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INTRODbCTlCW /'.:
Frequently in scientific investigation, particularly where

an e.T.plrical approach has to be adopted, problexs arise in

which the effects of a number of different factors on some

property or process are required to be evaluated. Such problems

can usually be most economically investigated by arranging the

experiments according to an ordered plan in which all the

factors are varied in a regular way. Provided the plan has been

correctly chosen, it is then possible to determine not only the

effect of each individual factor but also the way in which each

effect depends on the other factors (l,e, the Interactions ),

This makes It possible to obtain a more complete picture of

what is happening than would be obtained by varying each of the
I

factors one at a time while keeping the others constant. Achie-

ving this object is to decide on a set of values or levels, for

each of the factors to be studied, and to carry out one or more

trials of the process with each of the possible combinations of

the levels of factors. Such an experiment is termed a factorial

experiment,

A complete factorial experiment, in which all possible

combinations of all the levels of the different factors are

investigated, will Involve a large number of tests when the

number of factors is. large. It is possible to investigate the

main effects of the factors and their more important inter-

actions in a fraction of the number of tests required for the

complete factorial designs, thus enabling the size of an ex-



periment to be reduced to a fraction of a full factorial ex-

periment while still providing all the important information,
.

'

(Box and Hunter 1961a, Davies 1963).

The 2^ factorial designs are used to study the effects of

n variables upon, a response = f (-^^ , -X/^* •••»
'^n'^

• '^^^ mathe-

matical model initially assumed is the polynomial

E(y) = = b_ +2I^i'^i '+'^^b. .5>i*, +2r2biik*i^i% +' (1)
i = 1

^ i<J
-^-^ '^ i<J-<k

•'•J*' -J

.

.
.

where y is the observed response or the yield, E(y) the expect-

ed value of y, the b's unknown coefficients, and the -j^' s inde-

pendent variables. Least squares estimates of all the coeffi-

cients may be obtained using Yates' Algorithm (1937). If the

assumptions are correct, these coefficients will measure the

individual effects of the variables (Box 1957). Since the 2^

designs constrain each variable to two levels the quadratic,

cubic and other coefficients associated with the powers of the

variables %a are not considered in the model. In practice the

complexity of the model is reduced by postponing consideration

of the third and higher order terms until the first and second

order terms have been fully explored (Hunter 196^), Thus the

model may become either -
.

E(y) = = h^ +Zbi'>'i
'

(2)

or

S(y) = = b^ fXbi^i -^XZb It ;^ (3)
i

-^ -^

l_<j
ij 1 J

the first order model and second order model, respectively.



This simplication permits the use of 2^"^ fractional factorial

designs v.'here k is the magnitude of fractionation.

After a 2^"^ fractional factorial has been completed, an

experimenter may wish to analyze the results and hope that

large effects may be quickly discovered. It may happen that the

results of this initial block of runs fail to provide all the

Information expected, so that additional blocks are then added,

the experimenter proceeding sequentially and pausing to review

his data at the conclusion of each block. Often the individual

runs comprising the block are also run sequentially. However it

is the usual practice for the experimenter to v/ait until all

runs in a block have been completed before analyzing the data.

In order to perform, the analysis of sequential data, the

exact least squares estimates of all the coefficients in the

model can be rapidly obtained at the conclusion of each run, or

any group runs, through the use of a "predictor-corrector

equation", once an initial block of runs has been completed.

This equation was developed by Plackett (1950). The original

results are due to Gauss (1821),
'

This report will illustrate the factorial designs, the

mathematical derivation of predictor-corrector equation,

numerical examples and the applications of predictor-corrector

equation, .
• •

FACTORIAL DESIGNS

1), Notation for the 2^ series

A complete 2^ factorial design requires all combinations



of two levels of each of n variables. The runs comprising; the

experimental design are conveniently set out in either of two

notations as illustrated for the eight runs comprising a 2

factorial in Table 1. '
"

'. •

Table 1

Symbols for 2-^ Factorial Design

Run Notation 1: . dotation 2;
Variables ' Variables

Number A 3 C 12 3'

1 .. (1) •. - - -

2 ' a .•.- ^+ ' -

3 • b ..
- + -

4 ab + + -

5
'

c .'•-'-+
6 . ac • + - +

7
'

be _ + +

8 abc + + +

In the second notation the variables are denoted" by number

1, 2, 3, and their two versions take two different values, the

high level Is a plus sign, the low level a minus sign. The no-

tation using plus and minus signs will be used in this report.

The list of experimental runs is called the design matrix. For

a 2^ factorial, the design matrix contains n columns and N = 2

rows

.

2). Estimation of effects '

. •

On the assumption that the observations are uncorrelated

and have equal variance, then the 2^ factorial designs provide

independent minimum variance estimates of the grand average



ond of the 2^-1 effects. •

'

•

In Table 2, where for convenience o 2- design i?. used, n

matrix of independent variables X is (/enerated from the design

matrix. For exaairle, 12 interaction column in a is obtained by

multiplying the corresponding elernents of the separate 1 and 2

columns. The first column of X consists entirely of plus signs

and is used to provide an estimnte of the mean. For a 2^ design

the full matrix of independent variables X contains 2 columns

as well as
2"^' rows. The estimate of effect ij...n is- obtained

by taking the sum of products between the elements of Y and the

corresponding elements of the column X^ . ^ and dividing this

product by W/2 where N = 2^; e.g., .:
.

