}, {}, t); 
        Ypred = nets(Xs, Xis, Ais); 
        Ypred = cell2mat(Ypred); 
        Ypred = Ypred(length(Ypred))*(max(A)-min(A))+min(A); 
        out1(m) = abs(Ypred); 
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        t=cell2mat(t); 
        t_new = t; 
        for n = 2:length(t) 
            t_new(n-1) = t(n); 
        end 
        t_new(end) = Ypred/max(A); 
        t_new = con2seq(t_new); 
    end 
    Y_real = b((starting+ip_data):(starting+ip_data+fct_horizon-1))'; 
    Error = (abs(Y_real-out1))./Y_real; 
    Error = Error*100 

     

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%% Plot open loop training result %%%%%%%%%%%%%%%%%%%%%% 
yon = reconstruct_unnormalize(A, cell2mat(yo)); 
Ts_on = reconstruct_unnormalize(A, cell2mat(Ts_o)); 
    figure(4); 
    plot(fd+1:length(t), Ts_on, 'b', fd+1:length(t), yon, 'r--'); 
    title('Target vs prediction'); 
    xlabel('Time, hour'); ylabel('Wind Speed, m/s'); 
    legend('Target', 'Prediction'); 
    axis([ind1 ind2 min(a)-1 max(a)+1]); 

     
%%%%%%%%%%%%%%%%%%% Plot forecast result %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    figure(5); 
    plot(1:fct_horizon, Y_real, 1:fct_horizon, out1); 
    title('Forecast results'); 
    xlabel('Time, hour'); ylabel('Wind Speed, m/s'); 
    legend('Observed wind speed ', 'Forecasted wind speed'); 
    grid on; 
    axis([1 10 0 (max(max(Y_real),max(out1))+2)]); 

     
%%%%%%%%%%%%%%%%%%% Plot Error %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    figure(6); 
    plot(1:fct_horizon, Error); 
    title('Error(%) vs Time'); 
    xlabel('Time, hour'); ylabel('Error(%)'); 
    break; 
end 

  

  
[MAE_train, MSE_train, MPE_train, MAPE_train] = Error_stat... 
    (ts_o(trn_ind), ys_o(trn_ind)); 
[MAE_test, MSE_test, MPE_test, MAPE_test] = Error_stat... 
    (ts_o(tst_ind), ys_o(tst_ind)); 
[MAE_val, MSE_val, MPE_val, MAPE_val] = Error_stat... 
    (ts_o(val_ind), ys_o(val_ind)); 
ps_o = ts_o; 
ps_y= zeros(length(ps_o), 1); 
for i = 1:(length(ts_o)-1) 
    ps_y(i+1) = ps_o(i); 
end 
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Actual= [a(ending+1) a(ending+2) a(ending+3) a(ending+4) a(ending+5)... 
    a(ending+6) a(ending+7) a(ending+8)]  
Filtered = [b(ending+1) b(ending+2) b(ending+3) b(ending+4) ... 
    b(ending+5) b(ending+6) b(ending+7) b(ending+8)] 
Forecast = out1 
error = abs(Filtered - Forecast); 
for i = 1:length(Filtered) 
    error(i) = (error(i)/Filtered(i))*100; 
end 
error' 
MSE_test 

 

 

Function 1:  

 
function [Max, Min, Mean, SD, Var_coeff] = statistical(A) 

  
Max = max(A); Min = min(A); Mean = mean(A); SD = std(A); 
q = zeros(round(max(A)), 1); 
%Variance = SD^2; 

  
for i = 1:round(max(A)) 
    q(i) = length(find((A>(i-1)) & (A<=i))); 
end 
l = max(q); 
% Mode = find(q==l); 

  
Var_coeff = (SD/Mean)*100; 

 

 

Function 2:  

 
function series = reconstruct_unnormalize(original_series, normalized_series) 

  
series = zeros(1, length(normalized_series)); 

  
for i = 1:length(normalized_series) 
    series(i) = ((normalized_series(i))*(max(original_series) -… 

min(original_series))) + min(original_series); 
end  

 

 

Function 3:  

 
function [MAE, MSE, MPE, MAPE] = Error_stat(predicted_series, 

observed_series) 

  
sum = 0; sum2 = 0; sum3 = 0; sum4= 0; 
err = 0; err2 = 0; err3 = 0; err4 = 0; 

  
for i = 1:length(predicted_series) 
    err = abs(predicted_series(i) - observed_series(i)); 
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    sum = sum + err; 
    err2 = err^2; 
    sum2 = sum2 + err2; 
    if(observed_series(i)== 0) 
        err3 = (observed_series(i) - predicted_series(i))*100; 
    else  
        err3 = ((observed_series(i) - 

predicted_series(i))/observed_series(i))*100; 
    end 
    sum3 = sum3 + err3; 
    err4 = abs(err3); 
    sum4 = err4 + sum4; 

  
end 
MAE = sum/length(predicted_series); 
MSE = sum2/length(predicted_series); 
MPE = sum3/length(predicted_series); 
MAPE = sum4/length(predicted_series); 

 

 


