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INTRODUCTION 

When estimating the common mean of two normal and independent distribu- 

tions, NID(u;a2)(i = 1,2) a well known procedure is to take independent 

simple random samples from both distributions, find the sample means x and 

y, and determine a weighted mean where the weights are dependent on the ratio 

of variances with the restriction that they add to one; expressed parametri- 

cally the estimator is 

p = Ax + By, A,B > 0, A + B = 1 (1.1) 

where A and B are the weighting functions. The problem is to find A and 

B to weight the estimators x and y to arrive at a combined estimator 

having desired properties. 

When the variance ratio is known, the uniformly minimum variance unbiased 

estimator of u is the maximum likelihood (M.L.) estimator 

Po = c(P) + (1 - (P(P)); (1.2) 

nl nl 

where 4(p) = - p/ 1 + -p , p = a2/02, and nl, n2 are the corresponding 
n2 n2 2 1 

sample sizes. In applied statistics, however, p is generally unknown and 

other estimators for the common mean, i.e. estimators for the weighting 

functions A and B, must be found. 

Several studies have been made using the classical approach to find an 

estimator when p is unknown, and are of two general classes which Zacks [9] 

expressed parametrically as; 

Class I 
' s 2 

11(P*) I 

2 

P* 
s 
2 

1 

u+ 1 - I 

' 
s 
2 

2 
. 

s2 
(1.3) 
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and 

where: 

Class II 

's2 

P * 

2 

1 

u +Jl 
s 2 1 

-21 p* 

s 2 

1 

j2 

' 
s 
2 

-21 p* 
s 2 

, 1 

$ 
(1.4) u(p*) = 

(n1 /n2)x + y 
(1.5) = 

1 + ni/n2 

(nis2/n2s2) + 
P 

1 (1.6) 

1 + nis2/n2s2 
2 1 

' 
s 
2 if 1/p* < s2/s2 < p* 

I * . - 2 1 
_' 

(1.7) -2- , ID 

s2 

1 , 

's2 

0, otherwise 

if s2 /s2 > p* 

J1 -21 P* (1.8) 
2 

1 

0, otherwise 

and 

.12 

s 2 

p* 
P 

< 1/p* if s22 

1 (1.9) 
s 

1 

0, otherwise 

The si(i 1,2) are the unbiased estimators for a (i = 1,2). The values p* 

in p(p*) and rli(p*) are critical values of the F-test of significance, 

according to which one decides to apply the estimators p, p, x or y. 

Graybill and Deal [3] have shown that p (eqn. 1.6) is uniformly better 

than x or y in estimating the common mean if and only if both nl and n2 

are greater than 10. Therefore with this information one wonders whether 

p(p*) and ' 1.1i(p*) are equally as good an estimator for the common mean when 

samples are small. Both p(p*) and p(p*) have a distinct disadvantage when 

based on small samples, since the values of their characteristic functions 
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I(.;.), J1(.;.) and J2(;) are dependent upon sample variances. This dis- 

advantagecaneasilybeobserved;since=o?,then Var (s?)= 2a?/(n.-1) 
i 1 

attainsnear-maximumvalueswhenh.is small. Therefore accuracy of the 
1 

sample variances become a problem and the choice of p, p, x or y as estimators 

is somewhat dubious. Another possible disadvantage occuring in estimators 

ti 

u(p *) exists when p=1, and that is, all available information is not used 

since either x or y might be discarded, depending on the relative size of 

the sample variances. Therefore it is said that p(p*) when based on small 

samples would be the best estimator under all circumstances, and this is verified 

in a study by Zacks [9]. Zacks studied the efficiency functions of p(p*) and 

p(p*) when based on small samples of equal size and found that p(p*) was a 

superior estimator for the common mean. By studying the general behavior of 

the efficiency functions and observing the explicit efficiency function for 

p(p*), when n=3 and p* = 1, 3.4, 9, 19 and co, Zacks recommended using 

p(p*=9) as an estimator for the common mean, when p can assume any value 

(p > 0). This recommendation was made because the efficiency function over 

the range of p has desired properties. (For further discussion see Zacks [9]) 

When prior information concerning the value of variance ratio p is 

available, Zacks [9] suggested that a Bayes approach might lead to a more 

efficient estimator of the common mean. It also seems reasonable that this 

estimator for the common mean will improve the use of the somewhat dubious 

reliability of s ?(i = 1,2) when based on small samples. 

