by

GUANG-CHUEN LIN
B. Ed., Taiwan Normal University, 1960
M. Ed., Taiwan Normal University, 1964

A MAS'TER'S REFORT
submitted in partisi fulfillment of the
requirements for the degree

NASTER OF SCIENCE

Department of Statistics

KANSAS STAIE UNIVERSITY
Nanhattan, Kansas

Approved by:

$L D$
2668
1967
$L 53$
TABLE OF CONTENTS
(. 2
1
INTACDLCDICN
3
FACTORIAL DESIGNS
DERIVATICN OF FREDICTOR-CORRECTOR EQLATION 13
NUMERICAL EXAMPLE 18
AFILICATION 24
DISCUSSICN 29
ACKNONLEDGMENT 30
REFERENCES 31

INTRODLCTICN

Frequently in scientific investietation, particulerly where an empirical approach has to be adopted, problems arise in which the effects of a number of different factors on some property or process are required to be evaluated. Such problems can usually be most economically investigated by arranging the experiments according to an ordered plan in which all the factors are varied in a regular way. Provided the plan has been correctly chosen, it is then possible to determine not only the effect of each individual factor but also the way in which each effect depends on the other factors (i.e. the interactions). This makes it possible to obtain a more complete picture of what is happening than would be obtained by varying each of the factors one at a time while keeping the others constant. Achieving this object is to decide on a set of values or levels, for each of the factors to be studied, and to carry out one or more trials of the process with each of the possible combinations of the levels of factors. Such an experiment is terned a factorial experiment.

A complete factorial experiment, in which all possible combinations of all the levels of the different factors are investigated, will involve a large number of tests when the number of factors is.laree. It is possible to investigate the main effects of the factors and their more important interactions in a fraction of the number of tests reouired for the complete factorial desiens, thus enabling the size of an ex-
periment to be reduced to a fraction of a full factorial experiment while still providing all the important information, (Box and Hinter 196la, Davies 1963).

The 2^{n} factorial designs are used to study the effects of n variables upon a response $\phi=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. The mathematical model initially assumed is the polynomial
$E(y)=\varnothing=b_{0}+\sum_{1=1}^{n} b_{1} x_{1}+\sum_{i<j}^{n} b_{1} g_{j} x_{1} x_{j}+\sum_{i<j<k} \sum_{i}^{n} b_{1} j k x_{i} x_{j} x_{k}+\ldots$.
where y is the observed response or the yield, $E(y)$ the expected vallie of y, the $b^{\prime} s$ unknown coefficients, and the $X^{\prime} s$ independent variables. Least squares estimates of all the coefficients may be obtained using Yates' Algorithm (1937). If the assumptions are correct, these coefficients will measure the individual effects of the variables (Box 1957). Since the 2^{n} designs constrain each variable to two levels the quadratic, cubic and other coefficients associated with the powers of the variables x_{i} are not considered in the model. In practice the complexity of the model is reduced by postponing consideration of the third and higher order terms until the first and second order terms have been fully explored (Hunter 1964). Thus the model may become either
$E(y)=\varnothing=b_{0}+\sum_{1}^{n} b_{1} x_{1}$
or
$E(y)=\varnothing=b_{0}+\sum_{i}^{n} b_{1} x_{1}+\sum_{1<j}^{n} b_{1 j} x_{1} x_{j}$.
the first order model and second order model, respectively.

This simplication fermits the use of 2^{n-k} fractional factorial designs where k is the magnitude of fractionation.

After a 2^{n-k} fractional factorial has been completed, an experimenter may wish to analyze the results and hope that large effects may be quickly discovered. It may happen that the results of this initial block of runs fail to provide ell the information expected, so that additional blocks are then added, the experimenter proceeding sequentially and pausing to review his data at the conclusion of each block. Often the individual runs comprising the block are also run sequentially. However it is the usual practice for the experimenter to wait until all runs in a block have been completed before analyzing the data.

In order to perform the analysis of sequential data, the exact least squares estimates of all the coefficients in the model can be rapidly obtained at the conclusion of each run, or any group runs, through the use of a "predictor-corrector equation", once an initial block of runs has been completed. This equation was developed by Plackett (1950). The original results are due to Gauss (1821).

This report will 111 ustrate the factorial desiens, the mathematical derivation of predictor-corrector equation, numerical examples and the applications of predictor-corrector equation.

factorial designs

1). Notation for the 2^{n} series

A complete 2^{n} factorial design requires all combinations
of two levels of each of n variables. The runs comprising the experimental desien are conveniently set out in either of two notations as illustrated for the eicht runs comprising a 2^{3} factorial in Table I^{\prime}.

Table 1
Symbols for 2^{3} Factorial Design

Run	Notation 1: Variables A B C	Notation 2: Variables 123		
Number				
1	(1)	-	-	-
2	- a	+	-	-
3		-	+	-
4	$a b$	+	+	-
5	c	-	-	+
6	ac	+	-	+
7	bc	-	+	+
8	$a b c$	+	+	+

In the second notation the variables are denoted by number 1, 2, 3, and their two versions take two different values, the hieh level is a plus sien, the low level a minus sien. The notation using plus and minus siens will be used in this report. The list of experimental runs is called the desien matrix. For a 2^{n} factorial, the desien matrix contains n columns and $N=2^{n}$ rows.
2). Estimation of effects

On the assumption that the observations are uncorrelated and have equal variance, then the 2^{n} factorial desiens provide independent minimum variance estimates of the grand averace
and of the $2^{n}-1$ effects.
In Table 2, where for convenience a 2% design is used, i matrix of independent variables X is énerated from the desien matrix. For examrle, 12 interaction column in X is obtained by multiplying the correspondine elements of the separate 1 and 2 columns. The first column of x consists entirely of plus siens and is used to provide an estimate of the mean. For a 2^{n} design the full matrix of independent variables X contains 2^{n} columns as well as 2^{n} rows. The estimate of effect $1 j \ldots n$ is obteined by taking the sum of products between the elements of Y and the corresponding elements of the column $X_{1 j \ldots} \ldots n$ and dividing this product by $N / 2$ where $N=2^{n}$; e.e.,

$$
\begin{equation*}
1 j \ldots n=2 / N\left(x_{1}^{\prime} \ldots \ldots n Y\right) \tag{4}
\end{equation*}
$$

