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Abstract

The corn planthopper, Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae), transmits Maize mosaic rhabdo-

virus (MMV), an important pathogen of maize and sorghum, in a persistent propagative manner. To better

understand the vectorial capacity of P. maidis, we determined the efficiency of MMV acquisition by nymphal

and adult stages, and characterized MMV titer through development. Acquisition efficiency, i.e., proportion of

insects that acquired the virus, was determined by reverse transcriptase polymerase chain reaction (RT-PCR)

and virus titer of individual insects was estimated by quantitative RT-PCR. Acquisition efficiency of MMV dif-

fered significantly between nymphs and adults. MMV titer increased significantly over time and throughout

insect development from nymphal to adult stage, indication of virus replication in the vector during develop-

ment. There was a positive association between the vector developmental stage and virus titer. Also, the aver-

age titer in male insects was threefold higher than female titers, and this difference persisted up to 30 d post

adult eclosion. Overall, our findings indicate that nymphs are more efficient than adults at acquiring MMV and

virus accumulated in the vector over the course of nymphal development. Furthermore, sustained infection

over the lifespan of P. maidis indicates a potentially high capacity of this vector to transmit MMV.
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Maize mosaic virus (MMV) is a plant virus (genus

Nucleorhabdovirus) from the family Rhabdoviridae. Like other

viruses from this family, MMV has a bacilliform or bullet-shaped

virion consisting of a single, negative-sense genomic RNA encapsi-

dated into nucleocapsid (N) protein subunits and surrounded by a

lipid bilayer derived from the plant or insect host. It encodes a single

viral glycoprotein (G) embedded in the lipid membrane, and G pro-

teins are exposed on the surface of the virion. G is a trimer com-

posed of an ectodomain, a transmembrane domain, and a

cytoplasmic tail. The G trimer is essential for virus attachment to

cell receptors and entry into host cells by endocytosis (Coll 1995).

The matrix (M) protein interacts with both the N and the lipid

bilayer of the virion. The phosphoprotein (P) and large (L) protein

are required for synthesis of viral RNAs (Jackson et al. 1999). The

family Rhabdoviridae includes the human and animal pathogen

Rabies virus; Vesicular stomatitis virus, an insect-transmitted live-

stock pathogen; Bovine ephemeral fever virus; and 70 other plant-

pathogenic viruses transmitted by arthropods (Jackson et al. 2005).

Rabies virus is a progressive neurotropic virus like MMV that is

known to affect the behavior of infected humans and animals

(Rupprecht et al. 2002). Sigma virus (SIGMAV) is also a rhabdovi-

rus and a naturally occurring disease agent of Drosophila mela-

nogaster. SIGMAV replicates in the neural tissues of its insect host

and upregulates expression of genes related to innate immunity

(Tsai et al. 2008, Teninges 1999). MMV replicates in corn (Zea

mays L.) and the insect host/vector Peregrinus maidis (Ashmead)

(Hemiptera: Delphacidae) (Falk and Tsai 1985, McDaniel et al.

1985). MMV multiplication in P. maidis was confirmed through

enzyme-linked immunosorbent assay over two decades ago (Falk

and Tsai 1985). The next report of virus accumulation in the vector

came a few decades later when Ammar et al. (2004) used immuno-

fluorescence confocal laser scanning microscopy to study the accu-

mulation and assembly sites of MMV in the tissues of P. maidis. The

extensive infection of the organs and tissues of P. maidis was further

investigated by studying the dissemination route of MMV in the

insect vector (Ammar and Hogenhout 2008). Collectively, these
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studies provided important information on the replication and dis-

semination of the virus within the vector.

P. maidis transmits MMV in a persistent propagative manner

(Nault and Ammar 1989, Hogenhout et al. 2008). It is the only

known vector of MMV and another plant virus, Maize stripe virus

(MSpV, genus Tenuivirus, not assigned to a family or order)

(Ammar et al. 2009, Maramorosch 1955). P. maidis is a significant

pest in subtropical and tropical environments. The hemipterous

insect feeds on the sap of two agronomically important crops, sor-

ghum, and corn, and it develops in three stages: egg, nymph, and

adult. The nymphs have five instars and differ from the adults only

in size, shape, and their organs of flight and stage duration (Tsai and

Wilson 1986). The life cycle of the planthopper is complete in about

1 mo. At 27 6 1�C, the average length of the nymphal stage is

17.20 6 1.50 d, and adults are quite long lived with an average life-

span of 36.10 6 20.0 d (Tsai and Wilson 1986). The adults can have

two different wing morphological types: the short-winged and long-

winged forms are called brachypters and macropters, respectively.