This paper will exhibit an unbiased estimator of p, in which the weight 

function p(s2 /s2) is a certain Bayes estimator of cp(p), and is more efficient 
2 i 

than p(p*=9) over the interval 1 < p < 6. Explicit formulae for ti)(s2/s2) 
2 

are studied. The efficiency functions are plotted in Fig. 1. A table is 
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given (Table I) which determines the value of the weighting function when 

n = 3, 5, 7 and p = 0(.2)10. Monte Carlo and numerical quadrature techniques 

for calculating the efficiency function are discussed and digital programs are 

given in Plates I and II. 

DERIVATION OF A BAYES ESTIMATOR OF THE WEIGHT FUNCTION (1)(p) 

The Bayes estimator for the common mean of two normal distributions when 

the variance ratio is unknown is derived in this report by finding a Bayes 

estimator for the weighting function 0(p). Let Ip(z) be an estimator for 

0(p), where z, a random variate, is a function of the two independent 

simple random samples from a density function g(z I p), where p is defined 

as before. Also assume that p has a priori density function h(p), and an 

associated loss function L(4)(z); 0(p)) > O. Then it is said that the esti- 

mator 11)(z) that minimizes the loss function is a good estimator, and further, 

an estimator ip(z) that minimizes the a priori risk, E [R(Ip(z), .(p))], 

where R(p(z), 0(p)) = E[L(4(z); 0(p))], is a Bayes estimator (Wilks [8]). 

It is easily shown that to minimize the a priori risk is equivalent to mini- 

mizing the a posteriori risk, E [L(*(z); 0(p))IZ] (Mood and Graybill [5]). 

By letting the loss function be the squared-error, (4)(z) - 4)(p))2, the 

Bayes estimator is found by setting the first derivative of the average a 

posteriori risk, with respect to ip(z), equal to zero, which gives 

or equivalently 

d {E [144)(z); O(P))]} 
= 0 , 

d g(z) 

CO 

d{L(1)(z); cp(p)±}. 

h(p I z) dp = O. 
d *(z) 

0 



After substitution of the squared-error loss and taking the derivative we 

arrive at the Bayes estimator 

Vi(z) = E [(1)(P) 1 

J 

0(P)h(P 1 z) dp 

0 

(2.1) 

where h(p I z) is the a posteriori density function. By Bayes theorem, the 

a posteriori density function of p, given z is: 

0 < p < 03 0 < z < 03, h(p 
I 

z) 
g(z 

1 P h(p) 

k(z) ) - 
k(z) is the marginal density of z, averaged with respect to the priori 

density of p, i.e. 
CO 

k(z) = g(z 1 p) h(p) dp 

0 

6 

To find the Bayes estimator ii(z), the a posteriori density function 

must first be determined. Let z = s2/s2, a function of the two independent 
2 1 

random samples, then since s2 and s2 are independent, z ti PI[Y2,Y1]; 
1 1 

where F[y2,y1] is a central F-statistic with yi = ni - 1 (i = 1,2) degrees 

of freedom. The density function of F[y2,y1] at the point F is given by: 

12- - 1 

f(F) - 
1 

2 
F 
2 

Y1 tY2 , 0 < F < m 

(11- (1 + 12- F) 
2 

Making the transformation z = pF, the density function of z = s2/s2 is 
2 1 

found to be: 

fl.. + 1 2 

g(z 
I 

p) = 
1 al.) 

Y2 

2 (1) 
Y1+12 

B (1-1- 12) [l + Yl 2-] 
2 

2 'B Y2 

0 < Z < co, 0 < p < =. (2.2) 



Since p is a ratio of variances, the a priori density function is chosen to 

be 

h(p)c, 

12- - 1 

p 
2 

11+12 

(1 + X p) 2 
Y1 

0 < p < (2.3) 

7 

From equations (2.2) and (2.3) the a posteriori density function, h(p I z), 

is: 

where 

h(p 1 z) = 

B (IL 
'2 
12-) k(z) 

2 

k(z) = 

+ 
c 2 

(1) 
2 1. 

ly2) 
/o 

11.. 11. 
(n..) 2 $2 Co 

Y2 1 

B 129 
2 '2 

p 

(1 +IL2 )(1 + 
Y2 z Y2 

p 

(1 + -9--)(1 + 12-p) 
Y2 z Y1 

, (2.4) 