Table 2
2^{3} Factorial Desien

Thlis, from Table 2 the 12 interaction effects is

$$
\begin{aligned}
12=\frac{2}{i j} X^{\prime}{ }_{12} Y & =\frac{2}{8}\left(+\cdots+\cdots+\left(\begin{array}{r}
4 \\
8 \\
6 \\
10 \\
12 \\
6 \\
4 \\
8
\end{array}\right]\right. \\
& =1 / 4(4-8-6+10+12-6-4+8) \\
& =2.5
\end{aligned}
$$

Each estimate has variance

$$
\begin{equation*}
\operatorname{Var}(\text { effect })=\frac{4 \sigma^{2}}{N} \tag{5}
\end{equation*}
$$

where σ^{2} is the variance of the individual observations.
The average is obtained by taking the sum of products of column X_{I} with the observation column Y and dividing the result by N, thus

$$
\begin{equation*}
\text { averace }=\overline{\mathrm{y}}=\left(X_{\mathrm{I}}^{\prime} Y\right) / \mathbb{N} \tag{6}
\end{equation*}
$$

Thus $\bar{y}=58 / 8=7.25$ with variance σ^{2} / N. By this process 2^{n} estimates can be obtained from 2^{n} runs. When n is large, the wealth of such estimates becomes an embarrassment. However, in many practical situations, the three-factor and multi-factor interaction effects can often be hopefully supposed to be negliaible in size (Cochran and Cox 1957, Box and Hunter 1961, John 1966). In this situation, fractional designs using a smaller number of runs may be employed.
3). $1 / 2$ fraction of the 2^{4} factorial

For illustration, the one half fraction of the 2^{4} design will be first discussed. Since the design is to contain $2^{4-1}=$

8 runs, a 2^{3} factorial desi\&n is first written down. The + end - elements associated with the 123 interaction then are used to identify the + and - versions of variable 4. The combination of observations used to estimate the main effect 4 is identical to thet used to estimate the three-factor interaction effect 123. The estimates of 4 and 123 are said to be confounded. The "4" effect really estimates the sum of the effects of 4 and 123 .

The resulting eight combinations shown in Table 3 give a particular half fraction of the comrlete 2^{4} desien. $A(1 / 2)^{k}$ fraction of a 2^{n} factorial desien is called a 2^{n-k} fractional factorial.

Table 3
2^{4-1} Fractional Factorial Desien

Design Natrix Matrix of Independent Variables Observations $123 \quad 123=4 \quad I=1234 \quad 1234121323123$ Y

- - -	-	$+$	- - - - +	+	$+$	-	12.1
+ - -	+	$+$	+ - - +	-	+	+	21.7
- + -	+	$+$	+ - +	+	-	+	29.0
+ + -	-	$+$	+ + - - +	-	-	+	25.7
- - +	$+$	$+$	- - + + +	-	-	+	17.3
+ - +	-	+	+ - + -	+	-	-	17.3
$-++$	-	+	- + + - -	-	$+$	-	12.9
+ + +	+	+	+ + + + +	+	$+$	+	36.2

It is desirable to have a eeneral method which enables one to determine which effects are confounded. This is accomplished for tils design by introducine the equality $4=123$ where the multiplication product 123 refers to the multinlication of the individual elements in the correspondine column $1,2,3$. It is
obvious that by multiplyine the elements in ony column by a column of identical elenents, a column of rluses correspondine to I will result. Thus it follows $1^{2}=I, 2^{2}=I$, and so on. On multiplyine both sides of the equation $4=123$ by 4:

$$
\begin{equation*}
4^{2}=1234 \text { that is } I=1234 . \tag{7}
\end{equation*}
$$

This identity is readily confirned for if the elements in column $1,2,3$ and 4 are multiplied together a column of plus siens is obtained, that is I. The interaction associated with I is said to be a eeneretor pf the desien. In this particular instance there is only one generator so this provides the defining relationships which exist between the effects. Thus the estimates such a.s 12 and 34 are confounded. Similarly the main effect 2 is confounded with three-factor interaction 134 and so on. 4). Linear combination of effects

To proceed to estimate the main effect 2 and the threefactor interaction 134, the estimate of 2 is really in estimate of the combination of the effect $2+134$. Eight linear combinations of effects L_{I}, L_{1}, \ldots are available. Thus $L_{1}=$ $1 / 4\left(X_{1}^{\prime} Y\right.$) or equally $I_{1}=1 / 4\left(X_{234}^{\prime} Y\right)$ and so on. On stuayine Table 4, the two-factor interection are rutually confounded in rairs, but assumine that the three and four factor interactions are either non-existent or neglicible the estimates $I_{I}, L_{1}, L_{2}, L_{3}$ and L_{4} can be taken to be estimate of the averace and the main effect $1,2,3$ and 4. If, further, prior knowledee is available that, for example, the 34 interaction effect is neeligible, then the estimate L_{12} could be taken to estimate the 12 interaction effect alone.

Table 4

Eizht Linear Combinations of Effects from a 2^{4-1} Desien with Defining Relation $I=1234$

$$
\begin{array}{ll}
I_{I}=\text { averace }+1234=21.53 & L_{4}{ }^{\circ}=4+123=9.05 \\
I_{1}=1+234=7.40 & L_{12}=12+34=2.60 \\
I_{2}=2+134=8.85 & L_{13}=13+24=4.25 \\
I_{3}=3+124=-1.20 & I_{14}=14+23=-1.60
\end{array}
$$

5). The alternative fraction

In the above example, in formine the 2^{4-1} desien, the factor 4 was associated with the three-factor interaction 123. In standard ordering, the elements of the three-factor interaction column, and hence of factor 4, are
the factor 4 can either use these elements as they stand, or it can be associated with neeative of the 123 effect, that is with the elements

In the first case $4=123$ that is $I=1234$, and in the second case $-4=123$ that is $I=-1234$. In Table 5 , the two parts toEether constitute a complete 2^{4} factorial desien.

