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Abstract 

In recent years, we have witnessed a significant increase in the number, size and diversity 

of the available data sources in many application domains. Data sources in a particular domain 

are autonomously created and maintained, and therefore distributed and semantically 

heterogeneous. In this thesis, we focused on the problem of querying such semantically 

heterogeneous data sources from a user's perspective. We approach this problem by using the 

concepts of ontologies and mappings between ontologies. A system for answering queries in a 

transparent way to the user has been designed and implemented. The main components of this 

system are an ontology mapping algorithm that maps user ontologies to data source ontologies, 

and a query processing engine that maps user queries to queries that can be answered by the data 

sources in the system. We have shown that machine learning algorithms can also be incorporated 

in the system, thus making it possible to learn machine learning classifiers (in particular, 

generative models such as Naïve Bayes) from distributed, semantically heterogeneous data 

sources. Because many data sources today are relational in nature, in this work we have dealt 

specifically with relational data sources, as opposed to flat files, XML or object oriented data 

sources. However, our system can be easily extended to other types of data sources. 
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CHAPTER 1 - Introduction 

1.1 Background 

The traditional view of information systems as data intensive applications has changed 

due to rapid and continuous advances in technology. Thus, in addition to the ability to deal with 

large amounts of data, current information systems are heterogeneous in their representation and 

scope, types of data that they can handle interaction with other systems or with users, etc.  

Principled use of multiple information systems together, to achieve a global task, calls for 

system integration at several levels. In particular, it calls for the integration of data from 

distributed, autonomous and heterogeneous data sources [11]. Such data sources exist in many 

application domains, including biological sciences, space sciences, environmental sciences, 

advertisement, ecommerce and banking, manufacturing, where information systems are required 

to support flexible querying and retrieval, among other tasks. 

At a high level, our goal is to design and implement a system for querying semantically 

heterogeneous relational databases, where each autonomous database uses its own terminology 

to describe its data. We will approach this task by assuming that there are metadata, in the form 

of ontologies, associated with each database. These metadata make the database and its content 

self-describing. In addition, mappings between user and database ontologies will be used to 

answer queries from semantically heterogeneous databases from a user’s perspective.  

The work described in this thesis relies on emerging semantic web concepts, in particular 

ontologies and mappings between ontologies, and their representation languages. This is because 

information integration challenges like those addressed in this work, have been influential in the 

birth of the semantic web, where data is assumed to have structure and semantics, and ontologies 

are used to describe the semantics of the data. An ontology is a description (like a formal 

specification of a program) of the concepts and relationships among concepts that exist in a 

particular domain [2]. They can be seen as a way to organize data. Such organization could make 

it possible for software agents to “understand” the semantics of these data and intelligently locate 

and integrate them for a wide variety of tasks. Sharing common understanding of the structure of 
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information among people or software agents is one of the more common goals in developing 

ontologies [2]. 

The complexity of an ontology varies with the expressiveness of the concepts and 

relationships it can represent. In this work, we will use simple ontologies that can be seen as 

concept hierarchies, with each concept having a set of (possibly hierarchical) attributes that 

describe it. The relationships between concepts are either part-of or is-a relationships. Figure 

1.1 shows an example of a fragment of a concept hierarchy in the movie-marketing domain (this 

domain will be used as an example and as an application throughout this thesis). 

 

Figure 1.1: Concept hierarchy in the movie-marketing domain. 

 
In addition to their role in describing information sources, ontologies play a key role in 

enabling interoperability among distributed information systems. However, this requires 

appropriately reconciling multiple ontologies. The reconciliation is done through the means of 

mappings between ontologies. Mappings can be found manually or semi-automatically [7], by 
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identifying mismatches between ontologies at the lexical level (different terminologies, e.g. 

production company versus studio), at the structural level (different levels of abstraction, e.g. 

company versus production company or music company) or at the data representation level (e.g., 

currency can be represented in American dollars or Euros). 

 

1.2 Problem Definition and Contributions 

We will introduce the problem that we address in this work through an example from the 

movie-marketing domain. Assume that there are several databases that store related but not 

completely overlapping information about movies (e.g., International Movie Database - IMDB, 

Yahoo! Movies, MSN Movies, Foreign Films). These databases are autonomously created and 

maintained, which means that each has its specific ontology. A movie marketing company, 

having yet its own ontology, wants to analyze these databases together to find out what makes a 

movie successful. More precisely, they want to build a predictive model and use it to predict if a 

new movie will be successful or not. As shown in [12], the task of building predictive models, 

such as naïve Bayes or decision tree classifiers can be reduced to the task of answering statistical 

queries, e.g. COUNT queries, from data. In the movie-marketing scenario, a naïve Bayes 

classifier can be constructed by answering a set of COUNT queries from semantically 

heterogeneous data sources. Given the data source ontologies and the user ontology (in our case, 

the marketing company ontology), together with mappings from the user ontology to the data 

source ontologies, count queries can be answered in a transparent way to the user, as if the data 

were all at a central location and described in the user ontology.  

Therefore, in this thesis, we design and implement a system that can answer queries from 

semantically heterogeneous movie data sources. We use answers to such queries to build naïve 

Bayes classifiers for predicting if a movie is successful or not. More precisely, the whole process 

involves the following steps: 

1. Creating and populating two movie ORACLE databases. 

2. Creating ontologies (i.e., concept hierarchies) that describe the two movie 

databases and also a user ontology. 

3. Designing an algorithm for finding mappings between user ontology and data 

source ontologies. 
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4. Designing an engine for answering SQL queries from semantically heterogeneous 

data sources, through the means of ontologies and mappings between ontologies. 

5. Evaluating the ability of the system to answer complex SQL queries from 

semantically heterogeneous data (especially, in situations where data in different 

sources is specified at different levels of abstraction).  

6. Evaluating the ability of the system to build naïve Bayes classifiers in a way 

transparent to the user. 
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CHAPTER 2 - Querying Semantically Heterogeneous 

Data Sources 

The primary goal of this thesis is to build a system that can be used to answer queries 

from autonomous data sources. In this chapter, we will describe the main concepts and ideas 

beyond the query answering engine that we build. 

 

2.1 Ontology Extended Databases and Mappings 

In our framework, we assume that there are several ontology-extended 

databases,(D1,OD1),…, (Dn,ODn), registered with an information system, and users (e.g., movie 

critiques or movie advertisement companies), (U1,OU1),…,(Uk,OUk) that want to query the data 

available in the system, according to their own ontologies. Figure 2.1 shows simple examples of 

two such databases and Figure 2.2 shows fragments of their underlying movie ontologies, as 

well as a user movie ontology. 

 

Figure 2.1: Movies data collected by two movie critics in two different databases 
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Figure 2.2: User ontology OU and data source ontologies OD1, OD2associated with the movie 

concept. 

 

We assume that for each user Ui and each ontology Dj, there is a mapping Φij from the 

user ontology OUi (source) to the data source ontology ODj(target). This mapping specifies how 

terms in OUi are mapped to terms in ODj. Furthermore, the mapping can also specify conversion 

functions (e.g., to convert between different units). We will use the example in Figure 2.3 to 

define the types of mismatches that we will try to capture in this work (although other types of 

mismatches can be defined). In particular, we consider mismatches that can be identified at 

several levels, as described below: 

• Lexical mismatches (naming conflicts): when the same concept has different names in 

different ontologies. For example, in Figure 2.3 the movie ontology OU identifies a 

movie by its title, while the ontology OD identifies a movie by its name. Naming 

conflicts are extremely difficult to resolve. The user or a software agent needs to have 

prior information or background knowledge about the concept to resolve such a 

conflict [13]. 



 7

• Structural mismatches: when data in different databases are specified at different 

levels of abstraction. For example in Figure 2.3, production company is at a lower 

level of abstraction in OD than it is in the ontology OU(more specific than company). 

• Representation mismatches: when mismatches occur due to differences in the 

representation (e.g., different units) of the data. In this case, mappings can be seen as 

conversion functions. 

Figure 2.3: Types of mismatches between terms in user ontology and terms in database 

ontology 

 
 

A simple algorithm for finding lexical and structural mismatches has been designed as 

part of this thesis. The ideas behind the algorithm will be briefly described in the next section. 

We also deal with semantic heterogeneity at the representation level in the system we build, but 

we use standard conversion functions (e.g., currency conversions) for this type of mappings.  

 

2.2 Finding Mappings Between Ontologies 

The types of semantic mappings considered in this thesis can be written as follows [14]: 

(1)OU:x = OD:y(x in OU is semantically equivalent to y in OD),  

(2) OU:x ≤ OD:y(x is semantically subsumed by y), and  

(3) OU:x ≥ OD:y(x semantically subsumes y). 



 8

Figure 2.4 shows examples of such mappings between a user ontology OU and the 

databases ontologies OD1 and OD2, respectively. 

 

Figure 2.4: Structural and lexical mismatches between terms in the user ontology OU and 

terms in two databases D1 and D2. 

 

 

 

 

 

 

 

 

 

 

 

 

Mapping type (1) means that the concept x in ontology OU is equivalent to the concept y 

in ontology OD. For the purpose of our algorithm, we define the equivalence of concepts based 

on the equivalence of the attributes associated with these concepts. 

Mapping type (2) means that that the concept x in ontology OU is a subtype of the 

concept y in ontology OD. We define the subtype relation between concepts as the subset relation 

between their attributes. Thus, if the set of attributes of concept x is a subset of the set of 

attributes of concept y, then we say that x is a subtype of y.  

Mapping type (3) means that that the concept x in ontology OU is a super-type of the 

concept y in ontology OD. The super-type relation between two concepts is defined as the 

superset relation between their corresponding attributes. 

The rules (1), (2), (3) can also be applied to find mappings between attributes associated 

with concepts, where the equivalence, subtype and super-type relations are defined in terms of 

the values of the attributes. 

 

OU àààà  OD1 OU àààà OD2 
ID: OU àMovieID: OD1 ID: OU à  MID: OD2 

Name: OU à Movie Name: OD1 Name: OU à Movie Title: OD1 

Name: OU à Alternate Name: OD1  

DOR: OU  à Date: OD1 DOB: OU  à Date: OD2 

Genre: OU à Genre:  OD1 Genre: OU à Genre Type:  OD2 

Country: OU à Country of Origin: OD1  
Country: OU à Country: OD2 

Language: OU à Language: OD1 Language: OU à Language of Movie: 
OD2 
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2.2.1 Resolving Structural Heterogeneity 

The structural heterogeneity in ontologies can be resolved by considering the types of 

components and structures residing in the ontology graphs [12]. Methods that use such 

information rely on the intuition that elements of two distinct entities (concept/attributes) are 

similar when other elements adjacent to them are also similar [15]. We will set the following 

criteria, adopted from [12], to decide if two entities A and B in an ontology are structurally 

similar: 

1. The direct super-entities of A and B are similar. 

2. The direct sub-entities of A and B are similar. 

3. All entities on the paths from the root to the entities A and B, respectively, are 

similar. 

4. A and B have similar attributes (for concepts) or similar values (for attributes). 

 

2.2.2 Resolving Lexical Heterogeneity 

In semantic matching of ontologies, a linguistic analysis of the names of the entities and 

the concepts is done, using WordNet [16].Thus, a name-based check will always be performed 

before measuring the similarity of a pair of concepts by comparing the attributes which uniquely 

define the concepts. 

More details on how we implement the ideas above are provided in the chapter on 

experimental design. 

 

2.3 Querying Semantically Heterogeneous Databases 

We should note that the mappings Φij from user ontologies OUi to data source ontologies 

ODj, enable a user to see a set of semantically heterogeneous databases as a single centralized 

homogeneous database that can be queried using the user ontology.  

When a user registers with the system his/her ontology needs to be specified. Once it is 

specified, the system will use the ontology mapping procedure to generate candidate mappings 

between the user ontology and the ontologies of the databases available to the system. The 

resulting mappings are shown to the user and can be edited, if changes need to be made. Once 
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the user approves the mappings, they are stored in a mapping repository that is accessible by the 

query answering engine.  

Figure 2.5 shows the process the system follows in order to answer queries posed by a 

particular user U. Thus, a user query QU is sent to the query answering engine (QAE), which has 

access to the mappings between the user ontology and the ontologies of the databases available 

in the system. The QAE decomposes the user query QU in sub-queries, Q1,…,Qn, that can be 

answered by the individual databases, D1,…, Dn, respectively. As the initial user query QU is 

expressed in the user ontology OU, sub-queries need to be translated to the database ontologies 

before they are sent to databases for execution. This is also done by the QAE by making use of 

the repository mappings corresponding to the user OU. Finally, the results R1,…,Rn that are 

received back from the distributed databases are combined by the QAE into a final result set RU, 

which is returned to the user.  