Only the latter have functional wings. Transmission of MMV in the

field relies specifically on its vector and it is not known to be trans-

mitted by other insects or by mechanical inoculation (Maramorosch

1955). In the laboratory, MMV can be mechanically passaged using

a specialized technique termed vascular puncture inoculation (Louie

1995). Transmission studies showed that P. maidis becomes more

efficient at transmitting the virus when injected with purified MMV

(85%) compared with acquiring the virus from MMV-infected

plants (42%) (Falk and Tsai 1985). This suggests that the midgut is

a transmission barrier, and that if bypassed, MMV transmission

occurs more efficiently.

The amount of virus in the vector is often positively correlated to

the efficiency and frequency of transmission. For example, Tomato

spotted wilt virus (TSWV), a Tospovirus from the family

Bunyaviridae, is transmitted in a persistent propagative manner by

Frankliniella occidentalis, the western flower thrips. In thrips, the

vector acquires TSWV at the larval stage and transmits the virus

when in the adult stage (Van de Wetering et al. 1996). Rotenberg

et al. (2009) showed that viruliferous thrips transmit TSWV more

frequently when virus titers are high in the insect. Maize chlorotic

dwarf virus (MCDV) and a rhabdovirus, Maize fine streak virus

(MFSV), are semipersistently and persistently transmitted by

Graminella nigrifrons (Forbes), respectively (Redinbaugh et al.

2002, Choudhury and Rosenkranz 1983). MCDV-inoculative

G. nigrifrons exhibit higher transmission frequency when given lon-

ger access to infected plants (Choudhury and Rosenkranz 1983).

MFSV is a nucleorhabdovirus like MMV, and was shown to infect

nymphs earlier and harbor higher titer than adults. With longer

acquisition periods on MFSV-infected plants, viral titer and trans-

mission increased in the G. nigrifrons (Todd et al. 2010).

The nymphal and adult stages of P. maidis can acquire and trans-

mit MMV. This is true also for other propagative viruses such as the

Maize rayado fino virus (MRFV) and Oat blue dwarf virus transmit-

ted by leafhoppers Dalbulus maidis and Macrosteles fascifrons,

respectively. These viruses were shown to be more efficiently trans-

mitted when they were acquired during nymphal stages rather than

the adult stage (Banttari and Zeyen 1970, Nault et al. 1980).

Ammar et al. (1987) reported that P. maidis nymphs were better vec-

tors of MSpV at 2 wk postacquisition than adults, but there were no

differences in transmission efficiencies between stages at 4 wk

postacquisition.

P. maidis sustains a persistent and propagative accumulation of

MMV and allows it to persist without obvious pathogenic effects.

Higashi and Bressan (2013) have shown that MMV has inconsistent

to minimal direct effects on fecundity, mortality of nymphs, longev-

ity, and time of development. The objectives of this study are to bet-

ter understand how virus titer changes over time in the

developmental stages of the vector by quantifying MMV titer in the

nymphal and adult stages of P. maidis and to investigate in which of

the two stages the insect acquires the virus more efficiently. The

data presented here will help further elucidate the cellular and

molecular aspects of virus–vector interaction in this pathosystem

that may cause potential changes in host behavior and physiology

leading to higher efficiency of MMV transmission and spread.

Materials and Methods

Insect and MMV-Infected Plant Maintenance

Laboratory colonies of P. maidis were derived from original field

collections (1971) by R. Namba in Hawaii (University of Hawaii,

Honolulu). Colonies were maintained on sweetcorn cultivar Early

Sunglow from Syngenta Seeds (Greensboro, NC) in growth chamber

facilities as previously described (Wayadande and Nault 1993).

Rearing, and acquisition and transmission experiments were carried

out in the growth chambers with a photoperiod of 18:6 (L:D) h at

25 6 1�C. To have insects of a similar age, more than 400 uninfected

adults were allowed to feed and oviposit for 1 wk on healthy corn

plants. After 1 wk, the adults were removed and the plants were

observed for hatched nymphs. MMV was maintained in corn by

serial inoculation using P. maidis. Inoculated plants were used as

source plants 1 to 2 wk after MMV symptoms became visible as

chlorotic striping and streaking with apical bending and stunted

growth.

