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Abstract 

Quantitative remote sensing provides an effective way of estimating and mapping 

vegetation characteristics over an extensive area. The spatially explicit distribution of canopy 

vegetative properties from remote sensing imagery can be further used for studies of spatial 

patterns and processes in grassland systems. My research focused on remote sensing of grassland 

vegetation characteristics and its applications to spatial analysis of grassland dynamics involving 

interactions between pyric herbivory and vegetation heterogeneity. In remote sensing of 

vegetation characteristics, (1) I estimated the foliar pigments and nutritional elements at the leaf 

level using hyperspectral data. The foliar pigments, chlorophylls and carotenoids, were retrieved 

by inverting the physical radiative transfer model, PROSPECT. The nutritional elements were 

modeled empirically using partial least squares (PLS) regression. Correlations were found 

between the leaf pigments and nutritional elements. This provided insight into the use of 

pigment-related vegetation indices as a proxy of the plant nutritional quality. (2) At the canopy 

level, I assessed the use of the broadband vegetation indices, normalized difference vegetation 

index (NDVI) and green-red vegetation index (GRVI), in detecting vegetation quantity (LAI) 

and quality (leaf and canopy chlorophyll concentrations). The relationships between vegetation 

indices and vegetation characteristics were examined in the physical model, PROSAIL, and 

validated by a field dataset collected from a tallgrass prairie. NDVI showed high correlations 

with LAI and canopy chlorophylls. GRVI performed even better than NDVI in estimating LAI. 

A new index GNVI (green-red normalized vegetation index) that combined NDVI and GRVI 

was proposed to extract leaf chlorophyll concentration. These findings showed the potential of 

using broadband vegetation indices from multispectral remote sensors to monitor vegetation 

quantity and quality over a wide spatial extent. In the spatial analysis, I examined interactions 



  

between pyric herbivory and grassland heterogeneity at multiple scales from the remote sensing 

imagery. (3) At a coarse, watershed level, I evaluated effects of fire and large herbivores on the 

spatial distribution of canopy nitrogen. It was found that the interactive effects of fire and 

ungulate grazing were present in the watersheds burnt in spring, where a high level of ungulate 

grazing reduced vegetation density, but promoted canopy heterogeneity. Two grazer species, 

bison and cattle, were compared. Differences in the vegetation canopy between sites with bison 

and cattle were observed, which may be related to differences in the grazing intensity, forage 

behavior and habitat selection between the two grazer species. (4) At a fine, patch level (30 m), 

bison forage pattern was examined associated with canopy nitrogen heterogeneity. Bison 

preference for patches with high canopy nitrogen was evident in May. Later in June – 

September, bison tended to avoid sites with high canopy nitrogen. Vegetation heterogeneity 

showed significant influences on bison habitat selection in June. Bison preferred sites with low 

variance in canopy nitrogen, where the patch types were highly aggregated and equitably 

proportioned.   
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Chapter 1 - Introduction, Remote Sensing of Grassland Canopy 

Nutrients and Spatial Analysis of Pyric Herbivory 

Fire and large herbivores, as well as topography, have great influence on formatting 

vegetation canopies in North American grasslands (Abrams 1988; Collins and Wallace 1990; 

Hartnett et al. 1996). The resulting vegetation resources in turn affect habitat selection and forage 

pattern of large herbivores (Allred et al. 2011a; Allred et al. 2011b; Anderson et al. 2005). 

Research into interactive processes among fire, large herbivores and vegetation is of special 

interest in grassland science, which is valuable for understanding grassland functions and 

formulating management plans. 

Information about vegetation characteristics is fundamental to analysis of scale-

dependent grassland dynamics. Traditional field sampling followed by laboratory chemical 

analysis of vegetation characteristics is expensive and time-consuming, which usually results in 

limited study area and sample size. The increasing use of air- and satellite-borne sensors 

provides a different means of vegetation survey, through which spectral data of grassland 

canopies over a large area can be captured effectively. Vegetation characteristics can be 

quantified by spectral analysis from the remotely sensed imagery. 

 1.1 Quantitative Remote Sensing of Vegetation 

With the rapid development of remote sensing over the past few decades, spectral data 

from various multi- and hyper-spectral sensors have found a wide application in detecting 

biophysical and biochemical characteristics of vegetation (Santin-Janin et al. 2009; Wang et al. 

2013; Zarco-Tejada et al. 2004). Multispectral data refer to a few discrete broad spectral bands. 

In contrast, hyperspectral data consist of hundreds of contiguous narrow bands, in which fine 

spectral features over the spectral profile can be observed and extracted. These fine hyperspectral 
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features are particularly useful when estimating vegetation nutritional elements, such as nitrogen, 

phosphorous and potassium (Mutanga et al. 2004; Ozyigit and Bilgen 2013).  

Given the different formats of the spectral data, a variety of spectral analysis methods 

have been developed. These methods can be classified into two major categories:  empirical and 

physical. The empirical method refers to model-building based on in-situ observations, whereas 

the physical method describes relationships between vegetation characteristics and spectral 

features mathematically based on simulations of the radiative transfer system.  

 1.1.1 Empirical Estimation of Vegetation Characteristics 

Vegetation properties can be linked to spectral features readily through empirical models. 

For a small number of spectral predictive variables, multivariate regression is a commonly used 

method that selects the most suitable spectral predictors to fit a model of vegetation 

characteristics. In hyperspectral remote sensing, spectral data are typically high-dimensional, 

fine spectral bands which are usually highly correlated with each other (Landgrebe 2002). High 

correlations among a large number of predictive variables (hyperspectral bands) may lead to 

problems of multicollinearity and overfitting (Hawkins 2004; Kumar 1975) as conventional 

multivariate regression is used for vegetation characteristic modeling. Partial least squares (PLS) 

regression may address problems of multicollinearity and overfitting properly, and is therefore 

widely used in hyperspectral analysis. Through PLS regression the predictive variables and 

dependent variables are projected to a new space. The predictive variables are transformed into 

latent factors in directions associated with the maximum variance in the dependent variables. 

Thus the first few latent factors can explain most of variance in the dependent variables, and the 

dependent variables can be modeled by a reduced number of latent factors. 
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In empirical modeling of vegetation characteristics using spectral features, the predictive 

variables can be individual spectral bands or vegetation indices that combine two or more 

spectral bands to highlight specific features in the spectral profile. The simple ratio and 

normalized difference are commonly used forms of vegetation indices (le Maire et al. 2004), 

which provide a scale of the original reflectance and reduce much of the background effects. 

Among a large number of vegetation indices, the normalized difference vegetation index (NDVI) 

is probably most well-known, and considered the foundation for remote sensing of plant 

phenology. NDVI is formulated based on the opposite behaviors between the red and near-

infrared regions in the reflected spectrum from plant leaves. The red radiative energy is absorbed 

by leaf chlorophylls and the near-infrared is reflected strongly due to the leaf cell structure. 

These particular spectral features are highlighted in NDVI, and have been widely used to track 

plant phenology changes in early studies (Ediriwickrema 2006; Lüdeke et al. 1996; Lee et al. 

2002). More recently, NDVI has been found capable of estimating vegetation characteristics 

such as green biomass, canopy leaf areas and chlorophyll concentration in quantitative analyses 

(Boelman et al. 2003; Santin-Janin et al. 2009; Steltzer and Welker 2006; Vincini and Frazzi 

2011). 

Although empirical methods provide rapid estimates of vegetation characteristics using 

spectral data, they are not direct measurements of plant canopies. Reflected spectral data 

measured from the plant canopies can be affected by a number of factors, including atmospheric 

conditions, canopy configuration, leaf structure, soil type, as well as geometry of illumination 

and the sensor. Therefore, empirical relationships between vegetation characteristics and spectral 

features are varied across different measurement conditions, plant species and study sites. It is 
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important to understand factors that may affect plant reflectance before quantitative analyses of 

vegetation characteristics using reflectance spectral data.  

 1.1.2 Retrieving Vegetation Characteristics from Physical Models 

 1.1.2.1 Physical Modeling of Plant Radiative Transfer 

As an alternative to empirical methods, vegetation characteristics can also be retrieved 

through inverting physical models of plant radiative transfer (Goel and Thompson 1984a, b). 

Physical models describe the interactive processes between radiation and vegetation 

mathematically. A system of remote sensing of vegetation usually includes five parts: the 

radiation source, atmosphere, vegetation, ground and the sensor. Physical models calculate 

radiation intercepted by the sensor (i.e., the reflectance) in terms of vegetation characteristics. In 

addition to vegetation characteristics, external factors such as radiation source, atmosphere and 

soil background are taken into account in determining vegetation reflectance. Compared to 

empirical methods, physical models provide a more systematic description of relationships 

between vegetation characteristics and vegetation reflectance, which are potentially more robust 

and universal across different measurement conditions, plant species and study sites. 

A variety of vegetation radiative transfer models have been developed which are different 

in the scale of analysis and conceptual basis. At the leaf scale, physical processes of reflectance, 

absorption and scattering are simulated for a single leaf, in which the leaf structure is an 

important parameter in determining radiative transfer. Canopy-scale models incorporate leaf 

models, however, vegetation reflectance at the canopy level is largely dependent on canopy 

configurations.  

In remote sensing of vegetation, PROSPECT is one of the most widely used leaf-level 

models due to its ease of use and general robustness. In the PROSPECT model, a compact leaf is 
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represented as a plate which consists of a stack of homogeneous layers. The leaf radiation regime 

is calculated from a small number of input parameters that characterize the leaf structure and leaf 

biochemical contents. The leaf structure parameter specifies the number of homogeneous layers 

in the leaf plate. The leaf biochemistry parameters include chlorophyll, carotenoids, water, and 

leaf dry matter contents (Feret et al. 2008; Jacquemoud and Baret 1990). With these input 

parameters, the PROSPECT model simulates the leaf reflectance and transmittance from 400 to 

2500 nm with a spectral resolution of 1 nm.  

The PROSPECT model is often coupled with the canopy model SAIL, referred to as 

PROSAIL (Jacquemoud 1993), to simulate the canopy radiation regime. The SAIL model is a 

turbid medium model in which the vegetation canopy is assumed to consist of plane parallel 

distinct layers. In each layer, small vegetation elements are randomly distributed. In the SAIL 

model, parameters that characterize the canopy configurations include the leaf area index (LAI) 

and leaf angle distribution (Verhoef 1984). Vegetation elements in the canopy layers can be 

simulated using the leaf reflectance and transmittance properties determined in the PROSPECT 

model. In this way, the PROSPECT model is linked to the SAIL model, which describes the 

canopy radiation absorption and scattering as a function of leaf structure, leaf biochemistry and 

canopy configurations.  

 1.1.2.2 Inversion of Physical Models 

Physical models calculate vegetation radiative transfer properties from vegetation 

characteristics, which is referred to as the direct mode. Theoretically, vegetation characteristics 

can be retrieved by inverting the physical models (Jacquemoud et al. 1995). Commonly used 

model inversion techniques include the look-up table and artificial neural networks (Combal et 

al. 2002). 
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In model inversion, a spectral database is generated from a physical model by varying the 

input parameters. Each set of parameters corresponds to a specified spectrum. The look-up table 

is to search a spectrum in the simulated spectral database which has a minimum difference from 

the measured spectrum. Then the vegetation characteristics can be retrieved from the set of input 

parameters corresponding to the search result in the spectral database (Feret et al. 2008; 

Jacquemoud et al. 2009).  

Artificial neural networks relate a set of input variables to output variables through one or 

more hidden layers of neurons with transfer functions. The weights of interconnections between 

neurons are determined by a training process. When retrieving vegetation characteristics, the 

neural networks are trained in the spectral database simulated from the physical model. The input 

variables are spectral features, and the output variables are vegetation characteristics of interest. 

The trained networks are then applied to the measured radiance for vegetation characterization 

(Combal et al. 2002; Trombetti et al. 2008).  

 1.1.3 Applications to Grasslands 

Remote sensing has been widely used in estimating vegetation characteristics through 

spectral analysis at the leaf or canopy level (Curran et al. 1990; Jago et al. 1999). Generally, 

spectral analysis at the canopy level is more complicated than that at the leaf level. Reflectance 

received from vegetation canopies is largely affected by the structure and composition of the 

canopies. Even a relatively uniform canopy like crops can be structurally complex, consisting of 

living plant leaves, stems, standing dead materials, and other components. These elements with 

different absorption and scattering properties in the canopy, along with the soil background, 

produce a mixed reflectance signal received by the sensor. In a heterogeneous canopy, such as 

grass, the reflective materials are more diverse due to the various plant species and growth 
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forms, which result in an even more complexly integrated spectral response pattern (Ferwerda et 

al. 2005; Mutanga et al. 2004). 

Among grassland canopies, the tallgrass prairie is especially complex in the canopy 

structure and species composition. Vegetation in a tallgrass prairie is dominated by tall grasses 

such as Andropogon gerardii, Sorghastrum nutans, Panicum virgatum, and Schizachyrium 

scoparium. Forbs compose a small proportion of the total vegetation canopy but account for 

much of the species diversity. Grasses and forbs respond differently to disturbances by fire and 

large herbivores. Forb species that initiate in the early growing season can be largely removed by 

spring fires. This allows grass species to dominate the vegetation canopy. Grasses are more 

palatable than forbs, and therefore more preferentially grazed by large herbivores, while forbs 

may contain many secondary chemicals that deter ungulate grazing. Thus, an abundance of forb 

species can be often observed in the grazed areas at a later stage of the growing season. In a 

natural tallgrass prairie canopy, grasses and forbs are closely intermingled. There can be more 

than twenty plant species present in a single square meter, each with different leaf structures and 

growth forms. This may make it more difficult to retrieve vegetation characteristics from the 

canopy radiation signal. 

Heterogeneous canopies in the tallgrass prairie are a major outcome of fire, ungulate 

grazing and topography. In the tallgrass prairie ecosystem, fire and grazing by large herbivores 

play an important role in shaping canopy structures, regulating species compositions and 

recycling soil nutrients (Collins and Smith 2006; Coppedge and Shaw 1998). Topography 

influences the soil properties, distribution of plant species, and herbivore habitat selection 

(Hartnett et al. 1996). Understanding the interactions between fire and ungulate grazing, as well 
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as topography effects are useful for perceiving the spatial distribution of canopy properties, and 

therefore revealing the biophysical rationales underlying the canopy spectral signal. 

 1.2 Spatial Analysis of Pyric Herbivory in Grassland System 

 1.2.1 Pyric Herbivory 

Fire and large herbivores are critical components in North American grassland 

ecosystems (Collins and Wallace 1990; Hulbert 1986; Knapp et al. 1999). Fire has significant 

influence on above- and below-ground processes in grasslands. Generally, fire stimulates plant 

growth by removing the standing dead litter aboveground and increasing the light interception in 

the canopy (Anderson et al. 2007). Meanwhile, the soil temperature is increased by fire, which 

enhances the nutrition cycling belowground and potentially improves vegetation productivity 

(Seastedt and Ramundo 1990). In addition, fire is effective in keeping the prairie grasses from 

encroachment by woody species (Bragg and Hulbert 1976). Spring fires can suppress the growth 

of forb species, and allow the tall grasses to dominate the canopy (Collins and Gibson 1990).  

Large herbivores, primarily the American Bison (Bison bison), are historically agents of 

disturbance in the tallgrass prairie (Hartnett et al. 1996). Grazing activities by large herbivores 

can reduce the standing dead materials in the canopy, and enhance plant abundance (Belsky 

1986). In addition, ungulate grazing may reduce the palatable grass species, allowing forbs to 

flourish, which increases the species diversity (Collins et al. 1998). Large herbivores also play an 

important role in redistributing plant-available nutrients, and therefore promoting the nutrition 

cycling (de Mazancourt et al. 1998; Frank and Evans 1997).  

It is interesting that fire and large herbivores are naturally interacting with each other 

through the vegetation canopy in the grassland ecosystem. Fire influences the forage site 

selection by large herbivores. It has been observed repeatedly that large herbivores prefer 
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grasslands burned by spring fires and avoid unburned, old patches (Allred et al. 2011a; 

Coppedge and Shaw 1998). Ungulate grazing activities may in turn influence the fire spread, 

severity and intensity through altering the fuel loading characteristics in the vegetation canopy 

(Strand and Launchbaugh 2014). The spatiotemporal interaction between fire and ungulate 

grazing is referred to as pyric herbivory, which results in a shifting mosaic of disturbance across 

the landscape (Fuhlendorf and Engle 2004; Fuhlendorf et al. 2009). Along with topography, 

pyric herbivory greatly promotes the vegetation heterogeneity in grasslands (Fuhlendorf et al. 

2010). Studies on the vegetation heterogeneity associated with pyric herbivory and topography is 

essential to understand the ecological structure and functions in the grassland ecosystem, which 

are valuable for grassland conservation and management. 

 1.2.2 Spatial Analysis Methods 

Prior to understanding the interplay between pyric herbivory and vegetation 

heterogeneity, it is necessary to study the spatial distribution of canopy properties and the 

movement pattern by large herbivores. The canopy vegetation status over a large spatial extent 

can be retrieved efficiently using remote sensing methods as discussed above. From the remote 

sensing imagery of vegetation canopies, the grassland heterogeneity can be measured at different 

spatial scales. As for the movement pattern by large herbivores, the Global Positioning System 

(GPS), which has developed rapidly in the past few decades, can record the spatiotemporal 

locations of herbivores accurately, which provide a new mode of modeling the herbivore 

movement. 

 1.2.2.1 Analysis of Grassland Heterogeneity from Remote Sensing Imagery 

The image of canopy characteristics derived from the remote sensing data is typically a 

continuous numerical map. Spatial heterogeneity in the continuous map is featured by the scale 
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and intensity of spatial autocorrelation in the canopy characteristics (Li and Reynolds 1994), 

which can be measured using geostatistical techniques, such as variogram analysis (Curran 

1988). A variogram calculates the variance of difference between vegetation characteristics at 

each pair of locations across the canopy. Through variogram analysis, the spatial autocorrelation 

distance and contrast in the canopy characteristics can be determined, which provide insight into 

the spatial structure and variability trends across the landscape.  

The continuous data in the remote sensing imagery can also be converted into a 

categorical map by classifying the measured characteristic into discrete categorical levels, in 

which each level is considered a patch type. In the resulting categorical map, spatial 

heterogeneity can be measured by a variety of metrics, such as contagion, evenness, and 

patchiness (Li and Reynolds 1994). These metrics can be calculated either for a single specified 

patch type or for all the patch types as a whole, describing the composition and configuration of 

patches from multiple aspects. In terms of grassland heterogeneity, the spatial distribution of 

patches with high levels of vegetation quality or quantity is of special interest (Wallace et al. 

1995). The quality and quantity of vegetation resources can be important factors that influence 

the forage pattern by large herbivores. Scale-dependent analysis of the linkage between 

vegetation resource distribution and ungulate grazing pattern is essential to understand grassland 

functions and address central questions in grassland science.  

 1.2.2.2 Forage Pattern and Resource Selection by Large Herbivores 

Analysis of herbivore movement pattern and space use is a fundamental step prior to 

investigating resource selection and forage hierarchy in grasslands. A traditional method for 

modeling the animal movement pattern and space use is to calculate the minimum convex 

polygon that completely encloses the animal locations (List and Macdonald 2003). This method 
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is improved by a new model, referred to as the utilization distribution (UD), which calculates the 

probability density of animal’s relative occurrence frequency in a two-dimensional space (van 

Winkle 1975). The kernel method is an approach to estimating the UD (Worton 1989). Classic 

kernel methods estimate the UD statically, assuming that all the animal relocations are unlinked. 

More recently, with the rapid development of GPS, spatial locations of animals can be recorded 

in time sequences with a high temporal resolution via GPS devices. This activates the interest of 

developing the movement-based kernel density methods that take into account the time 

dependence between the successive animal locations and calculate the UD based on the 

movement trajectory of the animal (Benhamou 2011; Benhamou and Cornélis 2010; Papworth et 

al. 2012).  

The resulting UD estimation can be linked to factors such as fire, topography and 

vegetation for analysis of resource selection and forage strategy by large herbivores. The 

resource selection function (RSF) and resource utilization function (RUF) are commonly used 

methods in evaluating wildlife-habitat relationships (Long et al. 2009). In RSFs, the sampling 

sites are classified into used and unused sites. This binary variable of use status is related to the 

habitat factors through logistic regression. In RUFs, the continuous variable of space use 

summarized by the UD estimation is related to the habitat factors through multivariate 

regression. Theoretically, RUFs are more advanced than RSFs. However, methods for generating 

RSFs are more sophisticated than that for RUFs. This makes RSFs potentially more useful and 

reliable in realistic ecological applications, particularly in the case of large herbivores which tend 

to have large home ranges (Long et al. 2009).  

In summary, the use of remote sensing and GPS provides a new approach for analyzing 

spatial patterns of vegetation heterogeneity and ungulate grazing in grasslands. Prior to the era of 
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remote sensing and GPS, the limited study area and sample size imposed by the limitations of 

traditional manual field measurements were not always able to represent spatial patterns in the 

entire landscape properly. With the development of remote sensing and GPS, the spatial 

distributions of animal and vegetation resources can be captured effectively. This new context 

allows quantitative examinations of wildlife-habitat relationships at multiple spatiotemporal 

scales. 