Figure 2.5: Query answering process 

 
 

2.4 Partially Specified Data 

It may be useful to explore what it means to answer a statistical query in a setting in 

which autonomous data sources differ in terms of the levels of abstraction at which data are 

described. We illustrate some of the issues that have to be addressed using an example: 
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Consider the data source ontologies O1 and O2 and the user ontology OU shown in Figure 

2.2. The attribute has_genre in data source D2 is specified in greater detail (lower level of 

abstraction) than the corresponding attribute has_Genre_name is in D1. The data source D2 

carries information about the precise type of genre of Movies e.g., Action, Classic (which has 

subtypes Romance and Drama). However data source D1 makes no distinctions between the 

types of genre Drama and Romance, i.e. it only has the class Classics. Suppose that D2 contains 

10 and 30 instances of movies with genre Romance and Drama, respectively, which are 

categorized are subclasses of the genre Classic. Suppose D1 contains 80 instances of movies with 

genre Classic. However, the Ontology O1 does not make an explicit mention of the subclasses 

Romance and Drama. Assume that the following statistical query q1is posed by the user against 

the two data sources D1 and D2 based on user ontology OU: What fraction of movies have genre 

Classic? The answer to this query can be computed in a straightforward fashion for D2 as the 

number of movies with genre Drama and Romance (resulting in 10 + 30 instances) and for D1 as 

the number of movies with genre Classics (which is 80 instances). 

Let us consider a different statistical query q2: What fraction of the movies in the two 

data sources have genre Drama? The answer to this query is not as straightforward as the answer 

to the previous query q1. This is due to the fact that the genre Drama of movies in data source D1 

is only partially specified [14] [15] with respect to the ontology OU. Consequently, we can never 

know the precise fraction of movies that have genre Drama based on the information available in 

the two data sources. But we assume that the proportion of movies with the genre Drama among 

the movies with genre Classic is similar in the two data sources. Thus, we assume that the data in 

data source D1 is modeled by the same underlying distribution as the data source D2.We can then 

estimate the fraction of movies with genre Drama in the data source D2 based on the fraction of 

movies with genre Drama in the data source D1 (i.e., 10 out of 40 i.e. 0.25) and use the result to 

answer the query q2. Hence, the Movies with genre Drama admits in D1 is 10 i.e. 25% of the 

movies with genre Classic. Thus, the answer to the query q2 is (80 * (25/100)) = 20. 

It should be noted that query q1 is completely determined whereas the answer to the query 

q2 is only partially determined by the data source ontologies O1, O2, the user ontology OU shown 

in Figure 2.2 and the mappings in Figure 2.3. In such cases, answering statistical queries from 

semantically heterogeneous data sources requires the user to supply not only the mapping 

between the ontology and the ontologies associated with the data sources but also additional 
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assumptions of a statistical nature (e.g., that movies with same genre in D1 and D2 can be 

modeled by the same underlying distribution). The validity of the answer returned depends on 

the validity of the assumptions and the soundness of the procedure that computes the answer 

based on the supplied assumptions. 

 

2.5 Learning Naïve Bayes Classifiers from Semantically Heterogeneous 

Databases 

To demonstrate the usefulness of our system in learning predictive models from 

semantically heterogeneous distributed data sources, we show how a Naïve Bayes classifier can 

be linked to the system and how it can benefit from the ability of the system to answer queries 

from such data sources. 

Because the data sources in our framework are relational, we need to consider a relational 

machine learning algorithm in our work. In particular, we demonstrate the feasibility of the 

proposed approach to building predictive models from semantically heterogeneous databases 

using relational variants of the classical naïve Bayes algorithm. This algorithm and its variants 

use Bayes theorem [19][20] to find the class that has the maximum a posterior probability 

(MAP) given a new instance, whose label needs to be predicted. We use the approach in [21] to 

transform the naïve Bayes algorithm into a relational learning algorithm and explore two 

different methods for estimating the posterior probabilities: 

Independent Value (INDVAL): In this case, the data in the relational tables is arranged 

in such a way that each attribute in a record may have multiple values. Each value in the set of 

multi- attribute value set in the table is assumed to be independent of each other. An instance of 

each value in the multiset of attribute values if created to decide the most probable class using 

the following relation:  
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Average Probability (AVGPROB): This case is similar to the INDVAL case, in that it 

assumes that, each value in the set of multi –of attribute values if created to decide the most 

probable class using the following relation:  

     

  
As can be seen from these formulas,  the calculation of the posterior probabilities does 

not require access to the raw data. Instead only counts of the attributes (attribute=value vk& 

class=value cj) are needed. These counts can be obtained using our query answering system in a 

transparent way to the user.  

Thus, predictive models can be learned from distributed, heterogeneous databases using 

the query answering engine that we implement in our system. 
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CHAPTER 3 - Related Work 

This thesis has two important parts: finding mappings between ontologies (in particular, 

between a user ontology and data source ontologies) and querying semantically heterogeneous 

data sources through the means of mappings between ontologies (by mapping a user query to 

queries that databases can “understand”).   

 In this chapter, we will review work related to the two main parts of the thesis. 

Thus, we will describe several systems for querying multiple heterogeneous distributed data 

sources (which may or may not use ontologies). We will also discuss various ontology mapping 

techniques to give the reader an idea about the variety of the methods currently available. 

 

3.1 Systems for Querying Multiple, Distributed, Heterogeneous Data  

Sources 

 

3.1.1 Querying Heterogeneous Data Sources Using Query Correspondence 

Assertions 

The work by Ulf Leser and his colleagues [22] address the problem of querying 

heterogeneous data sources using query correspondence assertions. He defines a global schema 

to represent the knowledge in the heterogeneous data sources and a language to express the 

correspondences between the various data source and the global schema [22].He makes use of 

the concept of mediator schema, which subsumes the necessary parts of the source schemas. The 

mediator is aided by an interface, which wraps the heterogeneity in the heterogeneous sources, 

making available a source schema for each heterogeneous source and an asset of queries against 

the schema. The mediator will then answer queries by combining the data from the 

heterogeneous data sources available via the source schema. Thus, the correspondences between 

the mediator schema and the global schema can be used to formulate global queries. This 

approach does not use ontologies to represent the data sources, but instead uses schemas as a 

formal representation of data. The advantage of this approach is the use of query correspondence 
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assertions, which are more expressive than the content descriptions, thereby allowing the user to 

formulate complex queries against the data sources. 

 

3.1.2 Query Processing for Heterogeneous Data Integration using Ontologies 

Huiyong Xiao [23] suggests the use of ontologies as formal representations for XML and 

RDF heterogeneous data sources. He proposes to resolve the problem of syntactic, semantic and 

schematic heterogeneity in ontologies by integrating data in the data sources, using multiple 

‘local’ ontologies. A single global ontology provides a conceptual view over all schematically 

heterogeneous data source. A thesaurus, formalized in terms of ontology, can be used for the 

mapping process to facilitate its automation. The interface provides support for high–level 

queries. However in this case, the heterogeneous data sources are only XML based sources, as 

opposed to databases, which are used in the real world for large and distributed datasets. This 

approach is very similar to our approach to query heterogeneous data source, except for the use 

of XML based data sources.  

3.1.3 OBSERVER 

The OBSERVER framework [24] designed by Eduardo Mena, Arantza Illarramendi 

provides answers to user defined queries using an incremental approach in a Global Information 

System. They suggest an Inter-ontology Relationships Manager, as a solution to the vocabulary 

sharing problem. This is a repository for relationships among the various terms in the multiple 

ontologies. The data, which captures the semantic metadata of the information in the ontologies, 

is organized as a lattice. The framework also includes an ontology server, which provides the 

term definitions in the ontology and helps retrieve data underlying the ontology for the query 

processor to further process the query. The framework also allows the user to browse through a 

set of ontologies and decide which ontology, the user wants to use as the “user” ontology. This is 

similar to our system, where the user can view the ontology and query the data sources. 
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3.1.4 OntoShare 

OntoShare [25] is an ontology-based WWW knowledge-sharing environment for a 

community of users that models the interests of each user in the form of a user profile. 

OntoShare assigns a set of topics and ontological concepts depending on the user’s interest and 

accordingly assigns a user profile. It has the capability to extract information from the World 

Wide Web and sources, which may have been made available by the user. This information is 

further shared with other users having similar interests depending on their profiles. 

OntoShare uses ontologies to store the shared information, with a shared document 

leading to the creation of a new ontology represented in RDFS or RDF. RDFS is used to specify 

the classes in the ontology and their properties [25]. RDF is then used to populate this ontology 

with instances as information is shared [25]. However, it may be noted that it is impossible to 

render the content of a document exhaustively by an RDF description. 

Thus, OntoShare, while not claiming to actually capture tacit knowledge, provides an 

environment which actively encourages the sharing of tacit knowledge [25]. 

3.1.5 Information Manifold 

Levy, Rajaraman, Ordille [26] have designed the Information Manifold, a system that 

provides uniform access to heterogeneous data sources to answer complex queries. It tackles the 

problem of querying a large number of different data sources by providing a mechanism to 

describe declaratively the contents and query capabilities of available information sources. Since 

every data source has a different mode of interaction, the algorithm proposed in this work, uses 

the source descriptions to prune efficiently the set of information sources for a given query and 

to generate executable query plans. The most important feature of their proposed architecture and 

algorithm is that they scale up well to several hundred information sources. 

 

3.1.6 SEWASIE 

Dongilli, Fillottrani, Franconi, Tessaris [27] have proposed the design of the SEWASIE 

(Semantic Webs and AgentS in Integrated Economies) project. The project aims at using a multi 

agent system to query heterogeneous data sources with ontologies. The system proposes to use 

an advanced search engine enabling intelligent access to heterogeneous data sources on the web, 

in a rich semantic (ontological) framework. The system concentrates on the process of query 
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answering by designing a query tool that assists users in building queries and moving through 

different types of agents that collaborate in collecting the information for the answer. 

The SEWASIE network implements a virtual network whose nodes are SEWASIE 

information nodes or better known as SiNodes [27]. 

The main characteristics of SEWASIE include: a multi layer data integration system, 

query building assisted by a tool, query rewriting using local ontologies. The architecture also 

includes monitoring tools integrated in the architecture. The most important feature of 

SEWASIE is that the SiNodes apply not only to unstructured, semi-structured data but also to 

relational databases, which is also a feature of our system architecture. 

 

3.1.7 MOMIS 

MOMIS stands for “Mediator environment for Multiple Information Sources" which was 

developed by the database research group at the University of Modena by Reggio Emilia 

[28][29][30][31]. 

It is a mediator-based system which can be used with structured and semi-structured data 

sources, to extract and integrate information. It approaches the problem of information 

integration on the basis of metadata of the information sources. 

The MOMIS system relies on local and global schema of the data sources, which is 

unlike what we have in our system, where ontologies provide formal representation for the data 

sources. The system semi-automatically generates a set of mapping correspondences between the 

concepts in the local schema and the global schema.  

MOMIS adds details to its mapping correspondences by calculating the “affinity 

coefficient” between concepts and groups similar classes into clusters using hierarchical 

clustering algorithms. 

 

 3.2 Ontology Mapping 

Our query processing engine, as other query engines, depends crucially on the mappings 

established between the user ontology and the multiple heterogeneous data sources. Thus, the 

mapping technique is a significant part of the system architecture.  
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In this section, we will introduce several selected ontology mapping systems and will 

describe their functionality on the basis of their approach to resolve semantic and syntactic 

heterogeneity. We proceed with some motivating applications where ontology mapping plays an 

important role. 

The concept of mapping has a range of meanings, including integration, unification, 

merging, mapping, etc. Mapping is defined a set of formulae that provide the semantic 

relationships between the concepts in the models [32]. 

However, Noy & Musen [33] believe that a mapping establishes correspondences among 

ontologies, and determines the set of overlapping concepts, concepts that are similar in meaning 

but have different names or structure, and concepts that are unique to each of the sources.  

In [24], it is stated that the aim of mapping is to map concepts in the various ontologies to 

each other, so that a concept in ontology corresponds to a query (i.e., view) over the other 

ontologies. 

We define ontology mapping as determining the set of correspondences between the user 

ontology and the multiple data source ontologies, by resolving the semantic and structural 

heterogeneity, in the context of this thesis. The Ontology mapping process can be broadly 

divided into two stages. The first stage involves the discovery of correspondences between 

ontology elements, while the second stage involves defining the discovered mappings so that 

other components can make use of them. 

The mapping correspondences are produced in roughly two ways:  

1. Applying a set of matching rules or  

2. Evaluating similarity measures that compare a set of possible correspondence and 

help to choose valid correspondence from them. These heuristics often use 

syntactic information such as the names of the concepts or nesting relationships 

between concepts. They also use semantic information such as the inter-

relationship between concepts (slots of frames in [34]), the types of the concepts, 

or the labeled-graph structure of the models [35]. 