Virus Source and Serial Inoculation

MMV-inoculated seeds of the sweetcorn cultivar Spirit were

obtained from M. G. Redinbaugh (USDA-ARS and The Ohio State

University). Seeds were inoculated through vascular puncture inocu-

lation (Louie 1995). Fifteen pots were sown with four seeds each.

Plants that showed MMV symptoms were used for the initial acquis-

ition of the virus by P. maidis. Two hundred uninfected adults were

fed with the infected plants for 14 d (acquisition access period, AAP)

before transfer to a noninfected corn plant for inoculation. MMV

has a latent period of approximately 14 d and a higher proportion of

insects acquire MMV with longer acquisition periods (Falk and Tsai

1985, Ammar and Hogenhout 2008). The rearing cages were alumi-

num-framed (Catalog no. 1450 M) purchased from Bioquip Inc.

(Compton, CA). After 14-d AAP, the insects were transferred to a

new cage with four pots of healthy corn plants (10 plants per pot) in

V2 to V3 vegetative stage for a 7-d IAP. After inoculation, the plants

were taken out of the cage and placed in a plastic tub container with

Hot Shot insecticide strip (Chemsico, St. Louis, MO) to kill any

remaining insects on the plants. After 2 h, the plants were moved to

a larger rearing (Catalog no. 1450DC) cage and kept in a growth

chamber. Four pots of new healthy corn plants were placed in the

cage for a second 7-d IAP. Plants were changed every week for

sequential inoculations to maintain virus-infected plants, and this

continued for 8 wk or until the number of insects was less than 100.

Acquisition of MMV by P. maidis

First instar nymphs or adults were used to check acquisition effi-

ciency following oral acquisition of the virus from MMV-infected

plants. First instar nymphs or adults were collected and moved to

MMV-infected corn plants. The insects were allowed a 7-d AAP.

Groups of 5 or 20 insects were collected and subjected to a 7-d

2 Journal of Insect Science, 2016, Vol. 16, No. 1

 by guest on Septem
ber 13, 2016

http://jinsectscience.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text:  
Deleted Text: one
Deleted Text: nth
Deleted Text:  &deg;
Deleted Text: d 
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  (OBDV)
Deleted Text:  
Deleted Text:  
Deleted Text: -
Deleted Text: -
Deleted Text: i
Deleted Text: p
Deleted Text: m
Deleted Text: photoperiod 
Deleted Text: &deg;
Deleted Text:  during light and dark periods
Deleted Text: ee
Deleted Text: s
Deleted Text: s
Deleted Text: i
Deleted Text:  
Deleted Text: -
Deleted Text: s
Deleted Text: ays
Deleted Text: &reg;
http://jinsectscience.oxfordjournals.org/


holding period on healthy corn plants of V2 to V3 vegetative stage

in a 12- by 3-inch butyrate tube cage. Later, the insects were col-

lected and separated by sex and wing phenotype. Individual insects

were moved to microfuge tubes and quickly frozen in liquid nitrogen

and kept at �80�C until RNA extraction for MMV acquisition anal-

ysis by endpoint polymerase chain reaction (PCR). The experiment

was done three times. Overall, the total number of insects analyzed

was 260 and 131 for nymphs and adults, respectively. The sex of the

adults was determined by checking the presence or absence of an

ovipositor. The corn plants were maintained in the growth chamber

and observed for development of disease symptoms.

RNA Extraction for Groups or Individual Insects and cDNA

Preparation

Total RNA from individual and groups of insects was prepared

using TRIzol (Invitrogen, Carlsbad, CA) followed by isopropanol

precipitation. For individual insects, 50ml of TRIzol reagent was

added to the 1.5 ml microfuge tube containing the individual insect.

Homogenization was done at room temperature (RT) using a micro-

pestle and a Kontes cordless pestle motor (Daigger, Vernon Hills,

IL). An additional 150ml TRIzol was added to the homogenized

sample to make 200ml total volume and incubated at RT using a

microfuge rotator for 3 min. For groups of insects, 20 third instars

(N3), N4, N5, female, or male adults, a total of 1 ml TRIzol was

used to grind the insect bodies. For this experiment, there were seven

biological replicates. The samples were then centrifuged at

12,000� g for 5 min at 4�C. The supernatant was collected and

transferred to a new microfuge tube. Twenty microliters (200ml for

groups) of chloroform was added, and the mixture was shaken vigo-

rously for 15 s and incubated at RT for 5 min. After incubation, the

mixture was separated by centrifugation at 12,000� g for 5 min at

4�C. The aqueous phase was carefully pipetted and transferred to a

new tube. One hundred microliters of isopropanol (500ml for

groups) was added, and the mixture was incubated at RT for

10 min. The mixture was centrifuged at 12,000� g for 5 min at 4�C.