,;
"

;

lj..,n = 2/K (Xij,_n ^)- : I <^^

. _' ' ' Table 2 /
,

'<}^;'

2^ Factorial Design

Design Matrix Matrix of Independent Variables Observations
X

12 3 1 1 2 3 12 13 23 123 . X

+ - -
. + + - -

- + - + _ + _

+ + - ' + + + -

- - + + - - +

+ - + + + .
- +

- + + + - + +

+ + + + + + +

. 4
+ 8
+ 6

10
+ 12

6

+ + 8
+

Thus, from Table 2 the 12 interaction effects is



-J*/ '--^ --'^-

12 = ^ X\^Y = 4 ( + - -

i'i

12
+ + - - +

r ^1

1

8
6

10
12
6
4
8

= 1/4(4 -8-6+10+12-6-4+8)
= 2.5

Each estimate has variance

,2

Var(effect) =
4c5'

K
(5)

where c5^ is the variance of the individual observations.

The average is obtained by taking the sum of products of

column Xj with the observation column Y and dividing the result

by K, thus .

• '
-

'

• '

average = y = (X^Y)/N. (6)

Thus y = 58/8 = 7.25 with variance (J^/N. By this process 2^

estimates can be obtained from 2 runs. When n is large, the

wealth of such estimates becomes an embarrassment. Hov/ever, in

many practical situations, the 'three-factor and multi-factor

interaction effects can often be hopefully supposed to be

negligible in size (Cochran and Cox 1957, Box and Hunter 1961,

John 1966). In this situation, fractional designs using a

smaller number of runs may be employed.

3). 1/2 fraction of the 2^ factorial

4
For illustration, the one half fraction of the 2 design

4-1
will be first discussed. Since the desirn is to contain 2 =



8 runs, a 2^ factorial desi^m is first v/ritten down. The + '^-nd

- 'elexents associated with the 125 interaction then are used to

Identify the + and - versions of variable 4. The coiiblnntlon of

observations used to estimate the main effect 4 Is identical to

that used to estimate the three-factor interaction effect 123.

The estimates of 4 and 123 are said to be confounded. The "4"
.

••

effect really estimates the sum of the effects of 4 and 123.

The resulting eight combinations shown in Table 3 give a

4 k
particular half fraction of the ccmrlete 2 design. A (l/2)

fraction of a 2^ factorial design is called a 2^"'^ fractional

factorial.

Table 3

2 Fractional Factorial Design .' '
•

;

Design Matrix Matrix of Independent Variables Observations

12 3 123=4 1=1234 1 2 3 4 12 13 23 123 •

'•

. Y .

+ -- +. .+ +-- + -

- + - + + - + -H
+ + - - "+.+ + -- +
_-+ + +-- + + +
+ -+ - + +- + --
- + + - + - + + --
+ + + + + + + + + -1-

+ + 12.1
• - + + 21.7

+ + 29.0
_ + 25.7
_ + 17.3

,- .+ - 17.3
+ - 12.9

+ + + 56.2

It Is desirable to have a general method which enables one

to determine which effects are confounded. This is accomplished

for this design by introducing the equality 4 = 123 where the

multiplication product 123 refers to the multiplication of the

Individual elements in the corresponding column 1, 2, 3. It is
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obvious that by niultiplyine the elements in tiny column by a

column of Identical ele.nents, a column of pluses correspondinf^

2 2
to I will result. Thus it follows 1 =1,2 =1, r-nd so on. •

.

On T:Ultiplyin£ both sides of the equation 4 = 123 by 4:

42 = 1234 that is I = I23A. .. (7)

This Identity is readily confirmed for if the elements in column

1, 2, 3 and 4 are multiplied to^v^ether s column of plus sifc:ns is

obtained, that is I. The interaction associated with I is said

to be a generator pf the design. In this particular instance

there is only one generator so this provides the defining rela-

tionships which exist between the effects. Thus the estimates

such as 12 and 34 are confounded. Similarly the main effect 2 is

confounded with three-factor interaction 134 and so on.

4). Linear combination of effects .
•

To proceed to estimate the main effect 2 and the three-

factor interaction 134, the estimate of 2 is really an estimate

of the combination of the effect 2 + 134. Eight linear combi-

nations of effects Lj, L-^, , ... are available. Thus L-|_ =

l/4(X^ Y) or equally L]_ = l/4(X2-54 X) and so on. . .