 

The process of ontology mapping cannot be fully automated. However, automated tools 

can provide plausible mapping correspondences between ontologies using graph based inference 

rules or text mining, speeding up the process significantly. 
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In what follows we will describe a number of systems that can be used to support manual 

and semi-automatic ontology mapping. Due to the close relation of ontology mapping and 

merging, systems used for merging are also used for mapping ontologies. Thus, we provide a 

brief survey of various ontology mapping and merging tools.  

 3.2.1 Automatic Ontology Mapping 

F. Wiesman et al. [36] proposed a system for ontology mapping to facilitate effective 

agent communication [37]. The paper suggests that lack of standardization hampers 

communication between agents. According to the authors, communication between these agents 

can be regularized by resolving the semantic and structural heterogeneity in the various 

information sources. 

The authors introduce the concept of language games for mapping ontologies. The 

concept involves agents determine joint attention by finding an instance of a concept known by 

both agents communicating with each other. This system makes good use of AI reasoning for 

ontology mapping purposes and has also achieved some good results in setup of an experiment 

[26]. 

3.2.2 GLUE A Machine Learning Based Ontology Mapping System 

GLUE [38] employs machine learning techniques to semi-automatically create semantic 

mappings between two ontologies. Probabilistic techniques are used to find similar concepts in 

multiple ontologies. GLUE uses domain constraints and background knowledge of the concepts 

to assist in the mapping process. The key feature of GLUE is that it uses multiple learning 

strategies, each of which exploits a different type of information either in the data instances or in 

the taxonomic structure of the ontologies [38]. 

The architecture of GLUE consists of three main modules: Distribution Estimator, 

Similarity Estimator, and Relaxation Labeler. The Distribution Estimator takes as input two 

ontologies and applies machine learning techniques to compute the joint probability distribution 

for every pair of concepts. Thus, instead of estimating specific similarity values directly, GLUE 

focuses on computing the joint distributions. The Distribution Estimator uses a variety of base 

learners and a meta-learner, incorporating a multi strategy learner approach. Thus, GLUE is able 

to achieve higher classification accuracy and hence better approximations of the joint 

distributions. The implementation of GLUE has two case learners, namely Content Learner and 
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Name Learner, and a meta-learner that is a linear combination of the base learners. Thus the 

output from this module is a similarity matrix between the concepts in the two taxonomies [38]. 

The Relaxation labeler takes as input the similarity matrix with the domain specific 

constraints and heuristic knowledge to search for mapping correspondences which best satisfy 

the observed similarities. The technique of Relaxation labeling is used to solve the problem of 

assigning labels to nodes of a graph, given a set of constraints [38].  

The approach used by GLUE, unlike any other mapping tool, uses a single heuristic 

approach to map ontologies and multiple machine learning approaches to map ontologies. 

However the system is slow in its mapping process, which requires further research to locate the 

proper balance between accuracy and speed [39]. 

3.2.3 QOM - Quick Ontology Mapping 

QOM optimizes the Naïve Ontology Mapping approach, which emphasizes the efficiency 

of mapping ontologies as opposed to the accuracy of the mapping correspondences generated by 

the mapping technique. Thus, QOM takes into account not only the quality but also the speed 

and efficiency of the mapping operation. The mapping algorithm is dependent on the number of 

candidate mapping pairs in the multiple ontologies, using a dynamic programming approach, 

which uses ontological structures to reduce the number of candidate mappings. 

The features of this system have been summarized in [39] as follows, 

• Optimizing the mapping operation for efficiency decreases overall mapping quality 

• Labels are the most important features for mapping. 

• Combining many feature matching approaches leads to significantly higher quality   

mappings 

• QOM shows very good results and quality is lowered only marginally 

• QOM is faster than other approaches by a factor of 10 to 100 times 

 

3.2.4 Ontology Mapping using Background Knowledge 

Zharko and Klein in [40] have proposed a system which finds mapping correspondences 

between concepts, using structure rich ontologies as background knowledge. This approach is 

useful in scenarios where ontologies are assumed to be a list of concepts and have no particular 
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structure. This approach for ontology mapping may be considered as innovative and first of its 

nature that exploits background or domain knowledge for the mapping purpose.  

In this thesis, we use WordNet to map concepts in the ontologies, assuming that the 

labels of the properties and the concepts represent the meaning of the “concepts” in natural 

language. 

 

3.2.5 Natural Language Processing Techniques for Ontology Mapping 

D Fossati et al. [41] approach the problem of ontology mapping from a computational 

linguistic point of view and have presented a natural language processing (NLP) based 

mechanism for ontology mapping. This technique of mapping is particularly useful to resolve the 

problem of instance heterogeneity. 

 

3.2.6 Chimaera 

Chimaera [23] is a web based ontology merging and diagnosis tool developed by the 

Stanford University Knowledge Systems Laboratory (KSL). It is particularly targeted at smaller 

ontologies, by merging ontologies produced by multiple authors. 

Chimera supports two major tasks in merging ontologies [24] 

1. Coalesce two semantically identical terms from different ontologies, such that 

they are referred to by the same name in the resulting ontology, and 

2. Identify terms that are related by subsumption, disjointness, or instance 

relationships and provide support for introducing those relationships. 

Chimera allows the user to map ontologies by suggesting terms which are possible 

candidates in the ontologies to be merged or have taxonomic relationships which are to be 

included in the merged ontology. 

 

3.2.7 PROMPT: Automated Ontology Merging and Alignment Tool 

Noy, N.F. and Musen, M.A [42] developed a tool that provides a semiautomatic 
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approach to merging and aligning ontologies. The tool is also available as a plug-in in Protégé. 

This tool guides the user to remove inconsistencies in ontologies by determining the conflicts in 

the ontologies and suggests solutions. 

The PROMPT algorithm guides the user in creating an integrated ontology, by creating 

an initial list of matches based on class names. The algorithm then waits for the users response 

on the suggestions, and makes further changes based on the type of the operation. Next, the 

algorithm creates a list of mapping suggestions, which are based on the structure of the 

ontologies. These are further verified by the user for the tools to implement the changes. 

Thus, the tool is interactive and does not create an integrated ontology by applying 

mapping rules directly, but instead asks the user for permission to implement the suggestions. 

Also it uses an incremental approach to provide a complete list of mapping suggestion, using the 

knowledge to learn the concepts in the ontologies at each level. Noy, N.F. and Musen, M.A [42] 

have presented the following as the fundamental features of the PROMPT tool: 

• Setting the preferred ontology. 

• Maintaining user’s focus. 

• Providing feedback to the user. 

• Logging and reapplying the operations 

 

 

In this chapter, we have analyzed tools for querying multiple heterogeneous data sources 

and compared them with our tool. It has been observed that although some tools used ontologies 

to counter the problem of heterogeneity among the data sources, each tool has a differential 

approach to using these ontologies for resolving this heterogeneity. Since ontology mapping is 

crucial in our system, we have also evaluated presently available mapping techniques, thereby 

motivating the use of ontologies to resolve heterogeneity. It has been observed that the current 

ontology mapping techniques, algorithms and merging and alignment applications use diverse 

ideas from the field of machine learning, knowledge engineering to find semantic 

correspondences among the candidate ontologies. These ontology techniques exploit the 

semantics, structure and syntax of the ontologies. 

Our evaluation of query and ontology mapping tools has lead us to believe that it is 

possible to design simple heuristic methods for finding mapping correspondences between 
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multiple ontologies. In the next chapter, we will systematically describe the system that we have 

developed to query multiple heterogeneous data sources, including the mapping technique which 

is a crucial part of the system. 
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CHAPTER 4 - System Design and Architecture 

In this chapter, we describe the design and architecture of our system for querying 

multiple heterogeneous data sources. We state the assumptions made with respect to the 

development and functionality of the system. We describe the resources that we exploit in this 

system and explain why they were chosen over other possible candidates. As the ontology 

mapping procedure is one of the main contributions of this thesis, we also discuss it in detail in 

this chapter. At last, we describe all system components in detail and introduce the user to the 

functionality of the system.  

 4.1 Ontology Representation Language 

We will make the following assumptions about the ontologies that will be used in the 

system: 

1. They represent overlapping knowledge in the movie-marketing domain. 

2. They are represented using the Web Ontology Language (OWL), sublanguage 

OWL Lite (described below).  

The Web Ontology Language is a language for defining and instantiating Web 

ontologies [43].It is the language recommended by the World Wide Web Consortium. An OWL 

ontology will include descriptions of classes, properties (or attributes) and their instances.  

The OWL language provides three increasingly expressive sublanguages designed for use 

by specific communities of implementers and users: 

• OWL Lite is intended to provide classification hierarchy and simple constraint 

features. For example, OWL Lite supports cardinality constraints, but permits only 

cardinality values of 0 or 1. OWL Lite is particularly useful for resolving structural 

semantic heterogeneity between hierarchy-like ontologies. 

• OWL DL supports maximum expressiveness without losing computational 

completeness (all entailments are guaranteed to be computed) and decidability (all 

computations will finish in finite time) of reasoning systems [43]. OWL DL is so 

named due to its correspondence with description logics [43].  
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• OWL Full supports maximum expressiveness and the syntactic freedom of RDF, but 

does not provide any computational guarantees. This language is difficult to support 

using most reasoning software. All valid RDF documents are OWL Full. 

 

We use the OWL Lite sublanguage for defining the ontologies in our system, because 

OWL Lite provides the structural features and the expressivity necessary to define hierarchical 

ontologies and mappings between them. Given that we use hierarchical, tree-like ontologies, we 

will assume that the OWL ontologies are in the form of XML trees. This assumption is 

particularly useful finding mapping rules semi-automatically. Please note that concepts are called 

classes in OWL and attributes are called properties, so we will use these names when talking 

about concepts and attributes in the OWL context. Furthermore, we will refer to 

concept/classes/attributes/properties as nodes in the graph hierarchy they belong to, when talking 

about them in the graph context.  

 

 4.2 Ontology Mapping and Structural Heterogeneity 

Our goal is to map two hierarchical ontologies OU and OD1 that describe the user U and 

data sources D1, respectively. These ontologies may not contain the same number of entities 

(concept/attributes). Furthermore, their corresponding hierarchies may not have similar 

structures. However, they describe the same domain and have the same extensions. Thus, in 

terms of number of concepts that ontologies OU and OD contain, there are three possible cases 

and we handle all these cases in our work: 

a) Ontology OU has same number of concepts as ontology OD. 

b) Ontology OU has fewer concepts as compared to the number of concepts in 

ontology OD. 

c) Ontology OU has more concepts as compared to the number of concepts in 

ontology OD. 

In this subsection we will describe into more details the types of structural heterogeneity 

addressed in this thesis.  
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The structural heterogeneity in ontologies can be resolved by considering the types of 

components and structures residing in the ontology graphs [44]. Methods that use such 

information rely on the intuition that elements of two distinct entities are similar when other 

elements adjacent to them are also similar [45]. Thus, we will set the following criteria [44] to 

decide if two entities in an ontology are structurally similar: 

1. Their direct super-entities are similar. 

2. Their direct sub-entities are similar. 

3. All entities on the paths from the root to the entities in question are similar. 

4. The entities in question have similar attributes/values. 

We assume that the maximal common subgraph of both ontologies is not very small, 

which means that one hierarchy contains only a slightly smaller number of nodes compared to 

the other. This assumption is valid because in our framework ontologies are built on 

approximately the same sets of underlying concepts, with a particular domain in mind. The 

concept-to-concept correspondences are determined using the concept similarity applied on the 

set of the nodes. 

For a class X in an ontology, it is relatively easy to determine if it is the union of several 

subclasses, Y1,…, Yn by examining the knowledge in its description. For example in OWL 

(XML format), it is possible to read the owl:unionClass and owl:subClassOf XML 

tags. Similarly, it is possible to check if a class X is the intersection of two classes Y1 and Y2 by 

examining the owl:intersectionOf XML tag. We can also find equivalent classes for a 

particular class by examining the owl:equivalentClass, which is used create synonymous 

classes. In case of attributes of concepts, we use a similar procedure to check the similarity of 

properties in OWL. Similarity of the attributes is further used to determine the similarity of the 

concepts they define.  

As we are mapping concepts in the user ontology to concepts in the data source 

ontologies, it is possible that similar concepts are placed at structurally dissimilar positions in the 

ontology graph.  For example, it is possible that a concept C located at level k in the user 

ontology may be found at level l (l≠k) in data source ontology. Although name-based and 

property-based comparisons will identify the similarity between the two concepts, it is necessary 
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to set up rules for mapping structurally heterogeneous concepts. There are two main cases of 

structural heterogeneity that we consider in this work, as described in what follows.  

4.2.1.1  Case 1 

We consider the hierarchical ontologies OU and OD in Figure 4.1 and derive rules for 

mapping concepts in the user ontology to concepts in the data source ontology. 