The RNA pellet was often invisible until the addition of 1 ml of

75% ethanol. After centrifugation at 7,600� g for 5 min at 4�C, the

pellet was air dried and redissolved in 10ml (50–150ml for larger pel-

lets) of diethylpyrocarbonate (DEPC)-water. Total RNA (1mg) was

reverse transcribed using a Verso complementary DNA (cDNA) kit

(ThermoFisher Scientific, Waltham, MA) in a 10-ml reaction mixture

volume. The resulting cDNA was used for the detection of MMV

infection by reverse transcriptase PCR (RT-PCR) or quantitative

RT-PCR (qRT-PCR).

RT-PCR for Detection of MMV Infection

Detection of MMV infection was done by RT-PCR using GoTaq

Flexi DNA Polymerase (Promega, Madison, WI). The M gene

encoded by the MMV genome was amplified using the primer set:

forward primer (FP), 50-TCC AGC AAC TCA ATC ATT-30; reverse

primer (RP), 50-CCT ATC AAT CCT TCC TCT-30. b-Tubulin was

used as internal control with primers: FP, 50-GCA GTG TGG AAA

TCA AAT CG-30 and RP, 50-GGC TCC TTC AGT GTA GTG G-30.

In total, 10ml reaction volume was run using the following thermal

cycling conditions: denaturation at 95�C for 1 min, annealing at

55�C for 1 min, extension at 72�C with 35 cycles. An insect was

considered infected and acquired MMV if it yielded a PCR product

for the M gene that was easily visualized in agarose gels (10ml of

PCR product loaded) stained with Ethidium bromide (EtBr). Insects

that tested positive for MMV were further analyzed for virus titer by

qRT-PCR.

Quantification of the Virus Titer Using qRT-PCR in

Individual or Groups of P. maidis

Individuals or groups of insects were analyzed for virus titer by

qRT-PCR. cDNA was prepared as described above, with a total

reaction volume of 10ml. The cDNA was diluted 10 times prior to

amplification. From this, 8-ml cDNA was used as template for two

replicates in the qRT-PCR experiment. To obtain highly reliable

quantification data, we first analyzed different candidate internal

reference controls. Specific qRT-PCR primers were designed for the

following: actin, b-tubulin, and ribosomal proteins RPI8 and

RPL10. Expression stability of these genes was assayed in MMV-

infected and healthy P. maidis. The best internal reference gene was

chosen based on the analysis by the “BestKeeper” excel tool (data

not shown). This tool analyzes gene expression variability by calcu-

lating the cycle threshold (Ct) set, SD, and coefficient of variance,

and then pairwise comparison calculates the correlation between the

genes with the “BestKeeper index” (Pfaffl et al. 2004). This applica-

tion ranked RPL10 as the least variable gene followed by RPI8.

Pairwise comparisons used the genes of the BestKeeper index with

each of the two best genes, RPL10 and RPI8; RPL10 showed higher

correlation. Based on these results, we chose RPL10 as the internal

reference control to be used in our qRT-PCR experiments. MMV

titer was measured based on the relative expression of the target

gene, MMV N, on a nonregulated internal reference gene, RPL10.

Beacon Designer software (Premier Biosoft, Palo Alto, CA) was

used for the automated design of primers for qRT-PCR: MMV N

FP, 50-GAG CAT CTG GTA GAG GAG-30, RP, 50-CAT AGG TTC

AGG AGC GTA T-30 and RPL10 FP, 50-CGA AGA AGT GGG

GTT TCA-30 and RP, 50-CTC TGG CCT GTA CTT CAC-30. Both

primer pairs were tested for sensitivity and efficiency. qRT-PCR was

performed using CFX 96 Thermal Cycler (Bio-Rad, Hercules, CA)

using SYBR green chemistry and RT fluorescence measurements.

This technique was carried out using iQ SYBR Green Mix (Bio-

Rad). The 10-ml reaction mixture consisted of 2� SYBR Green PCR

master mix, 200 nM of each primer, and 40 ng of cDNA. The

experiment was run with 40 cycles of 10 s at 95�C and 45 s at 55�C,

and each cycle was scanned to quantify the PCR products.

