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Abstract 

Drought is known to be one of the most limiting abiotic stresses for wheat (Triticum 

aestivum L.) production, not only in the Midwest, but throughout the world. It is a complex issue 

and one that is difficult to screen for when breeding for new varieties. Hybrid wheat is one possible 

tool for breeders to use in order to make genetic gains towards better tolerance. The effectiveness 

of hybrid wheat as a tool to address regular periods of drought is a topic of continual discussion. 

The purpose of this study was to perform a comprehensive screening for drought tolerance 

comparing two different experimental hybrid entries to their parents. The hybrids were selected 

based on their good performance under drought in prior field trials. Plants were grown in PVC 

columns containing sensors that monitored growth media water content and matric potential. All 

plants were grown equally until heading. Drought treatment began 10 days post anthesis. Plants 

were observed until senescence/maturity.  Several different agronomic characteristics were 

measured along with physiological traits that have previously been linked to drought tolerance. 

After completion of the screening, it was observed that the hybrid entries tended to fall between 

the two parents for a majority of the measurements. When comparing the hybrids to the parents 

overall, at least one parent outperformed its hybrid in every category. Parent line Parent B was one 

of the highest ranking genotypes for all measurements. Different drought mechanisms were 

observed across genotypes upon completion of the treatment. Further research is necessary to 

understand the hybrid response to drought when compared to pure line varieties. 
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Chapter 1 - Literature Review 

 Agricultural drought is defined by Manivannan et al. (2008) as the lack of ample 

moisture required for normal plant growth and development to complete the life cycle. It has an 

effect on vegetative growth, reproduction, and the process of filling grain. Drought develops 

when crop water demand is not met by water supply (Blum, 2005). Crop breeding and 

production must constantly overcome many obstacles coming in the form of abiotic and biotic 

stresses. Though many of these stresses can prove costly, drought or water deficit is considered 

the single most devastating environmental stress because it causes more loss to crop productivity 

and is more of a major limiting factor than any other environmental stress (Boyer, 1982; Farooq 

et al., 2012; Lambers et al., 2008). 

 Though it is hard to make a sound prediction on where climate change is headed, most 

models show an increase in aridity in many areas of the globe (Chaves  et al., 2002; Petit et al., 

1999), including  models that view drought becoming more severe in the future (Farooq et al., 

2012).  

 

 Drought Stress and its Effects 

 The effects of drought can be detrimental on crop growth and development, but they are 

highly variable. The susceptibility of plants to water deficit changes based on the severity, the 

cultivar, and the crop growth stage (Anjum  et al., 2011; Farooq et al., 2012). Though drought 

can have negative effects during all stages of growth and development, some stages can have a 

larger impact on economic yield. There is a widespread consensus that the reproductive growth 

stage is the most sensitive to water deficit (Blum, 2009). During this time, drought stress can 
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have a severe impact on pollen viability and anther development. Drought stress during grain 

filling phases is more devastating than during the vegetative period, because it can substantially 

decrease economic yield (Farooq et al., 2012). 

 The loss in economic yield due to soil water deficit comes by reducing canopy absorption 

of photosynthetically active radiation,  making radiation use less efficient, and lowering harvest 

index (Earl and Davis, 2003; Farooq et al., 2012). Many plant processes are affected from the 

biochemical and physiological level to the whole plant level in order to cause this loss in yield.   

 Relative water content, leaf water potential, stomatal resistance, and rate of transpiration 

are important characteristics that influence plant water relations (Anjum  et al., 2011; Kirkham, 

2005). A significant linear relationship between stomatal resistance and reduction in yield under 

stress was observed in a study conducted by Golestani and Assad (1998).. Carbon dioxide 

assimilation rates are drastically reduced due to increased stomatal resistance, and leaf, stem, and 

root proliferation are all reduced (Anjum  et al., 2011) Drought stress can lead to disruption of 

membrane structure and organelle disarray, and, when it is large enough, a loss in turgor leading 

to reduction of cell expansion, vegetative growth, and carbon assimilation (Sayed, 2003). 

Relative chlorophyll content is positively correlated with photosynthetic rate, so decreased 

chlorophyll content under stress has been considered a symptom of acute drought stress leading 

to lower primary production (Anjum et al., 2011). Photosystem II is the first complex involved in 

light reactions of photosynthesis. It has been observed that photosystem II is particularly 

sensitive to water stress (Lu and Zhang, 1999) which could lead to reduction in absorption of 

photosynthetically active radiation in the canopy. Another important aspect negatively affected 

by drought stress is crop phenology. Water stress has a strong influence on a crop’s phenology 

by shortening the crop growth cycle (Farooq et al., 2012).  
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 While many crops across the globe experience drought stress throughout their growing 

cycles, common wheat (Triticum aestivum L.)  may be one of the most widely affected. It is a 

staple food crop in nearly all countries as it is very broadly adapted to the various growing 

environments. Throughout many wheat growing regions, limited rainfall occurs frequently 

during the grain fill stage (Plaut et al., 2004). The United States is no exception. Wheat is grown 

for food and forage in the U.S. Southern High Plains on a spectrum ranging from fully rain fed to 

fully irrigated (Xue et al., 2014). Most of the U.S acres are not irrigated. In most wheat growing 

regions, grain filling is subjected to several abiotic and biotic stresses. It generally occurs when 

temperature is increasing and moisture supply is decreasing (Blum, 1998).  Many studies have 

shown the effect that drought can have on wheat from accelerating the maturity cycle to reducing 

relative water content resulting in an impact on photosynthetic rate. Results from a study by 

Siddique et al.  (1999) showed that wheat exposed to drought stress had decreased leaf water 

potential and relative water content that led to pronounced effects on photosynthetic rate. It was 

also observed in a study by Praba et al. (2009) that drought reduced many yield components such 

as biomass, number of grains per spike, spike weight, and grain yield per spike. Grain yield 

reduction was 32% compared to the control in that study. 

 Drought can have many different effects on a plant from cellular level to the whole-plant 

level. This plethora of responses makes drought tolerance a complex phenomenon (Farooq et al., 

2012).  

 

 Drought Tolerance 

Passioura (1996) defines drought tolerance using resource economics. The crop’s water 

supply is the resource. The most effective use of this resource is capturing as much as possible, 
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using it as effectively as possible when trading it to help form photo assimilate and converting as 

much of the assimilate as possible into harvestable form. He argues that any phenomenon not 

readily associated with components of water use efficiency is not likely to have an influence on 

yield under drought stress.   

 Traits explaining adaptation to drought are usually associated with plant development and 

structure and are constitutive rather than stress-induced (Chaves et al., 2002). A drought tolerant 

plant must be able to handle major vicissitudes in water supply and high evapotranspiration rates 

during the growing season.  Mechanisms or traits related to drought tolerance may only occur 

during a certain period of water deficit and are usually subtle (Passioura, 1996). Responses may 

be altered by gene expression and cellular metabolism or possibly changes in growth and 

productivity. Many yield-determining processes respond to water stress (Anjum et al., 

2011).  Levitt (1972) defined drought tolerance in the physiological context as dehydration 

avoidance or tolerance. Dehydration avoidance is the ability of a plant to sustain high plant water 

status or cellular hydration during drought through mechanisms such as enhanced water uptake, 

limited water loss, and maintenance of cell hydration, while dehydration tolerance is defined as 

the ability to sustain or conserve plant function during a period of water deficit. When comparing 

the two, dehydration avoidance would be more commonplace, while dehydration tolerance as a 

mechanism is rare, and usually only occurs in the seed (Blum, 2005). Plants exhibiting an escape 

or avoidance strategy will exhibit a high degree of developmental plasticity. They may utilize the 

maximum available resources to enable high rates of growth and gas exchange. Another 

characteristic of drought tolerance is better partitioning of assimilates to developing fruits. Plants 

may have a higher ability to store reserves in some organs (stem and roots) and then mobilize 

them for fruit production (Chaves et al., 2002). This has been well documented in cereals like 
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wheat, maize, and barley (Gebbing et al., 1999). Whole plant traits have a major role in affecting 

plant dehydration avoidance under stress, and crops adapted to water limited conditions achieve 

that adaptation mainly by dehydration avoidance rather than tolerance (Blum, 2005). Examples 

of this would be adapted phenology (shortened growth cycles), maintenance of leaf turgor 

pressure, and storage of assimilates in the stem. 

 Different types of signaling are required as early warning systems so that plants can 

escape using the appropriate method. Signals are key players in plant resistance to stress (Chaves 

and Oliveira, 2004). Based upon this signaling, plants are able to make an appropriate change in 

their processes in order to cope with stress. An example of one of these hormones would be 

abscisic acid (ABA). An increase in the signaling of ABA occurs during drought stress leading to 

an effect in plant responses. It has been shown to promote root growth and acts as an early 

warning signal in response to drying of the upper roots (Blum, 2011). Blum (2011) argues that 

ABA sensitivity should be approached with caution; an over sensitive plant may result in 

premature shutdown of photosynthesis. Blum (2015) concluded that ABA can by no means be 

considered a drought resistance hormone because the benefit to damage ratio depends on the 

crop drought stress profile. This sensitivity may yield an advantage in environments prone to 

severe drought, while more anisohydric lines would perform relatively better under more 

moderate drought (Blum 2015).  A wide range of mechanisms have been observed as a response 

to withstand drought, such as increased stomatal resistance, deeper root systems, and smaller 

leaves (Farooq et al., 2012). Osmotic adjustment is a major cellular drought-responsive trait that 

contributes to cellular dehydration avoidance and yield under stress (Blum, 2005). It results in an 

active accumulation of  ions like K+, Na+, Ca2+, NO3
-, and SO4

- or organic solutes such as free 

amino acids, sugars, and sugar alcohols (Moinuddin et al. 2005). Osmotic adjustment has two 
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major functions in plant production under drought. The first is to enable leaf turgor maintenance 

for the same leaf water potential, thus supporting stomatal conductance. Secondly, it improves 

root capacity for water uptake (Blum, 2009). All of these mechanisms play a role in allowing a 

plant to withstand water deficit to a certain extent.  Passioura (1996) argues that the most 

important feature of a drought tolerant crop is its ability to time its development in relation to a 

variable growing season. This would fall in the lines of the dehydration avoidance strategy, and 

may have the most profound effect on maintaining yield. This works in some areas of the world 

but not in others. The complexity of plant response to drought provides a major challenge when 

breeding and screening for new tolerant wheat cultivars. Pair this with the amount of 

environmental variability and many obstacles are created for wheat breeders.  

 

 Breeding for Drought Tolerance 

 Now more than ever, contemporary plant breeding is under pressure to improve 

productivity at a rate surpassing past achievements (Blum, 2013). Development of crops for 

drought tolerance requires a knowledge of physiological mechanisms and genetic control of the 

contributing traits at different plant developmental stages (Farooq et al., 2012). The same goes 

for breeding wheat. Breeding has already made a significant contribution to wheat yield under 

drought stress. Richards et al. (2010) found that wheat yields increased by twofold to nearly 

2000 kg ha-1 in a matter of around forty years. This was in the arid environment of Australia (Xue 

et al., 2014).  A comprehensive exploration of the potential genetic resources, and an in-depth 

understanding of what makes up the traits that allow for survival in an unfriendly environment, 

are required (Rampino et al., 2006). Many of the improvements have been made due to 

increasing the harvest index.  Blum (2013) believes that the route for improving yield through 
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harvest index in cereals is approaching an end. We continue to see headway in the development 

of drought-resistant cultivars, but the framework of what actually constitutes a viable choice in 

selection is not always clear. A perfect “ideotype” is not always well defined (Blum, 2005). 

Breeding for specific, suboptimal environments involves a deeper understanding of the yield 

determining process (Siddique et al.,  1999).  

 Traits to select for when breeding  for drought stress will depend on the level and timing 

of stress in the targeted area. Selecting for yield itself under stress-alleviated conditions may 

produce superior cultivars in not only optimal environments but also those frequently subjected 

to mild and moderate stress conditions (Araus et al., 2002). An ideal drought tolerant genotype 

would be a combination of high yield and low sensitivity to water stress. This is often the 

opposite of genotypes that have superior yielding capabilities (Cattivelli et al., 2008).  Pantuwan 

et al.  (2002) found that these genotypes were, in fact, often associated with a high sensitivity to 

water stress. When effective and successful selection for yield under stress is exercised, Blum 

(2005) states that a genetic shift towards a dehydration-avoidant plant type is occurring. Traits 

associated with dehydration avoidance include: early flowering, smaller plant, smaller leaf area, 

or limited tillering.  Selection for certain traits such as transpiration efficiency and osmotic 

adjustment have been shown to improve yields under stressed conditions (Xue et al., 2014). 