 

Figure 4.1: Hierarchical ontologies OU and OD 

 
We always start mapping from the leaves in the tree to the root. Let us assume that we 

have already mapped the classes C2, C3, C4 in OU to classes C2’, C3’, C4’, respectively (based 

on lexical similarity). Thus, we have: 

   C2  ßà C2’ 

   C3  ßà C3’ 

   C4  ßà C4’ 

From the ontology structure, we can see that: 

 C1’  à C2’ � C3’ �C4’   in ontology OD(4)  

 C1   à  C2� C3    in ontology OU(5) 

 B     à  C1�C4    in ontology OU(6) 

         à  C2�C3�C4 
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Also,  

 C2   ßà C2’ 

 C3   ßà C3’ 

Thus, we can conclude that: 

   C1 ßà C2’ � C3’  (union of C2’ and C3’)    (A)   

   B   ßà C1’      (B) 

4.2.1.2  Case 2 

Next, we consider the hierarchical ontologies OU and OD in Figure 4.2 

Figure 4.2: Hierarchical ontologies OU and OD 

 
We assume that we have already mapped classes C1, C2, B in OU to classes C1’, C2’, B’ 

in OD. We have: 

   C1  ßà C1’      à (7) 

   C2  ßà C2’      à (8) 

   B    ßà  B’      à (9) 

From the structure of the Ontology OU,  

   C à C1 � C2      à (10) 

   A àB � C      à (11) 

Therefore, we obtain: 

   C à C1’ �C2’     à (C) 

   A àB’ � C1’ � C2’     à (D) 
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Thus, we will use rules (A), (B), (C), (D) inferred from the ontology structure to resolve 

structural heterogeneity when mapping between ontologies. We have designed a divisive 

procedure to identify structural heterogeneity of the types considered in Case 1 and Case2 above. 

Several hierarchical structures, which give rise to structural heterogeneity in ontologies like that 

in Case 1 and Case 2 above exist. Although other types of structural heterogeneity exist, we use 

only the two cases specified above. For the ontologies we considered, these are the most 

common types of structural heterogeneity. It should be noted that we are considering domain 

ontologies, with a large number of concepts (nodes in the hierarchy). Since the  structures in 

Case 1 & Case 2 contain a maximum of 6 nodes, the same structures need to be applied 

repetitively to hierarchies to find structural similarity overall. It should also be noticed that Case 

2 is a special case of Case 1, i.e. the hierarchical tree in Case 2 can be easily injected in the 

hierarchical tree in Case 1. Our mapping technique uses this procedure to search such structural 

differences between ontologies in an efficient manner. 

 

4.3 Mapping Algorithm 

To recapitulate, our mapping procedure aims to achieve the following tasks:  

1. Resolve the lexical semantic heterogeneity between two ontologies. 

2. Resolving the structural heterogeneity between two ontologies. 

We can broadly divide the above two functionalities into two parts in the algorithm. First, 

we will compare the concepts or class names to determine their lexical similarity. In this phase, 

we compare class names and the names of the properties, which uniquely define these classes, to 

find similar terminologies. It is very important to check the properties (attributes) of the classes 

compared, as they define the 'has-a' relationships in the ontologies. The ‘has – a’ relationship in 

ontologies, define the characteristic attributes inherent to a concept. Consider the case in which 

the concept Movie_Name in the user ontology is defined as Movie _Title in the database 

ontology. If we are able to map the properties of the two concepts by comparing the range, 

domain, cardinality of the properties, we can conveniently say that the Concepts described by the 

properties are similar, in this case Movie_Name in the user ontology and Movie_Title in the 

database Ontology.  In doing so, we will do a simple string comparison of the names of the 

classes under consideration. However if no such match is found, we will check to see if the 
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synonyms of the class names are similar. The synonyms of the class names can be found using 

JWI API in association with WordNet Lexical Database. If the algorithm is unable to find 

synonyms, which are "same" as the class names, then we will compare the hypernyms and 

hyponym of the class names to find any further match. If no such match is found at this point, we 

will declare the class "not mapable" lexically to any other concept or class in the second 

ontology. We then start checking the mapping the next class in the ontology. 

In the second phase of the algorithm, we try to find structural similarities between classes 

in the two ontologies. We check the structural similarities by probing the positions of the classes 

in the two ontologies. This can be done by first checking the direct super-classes of the classes of 

interest in ontologies OU and OD. We further check the direct subclasses of the classes of interest 

in ontologies OU and OD. It is also necessary to check if the subclass of a class A from OU is 

either the same as the subclass of class A' from OD or at a lower level in the hierarchy, as 

compared to the subclass of class A' in OD. Similarly, the super-class of a class A from OU is 

either the same as the super-class of class A' from OD or at a level greater than the super-class of 

class A from OD.  

In most ontology mapping techniques, the first and second phases of the mapping 

techniques are split, thereby resolving lexical and structural semantic heterogeneity separately. In 

most cases, the lexical heterogeneity is resolved first and then structural heterogeneity is handled 

in the later half of the mapping algorithm, by traversing the 

XML tree for the ontologies in two different steps. As opposed to most other approaches, we 

resolve both semantic and structural heterogeneity together or at the same time, by handling each 

of them in a single traversal of the XML tree of the two ontologies, as follows. 

It should be noted that at the end of the process we need to confirm that the subclasses of 

each class have been mapped. We start from the leaf nodes of the XML tree corresponding to the 

ontology OU (the nodes here are classes of the ontology). For each leaf node in OU, a node with 

the same class name is sought for in the ontology OD. When we find a node with same name in 

ontology OD, we compare the properties of the nodes in order to confirm that they represent the 

same concept. When comparing the class attributes, a weight is assigned for each successful 

match.  

The weights assigned are prioritized, i.e. a higher weight is allocated for a match of the 

domain, while the lowest weight is allocated for a comparison of the cardinality. We calculate 
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the total weights for each property and compare the total weight to a threshold value, which 

determines if the nodes are similar. If we are not able to find a node with same class name, we 

try to find the synonyms of the class name in ontology OD. If we find a match, we next match 

their properties to determine if they are similar. If a synonym match is not found, we find 

hypernyms and/or hyponyms for the class name and search for the same in the ontology OD. 

When a hypernym and/or hyponym match is found, we repeat the same process for comparing 

properties. If a semantic match is not found in any of the three steps above, we will move to the 

next leaf in the XML tree. When a semantic match is found, we will check the structural 

similarity. To do so, we will first check the direct parent of the node. If a match is found we will 

allocate a weight of 0.2, otherwise a weight of 0 is allocated. We will further check the node's 

direct child. If a match is found we will allocate a weight of 0.2, otherwise a weight of 0 is 

allocated. We further check the predecessors of the node. For each predecessor match, we 

allocate a weight of 0.1; otherwise we allocate a weight of 0. It is not necessary to check the 

children, successors of the classes, as we start from the leaf nodes. At this point, we have 

checked the direct parent, direct child of the class. We have also checked the predecessors and 

successor of each class, to determine if a structural match for node has been found in the other 

ontology. We calculate the total weights for each structural comparison, and compare it to a 

threshold value. If the total weight of any class is greater than a threshold value, the class can be 

termed structurally similar. 

 

4.4 Resources Used by the Mapping Procedure 

4.4.1 JDOM (Java Document Object Model) 

We use JDOM to represent ontologies as tree structures and to find structural 

dissimilarities in the two ontologies, if any. JDOM is also useful when mapping concepts at the 

lexical level.  

4.4.1.1 JDOM Description and Features 

JDOM is an open source, tree-based, pure Java API for parsing, creating, manipulating, 

and serializing XML documents, developed by Brett McLaughlin and Jason Hunter in the Spring 

of 2000[46]. Although JDOM is similar to the World Wide Web Consortium’s (W3C) DOM, it 
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has an alternative document object model, which was not built on DOM or modeled after DOM. 

The main difference is that while DOM was created to be language-neutral and initially used for 

JavaScript manipulation of HTML pages, JDOM was created to be Java-specific and thereby 

takes advantage of Java’s features. 

JDOM represents an XML document as a tree composed of elements, attributes, 

comments, processing instructions, text nodes, CDATA sections, etc[46][47][48[49]. The XML 

document represented as a tree and the components of the tree are available to the developer at 

any time. 

It should be noted that JDOM itself does not include a parser. Instead it depends on a 

SAX parser with a custom ContentHandler to parse documents and build JDOM models from 

them. JDOM can build a new XML tree in memory. Data for the tree can come from a non-XML 

source like a database or from literals in the Java program. Once a document, created from 

scratch or parsed from a stream, has been loaded into memory, JDOM can modify the document. 

A JDOM tree is fully read-write. All parts of the tree can be moved, deleted, and added to the 

tree, subject to the usual restrictions of XML. 

 

4.4.1.2 JDOM Advantages 

JDOM consistently uses the Java coding conventions and the class library. For example, 

all primary JDOM classes have equals(), toString(), and hashCode() methods. They all 

implement the Cloneable and Serializable interfaces. JDOM checks all the data in the newly 

created XML documents for well formedness, when it creates XML documents from scratch. 

JDOM allows one to serialize it back out to disk or onto a stream as a sequence of bytes, when 

finished working with a document in memory. JDOM provides numerous options to specify the 

encoding, indenting, line end characters, and other details of serialization.  

 

 

 

4.4.1.3 JDOM Disadvantages 

JDOM represents the different kinds of nodes in the tree by concrete classes rather than 

interfaces. It may be noted that JDOM cannot handle documents larger than available memory. 
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JDOM loads the entire document tree into memory and stores it there for future use. JDOM is 

more memory efficient than some DOM implementations and less efficient than others. JDOM 

presents a logical model of XML documents. It cannot tell which physical entities a particular 

element came from. It treats the document as a logical whole. It cannot tell whether a character 

was input literally or with a character reference (a limitation it shares with DOM and SAX). It 

does not know the original character encoding of the document. In short, it cannot guarantee 

byte-for-byte faithful round trips. Thus it is possible that parsing a document with JDOM and 

then immediately writing it back out again may create a subtly different document, though it 

should still contain the same basic information. JDOM does not provide any equivalent to the 

traversal package in DOM. However it does not take a huge effort to write your own tree-

walking code. 

 

4.4.2 WordNet 

4.4.2.1 WordNet Description 

WordNet® is a free and publicly available lexical database of English which was 

developed under the direction of George A. Miller [16]. WordNet’s source files are written by 

lexicographers. WordNet is a result of a variety of lexical and semantic relations used to 

represent lexical knowledge. The words in English language are represented as synsets, which 

are lists of synonymous words that can be used in some context. Synsets include nouns, verbs, 

adjective and adverbs, grouped separately, each expressing a different concept. WordNet's 

structure makes it a useful tool for computational linguistics and natural language processing 

[16]. 

4.4.2.2 MIT Java WordNet Interface 

The MIT Java WordNet Interface (JWI) [50] is a freely available, easy-to-use Java 

library used to interface with the WordNet electronic dictionary. Although the interface does not 

include any GUI element, it allows the user to directly call procedures/functions to retrieve index 

words, synsets, and morphological exceptions from the WordNet data files. It can also be used 

for browsing the WordNet lexical database, by following lexical and semantic pointers. 
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4.5 System Architecture 

Figure 4.3: System Architecture 

 

4.5.1 User Queries and Query Processing Engine 

Figure 4.3 describes the architecture of the system that was designed to extract and 

integrate knowledge from multiple heterogeneous data sources. The user interface is used for 

direct interaction of the users with the system, thereby making the application user-friendly. User 

can use the interface to send queries to the system, using a simple standard query language. 

Thus, we ensure that the user does not need to have detailed “know-how” of complex querying 

languages, such as SQL, to query the heterogeneous databases. 

The diagram in Figure 4.3, shows a set of multiple heterogeneous ontologies O1, O2… 

On. These ontologies provide a formal representation for the heterogeneous data sources D1, 

D2,…, Dn. In principle, the data sources under consideration can be flat files, relational 

databases, object oriented databases, etc. In this thesis, we only consider relational databases. 
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Each data source can be seen as a semantic resource that can be transparently queried by 

users, using a simple query language, through the means of a query answering engine. The user 

is assisted by an ontology OU, which represents the user’s perspective of the concepts in the 

multiple data sources or the domain under consideration. When the user first registers with the 

system, he or she needs to specify the user ontology. The mapping algorithm maps the concepts 

in the user ontology to concepts in the heterogeneous data source ontologies, resolving the 

lexical and structural semantic heterogeneity in most cases. As mentioned above, we assume that 

all ontologies are written in OWL (XML format only). 

The user can post a set of well-defined queries to the system, formulated in terms of 

his/her own ontology. The query answering engine decomposes the user query into sub queries 

that can be answered by the data sources in the system, maps them to the data source ontologies 

by using the set of mappings and finally transforms them into SQL inline queries. It is necessary 

to transform the user queries to database queries since the database does not understand the user 

query language. The query processing engine sends these queries to each of the databases 

depending on the mapping information provided by the algorithm. Each of the databases 

implements the queries, returning result sets which are sent to the user interface for display to the 

user. We chose to use ORACLE/SQL inline queries by taking into consideration the complexity 

of the queries which need to be formulated, and the fact that the database may or may not consist 

of relational tables. It would be very difficult to formulate other queries in the present form of the 

implementation, since we also need to check the primary and foreign keys for tables.  