Amplification plots in RT were constructed using CFX96 software

(Bio-Rad). Quantitative analysis of the MMV N expression was

done using the formula of Pfaffl (2001) as average normalized abun-

dance ratios. MMV titer was reported as ratios and log10 values of

the normalized abundance ratios.

MMV Titer in Adult P. maidis Through Time

First instar nymphs were allowed a 7-d AAP on MMV-infected

plants. After 7 d, the insects were removed and moved to healthy

corn plants. Adults were collected at 10, 20, 25, 35, and 40 d post-

acquisition to MMV-infected plants. The insects were placed in indi-

vidual microfuge tubes, quickly frozen in liquid nitrogen, and stored

at �80�C until RNA extraction was conducted. RNA was extracted

from individual insects following the procedure described above.

The insects were checked for MMV acquisition by endpoint PCR.

Insects that acquired MMV were further analyzed for virus titer by

qRT-PCR. There were three biological replicates. The total number

of insects analyzed was 59, 33, 42, 29, and 29 on 10th, 20th, 25th,

35th, and 40th day postacquisition on MMV-infected plants,

respectively.

Statistical Analyses

Different statistical procedures were used to analyze the datasets on

virus titer. All analyses were done in SAS version 9.3 (SAS Institute
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Inc., Cary, NC). Mixed model analysis (PROC MIXED) and the

Wilk–Shapiro test (PROC UNIVARIATE) to evaluate the normality

of residuals and pairwise comparisons using Tukey adjustments

were used to determine if 1) MMV titer differed among the nymphal

(N3, N4, N5) and adult developmental stages, 2) titer varied

between male and female insects at the different time points post

acquisition, and 3) titer change in individual adults over time. The

correlation between developmental stages of insect and virus titer

was analyzed using Spearman’s rank correlation analysis (PROC

CORR). The difference in percent acquisition (proportion of indi-

viduals testing positive for virus) between nymphs and adults was

analyzed using the general model (PROC GENMOD). All tests were

done at 5% level of significance.

Results

MMV Acquisition in the Nymph or Adult Stages of

P. maidis
In groups of 5 insects per plant, a total of 120 insects overall for

nymphs and adults were analyzed and 41 nymphs (68%) and 29

adults (48%) were infected with MMV (Table 1). In groups of 20

per plant, a total of 271 nymphs and adults overall were analyzed.

There were 116 nymphs infected with MMV out of 200 (58%),

compared with only 23 from a total of 71 adults analyzed (32%)

(Table 1). The mean % acquisition for nymphs was 23% higher

than the adults (P¼0.0031), which indicates that nymphs acquire

MMV more efficiently than adults.

MMV Titer in the Different Developmental Stages of P. maidis

To obtain reliable titer quantification data, we used the BestKeeper

tool to identify the best internal reference gene for qRT-PCR and

this application ranked RPL10 as the least variable gene.

Quantification of MMV titer from the third to fifth instar (N3, N4,

N5) until the adult stage of P. maidis revealed that the virus titer

increases postacquisition from MMV-infected plants (P<0.0001)

(Fig. 1). MMV titers in N3 and N4 were not significantly different

but these two life stages showed significant difference with titer

adult insects. MMV titers in N4 and N5 were not significantly

different but titer in N4 is significantly different from the adult

stage. Correlation analysis showed that the developmental

stages and virus titer is positively correlated (rs¼0.7080,

P<0.0001) (Fig. 1).

MMV Titer in Individual Brachypterous P. maidis Adults

Analysis of MMV relative abundance in groups of insects showed

that titer increased over time and peaked at the adult stage.

However, these samples represented a group of exposed insects and

consisted of insects infected with MMV and others that were not.

We investigated the titer of individual insects to determine the

Table 1. Percentage acquisition of MMV by Peregrinus maidis nymphs or adults

MMV acquisition by P. maidis nymphs or adults

P. maidis held on individual plant Exp. no. Nymph Exp. no Adult

No. of insects

analyzed

MMV infected Mean

% acquisition

No. of insects

analyzed

MMV infected Mean

% acquisition

Groups of 5 1 20 12 68 1 20 2 48

2 20 15 2 20 12

3 20 14 3 20 15

Total 60 41 60 29

Mean total 20 13.7 20 9.7

Groups of 20 1 70 42 58 1 20 8 32

2 70 32 2 21 5

3 60 42 3 30 10

Total 200 116 71 23

Mean total 66.7 38.7 23.7 7.7

Overall total no. of insects 260 157 131 52

Overall mean % acquisition 63* 40*

Nymphs or adults were exposed to MMV for 7 d (7-d AAP) and MMV acquisition was determined by RT-PCR. Insects were held on individual healthy plants

in groups of 5 or 20 for 7 d.