Selecting for plants with high transpiration efficiency may be important when identifying 

genotypes with higher biomass or yield (Xue et al., 2014). It was found in a study conducted by 

Xue et al. (2014) that wheat genotypes with higher yield and biomass had higher water use 

efficiency under dryland conditions, while a study conducted by Morgan et al. (1986) showed 

that wheat plants selected for high osmotic adjustment yielded 1.5 and 1.6 times more than plants 

selected for low osmotic adjustment (Rekika et al., 1998).  Although breeding for drought 
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tolerance in newer wheat cultivars may be a huge challenge, research has proved that reasonable 

progress has been made.  Xue et al. (2014) observed that newer, drought-tolerant genotypes had 

higher yields under drought conditions with more seeds per spike and higher thousand kernel 

weight than older, less tolerant varieties. They also observed that biomass at anthesis contributed 

to higher yield under drought. Spike weight and number were also positively correlated to yield 

in drought environments. Newer cultivars also require less irrigation for high yields, which can 

lead to a conclusion that drought tolerance is slowly improving (Xue et al., 2014). It can be said 

that there is  no straightforward method when breeding for drought tolerance. So many different 

factors can play a role when screening and making selections. A couple major points stemming 

from the study of Plaut et al. (2044) are that breeding for high yield will probably also provide 

increased drought tolerance, and that competition between vegetative organs and kernels for 

stored materials in the stem must be minimized.  

 

 Hybrid Wheat 

 Many new tools are being developed to allow for more efficient screening and breeding 

of elite, tolerant cultivars. High throughput phenotyping, genotypic selection, and speed 

breeding, to name a few, could help in the future for producing new, high-yielding wheat 

varieties. The breeder’s “toolbox” is growing larger. Hybrid wheat is one such tool that has been 

explored in the past, but was never widely deployed on a commercial scale. Much work has been 

done on hybrid crops and the genetic basis of heterosis, but wheat is still new to the hybrid 

world. Hybrid cultivars are widely utilized in cereal crops like maize and rice, but, for wheat, the 

hybrids have yet to be widely used in commercial production (Mette et al., 2012). Hybrid wheat 

may hold the potential to deliver a major lift in yield and will open a wide range of new breeding 
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opportunities (Whitford et al., 2013). This potential is still held back by certain logistic 

limitations. With wheat being an autogamous species, the amount of midparent or high parent 

heterosis for yield is less pronounced than a species like maize (Longin et al., 2012; Mette et al., 

2012).  In order to be widely accepted in the Great Plains, hybrids must exhibit enhanced yield 

performance, and a yield stability reasonably larger than inbred cultivars across different 

production environments (Bruns and Peterson, 1998). According to Blum (2013), “A heterotic 

hybrid will most probably assimilate more than its parents over the natural range of daily change 

in temperature, light, and photo biological signals, notwithstanding other cues such as soil 

moisture, wind, or low atmospheric vapor pressure deficit which can affect leaf temperature and 

thus assimilation.” 

Capacity and cost are the major practical limitations for a more widespread use of hybrid 

seed. Only a few hybrid cultivars are registered for the European market, and they are based on 

chemical hybridizing agents (CHA’s). In order for hybrid seed production to occur, there must be 

an efficient cross pollination between inbred lines. This challenge is overcoming the use of 

CHA’s, which have some safety concerns, and the ability to hit the right developmental window 

to create male-sterile maternal plants (Mette et al., 2012). Certain environments are also more 

conducive to hybrid seed production. 

 Information regarding hybrid wheat performance is somewhat ambiguous. Leon (1994) 

observed that studies concerning higher yield and yield stability in hybrids have contrasting 

results, with some showing higher performance in the hybrids while others showing no 

difference between the hybrids and the pure lines (Mette et al., 2012).  Mühleisen et al. 

(2014)  used a broad base of data from multilocation field trials to re-evaluate grain yield 

stability in hybrid wheat when compared to inbred lines. It was observed that hybrids maintained 
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consistently higher yield stability than the inbred lines (Mette et al., 2012). Yield increases in 

modern hybrids may be due to high parent heterosis for biomass (Borghi et al., 1988). Harvest 

index is maintained around the mid-parent level for high yielding hybrids, and high parent 

heterosis for harvest index is more rare (Pickett, 1993). A hybrid line could achieve higher 

biomass and yields through combining yield components from their parents (Evans, 1993; 

Kindred and Gooding, 2005). An important observation made by Oury et al. (1995) was that the 

heterosis for biomass and grain yield was associated with greater assimilation post anthesis due 

to a greater capacity to fill grain. It can be inferred that, when crossing high parents with 

differing yield components (e.g., grain number and grain size), the hybrid offspring will maintain 

a partially dominant optimum trait from each parent (Kindred and Gooding, 2005).  

 A continual point of discussion concerning hybrid wheat is how it performs when 

exposed to abiotic and biotic stresses. How will a suboptimal environment affect the possible 

advantage in yield stability that hybrid wheat has to offer? The USDA Southern Regional 

Performance Nursery (SRPN) has tested a number of hybrid entries, and data have suggested the 

hybrids may have improved yield stability and response to favorable environments when grown 

over a broad array of production conditions (Bruns and Peterson, 1998). The important takeaway 

from the SRPN data is that yield stability came in response to favorable environments. Mette et 

al. (2012) said that hybrid wheat can also outperform inbred lines in sturdiness to abiotic and 

biotic stress. This statement was based upon research by Longin et al. (2013) that showed a 

positive mid-parent heterosis for frost tolerance as well as resistance against leaf rust, stripe rust, 

septoria tritici blotch, and powdery mildew. Drought is not one of the conditions that showed 

positive mid-parent heterosis. It has been speculated that hybrids may have lower stress 

susceptibility than related inbred lines, and that may contribute to the higher yield stability 
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observed in previous studies (Mühleisen et al., 2014). A study of an European hybrid wheat 

conducted by Oury et al. (1993) produced findings that may help explain how drought can affect 

heterosis. The site that experienced a water deficit saw a severe reduction in the grain filling 

period and premature senescence of the crop. This did not allow for continued grain growth in 

the hybrid (Kindred and Gooding, 2005).  

 

 Screening for Drought Tolerance 

 In order to understand, not only the ways that hybrids may tolerate stress compared to 

inbred lines, but also how drought tolerance can be improved upon, new methods of phenotyping 

and screening must be developed. It is difficult to find previous literature of an advanced 

screening method that involves only drought. Variability in environments usually means that 

several seasons are required to demonstrate the advantages of a certain cultivar (Passioura, 

1996).  Green (2016) developed a unique greenhouse screening method that made it possible to 

isolate drought stress. This allowed for an in-depth comparison between not only a drought and 

optimum treatment, but also a comparison between lines and hybrids. Evaluation of traits that are 

related to drought tolerance at physiological, cellular, and biochemical levels can help to better 

screen for plant response to drought (Praba et al., 2009). Looking at the physiological 

determinations of yield may lead to the identification of important traits related to not only 

higher yield but also to drought tolerance in wheat under water-limited conditions (Xue et al., 

2014). Mass screening is a start to identifying effective drought-tolerant crops (Farooq et al., 

2012).  

 Physiological traits that play a role in response to drought stress and are modified by it 

span a wide range of vital processes, meaning that pinning down a single response pattern highly 
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correlated with yield under all drought environments is difficult (Cattivelli et al., 2008). Leaf 

chlorophyll content can be measured directly by a simple handheld device called the SPAD- 

meter (Pask et al., 2012). The SPAD- meter uses this content from green tissue to give an 

estimate of photosynthetic potential, indirectly, the effects of stress. Stomatal traits have been 

proposed as a selection tool for measuring drought tolerance. When used on multiple plants, they 

can be equally as effective as something like canopy temperature or canopy temperature 

depression (CTD) which is usually defined as canopy temperature minus air temperature (Bahar 

et al. 2011). This means a negative CTD value means a cooler canopy. CTD has been used as a 

selection criterion in wheat breeding in terms of heat and drought stress tolerance, and it was 

reported that wheat cultivars with high CTD showed a trend of higher yield under heat and 

drought stress (Bahar et al. 2011). They can help give an idea about gas exchange capacity or 

resistance to gas exchange, which ultimately leads to another estimate of photosynthetic potential 

under abiotic stress. A downside is that instrumentation may not be robust and stomata are 

extremely sensitive, making measurements highly variable (Pask et al., 2012). Due to stomatal 

closure, an increase in stomatal resistance would be expected under water deficit stress. The dark 

adapted Fv//Fm , which is a measure of  the intrinsic photochemical efficiency of light harvesting in 

photosystem II, is one of the most easily measured traits and is commonly used in stress studies 

(Munns et al., 2010). Using chlorophyll fluorescence allows for the determination of the status of 

the photosynthetic apparatus (Pask et al., 2012). It is easier to measure than gas exchange, and 

Araus et al. (1998) found that it can explain some genetic variation in crop performance while 

also providing useful knowledge of  the intricate relationships between fluorescence kinetics and 

photosynthesis under drought stress (Sayed, 2003). Fv//Fm was used in practice to rapidly estimate 

the tolerance of wheat genotypes to drought in a study conducted by Havaux et al. (1988).  Leaf 
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water potential has proven to be a reliable response variable for quantifying plant water stress 

(Siddique et al., 1999). Measuring leaf water potential provides an estimate of adaptation to 

water stress by giving not only leaf water status but also an idea of the soil water potential in the 

active root zone (Pask et al., 2012). Osmotic adjustment is a highly important measurement due 

to the fact that stomatal function is dependent on turgor, photosystem function, and adaptation to 

water stress (Pask et al., 2012). Water-soluble carbohydrates (WSC) of leaves or stems (culm 

and leaf sheath) have been considered an important physiological trait indicative of drought 

tolerance, because of dual functions, i.e., not only acting in osmotic regulation as the osmolyte 

under adverse environmental conditions, but also contributing to grain growth and development 

as the dominant carbon source for grain yield when active photosynthesis is inhibited by terminal 

drought stress during the grain fill period (Blum, 1998; Yang et al., 2007). Stem reserves can 

serve as an important source of carbon and are essential for adequate grain filling, especially in a 

stressed environment where viable light intercepting green surfaces have diminished (Blum, 

1998). In wheat, genotypes associated with drought tolerance maintain more extensive root 

systems, and selection for high yield under moisture stress does result in a larger root system 

(Hurd, 1974). Morphological traits are important to measure in order to get an idea on how the 

plant is adapting to drought stress. They provide essential information on the crop/canopy 

architecture. These measurements include traits such as plant height (Pask et al., 2012).  

 While the literature outlines several different physiological traits that can be screened to 

identify drought tolerance, a recurring theme is observed that, to be effective, the traits have to 

be positively related to yield. Perhaps the most important screening method is yield and its 

components. Yield is the ultimate expression of all physiological processes. Yield components 

allow for the determination of yield through source/sink relationships (Pask et al., 2012). It has 
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been suggested that yield performance over a wide range of environments should be used as the 

main indicator for drought tolerance (Cattivelli et al., 2008; Voltas et al.,  2005). Perhaps the 

only problem with this ideology is that yield is a low heritability trait making selection for it 

more challenging. The goal of screening for physiological traits is to have a more heritable 

surrogate. Ultimately though, yield has to be measured and is the quintessential trait.  

 

Chapter 2 - Comparison of Drought Tolerance among Winter Wheat 

Hybrids and their Parents Using a Comprehensive Screening 

Method 

 Introduction 

 Lack of ample moisture required for normal plant growth and development to complete 

the life cycle (Manivannan et al. 2008). This is a simple definition for the complex issue of 

agricultural drought. It is developed when the demand for water overcomes the supply (Blum, 

2005). It has detrimental effects on the vegetative, reproductive, and grain filling stages. 

Agricultural drought is considered to be one of the most devastating environmental stresses to 

crop productivity, and many climate models predict it will become more severe in the future 

(Farooq et al., 2012).  

 The effects of drought on a plant depend on the susceptibility of the plant, the severity of 

the deficit, the cultivar, and the crop growth stage (Anjum et al., 2011; Farooq et al., 2012). 

Drought stress during the reproductive stage can have an impact on pollen viability and anther 

development. There is a consensus that this the growth stage most susceptible to water deficit 

(Blum, 2009). Substantial loss in economic yield is associated with reduction of absorbed 
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photosynthetically active radiation, lower radiation use efficiency, and a lower harvest index 

(Earl and Davis, 2003). Many plant processes are affected by drought stress from the cellular 

level to the whole plant level. Along with these, it has a strong influence on a crop’s phenology 

by shortening the crop growth cycle (Farooq et al., 2012).  