4.5.1.1 SQL Inline Queries 

The inline view/query is a construct in Oracle SQL where you can place a query in the 

SQL FROM, clause, just as if the query was a table name. A common use for in-line views in 

Oracle SQL is to simplify complex queries by removing join operations and condensing several 

separate queries into a single query [51]. 

In Oracle SQL, it is quite difficult to compare two result sets that are summed together in 

a single query where specific values must be compared to a summary. Without the use of an in-

line view, several separate SQL queries would need to be written, one to compute the sums from 

each view and another to compare the intermediate result sets. The other possible way to achieve 

a similar result is to construct queries for each view and then to create a temporary table to store 

the record set. This temporary table can further be queried to get the necessary result. Thus 
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instead of spending a lot of I/O and disk space, or for that matter disk access as in the case of a 

temporary table, it is possible to get the same result using an inline query. We also avoid the 

necessity to create joins between tables, to extract information from multiple tables. In short, if 

one only needs the data to join to other queries, it may be good to try using an inline view to 

conserve resources. 

4.5.1.2 User and Data Source Ontologies 

In this architecture, the data source ontologies are designed in a comprehensive and task-

neutral fashion, without regard to the user and the various applications a user may be interested 

in. The user ontology, on the other hand, is custom crafted to support a specific customer and a 

specific set of tasks. As a result, the data source ontologies can be reused for multiple 

applications, assuming suitable integrating user ontology and a corresponding set of translation 

rules is developed. 

We used Protégé 3.3 to prepare the user and data source movie ontologies in our system. 

Protégé is a free, open source ontology editor and knowledge-base framework. It is Java based 

extensible and platform-independent environment. Its plug and play environment makes it easy 

to develop, integrate and query ontologies [52]. According to [52], the Protégé ontology editor 

enables users to: 

• Load and save OWL and RDF ontologies. 

• Edit and visualize classes, properties, and SWRL rules. 

• Define logical class characteristics as OWL expressions. 

• Execute reasoner, such as description logic classifiers. 

• Edit OWL individuals for Semantic Web markup.  

 

 

4.5.1.3 Oracle DBMS 

In our system, we use multiple Oracle databases as heterogeneous data sources. It is 

believed that Oracle is one of the most stable, secure and robust relational database management 

systems. The portability of the Oracle database system over a range of operating platforms is 

crucial to the application. Oracle also provides users with certain system tables, which can used 

extensively to find information about table or schema metadata. This makes it easier for the user 
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to fetch data form the database about the database schema. The Oracle database has been 

particularly chosen, to allow us to use the system tables like dba_col_constraints, 

dba_constraints, dba_tables, to extract meta-data about the tables, columns and their constraints. 

Thus we do not have to write separate scripts to determine the primary and foreign keys linking 

the relational tables. It should also be noted that the application under consideration is targeted at 

medium to large datasets, which makes Oracle RDBMS a better choice for this application. 

The data in an ontology-extended database is such that the table names are the names of 

the classes at level 1 in the XML tree of the data source ontology. The attribute names (labels) 

are used as column names for the tables. The leaf nodes in the XML tree are values in the 

database (together, forming instances). 

 

4.5.1.4 Database Assumptions 

Although we use Oracle databases to serve the purpose of heterogeneous data sources, we 

make certain assumptions that are valid for any other relational data source that might be used in 

our application, as follows: 

1. Assume, without loss of generality, that all relations in the schema are in 3NF.  

2. A relational database schema is a tuple (ET,  tab, col, dtype, pk, fk),  where  

 ET = set of entity tables names associated with the data source ontology 

 tab = table name of the tables comprising the relational database,  

 col = column names in the tables,  

 dtype = data types of the columns in the relational tables, 

 pk= primary key in a table, 

 fk =  foreign key in a table.  

We further assume that: 

• Each entity table consists of rows of instance specific data corresponding to the 

entities described in the associated data source ontologies. 

• Each entity table has a unique name. No two entity tables can have the same name.  

• No two columns have the same name; each column name is unique.  
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• Each datatype dtype is a predefined RDBMS datatype, specifying a value range of the 

relevant instance data. For each entity table t, there is a finite nonempty set col(t) of   

column names; each c �col(t) has an associated datatype, denoted datatype(c) �DT. 

• Each relational table has one and only one primary key. 

• Each relational table may have one or more foreign keys.   

• Subof � t × t  is a binary relation over ET that models an inheritance relation 

between two entity tables. For some t, r�ET, subof(t,r) is satisfied 

iff� fk(t, r) �col(t) such that either  

fk(t, r) = pk(t) (single inheritance)  

      OR 

fk(t, r) � pk(t) (multiple inheritance).  

 Here t is a subentity table, r is a superentity table, and all the related tables form a 

generalization hierarchy   of the entity tables             

 

4.5.1.5 Why RDBMS? 

A relational database is a collection of data items organized as a set of tables from which 

data can be accessed without having to reorganize the database tables. The application is targeted 

at medium and large datasets or data sources. It will be unreasonable to believe that the data in 

such datasets could be compressed in a single table. This necessitates the use of a stable, robust 

RDBMS. 

 

4.5.1.6 Preprocessing of RAW Movie Data 

The ‘raw’ data for the underlying database was downloaded from the IMDB movies 

website (www.imdb.com/interfaces).The original data was in the form of LIST files with each 

file containing data pertaining to a particular aspect of movie making/marketing. Each LIST file 

consisted of data represented in the form of rows and columns. A data row/record was 

represented as a single line of data in the file, with each column of data being separated by a 

space character. The raw data was incomplete, inconsistent and in some cases redundant or 

incorrect, making it difficult to determine which data to use. In this thesis, we have considered 

http://www.imdb.com/interfaces
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all complete, consistent records of data, removing any redundant or incorrect data. This ‘raw’ 

data was converted to ‘usable data’ by parsing the data using C++ code. The C++ code parsed 

the data in such a way that only “usable” data was made available in the output file. An example 

would be the “business” list, which had additional data not required in the database and 

representation not available in the mapped Ontology. The “business” LIST file was parsed in 

such a way that only the necessary fields namely, name of the movie, money made by the movies 

in different countries and the release date associated with the movie were extracted to form the 

usable “business” list text file. Fundamentally, the C++ code removed all the unwanted data to 

convert the data in the raw LIST file into usable text files. Each record in the text data file was 

represented in a single line and the end of each record is indicted by carriage return character and 

a line feed character. Each column in the record is separated by comma. In some cases, the 

column data was enclosed in double quotation characters to indicate the beginning and end of the 

string. 

4.5.1.7 Loading Data into RDBMS 

The choice of Oracle DBMS to serve as heterogeneous data source also depended on 

tools available for effective import, export of data from external data sources; e.g flat files. 

Oracle also allows us to create multiple users, thereby allowing multiple users working on 

similar domains to connect to the Movies Database.  

Oracle provides the SQL Loader utility for importing and exporting data from external 

sources to the database. We will briefly describe the Oracle SQL Loader utility and how it has 

been used in this thesis implementation. 

4.5.1.8 SQL* Loader 

SQL*Loader is an Oracle-supplied utility that allows to load data from a flat file into one 

or more database tables. The basis for everything done with SQL*Loader is a file known as the 

control file. The SQL*Loader control file is a text file which provides a description of the data to 

be loaded into the database. It may or may not be the data of an entire table, since we may load 

data in multiple tables or selectively load data in one or more columns in a table. Thus we may 

say that the control file is used to tell SQL*Loader, which database tables and columns should 

receive the data that you are loading.  
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The external flat file consisting of the data to be loaded in the database is called the flat 

file while the control file describes the data contained in that data file. There is another important 

file called the log file, which logs the operation of importing or exporting data to or from the 

database. The log file is a record of SQL*Loader's activities during a load session. It is necessary 

to review the log file after a load to be sure that no errors occurred, or at least that no unexpected 

errors occurred. 

 

Figure 4.4: SQL Loader Architecture  

 
 

The diagram in Figure 4.4 [51] gives an overview of the Oracle SQL* Loader operation 

in conjunction with the Oracle database, using the control file, data file and log file to effectively 

load data to the database. The SQL*Loader executable is invoked, which points the load process 

to the control file created for loading the data. SQL*Loader reads the control file to get a 

description of the data to be loaded. Then it reads the data file and loads the input data into the 

database. We can say that SQL*Loader is a very flexible utility to load and unload data from the 

Oracle database. 

We have briefly discussed the resources used in the design and development of the  

system. We have also explained the system architecture in detail, to evaluate mapping of 

multiple heterogeneous ontologies and querying of the underlying databases. The differences 

between the original Naïve Bayes algorithm and the ones implemented in the system have been 

discussed, thereby exploiting the heterogeneous data sources to build predictive models. We will 
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describe the experimental setup for evaluating the querying of heterogeneous data sources in the 

next chapter. 
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CHAPTER 5 - Experimental Design 

This Chapter describes the details of the experiments conducted to comprehensively 

evaluate the ontology mapping procedure and the querying of heterogeneous data source, as 

discussed in Chapter 4. A set of experiments was specifically designed to investigate the 

mapping process in the architecture. A different set of experiments, using the same architecture, 

have been designed to investigate the querying of heterogeneous data sources. 

5.1 Evaluation Goals 

Our first goal was to evaluate the performance of the mapping algorithm we have 

designed. We will use the response time analysis to determine the performance of the mapping 

algorithm. 

 

5.2 User and Database Ontologies 

As specified in Chapter 4, the data source ontologies are designed in a comprehensive 

and task-neutral fashion, without regard to the user and application, while the integrating user 

ontology, on the other hand, is custom crafted to support a specific customer and a specific set of 

tasks. 

Our domain for querying multiple heterogeneous data sources is the movie domain. We 

have custom-designed a user ontology for the movie domain, which presents the user’s 

perspective of the domain and supports a specific set of tasks. The data source ontologies have 

been constructed with regard to the data present in the oracle database, so that they better 

represent the structure of data in the databases. Thus, these ontologies are expected to consist of 

lexical and structural heterogeneity as compared to the user ontology. 

 

5.2.1 Case 1: Single User Ontology, Single Database Ontology 

In this first experiment, we consider a user ontology and a single database ontology. The 

primary focus is to evaluate the performance of querying in the presence of the mapping 

algorithm, by determining the time needed to map the user’s query to a database query, together 
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with the time to answer the mapped query. In particular, we want to determine how the querying 

time varies with the number of attributes (describing data in the same table or several tables) in 

the query. We will evaluate the mapping/querying times, by querying the database as follows: 

• Query a single attribute from a single table.  

• Query single attribute with two attribute values from the single table.  

• Query two attributes from different tables. 

• Query single attributes with three attribute values from the single table.  

• Query three attributes from three different tables. 

• Query multiple attributes from multiple tables. 

 

We will separately query the Business table, to check the functional mappings in the 

ontologies, in particular the currency conversion. We separately use one or more attributes with 

the currency attribute in the Business table, to evaluate the query performance for the functional 

mappings. Since we have caused a dynamic mapping of the functional concepts, in particular 

currencies, it is important to evaluate the performance of the aggregation function, which 

internally applies the conversion function. 

5.2.2 Case 2: Single User Ontology, Multiple Data Source Ontologies 

In this case, the primary focus is to evaluate the time needed for query mapping and 

query answering from multiple heterogeneous data sources. There is a single user ontology and 

two heterogeneous data source ontologies providing a formal representation of their underlying 

data sources.  

We will evaluate the query mapping process for two lexically and structurally 

heterogeneous data source ontologies. The underlying heterogeneous databases are two Oracle 

databases, set up on the same Oracle server. We will determine the mapping time, query retrieval 

times and the difference in the queries as follows: 

• Query a single attribute from a single table in the two heterogeneous databases. 

• Query single attribute with two attributes values from single table in the two 

heterogeneous databases. 

• Query two attributes from different tables in the two heterogeneous databases. 
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• Query single attribute with three attributes values from single table in the two 

heterogeneous databases. 

• Query three attributes from three different tables in the two heterogeneous databases. 

• Query an attribute which shows lexical semantic heterogeneity in the two databases. 

• Query multiple attributes which shows lexical semantic heterogeneity in the two 

databases. 

Again, we will separately query the Business table, to check the functional mappings in 

the ontologies, in particular the currency conversions. This is specifically done to check if the 

functional mappings, which cause internal currency conversion and additional queries report a 

change in the mapping and query retrieval time. 

5.2.3 Case 3: Single User Ontology, Multiple Database Ontologies, with Missing Leaf 

Nodes 

In this case, the primary focus is to evaluate the mapping and querying of multiple 

heterogeneous data sources, to check if it correctly detects missing nodes in one data source and 

uses the other ontology and corresponding data source to give a weighted valued for the missing 

node in the ontology, when queried by the user. 