Y1+12 
2 

dp (2.5) 

Under the condition that p is known, the best estimator for the common 

mean is the M.L. estimator (eqn. 1.2) where 

(n1 /n2)p 

1 + (n1 /n2)P 

By substitution of equations (2.4) and (p(p) into equation (2.1), the 

Bayes estimator of 0(p) given z = s2/s2 is: 
2 1 

Go 

(ni/n2)p 

11)(z) = E [(1)(p) 1 z] = h(p I 
z) dp 

(1 + (ni/n1)p) 
0 

11- 11- + 1 

n2 

(ii) 2 (1) 2 

) 

Go 

1 

B(2 1:2- 0 
) k(z) 1 + (n1 /n2)p 

2 

11+12 
r .4. 2 

P(1 (Y2/Y1)P) dp (2.6) 

(1 + 1Y2 1- ) 

z 



where k(z) is defined in equation (2.5). 

Yl P Making the transformation u =(1 + --) to obtain bounded integration 
Y2 z 

limits, the estimator is 

where 

12 +1 2- 
Y1+19 Y1+Y2 

1 az 2 z2 1 2 2 
du 2 .1(1J 

11)(z) ing 

' 
(2.7) 

B 11-I9 k(z) (u+ n- (u+(12) 
2 

z(1-u)) 2 
(2 '2 0 n2 Y2 Y1 

12 12 -1 Y1 +Y2 1 Y1 +Y9 1 
(1.2) 2 z2 1 2 2 

(1-u) u du 
.1(1) 

k(z) = =Jim- 
B( 

) (u + (Y1 U) 
2 

z(1-u)) 
2 

Y2-1-4 

(2.8) 

In investigating equations (2.7) and (2.8) for unequal sample sizes, 

it was found that solutions required laborious calculations, therefore only 

estimators of equal sample sizes were considered. Explicit formulae for the 

Bayes estimator i(z) when the equal sample sizes are n = 3, 5 and 7, were 

. 2 , 

found by making the transformation t = u + (J-'Lj lz(1-u)), and integrating by 
Y1 

direct procedures. The obtained Bayes estimators *n(z) are: 

1-4z -5z2+(4z+2z2)1n 
e 
z 

4)3(z) 

2(z2-1)1nez - 4(1-z)2 

(32 
z(--s+9z+16z 2 - 47 z 

3 
+ 

4z 
-- +0+18z+12z2+z3)1n 

e 
z) 

12 
ips(z) = 

r 11 11 3_,z1.- 
z-+9z+1)1n 

e 
z) (1-z)i- -9z+9z2+ z ''.+9 

3 

)7 (z) - 

200 z2- 
272 5 z3 -71z4- - -7 

15 
45+ 

Gz 
+T 

1 
(z) ) z(.19-1 +125z+ 

3 

(1-z)(- 
132 

-(1-z 
5 
) 

325 
(z-z )- 

200 
(z 

2 
-z 

3 
)+T 

2 
(z)) 

30 6 3 

(2.9) 

(2.10) 

(2.11) 

8 



where 

T 
1 
(z) = (6+75z+200z2+150z3+30z4+z5)1n 

e 
z 

T 
2 
(z) = (1+25z+100z2+100z3+25z4+z5)1n 

e 
z . (2.12) 

By using l'Hospitals rule one can show that the above Bayes estimators have 

the expected property: 

{ 

0, when z + 0 

Lim tpi(z) = 4 , when z + 1 for i = 3, 5, 7 . 

1, when z + co 

These limiting values are the same as those of 0(p) when nl = n2. For 

aiding the experimenter, tables for Iiii(z)(i = 3, 5, 7) are given (Table I) 

which determine the value of the weighting function when p = .2(.2)10. 

EFFICIENCY OF THE BAYES UNBIASED ESTIMATOR 

The Bayes estimator of the common mean can be written as: 

P 
b 

= 4)(z)x + (1 - 11)(z))3; (3.1) 

where ip(z) is the Bayes estimator for 0(p), a function of sample var- 

iances, and applying the well known property that the sample mean and 

variance are independent in normal distributions (Mood and Graybill [5]), it 

can readily be shown that pb is an unbiased estimator of the common mean 

p. The variance of pb is 

Var [pb] = E 
z 
[Var(p 

b 
1 z)] + Varz[E(pb 1 z)] 

a2 a2 
= 

n 
E 
z n 
N -2- 2(z)] + E 

z 
[(1 - tp(z))2] 

G 2 

fEz[11)2(2)] pEz[(1 - 11)(Z))211 (3.2) 

9 
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All formulae in the present section are restricted to cases of equal sample 

size. 