 1.3 Research Objectives 

The overall purpose of my research is to assess forage quality in a tallgrass prairie using 

spectral analysis, and study the spatial patterns of forage quality and pyric herbivory associated 

with topography effects from the remote sensing imagery of canopy nutrient. More specifically, I 

have four objectives: 

• Objective 1, to estimate foliar pigments and macronutrients at the leaf level across 

multiple tallgrass prairie species using hyperspectral reflectance data; 

• Objective 2, to compare and evaluate two broadband vegetation indices, the 

normalized difference vegetation index (NDVI) and green-red vegetation index 

(GRVI), in detecting vegetation quantity and quality in a tallgrass prairie canopy; 

• Objective 3, to evaluate effects of fire and large herbivore on the spatial pattern of 

canopy nitrogen at the watershed level across a tallgrass prairie topography from 

remote sensing imagery; 

• Objective 4, to study interactions between bison forage and canopy nitrogen 

distribution at a fine, patch level. 

My dissertation includes four manuscript chapters, corresponding to the four objectives 

outlined above. The first manuscript chapter (Chapter 2) is to assess vegetation quality in 
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tallgrass prairie canopies using hyperspectral analysis at the leaf level. The vegetation 

characteristics analyzed in this chapter included chlorophylls, carotenoids, magnesium (Mg), 

phosphorus (P), sulphur (S), potassium (K) and calcium (Ca). These foliar pigments and 

nutritional elements are important leaf properties that reflect the plant nutritional status. The leaf 

pigments, chlorophylls and carotenoids, were retrieved by inverting the PROSPECT model. The 

nutritional elements were estimated empirically using PLS regression. The physical model was 

not used in estimation of leaf nutritional elements, because the nutrients are not parameters of the 

PROSPECT model, and cannot be retrieved through physical model inversion. The correlations 

between leaf pigments and nutritional elements were examined, which provided insight into the 

use of pigment-related vegetation indices as indicators of the plant nutrition quality. 

The second manuscript chapter (Chapter 3) examined the feasibility of using NDVI and 

GRVI as indicators of vegetation quantity and quality. In this chapter, vegetation quantity and 

quality were represented by LAI and leaf chlorophyll concentration, respectively. The 

relationships between the vegetation indices and vegetation characteristics were examined in the 

PROSAIL model, and then validated by field measurements collected in a tallgrass prairie. This 

chapter demonstrated the potential of using broadband vegetation indices from multispectral 

remote sensors to monitor vegetation quantity and quality over a wide spatial extent.  

Chapter 2 and Chapter 3 were developed as an extension of my previous research which 

estimated canopy nitrogen in the tallgrass prairie using empirical methods (Ling et al. 2014). In 

Chapter 2 and Chapter 3, the physical models, PROSPECT and PROSAIL, were used in spectral 

analysis, through which the leaf and canopy vegetation characteristics were estimated in a more 

robust way with a physical basis. As the spectral analysis methods are validated and applied to 

remote sensing imagery, the spatially explicit distribution of canopy vegetation characteristics 
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can be retrieved, which is essential for further understanding the vegetation and pyric herbivory 

interactions in grasslands.  

The third manuscript chapter (Chapter 4) reported a study involving remote sensing 

applications to grassland ecology, which evaluated effects of fire and large herbivores on the 

canopy nitrogen distribution across a tallgrass prairie topography from the remote sensing 

imagery. Vegetation canopy in the tallgrass prairie is a mosaic of watersheds with varying fire 

and ungulate grazing treatments. Comparing the spatial heterogeneity of canopy nitrogen at the 

watershed level revealed differences in effects of fire and ungulate grazing on formulating the 

grassland canopies. 

The fourth manuscript chapter (Chapter 5) investigated interactions between bison forage 

and vegetation resource distributions at a finer spatio-temporal scale associated with the bison 

movement path and space use. Different from the coarse, watershed-level analysis in Chapter 4, 

an analysis at a finer scale within watersheds requires more finely resolved information on the 

spatiotemporal distributions of animal and vegetation resources. In Chapter 5, the bison forage 

pattern was modeled using the movement-based kernel density method from the GPS locations 

recorded every 30 minutes. Vegetation quality and heterogeneity were calculated from the 

remote sensing imagery of canopy nitrogen with a pixel size of 2 m. Space use of bison forage 

was related to canopy vegetation characteristics using methods of RSF and RUF.  
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Chapter 2 - Hyperspectral Analysis of Leaf Pigments and 

Nutritional Elements in Tallgrass Prairie Species 

 Abstract 

Knowledge of forage quality distribution is important for addressing critical research 

questions in grassland ecological science. There has been a widespread interest in mapping 

canopy vegetation characteristics from reflectance spectral data collected by remote sensors. In 

this study, foliar chlorophylls, carotenoids and nutritional elements across multiple tallgrass 

prairie species were quantified at the leaf level using hyperspectral analysis in the region of 470 

– 800 nm, which was expected to be a precursor to further remote sensing of vegetation quality 

at the canopy level. A spectral standardization method was developed using a form of 

normalized difference, which proved effective for reducing the interference from the background 

effects in leaf reflectance measurements. Chlorophylls and carotenoids were retrieved through 

inverting the physical model PROSPECT 5. The foliar nutritional elements were modeled 

empirically. Partial least squares (PLS) regression was used to build the linkages between the 

high dimensional spectral predictive variables and the foliar biochemical constituents. The 

advantage of PLS was that the spectral features relevant to the leaf biochemistry can be selected 

and integrated effectively from a wide range of available spectral variables. Results showed that 

the retrieval of leaf biochemistry through hyperspectral analysis can be accurate and robust 

across different species. In addition, correlations were found between the leaf pigments and the 

nutritional elements. This provided insight into the use of pigment-related vegetation indices as a 

proxy of the plant nutrition quality.  
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 2.1 Introduction 

Interactive processes among fire, macro grazers and vegetation canopy are of special 

interest in grassland science (Allred et al. 2011a; Allred et al. 2011b; Anderson 1990; Anderson 

2006; Anderson et al. 2007). It is essential to understand the spatial distribution of canopy 

characteristics over an extensive area in order to address critical research questions concerning 

the scale-dependent, hierarchical processes in grassland ecology (Bartlam-Brooks et al. 2013; 

Collins and Smith 2006; Wallace et al. 1995). With the development of multiple airborne and 

satellite sensors, there has been a widespread interest in mapping canopy characteristics through 

remote sensing analysis (Kawamura et al. 2008; Mutanga et al. 2004a; Ozyigit and Bilgen 2013; 

Trombetti et al. 2008). Compared to traditional field measurements, remote sensing provides a 

relatively effective method of collecting the spectral data over the vegetation cover. Remote 

sensing of vegetation properties is in essence spectral analysis, in which the spectral response 

pattern is linked to some property of the vegetation leaf or canopy.  

Spectral analysis at the leaf level provides a preliminary step to further remote sensing of 

vegetation canopy characteristics. As leaf spectral analysis is validated at the canopy level, 

canopy characteristics can be mapped efficiently from the remotely sensed imagery, and details 

of spatial variability in the canopy characteristics can be retrieved reliably. This process provides 

fundamental information for the spatial analysis of grassland processes over a heterogeneous 

vegetation canopy. 

Leaf spectral analysis is a fast and cost-effective method of detecting leaf pigments and 

foliar nutritional elements (Blackburn 2007; Carter and Knapp 2001; Mutanga et al. 2004a), 

especially compared to complicated chemical analysis in the laboratory. The visible and near 

infrared spectral region (400 – 2500 nm) is of interest in plant hyper-spectroscopy. The principle 
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underlying hyperspectral analysis in this spectral region is the absorption of energy by a variety 

of chemical bonds in organic matter, which results in distinctive spectral features. Leaf pigments 

and nutritional elements can be estimated from the spectral features due to their direct or indirect 

associations with the organic matter (Clark et al. 2003; Galvez-Sola et al. 2015; Goetz et al. 

1985).  

Hyperspectral data consist of hundreds of spectral bands which are usually highly 

correlated with each other (Landgrebe 2002). Vegetation biophysical/biochemical properties can 

be retrieved from these spectral reflectance values using a number of methods, including 

statistical ones. Multivariate regression is a widely used statistical method. However, when the 

conventional multivariate regression is used, the high correlations among a large number of 

predictive variables (spectral bands) may lead to problems of multicollinearity (Kumar 1975) and 

overfitting (Hawkins 2004), which impact the model prediction capability. Partial least squares 

(PLS) regression is a statistical method for modeling vegetation characteristics from the high-

dimensional spectral features (Li et al. 2014; Ryan and Ali 2016; Yu et al. 2015) that is resistant 

to multicollinearity and overfitting. This technique is widely used in hyperspectral analysis. PLS 

may address the problems of multicollinearity and overfitting properly. The basic idea of PLS is 

to extract the latent factors from the manifest explanatory variables in the directions associated 

with the high variance of the dependent variables (Malthouse et al. 1997; Rosipal and Trejo 

2002). In this way, the dependent variables can be modeled by a reduced number of PLS factors.  

As an alternative to statistical methods, vegetation biophysical/biochemical 

characteristics can also be retrieved through inverting a physical radiative transfer model (Goel 

and Grier 1988; Goel and Thompson 1984a, b). Physical models simulate the interactive 

processes between the radiative energy and plant leaves in terms of the vegetation characteristics. 
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Physical models are typically of two types; leaf-level models, which simulate the reflectance, 

absorption and scattering within and from a single leaf, and canopy models, which simulate bulk 

reflectance from an entire vegetated canopy. At the leaf level, PROSPECT is one of the most 

widely used physical models. In the PROSPECT model, the leaf reflectance and transmittance 

are modeled using a small number of input parameters, including leaf mesophyll structure and 

leaf biochemical contents (Jacquemoud and Baret 1990). The leaf biochemical contents include 

chlorophyll, water, and dry matter contents. More recently, carotenoids have been separated from 

chlorophylls in the latest version PROSPECT 5, which allows more accurate estimations of plant 

photosynthetic pigments (Feret et al. 2008). Because process models are not as reliant on 

empirical information from the data, they have the potential to be a more robust method across 

different times, sites and plant species. 

Physical models calculate the reflectance and transmittance from the vegetation 

characteristics in a direct mode. That is, the output from the model is a simulated spectral 

reflectance curve. When the goal is to use a measured reflectance curve to estimate leaf 

characteristics, the physical model must be inverted. Look-up tables and neural networks are two 

commonly used inversion methods (Combal et al. 2002). In the look-up table method, a database 

of spectra is generated by varying a range of input parameters sufficient to capture all possible 

valid solutions to the model. This database or look-up table is then searched for a specific set of 

vegetation parameters corresponding to a simulated spectrum that is closest to the radiance 

measurement (Feret et al. 2008; Jacquemoud et al. 2009). A possible problem when using a look-

up table is that the measured spectra in practice may be shifted or stretched unexpectedly given 

the strong background effects. This increases the uncertainty of comparing the measured 

spectrum in direct with the simulations.  
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Neural networks are another numerical technique for model inversion. Neural networks 

relate a set of input variables to the output through one or more hidden layers of neurons with 

transfer functions. The weights of the interconnections between neurons are determined by an 

empirical training process. Vegetation indices that integrate two or more reflectance values and 

highlight specific spectral features are usually used as the input variables. The simple ratio and 

the normalized difference are commonly used forms of vegetation indices (le Maire et al. 2004), 

which provide a scale of the original reflectance and reduce much of the background effects. 

However, the number of input variables for networks is usually limited, and the architecture of 

networks needs to be defined before the training process. Unlike regression techniques, there is 

no mechanism to select the most suitable vegetation indices and network structure for building 

an optimal model in the network training algorithm. In addition, the resulting network weights 

are nondeterministic. Networks for the same inputs are usually trained with replicates, from 

which the average of the outputs is used as the final estimation result. This may impact the 

efficiency of the neural network modeling process.  

The objective of this study was to estimate foliar pigments and macronutrients at the leaf 

level across multiple grassland plant species using reflectance spectral data. The foliar 

biochemical constituents analyzed included chlorophylls, carotenoids, magnesium (Mg), 

phosphorus (P), sulphur (S), potassium (K) and calcium (Ca). These foliar pigments and 

nutritional elements are important leaf properties that reflect the plant nutritional status. This 

study was part of a larger research project aimed at understanding the interplay between pyric 

herbivory and grassland forage quality in a tallgrass prairie. To address this objective, leaf 

biochemical properties were retrieved using either model inversion or empirical methods, 

depending on the specific property. Chlorophyll and carotenoid concentrations were retrieved by 
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inverting the PROSPECT 5 model. The macronutrients were estimated empirically using PLS 

regression, because foliar nutrients are not parameters of the PROSPECT 5 model, and cannot be 

retrieved through model inversion. In retrieval of the leaf biochemical contents, the spectral 

analysis focused on the visible and near infrared region ranging from 470 to 800 nm. This 

spectral region is of special interest in remote sensing of vegetation given the significant 

absorption feature in the red spectral domain.  

 2.2 Study Site 

This study was conducted at Konza Prairie Biological Station (KPBS, Figure 2.1), a 

tallgrass prairie site near Manhattan, Kansas, USA (39°05′N, 96°35′W). The vegetation at the 

site consists of more than 80% of grasses and a minor proportion of forbs. Dominant grass 

species include Andropogon gerardii, Sorghastrum nutans, Panicum virgatum, and 

Schizachyrium scoparium; forbs include Aster ericoides, Psoralea tenuiflora, Solidago 

missouriensis, Soldiago rigida, Liaris aspera, Vernonia baldwinii and Ambrosia psilostachya 

(Collins and Calabrese 2012). 

The site is divided into more than fifty watersheds, in which varying combinations of fire 

and ungulate grazing treatments are replicated at the watershed level for long term investigations 

into the interactive processes among fire, large grazers and vegetation communities. In addition, 

a variety of experiment plots are operated with different fire or nutrition treatments for multiple 

research purposes. The foliar samples were collected from several of these experimental plots, 

which are described below.   

The Hulbert plots are managed to demonstrate the effects of fire on plant growth and 

species diversity. They consist of a number of subplots, each measuring 10 m × 25 m with a 5 m 

buffer, and are subjected to fire disturbances at intervals of one, two, four or twenty years. The 
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Belowground plots are another set of experimental plots, initially set up to investigate how 

varying combinations of fire, mowing, and fertilization affect both the above and below ground 

accumulation of biomass. The subplot of Belowground plots measures 12.5 m ×12.5 m. In 

addition, a fertilization plot was developed at a bison grazed site, watershed N4B, in 2014. The 

plot was arrayed in four lines, two controlled (without applications of nitrogen fertilization) and 

two fertilized that were alternately parallel arranged. Each line included five 2 m × 2 m subplots 

with a one meter buffer. In each fertilized line, 0, 12, 24, 48, and 96 grams of ammonium nitrate 

(NH3NO3) were applied to each of the five subplots, respectively, at the beginning of the 

growing season.  

 

Figure 2.1 Study site at Konza Prairie Biological Station (KPBS). KPBS includes (a) more 

than fifty watersheds and (b) a variety of experimental plots, such as the Hulbert plot and 

Belowground plot. 
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The treatments of fire and mowing have an immediate effect on the canopy structure. The 

fertilization additions affect the soil nutrient availability. All these treatments can influence the 

species composition in the canopy. The selection of these study plots allowed a wide range of 

foliar biochemical contents to be sampled.  

 2.3 Methods 

 2.3.1 Data Collection 

The data collection was conducted multiple times across seasons during the years of 2014 

– 2016 (Table 2.1). The leaf samples covered different treatments of fire, mowing and 

fertilization addition to make sure the foliar biochemical contents were in a wide range for 

spectral modeling. In 2014 – 2015, the grasses and forbs were collected separately from the 

fertilization plot and the Hulbert plots; in 2016, mixed grassland species were collected from the 

Belowground plots. The datasets embodied variations from time, site, plant species and 

measurement conditions, making it possible to evaluate the general robustness of the 

methodology in data analysis. 

For each sample, around five grams of fresh leaves were randomly clipped from the 

canopy with a pair of scissors, and then divided into subsamples for measurements of reflectance, 

leaf pigments and nutritional elements. Hyperspectral reflectance data were measured using a 

leaf clip probe on an Analytical Spectral Devices (ASD) FieldSpec Pro portable spectrometer 

(Analytical Spectral Devices, Boulder, CO, USA). To determine chlorophyll and carotenoid 

concentrations (Wellburn 1994), the plant issues were dissolved in 80% acetone or in Dimethyl-

Sulfoxide (DMSO), and then measured by a Spectronic 20 Genesys spectrometer (Spectronic 

Instruments Inc., Rochester, NY, USA). The subsamples for analysis of macronutrients were 

dried in an oven for 72 hours at 75°C, and then ground using a mortar and pestle. The resulting 
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dry foliar powders were analyzed for element concentrations using a Bruker Tracer III-SD X-ray 

fluorescence spectrometer (Bruker, Kennewick, WA, USA). Each sample of the dry foliar 

powders was measured three times, of which the average was used to reduce measurement errors. 

The X-ray fluorescence method for quantification of leaf nutritional elements is relatively new in 

plant analysis (Stephens and Calder 2004; Towett et al. 2016). In my study, the leaf nutritional 

elements analyzed included Mg, P, S, K and Ca. These elements are important plant nutrients. 

Their calibrations using the X-ray fluorescence measurement have been developed and proven 

reliable in previous studies (Towett et al. 2016).  

Table 2.1 Leaf sample datasets 

Site Fertilization Plot Hulbert Plot Belowground Plot 

Date 
July - September, 

2014 

June - September, 

2015 

July - September, 

2016 

Species (Sample size) 
Forbs (20) 

Grasses (20) 

Forbs (32) 

Grasses (32) 
Mixed species (68) 

Measurement    

Reflectance ASD FieldSpec ASD FieldSpec ASD FieldSpec 

Pigments    

Solvent Acetone 80% DMSO - 

Instrument 
Spectronic 20 

Genesys 

Spectronic 20 

Genesys 
- 

Nutritional elements - X-Ray Fluorescence X-Ray Fluorescence 

- : Not available 

 

 2.3.2 Spectral Standardization and Vegetation Spectral Features 

The spectral analysis focused on the wavelengths of 470 – 800 nm. This spectral region 

includes a significant absorption feature in the red spectral domain, which is associated with 

photosynthetic pigments. A spectral standardization method was developed to reduce the 

background effects in the leaf reflectance measurements. The background effects in 
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measurements of the grassland species can be significant, given that the narrow leaves may not 

cover the whole leaf clip probe face of the ASD spectrometer (Figure 2.2a). This irregular 

measurement may lead to a shift and stretch in the resulting spectrum (Figure 2.2b).  

 

Figure 2.2 (a) ASD’s leaf clip probe. Note that a narrow grassland leaf cannot cover the 

whole probe face. (b) The effects of leaf size on the measured reflectance spectra. The 

spectral signals can be shifted and stretched due to the background effects as the leaf 

cannot cover the whole probe face. 

 

In spectral standardization, four feature points were located on the original reflectance 

spectrum, including the local minima in the blue and red regions, the local maximum in the green 

region and the turning point in the near infrared region (Figure 2.3). Based on these points, the 

original spectrum was scaled using a form of the normalized difference: 

𝑁𝐷𝑅𝑖 =

{
 
 

 
       

𝑅𝑖−𝑅𝑏

𝑅𝑔−𝑅𝑏
, 470 ≤ 𝑖 < 𝑔

𝑅𝑖−𝑅𝑟

𝑅𝑔−𝑅𝑟
, 𝑔 ≤ 𝑖 < 𝑟

      
𝑅𝑖−𝑅𝑟

𝑅𝑛𝑖𝑟−𝑅𝑟
, 𝑟 ≤ 𝑖 < 800

                                                     (2.1) 

where 𝑁𝐷𝑅𝑖 is the scaled reflectance with a normalized form at the wavelength i; b is the 

wavelength of the minimal reflectance in the region of 470 – 520 nm; g is the wavelength of the 

maximum reflectance in the region of 520 – 600 nm; r is the wavelength of the minimum 
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reflectance in the region of 600 – 720 nm; nir is the wavelength of the turning points in the 

region of 740 – 800 nm at which the first derivative is equal to 0; 𝑅𝑖 is the reflectance value at 

the wavelength i nm. 

 

Figure 2.3 Feature points in spectral standardization. Pb is the minimum point in the region 

of 470 – 520 nm; Pg is the maximum point in the region of 520 – 600 nm; Pr is the minimum 

point in the region of 600 – 720 nm; Pnir is the turning point in the region of 740 – 800 nm, 

where the first derivative is equal to 0. 

 

In this way, the original reflectance values in the visible and near infrared region were 

transformed into a collection of normalized difference indices. A comparison between the 

original reflectance and the scaled reflectance showed that the spectral response pattern to the 

variation in the chlorophyll concentration was more evident in the scaled reflectance than that in 

the original spectra (Figure 2.4). This suggested that the spectral standardization method was 

feasible and efficient. 