 Wheat is one of the most widely affected crops to drought stress across the globe. It is a 

staple food crop and has a broad growing environment. It is grown for food and forage in the 

U.S. Southern High Plains (Xue et al., 2014). Water deficit has an effect on the wheat grown in 

this region by reducing leaf water potential and relative water content. These factors lead to a 

lower photosynthetic rate and a shortened maturity cycle. Many yield components are reduced 

including biomass, grain number per spike, spike weight, and grain yield per spike (Praba et al., 

2009).  

 A drought tolerant plant must be able to handle major vicissitudes in water supply and 

high evapotranspiration rates during the growing season. Many yield-determining processes 

respond to water stress (Anjum et al., 2011). Levitt (1972) categorized plant physiological 

responses as tolerance or avoidance. Dehydration avoidance would be more commonplace, while 

dehydration tolerance is rare (Blum, 2005). Signaling is required as an early warning system for 

plants to escape drought using an appropriate method. Signals are key players in plant resistance 

to stress (Chaves and Oliveira, 2004).  

 Development of crops for drought tolerance requires a knowledge of physiological 

mechanisms and genetic control of the contributing traits at different plant developmental stages 

(Farooq et al., 2012). Breeding has already made significant steps towards better drought 

tolerance, but a comprehensive exploration of the potential genetic resources, and an in-depth 

understanding of what makes up the traits that allow for survival in an unfriendly environment 
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are required ( Rampino et al., 2006).  No straightforward method exists when breeding for 

drought tolerance. Many factors play a role when screening and making selections. New tools are 

being developed to allow for more efficient progress to be made. Hybrid wheat is one such tool 

that has been explored in the past but never widely deployed. It may hold the potential to deliver 

a major lift in yield by delivering a wide range of new breeding opportunities (Whitford et al., 

2013). A continual point of discussion concerning hybrid wheat is how it performs when 

exposed to abiotic and biotic stresses. It has been speculated that hybrids may have lower stress 

susceptibility than related inbred lines, leading to higher yield stability (Mühleisen et al., 2014). 

It is important to understand the ways that hybrids may tolerate stress compared to inbred lines, 

and how drought tolerance can be improved upon using new methods of phenotyping and 

screening. Physiological traits that play a role in response to drought stress and are modified by it 

span a wide range of vital processes, meaning that pinning down a single response pattern highly 

correlated with yield under all drought environments is difficult (Cattivelli et al., 2008). While 

the literature outlines several different physiological traits that can be screened to identify 

drought tolerance, yield has to be measured and is the quintessential trait. 

This study was conducted to provide a comparison among winter wheat hybrid entries 

and their parents under drought stress. The main objective was to identify whether or not the 

hybrids would handle water deficit stress better than their respective parents. We hypothesized 

that the hybrids would outperform their parents when exposed to post-anthesis drought stress. 

Some other objectives were to gain a better understanding of certain drought tolerance 

mechanisms and to improve  upon the advanced screening method created by Green (2016). 



17 

Materials and Methods 

 The plant material was received from Dow-Dupont Pioneer. Two high performing hybrid 

entries and their respective parents were chosen for the experiment. Each hybrid entry and its 

respective parents were broken into two separate groups for individual comparison. An 

experimental name was assigned in order to protect the pedigree information. Group 1 consisted 

of Hybrid 1, Parent A, and Parent B. Group 2 consisted of Hybrid 2, Parent C, and Parent D. 

Seeds from each of the hybrid entries and their parents were planted into a small greenhouse tray 

containing Profile Greens Grade growth medium (Profile Products, Buffalo Grove, IL) and 

placed in a growth chamber at 21⁰ C with 12 hour light intervals for one to two weeks to allow 

for even emergence. The seedlings were then moved to a vernalization chamber kept at 4.4⁰ C 

for six weeks. Water was added to the tray once each week and a nutrient solution, Peters 

Professional Hydroponic Special (5-11-26), was added to the tray at the halfway point of 

vernalization.  

 The experimental units were 153 cm-tall polyvinyl chloride (PVC) tubes with an outside 

diameter of 15.24 cm. Each tube was cut lengthwise and clamped back together in order to carry 

out root analysis later on. The base of the tubes contained a size 60 mesh that allowed for 

drainage of water yet permitted retention of the growth media and plant material. Seven holes 

were cut in an evenly spaced fashion to allow for insertion of sensors along the length of the 

tubes. See Green (2016) for a detailed description of the screening system.  

 

 The PVC tubes were filled with the same Profile Greens Grade growth medium used in 

the greenhouse trays. This growth medium is a baked porous ceramic aggregate (Adams et 

al.,  2014). Normally used on golf courses underneath greens, it has been extensively studied as a 
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potential plant growth medium. Its large particle size means it has macro pores that drain at high 

levels of volumetric water content (VWC) (Steinberg et al., 2005). Two factors make this media 

well suited for this screening. When packed to its maximum bulk density of 0.68 g cm-3 

(Steinberg et al., 2005), it drains well, and it also allows for separation of the root material. The 

one downside to this form of growth medium is that nutrients must be supplied during each 

irrigation event. The growth medium was dried until it reached a consistent gravimetric water 

content of approximately 0.02 g g-1 before it was packed to its maximum bulk density into each 

of the tubes. This allowed for accurate calculations assuring that each tube would have a 

relatively consistent bulk density.  The method and equation used to fill the tubes were the same 

as those used by Green (2016).  Four “lifts” (each “lift” had a known mass of growth medium) 

were used to fill each tube. Mass of the media required for each lift was calculated using the 

equation M = ρbV(1+ϴg) where M is mass (g), V is the volume of growth medium (cm3) in each 

lift, ϴg is the gravimetric water content (g g-1), and ρb is bulk density (g cm-3). As each lift was 

added, the tube was tapped repeatedly to ensure uniform bulk density throughout the tube.  

 Once the vernalization period was complete, the PVC tubes were saturated with water 

and five uniform seedlings were transplanted into each of tube. There were 36 tubes in all, and 

this total was broken into two equal halves for treatments. Photoperiod intervals were controlled 

through supplemental growth lights with an intensity of 775 μM m-2s-1. For the first four weeks, 

plants received 12 hours of light. After that, they received 14 hours of light for two weeks. A 16-

hour photoperiod was used throughout the rest of the experiment. Temperature in the greenhouse 

was set at 21⁰ C during the day and 15.5⁰ C at night.  

 The experimental design for the screening was a split-plot design. One factor was the 

drought treatment and the other was the optimum treatment. It was a completely randomized 
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design within each treatment factor, and each entry was replicated three times per treatment. 

Pairing for physiological measurements across treatments was based upon similar maturity dates. 

Both treatments were handled the same until heading. Water and equal amounts of fertilizer were 

applied daily based upon sensor data. The entire experiment was replicated twice. The first 

replication ran from December 2016 to March of 2017, and the second went from March 2017 to 

June 2017. 

 Three different types of sensors were used to monitor soil water status. The first type was 

the EC-5 volumetric water content sensor (Decagon Devices, Pullman, WA). All tubes contained 

four of these at evenly spaced intervals in order to model and maintain the water content. Next 

was the MPS-6 sensor (Decagon Devices), which is able to measure matric potentials from -9 to 

-100,000 kPa. Three of these sensors were evenly spaced on each tube of the drought treatment. 

Each MPS-6 had a ceramic plate that was coated with a fine silicate powder in order to improve 

hydraulic conductivity between the sensor and the growth medium. To pair with the MPS-6 

sensors, three mini-column tensiometers (Soil Measurement Systems,7090 N Oracle Rd, Tucson, 

AZ) were evenly spaced on the optimum treatment at equal depths. Tensiometers were special 

ordered with a 16 cm barrel. They were paired with a pressure transducer (Honeywell, 2080 

Arlingate Lane Columbus, OH)  that has an effective range down to -34 kPa. This was an 

adequate measure for the optimum treatment.  

 Sensors were wired into seven AM16-32B multiplexers (Campbell Scientific, Logan, 

UT). Each multiplexer allowed for up to 48 EC-5 sensors and up to 16 tensiometers. The 

multiplexers were contained in a “Data Acquisition Cabinet”. This cabinet kept the data 

acquisition system free from dust and moisture. Multiplexers communicated sensor readings to 

two CR1000 dataloggers (Campbell Scientific). Dataloggers stored readings four times a day 
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from each of the sensors and stored them on the control program Loggernet (Campbell 

Scientific). This sensor information was also used to control the automatic watering system. 

 The watering system utilized information from the EC-5 volumetric water content 

sensors in order to maintain a consistent moisture level throughout the experiment and eliminate 

the need for manual watering. Readings were checked from the top depth sensor in each tube. 

Each tube was assigned an individual 12V solenoid valve that could be run automatically or 

overridden once the treatment was initiated. Plastic tubing led from the solenoid valve down to 

an emitter placed right above the surface of the Profile substrate. The program used scheduled 

watering scans at 8:00 am and 8:00 pm. If the volumetric water content reading from the top  

EC-5 sensor fell below the 38% threshold, the watering system was triggered to water for five 

minutes. This threshold was imposed in order to maintain a well-watered condition throughout 

the day because the growth medium drains quickly, and plants rapidly used water. It was 

determined by measurement that during the five minute period, the emitters supplied 189 mL of 

water/nutrient solution. Fertilizer used was Peters 5-11-26 professional hydroponic nutrient 

solution (Hummert International, 1415 N.W. Moundview Drive Topeka, KS). This was 

supplemented with calcium nitrate. The nutrient solution was mixed based upon labeled rates and 

added to a 15-gallon tank full of reverse osmosis water supplied in the greenhouse. The tank was 

connected to a pump that hooked into the main irrigation system manifold. 

 Up until treatment initiation, all tubes were well-watered based upon the EC-5 data. 

Because the Profile was so well-drained, it was decided to impose a period of mild drought stress 

for 10 days post-flowering. This would allow for certain drought tolerance mechanisms, such as 

osmotic adjustment, to develop without being exposed to a sudden severe stress and to mimic 

more closely the way drought develops under field conditions. During this mild stress period, 
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matric potential data were taken from the top depth MPS-6 sensor. Low water levels were 

applied (about 1-2 minutes) in order to maintain the matric potential of the soil in the given tubes 

at around -5 bars. Once the 10 days of mild drought stress were complete, water was completely 

shut off. A toggle switch on the irrigation control panel allowed for an override of the program 

controlling the individual solenoid valves. The optimum treatment continued to receive water 

based upon the 38% volumetric water content threshold until at least three of the plants in each 

tube had primary tillers reach physiological maturity as determined by a having a yellow 

peduncle.  

 Plant measurements were initiated once the 10 day mild stress period had ended. The 

tenth day of the mild stress period was considered to be moisture treatment day 0. Three different 

categories of measurements were taken: physiological, agronomic, and root. Physiological 

measurements were taken on only primary tillers throughout the experiment. Measurements were 

taken every other day for the drought treatment, and every four days for the optimum treatment. 

They were taken continually until either physiological maturity or stressed leaves no longer 

allowed for an accurate measurement. A SPAD-meter (Spectrum Technologies, 3600 Thayer 

Court, Aurora, IL) was used to measure chlorophyll index. These measurements were taken from 

three separate flag leaves and on three portions of the flag leaf: the base, the middle, and the tip 

leading to an average of nine measurements per tube. Stomatal resistance was taken with an SC-

1 leaf porometer (Decagon Devices). Two to five plants were measured per tube based on flag 

leaf variability. If two of the stomatal resistance measurements fell within 100 s-1 m-1 of each 

other, the measurements were concluded for that tube. Each measurement was taken at the base 

of the leaf on the adaxial surface. Leaf water potential was measured using a Model 1000 

pressure bomb (PMS Instrument, Corvallis, OR), and determined by the pressure at which water 
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visibly extruded from the xylem tissue.  Two separate leaf water potential readings were taken. 

The first set at visible lower canopy stress (chlorosis, wilting, lower leaf senescence). Three F-1 

leaves, which are produced directly below the flag leaf, were measured from the drought 

treatment and the optimum treatment. The next set of measurements was taken when visible flag 

leaf stress (wilting, leaf curling, leaf tip necrosis) occurred. Three flag leaves were measured and 

then immediately rehydrated for two hours in double distilled water and placed in a freezer at -

20⁰ C until osmolality measurements could be taken. At both the point of lower canopy stress 

and flag leaf stress, soil water potential values were recorded. Osmolality was taken with a 

Vapro vapor pressure osmometer model number 5600 (Wescor, Logan, UT). Leaf tissue samples 

were removed from the freezer and allowed to thaw. Tissue from each of the three flag leaves 

was placed into 1.5 mL microtubules and ground up. Paper disks were saturated with leaf sap 

and placed in the osmometer to obtain osmolality readings. Osmotic potential was calculated 

from Kirkham (2005, p. 308). From the osmotic potential values, osmotic adjustment was 

calculated by finding the difference between drought stress and optimum treatments.  