Consider the case in which a leaf node or concept of Action 1 (type of action movies, as 

categorized by data source ontology OU) is absent in Ontology OD1. Similarly, another concept of 

Action 2 (type of action movies, as categorized by data source ontology OU) is absent in the 

ontology OD2. Let us further assume that Action 1 and Action 2 have super class Action, which 

has a super class Genre in ontology OD1. However in ontology OD2, class Genre has subclass 

Action. However, the subclasses Action1 and Action2 are absent in ontology OD2. The user 

ontology OU has structure similar to ontology OD1. 

Because the user is unaware of the absence of the concepts Action1 and Action2 in 

ontology OD2, he/she queries the data source OD2 for the number of movies with genre Action1. 

The system which has both data source ontologies available, will map the user ontology OU to 

the data source ontologies OD1 and OD2. The user ontology creates the following mappings, 
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Table 5.1: Concept Mappings between user ontology and data sources ontologies OD1 and 

OD2, for missing leaf nodes. 

 

 

The system, at this point will know that the class Action1 and Action2 are not available 

in ontology O1. The system makes an assumption that the proportion of Movies with genre, 

Action1 and Action2, is the same in both OD1 and OD2.The system then finds the number of 

movies with genre Action1 and number of movies with genre Action1 and Action2, i.e. number 

of movies with genre Action in the data source corresponding to data ontology OD2. It finds the 

weighted percentage of movies with genre Action1, in movies with genre Action. It further finds 

the total number of movies with genre Action in Ontology OD1. It applies the percentage 

distribution of movie with genre Action1 in Ontology OD2 to this number, to obtain a weighted 

value of the number of movies in Ontology OD1 with genre Action1. 

We will evaluate the mapping time, query retrieval times and the difference in the queries 

as follows: 

• Query the attributes missing in one of the two ontologies.  

Limitation: We can only query an attribute from a single table in this case, that of the 

missing leaf node in the ontologies. It is not possible to calculate the distribution of a missing 

attribute with another attribute, which may or may not be present in the data source.  

 

Mapping of OU to OD1 

OUßßßßàààà OD1 

Mapping of OU to OD2 

OUßßßßàààà OD2 

OU:Genre  ßà OD1:Genre OU:Genre  ßà OD2:Genre 

OU:Actionßà OD1:Action OU:Actionßà OD2:Action 

 OU:ActionßàOD2:Action1 � OD2.Action2 
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5.2.4 Case 4: Naïve Bayes Algorithm Applied to Single User Ontology, Single Database 

Ontology 

In this case, we will use the Naïve Bayes algorithm, to check the validity of the query 

processing engine and the mapping process, inadvertently, with a single user and database 

ontology. The formulas used for the relational Naïve Bayes algorithm are given in Section 2.5. 

The user poses a learning (or prediction) query, in which the last attribute is assumed to 

be the class attribute. The system will use the user and data source ontology to map the classes 

and accordingly formulate queries for estimating probabilities needed for learning. Since we use 

two different approaches to inference, we will return two different values. 

As only one data source is assumed in this case, the system uses the data source available 

both as training data to estimate probabilities needed for learning and as test data to evaluate the 

accuracy of the learned classifier. 

 

5.2.5 Case 5: Naïve Bayes Algorithm Applied to Single User Ontology, Two Database 

Ontologies 

We will repeat the same procedure as in Case 5, except that there will be two data sources 

used, with their underlying ontologies. The difference in this case, is that the system queries the 

data source 1, learns from the knowledge acquired from data source 1 and uses this knowledge to 

acquire knowledge from the second data source.  
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CHAPTER 6 - Results 

This chapter documents the results from the experiments conducted on the system, as 

described in Chapter 5.We will investigate the performance and efficiency of the mapping 

technique to the querying of heterogeneous data sources. We will also examine the querying of 

the heterogeneous data sources by inspecting the database queries, constructed by the query 

processing engine. We will study database fetch times to check if the number of records returned 

in the result set, or the number of attributes in the query make a difference to the query 

processing time by the database itself. 

6.1 Querying a Single Data Source, Using a Single User and Database 

Ontology 

This section presents the performance of the mapping technique used in querying 

multiple heterogeneous data sources. We wanted to check if the mapping times for the concepts 

varied with the number of attributes being queried, or the number of records fetched from the 

data sources changed the query times. Therefore, we have performed experiments on the system 

by querying different number of attributes from one or multiple tables. The mapping and query 

times in each of the cases have been averaged out from a series of 5-6 observations. Thus we 

have made sure that we account for any minor network delays or I/O discrepancies which may 

exist in the timing values. The mapping and query times are expressed in milliseconds. 

Table 6.1.1 shows the mapping and query time, records fetched for different queries on a 

single attribute in a single table. It is evident that there is not particular association between the 

mapping times and the number of concepts queried.  

However, it can be seen that the query times increase with an increase in the number of 

records fetched for all queries, with the exception of the first record which has the least number 

of records. It can also be observed that the mapping times for all these records differ from each 

other by less than 1.0 millisecond with the exception of the third record. 

The following are the results of querying a single attribute in a single table 
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Table 6.1.1: Results for querying a single attribute in a single table 

 

Table Name Mapping 

Time 

(msec)  

Query 

Time 

 (msec)  

Records 

fetched 

Country (Romania)    15.8 143.8 1354 

Genre(War) 31.8 122 2001 

Language (Hindi) 47 146.8 6622 

Country (India) 34.4 156 14899 

Genre (Action) 31.6 162.6 15062 

Country (USA)    31.4 314 116822 

Language (English) 31 387 154221 

 

Table 6.1.2 shows the mapping and the query times for queries, when two attributes from 

single table. These observations are very critical to evaluate the efficiency of the query 

processing engine, since the query processing engine also queries certain system tables in the 

Oracle DBMS to check the constraints in the tables. We can thus ascertain if this phase of query 

processing take a considerable amount of time. In fact, during the mapping phase, the system 

does a sanity check on the attributes queried in the user query to validate the existence of the 

attributes in the data source tables. Thus, we ensure that before we actually proceed to the query 

processing phase, we have checked the existence of the attributes. In this stage we are querying 

two attributes from two different tables, so we may expect the timings for the queries to increase. 

However it has been observed that although the mapping times have not increased, the 

query times have shown a slight increase. It may also be observed the query times have  

increased with the number of records fetched, with the exception of record 2.  

The following are the results of querying two attributes from two different tables. 
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Table 6.1.662:Results for querying a single attribute with two attributes values in a single 

table 

Table Name Mapping 

Time 

(msec)  

Query 

Time 

 (msec)  

Records 

fetched 

Country (Romania, UK) 15.8 290.6 1354 

Genre (Comedy, Classic) 31.33 318.33 65895 

Genre (Action, Adult) 15.25 308.25 66936 

Country (India, USA) 15.75 398.25 131329 

Language (English, Hindi) 15.67 432.33 160363 

Language (Spanish, English) 15.4 540.4 173103 

 

 

 

Table 6.1.3 Results for querying two attributes from multiple tables 

 

 

 

 

 

 

 

 

 

The results for querying two attributes from two different tables are presented in Table 

6.1.3. There is no particular relation that we have been able to establish for any of the records. 

However it is visible that the mapping times have not changed much, with the exception of one 

Table Name Mapping 
Time 
(msec)  

Query 
Time 
 (msec)  

Records 
fetched 

Genre, Country 15.8 353 6007 
Country, Language 24.6 274.8 7135 
Genre, Language 15.33 242.16 7550 

Genre, Language 27.46 633.71 37647 
Language, Country 15.6 1590.6 100493 
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particular record (record 5), while the query times have increased from the case in which two 

attributes from the same table were queried. 

This can be attributed to the fact that the query processing engine collects meta-data 

about the table and their columns to construct the query. It would obviously take more time 

collect the metadata about two tables, as compared to one table. 

Table 6.1.4 gives the results of querying three different attributes from the same table. It 

can be seen again, that the query times of the records increase with increase in the number of 

records fetched from the table. The mapping times do not show any dependency on the number 

of records fetched by the query from the data source. 

 

Table 6.1.4: Results for querying single attribute with three attributes from a single table 

Table Name Mapping 

Time 

(msec)  

Query 

Time 

 (msec)  

Records 

fetched 

Language 15.4 272 8878 

Country  31.66 292 15884 

Genre 31 387.4 68477 

Genre  16.5 391 79900 

Country 31.25 425.75 84068 
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The following are results of querying three attributes from three tables, 

 

Table 6.1.5:Querying three attributes from three tables 

Table Name Mapping 

Time 

(msec)  

Query 

Time 

 (msec)  

Records 

fetched 

Genre, Language, Country  

War, English, UK 

46 233.2 257 

Genre, Language, Country  

Comedy, Spanish, Mexico 

31.33 333.5 850 

Genre, Language, Country  

Romance, India, Hindi  

31.4 315 948 

Genre, Language, Business 

India, Marathi, Money 

31.5 218.25 0 

Country, Language, Business 

Romania, Romanian, Money  

31.75 199.25 0 

 

Table 6.1.5 summarizes the results for three attributes being queried from three different 

tables. It may be observed that there is no particular relation between the number of query and 

mapping times with the records fetched in the queries. 

The following are results of querying multiple attributes from one or more tables, 
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Table 6.1.6: Results of querying multiple attributes from one or more tables 

Table Name Mapping 

Time 

(msec)  

Query 

Time 

 (msec)  

Records 

fetched 

Genre, Language, Country  

(Drama, English, UK) 

42.75 16941.5 2866 

Genre (Drama, War)  31.66 255 3440 

Genre, Language, Country 

(Adventure, English, UK) 

31.75 24144.5 4754 

Genre, Language, Country  

(Short_Film, English, UK) 

31 37121.33 5335 

Genre (Sport, Short_Film) 15.25 342.5 85830 

 

 

This table summarizes the results for querying multiple attributes, which further derive 

other attributes (i.e. concepts which are not leaf nodes). These queries are very critical to 

understanding the mapping timings, considering that it is the mapping phase which maps the leaf 

nodes in the user ontology to the leaf nodes in the data source ontologies. It may be seen that the 

concepts which derive 3-4 leaf nodes (or child concepts) and query multiple tables have a very 

high query time. An example would be record 5, which fetches more records from the same 

table, Genre as opposed to record 4, which fetches lesser number of records from multiple tables. 

In the 4th record, the query is fetching records for more attributes than the 5threcord, but the 

difference in the query times is very large. 

The mapping of the concepts takes almost the same time, as any of the cases described 

above. This only shows the efficiency of the mapping technique used in the system. The query 

times for the queries have increased due to querying of multiple tables and multiple concepts 

(more than 3). 
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There are several reasons for the variable query times in the cases above. The most 

important ones of all these are I/O associated with the local computer system on which the 

database servers are installed, the performance of the network used for querying the data sources. 

The other reason which are a major factor in the variable query times, and is specific to this 

system, is the structure of the oracle database system itself.  

Oracle itself has an architecture which minimizes the number of ‘logical’ and ‘physical’ 

fetches from the actual data repository. 

The oracle architecture has a memory structure called the shared pool, which has 

components such as the library cache, data dictionary cache. It also has other memory structures 

like database buffer cache, redo log buffer, which are very critical to the performance of our 

system. The actual data is cached in the database buffer cache in the form of data blocks for 

efficiency and performance of the system. 

The oracle DBMS targeted at middle and large databases, stores all the data in the 

physical memory. When a user queries the database, the architecture first checks if the data is 

available in the oracle database buffer cache. If the server process finds the necessary data blocks 

in the cache, it returns the records to the user directly. This is a called a “logical fetch”. However 

if the server process does not find the records in the cache, it performs a ‘physical fetch’ by 

getting records from the physical memory, which leads to disk I/O. This data which is in the 

form of database blocks, which are stored in the database buffer cache. The list of blocks which 

are brought to the cache from the physical memory are also stored in a LRU (least recently used) 

list, which manages the list of block being used by the database. This is a very brief explanation, 

as to how the oracle database actually implements a query on table. It is evident that the size of 

the shared pool and the database buffer cache are very critical to our system. If the size of the 

shared pool and the database buffer cache were less than the optimal size required, the number of 

physical fetches is much more, leading to higher values of query times. At the same time, a large 

sized shared pool and database buffer cache will lead to unnecessary data buffers being cached in 

the database buffer cache and will lead to unnecessary use of cache space. We have used the size 

of the shared pool and the database buffer cache as ‘advised’ by the Oracle DBMS when creating 

the database. 
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The process described is very brief and the detailed process is much vaster and takes a 

few milliseconds to implement. The process described above plays a very important role in the 

query times of the system being tested. 