In addition to the normalized difference indices scaled from the original continuous 

spectral curve, spectral features that characterize the shape of the spectral curve, such as the 

slope (Lugassi et al. 2015), the red edge (Curran et al. 1990; Filella and Penuelas 1994; Munden 
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et al. 1994; Mutanga and Skidmore 2007; Schut and Ketelaars 2003), and the triangle 

surrounding the red absorption trough (Hunt et al. 2013), are considered important indicators of 

foliar biochemical contents. In this study, the absolute values of the slopes across the 

wavelengths of b – g, g – r, r – nir, and distances across b – r, g – nir on the scaled reflectance 

spectral curve (Figure 2.5) were included in spectral analysis: 

𝑆1 =
1

𝑔 − 𝑏
                                                                                              (2.2) 

𝑆2 =
1

𝑟 − 𝑔
                                                                                               (2.3) 

𝑆3 =
1

𝑛𝑖𝑟 − 𝑟
                                                                                           (2.4) 

𝐷1 = 𝑟 − 𝑏                                                                                               (2.5) 

𝐷2 = 𝑛𝑖𝑟 − 𝑔                                                                                          (2.6) 

where 𝑆1, 𝑆2, and 𝑆3 are the spectral slopes; 𝐷1 and 𝐷2
 are the spectral distance variables. On the 

scaled reflectance spectral curve, the values at the wavelengths of g and nir are 1; the values at 

the wavelengths of b and r are 0. 

 

 

Figure 2.4 Comparison between (a) the original spectral measurements and (b) the 

standardized reflectance spectra for the grasses collected in 2015. 
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Figure 2.5 Spectral slopes and distances as variables potentially related to foliar 

biochemical contents. Pb
’, Pg

’, Pr
’ and Pnir

’ are the points on the scaled reflectance curve 

corresponding to the points Pb, Pg, Pr and Pnir on the original reflectance curve (Figure 2.4). 

 

 2.3.3 Retrieval of Leaf Pigments Using Process Modeling 

Chlorophyll and carotenoid concentrations were retrieved by inverting the leaf radiative 

model PROSPECT 5 (Figure 2.6). A reflectance spectral database was simulated by varying the 

input parameters (Table 2.2), including chlorophylls (Cab), carotenoids (Ccx), water thickness 

(Cw), dry matter (Cm) and the leaf structure parameter (N). The output reflectance values at the 

wavelengths of 470 – 800 nm were standardized using the form of normalized difference, from 

which the spectral slope and distance features were extracted (see Section 2.3.2). The resulting 

spectral variables, including NDR470 – NDR800, S1 – S3, D1 and D2 (Eq. (2.1) – (2.6)) were related 

to chlorophyll and carotenoid concentrations in the original model parameterization through PLS 

regression. The resulting PLS models were then applied to the standardized spectral variables of 

the field measurements. The predicted chlorophyll and carotenoid concentrations from the PLS 

models were then compared with the laboratory chemical measurements for an assessment of the 

model performance. The model prediction accuracy was assessed by the root mean square error 

of prediction (RMSEP), the coefficient of variability (CV) and the index of agreement (d). 
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RMSEP incorporates the bias (BIAS) and the standard error corrected from the bias (SEPC); CV 

is a measure of variation in relation to the mean, which indicates the magnitude of the error 

(Feret et al. 2008); d is a standardized measure of the degree of model prediction errors 

(Willmott 1981): 

𝑅𝑀𝑆𝐸𝑃 = √
∑ (𝑦𝑖

′ − 𝑦𝑖)
2𝑛

𝑖=1

𝑛
                                                                 (2.7) 

𝐵𝐼𝐴𝑆 =
∑ (𝑦𝑖

′ − 𝑦𝑖)
𝑛
𝑖=1

𝑛
                                                               (2.8) 

𝑆𝐸𝑃𝐶 = √
∑ (𝑦𝑖

′ − 𝑦𝑖 − 𝐵𝐼𝐴𝑆)2
𝑛
𝑖=1

𝑛
                                                               (2.9) 

𝑅𝑀𝑆𝐸𝑃2 = 𝑆𝐸𝑃𝐶2 + 𝐵𝐼𝐴𝑆2                                                            (2.10) 

𝐶𝑉 = 100 ×
𝑆𝐸𝑃𝐶

𝑦𝑖̅
                                                            (2.11) 

𝑑 = 1 −
∑ (𝑦𝑖

′ − 𝑦𝑖)
2𝑛

𝑖=1

∑ (|𝑦𝑖
′ − 𝑦𝑖̅| + |𝑦𝑖 − 𝑦𝑖̅|)

2𝑛
𝑖=1

                                                          (2.12) 

where 𝑦𝑖 is the measured value; 𝑦𝑖
′ is the predicted value; 𝑦i̅ is the mean of the measured values; 

n is the sample size. d varies between 0 and 1; a value of 0 indicates no agreement, and 1 

indicates a perfect match. 

PLS regression can be considered a supervised dimension reduction technique. It looks 

for a few of latent factors from a large number of manifest predictive variables to summarize the 

data with a consideration of correlations between the predictive variables and the dependent 

variables. PLS loadings reflect the importance of each predictive variable to the given PLS 

factor. As the number of the PLS factors increases in a prediction model, the model explanatory 

power increases. However, the model prediction accuracy may decreases as the model 

complexity increases, leading to the overfitting problem.  
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Figure 2.6 Overview of leaf pigment retrieval by inverting PROSPECT 5. The input 

parameters in PROSPECT 5 include chlorophylls (Cab), carotenoids (Ccx), water 

thickness (Cw), dry matter (Cm), and the leaf structure parameter (N). Concentrations of 

chlorophylls and carotenoids are of interest to be modeled. 

 

Table 2.2 Input parameters and output in PROSPECT 5 

Parameter Range Increment 

Input     

Chlorophyll (Cab) 6 - 60 ug/cm2 2 ug/cm2 

Carotenoids (Ccx) 2 - 16 ug/cm2 2 ug/cm2 

Water thickness (Cw) 0.008 - 0.02 g/cm2 0.004 g/cm2 

Dry matter (Cm) 0.005 - 0.02 g/cm2 0.005 g/cm2 

Leaf structure parameter (N) 1.5 - 3 0.5 

Output     

Reflectance 470 – 800 nm 1 nm 
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 2.3.4 Leaf Nutrient Estimations 

The foliar nutritional elements were modeled statistically from the standardized 

reflectance measurements using PLS regression. This procedure was not based on the 

PROSPECT model given that the foliar nutritional elements have not been calibrated as 

parameters in the radiative transfer process which the physical model describes. Around half of 

the samples were used for model development. The rest samples were used for model 

assessment. Both the modeling and assessment datasets were required to cover almost the full 

range of the sampled nutritional elements.  

 

 2.4 Results and Discussion 

 2.4.1 Leaf Pigment Retrieval  

 2.4.1.1 Laboratory Chemical Analysis 

Descriptive statistics for the leaf pigment measurements (Table 2.3) showed that the 

chlorophylls ranged from 6.62 to 44.37 ug/cm2, and the carotenoids ranged from 2.97 to 10.28 

ug/cm2 across all the samples. These values were in a reasonable range, compared to those 

reported by Combal et al. (2002) ,le Maire et al. (2004) and Feret et al. (2008). Datasets collected 

from different plots and species were slightly different in their statistical characteristics. The 

model robustness was allowed to be examined across different leaves with a wide range of leaf 

pigments. 
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Table 2.3 Descriptive statistics of the measured chlorophyll and carotenoid concentrations 

by laboratory chemical analysis. 

 Fertilization Plot  Hulbert Plot 

 Forbs Grasses  Forbs Grasses 

Sample size 20 20  32 32 

Chlorophylls (ug/cm2)      

Min 28.37 27.04  6.62 24.92 

Max 39.59 38.24  43.37 44.37 

Mean 31.89 32.06  33.03 35.55 

Carotenoids (ug/cm2)      

Min 8.20 8.602  2.97 7.91 

Max 10.28 10.12  8.97 10.12 

Mean 9.08 9.149  7.65 8.90 

 

 2.4.1.2 Adjustment of the Leaf Structure Parameter 

In addition to chlorophyll and carotenoid concentrations, the leaf structure parameter has 

a significant effect on the spectral shape in the visible and near infrared region (le Maire et al. 

2004). A systematic change in the spectral response pattern due to variations in the leaf structure 

parameter can be seen both in the original reflectance spectra simulated from PROSEPCT 5 and 

their corresponding scaled reflectance spectra (Figure 2.7). In the original parameterization, the 

leaf structure parameter N ranged from 1.5 to 3. The resulting predictions of chlorophylls and 

carotenoids were generally overestimated with the biases of 6.56 ug/cm2 and 2.94 ug/cm2, 

respectively (Figure 2.8a1 and b1). As N was adjusted within 1.7 – 1.9, the model biases were 

reduced, and the model prediction accuracy and the agreement statistics improved significantly 

(Figure 2.8a2 and b2). This indicated that a proper selection of the N range was important for 

accurate retrieval of leaf biochemical contents using the PROSPECT model. 
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Figure 2.7 Spectral patterns varying with the leaf structure parameter N in (a) the 

reflectance spectra simulated from PROSPECT 5 and (b) their corresponding standardized 

reflectance spectra. In the reflectance spectral simulation, Cab=33 ug/cm2, Ccx=9 ug/cm2, 

Cw=0.014 g/cm2, Cm=0.012 g/cm2, and N varies between 1.5 and 3 with a step of 0.25. 

 

 

 2.4.1.3 Spectral Feature Selection by PLS Regression 

For the leaf pigment retrieval models in this study, the first three factors were adequate to 

account for much of the variance in the data and led to relatively high prediction accuracy. The 

available predictors included the spectral variables NDR470 – NDR800, S1 – S3, D1 and D2. NDR470 

– NDR800 were the continuous standardized reflectance data. S1 – S3, D1 and D2 were the slope 

and distance variables extracted from the standardized reflectance spectrum. These variables 

were different in characteristic, form and magnitude. Their importance to the corresponding PLS 

model was of interest. Therefore, the models developed from all the available predictors (Figure 

2.8a2 and b2) were compared with those including only the continuous standardized reflectance 

variables (Figure 2.8a3 and b3). The PLS loadings were examined to see the contribution of each 

predictive variable to the PLS factors (Figure 2.9).  
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Results showed that the models including all the available predictors had higher 

prediction accuracy and agreement statistics than those including only the continuous 

standardized reflectance variables. With the slope and distance predictive variables included, 

high loadings occurred at the distance variables in the first two PLS factors, which accounted for 

more than 99% variance in the data (Figure 2.9a2 and b2). This suggested a significant influence 

from the distance spectral variables (D1 and D2) on predicting the leaf pigments. The distance 

variables were comparable with the leaf pigment spectral features, such as the red edge (Curran 

et al. 1990; Filella and Penuelas 1994; Munden et al. 1994; Mutanga and Skidmore 2007; Schut 

and Ketelaars 2003), and the red absorption triangle (Hunt et al. 2013), which were based on the 

positions of specific spectral points. The magnitude of the distance variables was far higher than 

that of the standardized reflectance variables. This can be a factor that influences the loading 

distribution pattern. However, it did not affect that the addition of the distance variables in this 

way as the predictors improved the prediction accuracy and model robustness.  

The PLS loading distributions among the first 331 standardized reflectance variables 

were interesting. The loadings of the first PLS factors in Figure 2.9a1 and b1 were similar to that 

of the third PLS factors in Figure 2.9a2 and b2, respectively. This implied that the feature 

selection and integration among the standardized reflectance variables via such a loading pattern 

can be an important indicator of leaf chlorophylls and carotenoids. 
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Figure 2.8 Model assessment for (a1 – a3) chlorophylls and (b1 – b3) carotenoids. Prediction 

accuracies of the models with different leaf structure parameter ranges and spectral 

variables were compared. For the models in plots a1 and b1, the leaf structure parameter N 

ranged from 1.5 to 3; the spectral variables NDR470 – NDR800, S1 – S3, D1 and D2 were 

included as the manifest explanatory variables for the PLS regressions. In plots a2 and b2, 

N was adjusted within a range between 1.7 and 1.9; the spectral variables were the same 

with that in plots a1 and b1. In plots a3 and b3, N ranged from 1.7 to 1.9; the manifest 

explanatory variables included NDR470 – NDR800, whereas the slope and distance spectral 

variables were excluded. The RMSEP, BIAS, SEPC, CV and d were calculated for the 

pooled samples collected from the fertilization plot in 2014 and the Hulbert plots in 2015. 

All the models were built using the first three PLS factors. 
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Figure 2.9 Predictive variable loadings for the PLS factors used to estimate (a1 – a3) 

chlorophylls and (b1 – b3) carotenoids. The models in plots a1 and b1 included 331 

standardized reflectance variables, NDR470 – NDR800, as the predictors. The models in plots 

a2 and b2 included all the available predictors, NDR470 – NDR800, S1 – S3, D1 and D2. Plots a3 

and b3 zoomed in on the loading distributions among the predictors 332 – 336 (the slope 

and distance spectral variables, S1 – S3, D1 and D2). 
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 2.4.2 Nutritional Element Estimation 

 2.4.2.1 X-ray Fluorescence Analysis 

The foliar nutritional element concentrations were measured by an X-ray fluorescence 

spectroscopy. The studied elements included Mg, P, S, K, and Ca. These macronutrients are 

important for the constitution of the plant biomass. The samples were divided almost equally for 

modeling and validation. The descriptive statistics (Table 2.4) showed that the range and mean of 

the modeling dataset were consistent with that of the corresponding validation dataset. This 

suggested a proper selection of the empirical modeling and validation datasets. 

Table 2.4 Descriptive statistics of the foliar nutritional element concentrations for the 

modeling and validation datasets. The number of the samples used in modeling and 

validation was slightly less than the foliar sample size in the field data collection due to the 

loss in the laboratory measurements and the outliers in the spectral modeling process. 

Element 
Modeling 

 
Validation 

Sample size Min Max Mean 
 

Sample size Min Max Mean 

Mg 62 0.119 0.257 0.173 
 

56 0.122 0.262 0.177 

P 65 0.033 0.172 0.091 
 

61 0.047 0.169 0.094 

S 64 0.040 0.154 0.087 
 

56 0.045 0.144 0.087 

K 65 0.363 2.256 1.102 
 

56 0.377 2.324 1.115 

Ca 60 0.255 1.966 0.790 
 

56 0.281 1.847 0.788 

 

 

 2.4.2.2 Spectral Modeling by PLS Regression 

The predictors for the PLS modeling of the plant nutrients included NDR470 – NDR800, S1 

– S3, D1 and D2. Comparisons between the measured and predicted nutrient concentrations in the 

best-performing models were shown in Figure 2.10. There were no evident patterns observed 

among the multiple plant species, which indicated that the models were robust across different 

species.  
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The model performance assessment was summarized in Table 2.5. In general, the 

RMSEP values for model-development were similar with that for model-validation; the bias 

values in the validation procedure were at the low levels. This consistency between the modeling 

and validation procedures verified the model prediction capability. The CV value was relatively 

low for the model of the element Mg, but high for the model of Ca, indicating the magnitude of 

the prediction error was low for Mg, but high for Ca. The d values were in a generally high level, 

indicating a good agreement between the predicted values and the measured values.   

The nutritional element models generally required six to nine PLS factors to achieve the 

acceptably low prediction error when there was no evident modeling bias observed. Compared to 

the three PLS factors in the leaf pigment retrieval models, the increased number of factors in the 

nutrient models made the nutrient predictions more complex. This implied that the spectral 

modeling of the nutrient concentrations was more dependent on the fine spectral features of the 

hyperspectral signature (Mutanga et al. 2004a).  

 

Table 2.5 Assessment of the PLS models for nutrient predictions 

Element Mg P S K Ca 

Modeling 
     

Number of factors 8 9 6 7 8 

RMSEP 0.0246 0.0226 0.0189 0.2877 0.2555 

            Validation 
    

RMSEP 0.0269 0.0249 0.0224 0.3282 0.3257 

BIAS 0.0051 0.0040 0.0026 0.0044 0.0187 

SEPC 0.0264 0.0246 0.0223 0.3282 0.3251 

CV 14.9437 26.1488 25.5306 29.4423 41.2515 

d 0.7352 0.6910 0.7597 0.8327 0.6865 
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Figure 2.10 Comparisons between the measured and predicted nutrient concentrations for 

the elements (a) Mg, (b) P, (c) S, (d) K and (e) Ca. Samples used in analysis included the 

forbs and grasses collected from the Hulbert plots in 2015, and the mixed species collected 

from the Belowground plots in 2016. 

 

 2.4.3 Correlations between Leaf Biochemical Constituents 

The correlations (Pearson’s r) between leaf biochemical constituents were calculated for 

the Hulbert plot dataset, in which both the leaf pigments and the nutritional elements were 

quantified through the laboratory analysis (Table 2.6). The strong correlation between the 

chlorophylls and carotenoids was not surprising, which was consistent with the observations in 

previous studies that chlorophylls and carotenoids were co-varying in nature and statistically 

dependent (Feret et al. 2008). Most of the plant nutritional elements were significantly 

correlated. These macronutrients were collectively responsible for plant metabolic processes. 
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Therefore, it was understandable for the generally positive correlations between the leaf 

nutritional elements (Mutanga et al. 2004b).  

Relationships between leaf photosynthetic pigments and nutritional elements were of 

interest. The chlorophylls were positively correlated with the element K. The carotenoids were 

negatively correlated with Mg and Ca. There were no other statistically significant correlations 

between the leaf pigments and the nutritional elements. However, the ratio of Cab:Ccx showed 

positive correlations with the elements P, S and K. This was consistent with the previous studies 

which showed that the ratio of Cab:Ccx can be an important index that reflected plant phenology 

and nutritional status (Feret et al. 2008; Yang et al. 2010).  

 

Table 2.6 Correlations between leaf biochemical constituents 

 Cab Ccx Cab:Ccx Mg P S K Ca 

Cab 1        

Ccx 0.80** 1       

Cab:Ccx 0.71** 0.18 1      

Mg -0.10 -0.53** 0.23 1     

P 0.17 -0.19 0.35** 0.53** 1    

S 0.13 -0.23 0.32** 0.49** 0.60** 1   

K 0.32** -0.12 0.50** 0.39** 0.63** 0.63** 1  

Ca -0.12 -0.62** 0.27 0.79** 0.26 0.31** 0.20 1 

**Significant at the 95% confidence level: p-value < 0.05 

 

 2.5 Conclusions 

Results of this study showed that the hyperspectral features in the visible and near 

infrared region from 470 – 800 nm were useful for predicting the concentrations of leaf pigments 

and nutritional elements. Standardization of the spectral collection via normalized difference was 

shown to be feasible to scale the shift and stretch in the original spectral signals due to the 
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interference from the background effects. Four feature points were highlighted in the spectral 

standardization method, including the nadirs in the blue and red regions, the green peak and the 

turning point in the near infrared region. The positions of these feature points provided useful 

information for detecting leaf pigment concentrations. 

Chlorophylls and carotenoids can be retrieved through inverting the physical model 

PROSPECT 5. PLS regression showed the capability of building the linkages between the high 

dimensional spectral variables and the vegetation parameters. The advantage of using PLS was 

that the spectral features relevant to the vegetation parameters of interest can be selected and 

integrated effectively from a wide range of available spectral predictive variables. In terms of the 

PROSPECT model, the leaf structure parameter N was proved important to affect the spectral 

response pattern in the region of 470 – 800 nm. A proper selection of the N range can reduce 

much of the bias in model validation and lead to a great improvement of model prediction 

accuracy.  

Development of the PLS models for the leaf nutrients demonstrated that a reasonable 

selection of the modeling and validation datasets was critical to improving prediction accuracy of 

the empirical models. The nutrient models required more PLS factors to achieve an acceptable 

level of model accuracy than the retrieval of leaf pigments. It implied that spectral modeling of 

the nutrients was more complex and required more finely resolved spectral features.  

It was promising to quantify leaf pigments and nutritional elements using the 

hyperspectral analysis method developed in this study. The model prediction accuracy was 

comparable with those reported by Feret et al. (2008) for pigment retrieval and Mutanga et al. 

(2004b) for nutrient estimation. This study provided a comprehensive assessment of the leaf 

biochemical status. More importantly, relationships between the leaf pigments and nutrients were 
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examined. It was found that the leaf photosynthetic pigments were correlated with part of the 

nutritional elements. The ratio of Cab:Ccx was informative to reflect the plant nutrition status. 

