AN APPROACH TO DEBUGGING

by
S ~-B 30

CHING-NEU HONG

B. A., Fu-Jen Catholic University, 1969

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE
Departhent of Computer Science
KANSAS STATE UNIVERSITY
Manhattan, Kansas

19373

QN C

ajor ‘j?rof'éss';b’r

2 ¥
oY
12
L5
S &
; _ TABLE OF CONTENTS
'\C'_)._"‘
e v
Chapter
I. INTRODUCIION
What is debugging
Aids to debugging
Objective of the study
II. PROGRAM
Description of the PLf/1 program
Limitation and further suggestions
I1I. SUMMARY
IV. ACKNOWLEDGMENTS
V. BIBLIOGRAPHY
VI. APPENDICES

Appendix A. REPORT program variable list

Appendix B. PL/I program

Appendix C. Original FORTRAN program

Appendix D. Output of the PL/1 program

Appendix E. Output of the modified WATFIV program

Appendix F. Output of the PL/1 program (different data)

Page

14
16
22
23
24
25
25
29
36
38
40

43

ii

iii

LIST OF FIGURES

Figure Page
I. Flowchart for PL/1 program 19

1I. Flowchart for subroutine program 21

CHAPTER I

INTRODUCTTION

I. WHAT IS DEBUGGING?

Debugging is the technique of detecting, diagnosing, and correcting
errors which may occur in programs or systems.l Debugging may also ap-
plied to the process of testing the performance of hardware systems and
to the testing of a complete data processing system, but for this paper
it relates to detecting, diagnosing, and correcting errors which may
occur in programs.

"Syntax errors" and "Logic errors" are two different types of pro-
gram errors. Syntax errors are errors due to incorrect coding, and logic
errors are those due to incorrect appreciation of the problem.

A program written in a symbolic language requires a compilation, or
a translation, into the maﬁhine language so that it can be understood
by the processor. During the process of compilation, syntax errors in-
volving incorrect handling of the symbolic language are detected. Most
compilers reject incorrect statements and print out some indication of
the type of errors. Normally programs containing compilation errors
cannot be run, and the errors must be corrected before the program can
be tested. Usually, syntax errors are comparatively easy to find. Here

is an example of a syntax error of a DO statement in PL/I. Suppose we

lChandor, A., Granham, J, and Williamson, R. A Dictionary of
Computers, Australis: Penguin Books, 1970.

write "DO 100 I=1,10". This is a FORTRAN statement, not a PL/I statement.
It should be changed to "DO I=1 TO 10;" in the PL/I statement.

An example of a logic error would be to calculate the average score
of students. The result is obtained by adding the scores of the students
taking the exam and dividing by the number of students taking the exam,
not by having the combined total score divided by the number of students
in the class. The calculation would be performed correctly by the pro-
gram, but the result would not be that which was desired. If the pro-
gram fails to achieve the expected results, or if an unexpected halt
occurs within the program, a logic error diagnosis is required. Logic
errors can only be detected by testing the program with sample data.

The system which will be described in this paper illustrates techniques
which could be used in a debugging system to aid the programmer in finding
these types of errors.

Frequently, a large part of debugging involves determining what the
error is and where it occurred. After finding the error, a correction
can be checked by hand or by submitting the corrected program to be run
again. In this way, it is possible to determine the essential information
which possibly was obscured by the error determination type, or simply

by lack of visible information.

II. AIDS TO DEBUGGING

We can say debugging is possibly the most important aspect of pro-

. 2 ; -
gramming, as well as the most costly portion of writing a program in

2IBM Corporation, IBM System 360 Operation System Programmer's Guide
to Debugging, IBM Form GC28-6670-3.

terms of both human and machine effort.

When an error occurs in a program, frequently even a very experi-
enced programmer can not identify the cause of the error without con-
siderable effort.

Jacob T. Schwartz in "An Overview of Bugs"3 discusses debugging and
the debugging tools. Thesetools trace the program at different levels
such as the program transfer level, or the subroutine level. Also it
is necessary to use different kinds of traps, different kinds of dumps
and different kinds of program-termination summaries, such as the number
of statements executed in a program run because of the various types
of errors which occur in the program. The late-stage debugging tools
include a certain number of ideas in the area of systematic program
testing. He also mentions a type of debugging aid suggested by Flod's
correctness—-proof methods.4 This idea is as follows: one can implement
a system by which a programmer, during the process of program elaboration,
could formally state those assumptions (concerning the moment-to-moment
state of his data) which led him to write his program as he did. How-
ever, this method is difficult at best for most programmers.

R. M. Balzer in "EXDAMS-Extendable Debugging and Monitoring System"5
point out that the ability to debug programs has not progressed as much

as the increased use of the higher-level languages has. EXDAMS provides

3Schwartz, Jocob T. '"An Overview of Bugs," Debugging Technigues in
Large Systems, Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1971.

“jiid. § 10

5Balzer, R. M. "EXDAMS-Extendable Debugging and Monitoring System,"
AFIPS Conference Proceedings Spring Joint Computer Conference, 1969,

PP- 567-580.

a single environment in which the users can easily add new on-line de-
bugging aids to the system, one at a time, without further modifying the
source level compilers, EXDAMS, or other relevant programs. EXDAMS was
designed to provide two capabilities:
1) An extendable facility to which new debugging and monitoring aids
could be easily added, then tested; and
2) A system providing some measure of inﬂependence of the machine.
This means independence not only of the particular machine on which
it is being run and the particular implementation of the language being
debugged and/or monitored, but also of several source languages in
which users' programs could be written and debugged and/or monitored.
EXDAMS contains two types of debugging and monitoring aids, "static"
and "motion-picture." The static aids display information that is extant
at a given point in execution time, such as the wvalue of variables at the
time an error occurred. The motion-picture aids are execution-time sen-
sitive, that is, they display data as it changes during execution time.
EXDAMS is a four-phase system the four phases are program analysis
compilation, run-time history-gathering, and debug-time history-playback.
The program analysis produces a symbol table and a random—access file of
a model of the user's source program for the history-playback. As it
analyses the program and builds a model of the program, it also inserts
debugging statements into the program to implement the history-gathering.
Each model entry includes an indicator of the type of model entry, a
pointer to the associated source statement, and an index to an entry in

either the model or the symbol table. The compilation phase compiles

the source program, as updated during program analysis. The compiled
version of the updated program is run with a set of run-time routines,
These routines gather dynamic information about the program's behavior.
This information is collected in a buffer that is written out when
complete. It is the history tape of the programs’'s behavior which, to-
gether with the symbol table and model, is sufficient to recreate the
program's behavior in either the forward or backward direction of exe-
cution time. The debug-time history-playback phase contains the debug-
ging and monitoring aids which present the history information to the
user in a usable form om his display screen. It alsc interprets the
user's commands for alternative displays and/or execution-time variations.
It provides an editing capability for modifying discovered bugs and

for returning this modified program to the system for another debugging
Tun,

Another debugging technique, called the QUIKTRAN System,6 allows the
program undergoing debugging to be changed by the insertion and deletion
of statements, A form of unconditional breakpoint capability is included
in this technique so that a statement can be inserted at any point in the
program. When the point is reached, this has the effect of transfering
control to the user. For example, in a FORTRAN program, every time when
an "assignment" statement is encountered, a print statement is inserted.
This print statement indicates the value of the variable on the left-hand
side of the assignment. This debugging technique modifies the FORTRAN
program in a semi-automatic fashion to provide the necessary information.