On studying Table 4, the two-factor interaction are

mutually confounded in pairs, but assuming that the three and •

four factor interactions , are either non-existent or negligible

the estimates Lj, L, , L^ , L^ and L, can be taken to be estimate

of the average and the main effect 1,2,3 and 4. If, further,

prior knowledge is available that, for example, the 34 inter- •

action effect is negligible, then the estimate L,p could be

taken to estimate the 12 interaction effect alone.
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Tatle A

A-1
Eight Linear Corrfoinatlons of Effects from a 2

Design with Defining Relation I = 123A

L. = average + 123A = 21,.53 L^ '= 4 + 123 = 9.05

L^ = 1 + 234 = 7.40 L;j^2 = 12 + 34 = 2.60 •

L2 = 2 + 134 = 8. 85 L^3 = 13 + 24 = 4.25

.• L^ = 3 + 124 = -1.20 L^^ =14+23 =-1.60

5). The alternative fraction

4-1
In the above example, in forming the 2 design, the

factor 4 was associated, with the three-factor interaction 123.

In standard ordering, the elements of the three-factor inter-

action column, and hence of factor 4, are

- + + - + -- +

The factor 4 can either use these elements as they stand, or it

can be associated with negative of the 123 effect, that is with

the elements
_.;,

+ -- + - + + - '

In the first case 4 = 123 that is I = 1234, and in the second

case -4 = 123 that Is I = -1234. In Table 5, the two parts to-

gether constitute a complete 2 factorial design. ]

•

In Table 6 eight linear combinations of effect L j , L| , ...

associated with the fraction having defining relation 1 = -1234

are given. If both fraction are present, then simple addition

and substraction of the L and L' linear combination will

provide unconfounded estimate of all the effects.
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Table 5 •
'

Design i^latrlx for the Two 2^'^ Fractional Factorials

Defining Relation Observations Defining Relation Obser-
vations

I = 1254 Y I = -1234 Y1234 1234
12.1 + ^ 16.8

+ - - + 21.7 + — - - 18 .1
- + - + 29.0 ^'

.

- + - - 10.4
+ + - — • 25.7 + + - + • -32.1
- - + + 17.3 .

- - + - 12.3
+ - + - 17.3 + - + + 25.0 .

- + + — 12-. 9 - + + + 35.1 ,.

+ + + + 36.2 + + + - 27.4

Table 6

Eight Linear Combinations of Effects from a 2^"^

Design with Defining Relation 1 = -1234

L[ = average - 1234 = 22.15 ^ = 4 - 123 = 10.20

L' = 1 - 234 =7.00 . L^2 = 12 - 34 =

L ' = 2 - 134 8.20 L' = 13 - 24 = -4.50

L* = 3 - 124 = 5.60 L' = 14 - 23 = -4.40
3 l'^

Solving for all the effects gives

Main Effects Two-factor Interactions

1 = 7.20 12 = 1.30 24 = 4.38
2 = 8.53 13 = -0.12 34 = 1.30
3 = 2.20 14 = -3.00
4 = 9.62 23 = 1.40

Three-factor Interactions Four-factor Interaction

123 = -0.56 134 =0.32 1234 = -0.31
124 = -3.40 234 = 0.20

Average Response = 21.84
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The estimates are the same as v/ould be obtained from an

analysis of a full 2 design. •

6). The general 1/2 fraction of the 2^ designs

It is usual to use the interaction of highest order to

split a full 2^ factorial into two half fractions. The gener-

ator is 123... n and the defining relation 1 = 123... n. ,
'

The one-half fraction of all the 2^ factorial designs are

best obtained by first writing down the design matrix for a

full 2^'^ factorial and then adding the nth variables by identi- •'

fying its + and - versions with the + and - signs of the high-

est order interaction 123... (n - 1).

For n>5 the half-replicate design permits the estimation

of a plethora of linear combinations of effects, many of which

are combinations of higher order interactions solely. Therefore

saialler fractions of the 2^ designs will be employed, that Is

the 2""^ fractional factorials for k>l. For such designs there

is not one, but k generators which combine to provide the

defining relation.

7). Three type of 2^ factorials V
. ;

•

For convenience. Box and Hunter (•1961a, 1961b) divide " '. .

2^-^ fractional factorial designs into three types. .7;;,

(i) Designs of Resolution III in which no main effect is

confounded with any other main effect, but main effects are

confounded with two-factor interactions and two-factor inter-

3-1
action with one another. The 2 design is of Resolution III

^-1 •

written as 2:: J:

.

•



; *, r y .-^
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(ii) Desi;ms of resolution IV In which no main effect is con-

founded with any other main effect or two-factor interaction, ' .,

but where two-factor interactions are confounded with one ano-

ther. For example, the 2 ^ desit^n is of Resolution IV written

as 2^-1.

(ill) Designs of Resolution V in which no .main effect or two-

factor interaction is confounded with any other main effect or

two-factor interaction, but two-ff^ctor interactions are con-

founded with three-factor interactions. For example, the 2-'

design is of Resolution V written as 2
"=.-1

V '

n-k
This report does not intend to further discuss the 2

7-4
desig-ns. It will only illustrate the desi^^n matrix for a 2'

design. ' • .
.

7 h 7-A
For the 2i_ fractional factorial desic-n, it reouires 2

xii

= 2-^ = 8 runs for testing n = 7 variables , This starts with the

construction of design matrix with the 2 factorial and then

associate four additional variables with the plus and minus

signs of the four interaction columns. For example, set

4 = 12, 5 = 13, 6 = 23, 7 = 123 •
(P)

to obtain the following 2^"^ design(Table 7). The identlfica- .

tions in Eq. (8) provide the generating relations

I = 124, 1 135, I = 236, I = 1237. (9)

•7 h
'

.