These findings provided insight into the use of most pigment-related vegetation indices as a 

proxy of the vegetation quality. In addition, the spectral models developed in this study were 

robust across different tallgrass prairie species. These results at the leaf level were of great value 

as a preliminary step to mapping the forage quality in a grassland canopy from reflectance data 

collected by airborne or satellite sensors. 
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Chapter 3 - Evaluating the Use of Broadband Vegetation Indices as 

Proxies for Vegetation Quantity and Quality 

 Abstract 

This study examined the use of broadband vegetation indices, the normalized difference 

vegetation index (NDVI) and green-red vegetation index (GRVI), in detecting vegetation 

quantity and quality. Leaf area index (LAI) provides a measurement of vegetation quantity. Leaf 

chlorophyll concentration, which relates to vegetation nutrient contents, is representative of 

vegetation quality. A spectral database was simulated by varying parameters over a wide range 

in PROSAIL model, including chlorophylls, carotenoids, LAI and soil moisture. In the 

PROSAIL-simulated database, NDVI showed high correlations to LAI and canopy chlorophyll 

contents. GRVI performed even better than NDVI in estimating LAI values. Given that canopy 

chlorophyll and LAI can be modeled by NDVI and GRVI, respectively, a new index GNVI 

(green-red normalized vegetation index) was proposed by combining NDVI and GRVI to extract 

leaf chlorophyll concentration. These empirical relationships between vegetation indices and 

vegetation characteristics determined in the PROSAIL-simulated database were then validated 

by a field dataset collected in a tallgrass prairie. The findings in this study showed the potential 

of using broadband vegetation indices from multispectral remote sensors to monitor vegetation 

quantity and quality over a wide spatial extent.  

 

 3.1 Introduction 

Spectral analysis of vegetation quantity and quality has been an area of widespread 

interest in remote sensing (Asrar et al. 1992; Belluco et al. 2006; Gitelson et al. 1996; Sugiura et 

al. 2005). Compared to traditional field sample measurements, remote sensing provides a way in 
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which the vegetation status over a large area can be estimated with high accuracy and efficiency. 

Recently, an increasing number of multi- and hyper-spectral sensors have gone into service 

(Chen and Cihlar 1996; Cohen and Goward 2004; Coops et al. 2003; Remer et al. 2005). 

Hyperspectral sensors provide reflective spectral profiles with fine spectral characteristics, which 

can be used in quantitative analysis of biophysical and biochemical vegetation properties, such as 

biomass, chlorophyll concentration, and leaf nutritional element contents (Cho et al. 2007; 

Nguyen and Lee 2006; Zarco-Tejada et al. 2004). In contrast, multi-spectral sensors provide 

more generalized spectral signals. However, multi-spectral data are more easily accessible and 

less computationally complex. These advantages make multi-spectral sensors popular in the 

realm of remote sensing (Adam et al. 2010; Berni et al. 2009; Laliberte et al. 2011).  

Broadband vegetation indices, which combine two or more multi-spectral bands to 

highlight specific spectral characteristics, are important means of analyzing vegetation properties 

in remote sensing (Vincini and Frazzi 2011; Wohlfahrt et al. 2010). Among innumerous 

broadband vegetation indices, the normalized difference vegetation index (NDVI) and green-red 

vegetation index (GRVI) are ones of the most widely used (Ishihara et al. 2014; Ishihara et al. 

2015; Motohka et al. 2010). NDVI is considered the foundation for remote sensing of plant 

phenology. It is formulated based on the opposite behaviors of leaf reflectance in the red and 

near-infrared spectral regions (Kriegler et al. 1969; Rouse et al. 1974). The red radiative energy 

can be largely absorbed by vegetation, and near-infrared is reflected. However, other materials 

have similar reflectance in these spectral regions. These particular spectral features of a green 

leaf make NDVI useful in detecting the vegetation areas and their health status. NDVI is the 

most well-known index which was widely used to track the plant phenology changes in the early 

studies (Ediriwickrema 2006; Lüdeke et al. 1996; Lee et al. 2002). More recently, there has been 
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an increasing interest in the use of NDVI as an indicator to quantify the plant photosynthetic 

capacity. In these quantitative studies, NDVI was found to be correlated with the biophysical and 

biochemical characteristics of plant canopies, such as green biomass, leaf area index (LAI) and 

chlorophyll concentration (Boelman et al. 2003; Fan et al. 2009; Santin-Janin et al. 2009; Steltzer 

and Welker 2006; Yang et al. 2017). 

GRVI is an index using a form of standardized difference which is similar to NDVI, but 

featured by the reflectance difference between the green and red spectral regions. This index has 

been used to qualitatively analyze the vegetation changes over seasons or canopy differences 

across ecosystem types (Ishihara et al. 2015; Motohka et al. 2010; Nagai et al. 2014). However, 

its feasibility to quantify vegetation characteristics has not been studied sufficiently. 

The goal of my study is to evaluate the feasibility of NDVI and GRVI to quantitatively 

detect vegetation quantity and quality. More specifically, this study examined the relationships 

between the two broadband vegetation indices and the vegetation characteristics, including LAI, 

leaf chlorophyll concentration and canopy chlorophyll content. LAI is an indicator of vegetation 

quantity. Leaf chlorophyll concentration is positively related with part of leaf nutritional element 

contents, which can be considered a measurement of vegetation quality (Mutanga et al. 2004). 

The result of this study is important for improving the use of aerial or satellite remote sensing 

imagery to estimate vegetation quantity and quality. 

To achieve this goal, the sensitivity of the two vegetation indices to variations in LAI and 

chlorophyll concentrations was examined and compared in a physical model of canopy 

reflectance, PROSAIL. PROSAIL is a combination of PROSPECT leaf optical properties model 

and SAIL canopy bidirectional reflectance model. It has been proven an effective and reliable 

radiative transfer tool by various laboratory and field experiments across different ecosystems 
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(Barman et al. 2010; Jay et al. 2017; Wang et al. 2013). As the theoretical analysis was done in 

PROSAIL, the determined relationships between the vegetation indices and vegetation 

characteristics were then validated by a field sample dataset collected in a tallgrass prairie. Thus, 

the feasibility of NDVI and GRVI to quantify vegetation quantity and quality was verified both 

theoretically and via observation.  

 3.2 Study Site 

The field experiment was conducted at Konza Prairie Biological Station (KPBS, Figure 

3.1), a tallgrass prairie site near Manhattan, Kansas, USA (39°05′N, 96°35′W). The vegetation at 

the site consists of more than 80% of grasses and a minor proportion of forbs. KPBS is divided 

into more than fifty experimental watersheds with varying combinations of fire and ungulate 

grazing treatments for long term studies on the interplays among fire, grazers and plant 

communities (Ling et al. 2014).  

A fertilization plot was developed at a bison grazed site, watershed N4B, in 2014. The 

plot was arrayed in four lines, two controlled (without applications of nitrogen fertilization) and 

two fertilized. Each line included five 2 m × 2 m subplots with a one meter buffer. In each 

fertilized line, 0, 12, 24, 48, and 96 grams of ammonium nitrate (NH3NO3) were applied to each 

of the five subplots, respectively, at the beginning of the growing season. The plot was open to 

free-range bison in the watersheds. The fertilization additions and ungulate grazing were 

expected to enhance the canopy heterogeneity, allowing a wider range of vegetation 

characteristics to be sampled. 
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Figure 3.1 Study site at Konza Prairie Biological Station. The fertilization plot with varying 

nitrogen additions was arranged at a bison-grazed site, the watershed N4B. 

 

 3.3 Methods 

 3.3.1 Field Data Collection 

Four data collection campaigns were conducted in the fertilization plot on 1 July, 24 July, 

14 August and 20 September, 2014, respectively. In the field experiments, each 2 m × 2 m 

subplot was divided into four equal parts given the visual field of the sensors. In each quarter of 

a subplot, the destructive vegetation samples, the canopy reflectance and LAI measurements 

were collected, respectively (Figure 3.2). The plant samples were chopped into small pieces, 

dissolved in 80% acetone solvent and then measured by a Spectronic 20 Genesys spectrometer 
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(Spectronic Instruments Inc., Rochester, NY, USA) for the laboratory analysis of leaf 

chlorophyll concentration. The canopy reflectance was measured using an Analytical Spectral 

Devices (ASD) FieldSpec Pro portable spectrometer (Analytical Spectral Devices, Boulder, CO, 

USA). LAI values were measured using an Accupar LP-80 line ceptometer (Decagon Devices, 

Inc., Pullman, WA, USA). Then the measurements from the four subdivisions were averaged and 

used as the measurement for the given subplot. 

 

Figure 3.2 Field measurements of reflectance and LAI in a 2 m × 2 m subplot 

 

 

 3.3.2 Theoretical Analysis in PROSAIL Model 

A database of reflectance is generated by varying the parameters of vegetation 

characteristics in PROSAIL model. Then sensitivities of NDVI and GRVI to LAI, leaf 
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chlorophyll concentration and canopy chlorophyll content were examined respectively in the 

PROSAIL-simulated database. NDVI and GRVI are defined by 

𝑁𝐷𝑉𝐼 =
𝑅𝑁𝐼𝑅 − 𝑅𝑟𝑒𝑑
𝑅𝑁𝐼𝑅 + 𝑅𝑟𝑒𝑑

                                                                      (3.1) 

𝐺𝑅𝑉𝐼 =
𝑅𝑔𝑟𝑒𝑒𝑛 − 𝑅𝑟𝑒𝑑
𝑅𝑔𝑟𝑒𝑒𝑛 + 𝑅𝑟𝑒𝑑

                                                                   (3.2) 

where RNIR is the averaged reflectance value in the near infrared spectral region (around 850 – 

880 nm); Rred is the averaged reflectance value in the red spectral region (around 640 – 670 nm); 

Rgreen is the averaged reflectance value in the green spectral region (around 530 – 590 nm). LAI 

and leaf chlorophyll concentration are vegetation parameters included in PROSAIL model. 

Canopy chlorophyll content is calculated by the product of LAI and leaf chlorophyll 

concentration.  

When setting the model parameters, two situations were considered: (1) varying LAI 

values with a uniform soil background, and (2) varying soil backgrounds with a uniform LAI. In 

the mode of varying LAI values with a uniform soil background, leaf chlorophyll concentration 

was varied between 10 and 60 ug/cm2 at an increment of 2 ug/cm2; carotenoid concentration was 

varied between 2 and 16 ug/cm2 at an increment of 2 ug/cm2; LAI values were varied between 

0.5 and 3.7 at an increment of 0.4, with a mixed soil background consisting of 70% dry soil and 

30% wet soil. Other parameters followed the default settings (Table 3.1). While varying the soil 

background with a uniform LAI, parameter settings at the leaf level in PROSPECT model were 

the same with those shown in Table 3.1. At the canopy level in SAIL model, the LAI value was 

fixed at 2.1. Spectra of wet soil, dry soil and mixed soil (70% dry soil + 30% wet soil) were used 

as backgrounds (Figure 3.3). 
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Table 3.1 Parameter settings for varying LAI values with a uniform soil background 

Model Parameter Range 

PROSPECT Leaf mesophyll structure index 1.8 

 Water content 0.014 g/cm2 

 Dry matter content 0.012 g/cm2 

 Chlorophyll content 10 – 60 ug/cm2, by 2 ug/cm2 

 Carotenoid content 2 – 16 ug/cm2, by 2 ug/cm2 

SAIL Hot spot 0.01 

 Solar zenith angle 25° 

 Observer zenith angle 5° 

 View azimuth angle  0 

 LAI 0.1 – 3.7, by 0.4 

 Leaf angle distributions Spherical 

 Background spectrum  70% dry soil + 30% wet soil 

 

 

 

 

Figure 3.3 Three different soil reflectance spectra used in model settings 
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 3.3.3 Validation by Field Experiment Data 

The analytical methods developed in the theoretical analysis were applied to the dataset 

collected from field experiments. Thus relationships between the vegetation indices and the 

vegetation characteristics were examined in reality. Feasibility and reliability of NDVI and 

GRVI to estimate vegetation quantity and quality were evaluated.   

 3.4 Results and Discussion 

 3.4.1 Varying LAI Values with a Uniform Soil Background 

 3.4.1.1 Comparing NDVI and GRVI 

The relationship between NDVI and leaf chlorophyll concentration with varying LAI 

values was shown in Figure 3.4a. For a given LAI value, there is a positively nonlinear 

correlation between NDVI and leaf chlorophyll concentration, which can be approximated by an 

exponential or power curve. As the LAI increases, the curve of NDVI-leaf chlorophyll shifts to a 

higher range of NDVI values. Separations between curves of NDVI-leaf chlorophyll are more 

compressed at the higher range of NDVI values. This can be explained by the NDVI saturation at 

the high LAI values (Pontailler et al. 2003). 

Relationships between GRVI and leaf chlorophyll across varying LAI values are more 

complicated (Figure 3.4b). For a low range of LAI values (LAI ≤ 0.5), GRVI is negative or 

around zero. This characteristic of GRVI can differentiate green vegetation from other land cover 

types, which has been used to detect the early phase of leaf green-up and the middle phase of 

autumn coloring in plant phenology (Motohka et al. 2010).  

For a given LAI value, scatter points in the plot of NDVI-leaf chlorophyll relationship are 

distributed along a “line”. The band width indicating carotenoid variations has not been observed 

(Figure 3.4a). This implies that NDVI is insensitive to leaf carotenoid concentration. 
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Relationships between NDVI and leaf chlorophyll concentration are affected by LAI variations 

in this simplified case. Comparatively, for a given LAI value, scatter points in the plot of GRVI-

leaf chlorophyll relationship are distributed along a “band”. The band width indicates the 

variation in carotenoid concentration (Figure 3.4b). This reveals that GRVI is more sensitive to 

leaf carotenoids than NDVI. 

 

Figure 3.4 Relationships between vegetation indices and leaf chlorophyll concentration. 

The NDVI-leaf chlorophyll curve shifts across varying LAI values. The separation between 

curves decreases as the LAI increases. For a given LAI value, points in the plot of GRVI-

leaf chlorophyll are distributed along a “band”. The band width indicates the variation in 

carotenoid concentration. 

 

Even if both the LAI and carotenoid concentration are specified, the relationship between 

GRVI and leaf chlorophyll is not deterministic. As the leaf chlorophyll increases, the GRVI 

value increases at first, but then decreases. Thus, a given value of GRVI may correspond to 

multiple values of leaf chlorophyll concentration. Factors of leaf carotenoids, leaf chlorophylls, 

and LAI all affect the value of GRVI. Given the multiple influential factors, it is difficult to use a 

single vegetation index, either NDVI or GRVI, to detect the leaf chlorophyll concentration. 

 Among the relationships between vegetation indices and LAI values, the NDVI-LAI 

relationship can be approximated by an exponential model, and the GRVI-LAI relationship can 

be simply approximated by a linear model (Figure 3.5). For convenience, samples with the GRVI 
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value less than or equal to 0 were excluded when fitting data to the empirical models. Compared 

to the NDVI-LAI exponential model, the GRVI-LAI linear model has relatively high coefficient 

of determination (R2) and low root-mean-square error (RMSE). This indicated that GRVI 

performed better than NDVI as a predictor of LAI. Figure 3.6 examined relationships between 

vegetation indices and canopy chlorophyll contents. Results revealed that the relationship of 

NDVI-canopy chlorophyll can be predicted in an exponential model, whereas GRVI showed low 

correlation to canopy chlorophyll contents. 

 

Figure 3.5 Relationships between vegetation indices and LAI values with varying values of 

leaf chlorophyll concentration. 

 

Figure 3.6 Relationships between vegetation indices and canopy chlorophyll contents. The 

canopy chlorophyll contents are determined by the product of leaf chlorophyll 

concentration and LAI. 
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 3.4.1.2 Combining NDVI and GRVI 

Given that LAI and canopy chlorophyll can be modeled by GRVI and NDVI, 

respectively, the leaf chlorophyll concentration may be estimated by combining GRVI and 

NDVI. A new vegetation index, GNVI, is proposed to extract the leaf chlorophyll concentration 

from canopy reflectance: 

𝐺𝑁𝑉𝐼 =
𝑒𝑎×𝑁𝐷𝑉𝐼

𝐺𝑅𝑉𝐼 + 𝑏
                                                                      (3.3) 

 where a and b are empirical coefficients. In this case, a = 5.1534, and b = 0.0778, based on the 

empirical models determined in the previous analysis. Analysis of the relationship between 

GNVI and leaf chlorophyll showed that GNVI had a high correlation to leaf chlorophyll 

concentration (Figure 3.7). These results indicated that leaf chlorophyll concentration can be 

predicted by GNVI across varying LAI values (0.1 – 3.7) using a linear model.  

 

 

Figure 3.7 Use of GNVI as a predictor to leaf chlorophyll concentration 
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 3.4.2 Varying Soil Backgrounds with a Uniform LAI 

Canopy chlorophyll content is defined by the product of LAI and leaf chlorophyll 

content. When varying the soil backgrounds, the LAI value was fixed. Thus, the canopy 

chlorophyll content is proportional to the leaf chlorophyll concentration. Under these 

circumstances, variations in relationships between vegetation indices and leaf chlorophyll 

concentration due to the different soil backgrounds were observed (Figure 3.8). This indicates 

that the three vegetation indices, NDVI, GRVI, and GNVI, all are sensitive to the soil 

background to some degree. Across different soil backgrounds, GRVI had a low correlation to 

the leaf chlorophyll. NDVI and GNVI had acceptable model fitness and prediction accuracy as 

indicators of leaf chlorophyll concentration. GNVI performed even better than NDVI, with 

higher R2 and lower RMSE. This indicates that GNVI is less sensitive to soil backgrounds than 

NDVI or GRVI. Estimation of leaf chlorophyll concentration using GNVI can be more robust 

and consistent across different soil backgrounds than using NDVI or GRVI. 

 

 

Figure 3.8 Relationships between vegetation indices and leaf chlorophyll concentration 

across varying soil backgrounds. 

 

 

 



63 

 3.4.3 Validation 

To validate these results, eighty field samples were collected across the growing season 

in 2014 from the Konza Prairie experimental site. Of these, thirty samples had GRVI values ≤ 0, 

and were therefore excluded from the validation procedure. The descriptive statistics for the 

remaining fifty samples were shown in Table 3.2. The variances in the field samples were much 

smaller than that in the PROSAIL-simulated dataset. The empirical coefficients determined in 

the PROSAIL-simulated dataset need to be adjusted to fit the field samples. Thus the 

relationships between the vegetation indices and vegetation characteristics were modeled 

empirically for the field samples using leave-one-out cross validation (Figure 3.9). The resulting 

empirical models had acceptable values of R2 and RMSE, which verified the feasibility of NDVI 

and GRVI to estimate canopy chlorophyll contents and LAI values, respectively. 

Table 3.2 Descriptive statistics for the field samples 

 Min. Max. Mean 
Standard    

deviation 

Leaf chlorophyll (ug/cm2) 24.900 42.070 32.950 3.910 

LAI 0.440 1.020 0.710 0.170 

Canopy chlorophyll (ug/cm2) 12.120 40.020 23.580 7.210 

NDVI 0.568 0.722 0.641 0.044 

GRVI 0.015 0.146 0.072 0.042 

 

The empirical coefficients in the new vegetation index GNVI were adjusted accordingly 

(a=6.3072, and b=0.1731 in Eq. (3.3), based on the empirical models determined for the field 

samples, see Figure 3.9). The model fitness and prediction accuracy were acceptable in modeling 

the relationship between GNVI and leaf chlorophyll concentration (Figure 3.10). This showed 

the capability of GNVI to be an indicator of leaf chlorophyll concentration. 

 



64 

 

Figure 3.9 Leave-one-out cross validations for empirical modeling of relationships between 

vegetation indices and vegetation characteristics. 

 

 

Figure 3.10 A linear model of the relationship between GNVI and leaf chlorophyll 

concentration for the field samples. In this case, a=6.3072, and b=0.1731 for determining 

GNVI values using Eq. (3.3). 

 

 3.5 Conclusions 

Analyses in the physical model simulation and field samples showed positive results for 

the use of multispectral vegetation indices to predict LAI and leaf chlorophyll concentration. LAI 

provides a measurement of vegetation quantity. Leaf chlorophyll concentration, which relates to 
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vegetation nutrient contents, is representative of vegetation quality. Therefore, feasibility of the 

broadband vegetation indices to detect vegetation quantity and quality was evaluated. In the 

theoretical analysis based on PROSAIL model, NDVI showed a high correlation to LAI values, 

which verified the feasibility of NDVI to estimate vegetation quantity. This is consistent with the 

applications of NDVI to quantify canopy biophysical properties, such as LAI and plant biomass, 

in a wide range of previous studies (Boelman et al. 2003; Fan et al. 2009; Santin-Janin et al. 

2009). Furthermore, NDVI has been proven an indicator of the canopy chlorophyll content, 

which is determined by the product of LAI and leaf chlorophyll concentration. This suggests that 

NDVI reflects combined information of vegetation quantity and quality, which can be used to 

quantify plant biochemical characteristics at the canopy level. 

GRVI showed a capability to estimate LAI values across varying leaf chlorophyll 

concentrations, and performed even better than NDVI as a proxy for LAI values. The value of 

GRVI around zero indicates a low range of LAI values, which has been used as a site-

independent threshold to detect plant phenology variations and land cover changes in a range of 

qualitative studies (Motohka et al. 2010; Nagai et al. 2014). In addition, the theoretical analysis 

of this study based on the PROSAIL-simulated database showed that GRVI is sensitive to 

carotenoids to some degree, whereas NDVI is insensitive to carotenoids. This suggested the 

potential of GRVI for detecting carotenoid-related characteristics in the canopy, such as the plant 

nutritional status (Yang et al. 2010).  