 Certain agronomic traits were measured during the treatment cycle. Days to lower leaf 

stress were calculated by subtracting the treatment initiation date from the date that visible lower 

canopy stress occurred. Days to flag leaf stress were calculated similarly, with treatment 

initiation date being subtracted from visible signs of flag leaf stress. Grain fill duration was 

calculated by subtracting heading date from the point at which each tube either senesced or 

reached physiological maturity. The reason for the use of physiological maturity along with 

senescence while calculating grain fill duration was that certain genotypes in the drought 

treatment reached physiological maturity while leaves were still healthy enough to get viable 

physiological measurements. The rest of the agronomic traits were measured following 
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completion of the experiment. Plant height was taken from the base of the plants to the tip of the 

spike, not including awns and was averaged over five primary tillers. Plants were harvested at 

the base and placed in a dryer at 50⁰ C for two days. Once drying was complete, total 

aboveground biomass was measured for all entries. Spikes were then harvested, counted, and 

weighed in order to get spike count and harvest weight. Harvest weight was recorded as the mass 

of all the spikes from an individual tube. Thousand kernel weight was calculated by counting out 

100 seeds from each entry, getting a mass measurement, and multiplying that by 10. Once 

thousand kernel weight was measured, total seed count was the last agronomic trait to be 

measured. Total seed count was acquired using an Old Mill 9000 seed counter (Old Mill 

Company, Savage Industrial Center, Savage, MD) 

 Root characteristics were the last to be measured. Once plants had been harvested from 

the tubes, each tube was laid out horizontally on a greenhouse bench and split open. Root depth 

was measured as the bottom of the main root mass. It was measured this way due to the fact that 

some of the root systems had “runners” or single root strands that would follow a seam in the 

tube down to the bottom. Once depth had been calculated, root material was carefully removed 

from the profile and cleaned of any major foreign material. Roots were cleaned, washed, and 

placed in a dryer at 50⁰ C for two days. Once the drying process was completed, roots were 

removed and mass of the root structure was taken for each entry. A method utilizing Archimedes 

principle developed by Green (2016) was used to calculate the root volume via water 

displacement.  

 Initial statistical analysis of the data showed a significant experiment effect; 

therefore, the experiments were analyzed separately as a split plot. The comparison across 

treatments was analyzed as a completely randomized design. The observed experimental effect 
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was likely due to different greenhouse conditions. Temperature varied, but Experiment Two had 

a higher average temperature than Experiment One.  Agronomic and root characteristics were 

compared using simple contrasts, and they were analyzed separately from physiological data due 

to the fact that the physiological data were taken over several days. Genotype and treatment were 

both treated as fixed effects. Treatment day was labeled as a random effect for the physiological 

analysis. Data were analyzed for both experiments using SAS version 9.4. Each hybrid and its 

respective parents were separated for comparison. Type, the identification as either a hybrid or a 

parent, and group, the identification of one hybrid parent combination, were both nested within 

all genotypes. Proc Glimmix analysis of variance within groups, between parents and hybrids as 

a whole, across all genotypes, and across both treatments were completed. For physiological leaf 

traits, a Proc Glimmix procedure was used to compare the slopes across all genotypes on each of 

the treatment days. This analysis also covered within group, parents and hybrids as a whole, all 

genotypes, and across treatments for all three replications in each experiment. Stomatal 

resistance was only analyzed for Experiment One due to instrument issues during the second 

experiment. All statistical analyses were completed at α levels of 0.1, 0.05, and 0.01. 

Results 

 Treatment analysis was run for every trait measured to ensure there were differences 

between the drought and optimum treatment. All graphs use standard error bars to show 

variance. Table 1 summarizes the significant responses for the treatment effect for all agronomic 

and root characteristics along with leaf water potential. 
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Table 1: Significant responses for the treatment effect for all agronomic and root 

characteristics along with leaf water potential within each experiment. *p<0.1, **p<0.05, 

***p<0.01, NS- not significant 

  Treatment 

Measured Trait Exp. 1 Exp. 2 

Grain Fill Duration  *** *** 

Plant Height NS NS 

Aboveground Biomass *** *** 

Spike Count NS NS 

Harvest Weight ** NS 

1000 Kernel Weight ** ** 

Total Seed Count NS NS 

F-1 Leaf Water Potential *** *** 

Flag Leaf Water Potential *** *** 

Root Depth  NS NS 

Root Mass *** * 

Root Volume *** NS 

 

 Table 2 includes the overall grand means for the optimum and drought treatments while 

including the level of significance for each.  

Table 2: Significant responses across several measured traits for the treatment effect with 

the grand mean for each treatment. *p<0.1, **p<0.05, ***p<0.01, NS- not significant 

Measured Trait Drought Mean Optimum Mean Level of Significance 

Grain Fill Duration 27.5 31 *** 

Plant Height 63 64 NS 

Aboveground Biomass 17.6 21.1 *** 

Spike Count 9.6 10 NS 

Harvest Weight 10 12.1 ** 

1000 Kernel Weight 29.7 28 ** 

Total Seed Count 258 252.8 NS 

F-1 Leaf Water Potential -16.6 -9.5 *** 

Flag Leaf Potential -20.1 -9.3 *** 

Root Depth 87 81.3 NS 

Root Mass 7.1 3.7 *** 

Root Volume 14.6 9 *** 
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 Table 3 summarizes responses for agronomic characteristics, root traits, and leaf water 

potential across all comparisons (Parent vs. Hybrid overall, within group, all genotypes). 

Table 3: Significant and non-significant responses for all agronomic characteristics, root 

traits, and leaf water potential. Data are divided by experiment, then by treatment for all 

comparisons. *p<0.1, **p<0.05, ***p<0.01, NS- not significant 

  Parent vs Hybrid Within Group  All Genotype 

  Exp 1 Exp 2 Exp 1 Exp 2 Exp 1 Exp 2 

  Dr. Op. Dr. Op. Dr. Op. Dr. Op. Dr. Op. Dr. Op. 

Grain Fill Duration NS NS NS NS NS NS NS NS NS NS NS NS 

Days to Lower Leaf 
Stress NS NS NS NS NS NS NS NS NS NS NS NS 

Days to Flag Leaf Stress NS NS NS NS NS NS NS NS NS NS NS NS 

Plant Height NS NS NS NS NS NS NS NS NS NS NS NS 

Aboveground Biomass ** ** NS NS NS NS NS NS ** *** NS ** 

Spike Count NS ** NS NS NS ** NS NS NS ** NS NS 

Harvest Weight NS * NS NS NS NS NS NS NS ** NS NS 

1000 Kernel Weight NS NS NS NS NS NS NS NS NS NS NS NS 

Total Seed Count ** NS NS NS NS NS NS NS NS NS NS NS 

F-1 Leaf Water Potential NS NS NS NS NS NS NS NS NS NS NS NS 

Flag Leaf Water 
Potential NS NS NS NS NS NS NS NS NS NS NS NS 

Root Depth  NS NS NS NS NS NS NS NS NS NS NS NS 

Root Mass NS NS NS NS NS NS NS NS NS NS NS NS 

Root Volume NS NS NS NS NS NS NS NS ** NS NS NS 

  

 Grainfill Duration  

 For grain fill duration in Experiment One, there was a significant difference between 

treatments (Table 2) with the optimum treatment mean being approximately three days longer 

than the drought treatment. No significant differences were found between the overall grand 

mean and within group analysis of hybrids and their parents (Table 3). In the across genotype 

analysis, the only significant difference was between the longest grain fill duration (Parent C at 

31.3 days) and the shortest duration (Parent D at 23.7 days) during the drought treatment (Fig. 1). 

The relative mean when compared to the paired optimum treatment for Parent C was 94%. For 
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Experiment Two, significant differences were seen between treatments (Table 1). No other 

significant differences were seen when comparing hybrids vs. parents and across all genotypes.   

 

 

Figure 1: Grain fill duration across all genotypes separated by experiment and treatment.  

 

 Days to Lower Canopy Stress 

 Analysis of days to lower canopy stress for both experiments produced no significantly 

different results across any of the comparisons (Table 3). Though non-significant, Parent C 

showed the longest period of time to exhibit signs of lower canopy stress for both experiments 

(13.7 and 12.7 days for Experiments One and Two, respectively), while Parent D was observed 

to have the shortest time (7.7 and 9.3 days for Experiments One and Two, respectively).  

 Days to Flag Leaf Stress 

 Results for days to flag leaf stress in both experiments were similar to those for days to 

lower canopy stress. No significant differences between hybrids and parents, and no significant 
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differences across all genotypes were observed (Table 3). Another point of comparison was that, 

once again, Parent C performed the highest (18 and 16 days for Experiments One and Two, 

respectively), while Parent D was again the lowest (12 and 11.7 days for Experiments One and 

Two, respectively). 

 Aboveground Biomass 

 It was observed that there was a significant difference in aboveground biomass between 

treatments across both experiments (Table 2). The mean for the optimum treatment was 

approximately three grams higher than the drought, i.e., 21.1g compared to 17.6 g.  In 

Experiment One, when comparing the overall mean between parents and hybrids, the parents 

produced a significantly higher biomass than that of the hybrids (21.1 g vs. 17.6 g) in the drought 

treatment (Table 3). No significant differences were seen, though, after performing a within 

group analysis. Across all genotypes for the drought treatment, Parent B had the highest mean 

biomass at 22.9 g, which was significantly greater than only the lowest mean biomass which was 

that of Hybrid 2 (Fig. 2). The same comparison for the optimum treatment showed that the 

biomass for Parent B (34.8 g) was significantly greater than the three lowest genotypes Parent A 

(17.1g), Hybrid 2 (21.4g), and Hybrid 1 (24.3g) (Fig. 2). Biomass was significantly greater in 

Experiment One than in Experiment Two. In the second experiment, significant differences were 

seen between treatments, but significant differences among genotypes were only observed for the 

optimum treatment. Parent B had an above ground biomass of 27.43 g in Experiment Two, 

which was significantly greater than the lowest two genotypes (Parent A and Parent D). Parent D 

went from being one of the highest producers of biomass in the first experiment, to the lowest 

producer for both treatments in the second. 
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Figure 2: Aboveground biomass across all genotypes for both treatments and experiments 

 

Leaf Water Potential 

 No significant differences were seen between experiments for F-1 leaf water potential 

during lower canopy stress. A significant difference was observed between treatments. The mean 

F-1 leaf water potential for the drought treatment was -16.6 bars, while the mean for the 

optimum was -9.5 bars. No significant differences were observed for any of the other 

comparisons (type, within group, across all genotypes) (Table 3). It was observed that, even 

though non-significant, Parent D samples produced the least negative water potential for the 

drought treatment across both experiments. In contrast, Parent B, one of the highest biomass 

producers, tended to have the most negative F-1 leaf water potentials for both experiments, at 

around -20 bars (Appendix A, Fig 35. 

 The difference was even greater between treatments for leaf water potential during flag 

leaf stress for both experiments. The mean for the optimum treatment (-9.3 bars) resembled that 
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of the one taken during lower canopy stress, while the mean for the drought treatment was about 

-20 bars. As seen in the water potential for lower canopy stress, no other significant differences 

were observed between parents and hybrids or across genotypes. Two hybrid entries fell between 

their parents for flag leaf water potential. Though no significant difference was seen between 

experiments for the overall mean, there was rank change across genotypes. For example, Parent 

D went from the most negative water potential (-25.8 bars) in Experiment One to one of the least 

negative in Experiment Two (-15 bars) (Appendix A, Fig. 36). This was observed for several of 

the traits. 

 Soil Water Potential 

 Soil water potential at the top root zone was taken at the point of lower canopy stress and 

flag leaf stress. Significant variability occurred among tubes, making the experimental error 

high. Soil water potential values for the drought treatment at the point of lower canopy stress 

ranged from -5 to -70 bars, while soil water potential values at flag leaf stress ranged from -6 to  

-76 bars. Loss of data due to system error did not allow for viable conclusions from the soil 

water potential data among genotypes.   