In Table 6 eight linear combinations of effect $I_{I}^{\prime}, I_{I}^{\prime}, \ldots$ associated with the fraction havine defining relation $I=-1234$ are given. If both fraction are present, then simple addition and substraction of the L and L^{\prime} Iinear combination will provide unconfounded estimate of all the effects.

Table 5
Design Vatrix for the Two 2^{4-1} Fractional Fiactorials

Table 6
Eicht Linear Combinations of Effects from a 2^{4-1} Desien with Definine Relation $I=-1234$
$I_{1}^{\prime}=$ average $-1234=22.15$
$L_{4}^{\prime}=4-123=10.20$
$L_{1}^{\prime}=1-234=7.00$
$L_{12}^{1}=12-34=0$
$L_{2}^{\prime}=2-1348.20$
$I_{13}^{\prime}=13-24=-4.50$
$I_{3}^{\prime}=3-124=5.60$
$L_{14}^{1}=14-23=-4.40$

Solving for all the effects eives
Main Effects
Iwo-factor Interactions
$1=7.20$
$12=1.30$
$24=4.38$
$2=8.53$
$13=-0.12$ $34=1.30$
$3=2.20$
$14=-3.00$
$4=9.62$
$23=1.40$

Three-factor Interactions
$\begin{array}{ll}123=-0.58 & 134 \\ 124 & =-3.40\end{array} 234=0.32$
Averacte Response $=21.84$

The estimates are the same as would be obtained from an analysis of a full 2^{4} desien.
6). The Eeneral $1 / 2$ fraction of the 2^{n} designs

It is usual to use the interaction of highest order to split a full 2^{n} factorial into two half fractions. The eenerator is $123 \ldots n$ and the definine relation $I=123 \ldots n$.

The one-half fraction of all the 2^{n} factoriol desiens are best obtained by first writing down the desien matrix for a full $2^{\text {n-l }}$ factorial and then addine the nth variables by identifying its + and - versions with the + and - sizns of the highest order interaction 123...(n - 1).

For $n>5$ the half-replicate desien permits the estimation of a plethora of linear combinations of effects, many of which are combinations of hizher order interactions solely. Therefore smaller fractions of the 2^{n} desiens will be employed, that is the 2^{n-k} fractional factorials for $k>1$. For such desiens there is not one, but k generators which combine to provide the defining relation.
7). Three type of 2^{n} factorials

For convenience, Box and Hunter ($1961 a, 1961 b$) divide $2^{\mathrm{n}-\mathrm{K}}$ fractional factorial desiens into three types.
(i) Designs of Resolution III in which no main effect is confounded with any other main effect, but main effects are confounded with two-factor interactions and two-factor interaction with one another. The 2^{3-1} desien is of Resolution III written as $2_{\text {III }}^{3-1}$.
(11) Designs of resolution IV in which no main effect is confounded with any other main effect or two-factor interaction, but where two-factor interactions are confounded with one another. For example, the 2^{4-1} design is of Resolution IV written as $2_{I V}^{4-1}$.
(i1i) Designs of Resolution V in which no main effect or twofactor interaction is confounded with any other main effect or two-factor interaction, but two-factor interactions are confounded with three-factor interactions. For example, the 2^{5-1} design is of Resolution V written as 2_{V}^{5-1}.

This report does not intend to further discuss the 2^{n-k} designs. It will only illustrate the design matrix for a $2_{\text {III }}^{7-4}$ desien.

For the $2_{1 I}^{7-4}$ fractional factorial design, it recuires 2^{7-4} $=2^{3}=8$ runs for testine $n=7$ variabies. This starts with the construction of desien matrix with the 2^{3} factorial and then associate four additional variables with the plus and minus signs of the four interaction columns. For example, set

$$
\begin{equation*}
4=12, \quad 5=13, \quad 6=23, \quad 7=123 \tag{8}
\end{equation*}
$$

to obtain the following $2_{\text {III }}^{7-4}$ design(l'able 7). The identifications in EO. (8) provide the generating relations

$$
\begin{equation*}
I=124, \quad I \quad 135, \quad I=236, \quad I=1237 . \tag{9}
\end{equation*}
$$

The complete relation for this $2_{1 I I}^{7-4}$ desien i's

$$
\begin{aligned}
I & =124=135=236=1237=2345=1346=347=1256 \\
& =257=167=456=1457=2467=3567=1234567
\end{aligned}
$$

Assuming that all interactions between three of more variables are neglicible, then by repeated use of the definine
relations the followine linear combinations of effects will be obtained:

$$
\begin{array}{ll}
I_{I}=\text { average } & I_{4}=4+12+56+37 \\
I_{1}=1+24+35+67 & L_{5}=5+13+46+27 \\
I_{2}=2+14+36+57 & I_{6}=6+23+45+17 \\
I_{3}=3+15+26+47 & I_{7}=7+34+25+16 \\
& \text { Table } 7 \\
\text { Desien Matrix for a } 27 \text { IIII Desien }
\end{array}
$$

1	2	3	$4=12$	$5=13$	$6=23$	$7=123$	
-	-	-	+	+	+	+	-
+	-	-	-	-	+	+	
+	+	-	-	+	-	+	
+	+	-	+	-	-	-	
+	-	+	+	-	+	+	
+	+	+	-	+	-	+	
+	+	+	+	+	+	+	

From the above illustration, the procedure of adding fractions in sequence with suitably switched signs provides a useful method for the systematic isolation and confirmation of important effects in multi-variable systems. In the next section, this repoet will develop a predictor-corrector ecuation. Through the use of a predictor-corrector equation an experinenter may quickly determine the least squares estimates of all the coefficients when the 2^{n} factorial desiens are denoted in a polynomial model.
1). Derivation

In this section the predictor-corrector equation for estimation of the coefficients in a linear model where additional data become available will be derived.