Given that NDVI and GRVI can be used to predict canopy chlorophyll and LAI, 

respectively, a new vegetation index GNVI was proposed to extract leaf chlorophyll 

concentration from canopy chlorophyll contents using a combination of NDVI and GRVI 

(Eq.(3.3)). Methods that combine two or more vegetation indices to separate or synthesize 
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vegetation characteristics of interest are not unusual in remote sensing (Vescovo et al. 2012). The 

new index GNVI developed in this way showed high model fitness and prediction accuracy in 

estimating leaf chlorophyll concentration. This indicates that the broadband vegetation indices 

have the potential to extract vegetation characteristics at the leaf level and detect vegetation 

quality from the canopy reflectance. 

In the theoretical analysis, disparities due to soil backgrounds can be observed in the 

vegetation indices, NDVI, GRVI and GNVI. However, the influence from soil backgrounds does 

not affect the general tendencies between vegetation indices and vegetation characteristics. This 

may be explained by the nature of the standardized difference index that highlights the difference 

in two spectral features which behavior diversely, and minimizes the background variation 

effects (Delalieux et al. 2008; Ferwerda et al. 2005). 

A limitation of the new index GNVI is that it is sensitive to the empirical coefficients (a 

and b in Eq. (3.3)). It can be seen that in the validation procedure the leaf chlorophyll and LAI 

varied in a smaller range than that in the PROSAIL-simulated dataset. The empirical coefficients 

in GNVI were therefore adjusted to fit the field dataset. Determination of the empirical 

coefficients depends on the given field dataset or a simulation by a physical model with proper 

parameter settings. 

In conclusion, this study compared the use of NDVI and GRVI in detecting vegetation 

characteristics. NDVI showed high correlations to LAI and canopy chlorophyll contents. GRVI 

performed even better than NDVI as an indicator of LAI. GNVI is a new index that combines 

NDVI and GRVI, which can be used to estimate leaf chlorophyll across varying LAI values. 

These findings are important for improving the use of broadband vegetation indices from 

multispectral remote sensors to detect vegetation quantity and quality over a wide spatial extent.  
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Chapter 4 - Effects of Fire and Large Herbivores on Canopy 

Nitrogen in a Tallgrass Prairie: a Study from Spectroscopy Imagery 

 Abstract 

Effects of fire and grazing by large herbivores on the vegetation cover in a seasonably 

variable environment with complex topography are of special interest in grassland science. This 

study focused on the analysis of variation in grassland canopy nitrogen associated with fire, 

ungulate grazing (e.g., bison and cattle), topography and vegetation phenology using remotely 

sensed hyperspectral images. These images provided accurate representations of the spatial 

variability in vegetation canopies, from which analysis of the grassland processes in a large 

spatial extent was allowed. Results in this study indicated that fire enhanced plant productivity, 

resulting in a more uniform distribution of canopy nitrogen. Fire effects interacting with ungulate 

grazing were most influential in the areas with shorter fire intervals. A high level of ungulate 

grazing reduced vegetation density, but promoted canopy spatial heterogeneity. Topography and 

phenology were important drivers that dominated the general tendency of the variation in canopy 

nitrogen. Effects of fire and grazing on the grassland canopy varied across topographic positions 

and seasons. Differences in the vegetation canopy between sites with bison and cattle were 

observed, which may be related to differences in the grazing intensity, forage behavior and site 

selection between the two grazer species. This study provided a preliminary understanding of 

spatial processes involving the interplay between vegetation and fire-grazing disturbances in a 

grassland ecosystem. 
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 4.1 Introduction 

Fire and grazing by large herbivores have historically played indispensable roles in 

determining and maintaining the canopy structure and species composition of vegetation 

communities in North American grassland ecosystems (Collins and Wallace 1990; Hulbert 

1986). The effects of periodically recurring fires, involving above- and below-ground processes 

in grasslands, are complex (Evans et al. 1989; Neary et al. 1999). In general, fires stimulate plant 

growth through removing the standing dead litter aboveground and increasing the light 

interception in the canopy (Abrams et al. 1986; Anderson et al. 2007). The increased soil 

temperature in burned areas enhances the nutrition cycling belowground, and potentially 

improves plant productivity (Seastedt and Ramundo 1990). More specifically, fire effects on 

vegetation vary with factors such as plant species, seasons of the fire, and the time since the 

previous burn. Fire is effective for promoting the growth of  prairie grasses by suppressing 

woody plant invasion (Anderson 1990; Bragg and Hulbert 1976). Winter fires during the period 

of plant dormancy may have little influence on plant abundance, whereas spring fires can reduce 

the forb species that have initiated growth before the burn, and thus increase the dominance and 

production of the matrix grass species (Collins and Gibson 1990). Moreover, spring fires tend to 

advance plant growth and speed up the phenological development (Svejcar 1990). The fire 

stimulus to grassland plants is dramatic but transitory. It is typically apparent for the first one or 

two years after the burn, and then it disappears as the community gradually reaches equilibrium 

(Loucks 1970). Frequent prescribed fires therefore become a commonly used practice in range 

management to maintain the grassland vegetation and enhance the forage quality.  

Grazing by large ungulate herbivores is another critical component in grasslands 

(Archibald et al. 2005; Fuhlendorf and Engle 2001). Like fires, ungulate grazers can enhance 
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plant abundance, through reducing the standing dead materials in the canopy (Belsky 1986). In 

addition, plants have the capability to overcompensate for low levels of herbivory, which often 

results in higher vegetation production in the grazed sites than the ungrazed ones (de Mazancourt 

et al. 1998; McNaughton 1983). With regard to the effects on plant species, ungulate grazing 

reduces the palatable grass species, allows forbs to flourish, and increases plant species diversity 

(Collins et al. 1998). More importantly, large herbivores play a role in redistributing plant-

available nutrients by their waste products. They promote nutrition cycling through reducing the 

microbial nitrogen immobilization (Frank and Evans 1997; McNaughton et al. 1997). Their 

grazing activities and forage patterns exert control over the spatial heterogeneity of grassland 

vegetation (Collins and Barber 1985). 

The native ungulate grazers, American Bison (Bison bison), are the keystone species that 

affect the plant communities in the Great Plains of North America (Anderson 2006). Their 

distinctive behaviors, such as selective forage and wallowing, make them different from other 

large herbivores, the domestic cattle (Bos taurus) for example (Allred et al. 2011b). Bison select 

primarily graminoids (Plumb and Dodd 1993). This may reduce the dominant grasses and result 

in greater plant species evenness at sites grazed by bison than by cattle (Hartnett et al. 1996). The 

wallowing activities of bison disturb the soil conditions. The soil depressions created by bison 

wallowing may dramatically alter the plant species composition in the canopy (Collins and 

Gibson 1990; Trager et al. 2004). North America grasslands evolve with significant influences 

by bison and cattle. Comparison of these two species is of special research interest, and provides 

important implications for conservation and management of grassland ecosystems (Allred et al. 

2011b; Coppedge and Shaw 1998; Senft et al. 1985). 
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Fire and large herbivores differ in mechanisms that affect the grassland vegetation. 

Interestingly, the two factors naturally interact with each other. Fire influences the forage site 

selection by large herbivores. For example, bison and cattle prefer recently burned grasslands 

(Allred et al. 2011a; Allred et al. 2011b). Grazing activities by large herbivores may alter the fuel 

load characteristics, and potentially influence the fire spread, severity and intensity (Strand and 

Launchbaugh 2014).  

Interactions of fire and grazing (Archibald et al. 2005; Fuhlendorf et al. 2009), along with 

other factors such as climate and topography, contribute to complicated functions and processes 

in the grassland ecosystem. Their effects on plant productivity and grassland biodiversity have 

been substantially studied (Collins and Smith 2006; Fuhlendorf and Engle 2004; Fuhlendorf et 

al. 2010; Hartnett et al. 1996; Koerner and Collins 2014). Most previous studies are based on 

data analysis from field measurements. For example, Augustine and Frank (2001) used plots 

with different sizes (4 × 4 m and 60 × 30 m) for field sampling. They studied the influences of 

the ungulate grazers on the spatial heterogeneity of soil nitrogen properties in a grassland system 

at a fine scale of 0.1 – 2 m and a coarse scale of 5 – 30 m, respectively. Wallace et al. (1995) 

mapped the 30 highest biomass points out of 225 field samples in a 30 m × 30 m plot every two 

meters, and compared their spatial pattern with the Poisson distribution to determine whether 

they were randomly distributed. 

Traditional field data measurements can provide reliable and detailed ground references. 

However, these field measurement procedures are usually labor intensive and time consuming. 

The confined study plots and limited sample size in field measurements may result in unrealistic 

representation of the fire-grazing processes across large natural landscapes. More recently, with 

the development of remote sensing technology, spectral imaging has been widely used to 



75 

monitor the land surface in earth sciences (Jago et al. 1999; Knyazikhin et al. 2013; Kokaly et al. 

2003). Compared to traditional field data measurements, spectral imaging provides a relatively 

effective way in which images in a range of spectral bands over a large study area can be taken 

immediately. The acquired multi- or hyper-spectral images can be used to extract biophysical 

and biochemical characteristics in the canopy, and map the canopy features at a large spatial 

extent (Martin and Aber 1997; Mutanga et al. 2005). This may attenuate the concern about the 

limited sample size by field measurements. In addition, the spatially intensive data, provided by 

the numerical maps from spectral imaging, make it possible to further explore the canopy spatial 

heterogeneity (Harris et al. 2003; Lobo et al. 1998). 

The principal goal of this study was to evaluate the effects of fire and large herbivores on 

canopy nitrogen in a tallgrass prairie using hyperspectral imaging. The nitrogen content within 

vegetation canopies is an important index of grassland forage quality. Investigating the spatial 

distribution of the canopy nitrogen associated with the fire and herbivory activities throws light 

on critical questions concerning interactions between the forage nutrient pattern and grazer 

behaviors in grassland science. This study examined the variability in canopy nitrogen across a 

tallgrass prairie mosaic created by a variety of fire-grazing treatments along with the topographic 

and seasonal influences. To be specific, the effects of the fire interval (i.e., the time since the 

previous burn), the native grazer (i.e., bison) and the domestic grazer (i.e., cattle) on the content 

and spatial heterogeneity of canopy nitrogen were compared at different topographic positions 

over the growing season. 
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 4.2 Methods 

 4.2.1 Study Area 

This study was conducted at Konza Prairie Biological Station (KPBS, Figure 4.1), a 

tallgrass prairie of 34.87 km2 in the Flint Hills near Manhattan, Kansas, USA (39°05’N, 

96°35’W). The site is dominated by a continental climate with warm, wet springs, hot summers 

and dry, cold winters. The vegetation at the site is dominated by C4 perennial grasses, 

intermingled with a minor proportion of C3 forbs and a few of C3 grasses. The soil conditions 

vary with the topographically complex landscapes. In general, the lowland soils are thick, silty 

clay loams. The upland and hillside soils are much shallower and rockier.   

 

Figure 4.1 Study area at Konza Prairie Biological Station (KPBS). The site is 

topographically complex, and subject to a variety of fire-grazing treatments, resulting 

spatially variable vegetation canopies. Twenty-one out of totally more than fifty KPBS 

watersheds were selected for analysis in this study, with an area of 17.13 km2. 
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KPBS is divided into more than fifty watersheds, each subject to a treatment combined 

by fire and ungulate grazing.  Fire treatments vary with fire frequencies (1, 2, 4, 10 and 20 

years). Grazing treatments include bison, cattle and non-grazing. The various combinations of 

fire and grazing treatments allow investigations into effects of the fire alone and the interactions 

of fire and ungulate herbivory in grasslands. In this study, twenty-one watersheds (with an area 

of 17.13 km2) were selected for data analysis given the coverage of the aerial images, in which 

nine were grazed by bison, four were grazed by cattle and eight were ungrazed. 

 4.2.2 Data Collection and Preprocessing 

Hyperspectral imagery covering the twenty-one watersheds was collected on four dates 

(26 May, 29 June, 2 August, and 26 September) spanning the 2011 growing season, using an 

AISA Eagle camera mounted on a Piper Warrior aircraft operated by the Center for Advanced 

Land Management Information Technology (CALMIT) of the University of Nebraska-Lincoln. 

The aircraft was flown at an altitude yielding a spatial resolution of 2 m × 2 m. The fire history 

records and the digital elevation model (DEM) of the study area were provided by the NSF Long 

Term Ecological Research Program at KPBS. 

The fire interval for each watershed was calculated by the days between the dates of the 

previous burn and the image capture. Based on the DEM and the derived slope data, each 

watershed was divided into four types of topography, including drainage bottoms, lowlands, 

uplands and hillslopes (slope > 10°, determined by a natural break). The resulting topographic 

divisions were shown in Figure 4.2. The gallery forest pixels on imagery were removed before 

analysis. Canopy nitrogen contents in grasslands were retrieved from hyperspectral imaging 

statistically (Ling et al. 2014). In addition, the continuous values of canopy nitrogen on each 

image were classified into five groups from low to high levels using natural breaks (Evans 1977). 
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The spatial heterogeneity (Li and Reynolds 1994) of different canopy nitrogen levels can be 

quantified from the resulting categorical maps (Figure 4.3). 

 

 

Figure 4.2 Topographic division of the study area. The hillslopes are the transition zones 

between the flat lowlands and the flat uplands. 
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Figure 4.3 Continuous canopy nitrogen maps for (a1) May, (b1) June, (c1) August, (d1) 

September, and categorical maps with five canopy nitrogen levels from low to high for (a2) 

May, (b2) June, (c2) August, (d2) September. 
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 4.2.3 Data Analysis 

On the continuous canopy nitrogen imagery, the mean and standard deviation of canopy 

nitrogen were calculated in the zone defined by the topography type in each watershed. The 

topographic divisions by watershed on the categorical maps were subjected to spatial 

heterogeneity analysis using the FRAGSTATS program (McGarigal and Marks 1995), from 

which the metrics of contagion, Simpson’s diversity, and interspersion/juxtaposition index (IJI) 

for the high-nitrogen patches were calculated (Table 4.1). These metrics provided informative 

measurements of the canopy nitrogen spatial heterogeneity. The results allowed quantitative 

comparisons among fire-grazing treatments, topographic positions and seasons from different 

perspectives of canopy nitrogen properties. 

  

Table 4.1 FRAGSTATS metrics measuring spatial heterogeneity 

FRAGSTATS metric Range Description 

Contagion (0,100] A measurement of aggregation; the value approaches 

0 as the path types become more disaggregated and 

interspersed; a value of 100 indicates all patch types 

are maximally aggregated. 

Simpson’s diversity [0,1) A measurement of diversity; a value of 0 indicates no 

diversity; as the patch richness increases and the 

proportional distribution of area among patch types 

becomes more equitable, the value approaches 1. 

Interspersion/Juxtaposition 

index (IJI) 

(0,100] A measurement of patch interspersion and 

juxtaposition; the value approaches 0 as the 

distribution of patch adjacencies becomes increasingly 

uneven; a value of 100 indicates all patch types are 

equally adjacent to all other patch types. 
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To study the effects of fire separately, the data for the non-grazing watersheds were 

gathered. The fire interval was considered as the independent variable. The variation of the 

canopy nitrogen contents with the fire intervals was studied. In addition, the fire treatments were 

classified into two levels, including the fire intervals within one year (burned in spring), and 

those greater than one year (unburned in spring of the current year). The differences in the 

canopy nitrogen properties between the two fire interval levels were analyzed using the two 

sample t-test.  

For the combined treatments of fire and grazing, the data for different topographic 

divisions were analyzed separately. Factorial analysis of variance (ANOVA) was used to 

examine the presence of the fire-grazing interactive effect. In the cases with influential ungulate 

grazing effect, the canopy nitrogen properties between sites with bison and cattle were 

compared, which revealed differences between the two important ungulate grazer species in their 

effects on the grassland heterogeneity.  

Variogram analysis (Bachmaier and Backes 2008) was used to determine the spatial 

structure of the continuous canopy nitrogen data. Theoretically, a variogram levels off after a 

certain distance (Figure 4.4). This distance is called the range, within which the samples are 

spatially autocorrelated. The value of the variogram at the range is called the sill. The range 

provides insight into the spatial scale of the sampled characteristic, and the sill indicates the 

contrast of the characteristic (Curran 1988; Woodcock et al. 1988). In this study, the range 

reflected the vegetation patch size within which the canopy nitrogen was homogeneous and 

varied in a small range. The sill reflected the variance of the canopy nitrogen among uncorrelated 

vegetation patches, which may result from the diversity in plant species and canopy structure.   
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The variogram is sensitive to the direction, whereas the topographic divisions of this 

study manifested highly anisotropic patterns. To reduce the effects from the topographic 

complexity, the regions with different topography types were analyzed separately. For each 

topographic division in a watershed, three patches, each enveloped by a convex hull, were 

randomly selected. The patch size allowed a variogram analysis within fifty meters, and all the 

pixels in the patch were included in analysis. Results of the patches with the same fire and 

grazing treatments were pooled and averaged. The range and sill of the variogram that 

characterize the spatial variability were examined and compared between different fire and 

grazing treatments (Harris et al. 2003).  

 

Figure 4.4 Variogram analysis for spatial variability. The variogram levels off after a 

certain distance. This distance is called the range, within which the samples are spatially 

autocorrelated. The value of the variogram at the range is called the sill. The nugget is the 

height of the variogram at the zero separation distance, which represents the measurement 

errors or the variation at a smaller distance than the sampling interval. 
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 4.3 Results 

 4.3.1 Separate Effects of Fire on Canopy Nitrogen  

The mean of canopy nitrogen contents at the watershed level over the non-grazing areas 

were plotted along with the days since the previous fire to study the fire effect separately from 

large herbivores (Figure 4.5). These plots suggested a general tendency that during May – 

August the canopy nitrogen with the fire intervals less than one year was higher than those with 

longer fire intervals. Differentiation associated with the topographic positions was most evident 

in August. In September, there was no apparent tendency observed in the variation of canopy 

nitrogen related with the fire intervals or topography.  

 

Figure 4.5 The mean of canopy nitrogen contents varying with the fire intervals over the 

ungrazed areas in (a) May, (b) June, (c) August, and (d) September. Watersheds 1D, 2D, 

R1B and K1B were burnt within one year; watersheds K2A, SuB, K4A and K20A had fire 

intervals greater than one year. In September, watersheds K2A and K20A were not 

included in analysis, given that the two watersheds were burnt shortly before the flyover, 

resulting in a fire interval of only one week. 
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Results of ANOVA showed that the interactive effects were seldom present between the 

fire interval and topography (Table 4.2). The two sample t-test examined the difference between 

burned (fire intervals within one year) and unburned (fire intervals greater than one year) sites 

from the perspectives of mean and standard deviation of canopy nitrogen, contagion and 

diversity of canopy nitrogen patches, and proportion and interspersion of high-nitrogen patches 

(Figure 4.6). Results showed that during May – August the canopy nitrogen contents were 

significantly higher in the burned areas, coincident with greater proportions of the high-nitrogen 

patches that were unevenly distributed and less interspersed. In September, differences between 

burned and unburned sites in the mean of canopy nitrogen and high-nitrogen distribution were 

insignificant.  

The standard deviation was significantly lower in the burned areas than the unburned 

areas in May, which indicated relatively uniform canopies shortly after the fire treatments. The 

difference in canopy nitrogen standard deviation between burned and unburned sites became 

insignificant as the canopy was more developed in June. It is interesting that in August – 

September, the canopy nitrogen standard deviation in burned areas became significantly higher 

than in unburned areas. This suggested that fire enhanced the variance in canopy nitrogen at a 

later stage of growing season.  

Differences in contagion and diversity between burned and unburned sites were 

statistically significant in May – June. The burned sites had higher contagion and lower diversity 

than the unburned sites. This indicated that fire effects resulted in more aggregation and uneven 

proportion distribution of canopy patch types in the early growing season. 
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Table 4.2 Analysis of variance F statistics for the canopy nitrogen properties responding to 

the interaction of the fire interval and topography. 

Properties May June August September 

Mean 0.9131 0.5701 0.8969 1.0099 

Standard deviation 2.0911 1.6487 1.2974 3.0364 

Contagion 1.2928 3.6203 † - 1.0384 

 *  

Diversity 1.4088 3.347 2.5088 1.8052 

% High N patches 0.9942 0.5250 † 0.6404 † 1.0991 

IJI 1.7855 0.2572 0.5801 0.5700 

Significant level: *** = 0.001, ** = 0.01, * = 0.05; 

† : the responsive variables were logarithmically transformed to correct the problem of non-normality or 

heteroscedasticity; 

- : the data violated the assumptions of normality or homoscedasticity. 