The complete relation for this 2'~^ design is
III ^

I = 124 = 135 = 236 = 1237 = 2345 = 1346 = 347 = 1256
= 257 = 167 = 456 = 1457 = 2467 = 3567 = 1234567

Assuaiing that all interactions between three of more

variables are negligible, then by repeated use of the defining
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relations the following linear combinations of effects will be

obtained

:

L, = average
1

L^ = 1 + 24 + 35 + 6?

Lg = 2 + 14 + 36 + 57

L, = 3 + 15 + 26 + 47

L^, = 4 + 12 + 56 + 37

L5 = 5 + 13 + 46 + 27

Lg = 6 + 23 + ''15 + 17

L„ = 7 + 34 + 25 + 16

(10)

Table 7

7-4
Deslt'n Matrix for a 2^j^ Design

4 = 12 5 = 13 6 = 23 7 = 123

+

+ -

+ - +

+ -

+ + -

+ + +

+
+

+

From the above Illustration, the procedure of adding

fractions In sequence with suitably switched slg-ns provides a

useful method for the systematic Isolation and conf Ir'natlon of

Important effects In multi-variable systems. In the next sec- •

tlcn, this repoet will develop a predictor-corrector equation.

Through the use of a predictor-corrector equation an experiment-

er may quickly determine thp, least squares estimates of all the

coefficients when the 2^ factorial designs are denoted In a

polynomial model.

DERIVATION OF PREDICTCR-COxHREGTCR EQUATION
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1). Derivation •
. .

'

'

•

In this section the predictor-corrector equation for esti-

mation of the coefficients in a linear .iiodel where additional ..

data become available will be derived.

Let Y represent a column vector of N stochastic observa- •,

tions Y-j_, Y2, ...., Y^^-, let B represent a column vector of q

unknown coefficients b-j^ , bp, ..., b , and let the matrix of

Independent variables X be composed of N rows, and q columns.

Then, the observational equations may be represented

Y = XB + e (11)

where e is an !] x 1 column vector of error components, with

E(e) = 0, E(ee') = <5^I-, and where E(Y) = XB. If InI ^ q , the

least squares estimates B are provided by solving the normal

equations X'X^ = X'Y giving ^ = (X'X)"'^X'Y under the usual >,

assumption that X'X has rank q and hence that its Inverse

exists. For the situation in which the model and experimental

designs have been chosen (see example Table 2) so that X'X =

rKI^ where r is the number of ti.iies the desiim Is replicated
q i_ i .

and Iq is a q X q identity matrix. The varlance-covariance

matrix of the estimates B is (3^(X'X)~-'" (Graybill I96I). .

'

Suppose that Z be an n x q matrix of n additional row

vectors z^, 1=1, 2, ,..,n added onto X and let y be the

correstonding n x 1 vector of new observations. Then the model

now becomes

Y
= [^>^ft]. <-)

and the associated normal equations
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a'0- = [tj'gj

or

(X'X + Z'^)3- = (X'Y + Z'y).

Substituting for X'X3 = X'Y:

(X'X + Z'Z)B^' = (X^-^B + Z'y) (13)

where B"" is the new vector of esLlmates bnsed on ell (N + n)

observations.

Kow let y = ZS be the predicted values for the additional

row vectors based on the initial estimates B and let d = y - y.

Then y = d + y or y = d + zS.

From Eq. (13)

:

(X'X + Z'Z)B<' = X'XB »- Z'(d + ZB)
,

, .

(X'X + z'z)§* = (X'X +'z'z)B + z'd '

;

thus ....
B« = B + (X'X + Z'Z)"^Z'(y - ^)

,

.

'

• • (lA)

From the fact X'X = rKI^ it follows that
'

q

(X'X + Z'Z)'^ = (rKIg, + Z'Z)"^

= l/rN[lq + l/rN(Z'Z)j'-^. •• .'

Since (I + UV)""^ = I - u(I + V\J)~'^V

,

so

(X'X + z'z)"^ = — fi - —z'(i^ + ^zz')-iz1.

Here further requiring that the added row vectors z^ comprising

Z must be row-wise orthogonal, that is z^z' =0 for i ji^ J , then

ZZ' = ql^, so

• (X'X + Z'Z)"^ = -^fl^ - ^Z'(I + -I_ql^)~^zl
rlH "^ rW n rlM^ ^-

J
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Fro.Ti Eo. (14):

B^' = B t-

= B + -L-f;^ >
5:

—

2.
' ZZ '

1 (
y - y

)

= B + -i-fz' - -^^i_Z'qI„l(y " ?)

ri^[ rJM + q J
V^ ^^

So . .

•

g* = § + _L_Z'(y - J). ;• (16)
rw + q

This equation is termed the predictor-corrector equation and

is useful whenever both X'X and ZZ' are orthogonal.

For q = l\, B*' can be written '.
. - .