 Plant Height 

 Plants in Experiment One were significantly taller at 72.5 cm than in Experiment Two, 

where the mean height was 56.8 cm. No other significant differences occurred (Table 3). It was 

observed that Parent B, though non-significant, was the tallest across genotypes for both 

experiments (Appendix A, Fig 33). This parent was also one of the greater biomass producers.  

 Spike Number 

 No significant difference was observed between treatments for spike number (Fig. 3). 

Experiment One showed a significantly higher count than Experiment Two. When comparing the 
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overall mean for parents and the hybrids, the parents produced an average of approximately 2 

more spikes per tube (10.9) than the hybrids (8.4) (Table 3). This significant difference was not 

observed within the group analysis. Across genotypes for Experiment One, there were no 

significant differences in the drought treatment, while, for the optimum, Parent B produced 

significantly more spikes (20) than the three lowest genotypes (Fig. 3). No significant differences 

across genotypes were observed for Experiment Two in either treatment. Parent B had one of the 

highest spike counts for both treatments.  

  

Figure 3: Genotype by experiment analysis for spike count across all genotypes. 

 

 Harvest Weight 

 Harvest weight (mass of all the spikes) analysis showed significant differences between 

experiments with the mean of Experiment One being five grams higher than that of Experiment 

Two (14.8 vs 9.6, respectively) (Appendix A, Fig 34). Significant differences were also seen 

0

2

4

6

8

10

12

14

16

18

1 1 1 1 1 1 2 2 2 2 2 2

Hybrid
1

Hybrid
2

Parent
A

Parent
B

Parent
C

Parent
D

Hybrid
1

Hybrid
2

Parent
A

Parent
B

Parent
C

Parent
D

Sp
ik

e 
C

o
u

n
t

Genotype by Experiment

Drought

Optimum



32 

between treatments with the mean of the optimum treatment being consistently approximately 

two grams higher for both experiments. Although parents were significantly better than the 

hybrids when looking at the overall mean (Table 3), within group analysis showed that the only 

time both parents were significantly greater than the hybrid genotypes was for group two in 

Experiment One. No significant differences were observed in Experiment One for the drought 

treatment, while Parent B produced a significantly higher harvest weight (20.1 g) than the three 

lowest entries for the optimum treatment. Experiment Two yielded no significant results, though 

Parent B was ranked at the top for both treatments.  

 Thousand Kernel Weight 

 Grand means for thousand kernel weight were significantly different between 

experiments and across treatments (Tables 1 and 2). The mean for Experiment One  was 31.5 g 

compared to 26.1 g in Experiment Two. The optimum treatment produced, on average, 1.5 more 

grams of seed per entry than the drought treatment. No significant differences were observed for 

the overall mean between hybrids and parents (Table 3), or within their respective groups. No 

significant differences were observed across any of the genotypes, but Parent B was ranked at the 

top for all except the drought treatment in Experiment Two.  
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Figure 4: Genotype by experiment analysis of thousand kernel weight across all genotypes. 
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Figure 5: Genotype by experiment analysis for total seed count across all genotypes. 
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agronomic characteristics into each separate experiment and treatment. The comparisons of 
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64.3 (Parent B). For Experiment Two, the maximum mean depth was in the optimum treatment 

(112 cm). Parent D had the shallowest mean depth at 77.3 cm. 

 Root Mass 

 Root mass followed the trend of above ground biomass in that mass was significantly 

greater for the first experiment. Root mass in Experiment One averaged approximately four 

grams more than that in Experiment Two (Fig.6). The drought treatment was observed to have a 

root mass significantly greater than that of the optimum treatment (7.1 g vs 3.7 g). No other 

significant differences were observed for any of the comparisons (Table 3). When subjected to 

drought, though non-significant, Parent A had one of the greatest root masses for both 

experiments (13.6 and 3.6 g for Experiments One and Two, respectively).  

  

 

Figure 6: Root mass analysis between treatments for both experiments. 
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 Root Volume 

 Root volume analysis showed that Experiment One had a mean root volume of 16.2 cm3. 

This was over a twofold difference when compared to Experiment Two, which had a mean of      

7.4 cm3. The drought treatment once again had a significantly greater root volume than the 

optimum treatment (14.6 cm3 vs 9.0 cm3 for the drought and optimum treatments, respectively). 

No significant parent vs. hybrid differences were observed (Table 3). When comparing root 

volume across all genotypes, Parent D had a significantly greater volume (32.3 cm3) than the 

lowest entry Hybrid 2 (15.3 cm3). This was also the maximum root volume for both experiments 

and treatments. Though Parent D ranked high in root volume for the first experiment, it ranked 

last for both treatments in the second (5.8 cm3 and 3.6 cm3 for the drought and optimum 

treatments, respectively). 

 Physiological data (SPAD, stomatal resistance, and variable fluorescence) were analyzed 

based on treatment effects and differences in slope for all three measurements.  

 Chlorophyll Index 

 A type III test of fixed effects for chlorophyll index showed that the following were 

significant at an α of 0.05: Treatment, Day, Day*Treatment, Day*Experiment, 

Day*Treatment*Experiment. No significant differences were observed across all of the 

genotypes. Significant differences were observed between experiments from treatment day four 

onward. Increased temperature in the greenhouse during the second experiment is a possible 

confounding factor that would explain the decreased levels of chlorophyll seen in Experiment 

Two.  
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Figure 7: Chlorophyll index for Experiments One and Two. 

 

The optimum treatment had a significantly higher chlorophyll index than the drought treatment 
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Figure 8: Chlorophyll index for the drought and optimum treatments 
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Figure 9: Analysis for Experiment One within group two  for chlorophyll index; values are for the parents 

and the hybrid 
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Figure 10: Analysis of stomatal resistance for Experiment One for the drought and optimum treatments 

 

The drought treatment ended up with a grand mean of approximately 1,200 s m-1 while the 

optimum treatment fell at approximately 300 s m-1 (Fig. 10). The slope of the drought treatment 

was 49.7 s m-1 per treatment day, while the slope of the optimum was 9.9 s m-1 per treatment 
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Figure 11: Stomatal resistance of the drought treatment in Experiment One for group two 
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below 0.6 (Fig. 12).   

0

500

1000

1500

2000

2500

0 5 10 15 20 25

St
o

m
at

al
 R

es
is

ta
n

ce
 s

 m
-1

Treatment Day

Parent C Parent D Hybrid 2



42 

 

Figure 12: Fluorescence averaged over both experiments for the drought and optimum treatments 

 

Within group analysis of group 1 for Experiment Two showed that Hybrid 1 maintained a ratio 

of greater than 0.7 throughout the treatment (Fig. 13). This was greater than the parent entries, 

but was not significant. Error became too large towards the end of the treatment due to plant 

variability. 

 

Figure 13: Fluorescence in Experiment Two of group one 
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Figure 14: Fluorescence in Experiment Two of group two 

 

Parent D once again had significantly lower photosynthetic activity than the hybrid and other 

parent entry. It ended with a ratio below 0.2 while the other two entries were virtually 

indistinguishable with ratios of approximately 0.5 (Fig. 14).  
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assimilation post anthesis due to a greater capacity to fill grain. Hybrid yield stability stemming 

from heterosis is likely due to an increased biomass from early growth. This is a part of the 

important source-sink relationship. When exposed to a severe water deficit, the source or 

biomass was lost due to senescence, with a premature ending to the growth cycle. Without a full 

grain filling period, the hybrids were unable to out yield the parents under the drought treatment 

in the current experiment. The Profile substrate properties resulted in a more rapid and severe 

stress than would likely be seen in the field. This may have masked the grain filling effect for the 

hybrids. That being said, it also wasn’t apparent in the control treatment. Further investigation is 

need in order to reach a solid conclusion.  

In the current study, a depression in harvest weight and thousand kernel weight was 

observed due to drought.  Total seed number stayed the same, which followed results from 

previous literature. The opposite would be expected for the optimum treatment. Hybrids would 

be expected to outperform their parents in an optimal environment. A significant advantage for 

the hybrids in the study was not observed here either. Some of this could be explained by limited 

replication or experimental error associated with growing a limited number of plants under 

artificial conditions. Something else to keep in mind is that only two experimental hybrids were 

tested. The results from this experiment do not necessarily extend to all hybrid wheat. Thousands 

of experimental hybrids exist across the globe, and it will require extensive testing of multiple 

hybrids to get a better understanding of the genetic and physiological basis of heterosis under 

drought stress. 

Another goal of this study was to gain an understanding of different types of drought 

tolerance mechanisms. A point to be made is that two of the parents (Parent D and Parent B) 

came from the Kansas State University breeding program at Hays, while the other two (Parent C 
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and Parent A) came from the K-State breeding program of Manhattan, Kansas. The Hays 

program has a greater focus on drought tolerance while the Manhattan program has a greater 

focus on disease resistance and heat tolerance. Significant physiological differences were seen 

across all genotypes for the moisture treatment effect. Parent D had a shorter grain fill period and 

lower biomass. Its premature senescence was observed through a significantly lower chlorophyll 

content, lower fluorescence ratio, and higher stomatal resistance as shown in Figures 7, 9, and 

12. Even though it appeared to be drought susceptible, it ranked highly for yield and yield 

components. The mechanism that allowed it to maintain yield is not exactly known, but it can be 

conjectured that this line was translocating assimilates from other parts of the plant. The exact 

opposite response was observed for Parent C. It held onto green leaf area up until physiological 

maturity, yet it did not yield well in the drought treatment. The opposite responses seen between 

Parent C and Parent D can be associated with recovery. A plant like Parent D will be able to 

survive in areas with terminal drought stress or areas where there is little rainfall expected during 

the grainfill stage as it is able to translocate assimilates after losing photosynthetic capacity. 

Lines with a response similar to Parent C would benefit more in an environment where there is a 

chance for intermittent rainfall allowing them to recover. Another parent, Parent B, was one of 

the highest yielders overall for both moisture treatments. It produced large amounts of tillers and 

biomass along with maintaining its green leaf area. Its ability to do this allowed for better 

performance than other genotypes by maintaining a proper source sink relationship. Another 

physiological trait considered to be an important indicator of drought tolerance is water soluble 

carbohydrates of the stem. These reserves can serve as an important source for adequate grain 

filling during water deficit (Blum, 1998). This trait was not measured in this experiment, but it 

could be the explanation for why Parent D still yielded well under drought stress. Stem reserves 
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may have been able to maintain adequate grain fill during the stress period while other sources 

declined due to senescence. This same trait may have played a role in the performance of Parent 

B. Going back to the point that both of these parent lines were selected for in Western Kansas, it 

is possible that water soluble carbohydrates in the stem played a role in their ability to yield in 

this environment.  

Most of the traits measured did not differ significantly between hybrids and parents. The 

hybrids were often intermediate to the the two parents, which would be expected if the traits are 

controlled by additive genetic variance. One important observation is that where differences 

were observed, there were instances where the hybrid was more like one parent. Examples 

include Experiment Two: Hybrid 1 and Experiment One: Hybrid 2 for variable fluorescence as 

well as Experiment One: Hybrid 2 for stomatal resistance and cholophyll index. This suggests 

that these traits may be controlled by dominance. Additional research would be required to verify 

these effects, but these results would have implication for breeding hybrid wheat for drought-

prone environments.    

A lot of variability was observed throughout the drought treatment. Error for 

physiological measurements became very large towards the end of the treatment. Both 

experiments had to be analyzed separately due to greenhouse effects. During the first 

experiment, light pollution from a neighboring greenhouse had a small, but noticeable effect on 

plant health for the optimum treatment. The second experiment was conducted relatively late in 

the spring plants were exposed to higher air temperatures than in Experiment One. It is likely 

that the differences between the results of the two experiments can be at least partially explained 

by the effects of heat stress on the second experiment. Several measurements for the second 

experiment decreased due to increased temperatures. These complications to the experiment 
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could also explain some of the lack of significance between hybrids and parents. Plant variability 

within tubes was rather high with some plants being completely senesced while others still had 

measurable leaves. This could be explained by the idea of a dominant plant factor. Certain plants 

outcompeted others for resources within each tube leading to variable plant health. This 

constraint could be alleviated through greater replication in the system. Overall, this 

comprehensive method is good for identifying mechanisms of drought stress, but there are still 

constraints. Greenhouse experiments will always have  the chance of light or heat contamination, 

and the overall cost effectiveness of the system remains a challenge for increasing replication. 

 

 Conclusion 

In summary, the hypothesis stating that the hybrid genotypes would outperform the 

inbred parent lines under post-anthesis drought stress is rejected. It is important to understand 

that, though these were two high yielding hybrid lines, thousands of others have been created. 