*Significant difference (P¼ 0.0031) in mean % acquisition between nymph and adult P. maidis was analyzed using the general model PROC GENMOD of SAS v. 9.3.

Fig. 1. MMV titer from the developmental stages of P. maidis from N3 to adult

stage. Groups of 20 insects per developmental stage at day 1 after eclosion

were analyzed for MMV titer by qRT-PCR. Titer is reported as log10 values of

the normalized abundance ratio of MMV N and RPL10. Mixed model analysis

(PROC MIXED) and the Wilk–Shapiro test (PROC UNIVARITE) were used for

comparisons of viral titer over time. Tukey’s method was used to perform

multiple comparisons of means in the different developmental stages. Titer in

the developmental stage headed by different letters is significantly different.

The correlation between developmental stages and virus titer was analyzed

using Spearman’s rank correlation analysis (PROC CORR)
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variability and difference between males and females. For analysis,

MMV titer was converted to log10 values of the normalized abun-

dance ratios (Fig. 2). In individual females, the mean average MMV

titer was 1.15 with a minimum average titer of 1.4�10�4 and a

maximum average titer of 9.49 (Supp Table 1). In males, the mean

average titer was 4.54 with a minimum of 2.16�10�2 and a maxi-

mum of 20.3 (Supp Table 1). The mean MMV titer showed that the

MMV titer in individual males and females is significantly different

(P¼0.0004), with the mean MMV titer of males higher than in

females by fourfold.

MMV Titer in Adult P. maidis Through Time.

Our experiments revealed that the mean MMV titer of adults from

day 10 to 40 postacquisition to MMV-infected plants was signifi-

cantly different (Fig. 3A) (P¼0.0054), in the range of 0.341–1.51 in

females and 1.06–5.17 in males (Supp Table 2). The mean titer at

day 10 was significantly different from the mean titer at day 25, 35,

and 40 (P¼0.0300, 0.0035, and 0.0464, respectively) (Fig. 3A), but

the mean titer at days 20–40 postacquisition to MMV-infected

plants was not significantly different (P¼0.2068–0.9998) (Fig. 3A).

The mean MMV titer in females and males from days 10 to 40 from

the three biological replicates revealed a significant difference

(P¼0.0382) (Fig. 3B, Supp Table 2), and the MMV titer in males

(2.98) was higher than in females (0.853) over the time course

experiment. The mean titer of males at day 10 were significantly

higher than females (P¼0.049) and there was an overall trend for

males to have higher MMV titers than females, although not always

statistically different (Fig. 3B). Only at the 35th day did the female

planthoppers have a higher virus titer (P¼0.0198). Overall, the titer

of males was 3.5-fold higher than females, which is consistent with

the titer observed previously with the individual adult brachypters

(Fig. 2).

Discussion

Our work presents data quantifying a plant rhabdovirus in its insect

vector using a qRT-PCR platform for virus titer analysis. In some

plant viruses transmitted by insects, the life stage of the vector dur-

ing the time of acquisition is important for transmission efficiency.

In those cases, the nymphal or larval stages are more susceptible to

infection than the adults (Todd et al. 2010) and accumulation and

replication of the virus in the vector as it ages increases the fre-

quency of transmission (Nagata et al. 1999, Anhalt and Almeida

2008, Inoue et al. 2009, Todd et al. 2010). In P. maidis, MMV can

be acquired in the nymphal and adult stages of the vector and the

insect can remain viruliferous during its lifetime. We found that

20% more insects were positive for virus acquisition when they

were exposed to infected plants at the nymphal stage than when

exposed at the adult stage. This result showed that the chance of

P. maidis acquiring the virus is higher when it is exposed to MMV-

infected plants at the nymphal stage than when it is exposed at the

adult stage. As MMV can be acquired early in the lifespan of

P. maidis, this could mean longer persistence and higher titer in the

Fig. 2. A box-and-whisker plot of MMV titer data distribution from individual

adult male or female P. maidis. MMV titer is reported as log10 values of the

normalized abundance ratio of MMV N and RPL10. The percentile values for

distribution of the titer data were computed using SigmaPlot v.10.0. The

boxes show the 25th and 75th percentiles of MMV titer in male or female

P. maidis. The median value is the line inside the box while the whiskers on

top and bottom of the box represent the largest and smallest titer, respec-

tively. Solid points on top or bottom of the whiskers represent outliers. N is

the number of adult P. maidis analyzed. Letters over the box plots indicates

significant difference (P¼0.0004) analyzed using mixed model analysis

(PROC MIXED).