 

One-way ANOVA across various topographic positions showed that during May – 

August differences in canopy nitrogen were not statistically significant, whereas significant 

differences in the mean of canopy nitrogen contents and the interspersion/juxtaposition index of 

the high-nitrogen patches were present in September (Figure 4.7). Tukey's honest significant 

difference (HSD) post-hoc test for the data in September showed that the mean of canopy 

nitrogen contents in the drainage bottoms was significantly higher than in the uplands (difference 

= 0.177, p-adj = 0.023); the interspersion/juxtaposition index of the high-nitrogen patches in the 

drainage bottoms was significantly lower than in the uplands and hillslopes (difference between 

drainage bottoms and uplands = -30.789, p-adj = 0.042; difference between drainage bottoms 

and hillslopes = -31.166, p-adj = 0.029). This suggested that the influences from the topography 

pattern on the vegetation canopies were more evident in the senescent season, but less so in the 
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growing season. The timing of senescence in the drainage bottoms was potentially later than that 

in the uplands due to the different conditions of soil moisture, depth and temperature. 

 

 

Figure 4.6 Two sample t-test for comparing difference between sites with fire intervals 

within one year and greater than one year from perspectives of (a) the mean of nitrogen 

contents, (b) standard deviation, (c) contagion, (d) Simpson’s diversity index, (e) 

percentage of high-nitrogen patches and (f) interspersion/juxtaposition index (IJI) of the 

high-nitrogen patches (*= the difference is statistically significant at the 95% confidence 

level). 
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Figure 4.7 Statistically significant differences in (a) the mean of canopy nitrogen contents 

and (b) IJI of the high-nitrogen patches among various topographic positions in 

September. 

 

 4.3.2 Interactive Effects of Fire and Large Herbivores 

Factorial ANOVA examines the significance of the main effects and their interaction 

term. If the interaction term is significant, the main effects cannot explain the influence on the 

dependent variable collectively. Results from ANOVA showed that the interactive effects of fire 

and grazing on the mean of canopy nitrogen contents and the interspersion/juxtaposition indices 

of the high-nitrogen patches were present in all three types of topographic positions during May 

– August. In September, the interactive effects were seldom present (Table 4.3). 

The post-hoc analysis (Figure 4.8) showed that during May – August the grazed areas 

had generally lower canopy nitrogen contents and higher interspersion/juxtaposition indices of 

the high-nitrogen patches than the ungrazed areas when the fire intervals were within one year. 

In September, it was the opposite way that lower nitrogen contents and higher IJI were observed 

in the ungrazed areas. When the fire intervals were greater than one year, the differences 

between grazed and ungrazed areas were almost insignificant during June – September; however, 

at the beginning of the growing season in May, the grazed areas had generally higher nitrogen 

contents and lower IJI than the ungrazed areas. The insignificant difference in canopy nitrogen 
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between grazed and ungrazed sites with fire intervals greater than one year suggested a less 

influential effect of grazing disturbance.  

 

Table 4.3 Analysis of variance F statistics for the canopy nitrogen properties responding to 

the interaction of the fire interval and grazing type. 

 
Mean 

Standard 

deviation 
Contagion Diversity 

% High N 

patches 
IJI 

May       

Drainage bottom 12.08 2.66 0.26 0.94 3.79 6.84 

**     * 

Lowland 31.68 5.85 0.51 0.56 10.13 37.69 

*** *   ** *** 

Hillslope 13.14 0.05 1.61 0.93 5.67 10.58 

**    * ** 

June       

Drainage bottom 15.55 0.89 14.01 10.59 41.66 26.49 

**  ** ** *** *** 

Lowland 32.23 1.22 29.01 † - 65.16 17.63 

***  **  *** *** 

Hillslope 29.24 0.78 2.05 0.42 13.77 † 19.59 

***    ** *** 

August       

Drainage bottom 9.98 0.66 0.03 - 3.11 28.15 

**     *** 

Lowland 15.09 0.06 2.66 1.25 15.82 20.50 

**    *** *** 

Hillslope 16.82 4.94 2.60 2.62 10.65 13.70 

*** *   ** ** 

September       

Drainage bottom 0.49 0.95 † 14.06 7.03 1.85 0.83 † 

  ** *   

Lowland 2.28 0.26 0.00 - 1.43 0.40 

      

Hillslope 1.19 5.93 † 2.25 7.24 1.78 1.75 

 *  *   

The uplands were not included in analysis given the insufficient non-grazing treatments with fire 

intervals greater than one year; 

Significant level: *** = 0.001, ** = 0.01, * = 0.05; 

† : the responsive variables were logarithmically transformed to correct the problem of non-

normality or heteroscedasticity; 

- : the data violated the assumptions of normality or homoscedasticity. 
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Figure 4.8 Differences in the mean of canopy nitrogen contents and the 

interspersion/juxtaposition indices of the high-nitrogen patches between non-grazing and 

grazing treatments. a1 – a4, the mean of canopy nitrogen contents in the areas burnt within 

one year; b1 – b4, the mean of canopy nitrogen contents with the fire intervals greater than 

one year; c1 – c4, IJI in the areas burnt within one year; d1 – d4, IJI with the fire intervals 

greater than one year. D=drainage bottom, L=lowland, S=hillslope. *= the difference was 

statistically significant at the 95% confidence level. 

 

In the areas burnt within one year, where the grassland canopies were supposed to be 

more evidently influenced by grazing disturbances, the canopy nitrogen properties with the bison 

and cattle grazing were compared (Figure 4.9). In May, the bison-grazed areas had significantly 

lower mean of canopy nitrogen contents, coincident with generally higher IJI than the cattle 

grazed areas, whereas the cattle grazed areas were not significantly different from the ungrazed 



90 

areas. During June – August, the differences between bison and cattle grazing were insignificant 

overall except in the uplands, where the cattle had less evident influence on the grassland canopy 

than bison. In September, there was no significant difference detected. 

 

Figure 4.9 Comparison of grazing effects from bison and cattle on the canopy nitrogen 

across different topographic positions with fire intervals within one year.  D=drainage 

bottom, L=lowland, S=hillslope, U=upland. *= the difference between bison and cattle 

grazed areas was statistically significant at the 95% confidence level. 

 

 4.3.3 Spatial Structure of Canopy Nitrogen Distribution  

Results from the variogram analysis (Figure 4.10) revealed distinctive spatial structures 

of the canopy nitrogen across seasons. The average level of the sills reached to the highest in 

August, and dropped to the lowest in September. This fluctuation of the canopy nitrogen 

variance can be explained associated with the grassland phenology (Collins and Wallace 1990).   

The differences in the variograms across topographic positions were noticeable. The sills 

were typically high in the hillslopes and low in the uplands. The ranges were generally greater in 

the lowlands than at other sites. Thus, there was a steeper, faster rising shape of the variograms 

for the hillslopes, whereas the variogram curves for the lowlands were gently rising at a longer 
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distance before leveling off. This suggested a greater contrast in the canopy nitrogen and a 

smaller patch size at the hillslope sites than at the lowland sites. The disparity in terms of 

different fire-grazing treatments was most evident at the lowland sites in May (Figure 4.10a2), 

where the sill and range were generally greater when the fire intervals were longer than one year.  

For the lowlands and uplands burnt within one year, the variograms were approximated 

using the spherical model (Woodcock et al. 1988), through which the nugget, sill and range were 

determined (Table 4.4). The sills and variance proportions were noticeably high for the bison-

grazing treatments across seasons. This indicated that bison grazing created a more 

heterogeneous canopy, leading to greater canopy nitrogen variance than the cattle. 

The sills and variance proportions for the cattle-grazed areas were slightly greater than 

that for the ungrazed areas in May. During June – August, the lowlands with cattle-grazing had 

lower sills and variance proportions than the ungrazed lowlands. However, in the uplands, the 

cattle grazed sites had higher sills and variance proportions than the ungrazed sites. In 

September, the difference between cattle-grazing and non-grazing was more evident in lowland 

than in uplands. The special patterns between lowlands and uplands across seasons may be 

related with cattle habitat selection. However, further explanations required more finely resolved 

information of cattle grazing density, movement pattern and space use.   

In the growing season, from May to August, the ranges for the lowlands were generally 

greater than that for the uplands. During June – August, the ranges for the grazed sites were 

generally lower than that for the ungrazed sites. It can be implied that the factors of topography 

and ungulate grazing both had evident effects on the vegetation patch size.  
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Figure 4.10 Variogram analysis for the spatial patterns of canopy nitrogen with a variety of 

fire-grazing treatments across different topographic positions over the growing season. The 

four columns of the plots from the left to right were corresponding to the drainage bottoms, 

lowlands, hillslopes and uplands, respectively. The four rows from the top to bottom were 

for May, June, August, and September, respectively. 
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Table 4.4 Variogram analysis of the canopy nitrogen in lowlands and uplands burnt within 

one year, where the effects of non-grazing, cattle and bison on the spatial structures of 

canopy nitrogen were compared. 

Month Topography Treatment Model Nugget Sill Range Proportion 

May Lowland Non-

grazing 
2𝛾(ℎ) =

7ℎ

3000
(1 −

ℎ2

972
) + 0.019 

0.019 0.047 18 0.591 

  
Cattle 2𝛾(ℎ) =

43ℎ

40000
(3 −

ℎ2

400
) + 0.028 

0.028 0.071 20 0.609 

  
Bison 2𝛾(ℎ) =

79ℎ

14000
(1 −

ℎ2

1323
)+ 0.031 

0.031 0.110 21 0.720 

 Upland Non-

grazing 
2𝛾(ℎ) =

19ℎ

32000
(3 −

ℎ2

256
) + 0.020 

0.020 0.039 16 0.472 

  
Cattle 2𝛾(ℎ) =

17ℎ

16000
(3 −

ℎ2

256
) + 0.024 

0.024 0.058 16 0.583 

  
Bison 2𝛾(ℎ) =

19ℎ

16000
(3 −

ℎ2

256
) + 0.026 

0.026 0.064 16 0.592 

June Lowland Non-

grazing 
2𝛾(ℎ) =

ℎ

1100
(3 −

ℎ2

484
) + 0.026 

0.026 0.066 22 0.611 

  
Cattle 2𝛾(ℎ) =

9ℎ

10000
(3 −

ℎ2

400
) + 0.028 

0.028 0.064 20 0.567 

  
Bison 2𝛾(ℎ) =

51ℎ

32000
(3 −

ℎ2

256
) + 0.028 

0.028 0.079 16 0.642 

 Upland Non-

grazing 
2𝛾(ℎ) =

7ℎ

2500
(1 −

ℎ2

675
) + 0.029 

0.029 0.057 15 0.495 

  
Cattle 2𝛾(ℎ) =

33ℎ

28000
(3 −

ℎ2

196
) + 0.031 

0.031 0.064 14 0.510 

  
Bison 2𝛾(ℎ) =

11ℎ

7000
(3 −

ℎ2

196
) + 0.030 

0.030 0.074 14 0.594 

August Lowland Non-

grazing 
2𝛾(ℎ) =

31ℎ

20000
(3 −

ℎ2

1600
)+ 0.033 

0.033 0.157 40 0.789 

  
Cattle 2𝛾(ℎ) =

13ℎ

8500
(3 −

ℎ2

1156
) + 0.035 

0.035 0.139 34 0.748 

  
Bison 2𝛾(ℎ) =

73ℎ

22000
(3 −

ℎ2

484
) + 0.036 

0.036 0.182 22 0.802 

 Upland Non-

grazing 
2𝛾(ℎ) =

13ℎ

12000
(3 −

ℎ2

324
) + 0.038 

0.038 0.077 18 0.499 

  
Cattle 2𝛾(ℎ) =

23ℎ

14000
(3 −

ℎ2

196
) + 0.035 

0.035 0.081 14 0.569 

  
Bison 2𝛾(ℎ) =

27ℎ

14000
(3 −

ℎ2

196
) + 0.037 

0.037 0.091 14 0.592 

September Lowland Non-

grazing 
2𝛾(ℎ) =

ℎ

2000
(3 −

ℎ2

484
) + 0.008 

0.008 0.030 22 0.733 

  
Cattle 2𝛾(ℎ) =

3ℎ

6400
(3 −

ℎ2

1024
) + 0.007 

0.007 0.037 32 0.802 

  
Bison 2𝛾(ℎ) =

39ℎ

56000
(3 −

ℎ2

784
) + 0.007 

0.007 0.046 28 0.841 

 Upland Non-

grazing 
2𝛾(ℎ) =

11ℎ

40000
(3 −

ℎ2

400
) + 0.007 

0.007 0.018 20 0.616 

  
Cattle 2𝛾(ℎ) =

11ℎ

38000
(3 −

ℎ2

361
) + 0.007 

0.007 0.018 19 0.601 

  
Bison 2𝛾(ℎ) =

41ℎ

96000
(3 −

ℎ2

2304
)+ 0.009 

0.009 0.050 48 0.817 

2γ(h) is the variogram; h is the separation distance; Proportion = (Sill - Nugget)/Sill. 
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 4.4 Discussion  

 4.4.1 Fire, Grazing and Vegetation Canopy 

Fire has an immediate effect on the species composition in the canopy, which decreases 

the species diversity dramatically. The stimulus of spring fires on the vegetation productivity is 

most influential within the first year following the burn, and in decay shortly thereafter as the 

species diversity increases and the system approaches an equilibrium (Collins 1990; Loucks 

1970). In this study, I observed that during May – August when the canopies were 

photosynthetically active, the watersheds with short fire intervals within one year had apparently 

high canopy nitrogen contents and large proportion of high-nitrogen patches. Meanwhile, the 

significantly higher contagion indices and lower diversity indices at the sites with shorter fire 

intervals during May – June suggested that canopy patches were more aggregated with uneven 

proportional distributions in the more recently burned grasslands.  

Results of this study showed that the interactive effects of fire and ungulate grazing on 

canopy nitrogen were present during May – August, but not in September, suggesting that the 

grazing effects on the vegetation canopy were dependent upon the fire interval and varied across 

seasons. This was consistent with the pyric herbivory observed repeatedly in previous studies 

that during the growing season ungulate grazers prefer areas burned in the spring of the current 

year (Allred et al. 2011a; Fuhlendorf et al. 2009), whereas in the dormant season their grazing is 

more evenly distributed and may shift to the unburned areas (Raynor 2015).  

In the cases of fire intervals within one year, the canopy nitrogen at the ungrazed sites 

was found to be significantly high in May – August, but low in September, compared to that at 

the grazed sites. The contrast between the growing season and the dormant season suggested that 

the effects of ungulate grazing on the vegetation canopy varied across seasons. In the cases of 
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fire intervals greater than one year, it was interesting that the grazed sites had significantly higher 

canopy nitrogen than the ungrazed sites in May, contrary to the situation with shorter fire 

intervals. This suggested that in the early growing season the higher grazing intensity at sites 

with shorter fire intervals reduced the canopy density, whereas the low level of grazing 

disturbances at sites with longer fire intervals improved the vegetation production (McNaughton 

1983; McNaughton et al. 1997). During June – September, the differences between ungulate 

grazing and non-grazing were insignificant, suggesting that at this time the grazing disturbances 

became less influential on the canopy nitrogen distribution at sites with the longer fire intervals.  

It is of interest to compare the grazing effects of bison and cattle in grassland ecology. 

Previous studies reveal that bison differ from cattle in their selections of forage species and 

grazing sites (Knapp et al. 1999). For example, bison prefer graminoids exclusively, whereas 

cattle have a greater proportion of forbs in their diets. Woody species, which usually occur in the 

drainage bottoms, are avoided by bison, but preferentially selected by cattle (Allred et al. 2011b). 

The distinctive forage strategies and physical activities between bison and cattle may result in 

different canopy structure and species composition in the plant communities.  

In my study, the differences between bison and cattle in their effects on the canopy 

nitrogen were analyzed at sites with shorter fire intervals, where the ungulate grazing effects 

were supposed to be more evident. It was found that the sites with bison had lower canopy 

nitrogen contents and more interspersed high-nitrogen patches than sites with cattle in May 

across a variety of topographic positions. This overall difference in the canopy nitrogen 

properties may be explained by the ungulate density and grazing intensity (Afzal and Adams 

1992; Augustine and Frank 2001) in addition to the distinctive forage behaviors between bison 

and cattle. During June – August, differences in the grazing effects between bison and cattle 



96 

were generally insignificant, except in the uplands where the canopy with cattle was significantly 

different from that with bison, but similar to that without ungulates. It can be inferred that the 

uplands were less disturbed by cattle, indicating differences between the two ungulate species in 

their preferences for habitats related to the topography factor.  

 4.4.2 Use of Remote Sensing Imagery 

It has been widely recognized that remote sensing imagery with multi- or hyper-spectral 

data has advantages over traditional methods of mapping specific land surface characteristics for 

a large spatial extent. Traditional methods require a large number of field samples, which are 

labor-intensive and time-consuming. The spatial interpolation schemes are then used to estimate 

values between the sampled points and fill the gaps over the whole study area. However, the 

interpolation schemes may themselves be a source of error. Unlike traditional methods, remote 

sensing imagers can capture the spectral data over an extensive area efficiently. Related spectral 

features can be extracted and used to map the land surface characteristics of interest from the 

remotely sensed spectral image. The detailed spatial variability in reality is therefore well 

retrieved.  

Remote sensing imagery provides quantitative and continuous measurements across the 

land surface. The basic statistics are allowed to be calculated from the image for different, 

specifically defined zones, such as the mean and standard deviation of the canopy nitrogen with 

various fire-grazing treatments in this study. More importantly, the image with the exhaustive 

data that vary continuously over the landscape permits analysis of spatial autocorrelation using 

geostatistical techniques. The variogram analysis of this study showed comparisons between 

bison and cattle from the perspective of their grazing effects on the spatial structure of canopy 

nitrogen. It was noted that in the lowlands and uplands with shorter fire intervals, the bison 
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grazed sites had evidently high sills and variance proportions across seasons, compared to the 

ungrazed or cattle-grazed sites. This was consistent with the comparisons in the interspersion of 

the high-nitrogen patches, indicating that the differences between bison and cattle in their 

grazing intensity, forage strategy and site selection may be important factors accounting for 

canopy heterogeneity across different topography positions in a seasonally variable environment. 

The results from the remotely sensed imagery in my study were partly in agreement with 

the findings by Augustine and Frank (2001) from the field measurements that the influences of 

grazers on the plant communities were associated with the topography gradient at a coarse scale 

of 5 – 30 m. Their study also showed that the grazers promoted the spatial heterogeneity at a fine 

scale (0.1 – 2 m) through altering the vegetation canopy and diversifying the plant species. 

Unfortunately, in my study, analysis of spatial heterogeneity at a finer scale was limited by a 2 m 

spatial resolution of the remote sensor. On the remote sensing image, the details for the 

vegetation canopy within a 2 m × 2 m square were generalized, while the grassland plant species 

within a signal square meter can be of great diversity. This made the field measurements 

important and indispensable to the fine-scale analysis. 

In addition to the surface pattern analysis based on the continuous data, the numeric 

images can be converted to categorical maps by classifying the canopy nitrogen into five levels 

from low to high, through which the high nitrogen patches were located readily in the whole 

study area. The spatial distribution of the patches with high forage quality or quantity is of 

special interest in grassland science. In a previous study, the field measurements by Wallace et 

al. (1995) showed that the high biomass points were almost following a random distribution at 

both the burned and unburned sites. In my study, the spatial distribution of the high nitrogen 

patches was measured by the interspersion/juxtaposition index. Results revealed differences in 
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forage distribution associated with the fire and grazing factors. During the growing season, the 

high nitrogen patches were less interspersed in the areas burnt within one year than that with 

longer fire intervals. In the cases of fire intervals within one year, the high nitrogen patches were 

more interspersed in the grazed areas than in the ungrazed areas.   

 4.5 Conclusions 

My study analyzed the variation of canopy nitrogen in relation to factors of fire, ungulate 

grazing, topography and phenology. These factors collectively resulted in complex, variable 

vegetation covers. The separate effects of fire and the fire effects interacting with ungulates on 

grassland canopies have been studied repeatedly. Results of this study, consistent with those 

from previous studies (Collins and Wallace 1990; Loucks 1970), showed that fires greatly 

stimulated the plant productivity in the first year following the burn, resulting in the relatively 

uniform vegetation canopy. The interactive effects of fire and ungulates were most predominant 

in the areas with shorter fire intervals, where the spatial heterogeneity in the grazed canopy was 

great. Furthermore, the ungulate grazing effects varied with topographic positions and grazer 

species. The difference in vegetation spatial variability observed between lowlands and uplands 

grazed by bison and cattle extended the previous study of comparing the two herbivore species in 

Great Plains (Allred et al. 2011b). However, the comparison of bison and cattle in this study was 

at the watershed level, a relatively coarse scale. To dig deeper into details for difference in 

effects between the two grazer species on vegetation spatial heterogeneity, the grazing intensity 

at a finer spatial scale should be taken into account. This study, based on analysis from 

hyperspectral images, provided understanding of the grassland processes at a large spatial extent, 

which was expected to be meaningful as a baseline study for further modeling the grassland 
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dynamics involving interplay between vegetation variability, nutrition cycling and ungulate 

grazing behavior. 
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Chapter 5 - Investigating Interactions between Bison Forage and 

Vegetation Heterogeneity: the Use of Remote Sensing Imagery and 

GPS Relocations 

 Abstract 

This study investigated interactive processes among fire, vegetation and bison forage in a 

tallgrass prairie topography. Vegetation canopy nitrogen distribution and bison locations were 

acquired using hyperspectral remote sensing and GPS techniques, respectively. Bison movement 

pattern was calculated from the GPS locations using a method of biased random bridge 

movement-based kernel density estimation. The resulting bison utilization distribution maps 

were linked with factors of fire, topography and canopy nitrogen characteristics, through which 

bison resource selection and vegetation responses to bison forage were studied. In bison habitat 

selection, fire is a watershed-level factor that plays a predominant role in affecting bison 

distribution. Bison preference for burned watersheds was found evident across seasons, which 

was especially strong during the early growing season in May. At a later stage in June – 

September, the use of unburned areas was continuously increasing. Topography is a landscape-

level factor in bison resource selection. Bison avoided steep slopes and drainage bottoms. 