•"

Eq. (16) can be written: . - fv
'-.,.-«" ' *

'

A A 1 "
B-« = B +

or more si.iiply

B^ = B t^d. (IQ)

where the corrections for the coefficients at the conclusion of

the ith additional run are given by the elements of the vector

where z^ = 1 x q row vector in the matrix of independent

rFT^ff^l - Jl'^i-
.

.
.

'18)
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varl-Dtles nsaociated with the 1th experlnent , 1 = 1,

2, . .., X) -^ li,

y. = new observnLlon associated with z^,

f. = z.S = predicted response for the ith experiment.

The quantity (y^^ - y^)/(rK + q) is called the "corrector

constant" for the ith run.

The variance-covarlance oiatrix for 3* is (X'X + Z'Z) tf^.

From the above assumption X'X = riM , ZZ' = ql^, and further

the elements of Z consists of +1 or -1 only (as using the two-

level factorials v/ith their associated rr.odel), then the diago-

nal elements Of Z'Z = n and by Eq^ (15) » the variance of any

individual estimate is . .

. Var(bJ = — (1 -
"

)q^. (20)
1 ri\ ri^ + q

'
/

:

2). Analysis of variance

The analysis of variance table corresponding to the com-

pletion of r blocks of N runs each is as shown in Table 8,

Table 8 .;

Analysis of Variance for r Blocks of K Runs

Source . DF HQ

Crude suti of squares rN S3T = Y'Y

Regression sum of squares q S3R = Y Y

Deviation sum of squares rN - q ssd = (Y - Y)'(Y - Y)

Given n additional observations, then the new AGV table

is as shown in Table 9.
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Table 9

Analysis of Variance for n Additional Runs

Source DF S3

Kew Crude So , rl^ + n S3T<^ = Y'Y + y'y

New Regression SS q S5R-»; = B*'(X'Y + Z'y)

Kew Deviation S3 rN + n - q 5SD*
rW

= ^^° ^ ^N-T^^y - ^'^'(y - y)

NUMERICAL EXAMILE '--
~'

"

1). Computational procedure

Table 10 .

' '

'

Data and Estimates of the Coefficients for a 2 Design

Run Deslf:n > Re sponse
Matri X Estimates

Number 1 2 3 4 • (Observation)

1 12.1 '

^o
.. 21. e4

2 + - - - 18.1
,

°1
~ 3.60 . .

3 - + - - 10.4 ^2 zz 4.264 •

+ + - 25.7 ''

^12 zz 0.65
5 - - + - 12.3

S3

b23
°1 O-Jl

^ 1.10
• • 6 '

7
+

+
+

+

— 17.3
12.9

~ -0.06
0.70

\/--'

8 + + + — 27.4 - -0.29
9 - - - + 16.8 ^4^ ~ 4.81

10 + - -
1

21.7 ^14 = -1.50
11 - + - + 29.0

^24
h24
b^^

^234
^1234

:z 2.19
12 + + - + 32.1 — -1.70
15 - - + + 17.3 ~ 0.65

. 14 + - + + 25.0 = 0.16
15 - + + -- 35.1 ~ 0.10
16 + + + + 36.2 ~ -0.31

'.
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To Illustrate the computational procedure through the use

of the predictor-corrector equation, consider the d^ta in Table

t
5. In Table 10 the sixteen runs of the 2 factorial are listed

in standard factorial notation (Davies 1963, Cochran and Cox

1957). The estiniates are obtained by the method of least

squares

.

To fit the q = A coefficients in the first order model E(y)

= "b O/q + t)-|^%-|^ + ^2^2 "*" ^-^-^ > ®^ initial program involving only

the three variables JC'^, ^o » ^x' ®^^^ runs 5, 2, 3 and 8 are

used. First consider the N = 4 runs of a 2::" fractional defin-

ed by I = 123. The data and estimates of the coefficients are

as follows : .

Matrix of Independent Variables

12 3

- - +

1

Vector of Observations

X =

'^5

X2

Us,

+

+

+ +

Y =

12.3

le.i

10.4

127.4J

Solutions (Vector of Estimated Coefficients)

^0 17.05

B =

"^2

—
5.70

1.85
A

^
2.80,

Fitt ed nlOdel •
•

} = 17. 05;^^ + 5.70>^ + 1.85:^2 ^ 2.80% .

Suppose that n < I^' additional experiiients drawn from the
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half rcrllcote 2^'-^ having defining relation 1 = -123 sre. now
.

run. Ihe least squares estimates of all the coefficients rv.ny be

obtained by using the predictor-corrector equation after eoch

run. Suppose a fifth experinnent, say run 1, is performed fol-

lowing the completion of the initial block of four runs given

above. Then K = q = 4, r = 1 and

z^ = (+ ); y-L
= 12.1;

^^ = z^B = (17.05) - (5.70) - (1.85) - (2.80) = 6.70.

Ihe corrector constant is:

(yi
- yi)/(rK + q) = (12.1 - 6.70)/(4 + 4) = 0.675.