The efficiency of when compared to the M.L. estimator po (eqn. 1.2) 

as a function of p is: 

EMI; 
1 p,n] "" 

2 Var[po] of p 

Var[po] n(l+p)Var[pb] 

P/(1 p) 

Ez[11,2(z)] + pEz[(1 - IP(z))2] 

(3.3) 

The efficiency functions of the Bayes estimators were calculated for samples 

of equal size n = 3, 5 and 7. The graphs appear in Fig. 1, where p = .2(.2)10. 

In the previous study of Zacks [9] the efficiency function of p(p*), when 

n=3 and p*=9, was calculated similiarly with respect to the M.L. estimator 

u0. This efficiency function is presented in Fig. 1. We see in Fig. 1 that 

11 

la 
(n=3) has a higher efficiency than p(p*=9) for all values of p in the 

interval .2 < p < 6. 

NUMERICAL TECHNIQUES 

To find the function Eff[pb 1 p, ni,n2], the moments Ez(4)(z)] and 

E 
z 
[11)2(z)] should be determined. It is observed that neither moments can be 

found by exact integration methods because 11)(z) is too complicated. To 

overcome this difficulty, two approximating techniques were used; one, a Monte 

Carlo procedure, which uses the mean estimate 

k. 

*1 1 *i(zi) 

j1 
(i = 1,2) (4.1) 
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to approximate EzN(z)] (i = 1,2); and two, a Romberg numerical quadrature 

procedure which is a recursive calculation based on the trapezoidal rule, and 

is an extension (but more than a reformulation) of the Newton Cotes formula. 

(Bauer, et. al. [1]) 

The Monte Carlo procedure was adapted for use on the IBM 1410 Computer 

and the FORTRAN program (Plate I) uses the following steps to generate inde- 

pendent random z. variates: 

(1) Generate independent psuedo-random uniformly distributed 

(U(0,1))variates,u.1 ,by a subroutine RECTAN. A 

multiplicative congruential procedure developed by D. H. 

Lehmer in 1951 is used, utilizing the relation, 

ui+1 = 23u 
i 

(Modulus 108 + 1) (i = 0, 1, 2, ), (4.2) 

where u 
0 

is the starting value (any 8 digit number 

chosenfromarandomnumbertablOandtheu.O. = 1, 2, 

are the resulting 8 digit psuedo-random numbers that 

are split into two 4 digit numbers and used as two 

U(0,1) variates. The 8 digit ui's were tested 

by Taussky and Todd [7] and it was found that the method 

is a suitable generator with recycle period 5882352. 

(2) Generate x2[yi] variates. Let ui(i = 1, 2, ) be 

independent psuedo-random numbers from U(0,1) distribu- 

tion, then the inverse transformation relation (Naylor, 

et. al. [6]), 

x. 
1 

= -2 ln 
e 
(u.) 

1 
i = 1, 2, (4.3) 

yields x 
i 

x2[2] independent psuedo-random variates. 



Since the generating function of x2[yi] is a convolution 

of the generating function of X2[2] (Feller [4]) when 

y 
i 

is even, 

yi/2 

t = / x ti X2[Yi] p 

Yi j=1 

where the yi/2 values of xj are generated independently. 

When yi is odd we use the formula 

2 

t = / x. + v2 N, X2[Y 
Yi j=1 

i] 

where v is independent of x. and v ti N(0,1), then it 
3 

is well known that v2 q, x2[1]. To generate v, we gener- 

ate two additional independent ul and u2 and use the 

inverse transformation relation (Box and Muller [2]) 

vl = (-2 lneui)V2 sin 21412 

v2 = (-2 lneul)112 cos 2Tu2 

Either vl or v2 is then used. Since in this report 

Yi (i = 1,2) are confined to even numbers, only relation 

(4.4) is used in the computer program. 

(3) Generate F[Y2,Y1] variates. This is done by using the 

well known relation 

t 
Y1 Y2 

F = - F[Y2PY1] 
Y2 

11 

where the x.'s in t and t are independently xi 's 
Y2 

generated for all i. 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

12 
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It is now just a matter of generating the F[y2,y1] variates for different 

fixed p, n1, n2 in order to obtain a pF[y2,y1] distribution, and subse- 

quently to determine estimates for E 
z 

(4) (z)] (i = 1,2). It was found that 

when k. = 200 (i = 1,2) in equation (4.1), the values of Eff[pb] when 

.2 < p < 10, n1 = n2 = 3, gave a reasonable estimate of a smooth curve. 

(see Fig. 1) 

The Romberg quadrature method was chosen in preference to other quadrature 

methods because it is numerically stable and allows for a recursive calculation 

procedure for higher orders to be easily adapted to computer programming. The 

FORTRAN program for the IBM 1410 was written by J. O. Mingle, Kansas State 

University, Department of Nuclear Engineering, and is given in a modified form 

in Plate II. By definition, 

CO 

EzNi(z) ] = J 1Pi(z) g(z dz 

0 

(i = 1,2) (4.8) 

where g(z I p) is given by equation (2.2). The limits of integration can 

not be handled easily by computer methods, therefore the transformation 

u = (1 + z/04 when 11 = 12 was used, giving 

1 

Ez[illi(z)] p( (3 .-u)) 
u 

p(1-u)) 
u 

p(1-u)) 

0 

(4.9) 

where the limits of integration can be easily handled. 

The FORTRAN programs which are given are for n=3 and can be easily 

adapted for other sizes. The two methods were used as a procedural check 

and to determine which had a faster calculation time. It was found that the 

Romberg procedure gave best results in the shortest time although the graphs 

of the efficiency function of pb(n=3) for the two methods were not 

significantly different. (see Fig. 1) 
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SUMMARY AND CONCLUSION 

An unbiased estimator for the common mean of two normal distribu- 

tions was derived, in which a weight function tp(z) is a certain Bayes 

estimator for ¢(p). Attention was focused on the efficiency of this 

estimator when samples from each distribution are very small. In particular, 

explicit formulae of the Bayes estimator tp(z) were derived for samples of 

equal size n - 3, 5, 7 and the efficiencies for the estimators of the 

common mean determined by these tp(z) were studied. In investigating the 

Bayes estimator for gp) for unequal sample size, it was discovered that 

solutions required laborious calculations, therefore they were not considered. 

It was found that the efficiency functions for pb(n = 3, 5, 7) over the 

interval .2 < p < 10, are uniformly greater than 0.54. Moreover, when the 

efficiency of pb was compared to p(p*=9) for n=3, it was found that 

p 
b 

is uniformly more efficient in the interval 1 < p < 6; in fact, p 
b 

is 

uniformly 6% more efficient than p(p*=9). 

It is therefore concluded that this Bayes unbiased estimator for the 

common mean of two normal distributions does offer an improvement over 

existing procedures when samples are very small. 
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TABLE I 

VALUES OF WEIGHTING FUNCTION 

= s2/s2 

2 1 

tpn(z) (n .., 3, 

P 
3 
(z) 

5, 7) FOR z = 

4) 
5 
(2) 

.2(.2)10 

w7(z) 

.2 .346 .330 .324 

.4 .410 .400 .396 

.6 .449 .444 .441 

.8 .478 .475 .474 

1.0 .500 .500 .500 

1.2 .518 .520 .517 

1.4 .534 .537 .539 

1.6 .547 .552 .554 

1.8 .558 .565 .567 

2.0 .569 .576 .579 

2.2 .578 .586 .590 

2.4 .586 .596 .599 

2.6 .594 .604 .608 

2.8 .601 .612 .616 

3.0 .607 .619 .624 

3.2 .613 .626 .631 

3.4 .619 .632 .637 

3.6 .624 .638 .643 

3.8 .629 .643 .649 

4.0 .634 .648 .654 

4.2 .638 .653 .659 

4.4 .642 .658 .664 

4.6 .646 .662 .668 

4.8 .650 .666 .672 

5.0 .653 .670 .676 



TABLE I CONTINUED 

= s2/s2 

2 1 

1p 
3 
(z) 11)7(z) 

5.2 .657 .674 .680 

5.4 .660 .677 .684 

5.6 .663 .681 .688 

5.8 .666 .684 .691 

6.0 .669 .687 .694 

6.2 .672 .690 .697 

6.4 .674 .693 .700 

6.6 .677 .696 .703 

6.8 .679 .698 .706 

7.0 .682 .701 .709 

7.2 .684 .704 .711 

7.4 .686 .706 .714 

7.6 .688 .708 .716 

7.8 .690 .711 .718 

8.0 .692 .713 .721 

8.2 .694 .715 .723 

8.4 .696 .717 .725 

8.6 .698 .719 .727 

8.8 .700 .721 .729 

9.0 .702 .723 .731 

9.2 .703 .725 .733 

9.4 .705 .726 .735 

9.6 .707 .728 .737 

9.8 .708 .730 .738 

10.0 .710 .732 .740 

19 
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KSU 1410 COMPUTING CENTER PAGE 1 

C * * ** *MONTE CARLO TECHNIQUE FOR EQUAL SAMPLE SIZES AND EVEN NUMBER DEG 04157001 
C OF FREEDOM. INTEGER CONSTANT WORD SIZE MINIMUM OF 8. FLOATING 04157002 
C POINT CONSTANT SHOULD BE AT MACHINE MAXIMUM IN ORDER TO CALCULATE 04157003 
C LOG-BASE(E) IN FUNCTION F(X). IF LOG-BASE(E) ACCURACY ERROR 0C- 04157004 
C CURS, THE PROGRAM OMITS THAT ITERATION. 04157005 
C DIMENSION X(4),B(2*(N-1)) 04157006 

DIMENSIONX(10),B(12) 04157007 
00001 FORMAT(6HLRHO= ,F7.3,5X,6HEFF = ,F10.4) 04157008 
00002 FORMAT(6H START,3X,I5,2X,15) 04157009 
00003 FORMAT(1H ,2E16.9) 04157010 
00004 FORMAT(5H RAND,2X,F12.8,2X,F12.8) 04157011 
00005 FORMAT(6X,3H1S=118) 04157012 
C** G(Z)=BAYES ESTIMATOR FOR WEIGHT FUNCTION 04157013 

G(Z)=((1.+4.*Z-5.*Z*Z+(4.*Z+2.*Z*Z)*ALOG(Z))/(2.*((Z 1-1.)*ALOG(Z)04157014 
1-2.*(1.-Z)*(1.-Z)))) 04157015 

C** IS = 8 DIGIT RANDOM NUMBER START 04157016 
IS=20938802 04157017 

C** N = SIZE OF SAMPLE 04157018 
N=3 0457019 

C** KRN=NUMBER OF ITERATIONS 04157020 
KRN=200 04157021 
KDF=N-1 04157022 
KDFD2=KDF/2 04157023 
P=0.0 04157024 
00521=20,30,10 04157025 
R=FLUAT(I)/10. 04157026 
PSQ=0.0 04157027 
TN=0.0 04157028 
TN1=0.0 04157029 
D044JJ=1,KRN 04157030 
DO2OKK=1,4 04157031 

00020 X(KK)=0.0 04157032 
C** GENERATE U(0,1) PSUEDORANDOM NUMBERS 04157033 

0026K=1,KDF 04157034 
CALLRECTAN(IS,U1,U21CHECK) 04157035 
IF(CHECK.EQ.0.0)STOP 04157036 
B(K)=ABS(U1) 04157037 
KDFK=K+KDF 04157038 

00026 B(KDFK)= ABS(U2) 04157039 
D031M=1,KDFD2 04157040 
K=4*(M-1) 04157041 

C** CHI SQUARE TRANSFORMATION(N-1 DEGREES OF FREEDOM) 04157042 
D031J=1,4 0415704.3 
J1=J+K 04157044 

00031 X(J)=X(J)+(-2.*ALOG(1.-B(J1))) 04157045 
C** F-DISTRIBUTION TRANSFORMATION 04157046 

F1=X(1)/X(2) 04157047 
F2=X(3)/X(4) 04157048 
Z=R*F1 04157049 
ZP=R*F2 04157050 
T=G(Z) 04157051 
IF(T.GT.1.0)GOT039 04157052 
TN=TN+1.0 04157053 

00039 T1=G(ZP) 04157054 
IF(T1.GT.1.0)GOT045 04157055 
P=P+T1 04157056 
TN1=TN1+1.0 04157057 
PSQ= PSQ +T *T 04157058 

00044 CONTINUE 04157059 
00045 CONTINUE 04157060 

WRITE(3,3)TNITN1 04157061 
BP=P/TN 04157062 
BPSQ=PSQ/TN1 04157063 

C** NUMBER OF ITERATIONS USED TO CALCULATE F(X) AND F(X)**2 04157064 
WRITE(3,3)BP,BPSQ 04157065 

C** CALCULATION OF EFFICIENCY FUNCTION 04157066 
EFF=(R/(1.+R))/(BP*(1.-2.*R)+R*(1.+BPSQ)) 04157067 
WRITE(3,1)R,EFF 04157068 

00052 CONTINUE 04157069 
WRITE(215)1S 04157070 
STOP 0415707.1 
END 04157072 
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SUBROUTINERECTAN(ISIU1gU2,CHECK) 04157001 
00001 FORMAT(1H1,61HRANDOM NUMBER GENERATOR HAS OBTAINED TWO ZEROS S1MUL04157002 

6TANEOUSLY) 04157003 
C THE NEXT FOUR STATEMENTS PERFORM WHAT IS KNOWN AS THE RESIDUE 04157004 
C CLASS METHOD OF GENERATING RANDOM DIGITS. THIS METHOD WAS 04157005 
C DEVELOPED BY D.H.LEHMER IN 1951. THE PROCEEDURE IS TO 04157006 
C GENERATE RANDOM DIGITS BY USING THE RELATION, X(N+1)=K*X(N) IN 04157007 
C MOD M WHICH ACTUALLY MEANS TO DIVIDE K*X(N) THROUGH BY M AND 04157008 
C TO SET X(N+1) EQUAL TO THE REMAINDER. THE FOLLOWING WAS SET AT04157009 
C THE BEGINNING, X(0)=XXXXXXXX, K=23, AND M=10**8. ACCORDING 04157010 
C TO TAUSSKY AND TODD, THIS SEQUENCE HAS A PERIOD OF 5,882,352 04157011 
C DIGITS WHICH IS FAR MORE THAN THIS SUBPROGRAM ACTUALLY NEEDS. 04157012 
00002 N1=IS*23 04157013 

N2=N1/100000000 04157014 
N3=N2*100000000 04157015 
N4=N1-N2-N3 04157016 
IF(N4.NE.0)GOT010 04157017 
WRITE(3,1) 04157018 
CHECK=0.0 04157019 
GOT022 04157020 

00010 CHECK=1.0 04157021 
1RA=N4/10000 04157022 
N6=IRA*10000 04157023 
IRB=N4-N6 04157024 
DRA=IRA 04157025 
DRB=IRB 04157026 
U1=DRA/10000.0 04157027 
IF(111.NE.0.0)GOT020 04157028 
IS=N4 04157029 
GOTO2 04157030 

00020 U2=DR8/10000.0 04157031 
IS=N4 04157032 

00022 RETURN 04157033 
END 04157034 
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C*****ROMBERG NUMERICAL INTEGRATION PROGAM FOR IBM 1410 WRITTEN BY J.O. 04157001 
C MINGLE NUCLEAR ENGINEERING, K.S.U. 8-16-657 AND MODIFIED BY R. L. 04157002 
C DILLON WHERE, 04157003 
C A = LOWER BOUNDARY LIMIT OF INTEGRATION 04157004 
C B = UPPER BOUNDARY LIMIT OF INTEGRATION 04157005 
C EP = CRITERIUM FOR THE LARGEST FRACTIONAL CHANGE OF THE ANSWER BY 04157006 
C AN ADDITIONAL CALCULATION 04157007 
C ERROR = ACTUAL FRACTIONAL CHANGE IN LAST TWO SUCCESIVE CALCULATION04157008 
C*****MAX = NUMBER OF PARTS THAT INTERVAL (B-A) IS TO BE DIVIDED INTO 04157009 
C** DIMENSION T1(MAX,MAX),T2(MAX,MAX) 04157010 

DIMENSIONT1(10110),T2(10,10) 04157011 
00001 FORMAT(7HLRHO = ,F5.1,3X,8HE(PSI)= ,F10.5,3X111HE(PSI SW= pF10.5104157012 

15X,2F10.5) 04157013 
00002 FORMAT(5X,5HROW =,I3,4X710F10.4/) 04157014 
00003 FORMAT(7HLRHO = ,F5.1,3X76HEFF = F10.5) 04157015 

G(1)=((1.+4.*1-5.*/*Z+(4.*Z+2.411*Z)*ALOG(1))/(2.*((1*1-1.)*ALOG(1)04157016 
1-2.*(1.-1)*(1.-11))) 04157017 
F(/)=((1.+4.*1-5.*/*1+(4.*Z+2.*Z*Z)*ALOG(1))/(2.*((Z*1-1.)*ALOG(1)04157018 
1-2.*(1.-Z)*(1.-L))))**2 04157019 
BETA=1. 04157020 
EP=0.01 04157021 
A=0.0 04157022 
B=1.0 04157023 
00511=2,100,2 04157024 
R=FLOAT(I)/10. 04157025 
RHO=R 04157026 

C** CALCULATE INTEGRALS ( G(Z) AND F(Z) ) 04157027 
MAX=10 04157028 
D044K =1,MAX 04157029 
N=2**K-1 04157030 
H=(8-A)/2.**K 04157031 
S1=.25*H 04157032 
S2=.125*H 04157033 
0033J=1,N 04157034 
D=A+FLOAT(J)*H 04157035 

04157036 
IF(P.EQ.1.0)G0T024 04157037 
GOTU27 04157038 

C** NEXT TWO STEPS ARE CORRECTION FOR DISCONTINUITY OF PSI AT 1=1 04157039 
00024 S1=S1+.5*H 04157040 

S2=52+.25*H 04157041 
GOT033 04157042 

00027 P1=P*P 04157043 
P2=P*P*P 04157044 
P3=P2*P2 04157045 
P4=P2*P1 04157046 
S1= S1 +H *G(P) 04157047 
S2=S2+H*F(P) 04157048 

00033 CONTINUE 04157049 
T1(1,K) =S1 04157050 
T2(1,K)=S2 04157051 
IF(K.EQ.1)GOT044 04157052 
0039M=2,K 04157053 
TI(MIK)=(4.**M*T1(M-1,K)-T1(M-1,K-1))/(4.**M-1.) 04157054 

00039 T2(MIK)=(4.**M*T2(M-1,K)-72(M-11K-1))/(4.**M-1.) 04157055 
ERR1=ABS(T1(K-1,K-1)/T1(K,K)-1.) 04157056 
ERR2=ABS(T2(K-1,K-1)/T2(KIK)-1.) 04157057 
IF(ERRI.GE.EP)GOT044 04157058 
IF(ERR2.LT.EP)GOT045 04157059 

00044 CONTINUE 04157060 
00045 IF(K.GT.MAX)K=MAX 04157061 
C** AREA UNDER INTEGRALS (ANS1=E(PSI))1(ANS2=E(PSI**2)) 04157062 

ANSI =T1(K,K) *BETA 04157063 
ANS2=T2(K,K)*BETA 04157064 
WRITE(3,1)RHO,ANS1,ANS2pERR1pERR2 04157065 

C** CALCULATE EFFICIENCY 04157066 
EFF= (RHO /(1.0 +RHO)) /(RHO +(1.0 +RHO) *ANS2 -2.0 *RHO *ANSI) 04157067 
WRITE(3,3)RHO,EFF 04157068 

00051 CONTINUE 04157069 
STOP 04157070 
END 04157071 
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Given two independent simple random samples from two normal distributions 

N(p,o) (i = 1,2), the problem is to estimate the common mean p, W < < co 
," 0 

when the variance ratio p = 02/02 is unknown. 
2 1 

When p is known, the uniformly minimum variance unbiased estimator of 

p is the maximum likelihood estimator: pp = 0(p)Tc + (1 - 0(p))37, where 

0(p) = (ni/n2)p/(1 + (ni/n2)p) and (x, y, nl, n2) are the sample means and 

sizes respectively. 

This report derives an unbiased estimator for the common mean when p is 

unknown, in which the weight function IP(s22 /82) is a certain Bayes estimator 

for ci5(p) where s(i = 1,2) are unbiased estimators for c:r(i = 1,2). 

Explicit formulae for the Bayes estimator 114s2/s2) are derived for samples 
2 1 

of equal size n = 3, 5, 7 and the efficiency functions of the unbiased 

estimator of p, determined by there 11(s2/s2) are studied. For n=3, the 
2 1 

efficiency of the Bayes unbiased estimator is compared to the efficiency of 

an unbiased estimator of classical form and is found to be superior. 

It is concluded that the Bayes unbiased estimator for the common mean of 

two normal distributions does offer an improvement over existing procedures 

when samples are very small. 