Lowlands were especially preferred in May – June, whereas the use of uplands was increased in 

August – September. Vegetation characteristics in canopy nitrogen are factors that affect bison 

resource selection at a finer scale. Results showed that bison preference for high canopy nitrogen 

patches was evident in May. Later in June – September, bison tended to avoid high-nitrogen 

sites. Vegetation heterogeneity showed significant influences on bison habitat selection in June. 

At this point of time, bison preferred sites with low variance in canopy nitrogen, where the patch 
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types were highly aggregated and equitably proportioned. As for vegetation responses to bison 

grazing, the proportion and spatial distribution of high-nitrogen patches showed different 

patterns between sites with high and low levels of space use by bison. A high level of herbivory 

was observed to reduce vegetation density and increase the evenness of high-nitrogen spatial 

distribution after the fire treatment initiated in May. 

 

 5.1 Introduction 

 Analysis of movement patterns is fundamental to understanding herbivore foraging 

strategy, which is important for improving management of grassland ecosystems (Coppedge and 

Shaw 1998; Senft et al. 1985). A traditional method for modeling the animal’s movement pattern 

is to estimate the home range (Burt 1943; Jennrich and Turner 1969), where the animal moves 

during its everyday activities. The home range can be calculated simply by a minimum convex 

polygon that completely encloses the relocations of the animal (List and Macdonald 2003). This 

method has been improved by a more formal model: the utilization distribution (UD). The UD is 

defined as a probability density of the animal’s relative occurrence frequency in a two-

dimensional space (van Winkle 1975). The kernel method is commonly used in UD estimation 

(Calenge 2006; Worton 1989).     

The classic kernel method estimates the UD statically, assuming that all the relocations 

are unlinked. More recently, spatial location of foraging animals can be tracked at a high 

temporal resolution using GPS devices. This activates the interest of developing a dynamic 

approach to estimating UD that takes into account the time dependence between successive 

relocations of the animal (Benhamou and Cornélis 2010). Then the movement-based kernel 

density method is developed and improved from the classic kernel method, through which the 
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UD is modeled based on the movement trajectories of the animal (Benhamou 2011). This 

method has been proven reliable and usable in most of current studies on the animal movement 

ecology (Papworth et al. 2012). 

The resulting UD estimation can be linked to a set of continuous or categorical resource 

variables for analysis of resource selection. The resource selection function (RSF) and resource 

utilization function (RUF) are commonly used methods for modeling animal resource selection 

(Hooten et al. 2013; Long et al. 2009). In the method of RSF, the response variable is usually 

defined arbitrarily using a binary variable which contrasts the used and unused locations in the 

habitat. Logistic regression is then used to relate the habitat variable with the resource variables 

(Anderson et al. 2005; Mace et al. 1996).  A limitation of this method is that the definition of the 

used and unused locations may not be accurate. In the method of RUF, a continuous variable 

summarized by the UD estimation is used as the response variable, which is related to the 

resource variables through a multiple regression (Bartlam-Brooks et al. 2013; Kertson et al. 

2011; Marzluff et al. 2004). Both methods can be used to predict the relative probability of space 

use, or compare the influences from different resources on space use by an animal. RUF is 

theoretically more advanced than RSF. However, a study by Long et al. (2009) reveals that RUF 

is feasible for modeling resource selection within a small home range, whereas RSF is more 

advisable for large herbivores with a relatively large home range.  

Grazing patterns of bison associated with forage resources are of special interest in North 

American grassland science. Ungulate grazing, interacting with other factors such as fire and 

topography, plays an important role in determining vegetation heterogeneity. In turn, the spatial 

pattern of canopy vegetation characteristics largely determines the habitat suitability for foraging 

herbivores. Studies of interactions between bison forage and vegetation heterogeneity are 
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valuable for understanding of grassland functions and conservation of grassland ecosystems. 

Before the era of GPS and remote sensing, a possible challenge for studies of grazing animal 

behavior is that the time-consuming manual field measurements of bison distributions and 

vegetation characteristics may not synchronize. This mismatch may lead to inappropriate 

evaluations of the response of grazers to the vegetation resources (Coppedge and Shaw 1998). 

With the development of GPS and remote sensing techniques, animal distributions can be located 

precisely by GPS at a high temporal resolution, while simultaneously the vegetation 

characteristics are monitored at a larger spatial extent by remote sensors. This new context 

allows quantitative examinations of interactions between bison grazing and vegetation 

characteristics at multiple spatio-temporal scales. 

The objective of this study is to evaluate bison resource selection and vegetation 

responses at a fine spatial-temporal scale (within watersheds, associated with the bison 

movement path). Forage patterns associated with factors at a coarse landscape scale, such as fire 

and topography, have been studied sufficiently (Allred et al. 2011; Fuhlendorf et al. 2009; 

Raynor 2015). A finer spatio-temporal scale analysis requires more finely resolved information 

on distributions of animal and vegetation resources. In this study, the bison locations recorded 

every 30 minutes by the GPS devices were used for UD estimation. The canopy nitrogen maps 

derived from hyperspectral remote sensing imagery with a 2 m spatial resolution (Ling et al. 

2014) were used for characterization of vegetation resource and habitat heterogeneity. Then 

interactions among bison forage, vegetation heterogeneity and topography were examined across 

seasons.  
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 5.2 Study Area 

This study was conducted at Konza Prairie Biological Station (KPBS, Figure 5.1), a 

tallgrass prairie in the Flint Hills near Manhattan, Kansas, USA (39°05’N, 96°35’W). The site is 

divided into more than fifty watersheds, each with a treatment combined by fire and ungulate 

grazing. Fire frequencies range from one to twenty years. Grazing treatments include grazing by 

American Bison (Bison bison), domestic cattle (Bos taurus) and non-grazing. These watershed-

level experiments allow long-term investigations into interactive processes among fire, large 

herbivores grazing, and grassland vegetation communities. There are ten watersheds fenced and 

grazed by bison. In this study, nine out of the ten bison grazed watersheds were included in the 

analysis. One of the watersheds was excluded due to insufficient image coverage (Figure 5.1).  

 

Figure 5.1 Study area at Konza Prairie Biological Station (KPBS). The site is divided into 

more than fifty watersheds with varying combinations of fire and grazing treatments. Nine 

out of the ten bison grazed watershed were included in analysis given the coverage of aerial 

imagery. 
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 5.3 Methods  

 5.3.1 Data Collection 

In this study, the bison live and move within the ten fenced watersheds (~1000 ha) at 

KPBS. The KPBS bison was established in 1987. The stocking rate is currently maintained at 

around 0.3 animals/ha. The sex ratio of mature females to mature males is around 4:1. Male 

bison are removed from the herd at the age of eight years old. Females may remain and stay in 

the herd until the age of fifteen.  

Bison live in maternal herds; older females are more dominant in their herd. Fourteen 

older, matriarchal female bison in different herds were selected and collared with Telonics 

TGW-3700 GPS devices. Their spatiotemporal locations were recorded every 30 minutes in 

2011. Each collared individual was followed by other 30 – 40 members in the herd, and thus 

locations of the collared individuals were representative of presence of the entire herds at KPBS 

(Raynor 2015).  

Hyperspectral imagery covering the study area was captured on four dates (26 May, 29 

June, 2 August, and 26 September, 2011) using an AISA Eagle camera mounted on a Piper 

Warrior aircraft operated by the Center for Advanced Land Management Information 

Technology (CALMIT) of the University of Nebraska-Lincoln. The spatial resolution of the 

aerial imagery is 2 m × 2 m. Canopy nitrogen maps were derived from the aerial imagery using 

hyperspectral analysis (Ling et al. 2014). Fire history records and the digital elevation model 

(DEM) of the study area were provided by the NSF Long Term Ecological Research Program at 

KPBS (Figure 5.2). 
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Figure 5.2 Data examples for analysis of interactions among (a) bison distribution 

(locations and movement trajectory of bison #026 during 27 May – 2 June, 2011), (b) 

vegetation heterogeneity (aerial imagery captured on 26 May, 2011), (c) fire history and (d) 

topography (DEM). 

 

 5.3.2 Data Analysis 

 5.3.2.1 Bison Forage and Habitat Selection 

Bison locations recorded for a week after the aerial imagery capture were selected for UD 

estimations to study how the existing canopy nitrogen distribution attracted bison and influenced 

bison forage patterns. UD maps of bison individuals were calculated using a method of biased 

random bridge (BRB) movement-based kernel density estimation (Benhamou 2011). This 

method considers the animal movement path a succession of steps. A drift to change the strength 
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and direction from one step to the next is taken into account, which makes the BRB model 

realistic in studies of animal movement (Calenge 2011).  

The resulting UD maps with a spatial resolution of 10 m were then linked with factors 

that may affect bison habitat selection. The factors analyzed in this study included fire, 

topography, canopy nitrogen and vegetation heterogeneity. The kernel densities of space use by 

bison in the burned and unburned areas were compared using a paired t-test. As for the 

topography factor, there were four topography types defined in the study area, including drainage 

bottoms, lowlands, uplands and hillslopes. Based on the DEM and the derived slope data of the 

study area, the areas with slopes greater than 10° (determined by a natural break) were classified 

as hillslopes. The lower flat areas (slope ≤ 10°) near to the gallery forest were classified as 

drainage bottoms. The higher flat areas were classified as uplands. The intermediate flat areas 

between drainage bottoms and uplands were classified as lowlands (Figure 5.3). The bison space 

use in different topography positions were compared using one-way analysis of variance 

(ANOVA).  

 

Figure 5.3 Topography divisions based on the DEM in the study area 
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At a finer scale (within watersheds, associated with the bison movement path and space 

use), factors that may affect bison habitat selection, including slope, elevation, canopy nitrogen 

and vegetation heterogeneity, were studied. Vegetation heterogeneity was measured by the 

standard deviation, contagion and Simpson’s diversity (SIDI) of canopy nitrogen. In this part of 

analysis, the unburned watersheds were excluded to reduce the difference in vegetation 

characteristics caused by the fire influence. In addition, the drainage bottoms which were 

severely encroached by gallery forests were excluded in analysis.  

Bison space use and topography factors (slope and elevation) were sampled for each 

individual every 30 meters along the movement trajectory. Vegetation characteristics were 

determined in a circular area with a diameter of 30 meters centered at each sample point, where 

the mean, standard deviation (SD), contagion (Contag) and SIDI of canopy nitrogen (Ncan) were 

calculated. The mean and standard deviation of canopy nitrogen were determined in the 

continuous maps. The contagion and SIDI were calculated in the categorical maps using the 

FRAGSTATS program (McGarigal and Marks 1995; Simpson 1949).The categorical maps were 

determined by classifying the continuous canopy nitrogen values into five classes from low to 

high levels using natural breaks. Bison space use was linked with habitat selection influential 

factors using a logistic regression model in the method of RSF: 

𝑦 =
1

1 + 𝑒−(𝛽0+𝛽1×𝑆𝑙𝑜𝑝𝑒+𝛽2×𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛+𝛽3×𝑁𝑐𝑎𝑛++𝛽4×𝑆𝐷++𝛽5×𝐶𝑜𝑛𝑡𝑎𝑔+𝛽6×𝑆𝐼𝐷𝐼+𝜀)
           (5.1) 

where y is a binary variable indicating the site use status; e denotes the exponential function; β0 

is the intercept; β1, β2, β3, β4, β5 and β6 are the regression coefficients for slope, elevation, and 

mean, standard deviation, contagion, SIDI of canopy nitrogen, respectively; ε is an error in the 

regression model. Results from RSF were compared with those from a multivariate regression 

model of the RSF method: 
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𝑦 = 𝛽0 + 𝛽1 × 𝑆𝑙𝑜𝑝𝑒 + 𝛽2 × 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 𝛽3 × 𝑁𝑐𝑎𝑛 + 𝛽4 × 𝑆𝐷 + 𝛽5 × 𝐶𝑜𝑛𝑡𝑎𝑔 + 𝛽6 × 𝑆𝐼𝐷𝐼 + 𝜀       (5.2) 

where y is a continuous variable denoting kernel density of space use by bison. In RSF and RUF, 

negative coefficients indicate that the corresponding predictive factors are avoided by bison. 

Positive coefficient indicates a preference for the given predictive factor. To compare the relative 

importance of the predictive factors, the regression analysis needs to be standardized; that is, the 

variances of dependent and predictive variables are 1. The absolute value of the standardized 

coefficient indicates its relative importance in resource selection.  

In the method of RSF, the individual UD estimation was classified into five levels from 

low to high using a natural break. The sample point located in the areas with low to intermediate 

low levels of bison space use was defined as an unselected site, and its utilization status was 

assigned to 0. Animals tended to travel through these “unselected” sites, rather than stay and use 

the habitat resources. Other sample points with intermediate to high levels of bison space use 

were assigned to 1. The individual sample points were pooled when fitting the logistic regression 

model in RSF. In the method of RUF, the multivariate regression model that relates the bison 

space use to habitat selection variables was calculated for each individual animal. The mean of 

the resulting coefficients for individual animals was compared with 0 using a t-test. If the mean 

coefficient is significantly different from 0, the corresponding resource variable is selected or 

avoided by animals. Otherwise, the resource variable is insignificant in the process of resource 

selection. 

 5.3.2.2 Vegetation Responses to Bison Grazing 

Bison locations recorded for a week before the capture of aerial imagery were selected 

for UD estimations to study vegetation responses to bison grazing activity. UD maps were 

calculated for individuals and then overlaid to form a summary map. The summarized UD map 

was classified into three levels from low to high using a natural break. The vegetation 
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heterogeneity was measured in the areas with low and high kernel densities of bison space use, 

respectively.  To measure vegetation heterogeneity, metrics of contagion, SIDI and the 

interspersion/juxtaposition index (IJI) for high-nitrogen patches were calculated in the 

categorical canopy nitrogen maps using the FRAGSTATS program. 

 5.4 Results 

 5.4.1 Fire and Topography 

At the watershed level, fire showed a predominant influence on habitat selection by 

bison. Paired t-test revealed that the kernel density of space use by bison in the watersheds 

burned in spring of the current year was significantly greater than that in the unburned areas 

across the growing seasons (Table 5.1). Preference for burned patches by large grazers is referred 

to as pyric herbivory, which has been observed repeatedly in previous studies (Allred et al. 2011; 

Fuhlendorf et al. 2009). Results in my study showed that the difference in bison space use 

between burned and unburned areas was greatest in May. This indicates that preference for 

watersheds with spring burns by bison is especially strong during the early growing season. The 

kernel density of space use by bison in the unburned watersheds continuously increased from 

May to September as the vegetation canopy was more developed (Figure 5.4).  

 

Figure 5.4 Kernel densities of bison space use in burned and unburned watersheds 
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Table 5.1 Paired t-test for comparing bison space use in burned and unburned areas 

 May June August September 

Mean of differences 0.2678 0.120 0.090 0.060 

t 34.494 46.173 16.004 4.388 

p-value <0.001 <0.001 <0.001 0.001 

 

Topography is a landscape-level factor that influences habitat selection by bison. In this 

study, the kernel densities of space use by bison in the four topography positions within the 

watersheds burned in spring were compared (Figure 5.5). Results of one-way ANOVA showed 

that differences in bison space use across topography positions were statistically significant over 

the growing seasons (Table 5.2). Tukey's honest significant difference (HSD) post-hoc test 

revealed more detailed comparisons between topography types (Table 5.3). In general, the bison 

space use in drainage bottoms and hillslopes was lower than that in lowlands and uplands. In 

May – June, lowlands had the highest kernel densities of bison space use. In August – 

September, the use of uplands increased and became the highest.    

 

 

Figure 5.5 Kernel densities of bison space use in different topography positions 
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Table 5.2 One-way ANOVA for kernel densities of space use by bison in different 

topography positions. 

 May June August September 

F 9.523 40.160 17.890 8.676 

p-value <0.001 <0.001 <0.001 <0.001 

 

 

Table 5.3 Tukey’s HSD post-hoc test for bison space use in different topography positions 

 Difference Adjusted p-value 

May   

Lowlands - Drainage bottoms 0.079 <0.001 

Hillslopes - Drainage bottoms 0.053 0.005 

Uplands - Drainage bottoms 0.046 0.019 

June   

Lowlands - Drainage bottoms 0.084   <0.001 

Uplands - Drainage bottoms 0.055  <0.001 

Lowlands - Hillslopes 0.081  <0.001 

Uplands - Lowlands -0.029 0.014 

Uplands - Hillslopes 0.052  <0.001 

August   

Lowlands - Drainage bottoms 0.075  0.001 

Uplands - Drainage bottoms 0.128   <0.001 

Uplands - Lowlands 0.053  0.027 

Uplands - Hillslopes 0.087   <0.001 

September   

Uplands - Drainage bottoms 0.143   <0.001 

Uplands - Lowlands 0.087 0.050 

Uplands - Hillslopes 0.145  <0.001 
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 5.4.2 RSF and RUF 

The relative importance of slope, elevation and canopy vegetation characteristics in 

habitat selection by bison was compared using the standardized coefficients of RSF and RUF 

(Table 5.4). Results of RSF were slightly different from that of RUF in the statistical significance 

and relative importance of habitat selection factors. Otherwise, there was no significant 

contradiction between the two sets of results. Combining results from the two modeling methods, 

the slope variable had consistently negative coefficients over seasons, indicating that bison 

always avoided slope zones. In May – August, the elevation variable tended to have significantly 

positive coefficients, indicating bison preferences for elevated sites. In September, the coefficient 

of elevation was negative and statistically significant in the analysis of RSF, whereas it was 

insignificant in RUF. This indicated a feeding site transfer by bison during the senescent season.  

A seasonal pattern across the canopy nitrogen coefficients was that they were positive in 

May but negative in June – September. During May – August, coefficients of canopy nitrogen 

were statistically significant in the analysis of RSF, but insignificant in RUF. In September, the 

variable of canopy nitrogen had significantly negative coefficients. This suggested that bison 

selected high canopy nitrogen patches in the early growing season; however, they tended to 

avoid sites with high canopy nitrogen in the later growing season. This contradiction may be 

explained by the “forage maturation hypothesis” (Fryxell 1991) and the selective forage behavior 

by bison. In the “grazing lawns”, bison may select the young plants in the areas with low-to-

moderate vegetation quantity to feed, which are potentially superior to mature, high-biomass 

vegetation cover in forage quality. Meanwhile, bison typically select graminoids (Plumb and 

Dodd 1993). Forbs contain many secondary chemicals that deter bison feeding. Bison grazing 

activities reduce the palatable grass species and allow forbs to flourish. The high canopy nitrogen 
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sites shown on the remote sensing imagery in the later growing season may be forb communities 

and therefore avoided by bison. These results were consistent with findings by Raynor (2015), 

which revealed that bison selected low-to-moderate grass covers and avoided high forb covers. 

Table 5.4 Comparing the standardized coefficients determined by RSF and RUF. The 

variables are highlighted in bold as the results of RSF are consistent with that of RUF. 