The revised estimates of the coefficients are given by sub-

stituting in the predictor-corrector equation, Eq . (18),,

N 17.05'

B^=

A

=
5.70

1.85

N . 2.80,

(4+A)
(12.1-6.7)

r + '17.05+0.6751

5.70-0.675

1.85-0.675

2.eO-0.675j [ 2.125,

fl7.725]

5.025

1.175

The new fitted eauation is '

^ = 17.725^0 + 5.025%^ + 1.175^2 "" 2.125^3

The variance of each revised coefficient is

Var(b) = ^(1 - .,

^
'

rH ri^ + q
) a^ = 7cr2/32.

Suppose a sixth experiment is now run, say zg , and new

estimates required. Then

Zg = (+ + - +); yg = 17.3;

yg = ZgB = (17.05) + (5.70) - (1.85) + (2.P0) = 23.70.

Note here that the predicted value for every new run is com-

puted from the coefficients obtained after the Ipst completed
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blcck,
_

. .

The corrector constant is:

(vg - y^)/{r:i + q) = (17.5 - 23.70)/(4 + A) = -0.800.

The estimates at the conclusion of runs 1 and 6 are:

A
B* =

b^] ri7.725 + (-0.800)]

A

A

16.925 1

A. 225

1.975

I 1-525J

5.025 + (-0.800)

1.175 - (-0.800)

2.125 + (-0.800)

The fitted equation is:

y = 16.925X^0 + 4.225*-L + 1.975%, + 1.325''^3.

2
Each coefficient now has variance 6<5 /32.

At the conclusion of the seventh experiment Zj

Zy = ( + - + + )

;

y^ = 12.9;

yy = z.^5 = (17.05) - (5.70) + (I.85) + (2.80) = 16.0. ":./

The corrector constant is; . :
•

^ .:

(yy - yy)/(ri^ + q) = (12.9 - 16.0)/(A + 4) = -O.388.

The nev; fitted oiodel is:
'

'

• ,.-

y = 16.537>Q + 4.613>i "^ '^'^^^^2 "" 0-937;^^.

Each coefficient has variance 5c5 /32.

The eighth experiment z^ completes the second block of

n = 4 runs giving

^4 = (+ + + -); y4 = 25.7;

y^ = (17.05) + 95. VO) + (1.85) - (2.80; = 21.80.

The corrector constant is:

A

(y4 - y4)/(rN + q) =3.9/8 = 0.486;
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,
f

A

A

^2

=:

A

K

16.537 + (O.A.88)

4.613 + (0.A88)

1.58? + (0.488)

0.937 - (0.488)J

17.0251

5.101

2.075

0.449

I'he new fitted equation is; .

y = 17.025%'q + 5.101%;^ + 2.0751^2 •*" ^'^^9%^- '

,. .
(21)

Each coefficient has variance Uc5^/J)2, " '

3
. , The second block of four runs completes a full 2 design.

Suppose a third block of four runs, replicate of the earlier

runs, is now added having defining relation 1 = 123, then the .'

coefficients once again will be re-estioiated at the conclusion

of each run. Begin this third block with run z^-z, thus

,
. Table 11

3Data and Estimates for a Third Block of 2 Design .

Run . 13 10 11 16

^ (+ - - -h) (++--) (+-+-) (+ + -f +)

^i
• 17.3 21.7 • 29.0 36.2

A
10.298 19.602

:
l^r55

"

y 24.65 ;

Corrector 0.584 0.175 1.286 •. 0.963

K • • 17.609 17.784 19.070 20.033

K ,4.517 4.692 3.406 '

. 4.369
A

1.491 -. 1.316 2.602 3.565
A

1.033 0.858 0.428 0.535

Ver(b) 11(3^/96 10(5^/96 9c5^/96 86^/96

4SSD 32.741 2.940 158.764 89.027
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2^3= (+--+);
yi3 = ^^•^'

A A
Heme.Tiberinf: now that y,^ = ^13^^ where B is the vector of esti-

mates provided by the most recently completed block, obtalning

on substituting the lr?st fitted equation, L"q. (21),

i> , = (17.025) - (5.101) - (2.075) + (0.4A9) = 10.298.' ;.

Remembering further that two blocks of N runs have been com-

pleted 30 that r=2, N=4, q=4, the corrector constant for

thj s run is: .

(y^^ - y^^)/(rA + q) = (17.3 - 10. 298)7(2 x 4 + 4) = 0.5fi4. V'

The remaining run of third block are z^q, Ztt. z^^. The

A
revised estimates of the coefficients B'*>- computed after each run

and the associated variance are given in Table 11, Also listed

Table 12

Data and Estimates for a Fourth Block of 2^ Design

Run 9 .
.14 15' 12 •

^i
(+ ) (+ + - -f) (.-e - + +) (+ + -.-)

yi 16.8 25.0 35.1 32.1

^i 11.564 21.372 19.764 27.432

Corrector 0.327 0.227 0.959 0.291 .

A

20.360 20.587 ,• 21.5^6 21.84

4.042 4.269 3.310 3.60
A

"2 3.238 3.011 . 3.970 4.26

^3 0.208 0.435 1.394 1.3

Var(b) 156^192 I4cj^/192 I3c5^/192 12(5"^ /1 92

ASoD 20.530 9.894 176.579 16.259
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IsASSD, the Increase in the deviation su;ns of squares result-

ing fro.r. the added run.