Future expansion of measurements to reduce experimental variability and replication must be 

conducted in order to reach a more solid conclusion. We were able to identify some possible 

drought resistant traits and Parent C was added back into the Manhattan Kansas State University 

breeding program as a possible source for drought tolerance.  This comprehensive screening 

method will continue to be useful in isolating drought stress in order to observe differences 

between elite varieties, wild relatives, hybrids, and new experimental lines. 
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Appendix A - Supplemental Information 

Table 4: List of all genotypes and designation as a hybrid or parent. 

Genotype Entry Type Entry Group 

Hybrid 1 Hybrid 1 

Parent A Parent 1 

Parent B Parent 1 

Hybrid 2 Hybrid 2 

Parent C Parent 2 

Parent D  Parent 2 

 

Table 5: Final analysis of nutrient concentration applied through irrigation (Green, 2016). 

Nutrient Abbreviation Concentration (ppm) 

Nitrate N 150 

Phosphorous P 48 

Potassium K 216 

Calcium Ca 116 

Magnesium Mg 31 

Sulfate SO4 125 

Iron Fe 3 

Manganese Mn 0.5 

Zinc Sn 0.15 

Copper Cu 0.15 

Boron B 0.5 

Molybdenum Mo 0.1 
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Figure 15: Chlorophyll index measurements from Experiment One for drought across all genotypes 

 

 

Figure 16: Chlorophyll index measurements for Experiment One for drought within group one 
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Figure 17: Chlorophyll index measurements for drought across all genotypes within experiment two 

 

 

Figure 18: Chlorophyll index measurements for drought within group one in the second experiment 
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Figure 19: Chlorophyll index measurements for drought within group two in the second experiment 

 

 

Figure 20: Chlorophyll index measurements for the optimum treatment across all genotypes in experiment 

one 
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Figure 21: Chlorophyll index measurements for the optimum treatment across all genotypes for experiment 2 

 

 

Figure 22: Stomatal resistance measurements for drought across all genotypes 
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Figure 23: Stomatal resistance for drought within group one 

 

 

Figure 24: Stomatal Resistance optimum treatment across all genotypes 
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Figure 25: Stomatal resistance parents vs. hybrids for the drought treatment. 

 

 

Figure 26: Fluorescence for drought in experiment one across all genotypes. 
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Figure 27: Fluorescence for drought in experiment one within group one. 

 

 

Figure 28: Fluorescence for drought in experiment one within group two. 
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Figure 29: Fluorescence for drought in experiment two across all genotypes. 

 

 

Figure 30: Fluorescence for optimum treatment in experiment one across all genotypes in. 
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Figure 31: Fluorescence for the optimum treatment in experiment two across all genotypes. 

 

 

Figure 32: Fluorescence for drought between experiment one and experiment 2. 
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Figure 33: Plant height across all genotypes for both treatments and experiments 

 

Figure 34: Harvest weight or mass of all the spikes across all genotypes for both treatments and experiments 
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Figure 35: F-1 leaf water potential across all genotypes for both treatments and experiments 

 

Figure 36: Flag leaf water potential across all genotypes for both treatments and experiments 
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Figure 37: Osmotic potential values for all genotypes across both treatments and experiments. 

 

 

Figure 38: Osmotic Adjustment values among genotypes for both experiments 
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Appendix B - Programming Code for Sensor Data and Automatic 

Irrigation System 

*Programming code was the same used in (Green, 2016) 

'Declare Variables and Units  

Public VWC_1  

Public VWC_5  

Public VWC_9  

Public VWC_13  

Public VWC_17  

Public VWC_21  

Public VWC_25  

Public VWC_29  

Public VWC_33  

Public VWC_37  

Public VWC_41  

Public VWC_45  

Public VWC_49  

Public VWC_53  

Public VWC_57  

Public VWC_61  

Public VWC_65  

Public VWC_69  

Public VWC_73  

Public VWC_77  

Public VWC_81  

Public VWC_85  
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Public VWC_89  

Public VWC_93  

Public VWC_97  

Public VWC_101  

Public VWC_105  

Public VWC_109  

Public VWC_113  

Public VWC_117  

Public VWC_121  

Public VWC_125  

Public VWC_129  

Public VWC_133  

Public VWC_137  

Public VWC_141  

Public MPS1 162  
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Public MPS3  

Public MPS5  

Public MPS7  

Public MPS9  

Public MPS11  

Public MPS13  

Public MPS15  

Public MPS17  

Public MPS19  

Public MPS21  

Public MPS23  

Public MPS25  

Public MPS27  

Public MPS29  

Public MPS31  

Public MPS33  

Public MPS35  

Public BattV  

Public PTemp_C  

Public LCount  

Public LCount2  

Public FullBR_3(16  

Public FullBR(6)  

Public Mult(6)={1,1,1,1,1,1}  

Public Offs(6)={0,0,0,0,0,0}  

Public Mult_3(16)={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}  

Public Offs_3(16)={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}  

Public ResultCode  

Public ValveCtrl(48)  

Units BattV=Volts  

Units PTemp_C=Deg C  

Units FullBR=mV/V  

Units FullBR_3=mV/V  

Public T_kPa_33  

Public T_kPa_34  

Public T_kPa_35  

Public T_kPa_36  

Public T_kPa_37  

Public T_kPa_38  

Public T_kPa_39  

Public T_kPa_40  

Public T_kPa_41  

Public T_kPa_42  

Public T_kPa_43  

Public T_kPa_44  

Public T_kPa_45 163  
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Public T_kPa_46  

Public T_kPa_47  

Public T_kPa_48  

Public T_kPa_49  

Public T_kPa_50  

Public T_kPa_51  

Public T_kPa_52  

Public T_kPa_53  

Public T_kPa_54  

'Define Data Tables  

DataTable(Tens2,True,-1)  

DataInterval(0,360,min, 10)  

Sample(1,T_kPa_33,FP2)  

Sample(1,T_kPa_34,FP2)  

Sample(1,T_kPa_35,FP2)  

Sample(1,T_kPa_36,FP2)  

Sample(1,T_kPa_37,FP2)  

Sample(1,T_kPa_38,FP2)  

Sample(1,T_kPa_39,FP2)  

Sample(1,T_kPa_40,FP2)  

Sample(1,T_kPa_41,FP2)  

Sample(1,T_kPa_42,FP2)  

Sample(1,T_kPa_43,FP2)  

Sample(1,T_kPa_44,FP2)  

Sample(1,T_kPa_45,FP2)  

Sample(1,T_kPa_46,FP2)  

Sample(1,T_kPa_47,FP2)  

Sample(1,T_kPa_48,FP2)  

Sample(1,T_kPa_49,FP2)  

Sample(1,T_kPa_50,FP2)  

Sample(1,T_kPa_51,FP2)  

Sample(1,T_kPa_52,FP2)  

Sample(1,T_kPa_53,FP2)  

Sample(1,T_kPa_54,FP2)  

Sample(1,FullBR_3(1),FP2)  

Sample(1,FullBR_3(2),FP2)  

Sample(1,FullBR_3(3),FP2)  

Sample(1,FullBR_3(4),FP2)  

Sample(1,FullBR_3(5),FP2)  

Sample(1,FullBR_3(6),FP2)  

Sample(1,FullBR_3(7),FP2)  

Sample(1,FullBR_3(8),FP2)  

Sample(1,FullBR_3(9),FP2) 164  
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Sample(1,FullBR_3(10),FP2)  

Sample(1,FullBR_3(11),FP2)  

Sample(1,FullBR_3(12),FP2)  

Sample(1,FullBR_3(13),FP2)  

Sample(1,FullBR_3(14),FP2)  

Sample(1,FullBR_3(15),FP2)  

Sample(1,FullBR_3(16),FP2)  

Sample(1,FullBR(1),FP2)  

Sample(1,FullBR(2),FP2)  

Sample(1,FullBR(3),FP2)  

Sample(1,FullBR(4),FP2)  

Sample(1,FullBR(5),FP2)  

Sample(1,FullBR(6),FP2)  

EndTable  

DataTable(Table2,True,-1)  

DataInterval(0,1440,Min,10)  

Minimum(1,BattV,FP2,False,False)  

EndTable  

DataTable (WateringRecord, True, -1)  

DataInterval (0,60, Min, 10) 'change back to 480 for an 8 hour scan interval which will record the 

watering status at 8am  

Sample (48, ValveCtrl(), FP2) 'change first number for number of repetitions  

EndTable  

'Main Program  

BeginProg  

'Main Scan  

Scan(1,min,1,0)'change scan to five minutes for a program that waters for five minutes to ensure 

proper start and stop  

'Default Datalogger Battery Voltage measurement 'BattV'  

Battery(BattV)  

'Default Wiring Panel Temperature measurement 'PTemp_C'  

PanelTemp(PTemp_C,_60Hz)  

'Turn AM16/32 Multiplexer On  

PortSet(8,1)  

Delay(0,150,mSec)  

LCount=1  

SubScan(0,uSec,6)  

'Switch to next AM16/32 Multiplexer channel  

PulsePort(4,10000)  

'Generic Full Bridge measurements 'FullBR()' on the AM16/32 Multiplexer 165  
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BrFull(FullBR(LCount),1,mv25,2,1,1,2500,True,True,0,_60Hz,Mult(LCount),Offs(LCount))  

LCount=LCount+1  

NextSubScan  

'Turn AM16/32 Multiplexer Off  

PortSet(8,0)  

Delay(0,150,mSec)  

PortSet(7,1)  

Delay(0,150,mSec)  

LCount2=1  

SubScan(0,uSec,16)  

'Switch to next AM16/32 Multiplexer channel  

PulsePort(4,10000)  

'Generic Full Bridge measurements 'FullBR_3()' on the AM16/32 Multiplexer  

BrFull(FullBR_3(LCount2),1,mv25,1,1,1,2500,True,True,0,_60Hz,Mult_3(LCount2),Offs_3(LCount

2))  

LCount2=LCount2+1  

NextSubScan  

'Turn AM16/32 Multiplexer Off  

PortSet(7,0)  

Delay(0,150,mSec)  

'The GetVariables commands will collect EC-5 and MPS data from the specified sensors, to be used 

in making the automatic irrigation decisions  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_1",VWC_1,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_5",VWC_5,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_9",VWC_9,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_13",VWC_13,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_17",VWC_17,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_21",VWC_21,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_25",VWC_25,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_29",VWC_29,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_33",VWC_33,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_37",VWC_37,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_41",VWC_41,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_45",VWC_45,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_49",VWC_49,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_53",VWC_53,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_57",VWC_57,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_61",VWC_61,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_65",VWC_65,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_69",VWC_69,1) 166  
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GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_73",VWC_73,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_77",VWC_77,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_81",VWC_81,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_85",VWC_85,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_89",VWC_89,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_93",VWC_93,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_97",VWC_97,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_101",VWC_101,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_105",VWC_105,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_109",VWC_109,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_113",VWC_113,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_117",VWC_117,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_121",VWC_121,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_125",VWC_125,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_129",VWC_129,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_133",VWC_133,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_137",VWC_137,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_141",VWC_141,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M1_kPa", MPS1,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M4_kPa", MPS3,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M7_kPa", MPS5,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M10_kPa", MPS7,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M13_kPa", MPS9,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M16_kPa", MPS11,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M19_kPa", MPS13,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M22_kPa", MPS15,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M25_kPa", MPS17,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M28_kPa", MPS19,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M31_kPa", MPS21,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M34_kPa", MPS23,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M37_kPa", MPS25,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M40_kPa", MPS27,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M43_kPa", MPS29,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M46_kPa", MPS31,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M49_kPa", MPS33,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M52_kPa", MPS35,1)  

If IfTime (479, 1440, Min) Then ValveCtrl(48)=1 'turn on fertilizer tank pump 1 minutes before 

watering scheduled  

'If IfTime(480, 1440,Min)AND VWC_1<0.38 AND VWC_1>0.1 Then ValveCtrl(1)=1  

'If IfTime(480,1440,Min) AND VWC_9<0.38 AND VWC_9>0.1 Then ValveCtrl(2)=1  

'If IfTime(480,1440,Min) AND VWC_17<0.38 AND VWC_17>0.1 Then ValveCtrl(3)=1  

'If IfTime(480,1440,Min) AND VWC_25<0.38 AND VWC_25>0.1 Then ValveCtrl(4)=1  

'If IfTime(480,1440,Min) AND VWC_33<0.38 AND VWC_33>0.1 Then ValveCtrl(5)=1  

'If IfTime(480,1440,Min) AND VWC_41<0.38 AND VWC_41>0.1 Then ValveCtrl(6)=1 167  
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'If IfTime(480,1440,Min) AND VWC_49<0.38 AND VWC_49>0.1 Then ValveCtrl(7)=1  