Let Y represent a column vector of in stochastic observations $Y_{1}, Y_{2}, \ldots, Y_{i v}$, let B represent a column vector of a unknown coefficients $b_{1}, b_{2}, \ldots, b_{q}$, and let the matrix of independent variables X be composed of N rows, and Q columns. Then, the observational equations may be represented

$$
\begin{equation*}
Y=X B+e \tag{11}
\end{equation*}
$$

where e is an $\mathbb{N} x l^{c o l u m n}$ vector of error components, with $E(e)=0, E\left(e e^{\prime}\right)=\sigma_{i N}$, and where $E(Y)=X E$. If $N \geqslant q$, the least squares estimates B are provided by solving the normal equations $X^{\prime} X \hat{B}=X^{\prime} Y$ giving $A=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$ under the usual assumption that $X^{\prime} X$ has rank q and hence that its inverse exists. For the situation in which the model and experimental designs have been chosen (see example Table 2) so that $\mathrm{X}^{\prime} \mathrm{X}=$ rivig where r is the number of times the desien is replicated and I_{q} is a $q \times q$ identity matrix. The variance-covariance matrix of the estimates B is $\sigma^{2}\left(X^{\prime} X\right)^{-1}$ (Graybill 1961).

Suppose that Z be an $n x$ o matrix of n additional row vectors $z_{1}, 1=1,2, \ldots, n$ added onto X and let y be the corresronding $\mathrm{n} \times \mathrm{l}$ vector of new observations. Then the model now becomes

$$
\left[\begin{array}{l}
y \tag{12}\\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
z
\end{array}\right] B+\left[\begin{array}{l}
e_{i} \\
e_{n}
\end{array}\right],
$$

and the associated normal equations

$$
\left[\begin{array}{l}
x \\
z
\end{array}\right]^{\prime}\left[\begin{array}{l}
x \\
z
\end{array}\right] \hat{B}^{*}=\left[\begin{array}{l}
x \\
z
\end{array}\right]^{\prime}\left[\begin{array}{l}
y \\
y
\end{array}\right]
$$

or

$$
\left(X^{\prime} x+Z^{\prime} Z\right) \hat{b}^{z}=\left(X^{\prime} y+Z^{\prime} y\right)
$$

Substituting for $X^{\prime} X \hat{B}=X^{\prime} Y$:

$$
\begin{equation*}
\left(X^{\prime} x+Z^{\prime} Z\right) \hat{B}^{s}=\left(X^{\prime} x \hat{B}+Z^{\prime} y\right) \tag{13}
\end{equation*}
$$

where \hat{E}^{*} is the new vector of estimates based on all (N $+n$) observations.

Now let $\hat{y}=2 \hat{E}$ be the predicted values for the additional row $v \in c t o r s$ based on the initial estimates B and let $d=y-\hat{y}$. Then $\mathrm{y}=\mathrm{d}+\hat{\mathrm{y}}$ or $\mathrm{y}=\mathrm{d}+2 \hat{\mathrm{~B}}$.

From Eq. (13):

$$
\begin{aligned}
& \left(X^{\prime} X+Z^{\prime} Z\right) \hat{D}^{*}=X^{\prime} X \hat{B}+Z^{\prime}(d+Z \hat{B}) \\
& \left(X^{\prime} X+Z^{\prime} Z\right) \hat{B}^{*}=\left(X^{\prime} x+Z^{\prime} Z\right) \hat{B}+Z^{\prime} d
\end{aligned}
$$

thus

$$
\begin{equation*}
\hat{B}^{*}=\hat{B}+\left(X^{\prime} X+Z^{\prime} Z\right)^{-Z_{Z^{\prime}}}(y-\hat{y}) \tag{14}
\end{equation*}
$$

From the fact $X^{\prime} X=r_{N}$ it follows that $^{\prime}$

$$
\begin{aligned}
\left(x^{\prime} x+Z^{\prime} Z\right)^{-1} & =\left(r N I_{q}+Z^{\prime} Z\right)^{-1} \\
& =1 / r \mathbb{N}\left[I_{q}+1 / r \mathbb{N}\left(Z^{\prime} Z\right)\right]^{-1}
\end{aligned}
$$

Since $(I+U V)^{-1}=I-L(I+V U)^{-1} V$,
so

$$
\left(X^{\prime} X+z^{\prime} Z\right)^{-1}=\frac{1}{r N}\left[I_{q}-\frac{1}{r N} Z^{\prime}\left(I_{n}+\frac{1}{r N} Z Z^{\prime}\right)^{-1} Z\right]
$$

Here further requiring that the added row vectors z_{i} comprising Z must be row-wise orthogonal, that is $z_{i}^{\prime} z_{j}^{\prime}=0$ for $i \neq j$, then $Z Z^{\prime}=q I_{n}$, so

$$
\left(X^{\prime} x+z^{\prime} z\right)^{-1}=\frac{1}{r N}\left[I_{q}-\frac{1}{r N} Z^{\prime}\left(I_{n}+\frac{1}{r N} q I_{n}\right)^{-1} z\right]
$$

$$
\begin{align*}
& =\frac{1}{r N}\left[I_{q}-\frac{1}{r N} Z^{\prime}\left(\frac{r i v+q}{r N} I_{n}\right)^{-1} Z\right] \\
& =\frac{1}{r N}\left[I_{q}-\frac{1}{r N+q^{\prime}} Z^{\prime} Z\right] . \tag{15}
\end{align*}
$$

From Eq. (14):

$$
\begin{aligned}
\hat{B}^{*} & =\hat{B}+\frac{1}{r N}\left[I_{q}-\frac{1}{r N+q} Z^{\prime} Z\right] Z^{\prime}(y-\hat{y}) \\
& =\hat{B}+\frac{1}{r N}\left[Z^{\prime}-\frac{1}{\left.r N+Z^{\prime} Z Z^{\prime}\right](y-\hat{y})}\right. \\
& =\hat{B}+\frac{1}{r N}\left[Z^{\prime}-\frac{1}{r N+q^{\prime}} Z^{\prime} q I_{n}\right](y-\hat{y}) \\
& =\hat{B}+\frac{1}{r N}\left[\frac{r N+0-q}{r N+q}\right] Z^{\prime}(y-\hat{y}) .
\end{aligned}
$$

So

$$
\begin{equation*}
\hat{B}^{*}=\hat{B}+\frac{1}{r \hat{N}+q} Z^{\prime}(y-\hat{y}) . \tag{16}
\end{equation*}
$$

This equation is termed the predictor-corrector equation and is useful whenever both $X^{\prime} X$ and $Z Z^{\prime}$ are orthogonal.

For $g=N, \hat{B}^{*}$ can be written

$$
\begin{equation*}
\hat{B}^{*}=\hat{B}+\frac{1}{N(r+I)} Z^{\prime}(y-\hat{y}) \tag{17}
\end{equation*}
$$

Eq. (16) can be written:

$$
\begin{equation*}
\hat{b}^{*}=\hat{B}+\frac{1}{r N+q} \sum_{i}^{n}\left(y_{1}-\hat{y}_{1}\right) z_{i}^{\prime} \tag{18}
\end{equation*}
$$

or more simply

$$
\begin{equation*}
\hat{E}^{*}=\hat{B}+\sum_{i}^{n} d_{1} \tag{19}
\end{equation*}
$$

where the corrections for the coefficients at the conclusion of the ith additional run are given by the elements of the vector

$$
d_{1}=\frac{1}{r N+q}\left(y_{1}-\hat{y}_{1}\right) z_{1}^{\prime}
$$

where $z_{i}=1 \times q$ row vector in the matrix of independent
varistles associated with the ith experiment, $1=1$, $2, \ldots, n \leq N$,
$y_{1}=$ new observation associated with z_{i},
$\hat{y}_{1}=z_{1} \hat{B}=$ predicted response for the ith experinent. The quantity $\left(y_{1}-\hat{y}_{1}\right) /(r \mathbb{N}+q)$ is called the "corrector constant" for the ith run.

The variance-covariance matrix for \hat{B}^{*} is $\left(X^{\prime} X+Z^{\prime} Z\right)^{-1} \sigma^{2}$. From the above assumption $X^{\prime} X=r N I_{q}, Z L^{\prime}=q I_{n}$, and further the elements of Z consists of +1 or -1 only (as usine the twolevel factorials with their associated model), then the diagonal elements of $Z^{\prime} Z=n$ and by Eq. (15), the variance of any individual estimate is

$$
\begin{equation*}
\operatorname{Var}\left(b_{1}\right)=\frac{1}{r_{i}}\left(1-\frac{n}{r N+q}\right) \sigma^{2} \tag{20}
\end{equation*}
$$

2). Analysis of variance

The analysis of variance table corresponding to the completion of r blocks of N runs each is as shown in Table 8.

Table 8
Analysis of Variance for r Blocks of \mathbb{N} Runs

Source	DF	
Crude sum of squares	$r N$	$S S T=Y^{\prime} Y$
Regression sum of squares	q	SSR $=\hat{Y}^{\prime} \hat{Y}$
Deviation sua of squares	$r N-q \quad s s d=(Y-\hat{Y})^{\prime}(Y-\hat{Y})$	

Given n gdditionsl observations, then the new AOV table is as shown in Table 9.

Table 9
Analysis of Variance for n Additional Runs

Source	DF	SS
New Crude SS	$r \mathrm{~N}+\mathrm{n}$	$S S T *=Y^{\prime} Y+y^{\prime} y$
New Regression is	q	SSR ${ }^{*}=\widehat{B}^{*}{ }^{\prime}\left(X^{\prime} Y+Z^{\prime} y\right)$
New Deviation SS	$r N+n-q$	$\begin{aligned} & S S D^{*} \\ & =S S D+\frac{r N}{r N+q}(y-\hat{y})^{\prime}(y-\hat{y}) \end{aligned}$

NUVERICAL EXAMFLE

1). Computational procedure

Table 10
Data and Estimates of the Coefficients for a 2^{4} Design

Run	Design Natrix 1 $2^{2} 3$	4	Response
Number	(Observation)		

To illustrate the computational procedure through the use of the predictor-corrector equation, consider the dete in Table 5. In Table 10 the sixteen runs of the 2^{4} factorial are listed In standard factorial notation (Davies 1963, Cochran and Cox 1957). The estimates are obtained by the method of least squares.

To fit the $q=4$ coefficients in the first order model $E(y)$ $=b_{0} x_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}$, an initial proeram involving only the three variables x_{1}, x_{2}, x_{3}, and runs $5,2,3$ and 8 are used. First consider the $N=4$ runs of a $2_{\text {III }}^{3-1}$ fractional defined by $I=123$. The data and estimates of the coefficients are as follows:

Natrix of Independent Variables Vector of Observations

$$
\begin{aligned}
& 0123 \\
& X=\left(\begin{array}{l}
x_{5} \\
x_{2} \\
x_{3} \\
x_{8}
\end{array}\right)=\left(\begin{array}{llll}
+ & - & - & + \\
+ & + & - & - \\
+ & - & + & - \\
+ & + & + & +
\end{array}\right) ; \quad Y=\left(\begin{array}{c}
12.3 \\
18.1 \\
10.4 \\
27.4
\end{array}\right) ;
\end{aligned}
$$

Solutions (Vector of Estimated Coefficients)
$\hat{B}=\left[\begin{array}{l}\hat{b}_{0} \\ \hat{b}_{1} \\ \hat{b}_{2} \\ \hat{b}_{3}\end{array}\right]=\left[\begin{array}{c}17.05 \\ 5.70 \\ 1.85 \\ 2.80\end{array}\right]$
Fitted model:

$$
\hat{y}=17.05 x_{0}+5.70 x_{1}+1.85 x_{2}+2.80 x_{3}
$$

Suppose that $n<N$ additional experiments drawn from the
half rerlicate 2^{3-1} navine defining relation $I=-123$ are now run. The least squares estinates of all the coefficients may be obtained by usine the predictor-corrector equation after each run. Suppose a fifth experinent, say run 1, is performed following the completion of the initial block of four runs eiven above. Then $N=q=4, r=1$ and

$$
\begin{aligned}
& z_{1}=(+---) ; \quad y_{1}=12.1 ; \\
& \hat{y}_{1}=z_{1} \hat{B}=(17.05)-(5.70)-(1.85)-(2.80)=6.70 .
\end{aligned}
$$