Fig. 3. MMV titer from individual adult P. maidis from day 10 to 40 postacqui-

sition on MMV-infected plants. (A) The days postacquisition to MMV was

analyzed for its effect on MMV titer in mixture of female and male adults. (B)

The difference between female and male titers at days 10, 20, 25, 35, and 40

postacquisition to MMV-infected plants was analyzed. Statistical analysis

used was a Wilk–Shapiro test for testing normality of residuals and a mixed

model analysis (PROC MIXED). MMV titer is reported as log10 values of the

normalized abundance ratio of MMV N and RPL10. Asterisk at day 25 postac-

quisition to MMV is the time point where female mean titer is significantly dif-

ferent than male.

Journal of Insect Science, 2016, Vol. 16, No. 1 5

 by guest on Septem
ber 13, 2016

http://jinsectscience.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text: x
Deleted Text: -
http://jinsectscience.oxfordjournals.org/lookup/suppl/doi:10.1093/jisesa/iev154/-/DC1
Deleted Text: x
Deleted Text: -
http://jinsectscience.oxfordjournals.org/lookup/suppl/doi:10.1093/jisesa/iev154/-/DC1
Deleted Text: 4-
Deleted Text: t
Deleted Text: a
Deleted Text: t
Deleted Text: t
Deleted Text: -
Deleted Text:  to 
Deleted Text:  to 
http://jinsectscience.oxfordjournals.org/lookup/suppl/doi:10.1093/jisesa/iev154/-/DC1
Deleted Text:  to 
Deleted Text: -
Deleted Text:  to 
http://jinsectscience.oxfordjournals.org/lookup/suppl/doi:10.1093/jisesa/iev154/-/DC1
Deleted Text: .
Deleted Text:  
Deleted Text: . 
http://jinsectscience.oxfordjournals.org/


vector because the virus replicates in the vector (Ammar and Nault

1985, Hurd 2003, Ammar et al. 2004, Ingwell et al. 2012). Thus,

the developmental stage of the vector was important for acquisition

efficiency.

We sought to characterize the changes in MMV titer as plan-

thoppers develop because this could impact transmission efficiency.

Quantitative measurement of MMV titer in the developmental

stages of P. maidis using qRT-PCR was performed and virus titer

was expressed as the normalized abundance of MMV N RNA to an

internal reference standard, a ribosomal protein, RPL10. A 7-d AAP

was allowed for the first instar (N1) and the insects were transferred

to healthy plants afterward. A positive correlation between the titer

and developmental stage of the vector was found when we analyzed

the titer in groups of 20 insects per developmental stage starting at

N3, and the titer continuously increased from the nymphal to adult

stage.

In the early adult stage (1–3 d after eclosion from N5), we ana-

lyzed virus titer in individual female and male brachypters. For other

propagative viruses, the ability of an insect to transmit is associated

with accumulation of the virus in the salivary glands (Hogenhout

et al. 2008). The results of the quantitative measurement of MMV

in P. maidis showed that the two sexes harbor different amounts of

virus, with males having mean titer fourfold higher than females. To

explain this result, we observed that the amount of RPL10 RNA in

females is more abundant than in males. RPL10 has been shown to

have constant expression among the developmental stages of

P. maidis, so we used the same gene as an internal reference in the

analysis of viral titer for individual insects. The difference in the

actual RNA amount can be due to the size or body mass of the insect

and the severity of the infection in the tissues of the individual

insects being analyzed. Female brachypters are bigger than male bra-

chypters, and although we know that MMV had already replicated

in almost all of the tissues and organs of the insects at the time of

the assay, the virus in the individual insects may have different rates

of replication on the different parts of their body. In TSWV research,

males have been found to have higher TSWV N RNA relative to

actin RNA, but expressing the virus titer as copies of viral N RNA

(cDNA) per insect, the females have more than twice the amount of

N RNA molecules (Rotenberg et al. 2009).

Analysis of the mean titer of adults through time indicated that

mean titer at day 10 postacquisition on MMV-infected plants was

significantly different from days 20 to 40 postacquisition; however,

the mean titer at day 20 is not significantly different from the titers

at days 25 to 40. These results suggest that MMV titer in adults,

although it persists inside the vector, is relatively consistent for the

duration of the adult life span. When we analyze the mean titers of

males and females, male mean titer is higher, which is consistent

with results from the previous experiment on acquisition when we

looked at individual adults collected at the early adult stage. We

expected variability in the titer per insect, but the mean titer of

males was consistently 3.5 - to 4-fold higher than that of females

(Suppl Tables 1 and 2). Aside from body size, the difference in the

virus titer between the sexes may be explained by the difference in

female and male cellular or molecular activities that would impact

the virus lifecycle. For example, the physiological needs as they

develop into adults likely differ between males and females and this

may affect virus replication. Males and females also have different

nutritional requirements as they age (Auclair 1963, Dadd 1973). In

adult tsetse flies Glossina palpalis, a vector of the flagellate proto-

zoan Trypanosoma brucei gambiense, which causes sleeping sick-

ness, the amino acid components in adult males occur at higher

concentrations than in females (Balogun 1971). In D. melanogaster,

the insulin-signaling pathway (ISP) controls the body and organ size

by controlling the nutritional conditions to the growing organs

(Shingleton et al. 2005). ISP is also involved in the allocation of

energy to specific ongoing processes related to reproductive physiol-

ogy. In female D. melanogaster, insulin signaling seems to have a

stimulatory effect on ecdysteroid production. Insulin receptor

mutant flies displayed impaired ovarian ecdysteroid synthesis (Tu

et al. 2002). In male fruitfly testes, ISP was found to regulate sper-

matogenesis and affected spermatocyte growth (Ueishi et al. 2009).

Physiological and related behavioral differences between male and

female insects may play a role in virus titer and transmission

efficiency.

In both humans and animals, females have been shown to have

enhanced levels of immunoreactivity compared with males (Cannon

and St. Pierre 1997, Taskiran et al. 1997, Rolf 2001, Fedorka et al.

2004, Ziebell et al. 2011). Females must provide an appropriate

environment for egg fertilization to succeed. In males, maintaining

the integrity of seminal fluid proteins that are transferred to the

female is important because this influences female reproductive

physiology (Kubli 2003). Research efforts in our laboratory to char-

acterize the effects of MMV infection in behavior and physiology of

the vector are underway. Based on previous work, we hypothesize

that P. maidis females may increase immunocompetence for success-

ful fertilization of eggs. On the other hand, males with a higher virus

titer could represent a reduction in immunocompetence or redistrib-

ution of immune cells (hemocytes) within the different components

of the innate immune system. The males could put more energy into

other physiological systems such as reproduction to favor good-

quality seminal proteins, which could influence female fertilization.

In the adult male cricket, Gryllus texensis, Adamo et al. (2000)

found that the phenoloxidase activity and resistance to Serratia mar-

cescens declined at the onset of sexual behavior compared with lev-

els in females and younger males. Whether this could be true in

adult P. maidis remains to be tested. On the other hand, MMV

might be able to counteract the antiviral mechanisms of the vector

by targeting the pathways of the immune defense response, includ-

ing RNA interference (RNAi). Several viruses evade immunity con-

trolled by the RNAi pathway by encoding viral suppressors of RNA

silencing (VSRs). Infection of Drosophila with Cricket paralysis

virus (CrPV) induces antiviral silencing and CrPV encodes a VSR

(Wang et al. 2006). There are several mammalian VSRs identified as

suppressors of host RNAi including NS1 of Influenza A, B, and C

viruses (Li et al. 2004), NSs of LaCrosse virus (Soldan et al.

2005), and Tat of Human immunodeficiency virus (Bennasser et al.

2005).

The new findings on P. maidis virus acquisition efficiency and

virus accumulation over the lifetime of the insect provide important

insights relevant to understanding the role of virus titer on the physi-

ology and behavior of the vector which can affect the transmission

process. The ability of P. maidis to support a lifelong MMV infec-

tion indicates that these insects have a high capacity for transmitting

the virus. The life span for P. maidis can exceed 100 d which means

that even a single generation of viruliferous planthoppers could

transmit virus for a good portion of the corn or sorghum production

cycle (Tsai and Wilson 1986). Further studies characterizing the

function of vector genes involved in interaction with MMV G or

proteins that are differentially expressed during viral infection may

help us to identify steps in the transmission process to disrupt

vector–virus interaction. The combination of molecular biology

resources for P. maidis and knowledge of the virus–vector interac-

tion will enable the identification of interacting molecules (Whitfield

et al. 2011, Yao et al. 2013, Barandoc-Alviar et al. 2014).
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