It may also be noted that a physical fetch is performed every time, a different attribute 

from the same/different table is queried. The possibility of a user posing a query with the same 

attribute multiple times repeatedly is very scarce as compared to user querying different aspects 

of the multiple tables. Thus we may say that the above factor plays a very important role in 

influencing the query times of the databases. 

It may also be noted that similar architecture exists for most database systems targeted at 

middle and large database systems. So we may conclude that such discrepancies in the query 

times will also in other database systems targeting medium and large database systems. 

 

6.2 Querying Multiple Data Sources, Using a Single User and Multiple 

Database Ontologies 

This case is particularly useful to evaluate the mapping of semantically and structurally 

heterogeneous concepts and querying the underlying the data sources. 

As in the above case, we have taken results for different number of attributes querying 

one/multiple tables in two data sources. This will help us better understand the performance of 

the mapping technique and query processing in the system. This will also reveal the differences 

in the mapping and query times from two different databases, depending on the records in the 

tables, the structure of the tables. 

The mapping and query times in each of the cases have been averaged out from a series 

of 5-6 observations. Thus we have made sure that we account for any minor network delays or 

I/O discrepancies which may exist in the timing values. It may be noted that the mapping and 

query times are in milliseconds. 

Table 6.2.1 shows the summary of the mapping and the query times for a single attribute 

being queried from a single table in two databases. 
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Table 6.2.1: Querying a single attribute in a single table (two databases) 

 

 

Tables Queried 

              Data Source 1  

                     Orcl 

               Data Source 2  

                      Orcl2 

Mapping 

Time 

(msec)  

Query 

Time 

(msec)  

Records 

fetched 

Mapping 

Time 

(msec)  

Query 

Time 

(msec)  

Records 

fetched 

Genre (Horror) 1398.5 946.5 7386 1562.5 922 7151 

Country (Spain) 5200.67 1015.5 8460 5290.75 938.5 8460 

Genre(Crime)  1625 934.5 9784 1570.25 903 9245 

Country (India) 6484.25 958.3 14899 6585.75 934.4 14899 

Language(French) 2706.4 909.6 17185 2640.8 878 17185 

Genre(Adult)  2411.33 918 27483 2260.33 902.25 27351 

Language(Hindi) 3031 903 36910 1395.2 896.6 36304 

Country(USA) 3124.75 1184.2 116822 3415.6 1080.66 116822 

Language(English) 1443.8 1222 154221 1145.66 1168.8 154221 

 

It can be seen from Table 6.2.1, that there is no particular relationship between the 

number of records fetched and the mapping and query times for the queries. However, it is 

evident that the query times for both the data sources are in the same range (900 milliseconds – 

1200 milliseconds), for any number of records fetched. Also the mapping and query times for 

both the data sources, for any query, match each other by a factor of not more than 100 

milliseconds, in the two data sources. 
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Table 6.2.2 presents a summary of the mapping times, query times and records fetched 

for querying with two attributes from a single table  

Table 6.2.2: Querying single attribute with two attribute values in single table (two 

databases) 

 

 

Tables Queried  

               Data Source 1  

Orcl 

                Data Source 2 

                       Orcl2 

Mapping 

Time 

(msec)  

Query 

Time 

(msec)  

Records 

fetched 

Mapping 

Time 

(msec)  

Query 

Time 

(msec) 

Records 

fetched 

Genre (Crime Horror) 983.25 875.5 16710 1134.25 862 15979 

Language (English, 

Spanish) 

1463.8 1078.2 20890 1593.6 1085.8 20890 

Language (French, 

Italian) 

1065 841.5 25505 1101.5 828.25 25505 

Genre (Adult Sport) 1411.25 933 30152 1444.25 874.75 29966 

Country(UK, Canada) 11825.83 1167.33 30979 11549.66 986.83 30979 

Genre (Adult, Horror) 1322 877 34546 1085.4 853.6 34206 

Genre(Adult, Crime) 2481.5 1023.5 36910 2415.8 940.6 36304 

Country (USA, UK) 1422 1023 132025 1350.5 1073.25 132025 

Language(English, 

French) 

3661.5 1251 168667 3707.5 1174.5 168667 

 

It can be seen from the above table, that there is no particular relationship between the 

number of records fetched and the mapping and query times for the queries. However, it is 

evident that the query times for both the data sources are in the same range (900 milliseconds – 
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1200 milliseconds), for any number of records fetched. Also the mapping and query times for 

both the data sources, for any query, differ from each other by a factor of more than atleast 40 

milliseconds, in the two data sources. 

Table 6.2.3 summarizes of the mapping times, query times and records fetched for 

querying with two attributes from two tables. 

 

Table 6.2.3: Querying two attributes in two tables (two databases) 

 

 

Tables Queried 

             Data Source 1  

Orcl 

               Data Source 2  

Orcl2 

Mapping 

Time 

(msec)  

Query 

Time 

(msec)  

Records 

fetched 

Mapping  

Time 

(msec)  

Query 

 Time 

(msec) 

Records 

fetched 

Genre (Adult) 

Language (French) 

7525.67 849.33 742 7407 854.333 722 

Language (Spanish) 

Country (USA) 

8522.67 755.33 1637 8510.33 631.333 1637 

Genre (Romance) 

Country (UK) 

10660 2765.5 1247 11410.3 859.25 1207 

Genre (Comedy) 

Language (French) 

1431.2 979 2746 1309.6 845.4 445 

Country (Mexico) 

Language (Spanish) 

1449.8 874.8 7135 1070.6 854.2 7135 

 

It can be seen from the Table 6.2.3, that there is no particular relationship between the 

number of records fetched and the mapping and query times for the queries. The query times for 

both the data sources differ from each other by at least 20 milliseconds and almost by ~ 1000 
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milliseconds, for any number of records fetched in the same query for the two data sources. The 

mapping times for both the data sources are more or less the same except in the case of record 3. 

Table 6.2.4 shows the mapping times, query times and records fetched for querying with 

two attributes from two tables. 

 

Table 6.2.4: Querying single attribute with three attribute in a single table (two databases) 

 

 

Tables Queried 

                Data Source 1 

Orcl 

                Data Source 2 

                        Orcl2 

Mapping 

Time 

(msec)  

Query 

Time 

(msec)  

Records 

fetched 

Mapping 

Time 

(msec)  

Query 

Time 

(msec) 

Records 

fetched 

Language   

(English, Hindi, Spanish) 

11641.25 990 6622 11359.8 1003.5 6622 

Country 

(USA, India, Mexico) 

1510.75 1144.25 7807 1702.25 1043 7807 

Language  

(Italian, French, German) 

994 921.67 32057 1149 865 32057 

Country  

(UK, France, Austria) 

1921.5 1793 36837 1160 926 36837 

Genre  

(Sport, Adult, Romance) 

5779 926 43466 5617 1329 42975 

Genre  

(Adult, Crime, Horror) 

5210.33 922 43559 5314 901 42774 
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Table 6.2.5: Querying three attribute in three tables (two databases) 

 

 

 

Tables Queried 

                Data Source 1 

Orcl 

                Data Source 2 

Orcl2 

Mapping 

Time 

(msec)  

Query 

Time 

(msec)  

Records 

fetched 

Mapping  

Time 

(msec)  

Query  

Time 

(msec) 

Records 

fetched 

Genre (Crime) 

Language (Italian) 

Country (Italy) 

2566.5 886.5 270 2683.5 800.75 250 

Genre (Romance) 

Language (English) 

Country (UK) 

8146.8 1171.3 1204 9862.6 1573.16 1138 

Genre (Sport) 

Country (USA) 

Language (English) 

5421.75 941.75 1622 5425.75 863 1577 

 

It is evident from Table 6.2.4 and Table 6.2.5, that there is no particular relation between 

the mapping times, query times with the records fetched for each query. The query times and 

mapping times for the different database in the same record differ by at least 80-90 milliseconds. 

This is primarily due to difference in the number for records in the two databases. 

We observed that the mapping time and the query processing time did not show any 

particular trend with respect to the records fetched.  

This could be attributed to several reasons, some of them mentioned in the Section 6.1.In 

this section, we use two databases, which have a different source of data i.e. data is different. 
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Processing the data in the two databases will take variable times. This is another reason for the 

variable query timings. The mapping times have increased for corresponding cases in section 6.1, 

since the concepts in the user ontology are now mapped to multiple (more specifically 2) 

ontologies. 

 

6.3 Querying a Single Data Source Using Single User, Multiple Database 

Ontologies, with Missing Leaf Nodes 

This case was implemented to evaluate the mapping technique adopted in this 

framework. We were also able to assess the functionality of the querying processing engine in 

constructing appropriate queries to question underlying data sources for missing or incomplete 

information in data sources. 

In this particular case, the user Ontology had two sub categories, ‘Action 1’ and ‘Action 

2’, for the genre ‘Action’ of movies. The data source 1 has categories of genre Action as ‘Action 

1’ and ‘Action 2’, while data source 2 does not contain sub categories of the genre Action. Thus, 

the sub categories Action1 and Action2 are absent in the second data source. Since the user is 

able to view on the User Ontology, he/she queries the data sources for movies with genre 

Action1.  

The system was tested to see if it was able to correctly map the appropriate concepts in 

the user ontology with concepts in the two ontologies. In this case, the query processing engine 

was expected to assume that the distribution of records in both the data sources is the same, and 

give a probability for the number of records in the other database. It has been found that the 

mapping techniques and query processing engine gave results with a high level of accuracy. 

Following are the results:  

 

User Query: Select count from orcl.Movie Where genre = Action1 

Results: 3183 

Calculations for the above query:  

Data Source1 (Database Name: orcl)  

Total Number of Movies with Genre (Action) = 15062 

Data Source2 (Database Name: orcl2)  
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Total Number of Movies with Genre (Action1) = 12664 

Total Number of Movies with Genre (Action2) = 47272 

Percentage of records with genre (Action1) in orcl2 = [12664 / (12664 + 47272)]  

        = 21.13 % 

Percentage of records with genre (Action1) in orcl = (22 /100) * 15062  

                = 3182  

The difference between the observed calculated values us only 1 record.  

 

Summary of observations and calculations for queries are as follows:  

 

Table 6.3.1: Observed and calculated values for querying missing leaf nodes in multiple 

data sources 

 

 

 

Case  Concept 

queried 

Available 

in Data 

Source 1 

Available 

in Data 

Source 2 

Observed 

Value 

Calculated 

Value 

Difference 

in 

Observed 

& 

Calculated 

value 

1 Action1  Y N 3183 3182 1 

2 Action2 Y N 11880 11879 1 

3 History1 N Y 2054 2074 20 

4 History2 N Y 3243 3264 21 

 

It may be noted that the difference in the observed and the calculated value for case 3 and 

case 4 is large as compared to the difference in the observed and calculated values in Case 1 and 

Case 2. 
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There are some reasons which account for the difference in the observed and calculated 

values. It may be observed that the percentage of the number of records for the concept being 

queried (i.e. the missing attribute) to the number of records of its parent concept, is very small in 

cases 3 and 4. 

Also the number of total records from data source 2 (i.e., the data source in which the 

concept is missing) for Case 3, Case 4 is small as compared to the other two cases, i.e. the 

concept which forms the parent concept for the concept being queried has fewer records as 

compared to Case 1 and Case 2. 

Also, the mathematical calculations in the system are computed using the Java Math 

Library, which computes math functions differently. It has been found that the Math Library 

generates a different value of weighted percentage for the training data source (i.e., data source 

1, which has the concept being queried), as compared to the computation of the weighted 

percentage using a simple calculator. There is a difference of 0.20 – 0.50 units of measurement, 

in each calculation depending on the total number of records fetched. This difference in the 

calculations increases with the decrease in the number of records fetched for the attribute. 

Since the number of records is always a natural number, we take a ceil value for the 

weighted percentage applied to the records in the second data source. This also leads to a minor 

difference in the computation of the probabilistic number of records in data source 2. 

 

6.4 Naïve Bayes Algorithm Applied to a Single User Ontology and a Single 

Database Ontology 

 

This section is used primarily to acquire knowledge from the data stored in the relational 

data sources. We will test the Naïve Bayes Algorithm implemented for relational databases, as 

explained in the Section 2.5. 

The following table summarizes the percent accuracy for the implementation of the Naïve 

Bayes Classifier tested on a variable number of records, using both the Independent Value 

formula and the Average Value formula. 
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Table 6.4.1: Accuracy results for Naïve Bayes Algorithm on variable size test sets obtained 

from data source 1 (using Average value formula and the Independent value formula), data 

source 1 is also used for training. 