Variable 

 RSF    RUF  

Standardized 

β 

Standardized 

β SE 
p-value 

Standardized 

β 

Standardized 

β SE 
t p-value 

May        

Slope -0.0494 0.0209 0.018 -0.0435 0.0133 -3.2785 0.006 

Elevation 0.2022 0.0153 <0.001 0.0468 0.0218 2.1507 0.050 

Canopy 

nitrogen 
0.2778 0.0297 <0.001 0.0217 0.0329 1.6588 0.121 

Canopy 

nitrogen SD 
0.1378 0.0268 <0.001 0.0117 0.0130 0.9018 0.384 

Contagion -0.0487 0.0228 0.033 0.0064 0.0094 0.6812 0.508 

SIDI -0.15637 0.0378 <0.001 -0.0093 0.0141 -0.6551 0.524 

June        

Slope -0.3365 0.0191 <0.001 -0.0593 0.0059 -10.126 <0.001 

Elevation 0.2056 0.0145 <0.001 0.0596 0.0093 6.4193 <0.001 

Canopy 

nitrogen 
-0.0956 0.0175 <0.001 -0.0053 0.0039 -1.3721 0.1933 

Canopy 

nitrogen SD 
-0.1954 0.0306 <0.001 -0.0235 0.0070 -3.3453 0.005 

Contagion 0.0860 0.0212 <0.001 0.0098 0.0026 3.8044 0.002 

SIDI 0.2945 0.0339 <0.001 0.0349 0.0051 6.8772 <0.001 

August        

Slope -0.3192 0.0231 <0.001 -0.0579 0.0126 -4.6020 <0.001 

Elevation 0.1355 0.0189 <0.001 0.0417 0.0173 2.4025 0.032 

Canopy 

nitrogen 
-0.1766 0.0235 <0.001 -0.0276 0.0133 -2.0796 0.058 

Canopy 

nitrogen SD 
-0.0428 0.0354 0.227 -0.0089 0.0110 -0.8087 0.433 

Contagion 0.0661 0.0327 0.043 0.0082 0.0068 1.2014 0.251 

SIDI 0.2003 0.0529 <0.001 0.0133 0.0115 1.1626 0.266 

September        

Slope -0.5637 0.03906 <0.001 -0.1211 0.0215 -5.6196 <0.001 

Elevation -0.1642 0.03054 <0.001 -0.0033 0.0262 -0.1255 0.902 

Canopy 

nitrogen 
-0.1850 0.02951 <0.001 -0.0564 0.0228 -2.4722 0.029 

Canopy 

nitrogen SD 
0.0085 0.03755 0.822 -0.0021 0.0107 -0.1967 0.847 

Contagion 0.0770 0.02678 0.004 0.0197 0.0086 2.2949 0.041 

SIDI 0.1160 0.04251 0.006 0.0121 0.0134 0.9042 0.384 
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Effects of canopy vegetation heterogeneity on bison habitat selection were most evident 

in June. The coefficient of canopy nitrogen standard deviation was significantly negative, 

whereas the metric of contagion and SIDI had positive coefficients. This indicates that bison 

prefer sites with low variance in canopy nitrogen, where the patch types are highly aggregated 

and evenly proportioned. Among the three factors of vegetation heterogeneity, canopy nitrogen 

standard deviation and SIDI had higher importance than the contagion variable. Additionally, in 

September, the contagion variable had significantly positive coefficients, suggesting that bison 

selected highly aggregated patches. In most cases, the magnitudes of slope and elevation 

coefficients were greater than that of coefficients for canopy nitrogen characteristics. This 

indicates that topography is potentially a more important factor than vegetation resources in 

bison habitat selection. In fact, prairie vegetation characteristics themselves are greatly affected 

by topography (Hartnett et al. 1996).  

The slope variable showed a consistent effect on bison habitat selection, and itself can be 

an important factor influencing distribution of canopy properties. Analyses of RSF and RUF 

excluding the slope zones (Table 5.5) revealed effects of canopy properties on bison resource 

selection in more detail, in which influences of topography on vegetation characteristics, and 

therefore on bison forage were reduced. Results in Table 5.5 verified the seasonal pattern of 

canopy nitrogen coefficients observed in Table 5.4. The coefficients of canopy nitrogen were 

positive in May but negative in June – September, and at this time, the canopy nitrogen 

coefficients were statistically significant in both RSF and RUF. This indicated that bison had 

evident preference for grass patches with high nitrogen in the early growing season. However, 

they tended to select the low-to-moderate grass covers with potentially high forage quality to 

feed and avoided forbs of high biomass in the later growing season. 
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Table 5.5 Analyses of RSF and RUF excluding the slope zones. The variables are 

highlighted in bold as the results of RSF are consistent with that of RUF. 

Variable 

 RSF    RUF  

Standardized 

β 

Standardized 

β SE 
p-value 

Standardized 

β 

Standardized 

β SE 
t p-value 

May        

Elevation 0.2188 0.0168 <0.001 0.0218 0.0250 0.8719 0.399 

Canopy 

nitrogen 
0.3202 0.0258 <0.001 0.0546 0.0194 2.8142 0.015 

Canopy 

nitrogen 

SD 

0.2448 0.0319 <0.001 0.0400 0.0180 2.2172 0.045 

Contagion -0.0288 0.0283 0.307 0.0090 0.0113 0.7982 0.439 

SIDI -0.2090 0.0429 <0.001 -0.0396 0.0268 -1.4788 0.163 

June        

Elevation 0.1931 0.0132 <0.001 0.0691 0.0109 6.3513 <0.001 

Canopy 

nitrogen 
-0.1590 0.0193 <0.001 -0.0126 0.0042 -3.0011 0.010 

Canopy 

nitrogen 

SD 

-0.1709 0.0332 <0.001 -0.0142 0.0066 -2.1594 0.050 

Contagion 0.0773 0.0229 <0.001 0.0134 0.0040 3.3488 0.005 

SIDI 0.2761 0.0401 <0.001 0.0306 0.0054 5.6613 <0.001 

August        

Elevation 0.1357 0.0179 <0.001 0.0414 0.0156 2.6612 0.020 

Canopy 

nitrogen 
-0.2449 0.0272 <0.001 -0.0395 0.0159 -2.4872 0.027 

Canopy 

nitrogen SD 
-0.0806 0.0371 0.030 -0.0293 0.0144 -2.0346 0.063 

Contagion 0.0421 0.0372 0.258 0.0091 0.0075 1.2075 0.249 

SIDI 0.2008 0.0561 <0.001 0.0247 0.0197 1.2533 0.232 

September        

Elevation 0.0289 0.0253 0.252 0.0421 0.0246 1.7090 0.113 

Canopy 

nitrogen 
-0.3218 0.0318 <0.001 -0.0734 0.0317 -2.3141 0.039 

Canopy 

nitrogen SD 
0.0417 0.0414 0.3133 0.0015 0.0129 0.1128 0.912 

Contagion 0.1015 0.0332 0.0022 0.0227 0.0112 2.0263 0.066 

SIDI 0.1172 0.0459 0.0107 0.0281 0.0244 1.1513 0.272 

 

Again, the influences of vegetation heterogeneity were most evident in June. The relative 

importance of canopy nitrogen SD, contagion and SIDI was consistent with that analyzed in 

Table 5.4. The coefficients of canopy nitrogen SD in May were positive and statistically 
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significant. Effects of elevation were significant only in June and August, which was slightly 

different from results in Table 5.4.  

 5.4.3 Bison Grazing Density Influencing Vegetation Heterogeneity 

Vegetation heterogeneity at sites with high and low bison space use was shown in Table 

5.6. Mean and standard deviation of canopy nitrogen contents were summarized. Metrics that 

measure vegetation heterogeneity on categorical nitrogen maps included percentage of high-

nitrogen patches (%H), IJI for high-nitrogen patches (H-IJI), contagion index and Simpson’s 

diversity. The mean of nitrogen content, %H and H-IJI showed interesting patterns of vegetation 

characteristics between sites with high and low bison space use across seasons. In the early 

growing season, shortly after the fire treatments initiated, the areas with high space use by bison 

had greater canopy nitrogen contents than the zones with low-level bison space use. In addition, 

zones with high-level bison space use had a greater proportion of high-nitrogen patches, and the 

high-nitrogen patches were more aggregated. At a later stage of the growing season during June 

– September, the mean of canopy nitrogen content and proportions of high-nitrogen patches in 

the areas with high bison space use became lower than that with low bison space use; meanwhile, 

the interspersion of high-nitrogen patches in the areas with high bison space use became greater 

than that with low bison space use. This suggested a difference between high and low levels of 

ungulate grazing density. A high level of herbivory reduced vegetation density and increased 

vegetation heterogeneity. 
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Table 5.6 Vegetation heterogeneity at sites with high and low levels of bison space use. 

Mean and standard deviation of canopy nitrogen are calculated. Vegetation heterogeneity 

is measured on categorical nitrogen maps using metrics, including percentage of high-

nitrogen patches, IJI for high-nitrogen patches, contagion index and Simpson’s diversity. 

Month 

High bison space use Low bison space use 

Mean 

(SD) 

%H H-IJI Contag SIDI Mean 

(SD) 

%H H-IJI Contag SIDI 

May 1.62 

(0.34) 

4.72 11.06 37.12 0.65 1.53 

(0.34) 

2.91 14.86 36.21 0.65 

June 1.80 

(0.29) 

12.60 48.59 16.27 0.76 1.89 

(0.29) 

21.10 40.93 18.78 0.76 

August 0.78 

(0.46) 

5.77 35.18 21.61 0.77 1.03 

(0.51) 

16.64 28.00 19.45 0.79 

September 0.59 

(0.23) 

4.26 26.80 23.80 0.76 0.74 

(0.24) 

13.85 17.56 23.54 0.76 

 

 5.5 Conclusions 

In this study, influences from fire, topography and vegetation canopy nitrogen on habitat 

selection by bison were analyzed and compared. Fire played a predominant role in affecting 

bison distribution at the watershed level. Space use by bison was found to be more concentrated 

in watersheds burned in spring of the current year. Bison preference for burned areas was evident 

over seasons from May – September, which was especially strong during the early growing 

season in May. At a later stage of growing season from June – September, use of unburned 

watersheds by bison was increased. This fire-promoted herbivory is caused by a shifting mosaic 

of vegetation patterns resulting from the fire and grazing interactions across landscape 

(Fuhlendorf et al. 2009; Fuhlendorf et al. 2010).  

Topography is a landscape-level factor that affects bison forage and habitat selection. In 

general, bison avoid steep slope and prefer elevated sites. Avoidance of steep slope is common in 

resource selection by large herbivores (Allred et al. 2011; Frank and Groffman 1998; Frank et al. 

1994). Drainage bottoms, where woody plants are thriving, are avoided by bison. This is 

different from forage strategy of cattle, in which woody vegetation is preferred (Allred et al. 
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2011). In the flat, higher lowlands and uplands (compared to drainage bottoms), space use of 

lowlands by bison was found to be slightly higher than uplands during May – June, whereas use 

of uplands was increased at a later stage of growing season from August – September. 

Topography had higher importance than vegetation in bison habitat selection. Topography itself 

can be an important driver that controls spatial distribution of vegetation characteristics (Hartnett 

et al. 1996). 

As for vegetation resources, bison preference for patches with high canopy nitrogen was 

evident in May. However, during June – September, bison even avoided sites with high canopy 

nitrogen. This contradiction may be explained by the “forage maturation hypothesis” and the 

selective forage behavior by bison. Bison select palatable grass species and allow forbs to 

flourish. In the later growing season, bison may select the low-to-moderate grass covers that are 

nutritionally superior to forb covers of high biomass. 

Vegetation heterogeneity (i.e., SD, contagion and SIDI of canopy nitrogen) showed 

significant effects on bison resource selection in June. Bison tended to select sites with low 

variance in canopy nitrogen, where the patch types were highly aggregated and equitably 

proportioned. These findings on bison responses to vegetation resources extended observations 

reported by Raynor (2015), Wallace et al. (1995), Plumb and Dodd (1993) to a finer spatial scale. 

Influence of bison forage on spatial heterogeneity of vegetation cover was examined 

using FRAGSTATS metrics at class level (i.e., proportion and interspersion of high-nitrogen 

patches) and landscape level (i.e., contagion and Simpson’s diversity). The class-level metrics 

for high-nitrogen patches revealed evident differences between areas with high and low bison 

space use across seasons. In May, a greater proportion of high-nitrogen patches with lower 

interspersion were observed at sites with high bison space use. During June – September, a high 
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level of herbivory reduced vegetation density and increased the evenness of high-nitrogen 

distribution. The landscape-level metrics, which measured contagion and diversity across all the 

five classes of canopy nitrogen from low to high, showed insignificant differences associated 

bison space use. 

In summary, this study investigated interactive processes among fire, vegetation and 

bison forage in a tallgrass prairie topography. Spatial heterogeneity of vegetation cover and bison 

locations were acquired precisely using remote sensing and GPS techniques, respectively. The 

fine spatio-temporal resolution allowed accurate evaluations on dynamics between bison 

movement and vegetation responses. My study provided insights into applications of remote 

sensing imagery to spatial analysis of bison forage pattern associated with canopy nitrogen. As 

spectral methods for other vegetation nutritional elements, such as Mg, P, S, K, and Ca, are 

validated in the remote sensing imagery, bison selection for vegetation nutritional elements can 

be assessed more comprehensively. A potential limitation of the use of remote sensing imagery 

in this study is that it is difficult to detect plant species, whereas plant species can be an 

important factor in resource selection by large herbivores. Further studies of determining plant 

species (grasses vs. forbs) using spectral analysis will improve the use of remote sensing imagery 

in grassland science. 
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Chapter 6 - Summary 

My dissertation research focused on: (1) spectral analysis of grassland vegetation 

characteristics, and (2) spatial analysis of grassland dynamics and grazer behavior. In spectral 

analysis at the leaf level, I estimated the foliar pigments and nutritional elements using 

hyperspectral data. The foliar pigments, chlorophylls and carotenoids, were retrieved by 

inverting the PROSPECT leaf model. The nutritional elements, Mg, P, S, K and Ca, were 

empirically modeled by Partial Least Squares (PLS) regression applied to in-situ spectral 

measurements. At the canopy level, I assessed the use of broadband vegetation indices, NDVI 

and GRVI, in detecting vegetation quality and quantity. The relationships between the vegetation 

indices and vegetation characteristics were examined in the canopy model, PROSAIL, and 

validated by a field dataset of tallgrass prairie vegetation. In the spatial analysis, I examined 

interactions between pyric herbivory and grassland heterogeneity at multiple scales from the 

remote sensing imagery. At a coarse, watershed scale, I evaluated effects of fire and large 

herbivores on the spatial distribution of canopy nitrogen. The effects from the two grazer species, 

bison and cattle, were compared. At a fine, patch scale within watersheds, bison forage pattern 

was examined associated with canopy nitrogen heterogeneity. Here, I summarize my findings 

and provide suggestions for follow-on research.  

 6.1 Spectral Analysis 

 6.1.1 Leaf Level 

In Chapter 2, the hyperspectral analysis of leaf pigments and nutritional elements focused 

on the region of 470 – 800 nm. A spectral standardization method using a form of normalized 

difference was developed and proved effective to reduce the significant background impact in 

measurements of leaf reflectance for grassland species. There are four feature points highlighted, 
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including the nadirs in the blue and red regions, the green peak and the turning point in the near 

infrared region. The positions and reflectance values of these feature points have been proven 

useful for detecting leaf pigments. 

In retrieval of leaf pigments, the leaf structure parameter in PROSPECT 5 model showed 

a significant effect on the spectral response pattern. A proper selection of the range of leaf 

structure parameter can reduce much of the bias in model validation and improve model 

prediction accuracy. This study documented that a range of leaf structure parameter from 1.7 – 

1.9 is reasonable for tallgrass species. Estimation of nutritional elements required more finely 

resolved spectral features, and resulted in more complex spectral models than retrieval of leaf 

pigments. A reasonable selection of the modeling and validation datasets was critical to 

improving prediction accuracy of the empirical models for leaf nutrients.  

It was promising to quantify leaf pigments and nutritional elements using the 

hyperspectral analysis methods developed in this study. Results of this study were comparable 

with those reported by Mutanga et al. (2004) and Feret et al. (2008). Further, this study examined 

relationships between leaf photosynthetic pigments and nutritional elements, providing a 

comprehensive assessment of leaf nutrition status for grassland species. Results showed that 

chlorophylls were positively correlated with the element K, and the carotenoids were negatively 

correlated with Mg and Ca. The ratio of chlorophylls to carotenoids showed positive correlations 

with P, S and K, consistent with previous studies which concluded that the ratio of chlorophylls 

to carotenoids can be an important index that reflected plant phenology and nutritional status 

(Feret et al. 2008; Yang et al. 2010).  
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 6.1.2 Canopy Level 

In Chapter 3, the broadband vegetation indices, NDVI and GRVI, were compared in the 

PROSAIL canopy model. Results showed that NDVI reflected combined information of 

vegetation quantity (LAI) and leaf quality (leaf chlorophyll concentration), which can be used to 

quantify plant biochemical characteristics at the canopy level. GRVI performed better than 

NDVI in estimating LAI in an environment with varying leaf chlorophyll concentrations, 

suggesting that GRVI can be a more robust and reliable indicator of vegetation quantity than 

NDVI. GRVI has been widely used in qualitative analyses to track vegetation changes over 

seasons or canopy differences across ecosystem types (Ishihara et al. 2015; Motohka et al. 2010; 

Nagai et al. 2014). Its feasibility to quantify vegetation characteristics has not been studied 

sufficiently. My dissertation has verified the feasibility of GRVI in estimating vegetation 

quantity. Neither NDVI nor GRVI can be used to estimate leaf chlorophyll concentration as the 

LAI varies. However, a combination of GRVI and NDVI, proposed as GNVI (green-red 

normalized vegetation index), showed a great improvement in estimating leaf chlorophyll 

concentration across varying LAI values. The findings of this study were important for 

improving the use of broadband vegetation indices from multispectral remote sensors to detect 

vegetation quality and quantity over a wide spatial extent. 

 6.2 Spatial Analysis 

 6.2.1 Watershed Scale 

In Chapter 4, the effects of fire and large herbivores (bison and cattle) on canopy nitrogen 

distribution were examined at a coarse, watershed scale from the remote sensing imagery. It was 

found that fire improved grassland production and resulted in more uniform canopies with 

adjacent high-nitrogen patches during the growing season in May – August. Fire interacted with 
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large herbivores in that large herbivores preferred new, burned grasslands. The high level of 

herbivory in the burned watersheds reduced the canopy density and increased the interspersion of 

high-nitrogen patches. 

Effects from bison and cattle were compared in the burned watersheds. Generally, at the 

early growing season in May, bison grazed areas had lower canopy nitrogen and higher 

interspersion of high-nitrogen patches than cattle grazed sites. During the mid of growing season 

in June – August, differences between sites grazed by bison and cattle were insignificant except 

in the uplands. This indicated that bison had more evident influences on vegetation canopies in 

uplands than cattle did. The variogram analysis showed that the sites with bison had higher sills 

and variance proportions, indicating that bison created greater grassland heterogeneity than 

cattle. The differences in canopy nitrogen distribution between sites with bison and cattle across 

topography positions and seasons may be explained by the differences in the grazing intensity 

(Afzal and Adams 1992; Augustine and Frank 2001), forage herbivore and habitat selection 

(Allred et al. 2011) between the two grazer species. My study extended the previous research of 

effects from fire (Collins and Wallace 1990; Loucks 1970) and large herbivores (Allred et al. 

2011; Augustine and Frank 2001) on grassland heterogeneity across topography (Abrams and 

Hulbert 1987). It can be a baseline study for further modeling grassland dynamics involving 

interplay between vegetation variability, nutrition cycling and ungulate grazing behavior. 

 6.2.2 Fine Scale within Watersheds 

In Chapter 5, I investigated the bison forage pattern associated with canopy nitrogen 

distribution within watersheds. Results indicated that vegetation resources influenced bison 

forage pattern and habitat selection at a finer scale than fire and topography. Bison preference for 

high canopy nitrogen patches was evident and statistically significant in May. It was interesting 
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that bison showed avoidance of sites with high canopy nitrogen in June – September. This 

contradiction may be explained by the “forage maturation hypothesis” and the selective forage 

behavior by bison. In the “grazing lawns”, bison tended to select the low-to-moderate grass 

covers with potentially high vegetation quality to feed and avoid forbs of high-biomass. The high 

canopy nitrogen sites shown on the remote sensing imagery in the later growing season may be 

high forb covers, and therefore avoided by bison. 

Evident effects of vegetation heterogeneity on bison habitat selection were present in 

June. Bison tended to select canopies with low variance in nitrogen values, where the canopy 

nitrogen patch types were highly aggregated with equitable proportion distribution. These 

findings extended observations of bison forage responses to vegetation resources reported by 

Raynor (2015), Wallace et al. (1995), Plumb and Dodd (1993) to a finer spatial scale within 

watersheds.  

 6.3 Limitations and Further Directions 

My study provided insight into remote sensing applications to analyses of grassland 

dynamics at multiple scales. A limitation of the use of remote sensing is that the fineness of the 

analysis scale is determined by the spatial resolution of the remote sensor. On the remote sensing 

imagery, vegetation characteristics are generalized within the spatial resolution, where the 

heterogeneity is not detectable. This makes the field measurements important and indispensable 

to the finer-scale (< the remote sensing spatial resolution) analysis.  

Another challenge in my study is that the plant species, grasses vs. forbs, are not 

detectable from the remotely sensed nitrogen maps. However, plant species can be an important 

factor that affects forage selection by large herbivores. Further studies of differentiating forbs 
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from grass species in a tallgrass prairie canopy using spectral analysis may improve the use of 

remote sensing imagery in grassland science. 

In the analysis of bison forage strategy and habitat selection, canopy nitrogen was the 

only vegetation characteristic taken into account. Further studies that incorporate other nutrients 

(Mg, P, S, K, and Ca) and canopy properties (plant species and vegetation quantity) in analysis 

are necessary for a more comprehensive assessment of bison response to spatial distributions of 

vegetation resources. As the bison forage hierarchy and pyric herbivory effects on canopy 

property distributions are fully understood, a dynamic model of bison movement and grassland 

heterogeneity can be simulated. This can provide valuable implications to grassland conservation 

and management. 
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