'If IfTime(480,1440,Min) AND VWC_57<0.38 AND VWC_57>0.1 Then ValveCtrl(8)=1  

'If IfTime(480,1440,Min) AND VWC_65<0.38 AND VWC_65>0.1 Then ValveCtrl(9)=1  

'If IfTime(480,1440,Min) AND VWC_73<0.38 AND VWC_73>0.1 Then ValveCtrl(10)=1  

'If IfTime(480,1440,Min) AND VWC_81<0.38 AND VWC_81>0.1 Then ValveCtrl(11)=1  

'If IfTime(480,1440,Min) AND VWC_89<0.38 AND VWC_89>0.1 Then ValveCtrl(12)=1  

'If IfTime(480,1440,Min) AND VWC_97<0.38 AND VWC_97>0.1 Then ValveCtrl(13)=1  

'If IfTime(480,1440,Min) AND VWC_105<0.38 AND VWC_105>0.1 Then ValveCtrl(14)=1  

'If IfTime(480,1440,Min) AND VWC_113<0.38 AND VWC_113>0.1 Then ValveCtrl(15)=1  

'If IfTime(480,1440,Min) AND VWC_121<0.38 AND VWC_121>0.1 Then ValveCtrl(16)=1  

'If IfTime(480,1440,Min) AND VWC_129<0.38 AND VWC_129>0.1 Then ValveCtrl(17)=1  

'If IfTime(480,1440,Min) AND VWC_137<0.38 AND VWC_137>0.1 Then ValveCtrl(18)=1  

If IfTime (480, 1440, Min) AND MPS1<-500 AND MPS1<-10 Then ValveCtrl(1)=1  

If IfTime (480, 1440, Min) AND MPS3<-500 AND MPS3<-10 Then ValveCtrl(2)=1  

If IfTime (480, 1440, Min) AND MPS5 <-500 AND MPS5<-10 Then ValveCtrl(3)=1  

If IfTime (480, 1440, Min) AND MPS7<-500 AND MPS7<-10 Then ValveCtrl(4)=1  

If IfTime (480, 1440, Min) AND MPS9<-500 AND MPS9<-10 Then ValveCtrl(5)=1  

If IfTime (480, 1440, Min) AND MPS11<-500 AND MPS11<-10 Then ValveCtrl(6)=1  

If IfTime (480, 1440, Min) AND MPS13<-500 AND MPS13<-10 Then ValveCtrl(7)=1  

If IfTime (480, 1440, Min) AND MPS15 <-500 AND MPS15<-10 Then ValveCtrl(8)=1  

If IfTime (480, 1440, Min) AND MPS17 <-500 AND MPS17<-10 Then ValveCtrl(9)=1  

If IfTime (480, 1440, Min) AND MPS19 <-500 AND MPS19<-10 Then ValveCtrl(10)=1  

If IfTime (480, 1440, Min) AND MPS21 <-500 AND MPS21<-10 Then ValveCtrl(11)=1  

If IfTime (480, 1440, Min) AND MPS23 <-500 AND MPS23<-10 Then ValveCtrl(12)=1  

If IfTime (480, 1440, Min) AND MPS25 <-500 AND MPS25<-10 Then ValveCtrl(13)=1  

If IfTime (480, 1440, Min) AND MPS27 <-500 AND MPS27<-10 Then ValveCtrl(14)=1  

If IfTime (480, 1440, Min) AND MPS29 <-500 AND MPS29<-10 Then ValveCtrl(15)=1  

If IfTime (480, 1440, Min) AND MPS31 <-500 AND MPS31<-10 Then ValveCtrl(16)=1  

If IfTime (480, 1440, Min) AND MPS33 <-500 AND MPS33<-10 Then ValveCtrl(17)=1  

If IfTime (480, 1440, Min) AND MPS35 <-500 AND MPS35<-10 Then ValveCtrl(18)=1  

'If IfTime (483, 1440, Min) AND MPS1<-750 AND MPS1<-10 Then ValveCtrl(1)=1  

'If IfTime (483, 1440, Min) AND MPS3<-750 AND MPS3<-10 Then ValveCtrl(2)=1  

'If IfTime (483, 1440, Min) AND MPS5 <-750 AND MPS5<-10 Then ValveCtrl(3)=1  

'If IfTime (483, 1440, Min) AND MPS7<-750 AND MPS7<-10 Then ValveCtrl(4)=1  

'If IfTime (483, 1440, Min) AND MPS9<-750 AND MPS9<-10 Then ValveCtrl(5)=1  

'If IfTime (483, 1440, Min) AND MPS11<-750 AND MPS11<-10 Then ValveCtrl(6)=1  

'If IfTime (483, 1440, Min) AND MPS13<-750 AND MPS13<-10 Then ValveCtrl(7)=1  

'If IfTime (483, 1440, Min) AND MPS15 <-750 AND MPS15<-10 Then ValveCtrl(8)=1  

'If IfTime (483, 1440, Min) AND MPS17 <-750 AND MPS17<-10 Then ValveCtrl(9)=1  

'If IfTime (483, 1440, Min) AND MPS19 <-750 AND MPS19<-10 Then ValveCtrl(10)=1  

'If IfTime (483, 1440, Min) AND MPS21 <-750 AND MPS21<-10 Then ValveCtrl(11)=1  

'If IfTime (483, 1440, Min) AND MPS23 <-750 AND MPS23<-10 Then ValveCtrl(12)=1  

'If IfTime (483, 1440, Min) AND MPS25 <-750 AND MPS25<-10 Then ValveCtrl(13)=1  

'If IfTime (483, 1440, Min) AND MPS27 <-750 AND MPS27<-10 Then ValveCtrl(14)=1 168  
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'If IfTime (483, 1440, Min) AND MPS29 <-750 AND MPS29<-10 Then ValveCtrl(15)=1  

'If IfTime (483, 1440, Min) AND MPS31 <-750 AND MPS31<-10 Then ValveCtrl(16)=1  

'If IfTime (483, 1440, Min) AND MPS33 <-750 AND MPS33<-10 Then ValveCtrl(17)=1  

'If IfTime (483, 1440, Min) AND MPS35 <-750 AND MPS35<-10 Then ValveCtrl(18)=1  

If IfTime (1259, 1440, Min) Then ValveCtrl(48)=1  

If IfTime (1260, 1440, Min) AND MPS1<-500 AND MPS1<-10 Then ValveCtrl(1)=1  

If IfTime (1260, 1440, Min) AND MPS3<-500 AND MPS3<-10 Then ValveCtrl(2)=1  

If IfTime (1260, 1440, Min) AND MPS5 <-500 AND MPS5<-10 Then ValveCtrl(3)=1  

If IfTime (1260, 1440, Min) AND MPS7<-500 AND MPS7<-10 Then ValveCtrl(4)=1  

If IfTime (1260, 1440, Min) AND MPS9<-500 AND MPS9<-10 Then ValveCtrl(5)=1  

If IfTime (1260, 1440, Min) AND MPS11<-500 AND MPS11<-10 Then ValveCtrl(6)=1  

If IfTime (1260, 1440, Min) AND MPS13<-500 AND MPS13<-10 Then ValveCtrl(7)=1  

If IfTime (1260, 1440, Min) AND MPS15 <-500 AND MPS15<-10 Then ValveCtrl(8)=1  

If IfTime (1260, 1440, Min) AND MPS17 <-500 AND MPS17<-10 Then ValveCtrl(9)=1  

If IfTime (1260, 1440, Min) AND MPS19<-500 AND MPS19<-10 Then ValveCtrl(10)=1  

If IfTime (1260, 1440, Min) AND MPS21 <-500 AND MPS21<-10 Then ValveCtrl(11)=1  

If IfTime (1260, 1440, Min) AND MPS23 <-500 AND MPS23<-10 Then ValveCtrl(12)=1  

If IfTime (1260, 1440, Min) AND MPS25 <-500 AND MPS25<-10 Then ValveCtrl(13)=1  

If IfTime (1260, 1440, Min) AND MPS27 <-500 AND MPS27<-10 Then ValveCtrl(14)=1  

If IfTime (1260, 1440, Min) AND MPS29 <-500 AND MPS29<-10 Then ValveCtrl(15)=1  

If IfTime (1260, 1440, Min) AND MPS31 <-500 AND MPS31<-10 Then ValveCtrl(16)=1  

If IfTime (1260, 1440, Min) AND MPS33 <-500 AND MPS33<-10 Then ValveCtrl(17)=1  

If IfTime (1260, 1440, Min) AND MPS35 <-500 AND MPS35<-10 Then ValveCtrl(18)=1  

If IfTime(1260,1440,Min) AND VWC_5<0.38 AND VWC_5>0.1 Then ValveCtrl(19)=1  

If IfTime(1260,1440,Min) AND VWC_13<0.38 AND VWC_13>0.1 Then ValveCtrl(20)=1  

If IfTime(1260,1440,Min) AND VWC_21<0.38 AND VWC_21>0.1 Then ValveCtrl(21)=1  

If IfTime(1260,1440,Min) AND VWC_29<0.38 AND VWC_29>0.1 Then ValveCtrl(22)=1  

If IfTime(1260,1440,Min) AND VWC_37<0.38 AND VWC_37>0.1 Then ValveCtrl(23)=1  

If IfTime(1260,1440,Min) AND VWC_45<0.38 AND VWC_45>0.1 Then ValveCtrl(24)=1  

If IfTime(1260,1440,Min) AND VWC_53<0.38 AND VWC_53>0.1 Then ValveCtrl(25)=1  

If IfTime(1260,1440,Min) AND VWC_61<0.38 AND VWC_61>0.1 Then ValveCtrl(26)=1  

If IfTime(1260,1440,Min) AND VWC_69<0.38 AND VWC_69>0.1 Then ValveCtrl(27)=1  

If IfTime(1260,1440,Min) AND VWC_77<0.38 AND VWC_77>0.1 Then ValveCtrl(28)=1  

If IfTime(1260,1440,Min) AND VWC_85<0.38 AND VWC_85>0.1 Then ValveCtrl(29)=1  

If IfTime(1260,1440,Min) AND VWC_93<0.38 AND VWC_93>0.1 Then ValveCtrl(30)=1  

If IfTime(1260,1440,Min) AND VWC_101<0.38 AND VWC_101>0.1 Then ValveCtrl(31)=1  

If IfTime(1260,1440,Min) AND VWC_109<0.38 AND VWC_109>0.1 Then ValveCtrl(32)=1  

If IfTime(1260,1440,Min) AND VWC_117<0.38 AND VWC_117>0.1 Then ValveCtrl(33)=1  

If IfTime(1260,1440,Min) AND VWC_125<0.38 AND VWC_125>0.1 Then ValveCtrl(34)=1  

If IfTime(1260,1440,Min) AND VWC_133<0.38 AND VWC_133>0.1 Then ValveCtrl(35)=1  

If IfTime(1260,1440,Min) AND VWC_141<0.38 AND VWC_141>0.1 Then ValveCtrl(36)=1  

If IfTime (899, 1440, Min) Then ValveCtrl(48)=1  

If IfTime (900, 1440, Min) AND MPS1<-500 AND MPS1<-10 Then ValveCtrl(1)=1 169  
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If IfTime (900, 1440, Min) AND MPS3<-500 AND MPS3<-10 Then ValveCtrl(2)=1  

If IfTime (900, 1440, Min) AND MPS5 <-500 AND MPS5<-10 Then ValveCtrl(3)=1  

If IfTime (900, 1440, Min) AND MPS7<-500 AND MPS7<-10 Then ValveCtrl(4)=1  

If IfTime (900, 1440, Min) AND MPS9<-500 AND MPS9<-10 Then ValveCtrl(5)=1  

If IfTime (900, 1440, Min) AND MPS11<-500 AND MPS11<-10 Then ValveCtrl(6)=1  

If IfTime (900, 1440, Min) AND MPS13<-500 AND MPS13<-10 Then ValveCtrl(7)=1  

If IfTime (900, 1440, Min) AND MPS15 <-500 AND MPS15<-10 Then ValveCtrl(8)=1  

If IfTime (900, 1440, Min) AND MPS17 <-500 AND MPS17<-10 Then ValveCtrl(9)=1  

If IfTime (900, 1440, Min) AND MPS19<-500 AND MPS19<-10 Then ValveCtrl(10)=1  

If IfTime (900, 1440, Min) AND MPS21 <-500 AND MPS21<-10 Then ValveCtrl(11)=1  

If IfTime (900, 1440, Min) AND MPS23 <-500 AND MPS23<-10 Then ValveCtrl(12)=1  

If IfTime (900, 1440, Min) AND MPS25 <-500 AND MPS25<-10 Then ValveCtrl(13)=1  

If IfTime (900, 1440, Min) AND MPS27 <-500 AND MPS27<-10 Then ValveCtrl(14)=1  

If IfTime (900, 1440, Min) AND MPS29 <-500 AND MPS29<-10 Then ValveCtrl(15)=1  

If IfTime (900, 1440, Min) AND MPS31 <-500 AND MPS31<-10 Then ValveCtrl(16)=1  

If IfTime (900, 1440, Min) AND MPS33 <-500 AND MPS33<-10 Then ValveCtrl(17)=1  

If IfTime (900, 1440, Min) AND MPS35 <-500 AND MPS35<-10 Then ValveCtrl(18)=1  

If IfTime (482,1440,Min) Then ValveCtrl(1)=0  

If IfTime (482,1440,Min) Then ValveCtrl(2)=0  

If IfTime (482,1440,Min) Then ValveCtrl(3)=0  

If IfTime (482,1440,Min) Then ValveCtrl(4)=0  

If IfTime (482,1440,Min) Then ValveCtrl(5)=0  

If IfTime (482,1440,Min) Then ValveCtrl(6)=0  

If IfTime (482,1440,Min) Then ValveCtrl(7)=0  

If IfTime (482,1440,Min) Then ValveCtrl(8)=0  

If IfTime (482,1440,Min) Then ValveCtrl(9)=0  

If IfTime (482,1440,Min) Then ValveCtrl(10)=0  

If IfTime (482,1440,Min) Then ValveCtrl(11)=0  

If IfTime (482,1440,Min) Then ValveCtrl(12)=0  

If IfTime (482,1440,Min) Then ValveCtrl(13)=0  

If IfTime (482,1440,Min) Then ValveCtrl(14)=0  

If IfTime (482,1440,Min) Then ValveCtrl(15)=0  

If IfTime (482,1440,Min) Then ValveCtrl(16)=0  

If IfTime (482,1440,Min) Then ValveCtrl(17)=0  

If IfTime (482,1440,Min) Then ValveCtrl(18)=0  

If IfTime (484,1440,Min) Then ValveCtrl(1)=0  

If IfTime (484,1440,Min) Then ValveCtrl(2)=0  

If IfTime (484,1440,Min) Then ValveCtrl(3)=0  

If IfTime (484,1440,Min) Then ValveCtrl(4)=0  

If IfTime (484,1440,Min) Then ValveCtrl(5)=0  

If IfTime (484,1440,Min) Then ValveCtrl(6)=0  

If IfTime (484,1440,Min) Then ValveCtrl(7)=0  

If IfTime (484,1440,Min) Then ValveCtrl(8)=0  

If IfTime (484,1440,Min) Then ValveCtrl(9)=0 170  
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If IfTime (484,1440,Min) Then ValveCtrl(10)=0  

If IfTime (484,1440,Min) Then ValveCtrl(11)=0  

If IfTime (484,1440,Min) Then ValveCtrl(12)=0  

If IfTime (484,1440,Min) Then ValveCtrl(13)=0  

If IfTime (484,1440,Min) Then ValveCtrl(14)=0  

If IfTime (484,1440,Min) Then ValveCtrl(15)=0  

If IfTime (484,1440,Min) Then ValveCtrl(16)=0  

If IfTime (484,1440,Min) Then ValveCtrl(17)=0  

If IfTime (484,1440,Min) Then ValveCtrl(18)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(19)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(20)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(21)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(22)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(23)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(24)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(25)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(26)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(27)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(28)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(29)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(30)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(31)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(32)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(33)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(34)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(35)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(36)=0  

If IfTime (1265,1440, Min) Then ValveCtrl(48)=0  

If IfTime (1262,1440, Min) Then ValveCtrl(1)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(2)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(3)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(4)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(5)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(6)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(7)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(8)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(9)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(10)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(11)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(12)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(13)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(14)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(15)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(16)=0 171  
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If IfTime (1262,1440,Min) Then ValveCtrl(17)=0  

If IfTime (1262,1440,Min) Then ValveCtrl(18)=0  

If IfTime (902,1440, Min) Then ValveCtrl(48)=0  

If IfTime (902,1440, Min) Then ValveCtrl(1)=0  

If IfTime (902,1440,Min) Then ValveCtrl(2)=0  

If IfTime (902,1440,Min) Then ValveCtrl(3)=0  

If IfTime (902,1440,Min) Then ValveCtrl(4)=0  

If IfTime (902,1440,Min) Then ValveCtrl(5)=0  

If IfTime (902,1440,Min) Then ValveCtrl(6)=0  

If IfTime (902,1440,Min) Then ValveCtrl(7)=0  

If IfTime (902,1440,Min) Then ValveCtrl(8)=0  

If IfTime (902,1440,Min) Then ValveCtrl(9)=0  

If IfTime (902,1440,Min) Then ValveCtrl(10)=0  

If IfTime (902,1440,Min) Then ValveCtrl(11)=0  

If IfTime (902,1440,Min) Then ValveCtrl(12)=0  

If IfTime (902,1440,Min) Then ValveCtrl(13)=0  

If IfTime (902,1440,Min) Then ValveCtrl(14)=0  

If IfTime (902,1440,Min) Then ValveCtrl(15)=0  

If IfTime (902,1440,Min) Then ValveCtrl(16)=0  

If IfTime (902,1440,Min) Then ValveCtrl(17)=0  

If IfTime (902,1440,Min) Then ValveCtrl(18)=0  

'Watered Tubes- These lines should never be changed'  

If IfTime(480,1440,Min) AND VWC_5<0.38 AND VWC_5>0.1 Then ValveCtrl(19)=1  

If IfTime(480,1440,Min) AND VWC_13<0.38 AND VWC_13>0.1 Then ValveCtrl(20)=1  

If IfTime(480,1440,Min) AND VWC_21<0.38 AND VWC_21>0.1 Then ValveCtrl(21)=1  

If IfTime(480,1440,Min) AND VWC_29<0.38 AND VWC_29>0.1 Then ValveCtrl(22)=1  

If IfTime(480,1440,Min) AND VWC_37<0.38 AND VWC_37>0.1 Then ValveCtrl(23)=1  

If IfTime(480,1440,Min) AND VWC_45<0.38 AND VWC_45>0.1 Then ValveCtrl(24)=1  

If IfTime(480,1440,Min) AND VWC_53<0.38 AND VWC_53>0.1 Then ValveCtrl(25)=1  

If IfTime(480,1440,Min) AND VWC_61<0.38 AND VWC_61>0.1 Then ValveCtrl(26)=1  

If IfTime(480,1440,Min) AND VWC_69<0.38 AND VWC_69>0.1 Then ValveCtrl(27)=1  

If IfTime(480,1440,Min) AND VWC_77<0.38 AND VWC_77>0.1 Then ValveCtrl(28)=1  

If IfTime(480,1440,Min) AND VWC_85<0.38 AND VWC_85>0.1 Then ValveCtrl(29)=1  

If IfTime(480,1440,Min) AND VWC_93<0.38 AND VWC_93>0.1 Then ValveCtrl(30)=1  

If IfTime(480,1440,Min) AND VWC_101<0.38 AND VWC_101>0.1 Then ValveCtrl(31)=1  

If IfTime(480,1440,Min) AND VWC_109<0.38 AND VWC_109>0.1 Then ValveCtrl(32)=1  

If IfTime(480,1440,Min) AND VWC_117<0.38 AND VWC_117>0.1 Then ValveCtrl(33)=1  

If IfTime(480,1440,Min) AND VWC_125<0.38 AND VWC_125>0.1 Then ValveCtrl(34)=1  

If IfTime(480,1440,Min) AND VWC_133<0.38 AND VWC_133>0.1 Then ValveCtrl(35)=1  

If IfTime(480,1440,Min) AND VWC_141<0.38 AND VWC_141>0.1 Then ValveCtrl(36)=1  

If IfTime (485,1440, Min) Then ValveCtrl(1)=0  

If IfTime (485,1440,Min) Then ValveCtrl(2)=0 172  
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If IfTime (485,1440,Min) Then ValveCtrl(3)=0  

If IfTime (485,1440,Min) Then ValveCtrl(4)=0  

If IfTime (485,1440,Min) Then ValveCtrl(5)=0  

If IfTime (485,1440,Min) Then ValveCtrl(6)=0  

If IfTime (485,1440,Min) Then ValveCtrl(7)=0  

If IfTime (485,1440,Min) Then ValveCtrl(8)=0  

If IfTime (485,1440,Min) Then ValveCtrl(9)=0  

If IfTime (485,1440,Min) Then ValveCtrl(10)=0  

If IfTime (485,1440,Min) Then ValveCtrl(11)=0  

If IfTime (485,1440,Min) Then ValveCtrl(12)=0  

If IfTime (485,1440,Min) Then ValveCtrl(13)=0  

If IfTime (485,1440,Min) Then ValveCtrl(14)=0  

If IfTime (485,1440,Min) Then ValveCtrl(15)=0  

If IfTime (485,1440,Min) Then ValveCtrl(16)=0  

If IfTime (485,1440,Min) Then ValveCtrl(17)=0  

If IfTime (485,1440,Min) Then ValveCtrl(18)=0  

If IfTime (488,1440,Min) Then ValveCtrl(19)=0  

If IfTime (488,1440,Min) Then ValveCtrl(20)=0  

If IfTime (488,1440,Min) Then ValveCtrl(21)=0  

If IfTime (488,1440,Min) Then ValveCtrl(22)=0  

If IfTime (488,1440,Min) Then ValveCtrl(23)=0  

If IfTime (488,1440,Min) Then ValveCtrl(24)=0  

If IfTime (488,1440,Min) Then ValveCtrl(25)=0  

If IfTime (488,1440,Min) Then ValveCtrl(26)=0  

If IfTime (488,1440,Min) Then ValveCtrl(27)=0  

If IfTime (488,1440,Min) Then ValveCtrl(28)=0  

If IfTime (488,1440,Min) Then ValveCtrl(29)=0  

If IfTime (488,1440,Min) Then ValveCtrl(30)=0  

If IfTime (488,1440,Min) Then ValveCtrl(31)=0  

If IfTime (488,1440,Min) Then ValveCtrl(32)=0  

If IfTime (488,1440,Min) Then ValveCtrl(33)=0  

If IfTime (488,1440,Min) Then ValveCtrl(34)=0  

If IfTime (488,1440,Min) Then ValveCtrl(35)=0  

If IfTime (488,1440,Min) Then ValveCtrl(36)=0  

If IfTime (488,1440,Min) Then ValveCtrl(48)=0 'turn fertilizer tank pump off  

SDMCD16AC (ValveCtrl(), 3,0)  

T_kPa_33=(FullBR_3(1)*79.35+56.02)/10  

T_kPa_34=(FullBR_3(2)*79.35+56.02)/10  

T_kPa_35=(FullBR_3(3)*79.35+56.02)/10  

T_kPa_36=(FullBR_3(4)*79.35+56.02)/10  

T_kPa_37=(FullBR_3(5)*79.35+56.02)/10  

T_kPa_38=(FullBR_3(6)*79.35+56.02)/10  

T_kPa_39=(FullBR_3(7)*79.35+56.02)/10  

T_kPa_40=(FullBR_3(8)*79.35+56.02)/10 173  
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T_kPa_41=(FullBR_3(9)*79.35+56.02)/10  

T_kPa_42=(FullBR_3(10)*79.35+56.02)/10  

T_kPa_43=(FullBR_3(11)*79.35+56.02)/10  

T_kPa_44=(FullBR_3(12)*79.35+56.02)/10  

T_kPa_45=(FullBR_3(13)*79.35+56.02)/10  

T_kPa_46=(FullBR_3(14)*79.35+56.02)/10  

T_kPa_47=(FullBr_3(15)*79.35+56.02)/10  

T_kPa_48=(FullBR_3(16)*79.35+56.02)/10  

T_kPa_49=(FullBR(1)*79.35+56.02)/10  

T_kPa_50=(FullBR(2)*79.35+56.02)/10  

T_kPa_51=(FullBR(3)*79.35+56.02)/10  

T_kPa_52=(FullBR(4)*79.35+56.02)/10  

T_kPa_53=(FullBR(5)*79.35+56.02)/10  

T_kPa_54=(FullBR(6)*79.35+56.02)/10  

'Call Data Tables and Store Data  

CallTable Tens2  

CallTable Table2  

CallTable WateringRecord  

NextScan 

 

 