 

 

 

Training 

Dataset: 

Database D1 

 

Testing Dataset: 

Subsets of the 

Database D1 

No of Samples 

tested  

% Accuracy  

(Independent Value 

formula)  

% Accuracy  

(Average Value 

formula) 

10 10/10 (100 %)  10/10 (100 %)  

20 20/20 (100 %) 20/20 (100 %) 

30 30/30 (100 %) 29/30 (96.66 %)  

40 39/40 (97.5 %)  38/40 (95 %) 

50 49/50 (98 %)  48/50 (96 %)  

60 57/60 (95 %) 56/60 (93.33 %)  

70 66/70 (94.28 %)  65/70 (92.85 %)  

80 76/80 (95 %)  75/80 (93.75 %)  

90 83/90 (92.22 %)  82/90 (91.11 %) 

100 91/100 (91 %)  89/100 (89 %)  

 

From Table 6.4.1, it may be observed that the % accuracy obtained by implementing the 

independent value formula is higher than the % accuracy obtained by implementing the average 

value formula. 

6.5 Naïve Bayes Algorithm Applied to a Single User Ontology, Multiple 

Database Ontologies 

This section is primarily used to show, how knowledge acquired from data source 1 in the 

calculation of the Naïve Bayes algorithm is used to further predict knowledge in data source 2.  

The following table shows the results for the Naïve Bayes implementation using data 

source 1 for training and data source 2 for testing. 
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Table 6.5.1: Accuracy results for Naïve Bayes Algorithm on variable size test sets obtained 

from data source 1 (using Average value formula and the Independent value formula), data 

source 2 is used for training. 

 

 

 

Training 

Dataset: 

Database D1 

 

Testing Dataset: 

Database D2 

No of Samples 

tested  

% Accuracy  

(Independent Value 

formula)  

% Accuracy  

(Average Value 

formula) 

10 10/10 (100 %)  10/10 (100 %) 

20 19/20 (95 %) 19/20 (95 %)  

30 29/30 (96.66 %) 28/30 (93.33 %)  

40 38/40 (95 %)  38/40 (95 %)  

50 47/50 (94 %)  46/50 (92 %)  

60 56/60 (93.33 %) 55/60 (91.66 %)  

70 64/70 (91.43 %)  62/70 (88.57 %)  

80 71/80 (88.75 %)  69/80 (86.25 %)  

90 78/90 (86.66 %)  75/90 (83.33 %)  

100 85/100 (85 %)  81/100 (81 %)  

 

From Table 6.5.1, it may be observed that the percent accuracy obtained by 

implementing the Independent value formula is higher than the percent accuracy obtained by 

implementing the Average value formula. 

From Section 6.4, 6.5, we can see that the independent value formula performs better than the 

average value formula. This could be because of the ability of the independent value formula to 

make use of multiple predictive values within a multiset, which makes it possible for the 

classifier to capture more multiset information. 
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CHAPTER 7 - Conclusions 

An ontology is a formal representation of the concepts in a domain and the relationships 

that exist between these concepts. Knowledge in various domains is stored in multiple distributed 

semantic heterogeneous databases. It is challenging to query specific data from these data 

sources. These databases can however be supported by ontologies describing them. This will 

lead to the semantic heterogeneity in the databases being reflected in the data source ontologies 

describing them.  Thus, the semantic heterogeneity in the databases can be resolved by resolving 

the heterogeneity in the ontologies.  

In this thesis, the problem of querying heterogeneous data sources has been addressed by 

constructing ontologies that describe the data sources. A user ontology, representing the user 

perspective of the domain, helps the user query the data sources. A mapping algorithm maps the 

user ontology to the data source ontologies, resolving the heterogeneity in the ontologies and 

therefore in the databases. 

The problem of structural heterogeneity in the ontologies has been addressed by 

considering the ontology in the form of an XML tree, wherein nodes of the tree represent the 

concepts in a domain while the edges determine the relations between them. The lexical 

heterogeneity in the ontologies has been resolved using string based matching, lexical analysis 

and setting up heuristics to compare the attributes of the concepts, thereby determining the 

similarity between the concepts. It has been found that the above approaches used to resolve the 

heterogeneity in the database are effective in resolving the semantic and lexical heterogeneity to 

a high level of accuracy. The concepts in the ontologies were mapped appropriately, including 

missing leaf nodes. The mapping algorithm also mapped the subclass or super class relationships 

appropriately.  

It has also been observed that the query processing engine was able to transform user 

queries into SQL inline queries that the Oracle database could comprehend. This was further 

confirmed by the result sets returned by the queries. 

We have performed experiments to check the efficiency of the mapping algorithm by 

recording the time taken by the algorithm to map the user ontology concepts to the data source 

ontology concepts. We have found that the difference in time for mapping concepts, from the 

user and the data source ontologies, is not very large. The difference in the mapping times is 
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more pronounced with the increase in the number of concepts to be mapped. This is acceptable, 

considering that the increase in the mapping times does not exceeds 100 milliseconds. 

The results of our experiments show that string based comparison and lexical analysis of 

the concepts are effective in mapping concepts in ontologies. The attribute based comparison, in 

which the attributes of each concept were compared on the basis of their domain, range and 

cardinality helped the mapping process in predicting the concept mappings to higher degree of 

accuracy. We can thus assert that we have achieved the goal of resolving heterogeneity in the 

data sources to a great degree of accuracy. 

Experiments were also performed to evaluate the performance of the query processing 

engine by recording the time for translating the user query to a query, which the database 

understands, together with the time taken for the query to fetch the result set from the database. It 

was found that the query times, increased with increase in the number of concepts queried from 

the database. Since the databases under consideration are relational databases, the increase in the 

number of attributes being queried also increases the number of tables being queried. This also 

contributes to the increase in the query time, with the time taken by the query processing engine 

to formulate the database query. 

Taking into consideration other factors affecting the query times, we can conclude that 

the query processing time for any query is not very high thereby making the system efficient in 

the querying of databases. 

Experiments were also performed to check the performance of the system, to predict the 

weighted probability of the number of records for a concept in a data source, although the 

concept is not actually present in the data source. It was assumed that the distribution of records 

in the multiple data sources was the same. The system was able predict well the approximate 

number of records for the concepts missing in the data source. 

The Naïve Bayes algorithm which was used to learn data from heterogeneous data 

sources was able to use the information in one data source (data source 1), to effectively predict 

the probabilities for the other data source (data source 2). The execution of the Naïve Bayes 

algorithm also tested the performance of the query processing engine and the mapping algorithm, 

since they are used to map the concepts and construct queries needed to compute the 

corresponding probabilities. 
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We can assert that we have been able to successfully design and develop a tool to query 

multiple heterogeneous data sources. The mapping algorithm implemented in the system to 

resolve heterogeneity, in congruence with the query processing engine performs as desired. We 

are able to map ontologies semi automatically, resolving the heterogeneity in the ontologies and 

inevitably in the databases. 

The query processing engine performs efficiently by formulating the appropriate queries, 

in a reasonable amount of time. Although the query processing engine is primarily build to 

handle relational database, it will also work with non-relational databases, which identify SQL 

inline queries, e.g. MySQL. 

This work has contributed to querying multiple heterogeneous data sources both 

relational and non-relational. Although several approaches have been suggested to resolve the 

semantic heterogeneity in multiple databases, most have taken into consideration non-relational 

databases. The few approaches which take into consideration non-relational databases use multi 

agents to resolve the problem. Also it has been observed that most approaches resolve either the 

lexical or the structural heterogeneity, but very few have resolved both and queried the databases 

to evaluate the mapping and the query processing techniques. We have incorporated a mapping 

technique which not only resolves lexical heterogeneity but also structural heterogeneity, thereby 

resolving heterogeneity to higher level of accuracy. We have further verified the functioning of 

the system, by using the Naïve Bayes algorithm to acquire knowledge from the database, which 

will be a real world application of this system. This system has been built with the purpose of 

being used for learning classifiers for multiple heterogeneous data sources. It should be possible 

to design other learning classifiers, to acquire knowledge from multiple heterogeneous data 

sources. 
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CHAPTER 8 - Future Work 

This chapter briefly discusses the areas of related work, which we may want to address in 

the near future in our system. In doing so, we will discuss challenges and opportunities ahead in 

the field of querying heterogeneous data sources. 

We have presented an approach to ontology mapping by resolving lexical and structural 

heterogeneity in the data source ontologies based on modeling and linguistic analysis. The 

purpose of the work is to introduce a method for finding semantic correspondence among the 

ontologies with the intention to support interoperability of information systems. 

The current situation with heterogeneous data sources in distributed modeling suggests a 

need for adjustable variables in the mapping algorithm depending on the application domain, the 

modeling group and the organization. This way the ontology mapping or integration tool will be 

able to support a multi lingual (OWL Lite, OWL DL, OWL Full, RDF), multi domain 

heterogeneous data source.  

The following are problems related to ontology mapping, which could be addressed in 

future work. 

8.1 Mapping Ontologies with Missing Concepts 

The experiments presented in this thesis are based on the assumption that the local (user) 

ontology is ‘complete’. However if the local (user) ontology is not ‘complete’, then it would be 

almost impossible to map concepts in the user (local) ontology to a data source ontology.  

However, it is possible that local ontology does not contain a particular concept in the 

domain. An example would be that the local ontology for the domain of Movies may not include 

the concept of ‘Certification” which is a certificate obtained to release in a particular country, but 

the data source ontology has a specific mention of the concept Certifications. Since the user 

(local) ontology represents a user’s perspective of the domain of Movies, the user will never 

know about the existence of the concept, due to its absence in the user (local) ontology.  

However, if it were possible to utilize the user and database ontologies to further compile 

a consolidated local (user) ontology, better describing the domain, it would then be possible to 

map missing concepts in the user ontology. Thus we would need to use the initial set of 
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ontologies to integrate into another ontology, which can better represent the domain, combining 

all the concepts from the multiple Ontologies. 

 

8.2 Mapping Ontologies in Multiple Ontology Languages 

The experiments performed in this thesis work only with the OWL Lite, Web Ontology 

Language. It may be realized that not all ontologies on the semantic web are available in this 

particular language. Thus, aligning two ontologies expressed in different languages, depending 

on their degree of expressivity can be done based on the mapping of different logical languages. 

At present it is possible to perform translations between languages at the ontology 

schema level. These translations are purely syntactic and are expressed using transformation 

languages like XSLT. Thus, we can attempt to solve the problem of integrating different 

modeling paradigms having different semantics.  

8.3 Integrating the Two Versions of the Ontology 

At present, we have multiple heterogeneous data sources corresponding to multiple data 

source ontologies. It would be interesting to integrate the multiple ontologies into a single data 

source ontology describing the data in all the data sources. We may then map the user (local) 

ontology to the single homogeneous data source ontology. This data source ontology could then 

be used to query the heterogeneous data sources, which could hopefully lead to results similar to 

those obtained by using different data source ontologies.  

 

8.4 Usage of Different Mapping Techniques 

There are several mapping techniques to map lexical and structural heterogeneity 

between two ontologies. We could add an array of different mapping techniques to compare the 

mapping technique used by us in the present application. 
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8.5 Functional Mappings 

There are certain complex mappings in ontologies which may require the use of 

aggregate function to express the differences in the ontology models. Examples of such functions 

would include functions for currency conversions, unit – measurement conversion from one 

ontology to another ontology. This could also include string, integer manipulation functions. It 

would be interesting to have a mapping language, which could express such functions when 

mapping two ontologies using different unit representations to dynamically get the necessary 

transformation. We are already implementing a functional approach to resolve the problem of 

currency conversion. However, we need to design a standard technique, which can be 

implemented in any mapping architecture.  

 

8.6 Consolidated Results from Data Sources 

The system could be designed to return a consolidated result set, by combining the results 

it obtains from each of the data sources. We could thus remove any redundancy in the records 

returned to the user.  

 

8.7 Inference Engine for Resolving Structural Heterogeneity 

In the present state, we assume the existence of two inference rules for resolving the 

structural heterogeneity in the ontology graphs, providing formal representation for the data 

sources. However, it should also be possible to include an inference engine, which studies the 

structure of the two ontology graphs and infers different structural similarity rules for different 

ontologies. 

 

8.8 Different Types of Queries 

At present, the system is limited to formulating SQL inline queries. We could broaden the 

array of queries that can be formulated in this system, thereby improving the functionality of the 

system. 
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8.9 Representative Algorithms for Learning Classifiers from Distributed Data 

In the present implementation, we have already implemented the Naïve Bayes algorithm 

for heterogeneous data sources [21]. However, it is necessary to design and implement also other 

algorithms for learning from distributed data. Examples of such algorithms include Nearest 

Neighbor algorithm, Bayes Network and Decision Tree classifiers. This will also help us better 

understand about the representation of data in the multiple heterogeneous data sources. Also this 

will help us establish the precise conditions under which the proposed algorithms offer 

significant savings in bandwidth, memory, and/or computation time (relative to their centralized 

counterparts) [12].  

8.10 Different Types of Data Sources 

The system is designed for relational data sources. Although the query processing engine 

is designed such that it constructs queries for relational data sources, it may be noticed that these 

queries can also be applied to non-relational databases, which identify SQL inline queries. We 

could further extend the range of data sources to flat files, XML based data sources, object 

oriented data sources etc. 
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