6Evans, Thomas G. and Darley, D. Lucille "“On-line Debugging Techniques:

A Survey," AFIPS Conference Proceedings Fall Joint Computer Conference,
1966, p. 43.

Unfortunately, the usual way to debug a program is to check it
step by step by hand to discover the location of the logic error. The
next step is to modify it and then submit it again. This process con-
tinues until the correct output is obtained. The primary reason for a
large number of iterations in this process is the lack of definite in-
formation available to the programmer. This paper is an attempt to pro-

vide further suggestions for more usable techniques in debugging systems.

ITI. OBJECTIVE OF THE STUDY

In order to provide information to the programmer concerning the
state of the program at the time execution terminated, a PL/I program
has been written to aid in providing this information.

This paper describes this program and its use as a debugging tool
to discover logic errors which occur in FORTRAN programs. In other words,
a FORTRAN program will be the input data to the program described herein.
The PL/I program will process the input program statement by statement and
a new FORTRAN program will be punched out. This program can then be run
through WATFIV, This second program will consist of the original FORTRAN
program and the inserted statements which monitor the calculated inter-—
mediate results. The program shown here is not to be considered as a
finished tool, due to the assumptions made concerning the input (FORTRAN)
program. However, the program does indicate a direction of our thought
with respect to the type of information a debugging system should provide

to a typical user in this a typical environment,

CHAPTER 11

PROGRAM

To illustrate the technique of debugging as performed by this pro-
gram, an example is given in Appendix B. The language used in the
processing program is PL/I and the input data is a program written in
a sufficiently restricted version of FORTRAN IV. The program is de-
signed as stated for helping programmers find the logic errors in FORTRAN
programs. The PL/I program processes the input FORTRAN program, statement
by statement. After reading a FORTRAN statement, the PL/I program examines
the type of FORTRAN statement read and identifies it as (1) ASSIGNMENT,
(2) READ or WRITE, (3) DO, (4) IF, (5) GO TO, (6) INTEGER or REAL. De-
pending on the type of statement it is, then immediately after each
statement it may be necessary to insert FORTRAN "WRITE" statements into
the original FORTRAN program. These inserted "WRITE" statement are to
print out the intermediate results of the FORTRAN program. The modified
FORTRAN program, with its inserted "WRITE" statements is printed and
then punched. The output of the new program consists of that of the
original FORTRAN statements plus the calculated intermediate results.
These results can be checked to see whether the correct answer is obtained
at various stages in the program. Since each result is printed out im-
mediately after the calculation is done, the error may be directly traced
to the FORTRAN statement which performs the calculation. The effects of

the debugging system on the user program statements are as follows:

1. If it is an "ASSIGNMENT'" statement, then insert a print and a format
statement to output the value of the variables on the left-hand side
of the assignments in order to check whether the correct answer or
computation is obtained. For example, if statement 5 is
Y=(A*%3+B*(~2,%B/A)*C-B then immediately after this statement the
following two statements are inserted

PRINT 33333,Y
33333 FORMAT(1H , 10X,'5Y',F10.2)

2. If it is a "READ" or a "WRITE" statement, do nothing.

3. If it is a "DO" statement, check whether the program has specified
the EXPAND or NO EXPAND option. If the EXPAND option is in force
then continue to check types of all the statements within the DO
LOOP., Conversely if NO EXPAND option is in effect then continue to
read the input data until a "CONTINUE" statement is found, not
checking types. The NO EXPAND option is an alternative to providing
all the information associated with the execution of a loop. We
feel that for debugging a typical loop the NO EXPAND option, which
would normally be default, is sufficient. As the loop executes
keep all the information concerning the DO LOOP such as loop range,
loop parameter, initial loop value, terminal loop value, the first
value set and the last value set for all variables within the loop.

This information is retrieved after the DO LOOP is executed the first

time, and after the DO LOOP has completed. In addition, search for any

"GO TO" statement in the DO LOOP. If there is any "GO TQ" statement,

check whether there is an exit point to go out of the loop. The history

gathering information is inserted within the DO LOOP and then printed
and punched out,

In order to specify the EXPAND and NO EXPAND option the programmer
inserts a "NO EXPAND" statement or an "EXPAND" statement or both of them.
These two statements are punched from the 7th colummn into a card, and in-
serted into the FORTRAN program before the "DO" statement, this insertion
has to be done before the FORTRAN program is processed by the debugging
program. After the type of statement read-in by the PL/I program is
checked, if it is a "NO EXPAND" statement then it will not expand the im-
mediately following DO statement i. e. it will not insert "WRITE" state-
ments within the DO LOOP. Similarly if it is an "EXPAND" statement, the
normal write statement insertion is done in the immediately following
DO LOOP until either the end of the program is found or a "NO EXPAND"
statement is encountered.

To differentiate these two conditions in the PL/I processing pro-
gram, the variable NE is set to 1 for the 'NO EXPAND" statement and
otherwise. Whenever a DO statement is met, a check on the value of NE
determines the conditicn of expansion.. For example, if the statement
"DO 10 I=1,10" is read in, then check NE; if "NO EXPAND" prevails, then
continue to read the data until the "CONTINUE" statement is found without
checking statement types. All the loop control information previously
specified such as loop range, loop parameter, initial loop value, ter-
minal loop value, the first value set and the last value set for all
variables within the loop are kept as used, except for checking whether

there are exit points within the loop.

10

Considering the following example of a FORTRAN program segment.

10

DO 10 I=1,10
I1=1

NUM3=NUM1-+NUM2

IF (I.EQ.10) GO TO 2
GO TO 3

PRINT,II

IF (.TRUE.) GO TO 1
NUM1=NUM2

NUM2=NUM3

CONTINUE

GO TO 1

STOP

END

If a "NO EXPAND'" statement is found, the output will be as follows:

10

DO 10 I=1,10
II=1

NUM3=NUMI+NUM2

IF (1.EQ.10) GO TO 2
GO TO 3

PRINT,II

IF (.TRUE.) GO TO 55555

NUM1=NUM2
NUM2=NUM3
IF (1.EQ.1) PRINT 77777,1I,NUM3,NUML,NUM2
CONTINUE

IF (I.EQ.10) PRINT 88888,1T ,NUM3,NUMI ,NUM2

77777 FORMAT (1H ,10X,'LOOP RANGE=10 TO 19'/11X,'LOOP PARAMETER=I'/11X,
1'INITIAL LOOP VALUE=1',5X,'TERMINAL LOOP VALUE=10'/11X,
2 'FIRST VALUE SET II,NUM3,NUML,NUM2',4(I10))
88888 FORMAT (1H ,10X,'LAST VALUE SET II,NUM3,NUML,NUM2',4(I10))
GO TO 1
55555 PRINT 66666
66666 TORMAT (1H ,10X,'EXIT POINT=16 TR 1)
GO TO 1
STOP
END
If before the "DO" statement it had an "EXPAND" statement instead
of "NO EXPAND" statement, then the normal write statement insertion is
done, and the above example would be as follows (shown in Appendix F):
DO 10 I=1,10
I1I=1
PRINT 33336,11
33336 FORMAT(1H ,10X,'11 II',110)
NUM3=NUMI1+NUM2
PRINT 33337 ,NUM3
33337 FORMAT(1H ,10X,'12 NUM3',6I10)
IF (I1.EQ.10) GO TO 2
PRINT 11112
11112 FORMAT(1H ,10X,'13 NT')
PRINT 22222
22222 FORMAT(1H ,10X,'14 TR 3')
GO TO 3

2 PRINT,II

11

12

IF (.TRUE.) GO TO 1
PRINT 11113
11113 FORMAT(1H ,10X, '16 NT')
3 NUM1=NUM2
PRINT 33338 ,NUM1
33338 FORMAT (1H ,10X,'17 NUM1',110)
NUM2=NUM3
PRINT 33339 ,NUM2
33339 FORMAT (1H ,10X,'18 NUM2',110)
10 CONTINUE
If an "IF" statement is read in, then inmsert a print statement and
a format of this print statement, This print statement is to specify
if the "IF" statement condition is not met, then no transfer is made.
The print statement prints out "NT", which stands for no transfer.
For example, consider the statement
IF (A.EQ.0.0) GO TO 5
then immediately after this statement, insert the following two state-
ments: |
PRINT 11111
11111 FORMAT(1H ,10X,'4 NT')
If a "GO TO" statement is read, then before this "GO TO" statement
a print statement will be inserted which will print out "TR", meaning
transfer. This specifies that the program transfered to the given
statement. For example, consider the statement as
GO TO 1

then before this statement, the following statements will be inserted

13

PRINT 22222
22222 FORMAT (1H ,10X,'21 TR 1')

6. If an "INTEGER" or a "REAL" statement is read, this will specify
identification of the FORTRAN variables, use a subroutine "SUB"
program to separate each identification and store it, This is to
define the format of "ASSIGNMENT" statement's identification. For
example, an "INTEGER AX,BY,CZ,HD" statement is read in, then call
the subroutine "SUB". This subroutine will separate AX,BY,CZ,HD
and store them individually, then in this input FORTRAN program AX,
BY,CZ and HD are to stand for integer number, so before the format
of the "ASSIGNMENT" statement's identification is to be defined, the
identification should be checked, if it happened to be AX,BY,CZ or
HD, then define it's format to I10, otﬁerwise Fl10.2.

Ideally when all the information is assembled, the logic errors can
be traced to the location where they occurred. When the error is located,
it can be corrected, and thus the aim of this program is achieved.

In the PL/I program output as shown in Appendix D, the "NUMBER GIVEN"
indicated the FORTRAN program's original statement number. The "ASSIGNED"
is the read-in statement count but not including the inserted statements.

The flow chart for the PL/I program (shown in Appendix B) is given
in Figure 1 and Figure 2 is the flow chart of subroutine program.

T;e original FORTRAN program is shown in Appendix C, the output from
the PL/I program is presented in Appendix D, while the output of the

modified WATFIV program is shown in Appendix E.

DESCRIPTION OF THE PL/I PROGRAM

The PL/I is shown in Appendix A and the flowchart is given in

Figure 1.

steps.
P1.
P2,
P3.

P4.

P5.

P6.

P7.

The flow of the PL/I program is ocutlined in the following

Declare wvariable used.

Initialize

some values.

Update data.

Test if it
not, go to
Test if it
to 1, then
Test if it
o, then go
Test if it
not, go to

D1, Check

is a "READ" statement. If yes, go to P13. 1If
B5.

is a "NO EXPAND" statement. If ves, set NE equal
go to Pl4, If not, go to P6.

is a "EXPAND" statement. If yes, set NE equal to
to Pl4., If not, go to P7.

is a "DO" statement. If yes, go to Dl. 1If

P8.

whether the program has speckfied the EXPAND or

NO EXPAND option. If NE equal to 1, then go to Pla.

If NE

equal to 0, then go teo D2,

D2. Find loop initial range, loop parameter, initial loop

value, terminal loop value.

D3. Keep all the loop control information which are found

in D2,

D4. Store

the statement.

D5. Read in data,

14

P8,

P9.

P10.

15

D6. Test if it is a "CONTINUE" statement., If yes, go to
D7. If not, find the index of equal sign, then go to D4,
D7. Test if there is a "GO TO" statement to exit from a DO
loop. 1If yes, go to D8. 1If not, go to D9.
D8. Find the exit point.
D9. Find the loop terminal range.

D10. Insert a "IF" statement, this is to test FORTRAN program
to see if it is the first iteration for this DO LOOP or
not. This is to print out the first wvalue set for all
variables within the loop.

Dl11. Print out and punch out the "CONTINUE" statement.

D12. Insert a "IF" statement, this is for test FORTRAN program
whether it is the last iteration for this DO LOOP or not,
and this is for print out the last value set for all vari-
ables within the loop.

D13. Print out and punch out all the information for this
DO 1LOOP.

D14. Go to P3,

Te-t if it is a "INTEGER" statement. If yes, call the sub-
routine "SUB", then go to P13. If not, go to P9.

Test if it is a "REAL" statement. If yes, call the subroutine
"SUB", then go to P13. If not, go to P10,

Test if it is a "IF" statement. If yes, then insert a print
statement and a format of this print statement, then go to P13,

If not, go to Pll.

16

Pll. Test if it is a "GO TO" statement. If yes, insert a print
statement and a format of this print statement, then go to
P13. If not, go to P1l2.

P12. Find the index of equal sign, and format this assignment
statement.

P13. Punch out the statement.

P14, Print out the statement.

P15. Go to P4.

The subroutine "SUB" program is to separate each INTEGER or REAL

statement's identification and store them, the steps are as follows:

S1. Declare variable used.

52, Do I=II to 72. (II is the beginning column of the define
INTEGER or REAL's identification.)

S3. Test if I=','. If yes, store all the character before ','
mark, and go to S4. If not, go to S5.

S4. Set II=I+1, go to S2.

§5. Test if I=' ', 1If yes, store this last identification.
If not, go to S2,

S6. Return to the main program,

LIMITATION AND FURTHER SUGGESTIONS
There are some restrictions for the input FORTRAN program:
1) Every statement should begin in column 7 and reserved words must
not include blanks.
2} For the "ASSIGNMENT'" statement, its variable name cannot begin

with READ, WRITE, IF, DO, REAL and EXPAND. For example, if

3)

.8

5)

6)

7)

8)

17

an ASSTIGNMENT statement is:

READR=X+Y
then for the design in this paper it will treat it as a
READ statement, and the same is true for WRITE, IF, DO, REAL
and EXPAND.
The input data can not use READ, WRITE, IF, DO, REAL and EXPAND
as an array name. For example, if a statement is:

READ(5)=10
the debugging program will treat it as a READ statement, not
as an ASSIGNMENT.
Only un-nested DO LOOPS are accomodated by this debugging package.
The "DO" statement form should be as follows:

DO 10 I=1,100

or DO 10 I=1,100,2

one blank before and after the statement number is necessary.
If the "DO" statement is D0O10I=1,100 then it won't work in
the debugging program.
Within a DO LOOP, there can be no more than 20 statements.
The user can not use some 5 digit statement numbers in the
program, such as 11111, 22222, 33333 to 55555, 66666, 77777 and
88888, as they are reserved for special use.
User can not have the "GO TO" statement as following form:

60 TO (n,,n - -, n), NAME

ps

- -, n 1is a list of statement

where n,sn K

20

numbers and NAME is a wvariable name.

18

9) The user can not have a statement more than one card in length,
except a continued FORMAT statement.
10) The user can not have the equal sign in his FORMAT statement.
11) 1If statements are assumed to be followed by GO TO statements,
not ASSIGNMENTS.
However improvement in terms of operation could be made through elimin-
ation of the above considerations. Improvements, in terms of providing
more information can only be made after extensive use of such a facility

as thils program currently represents our 'best' guess.,

B
Declare

variable

used

Print out
the

y <:: Update
F ; data
Punch out

the
statement

—®

Define
its FORMAT

//ﬁ; T %,
<"NO EXPAND'

]
Insert
printout
Call No - Is it
subroutine < vINTEGER™ >IES
tateme

Figure 1. Flowchart for PL/I program

tatement C

Call
subroutine

|

19

20

we read

loop initial [range
loop parameter
initial and germinal

Ioop vatlue
S—C)

Store the
statement

Read
data

Find the

Print out
&

ch out

ahl the i

matiof for this

loop

index of
equal sign 4ﬁﬁ<:>

Find the
loop terminal
range

rint out
and Find the
(“_“’ " n
unch out EXIT POINT
the

(Start)

3

Declare
valuable
use

ITto72

7 1s

NO

(=)
:

End

Figure 2. Flowchart for subroutine program

Store all the
character
before ',!

mark

Store this
last
identificatio

21

22

SUMMARY

This paper has presented in Chapter I a brief description of de-
bugging and the debugging aids. It emphasizes that the debugging system
is a process to aid the FORTRAN programmers in finding the logic errors.

An example using PL/I is presented in Appendix A (Chapter II), the
purpose of the PL/I program is to aid students in finding the logic
errors in a FORTRAN program. To debug the program, the system automatically
inserts print statements to obtain intermediate results and information.
Information is printed out to aid in showing the incorrect statements or
the unexpected result, so that the error can be easily corrected.

Although logic errors are almost inevitable in programming, after
using this debugging scheme, most logic errors will be easily identified
by the programmer. Thus such a system can save a great deal of time in
searching for errors as well as indicate flow of control under various

input can computation possibilities.

23

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Dr. Paul Fisher,
Major Professor, for his enthusiastic guidance and constructive sug-
gestions throughout this report and the Master program.

Also, 1 express my appreciation te Dr. Kenneth Conrow and Dr. Myron
Calhoun for their assistance and advice during the course of the program

and to the Computing Center which provided the computation time.

24

BIELIOGRAPHY

Balzer, R. M. "EXDAMS-Extendable Debugging and Monitoring System,”
AFIPS Conference Proceedings Spring Joint Computer Conference,
1969, pp. 567-580.

Chandor, A., Granham, J. and Williamson, R. A Dictionary of Computers,
Australia: Pinguin Books, 1970.

Evans, Thomas G. and Darley, D. Lucille "On-Line Debugging Techniques:
A Survey," AFIPS Conference Proceedings Fall Joint Computer Con-
ference, 1966, p. 43.

IBM Corporation, IBM System 360 Operation System Programmer's Guide to
Debugging, IBM Form GC28-6670-3.

Schwartz, Jocob T. "An Overview of Bugs," Debugging Techniques in Large
Systems, Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1971.

APPENDIX A

5

VARIABLE

XYZ
LABEL
ABC
IDTF

FORMAT

FCHAR
PHRASE
I1

Ji

K1

L1

N1
VARI(20)

VARR(20)

REPORT Program Variable List

MODE DESCRIPTION

CHAR(80) Read in FORTRAN statement
CHAR(5) Label of FORTRAN statement
CHAR(75) FORTRAN statement from col. 7 to col. 80
CHAR(6) FORTRAN variable name

CHAR(75) FORMAT for the print statement
FIXED Scalar variable

FIXED Number of read in statement
FIXED Scalar variable

FIXED Label of format statement
FIXED Label of format statement
CHAR(75) Format statement

FIXED Label of format statement
CHAR(75) Format statement

CHAR(1) The first character of the identifier name
CHAR(5) Mode of the identifier

CHAR(1) INIT('1")

CHAR(1) INETLYTR)

CHAR(1) INIT('K")

CHAR(1) THTTLIEY)

CHAR(1) INIT('M'")

CHAR(1) INIT('N")

CHAR(6) The integer variable name
char(6) The real variable name

26

VARIABLE

J1
JR
II
LR
LTR
LE
LC
c

D
BBB(20)
A

B

D

NE

ILV
TLV
PAR

EE(10)

AA(10)

cc(1o)

BE(10)

MODE
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED

FIXED

FIXED

CHAR(6)
CHAR(6)
CHAR(6)

CHAR(5)

CHAR(S5)

CHAR(5)

CHAR(80)

DESCRIPTION

Scalar variable

Scalar variable

Scalar variable

Loop initial range

Loop terminal range

Scalar variable

Scalar variable

Scalar variable

Scalar variable

The number of DO LOOP statement
Scalar to label in the DO LOOP
Scalar to count statement in the DO LOOP

Scalar to count the ASSIGNMENT statement
in the DO LOOP

EXPAND or NO EXPAND specified
Initial loop value

Terminal loop value

Loop parameter

Store the ASSIGNMENT statement's identifier
which within the DO LOOP

Store FORTRAN statement's label which within
the DO LOOP

Store the GO TO statement which within
the DO LOOP

Store all the statements which within
the DO LOOP

27

VARIABLE

TR(20)
EXIT(20)
F

H

J

FF(20)
HH(20)

GG(20)

MODE
CHAR(S)
FIXED
PIC'99999"
PIC'99999"
PIC'99999"'
CHAR(80)
CHAR(80)

CHAR(80)

DESCRIPTION
Transfer's name
Exit point
Scalar wvariable
Scalar wvariable
Scalar variable
Print statement
Format statement

GO0 TO statement

28

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE

ILLEGIBLE

THE FOLLOWING
DOCUMENT (S) IS
ILLEGIBLE DUE
TO THE
PRINTING ON
THE ORIGINAL
BEING CUT OFF

ILLEGIBLE

APPENDIX B

29

REPORT: PEOCEDURE OPTIOHS(MAINI =r

REPOPT: PROCEOURE DPTTONS {MAIN)
) /¥ THIS PRCGRAM IS USE PL/]1 TO DEBUGGING A FORTRAM PROGE2M %/
% AND PUNCH IT DUT ®f
ON ENDFILE(SYSIN)
GO T QUITS
/% DECLARF VARTABLES USED =/
DCL xXyYZ CHARIBO);
DCL LABEL CHAR{S5), ABC CHAR(T75}:
NCL IDTE CHAR{SG) VAR, FORMAT CHAR{T75) VAR;
b DCL (T 4N K,KK) FIXED;
DCL L FIXDD INTIT(22221)y LL CHAR{TS5) VAR;
GCL M FIXED INIT{11110), MM CHAR(75) VAFR;
DCL FCHAR CHAR{1), PHKASE CHAR{3) VAR;
DCL 11 CHAR{1l) INIT(*I'}),
JI CHAR(1) INIT('J'),
y : : K1 CHAR(1) INIT{*'K'},
Ll CHAR{1} INIT('L'},
ML CHAR(1) IMIT(®*Mt),
Ml CHAR{L) INIT('NY);
BCL (VAKIZVARR){20) CHAR(A} VAR;
DCL (JI,Jd%) FIXED INIT(3), 11 FIXED;
' DL (LRyLTRGLESLC 4C,D4BBBI2G)Y) FIXED,
(ABE4NE) FIXED INIT{OY,
{ILV.TLV,PAR,EE(10}) CHAR(6E) VAR,
{AA,CCII10) CHAR{S) VAR, BO{22) CHAR(BI):
DCL TR(20) CHARI(5), EXIT(2C) FIXED,
F PICTURE '99695t [NITI(55554),
H PICTURE 'gca39" INIT{66665),
4 PICTURE '99999¢t INIT(C),
{FF4HH,GG) (2) CHAR(BO)3
/% PRINT LABELS =/ ;
PUT SKIP EDIT(YNUMBER GIVENT, YASSIGNED" (A X{5),A)
/* INITIALIZE SOME VALUES =/
N=£3,
KK=32332;
READ: GET EDITIXYZ)I{ALBD))
/% COURT THE ORIGINAL READ IN STATEMENTS */
N=N+1;
LABEL=SURSTRI{XYZ4+14+5);
ABC=SURBSTR{XYZ,6,75);
IF SUBSTRIXYZ,7,4)="READY THEN
G0 10O QUTPUT;
IF SUBSTRI{XYZ,7+9)="NJ CXPAND' THEN
318
NE=13
GO TO PRINT:
END;
IF SURBSTRIXYZ 7+6)="EXPANDY THEN
D03
NE=D 3
GO TO PRINT:
END
IF SUBSTR{XYZ,7+2)="00" THEN
DO
/7% IF IT 1S THE *'DO' STATEMENT THEN CHECK BACK, DID WE READ THE
/% INGG EXPANDY STATEMENT BEFQRELIF YES THEN WE APE NOT GODING TO
/¥ EXPAND THE FOLLOUWING DJ LOOP

xf
*/
*/

REPORT:

VE:
FE'

/% VALUE,

KEEP ALL

KEEP THE

<t

/
FROM THE

TEST IN THE DO L20P DOES THERE HAVE

PROCEDURE UPTIONS{MATIN) S

ILVIINITIAL LOCP VALUE,

EXIT:EXIT POINT

IF NE-=1 THEN
GO TO QUTPUT;
LR=N3
LE=INDEX{XYZ,%=");
DA I=LE TO 10 BY-13
TF SUBSTRIXYZ,I,1)}=" ' THEN
PAR=SUBSTR{XYZ,1+1,LE-1-1);
END 3 :
LC=INDEX{XYZ4"41);
PO I=LC+1 TO LC+6;
IF SUBSTRIXYZ141)=%,"
GO TO V3
IF SUBSTR{XYZ,I41)=t ?
GO TO V3
END;
ILV=SUBSTR{XYZ,LE+1,LC—-LE-1);
TLV=SUBSTR(XYZ,LC+1,I-LC-1);
R=pg+1]1 3 '
THE STATEMENTS WHICH WITHIN THIS NDC LGOP
AR (B)=XYZ;
BEB(8)=M;
GET EDITUIXYZ){A(80))s
N=N+13
LABEL=SUBSTRI{XYZ;31451);
ABC=SURSTR(XYZ 46475}
I=VERIFY{LABEL,* *');
IF 1-=0 THEN '
DO
A=A+1:
WHICH WITHIN THIS DO LQOP =/
AA{A)=SUBSTRILABELs145-1+1);
END;
IF SUBSTRAXYZ,7,8)=YCONTINUE!
0o
I=INDEX{EE{E), ', '};
EE{E)=SUBSTR(EE(E)s1,1-1});
"o 0y