A fourth block with defining relation I = -123 consisting

of Zq, 2,k, z-ii-» ^12 gives the results listed in Table 12.

The estimates of b* after sixteen runs agree with those

dlsplaj'ed in Table 10 as they xust. After every run the esti-

mates tabulated are the least squares estimates,

2). Analysis of variance

After the completion of each run redetermine the analysis

of variance table associated with the model and the total

number of runs. As shown in Table 8 and 9, the crude sum of

squares increase with each added observation. The sum of

squares of deviation for each added run will increase by ASSD^

= Increase in Deviations sum of squares for ith run •
-"

.

= rK/(rN + q)(y^ - y^)^ .
''

. ,;_

or more conveniently .;>",• "
"

ASSD^ = rN(rI>- + q)[(yi - y^)/(rl^ + q)]^

2
:rrii(ri^' + q) (Corrector Constant for ith run)

The total 3SD at the conclusion of the eight experiments •

Is (A+4)[(0,675)^+(-0.8CO)^+(-0,3a8)^+(0,A88)^j= 47.A99. . . •

Assuming' the model is appropriate, an estimate of the

2 P /variance 6 Is provided by s = 3SD'»v(rK + n - q). The estimate

of variance at the conclusion of the sixteen run is s^ =

55A. 233/12 = 46.186 with twelve degrees of freedom.

AirPLICATICw

It was Illustrated above how, by the addition of avail-
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able data to a 2^".: deslvn, the revised estimates xi*' may be

obtained. Below are exa.Tiples of the aprlication of the pre-

dictor-corrector equation.

1). Augment of the model and block size

In the above example the mathe:matical model was not

chantted as additional data became available. However, at the

end of the eighth run a full 2^ factorial had been completed

and orthogonal estimates of the first order, two-factor inter-

actions and three-factor interaction could have been obtained,

the three-factor interaction being confounded with the block

effect. The data and associated estimates at the conclusion of

the eighth experiment are displayed in Table 13.

Table 13

Data and Estimates for a 2^ Design ,:
•

X=

X

X4

x_

i^ej

Matrix of Vector of Vector of
Independent Variables Observations Estimates

1 2 3 12 13 23 123

+---+ + +

+ + - ^ - - +

+ - + - - +

+ + + - +

+ -- + +- -

+ + - + -

+ - + + -

+ + + + +

'12.

r

\ 1

18.1
A

10.4 h

; Y=
25.7

12.3

17.3

12.9

; B=
«3

—

,27. A
A

fl7.025^

5.101

2.075

0.AA9

2.350

-0.225

0.600

0.025
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B* =

'17 .3191
h .807
] .781
.155

2 .644
.069
.894

L-0 .269 •

The fitted model Is:

y = I7.O25X0 + 5.101-?^^ + 2.0750^2 "^ 0.449^, + 2.350^^^2

- 0.225^3_'X/, + 0.6000^2''^^ + 0.02'51!,^')I,^% ,

Suppose a ninth experiment is ncv run, say z^:

z^ = (+ +++_); y^ = 16.8;. y^ = z^B = 12.100.

The number of runs, in the block are now K=8, q=8, r=l,

and the corrector constant = (yg- yg)/(rK + q) = 0.294. Thus

fl7.025 + 0.2941
5.101 - 0.29'^

2.075 - 0.29^^
0.4^)9 - 0.294
2.350 + 0;294
-0.225 + 0.294
0.600 + 0.294
0.025 - 0.294

Inforojation from additional replicate runs could continue to

up-date these estimates. The estimates of B*'" after the second

block of eight runs is completed will agree with those dis-

played in Table 10 as they must,

2). Setting number of estimates q equal toblock size N

To use the predictor-corrector equation it is only

necessary that the q estimates provided by the block of N runs

be mutually orthogonal and that the n additional runs produce

vectors in the matrix of independent variables that are also ;

,

row-wise orthogonal. If the n additional runs are to be drawn

from a two-level design, then it is convenient to set q = K

even though this may require the addition of "slack" variables

to the model (Hunter 1964). For example, to estimate the five

coefficients in the first order model E(y) = b^OO^ +i?ft)i'^i. the

smallest two-level design that will provide orthogonal esti-'
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4-1
mates is a 2 containing; eight runs. In order that q = N,

three slack variables might be
'»i>y2> ^i^-^> 'X'n'X'^. Of course, an

experimenter would choose slack variables he felt might produce

large effects and hence properly belong in the model.

As an example, data from Table 10 were used to construct

an Initial block comprising the eight runs of a 2 -^ design

with defining relation I = 1234. The matrix of independent

variables X associated with the model, now containing the slack

variables, is displayed in Table 14 along with the observations

and the estimated coefficients,

.. . . . Table 14 ' . .

'. .; '
•

Data and Estimates for a 2 Design . •

X=

h
^

^10

^11

^4
^

"13

^6

"7

he\

1 2 3 4 12- 13 14
+ ----+ +' +

+ + -- + - - +

+ - + - + -,+

+ + + -- +

+ -- + + +

+ + - + -- + -

+ - + + -- - +

+ + + + + + + +

Y
12.