The corrector constant is:

$$
\left(y_{1}-\hat{y}_{1}\right) /(r i i+q)=(12.1-6.70) /(4+4)=0.675 .
$$

The revised estimates of the coefficients are given by substituting in the predictor-corrector equation, Eq. (18), $\hat{B}^{*}=\left[\begin{array}{l}\hat{b}_{0} \\ \hat{b}_{1} \\ \hat{b}_{2} \\ \hat{b}_{3}\end{array}\right]=\left[\begin{array}{c}17.05 \\ 5.70 \\ 1.85 \\ 2.80\end{array}\right]+\frac{1}{(4+4)}(12.1-6.7)\left[\begin{array}{l}+ \\ - \\ - \\ -\end{array}\right]=\left[\begin{array}{c}17.05+0.675 \\ 5.70-0.675 \\ 1.85-0.675 \\ 2.80-0.675\end{array}\right]=\left[\begin{array}{c}17.725 \\ 5.025 \\ 1.175 \\ 2.125\end{array}\right]$
The new fitted ealation is

$$
\hat{y}=17.725 x_{0}+5.025 x_{1}+1.175 x_{2}+2.125 x_{3} .
$$

The variance of each revised coefficient is

$$
\operatorname{Var}(b)=\frac{1}{r N}\left(1-\frac{n}{r N+q}\right) \sigma^{2}=7 \sigma^{2} / 32 .
$$

Suppose a sixth experiment is now run, say z_{6}, and new estimates reouired. Then

$$
\begin{aligned}
& z_{6}=(++-+) ; \quad y_{6}=17.3 ; \\
& \hat{y}_{6}=z_{6} \hat{B}=(17.05)+(5.70)-(1.85)+(2.80)=23.70 .
\end{aligned}
$$

Note here that the predicted value for every new run is computed from the coefficients obtained after the last completed
block.
The corrector constant is:

$$
\left(y_{6}-\hat{y}_{6}\right) /(r \lambda+q)=(17.3-23.70) /(4+4)=-0.800 .
$$

The estimates at the conclusion of runs 1 and 6 are:
$\hat{B}^{*}=\left[\begin{array}{l}\hat{b}_{0} \\ \hat{b}_{1} \\ \hat{b}_{2} \\ \hat{b}_{3}\end{array}\right]=\left[\begin{array}{r}17.725+(-0.000) \\ 5.025+(-0.800) \\ 1.175-(-0.800) \\ 2.125+(-0.800)\end{array}\right]=\left[\begin{array}{r}16.925 \\ 4.225 \\ 1.975 \\ 1.325\end{array}\right]$
The fitted equation is:

$$
\hat{y}=16.925 x_{0}+4.225 x_{1}+1.975 x_{2}+1.325 x_{3} .
$$

Each coefficient now has variance $6 \sigma^{2} / 32$.
At the conclusion of the seventh experiment z_{7} :

$$
\begin{aligned}
& z_{7}=(+-++) ; \quad y_{7}=12.9 ; \\
& \hat{y}_{7}=z_{7} \hat{B}=(17.05)-(5.70)+(1.85)+(2.80)=16.0
\end{aligned}
$$

The corrector constant 1s:

$$
\left(y_{7}-\hat{y}_{7}\right) /(r N+q)=(12.9-16.0) /(4+4)=-0.388
$$

The new fitted model is:

$$
\hat{y}=16.537 x_{0}+4.613 x_{1}+1.587 x_{2}+0.937 x_{3} .
$$

Each coefficient has variance $50^{2} / 32$.
The eighth experiment z_{4} completes the second block of $n=4$ runs eiving

$$
\begin{aligned}
& \mathrm{z}_{4}=(+++-) ; \quad y_{4}=25.7 ; \\
& \left.\hat{\mathrm{y}}_{4}=(17.05)+95.70\right)+(1.85)-(2.80)=21.80
\end{aligned}
$$

The corrector constant is:

$$
\left(y_{4}-\hat{y}_{4}\right) /(r i v+q)=3.9 / 8=0.488
$$

$\hat{B}^{*}=\left[\begin{array}{l}\hat{b}_{0} \\ \hat{b}_{1} \\ \hat{b}_{2} \\ \hat{b}_{3}\end{array}\right]=\left[\begin{array}{r}16.537+(0.488) \\ 4.613+(0.488) \\ 1.587+(0.488) \\ 0.937-(0.488)\end{array}\right]=\left[\begin{array}{r}17.025 \\ 5.101 \\ 2.075 \\ 0.449\end{array}\right]$
The new fitted equation is:

$$
\begin{equation*}
\hat{y}=17.025 x_{0}+5.101 x_{1}+2.075 x_{2}+0.449 x_{3} . \tag{21}
\end{equation*}
$$

Each coefficient has variance $4 \sigma^{2} / 32$.

- The second block of four runs completes a full 2^{3} design. Suppose a third block of four runs, replicate of the earlier runs, is now added having defining relation $I=123$, then the. coefficients once açain will be re-estimated at the conclusion of each run. Begin this third block with run z_{13}, thus Table 11
Data and Estimates for a Third Block of 2^{3} Design

Run	13	10	11	16
z_{1}	$(+-++)$	$(++--)$	$(+-+-)$	$(++++)$
y_{1}	17.3	21.7	29.0	36.2
\hat{y}_{1}	10.298	19.602	13.55	24.65
Corrector	0.584	0.175	1.286	0.963
\hat{b}_{0}	17.609	17.784	19.070	20.033
\hat{b}_{1}	4.517	4.692	3.406	4.369
\hat{b}_{2}	1.491	1.316	2.602	3.565
\hat{b}_{3}	1.033	0.858	0.428	0.535
$\operatorname{Var}^{2}(\mathrm{~b})$	$11 \sigma^{2} / 96$	$10 \sigma^{2} / 96$	$9 \sigma^{2} / 96$	$8 \sigma^{2} / 96$
$\Delta \operatorname{SSD}$	32.741	2.940	158.764	89.027

$$
{ }_{2}{ }_{13}=(+--+) ; \quad y_{13}=17.3
$$

Rememberine now that $\hat{\mathrm{y}}_{13}=\mathrm{z}_{13} \hat{B}$ where $\hat{\mathrm{B}}$ is the vector of estimates provided by the most recently completed block, obtainine on substitutine the last fitted equation, Eq. (21),

$$
j_{13}=(17.025)-(5.101)-(2.075)+(0.449)=10.298 .
$$

Rememberine further that two blocks of N rins have been completed so that $r=2, N=4, q=4$, the corrector constant for this run is:
$\left(y_{13}-\hat{y}_{13}\right) /(r N+\dot{q})=(17.3-10.298) /(2 \times 4+4)=0.584$. The remaining run of third block are z_{10}, z_{11}, z_{16}. The revised estimates of the coefficients \hat{B}^{*} computed after each run and the associated variance are given in Table ll. Also listed Table 12 Data and Estimates for a Fourth Block of 2^{3} Design

Kun	9	14	15	12
z_{1}	(+ - - -)	$(++-+)$	(+ - + +)	$(+++-)$
y_{1}	16.8	25.0	35.1	32.1
\hat{y}_{1}	11.564	21.372	19.764	27.432
Corrector	0.327	0.227	0.959	0.291
\hat{b}_{0}	20.360	20.587	21.546	21.84
\hat{b}_{1}	4.042	4.269	3.310	3.60
\hat{b}_{2}	3.238	3.011	. 3.970	4.26
\hat{b}_{3}	0.208	0.435	1.394	1.10
$\operatorname{Var}(\mathrm{b})$	$150^{2} / 192$	$14 \sigma^{2} / 192$	$13 \sigma^{2} / 192$	$126^{2} / 192$
\triangle SSD	20.530	9.894	176.579	16.259

is $\triangle S S D$, the increase in the deviation sums of soliares resulting fron the added run.

A fourth block witi definine relation $I=-123$ consisting of $z_{9}, z_{14}, z_{15}, z_{12}$ elves the results listed in Table 12.

The estimates of \hat{B} rifer sixteen runs agree with those displayed in Table 10 as they must. After every run the estirates tabulated are the least squares estimates.
2). Analysis of veriance

After the completion of each run redeternine the analysis of variance table associated with the model and the total number of runs. As shown in Table 8 and 9 , the crude sum of squares increase with each added observation. The sum of squares of deviation for each added run will increase by $\Delta S S D_{1}$ $=$ Increase in Deviations sum of squares for 1 th run $=r N /(r N+q)\left(y_{1}-\hat{y}_{1}\right)^{2}$ or more conveniently

$$
\begin{aligned}
\Delta \operatorname{SSD}_{1} & =r N(r \hat{N}+q)\left[\left(y_{1}-\hat{y}_{1}\right) /(r N+q)\right]^{2} \\
& =r N(r i+q)(\text { Corrector Constant for ith run })^{2}
\end{aligned}
$$

The total SSD at the conclusion of the eieht experiments is $(4+4)\left[(0.675)^{2}+(-0.800)^{2}+(-0.388)^{2}+(0.488)^{2}\right)=47.499$.

Assumine the model is appropriate, an estimate of the veriance σ^{2} is provided by $s^{2}=S S D * /(r N+n-q)$. The estimate of variance at the conclusion of the sixteen run is $\mathrm{s}^{2}=$ $554.233 / 12=46.186$ with twelve degrees of freedom.

AFFLICATION

It was illustrated above how, by the addition of avail-
able data to a $2_{I I I}^{\bar{j}-1}$ desian, the revised estinates \hat{B}, may $b \in$ obtained. Below are examples of the application of the pre-dictor-corrector equation.
1). Augment of the model and block size

In the above example the mathematical model was not changed as additional data became availeble. However, at the end of the eighth run a full 2^{3} factorial had been completed and orthogonal estimates of the first order, two-factor interactions and three-factor interaction could have been obtained, the three-factor interaction being confounded with the block effect. The data and associated estimetes at the conclusion of the eighth experinent are displayed in Table 13.

Table 13
Data and Estimates for a 2^{3} Desien

Matrix of Vector of Vector of Independent Variables Observations Estimates

0123121323123

The fitted model is:

$$
\begin{aligned}
\hat{y}= & 17.025 x_{0}+5.101 x_{1}+2.075 x_{2}+0.449 x_{3}+2.350 x_{1} x_{2} \\
& -0.225 x_{1} x_{3}+0.600 x_{2} x_{3}+0.025 x_{1} x_{2} x_{3} .
\end{aligned}
$$

Suppose a ninth experiment is now run, say z_{9} :

$$
z_{9}=(+---+++-) ; y_{9}=16.8 ; \hat{y}_{9}=z_{9} \hat{B}=12.100
$$

The number of runs in the block are now $N=8, q=8, r=1$, and the corrector constant $=\left(y_{9}-\hat{y}_{9}\right) /(r \mathbb{N}+q)=0.294$. Thus

$$
\hat{B}^{*}=\left(\begin{array}{r}
17.025+0.294 \\
5.101-0.294 \\
2.075-0.294 \\
0.449-0.294 \\
2.350+0.294 \\
-0.225+0.294 \\
0.600+0.294 \\
0.025-0.294
\end{array}\right)=\left[\begin{array}{r}
17.319 \\
4.807 \\
1.781 \\
0.155 \\
2.644 \\
0.069 \\
0.894 \\
-0.269
\end{array}\right)
$$

Information from additional replicate rins could continue to up-date these estimates. The estimates of $\hat{B} *$ after the second block of eight runs is completed will agree with those displayed in Table 10 as they must.
2). Setting number of estinates q equal to block size N

To use the predictor-corrector equation it is only necessary that the q estimates provided by the block of in runs be mutually orthogonal and that the n additional runs produce vectors in the matrix of independent variables that are also row-wise orthozonal. If the n additional runs are to be drawn from a two-level desien, then it is convenient to set $q=N$ even though this may require the addition of "slack" variables to the model (Hunter 1964). For example, to estimate the five coefficients in the first order model $E(y)=b_{0} x_{0}+\sum_{1=1}^{4} b_{1} x_{1}$, the smallest two-level design that will provide orthogonsl esti-.
mates is a $2_{I V}^{4-1}$ containine eight runs. In order that $q=N$, three slack variables might be $x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}$. Of course, an experimenter would choose slack variables he felt might produce large effects and hence properly belong in the model.

As an example, data from Table 10 were used to construct an initial block comprising the eight runs of a $2_{I V}^{4-1}$ design with defining relation $I=$ 1234. The matrix of independent variables X associated with the model, now containing the slack variables, is displayed in Table 14 along with the observations and the estimated coefficients.

Table 14
Data and Estimates for a 2^{4-1} Design

Suppose now that run 2 is added, then

$$
z_{2}=(++\ldots-\ldots) ; y_{2}=18.1 \text { and } \hat{y}_{2}=z_{2} \hat{B}=13.94 \text {, using }
$$

Eq. (18) the estimates will become

$$
\hat{B}^{*}=\left[\begin{array}{l}
\hat{b}_{0} \\
\hat{b}_{1} \\
\hat{b}_{2} \\
\hat{b}_{3} \\
\hat{b}_{4} \\
\hat{b}_{12} \\
\hat{b}_{13} \\
\hat{b}_{14}
\end{array}\right]=\left[\begin{array}{r}
21.53 \\
3.70 \\
4.43 \\
-0.60 \\
4.53 \\
1.60 \\
2.13 \\
-0.80
\end{array}\right]+\frac{1}{(8+8)}(18.1-13.94)\left(\begin{array}{l}
+ \\
+ \\
- \\
- \\
- \\
- \\
- \\
-
\end{array}\right]=\left[\begin{array}{c}
21.79 \\
3.96 \\
4.17 \\
-0.86 \\
4.27 \\
1.34 \\
1.86 \\
-1.06
\end{array}\right]
$$

DISCUSSION

In this report, the predictor-corrector equation is used to improve the estimates of all the coefficients in the assumed mathematical model. Before the predictor-corrector equation can be used two conditions must be satisfied: 1) the estimates B supplied by the prior block of N runs must be mutually orthogonal and 2) the added row vectors must be row-wise orthogonal, that is $z_{1} z_{j}^{\prime}=0$ for $1 \neq j$. These conditions are met by the 2^{n} and 2^{n-k} designs and associated models illustrated in this report. The equation can, of course, be applied to other desiens and models, which satisfy these conditions.

ACKNOWLEDGMENT

I wish to express iny sincere eratitude to Dr. Arthur D. Dayton for his advice and guidance during the writing of this report. I also wish to express my thanks to Dr. A. M. Feyerherm and Dr. R. E. Willigms for their valuable suggestions in the preparation of this report.

REFEREACES

Box, G. E. F. 1957. Evolutionary Operation. Aprlied Stat. No. 2, 3 - 23 .

Box, G. E. P. and Nunter; J. S. Ig6la. The 2^{k-D} Fractional Factorial Desien I. Tech. 3, 311-352.

Box, U. E. F. and Hunter, J. S. I961b. The $2^{\text {tiop Fractional }}$ Fsctorial Desien II. Tech. 3, 449-458.

Cochran, if. G. and Cox, G. M. 1957. Experimentel Desiens. John Willey and Sons, Inc., New York.

Davịes, O. L. 1963. Desien and Analysis of Industrial Experiments. Hafner Co., New York.

Gauss, C. F. 1821 Theoria Combinationis Observationum Erroribus Minimis Obnoxiae. Werke 4, Gottingen.

Graybill, F.A. 1961. An Introduction to Inear Statistical Medels I. NeGraw-Hill, New York.

Hunter, J. S. 1964. Sequential Factorial Estimation. Tech. 6, 41-57.

John, F. W. N. 1966. Augment 2^{n-1} Designs. Tech. 8, 469-480.
Flackett, R. L. 1950. Some Theorems in Linear Souares. Biometrika 37, 149-157.

Yates, F. 1937. Design and Analysis of Factorial Experiments. Imperial Bureau of Soil Science, London.

GUANG-CHUEN LIN

B. Ed., Taiwan Normal University, 1960
M. Ed., Taiwan Normal University, 1964

AN ABSTRACT OF A MASTER'S REPORT
submitted in partial fulfillment of the
requirement for the degree

MASTER OF SCIENCE

Department of Statistics

KANSAS STATE UNIVERSITY Manhattan, Kansas

In industrial experimentation $1 t$ is often possible to run the experiments in a factorial experiment consecutively and to observe or cslculate the response at the completion of a block of runs or an added run before the next experiment is run. This has led experimenters to consider sequential planning schemes. The factorial desiens discussed are the 2^{n} and 2^{n-k} experiments. The number's $2,2,3, \ldots .$. n are used to denote the n variables, plus and minus signs to represent hizh and low levels, respectively.

To analyze the sequential data, a predictor-corrector equation is developed

$$
\hat{B}^{*}=\hat{B}+\frac{1}{r N+q} \sum_{1}^{n}\left(y_{1}-y_{1}\right) z_{1}^{\prime}
$$

where $\hat{B}^{*}=(q \times 1)$ vector of revised estimates,
$\hat{B}=(q \times I)$ vector of estimates provided by prior block(s),
$\mathbb{N}=$ total number of runs in a block,
$\mathrm{q}=$ number of coefficients in the model,
$r=$ number of blocks of N runs completed,
$z_{1}=(1 \times q)$ row vector in matrix of independent variables associated with the ith experiment, $1=1,2, \ldots, n \leq N$,
$y_{1}=$ new observation associated with z_{1},
$\hat{y}_{1}=z_{1} B=$ predicted response for the 1 th experiment, by which an experimenter may quickly determine the least squares estimates of all the coefficients in a polynomial
model

$$
E(y)=b_{0}+\sum_{1=1}^{n} b_{1} x_{1}+\sum_{1<j} \sum_{1 j}^{n} b_{1} x_{1} x_{1}+\ldots \ldots \ldots \ldots \ldots \ldots
$$

after the conclusion of each run or any group run, given that an initial set of orthoconal estimates of the coefficients is available.

The equation is subject to mild restriction which are fully met in the usual application of the 2^{n} and 2^{n-k} factorial designs.

Two conditions must be satisfied before using predictorcorrector equation to perform factorial estimation: 1) the estimates B provided by the prior block of N runs must be mutually orthogonal and 2) the added row vectors must be rowwise orthogonal.