THEN

THEN

LABELS

THEN

LGCGP
Do I=1 TO Bj3
C=INDEX(BBII),"GU TO
IF C=0 THEM
GO TO D23
D=INDEX{RBB{I),"*)3
CCLI)=SUBSTR{RB{I) C¥a4D-C=5h);
DO K=]1 TO A;
IF CC{TI}=AA(K}THEN
GO T9 D23
END 3
J=J+1;
EXIT(J}=DBRB{I);
TRIJ)=CC(I};
F=F+17% :
BR{I)=SURSTR(3R(I),1,C+5)}|F;
H=H+1;

)3

31

IN THE FGLLCWING LR AND LTR INDICATED THE LNOP RANGE,

PARILOEP PARAMETER, TLV:TERMIMAL LOOP

*/

STATEMENT 10 FXIT

b

*/

REPNET S

PROC

)1
D2
(1
D3
(£
77

)y

2 (
23
TN
-1
)
NG

L
RS

=
FT

L
)3

[*

ENURE OPTIOKSIMAIND 3 32

FR{JI=FI{t PRINT *||H;
HH{J)=Hl ' FORMAT(1H ,10X,"'EXIT POINT="|]EXITI,

jt TR " ITR{SY 220)t
GG(JY='GO TO *|ICCiI);
: PUT SKIP EDIT(SURSTR(AR{1)y145)4BBB(1),SURSTR{R]

Yo B TS IUX{2) AU5) X124 F (4) o X(T)4A);
PUT FILE(PUNCH)EDITI(BR(I}I(COL{1) yA)
END3
. LTR=N;
PUT SKIP EDITUYIF{ ' yPARy " oEQ "y ILV " IPRINT 7777747
ECL1IDC T=1 TN EHfx(BSJ;A,A;’\,A,A,J.O(AH;
PUT FILE{PUNCHIEDTIT{ 'IF{ "y PLE "o EQu 'y ILV,")PRINT 7
Tat S (EELTID0O I=1 TO E)Y(COLATY s AyAsAsA A (EIA)S
PUT SKIP EDITILABEL NyABCYIX{Z)+A(S)y XL12)4F(4)4X(]
A);
PUT FILE(PUNCHIEDITI(LABELARBC)I(COL{L)A(5),A[T5))s
PUT SKIP EDIT{TIF(*,PAKy'aF0e"sTLY,*) PRINT E2338,!
EE(L)D I=1 TGO FH)I(X{35)sAsAsA 20, {0)A)s
PUT FILE(PUNCHIEDITIYIF("yPAR ! ,TQa?TLV,?) PRINT
BBYL{EF(T)DD I=1 7O EMM{COL(T)sAsAA A A ({)A)S
PUT EDIT(*T7777 FORMAT(1H +10X4''LOOP RAHNGE="Y4LR,?
TLLTRy VYV /11X, YL O0P PAPAMETER= JPAR, "V /71X, "1V INITIAL L OOP VALY
tLTLY YT S VY TERMINAL LOG? VALUE=? ,TLV "' /11X, V12V IRTRST VEALUES
T2 (TR0 T=1 TO Ely v 00yt ey 0 {TLN))) (SKIPWX{Z5)48,FI{2),A,F(2),2,
s SKIPy XL LT g Ag Ay Ay b AgSKIP X(ATG) sAg (N)ALARF(2),A)3
PUT FILE(PUNCH)IEDIT{ 77777 FOPMAT(IH 414X, VLCOP 2y
F=t LRyt TD VL LTRGVVYV/TIX VL0002 PARAMETER="3PAR "1 /11X, 1PV INITIY
1O0OP VALUS= STV, 1t 55X, "' TEPMIANAL LOUOP VALUE=ST y TL V"Y1, /11X, 1,'2''F
T VALUES SET P (EF{IID0 I=1 T D)t 00, v B, {T10M)VI{COL(1)sA+F(2)4A
2) A A A SKIPL,COL{E) s Ay Ay 2e By AsSKIPLCOLL{G) yA (BEYA4A,F(Z) 42}
PUT SKIP EDIT(*8B8E8 FORMAT{1H 410X,""LAST VALUES
FL(Ea(TDD I=1 TO E)e vt by ¢ (TINS5 A {E)A A F{2),2)2
PUT FILE(PUNCHIEDIT(*REE2E FORMATIIH ,10X."PLAST V|
ES SET f,IEC0I)DD T=1 TN Fl vt v b, {T10)I0)ICOLILI) A, {E)ALALF(2]),

GO TO READ;
END;
I=INDEX{XYZs"'=")3
I1F I=2 THEN
GO TO D13
E=c+13
FEIE)=SURSTRIXYZ 47+ I=TH]| "4
GO TO Dls
END CF DO LGCP =/
FND;
IF SUBSTRA{XYZ,7,,7I="INTEGER? THEN
DO
D3 1=14,16;
IF SUBSTRIXYZ,T4.1)=* ¥ THFEN
Doy
I1I=1+13
CALL SUB{IXYZ,I1,VARI,JI1}3
GO TO OQUTPUT
EMD3
END ;G
END3
IF SURSTRIXYZ,Ty4)="REAL' THEN

b

®EPORT: PRACEDURE NPTICNSIMAIN); 33

]

=

IR

ll',l;

35}, A SKIPLX(35)44)3

COL{l), A, COLLTY,AL6E)) 5

[*

oy

f*

003
DO I=11+133
IF SUBRSTRUIXYZ,T+1)="' ' THEN
- DO
Ii=1+13
CALL SUB(XYZ,I11,VARR,JR};
GO TO OQUTPUT:
END;
END3
END3
IF SUBSTRI{XYZy792)="'1FY THEN
DO
PUT SKIP EDITILABEL NyABC)IIX(2),A(5) 2 X(12)4F(4)X{T)sALT!

M=M+13;

MM=1 FORMAT(1H ,10X,**'||N]}]|? NTTE)b

PUT SKIP EDIT{'PRINT *,M}(X{25),A,F(5)});

PUT SKIP EDIT(MyMMI(XI(35),F{5),4A)3

DUT FILE(PUNCHIEDIT{LAREL JABCY(COLIL1}A(5)4A0T75))5

PUT FTILE(PUNCHIEDIT{YPRINT T, M)(CCL{T)yAyF{S))3

PUT FILE(PUNCH)IEDIT{M,4MI{(COL(1)4F(5),4A);

GG TO READ;

END; ;
IF SUBSTRIXYZ,74+5)='G0 T0O' THEN |

03

L=L+13

LL=" FORMAT{1H ,10X,*1*|[N}|]? TRYJ|{SUBSTR{XYZ412+5)]

PUT SKIP EDIT('PRINT *4L)I{X(35)4A,F(5));
PUT SKIP EDITHL,LLIIX{35),F(5),A)3
PUT FILE(PUNCH)EDITUYPRINT *,L)COLIT)A,FI[5));
PUT FILE(PUNCH)EDIT(L,LLI{CUL{L1),F(5),A};
PUT FILE{PUNCHIEDITILABELLABC)(COL(1),A(5),A175));
PUT SKIP EDITILABEL NyABCIIXT2),A(5)X{12)+F(4)+4X(T)4A)3
IF J-=0 THEN
nas;
D I=1 70 J;
PUT EDITUFF(I) HHLITI)} »GOIT) (SKIPX{35),A,SKIP,4X

PUT FILE{PUNCHIEDIT(FFII}HH(TI),GG(ITII}{COL{1}A

END3
J=903
GO TO READ;
END3
GO TO READ;
ENDS
K=73
IN THIS PROGRAM WANT PRINT ALL HAVE EQUAL SIGN STATEMEMTYS' VALUE
HEFORE PRFINT IT CQUT SHOULD CHECK IS IT ALL READY DEFINE TOD A
INTEGER NUMREFRy REAL NUMBER OR NOT, IF NOT THEN DEFINE IT
I=INPEX(XYZ,f=11)3
IF 1= THEN
GO TO OUTPUT;
K=1-K3
IDTF=SURSTRIXYZ,T+K)}
KK=KK+1;

L

’

AEPORT: PROCEDURE OPTIONSIMAIN) 4

]

* FCHAR=SUESTRIXYZ,7+11)3
IF JI=0GRJR=G THEN
GU TO T2
¥ IF JI=0C THEN
. 50 TH T1%
DO I=1 T JI;
. , IF IDTF=VARI(I)THEN
D s
PHRASE='11C"';
¥ G2 TO FORM;
END:
END 3
» Tl: IF JR=0 THEN
GO TaQ 723
DO I=1 TO JR;
IF IDTF=VARR{I)THEN
DO;
PHRASE='F1(,2';
' GO T FNRY;
TND;
chlrs
T2s IF INDEX(YIJKLMN' ,FCHAR)==0 THEN
PHRASE='110";
ELSFE
PHRASE='F10,.,2":
FOPRM: FORMAT=" FORMAT(1H 413X,"'*}iN]}? 'HwTFH”-,-HpHusEnJI
[
PUT SKIP EDIT{LABEL N,ARCI(X(2)4A(5)+X(12),Fl&) X(T) AY;
PUT SKIP EDIT{'PRINT " 4KK, "y 'y IDTF)I{XI35),A,F(5),A4A);
PUT SKIP EDIT(KK,FOPMAT)II{XI{35),F(5),4);
PUT FILE(PUNCHIEDIT(LABEL ABCI{COL(1)A{5)4A(T75));
PUT FILE{PUNCH)EDITU(*PRINT "4KKs 'y "3 IDTFI(COLL{T7) sAsF{5)sAsA(K)

-

PUT FILE(PUMNCHIEDIT(KK,FORMATHI{COL{L),F(5),A);
GO TG READ3
CUTPUT: PUT FILE(PUNCHYEDTITI(LABELL,ABCI(COL(L)+2(5),A(075));
PRINT: PUT SKIP EDIT{LABEL¢NsARCIIXI2)4AL5)X 112),F{4)+X(T7),A};
GO TO READ;
/¥ SUBROJUTIME 'YSURY TO SEPERATE THE INTEGcR & REAL'S IDEMTIFICATICGN =
/¥ AND STORE IT *
SUB: PROCEDURE(XYZ+I1,INEN,J)
NCL XYZ CHAR(8v), IDEN(2C) CHAR(6&) VAR;
DCL {IT1,4) FIXED;
XXz DO I=1I1 TO 72; .
IF SUBSTR(XYZ.I1,1)=*," THEN
GO TO YY
IF SUBSTR(XYZ,1I,1)=" ' THEN
bo;s
J=J+13
IDEN{J)=SURSTRIXYZyI1,I-11)3;
PUT SKIP EDIT(IDEN(J))(A);
GO T S1s
END;

END;
YY: J=J+13
IDEN(J)=SURSTR(XYZI1,1-11)3
PUT SKIP EDIT(IDEN(J))(A)};

REPORT: PROCEDURE GPTICONS{MAIN); 35

> IT=1+1;
GC TO XX
S1l: RETURNS
4 END SUB;

QUIT: END3S

APPENDIX C

36

10

INTEGER AX,BY,CZ,HD
READ,A,B,C
PRINT,A,B,C

IF (A.EQ.0.0) STOP
Y=(A**3+B*C-2.%B/A) *C-B
PRINT,A,B,C,Y

NUM1=0

NUM2=1

NO EXPAND

DO 10 I=1,10

II=1I

NUM3=NUML+NUM2

IF (I.EQ.10) GO TO 2
GO TO 3

PRINT,II

IF (.TRUE.) GO TO 1
NUMI=NUM2

NUMZ=NUM3

CONTINUE

EXPAND

GO TO 1

STOP

END

37

APPENDIX D

38

NUMBER SIVEN ASSICNEN
AX
RY
cZ
HD
1 INTEGER AX,3¥,CZHD
1 2 QEANGALB,,C
3 PHTiiTA,8,C
4 1F {A.zQ,0.0) <Tar
PRIKT 11111
11311 FIRMLTIIH (10CX.* 4 KT}
5 ¥Y={iss3eieC=2.50B/A)%(~R
PAIMT 33333,Y
33333 FORMATUIH 413X,° 5 Y¥,F1C.2)
L3 PATNT8:8,C,Y
T HU4l=9
) PRIRT 33334,N1M1
32234 FORMATULIH ,10X,°* T Nyuls, 1)
8 Klv2=1
ORINT 33335,HUM2
3333F FOIAMAT(IH 41GX.*] NUM2T L1101}
S NO £XPaAND ’
: 5 O ic I=1,10
11
1 w2
11’:
- 15
1 it 555455
3 17

) TFUTLEQa LIPRINT TTTTTL 1T HUM2, NUSL , NUH2
12 19 CO.TINUE .
TFU1.,50.10) PRINT 33338, 11,NUY3,NUY],0N2
TITT7 CORMATLIH ,LuXe*L0P RARGE=L1D T 1G0 /11X, "LONP PARAVETZO=]*/I[YX,
LPINITTAL LTUP VALUS=11,5%, 772549744 L5500 VALUE=1.*/11X,
2YFLIRST VALULES STT FIhUMILHENILNNZY, 4(110))
PSREA FORMATLLM ¢1UXe'LAST VALUIS 0T T7T,:m3,.5UM1,N0420, &L110))
- 20 EXBAND -
PRINT 22222
22222 FORMATILIH 410X, * 21 =] v}
21 6N oTh)
55535 PRINT oébbb
66£b6 FORMATIIH ,1GA,EXIT POINT= 15 TR 1 ©)
GG 101 '
22 STOP
23 END

APPENDIX E

40

L LY B ¢
1 IMTIAPE 22X 3 2Y o7 10 . .
- 1 PrAR, Ay,
3 AXINT g g0, C
L TE {3,r0,7,0) 3Tne
s - BeIMT 11111
£ 11111 £ o2 FL1H L3 k" 4 HT*}
T Yo (127242202 232) 2=
£ 2EIMT 33233,¥ .
Q 3333 FOLMATIIIN 17X, 5 ¥',F1%.2)
1~ LES LU S PO 0
11 UL B
12 PoTNT 33334, .
13 33334 FOIRMAT(1H 412X.° 7 AMT,115)
14 LN EFES]
15 DITUT IIZAK, 1?2
lc 333TH FTSMATIIH o13Xs" L M2, 11010
17 ro1s [=1.1C E . -
I =1
1e AN TN 42
27 17 {TetDW1%) G TT 2
21 ar TN o2
22 2 PRINT,T?
22 1F [TRIE,} 50O T 55555
24
25
-7
O [Tafhsmg, e e
Fals ITVIT X ST OLERALLK,CLLTP PABANET R0 F1IX, ,
TPENIT A e . TEVMINIL LATA YALMS=ET,/ 01,
2HEETET WriarT SEYT P LR S N R S S
e AEENY FONNITILIN 417X« L35T VALHFES SST Jlentu3,wi¥MI Muw2e, S{IIC))
20, ; D TNT 25072
32 22222 FRRMATIIH 17K, 21 TR 1 b |
33 B ot B A
34 55555 PRINT &£66E£6 :
25 66666 FOIMAT(LIH 412X, *FXTT PNINT= 16 TP 1 "
3s R L |) R
37 sTAP | :
EIYALININA=R P MUYAFPEN EXICUTASIT STATFMENT FNLLOWS A TCANSFER
28) A . :
$ENTRY : .
GalDN3E 7} Ce2TF0diE N1 Ce200NNROE D)
4 NT
: 5 Y Te?2 s .
D.1050:120F £ CaZC720 21 23008 332E €1 UaTOGSTO0E 01
: 7 MM 2
q nLIMZ 1
LOne earnce1n TO 19
LPIP PARAMETER=]
INITIAL LANP yapu=s] TERMINAL LNOS yALYE=]1D
EIRST WALOIFES SET T, NIPT2 NUMY NIYD -1 | 1
10 ’
TYXIT PITMT= 14 TR]
Lad20. 7 0F LeRLIISINE MY Ng&DTTMINIE Q)
4 NT
5 Y 45,0

F.&j]rfiJrr“l Ca RN IF AL Ul R O § JuS432J00F 03

42

7 [ETE] r

2 hLY B
L™ PAse=] . Tiv 19
peosn memgrTInes :
INITTPE 1 479 VaLFs] Teow ML LNA2 yarr=19 E
FITST WAL ORET 1T i) g tpa] MY 1 I 1 1
13 :
FX17 #07eT= 1¢ TR }
SeinggT DEr £ o TRer sy 0 e BJILONANF]
£ SALT A/ T rO%Fs 1F14 PYTES. ARZAY AREA= 3 AYTTE,TATE] ARF& AVATLARLFE= 45312 2YTFS
niansSsTIc S PR TS Pr TRRD O Ty WIMALR OF WAANIHGSs 1, MUMAER JF EXTENSIN®.S= [«

Lt LUR L REE 8 R 1427 SELLEXTCUTION T1M7= TeT4 SFC, WATFIY — VFPSION 1 LEVEL 3 MARPCH =71 LATE=

APPENDIX F

43

&4

NyMRce QTVREN ASSTANMFD
AX
ny
c?
HD
1 INTFAREL AX PYLZ4HD
1 2 ECAN,£,8,C
3 PATMT LA, 8,0
4 1F (L.E0.7%.7) STNP
LPRINT 11111
11111 FORMAT(IH 419X,* 4 NTY)
5 ¥Y={h=27432C=2 *A/A)*C-B
PPINT 33333,Y
33333 FORMAT(IH ,10X,* 5 Y*,Fl0.2)
é PRINT A,3,0,Y ;
7 NiJM1 =C .
PRINT 33334, ,MIIM]
33234 FORMAT(IH ,10X," 7 NUML®,T13)
B NUM2=1
PRINT 33235,NiIIM2
33235 FORYAT(1H +10X,! B NUIM2Y,T10)
@ CXPAND
) oM o1n [=1,10
11 11=1
PRIMT 32335,11
33336 FOFMAT({IH ,10%," 11 11',1106)
12 NIPAZ NI AL 4+ MUIM2
PRIMT 33327,%NuMz2
23337 FOPMAT{IH 412X,°* 12 NUM3e, 110}
iz 1IF (T.EQLIC) GO TR 2
oRr INT 11112
11112 FOFRMATIIH 410X," 13 NTT }
BeINT 22222
22222 FORMAT(1H +10X." 14 TR 3 ")
5 RO TO 3
2 15 PRINT,I1
16 TF [.TRUUE,} 6O TO }
PRINT 11113
11113 FORMAT{IH +15X,°* 16 NT?)
3 17 NUPHY =M1 2
POYNT 273732,M14)
33238 FORMAT(IM ,12X," 17 NUMLY,T17)
15 NiMZ =NI)¥3
OQINT 22229,1jM32
33330 FORVAT(IH ,12%," 18 NEpM2e, 110)
135 19 CANT INUF
PRINT 22223
. 277223 FOPMAT{IH ,12X,°? 20 TP 1 ')
20 N T3 1
21 sTOP

- 2> END

AN APPROACH TO DEBUGGING

by

CHING-NEU HONG

B. A., Fu-Jen Catholic University, 1969

AN ABSTRACT OF A MASTER'S REPORT

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERISTY

Manhattan, Kansas

1973

ABSTRACT

The purpose of this paper is to introduce the topic of debugging
and debugging aids with respect to those parts of a program which are not
amendable to ordinary trace techniques. Debugging is the technique of
detecting, diagnosing and correcting errors which may occur in programs
or systems. For this study, the design of some techniques to aid the
programmer in finding logic errors which may occur in programs is shown.

For illustration, a program written in PL/I is used as a debugging
tool to debug logic errors which occur in FORTRAN programs. The PL/I
program processes the input FORTRAN program statement by statement, in
the while the system automatically insert print statements to obtain
intermediate results and information. These results can be checked to
see whether the correct answer is obtained at various stages in the
program. After using this debugging scheme most logic error could be

easily identified by the programmer.