1-

A
B

21.53"

21.7 ^1 3.70

29.0
A

"2 4.43

•

25.7

17.3

•

>

A

A =
-0.60

4.53

17.3 ^12 1.60

12.9
A

^5 2.13

.36.2. kJ -0.80

Suppose now that run 2 is added, then

Zg =(++--- - ); yg = 18.1 and ^^ = ^2^ ' ^5.94, using

Eq. (18) the estimates will become
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B^

p°l
'21.53'

A
^1 3.70

^2 4. A3

S -0.60
~

h A. 53

b,2 1.60

2.13
A

ivJ .-0.80,

(8 + 8)
(18.1 - 13.94)

21 .79'

3 .96

A .17

-0 .86

A .27

1 .34

1 .86

-1 .06^
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DISCUSSION

In this report, the predictor-corrector equation la uaed'

to Improve the estimates of all the coefficients In the assumed

mathematical model. Before the predictor-corrector equation can

be used two conditions must be satisfied: 1) the estimates B

supplied by the prior block of N runs must be mutually orthogo-

nal and 2) the added row vectors must be row-wise orthogonal,

that is 2.^z\ = for 1 ji^ J . These conditions are met by the

2^ and 2^" designs and associated models Illustrated in this
.

report. The equation can, of course, be applied to other

designs and models, which satisfy these conditions.



30

. ACKKOWLEDGi^iEKT ..
•

I wish to express my sincere {gratitude to Dr. Arthur D.

Dayton for his advice and guidance during the writing of this

report. I also wish to express ray thanks to Dr. A. M. Feyerherni

and Dr. R. E. Williams for their valuable suggestions In the

preparation of this report.



31

REFEREIxCES

Box, G. E. P. 1937. Evolutionary Operation. Aprlied Stat,
IJo. 2, 3 - 23.

.
•. .

•

Box, G. E. P. and Hunter, J. S. 1961a. The 2^"P Fractional
Factorial Design I. Tech. 3, 311 - 352.

Box, u. E. P. and Hunter, J. o. 1961b. The 2^'"P Fractional
.

Factorial Desi,:'n II. Tech. 3, ^^9 - -^52.

Cochren, ".V. G. and Cox, G. M, 1957. Experirnental Designs, John
Willey and Sons, Inc., Kew York.

Davles, 0. L. 1963. Desl^^n and Analysis of Industrial '

.

.

Experiments. Hafner Co., Kew York. .

'

•'

Gauss, C. Y, 1821 Theoria Combinatlonls Observatlonum
Errorlbus Minimis Obnoxiae. V/erke 4, Gottingen.

Graybill, F. A. 1961. An Introduction to Linear Statistical
Medels I. /.cGrav/-Hill , Kew York.

Hunter, J. S. 1964, Seouential Factorial Estimation. Tech. 6,
41 - 57.

John, P. V/. K. 1966. Augment 2^''^ Designs. Tech. 8, 469 - 480.

Plackett, R. L. 1950. Some Theorems in Linear Souares. .. •

Biometrika 37, 149 - 157.

Yates, F. 1937. Design and Analysis of Factorial Experiments,
Imperial Bureau of Soil Science, London,



SEQUENTIAL FACTORIAL ESTIiaTION

by

GUANG-CHbEN LIN

B. Ed., Taiwan Normal University, I960

M. Ed., Taiwan Normal University, 1964

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirement for the degree

MASTER OF SCIENCE

Department of Statistics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1967



<^r-,-i

In industrial experl.Tientation it is often possible to run

the experiments in a factorial experiment consecutively and to

observe or calculate the response at the completion of a block

of runs or an added run before the next experiment is run. This

has led experimenters to consider sequential planning schemes.

The factorial designs discussed are the 2 and 2
*" ex-

periments. The numbers 1, 2, 3 i
n are used to denote the

n variables, plus and minus signs to represent high and low

levels, respectively.

To analyze the sequential data, a predictor-corrector

equation is developed

B* = ^ + ^(y^ - yi)zi ,
-:

rK + q i ^ :,

where B* = (q x 1) vector of revised estimates,

B = (q X 1; vector of estimates provided by prior

block(3)
,

H = total number of runs in a block, v

q = number of coefficients in the model,

r = number of blocks of N runs completed,

2^ = (1 X q) row vector in matrix of Independent '

'

variables associated with the ith experiment,

1 = 1,2 , n ^ 'ii

,

•'

y^ = new observation associated with z^,

y^ = z^B = predicted response for the ith experiment,

by which an experimenter may quickly determine the least

squares estimates of all the coefficients in a polynomial •.



model'
n n

E(y) = ^o + -Zb,)^i > x:it). .x.%, +

i=l KJ '•J " -J

after the conclusion of each run or any group run, given that

an initial set of orthogonal estimates of the coefficients is

available.

The equation is subject to mild restriction which are

fully met in the usual application of the 2^ and 2^"^ factorial

designs, ',•,".

Two conditions mus.t be satisfied before using predictor-

corrector equation to perform factorial estimation: 1) the

estimates B provided by the prior block of N runs must be

mutually orthogonal and 2) the added row vectors must be row-

wise orthogonal.
. .

^,:


