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CHAPTER 1 - INTRCDUCTION

System availability is defined as the probability a system is operating
satisfactorily at any point in time when used under stated conditions, where
the [total] time considered is operating time and active repair time [22].
Because of this useful combination of reliability and maintainability measures,
availability is increasingly being used as a measure of system performance.

But why, specifically, the increase? Presently, more emphasis is being placed
on the facets of system maintenance along with the reliability, rather than
solely on the reliability, which is due to an increased awareness of operational
and maintenance constraints (of which costs and time are just a few). Avail-
ability measures, alone, take into account a growing desire to decrease system
maintenance while increasing system reliability.

The estimation of system availability has been approached in many different
manners. Most require the accumulation of data of the on and off times of the
system with, usually, the more data accumulated, the better the estimate. But,
can the system availability be accurately estimated if not much data are avail-
able? What if no data are available and an availability measure is still
desired? (This is especially true in the case of nuclear power plants, when
data of system failures are definitely not desired, even if available.) In
these cases, Bayesian estimation approaches have proven most fruitful.

But Bayesian approaches have been slow in appearing, possibly due to the
many criticisms of incorporating what is essentially subjective prior information
about the parameters with the data information, if it is available. And even
though the use of Bayesian theory is usually thought of as one technique in and

of itself, numerous estimation methods have recently evolved that could all be



considered Bayesian. Hence, the confusion and the controversy continues.

1.1 Reasons for Study

The underlying theme of this study is the comparison of three estimation
methods of system availability, one classical and two Bavesian. to determine
which is "best" in terms of closeness to steady-state availability, variability
between samples, computer execution time, ease of programming and ease of
understanding. Comparisons will be made between the classical estimator and
the Bayesian estimators, but of major concern will be the comparisons among
the Bayesian estimators themselves. Not much work has been done in terms of
distinguishing better Bayesian methods from others. (Probably because of the
controversy still existing as to whether Bayesian techniques should be utilized
at all! [6] [4a] But this is not the purpose of the study.) Hopefully, this
study will identify which estimators prove most helpful under certain sampling

conditions.

1.2 Bayesian Treatment of System Availability

System availability from the non-Bayesian viewpoint has been widely
studied. Many definitions of availability are available and many distributions
are associated with the operative and repair intervals of the system. Numerous
approaches have been derived and various system configurations have been
explored. For a thorough literature survey of these and other topics of non-
Bayesian system availability see [13].

The impetus for using Bayesian approaches stems from a desire to incorporate
when available, prior information about the system and its parameters under
study. Most commonly, engineers extremely familiar with a specific system
feel this way, not wanting to waste any information, no matter how informal.
And, in cases where this "informal' prior information can be expressed more
formally in the form of specific probability distributions, Bayesian inference

is most productive.



Brender [3] was the first to use Bayesian theory to predict and measure
system availability. The model considered was a basic single system con-
figuration involving an alternating sequence of independent and exponentially
distributed operative and repair intervals. The intervals' respective rate
parameters were described by gamma distributions. Brender showed the steady-
state point availability had a Euler distribution from which he derived his
availability estimate. The transient case (where availability is time-
dependent), along with other broader availability cases, was then derived
from the steady-state case. In his second paper [2], Brender removed the
restrictions of exponential operative and repair intervals and gamma prior
distributions. Applications were then made to cases involving:

(1) prior distributions composed of linear combinations of gamma
distributions;

(2) gamma-distributed repair intervals with uncertain location and
shape parameters;

(3) randem demands within an initial interval, demands repeated
at intervals, redundant configurations; and,

(4) measures of performance other than availability.

Gaver and Mazumdar [7], using the same model as Brender, derived Bayesian

estimators of long run availability using two different sampling techniques:
(1) ‘'snapshot'" - observations made at points in time to determine
merely if the system is up or down at that point in time; and,
(2) T"patch" - a sequence of continuous observations recording the
duration of up and down times of the system.

They also explored cases with different loss functiocns.



Thompson and Springer [21] calculated a Bayesian prediction interval
for an N-series system. Snapshot data was accumulated for each of the N
components of the series and a posterior density function and availability
estimate were determined for each component. The system availability,
essentially a product of the component availabilities was then calculated
through the use of the Mellin integral transform. The components, however,
did not have the two-state configuration as previously described.

Later, Thompson and Palico [20] incorporated the two-state configuration
with exponential on and off times and gamma prior distributions . into each
of the components and used Brender's Euler distribution to express each of
the components' availability. The system availabilities for N-series and i-
parallel systems were then calculated by using a method of successive approximatic
of the cumulative distribution function given the sequence of integer moments,
in lieu of the Mellin integral transform.

All of the above references, with the exception of Brender, dealt solely
with the estimation of the steady-state availability of a system. The models
did not take into account any dependency on time. Kuo [12] filled this void
by introducing Bayesian estimation for a time-dependent system availability
model. The system was of single component configuration, and was represented
as a two-state stochastic process,the two states being the on state and the
off state. The operative (on) and repair {off) times were gamma distribufed
and the prior distributions of the non-fixed parameters were exponential. The
time-dependent availability expression was derived via renewal theory.

Kuo calculated his Bayesian estimate by taking the expected value of the
posterior distribution, because he assumed a squared error loss function. He
also calculated a classicalihéiihﬂﬁ Aiiiéiiﬁbda‘égfiﬁafé:"én&'Bféndéf(s

estimate for comparative purposes.



Kuo was the first to compare difrferent estimation methods in terms of
Bayesian versus classical and Bayesian versus Bayesian, His criteria, al-
though not specifically stated, were closeness to steady state availability
and variability between samples. Calculating system availability estimates
for a data set with negative exponentially distributed on and off times using
different samples, priors and time intervals, he reached the following con-
clusions:

(1) for small sample sizes, the maximum likelihood estimate was not

useful due to wide variation between samples;

(2) the choice of priors did not have much affect on the Bayesian

estimates;

(3) with smaller samples, the Bayesian approaches showed less vari-

ability;

(4) Bayesian approaches with good or bad priors gave better results

than the maximum likelihood estimate for a biased sample; and

(5) when no data are available, only Bayesian approaches work.

1,3 Methodology of Study

This study consists of two main portions: first, the estimation of
system availability and, second, the selection of the best estimate.

Chapter Two outlines how tﬁe system availability will be represented.
The model used here is based on renewal theory, since the system is a two-
state stochastic process with the two states being the on and the off state.
Also, specific representations will be given for the cases when on and off
times have a gamma distribution and when they have an exponential distribution.

Introduced in Chapter Three will be the three estimates: the classical

maximum likelihood estimate, the traditional Bayesian estimate with squared



error loss function and Brender's Bayesian estimate. All will be derived
for a general time dependent system availability expression along with
expressions for the two special cases mentioned above.

Actual calculations of these three estimates will be made for two
separate data sets in Chapter Four. Sensitivity analyses will also be
performed with different sizes and types of samples, different priors and
different time horizons. Also, the data-no data cases will be explored.

The remainder of the study will be devoted to the selection of the
best estimate. In Chapter Five, after a brief introduction to multiple-
criteria and multiple-attribute decision making (MADM), the attributes
for the best estimate will be given along with the five MADM methods used:
dominance, simple additive weighting, linear assignment, ELECTRE and TOPSIS.
Finally, the best estimation method for system availability will be chosen

based on the results of the MADM analyses of the two example data sets.



CHAPTER 2 REPRESENTATION OF AVAILABILITY

Availability is generally known as the probability the system is operating
satisfactorily at any point in time under stated conditions. But many categories
and classifications are defined in the literature, with no uniformity of terms.
Therefore, a short review of definitions and terms is presented along with the

statement and derivationof the two-state stochastic system via renewal theory.

2.1 Definitions

The major reason availability is enjoying a wider useage as a measure of
system performance .. is the fact that it combines the measures of reliability
and maintainability. Reliability is the probability a system will perform
satisfactorily for at least a given period of time ("up time'") whereas main-
tainability is the probability a system is restored to an operable condition
within a specified time ("down time"). It is this incorporation of main-
tainability that makes availability more attractive than reliability alone as
a measure of system performance.

Depending on the time interval considered, availability is classified as
either: (1) instantaneous availability, (Z) average uptime availability, or
{3) steady-state availability [17]. Instantaneous availability, g(t), is
defined as the probability the system is operational at any random time t,
where 0 < t < @, Average uptime availability, g(T), is the proportion of time
in a specified time interval (0, T) the system is available for use. It is

expressed as

TORENRIOR ()

(o}

Steady-state availability is the instantaneous availability at time t = =

and, therefore, the limiting case of instantaneous availability. It is easily



estimated from sample data as the ratio of mean up time to mean total time:

E[Ton]

lim g(t) =

o )

(2)
E [T]

where: T is on time
on

T is total cycle time

The choice of availability class is dependent upon the system mission and
its conditions of use. For systems which are required to perform a function
at any random time, instantaneous availability would be the best measure.
A good example would be a data-processing system used in air traffic control
which is calied upon to process flight paths and then remain idle for a length
of time. The average uptime availability would be the most appropriate measure
for systems whose usage is defined by a duty cycle, such as a tracking radar
system which is called upon only after an object has been detected and is ex-
pected to track continuously for a given time period. Finally, the steady-
state availability wouid be the most satisfactory measure for systems which
are operating continuocusly, as a detection radar system.

Note that the average uptime and steady-state availabilities are special
cases of the instantaneous availability. Therefore, considerable importance is

attached to the development and understanding of instantaneous availability.

2.2 System Representation using Renewal Theory

Several approaches are available to derive and represent system avail-
ability. Here, however, renewal theory is chosen because of the two-state
stochastic nature of the system.

Renewal theory, which has its origins in the study of self-renewing

aggregates [1], was not applied directly to availability problems until 1962



when Parzen [14] derived the steady-state availability using renewal theory.
He considered a simple two-state stochastic process with the two states being
the on state and the off state. He presented the expected number of renewals
at a random time t in a complex form assuming a gamma distributed inter-arrival
time. Unfortunately, due to the complex form, it is not very practical to
use, except in a few special cases. Therefore, Kuo [12], also using renewal
theory, derived a much more useful analvtical expression without the complex
terms. Again, gamma distributed inter-arrival times are assumed, since
analytical solutions for system availability are extremely difficult, if not
impossible, to obtain when the underlying on times and cycle times are not
gamma distributed. But Kuo also provided a computer simulation approach
useful when the on and cycle times are other than gamma distributed, or when

the empirical data are based on general renewal theory.

2.2.1 Statement of the System and its Gemeral Analytical Solution

The System

Consider a system which can be in one of two states, either on or off .
In the on state the svstem is operating, while in the off state, the
system is failed and under repair. Assume at t={0 the system is on , and
is in service for a random time Ton until it fails. Tcn has the probability
density functiocn fon(t) and the cumulative distribution function Fon(t). When

the svstem fails, it is then off and under repair for a random time TD with

ff
probability density function fof:ft) and cumulative distribution function
Fo¢f(t)' The system then repeats these on and off states of random duration.

Successive times to breakdown and repair are assumed te be independent and the

events of operative or inoperative are independent of time.
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A complete cycle time, T, is also a random variable, composed of the addition
of the random variables TOn and TOff (See Figure 2-1). Then T is a random vari-
able of the time from just the beginning of an operative state through a
brezkdown and repair to the time the system is just restored to operative
again. It has the probability density function £(t) and the cumulative dis-
tribution function F(t).

A Renewal Equation

The instantaneous availability, g(t), is defined as

g(t) = probability the system is o

J Pr[System on at t | T=s]f(s)ds
0

fm Pr[system on at t ] T=s]dF(s) (3)
0
where s is a time index in the time interval [g,=].

But the Pr[system on at t [T=s] gives different values depending upon
whether t < s or not.
Case 1: T=s<t

A
0! T

Y

lI-+—

A complete cycle has terminated at T < t, so the conditional probability of the
system being on at t given T=s is exactly the unconditional probability of the
system being on when starting at a point which excludes the completed cycle,

i.e., the availability at (t-s).



Ton v

11

0
K Toft ?'

|- T

T : on time
on
Toff: off time
T : total cycle time
Note that Ton + Toff =T
Figure 2-1: A pictorial representation of one cycle of the two state

system. Ton’ Toff’ and T are all random variables.



Case 2: T=s > t

e

LS
™7
=5

T

g
||
t

A complete cycle has terminated at T > t, so the conditional probability of
the system being on at t given T=s is equivalent to the conditicnal probability
that t < T__ given T=s.

on

Summarizing, Pr{system on at t | T=s]

g(t-s), when s < t

(4)

Prit < T | T=s], otherwise
on

The renewal equation for instantaneous availability can now be expressed by

substituting eq. (4) into eq. (3):

=]

g(t) = J Pr[system on at t [T=s]dF(s)

&

t

Pr[system on at t|T=s]dF(s)

L]

+ Jm Prsystem on at t|{T=s]dF(s)

L= -]

J Prt < Ton|T=s]dF(s)
t

ot

+

j g(t-s)dE(s)

Lam

ct
+

git-s)}dF(s) Pr[t < Ton and t < T]

o

+

<

rt

g(t-s}dF(s)

+

Pr[Ton > t]

E
J g(t-s)dF(s) + Prit < T_]

Q



t
g(t) f g(t-s)dF(s) + [1-F_ (t)] (5)

0

the probability the system is operative a time t
Recall, Fon(t) is the cumulative distribution function of Ton'

Eq. (5) is a renewal equation of availability at any random time t
to which a general solution can be obtained. Note that eq. (5) is derived
without any assumptions on the cycle, on or off time distributions. To
reach a general solution of eq. (5), the total number of renewals at time
t, N(t), and the counting process [N(t), t > 0] and its distribution must be
derived.

The Counting Process and its Distribution

Let the cycling events in the interval [0,~] be denoted by the successive
inter-arrival times Tl’ T2, ... defined as:

Tl = the time from 0 to the first cycle

Ti = the time from the (i-l)St cycle to the ith cycle, 1 = 2,3,...
All Ti’ i=1,2,... have the same distribution as T.

Also consider the waiting time to the ith cycle, wi, defined as the
time it takes to observe the ith cycle finished in a series of cycles
occurring in a time span (See Figure 2-2).

From Figure 2-2, note that the inter-arrival times, Ti’ can be conveniently

defined in terms of the waiting times, wi:

=W

T, = W,-W,
= W_-W

Ty = NN,

(6)

3
il
=
=|
=
=



on on on

off off off

Figure 2-2: A pictorial representation of inter-arrival times, Ti’
and waiting times, wi.—
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Similarly, the waiting times, Wi, can be expressed in terms of the inter-

arrival times, T.:

i
Wl = T1
W2=T1+T2
W, =T, + T. + T

n
W= & T Low o™ 1 (7)

For t > 0, let N(t) represent the number of cycles' end points lying in
the interval [0,t]. The counting process, defined as {N(t), t > 0}, can then
be related to a corresponding sequence of waiting times, Wn. Note that N(t)
is a discrete random variable while wn is a continuous random variable, For
any t > 0 and n=1,2,...,the number of cycles occurring in the interval [0,t]
is less than or equal to n if and only if the waiting time to the (n+l)St event

is greater than t, i.e.,

N(t) <n iffW__ >t (8)

From eq. (8) it directly follcws that exactly n cycles occur if and only if
the waiting time to the nth event is less than or equal to t plus the waiting

; st . .
time to the (n+l1) event 1is greater than t, i.e.,

N(t) =n iff W <tandW , >t (9)



From eqgs. (8) and (9),

A.  PT[N(t) < n]

PrN(t) < n]

B. Since PrN(t)

and Pr[N(t)=n]

then,

Pr[N(t)=n]

As a special case, when n=0:

PT[N(t)=0]

Pr[N(t)=0]

1 —Pr[w1

Eqs. (10), (11} and {12) can also be stated in terms of the cumulative

two probability relationships fall out,

Pr[wn+1 > t]

1 - Pr[wn+l € k] A= 0,152,000

A

nj] = Pr[wn >t] =1 - PI_'[Wn < t]

Pr[N(t) < n] - Pr[N(t) < n]

{l-Pr[wI1+1 < t]}- {l-PI‘[Wn 2 £}

Pr(Ww t] - Pr|W <t =1 i
< t] - Pr(W_ | < t], nsl,2,

Priwg <t] - Pr{W, < t]

< t]

distribution function of the waiting times:

Fyey @) = l-Fwn+l(t),

Py @™ = Fwn(t) } mel

1-F  (t)

PN(t)(O) Wy

Eqs. (13), (14) and (15) describe the distribution of the counting process.

n=20,1,.

(t), n=1,2,...

16

(10)

(11)

(12)

(13)

(14)

(13)
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A General Solution to the Renewal Equation

Let m(t) be the expected instantaneous renewal rate and M(t) be the mean
value function of a renewal counting process corresponding to independently
identical distribution times, T, with nonlattice distribution functions F(t)

and finite mean u. Since N(t) is the total number of renewals at time t,

let

M(t) = E[N(t)] (16)
= Z nP (n)
n=~0 N(t)
= InfF; (t) - F, (B)] (17)
n=0 n n+l

M(t) = I Fy (1) (18)

n=1 n

by expansion of eq. (17).

Recall the waiting time, Wn, can be expressed as a sum of the inter-
n
arrival times, X Ti, each with probability density f_ (t). Since

i=1 Tl

t
Fw (t) = [ f:'w {x)dx
n 0 n

and

£y (1)

n
£, (0]
n 1

due to the additivity of independent random variables, then

t
By (t) = f [£, ()]1%dx (19)
n 0 i
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Substituting eq. (19) into eq. (18) and taking the Laplace transform of

both sides of eq. (18),

Mee) = I = [£2 (8)]" (20)
n=1 6 i

Note that the above sum is the sum of an infinite geometric series and can be
further simplified* to
£z (8)

ME(E) = o oo (21)
l-f*Ti(a)

Whenever dgit) exists, this derivative is denoted by m(t) and it follows

from eq. (21) that its Laplace transform (also see Rau [16a] for derivation) is

£2.(e
m* (@) = — £% (0) (22)
i

The m(t) is referred to as the expected instantaneous renewal rate since

m(t)dt denotes the probability of at least one renewal occurring in the interval

[t, t+dt]. It is also sometimes called the renewal density, but this is mis-

leading since m(t) is not necessarily a probability density, i.e., Jw m(t) dt # 1.
Now, to solve the renewal equation, eq. (5}, take the Laplace tgansform

of both sides, noting that the first term on the right side is a convolution

glt)*£(t):

g*(8) = g*(0jf*(9) + [1 - B 81> (23)

+Recall, the sum of a geometric series:

=

z I‘nz -_-%-....
l-r

n=0



19

Solving for g*(e8),

[L-F (0]

g*(e) =
1 - £%(0)
- * « p 2208
= [L-F @1+ [1-F @1 [ ]
g*(®) = [1 - F_(&)]* + [1 - F_(8)]* m*(0) (24)

Taking the dnverse Laplace transform of eq. (24) gives the general solution

to the renewal equation,
t

g(t) = [1-F ()] + JO [1-F _ (t-s)] m(s)ds
t
g(t) = [1 - F_(e)]+ Jo [1 - F_(t-s)] dis (25)

Note this solution does not take into account the distributions of T, TOn and

Lore

To show that eq. (25) is reasonable, take lim g(t) and compare it to the
T -

expression for the steady-state availability

E[Ton]
E[T]
as stated in eq . (2)
Since
(iy 1 - Fon{t) >0 for all t > 0

(ii) [Z [T - F,(t)]dt = u <=, and

(iii) [1 - Fon(t)]is nonincreasing,
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then,
lim g(t) = 0 + lJ [1 - Fyp(s)lds
toe H 0
1 1
= JmPr[Ton > s]ds = m meon ds
0 0
_ E(T_,]
E[Ton * Toff]
. E[T_]
1im g(t) = o
T4 E[T]

due to Theorem 2.9 in Barlow and Proschan [1].

2.2.2 An Analytical Solution Assuming Gamma Distributed T and TOn

Assume inter-arrival time, T, is gamma distributed with density function

At

L gl gt t >0 (26)

£ (t) =
L (k-1)1

0 otherwise

and on time, Ton’ is gamma distributed with density function

£ (1) = | =& Br)*! e'Bt, t >0 (27)

Ton (a-1)!
0 Otherwise

where k, A, a, B > 0.

To obtain the analytical solution of eq. (25) using the above densities,
first the expression for the mean value function of renewals,M(t), is found.

Since the inter-arrival time is gamma distributed, the renewal counting
process {n(t) > 0, t > 0} 1is a Poisson process with intensity A , where

n(t) = k'N(t)’ for t > 0. For proof, see Appendix A. Again, n(t) is discrete.
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Then,

]

1 - Fw (t) Pg[wn > t]

= Pr[N(t) < n]
= Pr] —Efz) < n]

= Pr[n(t) < nk]

nk-1 m
5 e-lt (At) (28)

=0

[l

ok onk-l
I = E [t) fm S X ™Y gx (29)
5

T (nk)

-AX

and  F_ (t) e " dx (30)

n 0 T(nk)

jt Ank Ank-l

The equivalence of the gamma function and the cumulative Poisson distribution
is shown in Appendix B.

Therefore, N(t) has the probability mass function

pN(tJ(n} = Fy(8) -F; (1)
n n+l
o i @ =-At
I N ¢33 e )"
=nk m! m=(n+1)k m!
(n+1)k-1 -At m
- e {it) .
PNLt} (HJ z e e e e (‘)l)

m=nk m!
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Computing the probability generating function of N(t) as

@

$(z,t) = I, Pr[N(t) = n] (32)
n=0_
Then,
Y(z,t) = Pr[N(t) = 0] + = z" [E. (t)} - F. (t)]
n=1 wn wn+l
= [1 - le(tJ] + z[le(tJ - sz(t)]
2 3
+ z2°[F (t) - F (t)] + 2z [F (t) - F (t)] + ...
Wy W W W,
2
=1+ (z-1) le(tJ + z{z-1) sz(t) + 27 (z-1) Fws(t) + ...
=1+ (z-1) £ 2l oy
n=1 wn
' @ t nk nk-1 “Ax
-1 A X
¥(z,t) =1 + (z-1} I 2" J : e dx (34)
n=1 o [ (k)
and
© t nk nk-1
3 ¥ (z,t) _ n-1 [~ A" x =hx
ot LT i o &
t
w© ] .nk nk-1
+ (z-1) I [n—l)zn 2 J SR S Ax dx (33)
n=1 0 T(nk)

Evaluating eq. (35) at z=1 gives the expected number of renewals at time

t, M(t):



M(t) = E[N(t)]
3y (z,t)
9z =1
= t nk nk-1
M(t) = I j AT X -Ax L
n=1 0 T'(nk)
and
dM(t) - ik ghk-l LA
ot n=1 T (nk)
Hence,
o nk-1
- (At) At
dM(t) = [nil m!— Ae ] dt
Since,
tog a-1 -Bx
Fon (t) f ml (8x) e dx
= I PO(R, Bt)
L=a

where PJ[R; 8t) indicates the Poisson probability

-st Z
e *t ey
£l
as indicated in Appendix B, then,

1 - Fon(t} =1- 3 PO(Q; 8t)

L=a
a-1
= - 5 A
1 Fon[t) g;o Po(l, Bt)
and
a-1
1 - F_(t-s) = z Pole; B(t-s)]

=0

(36)

(37)

(38)

(39)

(40)

(41)
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Substituting eqs. (38), (40), and (41) into eq. (25), the expression

for the instantaneous availability when T and TOn are gamma distributed is

a-1 t a-1
g(t) = Z PO(R; Bt) + J { L P{Jz; B(t-s)]}
2=0 0 =0
@ nk-1
S0z B e ™) o (42)
n=1 '
To simplify the second term,
t t a-1 e—B[t-s)[ﬁ(t_s)]ﬁ} .
I [1 - F_(t-s)]dM(s) = I Az T
0 on 0 2=0 '
oo nk-1
g s e ™5} ds (43)

n=1 (nk-1)!

Let nk-1 = q, then
when n=1, q=k-1

n=2, q=2k-1

n=3, g=3k-1
eéc.
and
t t a-1 B {t~8) ey ik
[1 - F t-s)] dM(s) = ¥ { e : [B(t-s)] } .
on 2=0 2l
0 0
{ (as)® e 1 ds
g=k-1 q!
2k-1
t a-1 @
= J vizopyla; 8(t-s)]}e { I P [(a-1)52s] (44
v} 2=0 q=k’
2k,

3k,
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Therefore, the availability function in a real form is

t a-1
0'.-1 @
g{t) = Z PO(E;Bt) + A f { ¢ PO[Z;B(t-s}]}-{ z Pu[(q-l);ls]}ds
2=0 o <0 =k
2k
e (45)

L
An expression for the availability function involving complex numbers is:

A
ge) = T P (1388) + I — - ET. (1+1) +

T
&-ggl k;l 3'82 e—At(l-e ) r(2el)
k 420 r;l # oL+l
1 [B +A(l-e")]
» I P (n; t[8 + A(1-€T)]) (46)
n=2+1
where <
r () = J ta-l -t dt
& 0
e = exp (27i/k)

For the derivation of eq.(46), see Kuo (12].

2.2.3 Analytical 3Solutions Assuming Expenentially Distributed T and Ton

ar T and T .
on off

Analytical solutions for two cases of exponentially distributed data
combinations (Tand T or T _ and T ) are presented. The case using
on on off
exponentially distributed T and Ton is presented to show continuity with the

previously derived g(t) using gamma distributed T and Ton The case using
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exponentially distributed T and Toes is presented because this derivation is
more commonly known in the literature, and will also prove of use later in the
study.

Using T and T
on

Assume inter-arrival time, T, is exponentially distributed (eq. (26) with
k=1) with probability density function

-At

Ae 3 t>0

f (t) =
T (47)
otherwise

and on time, Ton is exponentially distributed (eq. (27) with a=f) with prob-

ability function

_ -8t
le (t) = Re
on

t >0 (48)

3

0] otherwise

where A,B > 0.
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Assume the renewal counting process {N(t), t > 0} corresponding to

exponentially distributed cycle time, T, with mean has mean value

1
k 2
function M(t) = E[N(t)] = At. Note this is a linear function of t. Also

note the mean of on time is 1/B (since it is exponentially distributed also),

and
1/x > 1/8.
Since M(t) is a linear function of t, eq. (25) can be simplified to
t
g(t) = [1 -F_ (tJ] + 2 L)[l - F o (t-y)]dy (49)
Also,
t
_ -Bt
Fon(t) = [ Be dt
)
57 o e—Bt
so [l -F _(t)] = e Bt (50)
on
and (L - F_(t-y)] = e P57 (51)

Therefore, the simplified expression for instantaneous availability at time t

is:
t

o-Bt *J o By,
0

g(t)

T
= ¢ Bt ;. 3078 f &Py dy
0

-Bt Bt
g

[e
-Bt

-1]

]

n
+
—

—
[}
ok
o
-
(%2 ]
(48]
-

g(t)
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Again, as a check on the reasonability of the expression, take its limit

and compare to the steady state expression:
lim g(t) = -%

t>xm

which is equivalent to the steady-state expression

E[Ton]

E[T]

where E{Ton] is 1/3 and E[T] is 1/X.

The instantaneous availability can also be derived by using eq. (45) with

k=a=1
t o
g{t) = P_(0; Bt) + Aj P [0; B8(t-s)]+ { & P.(q; As)}ds
0 0 _ 0
0 Q=0
-8t 0 t -B(t- 0
_ e Pty . Aj’ e B(tS) [ar-s)) 1 de
0! 0 0!
t
- oBt Ly [ e-Blt-s)
0
t
= e"Bt + A e_ﬁt J eBS ds
QO
- e'Bt . _,;\_e-St [e-Bt 1]
N A Bt .
g(t) = 5+ (1 -3) e (53)

which is identical to eq. (52).
This special case shows that if the underlying distributions of T and

TDn are exponential, which is not uncommon, the instantaneous availability

can be found from eqs. (25) and (52). However, if T and Ton are gamma distributec

with shape parameters not equal to 1, the instantaneous availability must be

either simulated from eq. (253} or calculated from eq. {45). A computer routine
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“for the simulation of eq. (25) can be found in Kuo [12]. This simulation is

extremely useful especially when the underlying distributions are not gamma
distributed.

Using TOn and TOff [17]

The probability density function of TOn has already been stated in eq.

(48) and will be used again here,

-Gt
s ge
on

t >0 (54)
0 otherwise

Similarly,Toff has a probability density functiocn

_nt

£ (t) = ne t>0

0 otherwise (55)

where n > 0.

Consequently, the cumulative distribution functions for Ton and Toff are

Foo(8) =1 - g Bt (56)
on

o (t)=1-e"" (57)
off

where n, B, t > 0,

To solve for the instantaneous availability, g(t), recall the system is
represented as a two-state stochastic process, so use the theory of Markov
processes. Let state 0 represent an operating system and state 1 represent

a failed system under repair. Let 8 be the probability of a failure and n be

the probability of a repair.”
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‘The conditional probability of a failure in the time interval [t, t + dt] is

Bdt and the conditional probability of a repair in the time interval [t, t+dt] is
ndt, where dt is a very small unit of time. Therefore,the transition matrix

for the system is

State r. 0 1
P = 0 1-8 B (58)
1 L_ n l-n‘:l

where 1 - 8 is the probability of no failures and 1 - n is the probability of
no reﬁairs.

The differential equations giving the probabilities of being in a certain
state are

Po(t + dt) = Po(t) (1 - Bdt) + Pl(t) ndt + 0dt (59)
which is the probability of being at state 0 at the time (t + dt), and

Pl(t + dt) = Po[t) Bdt + Pl[t) (1 - ndt) + 0dt (60)

which is the probability of being at state 1 at the time (t + dt). The 0dt
represents the probability of two events occurring in dt.

Tne limit of the ratio is then defined for each equation

Pt + dt) - P (t)

= -Po(t)B + P (t)n

dt
or
dP (1)
= -BPD[t) + P, (t) (61)
dt
and
P,(t +dt) - P (1)
= Po(t}B - Plct]n
dt
or
dPl (t)

= BP (t) - nP, (t) (62)
dt & 1
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To solve the above differential equations with the initial conditions of
PU(O) = 1 and Pl(O) = 0, first take the Laplace transforms of both sides which

yields, after simplification,

(©+ B) PO(S) - nP,(e) =1 (63)
(e + n) Py(B) - BPy(B) =0 (64)
or
e +n
P = n
ol® “eler BT W (65)
. __B
P (O = —= (66)
ae+ B +n
The availability, g(t), is simply the probability the system is
operating, or the probability of being in state 0 (Po[t)). Note that

PO(tJ is the inverse Laplace transform of PO(Q]. So to find the availability,

simply take the inverse transform of eq. (65):

Pl -1, + 1
X @) <X Gty

_-1.n/(B+n) g/ (B+n)
K * e Een

50

g(t) =

|
=
<
~
+
~
1
™
+
-t
+
~
gos)
+
3
—

or

(67)

g(t)
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Chapter 3 - THE ESTIMATORS

The three estimation methods explored in this study are: the
maximum likelihood estimate, the traditional Bayesian estimate with
squared error loss function, and Brender's Bayesian estimate. For the
latter two, estimates for the data and no data cases are both derived.
Gamma distributed on, off and cycle times are assumed for all the
derivations. Also, where applicable, simplified forms are derived for

exponentially distributed on, off and cycle times.

AssumEtions

Assume cycle time, T, on time, Ton’ and off time, Toff’ are gamma dis-

tributed with probability density functions:

-Ax

X~G{k,A):  f£.(x) = (lx)k_l e

A
k-1)1
with E(T) = k/A , VAR(T) = k/A°

Y-G(a,8): £ () = By)*t e B

on
2
i = ( =
with E[Ton) a/B, VAR\Ton) a/B

8
(a-1)!

.m-1 -nz
Z-6(mm): £ (2) = iy () e

Tsge

) 2
with E(Toff) = m/n, VAR(TOff) = m/n

where A, B, n > 0; k, @, m are positive integers; and x, y, z > 0, are the
sample values. Note that these three distributions are never used all at
once. They are only used in pairs of T and TOn or TOn and Toff' (i.e. no

assumptions are made on the additivity of the time distributions.)

(1.
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Also assume n independent samples of x and y ( or x and z or y and z) are

drawn from T and Ton (Tand T and Toff] respectively. Let the observations

T
off’ “on
be denoted by (x.» v;) [(x;5 20, (v, 201, 1= 1,2,...,n. The density functions
of xi’ Yi’ and zi are eqs. (1), (2) and (3) respectively. The objective is
to use the observed sample data to estimate the system availability. The

time-dependent representation of system availability derived in Chapter 2 using

independent T and Ton will be used:

a-1 t o-1
O R CEORE N K NN IO
=0 & =0
0
{z PD[(q-l); As]lds (4)
q=k
2k
3k

All three densities are given, even though only two are needed, because some
estimates and their derivations require on and off times while others require
on and cycle times. Substitutions for the parameters can be made, however, so
the user can adapt the estimate to the data available. From Figure 1 in
Chapter 2 note

+ T =T (3)

so

Yi + zi = X. (6)

for each cycle i
Because of eq. (5)

E(T, ) + E(T_ge) * E(T) (7)

or

>|

g- + (8)

.:!lE
1

Hence, when the two parameters of any two of the densities are known, the third set

can be found if one of the parameter set iS given. =~ g = e
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3.1 Maximum Likelihood Estimate

This method of estimation provides the maximum likelihood estimate,

g (t; k, A, a, B) simply by substituting the maximum likelihood estimates of

each of the parameters, kWLE A and BMLE’ into the expression for the

MLE, “MLE
availability, g(t; k, A, «, B),

ie.,
. . . . . *uLe™? 5
ge(® fveze Mees Yweer Bue) T o Polts Byrgt)
. 5 -l
. *MLE . = .
* Mg ) {£§0 Poles Byyp(e-s)]de { E“ Pylla-1); AMLEs]}ds
0 * ke

(9)

2XLE

So,basically, the problem becomes one of deriving the maximum likelihood estimates
for each of the parameters.

3.1.1 Assuming Gamma Distributed T and Tan

*
First, the likelihood functions of x and y are expressed, given that the
(X; yi), i=1,2,...,n, have density functions stated in eqs. (1) and (2). They

are simply the products of the probabilities of each x (or y) occurring, i.e.,

n
LLxl, X S X k,.) = I fT[xi)

2)

n
k-l <A I x (10)

* "Likelihood'" mearing the probability of each value (xi or y.} happening .



and n

n
LY s Yo wves Y5 @5 8) = T £ (r)) = [

(11)

Realize that some value exists for each of the parameters K and A that maximizes
the value of the likelihood function for the Xy stated in eq. (10). Hence, the

name '"maximum likelihood estimate' is used to describe each of these parameter

-

values, and they are represented by kMLE and XMLE' Likewise, the values SMLE

and éMLE are the values of those parameters which maximize the value of eq. (l1).

Maximization of eq. (10) is equivalent to the maximization of its log-

arithm, which is

in L(xl, % S— xn; k, A) n [k&n X -2n k-1}1] +

2,
n n
(k-1) &n (IO xi) -A I ox, (12)
i=1 =y

Note eq. (12) is a function of two variables: the discrete variable k and the
continuous variable A. To obtain the maximum values of each, use the necessary

conditions of calculus:

asn L (xl, ) .y X 1Ky A)

2 L n = IJ (13)
5 A
in L (xl, Xas ey X5 (k-1}, A) < 2n L (xl’ Xy vees xn; k, &) (14)
in L (xl, Xyy vees X3 (k#1), A) < in L [xl, Xyp cuea X3 Ky A) (15}

Eq. (i13) is the necessary condition for the continucus variable A and will
hoid true when X is at its maximum. Eqs. (14) and (15) are the necessary
conditions for the discrete variable k and will hold true whenk is at its

maximum.



To solve for AMLE’ substitute eq. (12) into eq. (13)

9 ¢n L (x., %X,, s X5 kK ) ; n
L 2 2 = . 5 x =0 (16)
I i=1 *
The solution of X in eq. (16) is the maximum likelihood estimates hMLE or
: _ D0k I
MLE  n %
= % . (17)
g1 * :
_ n
where X = I x./n
. i
i=1

To solve for kMLE’ substitute eq. (12) into eqs. (14) and (15). Solving

eq. (14) first:

n
nf(k-1)%n A -2n (k-2)!] + (k-2) 2n (I x.)
i=1 *
n n n
-x I x, <nfkzanr-in(k-1)!] + (k-1) In (0 x.) - x I X,
. i A i 5 i
i=1 i=1 i=1
or
n
nk &nA -n &nix -n 2n(k-2)! + (k-2) 2n ( 1T xi)
i=1
n n
<nk n A -né&n (k-1) -n2en(k-2)! + an( 0T x,) + (k-2) an{ 0 x.)
i=1 i=p *
or
n
-nin A < -n n(k-1) + 2n( I x, )
i=1 *t
or 1
1 —
in k-1) < &n[r (1 xi)n]
i=]1
Therefore, 1
n —
B2l +afI 25" (18)



Solving eq. (15):

n n
n[(k+1) 2n A - an(!] + k an( 0T x.} -1 I x.
i=1 * i=1 *
n n
<n [knx - 2n(k-1)!] + (k-1) &n( 0 x,) - X I x,
i=1 * i=1 *t
or
n
nkan+n2nix-ntnk-nank-1)! +2n I x,
i=1 '
n n
+ (k-1) an( T x,) <nkn X -nn(k-1)! + (k-1) n (0 x,}
S i=1 1
n
or nind -nfink+n( I x) <0
=1 *
or
1 n
nk > &nx + =an( 0 x.)
- n 5 i
i=1
or
Rl
tnk > 8n [A( I x )n]
— . i
i=1
Therefore 1
n i
k> a(n x.)° (1
- . i
i=1
Combining eqs. (18) and (19), the maximum k, and therefore the kMLE is
n T o
5
k(.ﬁ xi] f-kMLE <1+ 2 (.ﬁ xi) (2
i=1 i=1
where kMLE is an integer,
Note that since ) appears in the solution of KuLE and k appears in the
A
solution of A the maximum likelihood estimates are not obtained analytically.

MLE’
They can only be obtained numerically through the solution of simultaneous

egs. (17) and (20).



38

Similar procedures can be applied to eq. (11) to derive BMLE and ALE
= _ na _
BMLE © 7 *
T oy. (2
i=1 1
) n
where y = £ y./n
. i
i=1
and
n L n L
B(n y)" < a,.<1l+g(n y)n (2:
; i — “MLE — ; i
i=1 i=l
where SMLE 1s an integer

Simultaneous solution of eqs. (21) and (22) will give numerical estimates of

~ A

Gyrp 809 By g

Therefore, the maximum likelihood estimates of system availability, gMLE’

when cycle time and on time are gamma distributed is simply eqs. (17), (20}, (21)

and (22) substituted into eq. (9).

3.1.2 Assuming Exponentially Distributed T and Ton or TOn and TOff

When T and Ton are exponentially distributed, the density functions fT(x]

and fT (y) are exactly eqs. (1) and (2) with k=a=1, i.e.,
on

X ~G(1, \) ¢ €00 = A e M 02
with E(T) = » , VAR(T) = =,
A
Y -G, B) ¢ £, (D=8 2
on

. L S —— -
with E(TonJ 7 \'ARflon) =

w |~



Since k=a=1 is known, the maximum likelihood estimates are only needed
for parameters A and 8. No simultaneous solutions are needed. Substituting
k=1 into eq. (17) leaves

= 0 or__1
MLE § _

I X, X (2!
=] £

A

1

Substituting a=1 into eq. (21) leaves

e
BMLE = or _1

I y. b4 (2i
af

1

Using the simplified expression for availability found in Chapter 2 [eq. (53)

EY

Bt

gtid B) = o+ -g e fL, 2

and substituting in the MLE's for X and 8, the maximum likelihood estimate of

system availability when cycle time and on time are exponentially distributed is:

[y

A k Bt
-~ 5 4 ~ “MLE MLE. “°MLE
BuelS Mwe Bag) T T U =) e
B MLE
L
=L sa-4He?
o x nt
Il n n
T v E y. - L v.
3 . 1 B “q
. . 5 3 L =1 o d=1 T =l
ge (65 Ayppr Byp) T — T U T (2
I % B X

-
o

=y
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Note that as n > = or as t » =, or both,

n
. LAy
i i=1
EMLE n
L X
i=1 't

are exponentially distributed, the density functions

When Ton and Toff
fT (y) and fT (z) are exactly eqs. (2) and (3) with a=m=1,
off

on

Y TG, B): £ (x) =8 e Py
on

W |

. _ _
with E[Ton] = =, VAR[TOH] =

|

27 6(1, m: £, (2) = ¢ N2
off
with E[T ]=l VAR[T ]=—1—

off n? off 2

oo |

Similar to the previous example, the MLE's for B and n are

MLE n -
5y, y
i=1
- _n 1
MLE - n T3
E Z.
i=1 *

therefore, the éMLE when on and off times are used (using the availability

expression in eq. (67) of Chapter 2) is,

(29

(30

(31

(32
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) ‘ _ MLE MLE
Bue 't Bapes Mui T
MLE © "MLE MLE © TMLE
= ~ t
e  Bype * Myie)
}_1 L {1 1)Y
= z + (1 z ) ?+§%t
TI L1 T, 1 ° J
R B ® e 2k
y oz y z
n y n y
. . .z T3 I Y
g (t; B Ny p) = —ek w = A -
MLE*"’ "MLE® 'MLE n- n n
z ¥y * I z L vy,
i=1 i=1 * i=1 *
= =2
n n
e 71 7 0y
exp {-n =7 = A
Z vy. L z.
i=1 * i=1 1

3.1.3 Classical Confidence Intervals
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(33)

To obtain a classical confidence interval for g(t; k, A, @, B) simply obtain

confidence intervals for each of the parameters, k, A, o, B, and substitute them

into the availability expression, much like what was done for the g

But,

since confidence intervals, unlike point estimates, are extremely hard, if not

impossible, to solve for Simultaneously, assume two of the parameters are fixed.

Then obtain the confidence intervals for the remaining two parameters and substitute

these values to form the confidence interval for the instantaneous availability

function.



Let k and « in eqs. (1) and (2) be constant positive integers. Since X
is a gamma random variable with parameters k and A, 2AX is a chi-square vari-

able with 2k degrees of freedom, i.e.,
23X - X2 (2K) (34)
For proof, see Appendix C.

In general let xi(r) denote the value of a chi-square variable having r

degrees of freedom such that

,
Prix’(r) < ()] = 2 -
Therefore,

2 2
Prix° (2k) < 2aX < x°  (2K)] = l-y
7 1y
2
or - 5
il 2%
Xl (Zk) xl'}', (2k)
P =t e —2 | =1y
2X 2%

2
X, G2k) %

X
— A (36)
2% 2X

2 2
where ¥~ (2k) and X—l~v (2k) are obtained from a chi-square table.

1=

=
-

For X use E[X].
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Similarly, since Y is a gamma random variable with parameters o and B8,

and 28Y . x2(2a), the 100(1-y)% confidence interval for B8 is

2 2
2

sl B A e (37)
2Y 2Y

Substituting eqs. (36) and (37) into eq. (4), and knowing k and o are

constant positive integers, the 100(l-y)% confidence interval for g(t; k, A,

a, B) is
2 Z2
¥° v (2a) Xy (2K) . ] xl_lfzﬂ) )
a-1 1--2- 7 a-1 -
T Po(l, t) + . [ b Py [2; - (t-s) .
2=0 2Y 2X 0 Jz=0 2 Y
2
(- xl_j (2k)
I P lla1); ———— 5] tds<aglt; k, A, 0, 8) <
q=k 2X
2k
2 2 2
Xy (20] Koy (ORI t X, )
a-1 e > f ] >
E B fp ———— EH ———— & J I Py % (t-s) .
2=0 2Y 2X 2=0 2y
0
2 3
@ X (2k) |
popy a1 —LE—T) ) s (38)
q=k 2X J
2k



The 100(1-v)% confidence interval for system availability when T and

TOn are exponentially distributed (i.e., k=a=1) is:
3
- - .
2 2 x _, (2
* Y - 2 Y
Y Xl.(Z) %1 (2) ) > 1t
2 2 7 .
- 5 = Z - e Y ] < glt; A,8)
X-xl_l() X xl'l(
2 2
L _ 2
- - X, (2)
2 2 i
Y . xS (2) Y . x 2) 2 _,
l- AR l_ 1 - 2‘{ t
e 2 + 1 = 2 e !
Cx-d@ %4 55 (2
XI. XI_
2 2
And when Ton and Toff exponentially distributed data are used, the

100 (1-y)% confidence interval (using eq. (67) in Chapter 2 for g(t)) is,

Z t
2 3 (1 (2)[ ZY’ J
L Xy (2) LA (2) Lz
2 2 &
# (L - )
2
& 1 2 Z)+ 2
20Y+25 %) _ v (2) (Y+Z)- x Y (2)
2 2
2 2
>
Yy, @ LXly
) ! 2
< g(t; 8,n) = 7’"_27\\»1- 2(Y)22) .
-0+=.)x1 (23 +Z ><l
2 2
+ 2 )
- 2 = t
ol
2
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3.2 Traditional Bayesian Estimate

The primary mathematical tool used in Bayesian analysis is Bayes' theorem,
named after Thomas Bayes who studied this topic in the mid-18th century. Crellin
[4] discusses the philosophy and mathematics of the theorem along with its reli-
ability applications.

Basically, Bayes' theorem incorporates two sources of information about
the parameters of a model. The first source, called a priori information,
represents the totality of knowledge available about the parameters before any
observation of data takes place. This information is mathematically summarized
into a prior distribution or model. The second source is simply the observed
data. Bayes' theorem combines the prior model with the observed sample data to
form a posterior model, upon which various inferences are made about the parameter
Note that this posterior model can, subsequently be used as the prior if, another
data observation takes place to form another posterior model, and so on.
Summarizing, if any decision or inferences are made when using the posterior model
this implies both the prior model and sample data information influenced the
decision,

Statement of Bayes' Theorem

Let f(ti | 8) denote the data model for an observation t, on a variable T
given § is the parameter used in describing T. 6 1is a random variable. If

p(8) is the prior model for the parameter vector 68, and if a sample [tl, Bod 5w

-

tn) of n independent observations on T is observed, then, given the observations,

the posterior model for 6 using Bayes theorem is defined as:

n
p(8) T f{t, |8)
his | t_,t t ) = =1 * ‘ (41
1: 2:' 3 n = f < I‘]. ,
. k) z £(t.| k) dk

i=1

where kK is the integration variable representing the different values of 9 and

i 1s the parameter space of 8. The numerator, p(8)

=3

f{ti ie) is also known as th
1

a
4
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joint distribution composed of the prior distribution and the 'conditional" data

distribution., The denominator, /! p(k) f[ti[ k)dk, is also known as the marginal
keQ

distribution composed of the joint distribution integrated over all possible

values pf k.

3.2.1 Assuming Gamma Distributed T and TOn

To implement Bayesian analysis in the estimation of the availability function
g(t), the joint distributions of the parameters [ A, a and 8 must be assigned.
However, in practice, this assignment is too complicated to derive analytically.
Therefore, it is usually possible to fix one of the two parameters in a gamma
distribution while leaving the other floating with certain variation. So, to
approach this problem, let k and o be fixed constant positive integers, with A and
B varying.

The A and 8 will vary according to negative exponential distributions

-UA
e (4

£,

-vB
ve (4.

£5(B)

where y and v are undetermined positive constants and A and 8 are positive and
independent random numbers. The fl(A) and fB(BJ will be known as the prior
distributions of A and 8 , respectively.

To find the posterior distributions of A and 8 , use Bayes' theorem to
combine eqs. (10) and (42) for A and eqs. (11) and (43) for 3 . Letting
fA(A; Xps Xy eees xn) represent the posterior distribution of A given the pooled

sample of(xl, XZ’ - xn}

£ 0A] ¢ LiXoy Xus wess X.)
£ ot %, % % ) A 1’
;\)1"2”"" o

§ .
q fk(AJ L(xl, X

2!



n
n k-1
ue-ul [k } g " e_l 151 !
ey .
‘L(k ”'J i=1 *
@ n g n k-1 A i=1 %3
[ e AK T ox, e 7 da
J (k-1)! i=] *
0]
n
) kn e—k(u + iél xi)
© - (w+ G ox)
E
Jkn iz1 * da
e
0
To simplify further, let
n
w=2A(p + L Xx.)
: i
i=1
_ W _ dw
then A = = " dx = =
p+ I X u+ I xi
i=1 * i=1
and when A= 0 - w = 0
A= ® > W = ®
Eq. (44) then becomes
n
-A(ps LX)
kkn B i=1
fk(l; Xps Xps eees xn) =
[+ 4] kn
f [ w - ) e—w dw
n
0 p o+ I x_J n
i=1 1 Wk B 9
i=1 ?
n
n K+l -a(p + I, Xx.)
k =1 i
i (b + i§1 xi) AT e
k -
[ W n e v dw

47

(4
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Note the denominator is the definition of a gamma function, so

n n
(u + iil xi] - Ko “A(u + iiixi)
EVAAS xps Xy wnny X)) S A+ £ x)] e
I'(kn+l) i=1
(45)

which is a gamma pdf with parameters

n
{kn+l, u + I xi)
i=1

Similarly, the posterior distribution function of 8 given the pooled sample

(Jl, Yor oo yn)is
n

)’iJ n an -5(\-’ + -z Yi)
i=1

: B+ Iyl e
T(an + 1) i=1

(v +
i

Wt o

JICHD AT FTIRTERI A0 B
(46)
which is a gamma pdf with parameters
n
fen+l, v+ I vy.)
i i
i=1
See Table 3-1 for a summary of all the distributions used.

Now that the posterior distributions are established, what is the Bavesian
availability estimate? Here, a squared error loss functiocn is assumed, so via
Bayesian analysis [8] the Bayesian estimator, ég(t; k ,A,z,B8), is the function
wnich minimizes the expected value of the loss function with respect to the
posterior distributions {or prior distributions when no data are availabie) of

A and 8. In terms of the availability, the availability estimate gg(t; k,A,x,B8),

is the mean or expected value of g(t; k,x a 8), i.e.,
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@0 @

QB(t; k,a) = J J g(t; k, h,a,B) £,(0) fB(B) drdg (47)
07’0

when no data are available and
gB(t; k, A o BJ:JZ[O g(t; k, A,a,B) fl(,x; ) XZ’ ces xn)

fB(B; Yo yz, v yn} dxdp (43)

when data in the form of samples

[xi, yi) i=1, 2, ..., n are available.

Substituting in eqs. (4), (42) and (43), eq. (47) becomes

. @ @ a~1l ta-1
gB(t; k, o) = J J z PD(JL;Bt) £ A L{ E PO[JL; B(t-s)]li-
0“0 =9 L =0

{z PO[(q-l); As]} d_sl ue_“;\ e B dAdp

=k, 2k, ...
o-1
= r J‘wu\)e'“""L e Ve g PO(R,; gt) diadg +
0“0 2=0

t a-1
r r uvle-uke-us J {Z P_[2; B(t-s)]}-
020 o0 =g °

{ & PO[(q-—l); As]} ds dAds
q=K ,2K s

@ g-1
” ®  —uh
= T Po(i; Bt)ve o ds pe M
2=0 0
o

33 a-1
F uvr r J § w g, VE { % 1:’0 [2; B(t-s)]}-
J =0

(o
=



{ § Po[(q-l}; As]} dsdids
q=k, 2k, ..

Therefore the traditional Bayesian estimate assuming squared error loss

function with no data observed is

~ -1 -vB
gp.t; k,a) = fﬂ b Po{ﬁ; Bt) ve TdB +

o ¥=0
13 I S _"
uv J j Ae £ Pyl(a-1); As] da |-
9 i_ﬂ q=k, 2k ...
-vg a-1
fﬂ e z PU[E; B(t-s)] d8] ds (49)
0 £=0

Now to find the traditional Bayesian estimate when observed data are

available substitute egs. (4), (45) and (46) into eq. (48)

- = a-l t o-1
ggt; k, A,2,8) = je J L Py(2; Bt) + A J {z P 125 8(t-s)]}
0 0 2=0 0 =0
n
© B# izl G n kn
{z P[(q-1);As]} ds] - [A(u+ = xi]
q=k, I (kn+1) i=1
2k,
n n n
A - 3 3
Alh + :51 xi) v o+ izl ¥ i -an B(v + £ %yd
- e - i (B(v + L yil e dads
F(an+l) i=1
n
Letting d = u + I X, f = T'kn+l)
i=1 1t
n
h= v+ I v. a = I'(en+l);
. i
i=1
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g (t; k, A\,a,8) = rri )yt oM o B gyyan <Bh
B 0 Jo f a

a-1
£ P (A; Bt) dadg +
2=0
t a-l
Jar L0 ME @nfer [ (5P s 89 -
i %a 0 2=0
{1 P [(q-1);As]} ds dAdB
q=k, 2k, 0
But, since é— DAl e Megyan = ILLE%:LL = -§

due to the definition of a gamma function, the traditional Bayesian estimate
assuming squared error loss function when independent samples (xi,yi),

i=1,2,...,n are observed is

" h an -gh %71
g [E: K, ha,B) == (Bh) T e £ P (&; Bt) dB +
B a 0 =0 9
dh [T .7 kn -Ad o
—_ J {f A (d) T e” z P [(gq-1);As] dx}-
fa ‘0 Yo q=k,2,... C
a-1
{ J“ [Bh)an e_sh I P [%; B(t-s)] dB} ds (5¢
0 g=0 0O

5 ; : ; .
3.2.2 Assuming Exponentially Distributed Ton and TOff

When the on and off times of a system are exponentially distributed, the
density functions are eqs. (29) and (30), respectively. The prior distributions

on B and n are

|
<
4]

-vB
fB(BJ = (5]

fn(n) ye 0 (55
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using the same Bayesian approach as before, keeping in mind a=m=1, the posterior

distributions of B and n are

n

- —n n
v+ & Y. n
i=]1 1 _B(U + L Y‘)
£i(Bs ¥y, vers y) 8 ——ZL | BV ¥ 2 y))
g(B; Y1 y,) T e D) ~ jop 1 _ ¢ i=1 (83
n - - n
I Z, n n
Y+ g_q 1 -nly + L z;)
fn(n; Zys eees 2 ) = 1=1 n(y +_Elzi) e i=1 1 (54
I (n+l) _ _

To derive the Bayesian estimates of the data and no-data cases, use the
availability function of eq. (67) in Chapter 2, and find its expected value with

respect to either the posterior or prior distributions.

Recall,
) _ . n -(n+8)t
g(tlﬁin ) - rl"'B * [ 1 - n+B ] (55
so,
- f
g () = j f g(t;8,n) £5(8) £ (n) dadn (5€
0 0
for the no-data case, and
t; B,n) = - H .
gB( g,n) r rg(t B.n) £.(85 vy, > Y)
0 0
fn(n; Zys cees zn) dBdn (57

when data in the form of samples [yl, zi), i=1, ..., n are available.
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To find the analytical form of the no-data case of the Bayesian estimate,

substitute in eqs. (51), (52) and (55) into eq. (56):

A ® n &
= e = -(T]+B)T— -v8 -YN
gy (t) Jo Jo [ nre T gTele v e dme L

Let B + n = B!

which means B = B' - n, dg = dB?
and wnen gB=0 - g' =n

B:m > B':cn

After the above transformation, eq. (58) becomes

o e _ . _
J Jw {%3 + (1 - gr- e P t:[ vye M g TH dB'} dn
0 n

g (t)

i
<
-l
[wn] h
3
(]
&
o
.
_

- - 1_ - )
(1-e B t}:[ " v(B'-n) e dB'J' dry

= vy jm ! [” TR R e T 1 dn +
o \ 0 J

<
=2
o B
(_g\
A7) %
w|=

] - g By g TRAR) e dS'} dn

3 (t) = A+ B (59)
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where
A= vy Jm { fm o B't é-u(s' -n) -y 48" } dn
0 n
P i e
- J e-n(Y-v) { Jw e—B (t+v) da" } dn
0 n
- J‘; REICRY {_;_%J_[G—SV(tHJ)]: }dn
= —L J m'e_n{Y_U) g PV dn
t+v
0
rm
) | -n(y+t)
- t+v JO * dn
TR, S (60)
(t+v) (y+t)
and

B = vy Jm { fm‘gr (1 - e_B't) e—v(B'_n) e i dB'} i
0] 0

= vy r r ne MO L e R agian (61)
0 “n

which converges to a value. The proof of convergence is given in
Appendix D.

So, substituting eqs. (60) and (61) into eq. (59), the traditional
Bayesian estimate of availability when a system has exponentially dis-

tributed on and off times, given there is no data is

- - VY -n{y-v) -8't, _-vg' i
gglt) Gl ToaT + W E E n e é' (1-e ) e . dg'dn (62)
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When sample data are available, substitute eqs. (53), (54) and (55) into

eq. (57) to find the traditional Bayesian estimate:

gy(t; B,n) = J: f: [[ : =3 ] + [ 1 - ED:—B] o~ (n+Blt

n n
LRl n PN O

i=1 n i=1

[B(v + ¢ y;dlh e ‘

r(n+l) i=1 |

n n 3
Y +i£1 “i n n i i§1 1)
— Inty+ z z)]"e 2 v« dgdn

T'(n+1) i=1 1

n
let h=v+ I ¥y

and

'—h
]
g |
~
e |
+
[
R

50

o >
o]
—
t
™w
s |
—
1]

(hk)**HL I q ~(n+R)t
-l N N R '
0

nn n e—hB e-kn

) [hk}n+1 fm fm
0 -0

an e-hB e—kn

dBdn

—

n +8

"

o-(n¥8)t 1 (l_e-[n+8)t):] .

[

n dRdn

(63)

(64)



g~ TRIE Ml S0 el o s

0
n+l
hk - K o
jh-%T_—. Jm fw 2 v (L -e (n+8)t3 n"g" e he e
Ly k 0’0
éB{t’ B,n) =C + D
where
n+l
C = iﬁ%l_ Jw Jm o-(#B)t mon -h8 kn oo
£ 00
n+l
= L%%) fm o-B(t+h) n f” o (Ek) ho o
0 0
k)™t _
- B Jm [(e+n)B]" e L) g ren)g)
£ (t+h) 0
1 : s
A r [eskon]™ e MR g cerion)
(t+k) 0
@™ e I (n+1)
£° (el (e+k )
hk n+1
= [ wwen!
and D = (th rr n+B _ e‘(ﬂ+3)t] nnsn éhB = e-kn dgdn
Again, let
S + 1N = B'

which means 3

]
o

]
=
¥
o

I

and when B

1
<
+
™
i

3

B:m —)-B':cn

kn

58

dgdn

(65)

(66)
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So D becomes

n+l
p = [hK) Jﬁ Im 1 (1-e
fZ 0°‘n B

-h(B'-n)e-k n dadn

(67)
which converges due to the convergence of eq. (61).
Therefore, the tréditional Bayesian estimate when sample data are
availlable is
n+l
n+l
- hk (hk) n+l -n(k-h)
e e =[BT 90 [T e
B {t+h) (t+k) f2 'n
1 -R't, -hB!'
.[g. (1-e g Je B :[ (B'-n)™ dp'd n (68)

3.2.3. Bayesian Probability Intervals

To develop a probability interval for system availability, first the
probability intervals for the parameters must be developed. In general, for

any gamma random variable 6 with density function

2500 = T (we)Ut 78, 8> 0 (69)

u is a positive integer 2w8 1is a chi-square variable with 2u degrees of
freedom, as proven in Appendix C.
Specifically, when sample data are not available and the prior distributions
of A, 8 and n are given by eqs. {42), (43) and (52) respectively, it follows
that
.
2ud T x7(2) (70)
2
298 T x (2) (71)

2yn * x2(2) (72)
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*

Therefore the 100(1-y)% Bayesian probability intervals for A, B, and n are

lT <A< AI_Y (73)
z 2
B, < BBy (74)
2 2
n,SnEng (75)
2 2
]
where KI_(ZJ
A = 22 (76)
5] 2
x;.x (2
2
Myt T (7
2
2
2
Xl (2)
E— v
)
xl'l (2)
2
Bl—v - 2v (79)
2
2
2
xl (2)
2 *
nY = (80)
= 2Y
X1y (2)
2 *
n e (81)
1-
T

Note that the y used in defining the significance level in the probability
intervals are not the same y used as the prior parameter for n.
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When sample data are available, the posterior distributions as defined in

eqs. (45), (46) and (54) for A, B and n respectively are used. Again, it

follows

n 2

2A(w + I x.,) ~ x (2kn+2) (82)
i=1 1t
n 2

28(v+ I y.) ~ ¥ (20n+2) (83)
fei
L 2

n(y + z;) ¢ x (2mn+2) (84)
i=1

and the 100(1-v)% Bayesian probability intervals for A, B and n are defined

by eqs. (73), (74) and (75) with the following limit values

2kn+2
XI.( )
_ 2
AI. = = (85)
2 2(u + T x.)
. 1
i=1
- (2kn+2)
X] .y (&0
2
Moy T n (86)
2 2(p + L x.)
. 1
i=1
xi. (2an+2)
- 2 .
SY = - (87)
p) 20v + T y.)
i=1
Xy I-(2{m+2j
2
8, ., * (83)
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2
2m+z
xl( )
2
N, = (89)
L. n *
£ 2(y + £ z.)
i=1
2
Xl _ % (Zm+z)
Tll_ 1= n * (90}
2 2(y + ¥ z.)
s i
i=1

The Bayesian probability interval for g(t) when T and Ton are gamma

distributed is simply eq. (4) with the appropriate values of eqs. (76}-(90)

substituted in for the parameters A and B. Eqs. (76)-(79) are used when no

data are available and eqs. (85)-(88) are used when sample data is available.

Therefore, the 100(1-y)}% Bayesian probability interval for system availability

is

a-1

zZ

(=]

t a-1
I P.(%&; B t) + X f { I P [%; B (t-s):l }
g=0 Y 1-x L Jobaso v L-g

. { L PU[(q-l); A _,s] } ds < g(t; k,x,a,B) <

q=k
2K,

r|=

a-1 (t a-1

I P (2; B t) + A P [2; 8 (t-s)] } 5

So 9y 1-y | { P

=0 7 3 0] =0 >

{qik Py L(a-13; A, 5] } ds -
: 2

* See note on p. 60.



The Bayesian probability interval for g(t) when TOn and TO are

£f
exponentially distributed is eq. (55) with the appropriate values of

eqs. (78)-(90), with o=m=1, substituted in for the parameters B and n.
Eqs. (78)-(81) are used when no data are available and eqs. (87)-(90) are

used when sample data are available. Thus, the 100(1-y)% Bayesian prob-

ability interval for g(t) for the special exponentially distributed case is

nl nl --(nl_l + Bl"l)t
2 g 2+ ; . 2 2 .
ﬂl_Y + Bl—y -y -y
> - 2 2
FA
M-y ey -
2 2
g(t; B,n) = *lle
nY + BI. y b
7 2 2 4
- t
(nl + Bl)
g 2 & (92)

Also,note that the parameter limits can also be defined in the
following manners.

For egs. (76)-(81):

ro|=<

- X i
J £,(A)dx = & (93)
0

)\1_1
2

f
J £(0)dA = 1 - (94)

[STE
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8

i

2 Y

’ fs(BJ dB = 5 (95)
B,y

Lot ,
j fB[B)dB N (96)
0
"y

2

=

J‘O fn(n) dn = E (97)
8. %

13

- Y
JO fn(n) dn =1 - 7 (98)
And for eqs. (85)-(90):

A

i 4

2

; = X

[0 £, x5 oo x ) dho= 3 (99)
ALY

1=

‘

: a Y

}0 fk(k, Xis oee xn) dx =1 - 3 (100)
8

Y

. Y
f £,(85 vy, ... y) d8 = ¥ (101)
0
B. ¥

g

( Y
JO £(B5 Yy ooy ) dB=1-3 (102)
n

Y

2

. =X
Jo £f(; 2., ... zn) dn = 3 (103)
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3.3 Brender's Bayesian Estimate

Brender [2], [3] was the first to apply Bayesian analysis to the prediction
and measurement of system availability. His approach, however, differs some-
what from the traditional Bayesian approach. The traditional approach with
squared error loss function used the expected value of the availability with
respect to the parameters' posterior (or prior) distributions calculated

directly from time-dependent joint and marginal distributions. In his method,

Brender first derives the steady-state expression for availability, cal-

culates the estimate from the first moment (i.e.; expected value) and

then transforms this result to a time-dependent case.

3.3.1 Statement of the System and Derivation of the Model

In this derivation, on and off times are used as opposed to cycle and
on times. The system is basically the same as previously mentioned, one
with an alternating sequence of independent operation and repair intervals,

Here, the TOn and T0 are exponentially distributed. Later, in his

ff
second paper [3], Brender relaxes this assumption to include the more general
gamma distributed Ton and Toff'

As stated before, the term for availability is first derived then the

first moment of this expression is taken for the availability estimate. 1In

general, the term for availability can be expressed as

A (5 B,n} = Pr{S(t)=1|I(B,n}} (105)

where B and n are the parameters of on and off time, respectively; S(t)
indicates the state of the system (0 representing off, 1 representing on);

and I(8,n) represents the totality of required information about the system.
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Al(t; g n) is also known as ''availability of the first kind," that is, no
prior information is used yet.

The first moment (expected value) of this term, via the definition
of expected value and the use of a priori information about the parameters,
is

E{Al(t; B,n)} = Ay (t5 v,y) =

fw [m A, (t; B,n) g(B|v)h(n|y)dR dn (106)
0 0
where g[B[v) and h(n{y) represent the prior information on the parameters
B and n, respectively. Az(t; v,Y) is known as ''availability of the second
kind" and is the estimate of system availability.

Steady-State Point Availability (SSPA)

To derive the estimate for time-dependent availability, Brender first
derives the steady state availability of the second kind and then trans-
forms it to the time dependent case through an extension theorem.

The availability of the first kind for the steady-state case is well
known;

Aj(8,) = = B,n >0 (107)

By using the fact that the steady state point availability has a Euler density

function [2], the product moment of the SSPA is expressed as:

uik(r,S;w,U)=E{Al(B,n)- Bk(S,n)Ir,s;w,u}; ik=0,1,2,...
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W 1 w+i-1 r+k-1
(1-z2)" - [* _a (1-a) - da, 0<z<1;w,r, >0 (108)

b(w,r) 4] (1—az)r+w

where r,s and w,u are the gamma parameters*of 8 and n, respectively, B (B,n)
represents the unavailability of the system, b(w,r) is the beta function
with parameters w and r, and z=(1- E")-

A more computable form of eq. (108) is derived using Theorems 16 and

21 of Rainville [15],

[COw+i)/T(w)] [T(r+k)/T(r)]

X
l-likfl'aS, W,'Ll) = (1—2)

[T (wer+i+k) /T (w+r)]
; { [T (xtr+j /T(x+r)][T(x+i+3)/T(x+i)] . _53 } (109)
j=0 [T (wer+i+k+j) /T (wer+i+k) ] A

T,w >0, 0<z <1
where x=w or x=k depending on the relative magnitudes of w and k. If w is
somewhat greater than k, use x=k and the series will converge more rapidly;
otherwise, use x=w.

Therefore, the SSPA of the second kind is simply the product moment with

i=1 and k=0 (conversely, the SSPUA would be the product moment with i=0 and

k=1),

W
w+T

it 8

E{A (8,1} = Ay(r,s; w,u) = {{r(ﬁj)/F(r]]
0

j [T (w+r+j+1)/T (w+r+l)] .

j
u
(i-3) } ‘ (110)

* e =
Brender defines the gamma function as g(Blr,s] = SrBr le BS/I'[r) with mean

r/s and variance r/s-.
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The Extension Theorem

This extension theorem enables the expansion of the steady-state case
to the time dependent case. It states, simply, that the expectation of the
product of dependent variables can be expressed as a product of expectations.
In univariate form, the extension theorem is

E(g? -8ty _ a 8%
B e - ¢(B)Y|r,s} = E{B" e | r,s}+ E{¢(8)|r+a, s+ta} (111)

In bivariate form,

-Bt -nt
gt e 2 7% L ¢(n,8)| r,s; w,ul =

-nt
E{g? e air,s}'E{nb e blw,u}-E{¢(B,n)| T+a, s+t_; w+b, u+tb} (112)

The proof follows from the repeated use of Bayes' theorem [2]. Note that this

theorem is restricted to gamma distributions only.

3.3.2 The No-Data Case

Assuming exponentially distributed on and off times and at time O the

system is on, the availability of the first kind is

Al(tIB,n) = Pr{S(t) = 1]S(0) = 1; I(B,n)}

PSR BTG L:

n+g n+8)

it

(113)

as derived in Section 2.2.3.

The availability of the second kind, given gamma parameters of the



2 70
system parameters, 1S

Az(tlr,s; w,u) = E{Al(tlﬂ,ﬂﬁ

SE L e 1 - Dy MBI
n+8 n+8
= E { ey } + E {\l— —:éa e_nte_st}

= Az(r,s; w,u) + [l-Az(r,s+t; w,u+t)]-

(= (=2 (114)

using the extension theorem on the second term and knowing that if
R(t|A) = e 2T, t >0 (115)
then R(t|r,s) = (s+t) , r,s >0 (116)

according to Brender [2]. Recall that

: oW o [Irae/r)] L 1-D
Az(r,s, Wikt = W+ T jEO {[F(w+r+j+1) (wer+j)] . } (LL7]

SO

W - {[r(r+j)/r(r)l

z
[T (w+r+j+1)/T (wtr+j}]

Az(r,s+t; Ww,u+t} = e e

ot J
1 -5y } (118)

S+T

When the underlying prior distributions of the on and off parameters
are exponential with parameters (1, %ﬂ and (1, %ﬂ for B and n respectively,
as they are for the model introduced in Sec. 3.2 (See Table 3-1 for priors),

eq. (114) simplies to

gBBND[t} = Az(tllsv; I,YJ =

) (L) (119)
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3.3.3. The Data Case

It is well known that by using Bayes' theorem, a gamma prior distribution

g(Blr,s) is transformed, with the collection of some data, into a posterior

N
distribution of the gamma form g(B]r + N, s + I yi) where N is the number
N i=1
of observations and I yi is the total observation time.

i=1
Therefore, the estimate for system availability when some data are

available is simple eq. (114) with the following substitution of parameters:

1
Ny
s +5+ I V. (120}
. i
i=1
W W+ N2
No
u +u+z 2z
i=1 1

where Nl and N, represent the Qumber of failures and repairs observed,
L
2

respectively, and s and I 25 represent the total operation and repair
i=1 i=1
times, respectively.

The availability estimate using sample data, assuming gamma distributed

parameters is N1 NZ
Az(t|r+N1, s + _Z Y w o+ Nz’ u+ I zi) =
i=1 i=1
h N
ql 2
Az(r + Nl s + .E Yis W+ N2’ u + _? z.) +
i=1 i=1
N
by "2
[1 - Az(r + Nl’ s + .E Y ¥ t; W+ NZ’ u-+ I zl + t)]
i=1 i=1
N Vo ( N, 1W+N2
s+ I ¥, B ue 3oz
i 1 _
1;1 . = . (121)
"1 2
s+ I y.t¢t u+ £ z,+t
. i i
i=1 i=1
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The availability estimate using the exponential posterior distributions of

B and n, eqs. (53) and (54), respectively, assuming N, = N, = N

1 2 , 1s
ésan (t) = A (t|N+1, h; N+l, k) = Ay(N+1, h; N+1, k) +
N+1 N+1
. ) h k
[l = AZ(N+1, h+t; N+1, k+t] : B+t & 5t
where
N
h= v+ & ¥
ik
K 3
= y # Z.
i=1
- @ . j
A, (N+1, h; N+1, h) = _D(N+3) o TN+1+§) () | %J
2T (N+1) j=0  T(2N+3+j)
. T (2N+3) © rN+1+) [ 0k +t
AQ(N+1, h+t; N+1, k+t) = 2T (N+1) jio [ (2N+3+j) l 1

All of the estimates for an exponentially distributed system in analytical

form, are listed in Table 3-2 for quick reference.

h +t

(122)
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CHAPTER 4 - TWO NUMERICAL EXAMPLES

Here, the three estimation methods previously described are used to
estimate the system availability of two data sets which represent two distinct
exponentially distributed systems. Approximately 220° estimates are cal-
culated for each system using six different sample size and type combinations
along with three different sets of prior parameters, where applicable,
at four different time horizons. The results and a partial analysis of
these findings are presented in this chapter, and a more thorough analysis,
along with the final selection of the best method, will be presented in

Chapter Five.

4.1 Background Information

4.1.1 Data Sets
Each data set is comprised of two negative exponentially distributed sets
of values, designated as the on and off times of the system. These on and
off times are assumed independent of one another. Data Set 1, listed in
Table 4-A, has been proven Fé_b@Wnééati?él??éipﬁﬁgntiaily &istfibth?Lbyi _
" Epstéin {5] and has 49 values each for the system on times and off times.
Data Set 2, listed in Table 4-B, was constructed from two independent
sets of gamma random variables generated by a SAS (Statistical Analysis
System)} program. Appendix E outlines the computer routine used, along with
the original sets of gamma random variables generated having parameters
(1, 1/4) and(l, 1/2). Data Set 2 has 40 values each for the system on times
and off times. These values were then scaled (here, multiplied by 100) to

conform to the computer routine.

4.1.2 Types of Samples

Six samples from each data set were drawn and, from these samples, in

conjunction with specified prior parameters and time horizons, the system



Table 4-A: Data Set 1 - Two Independent Sets of 49 Exponentially
Distributed System On and Off Times [5]

On Time Qff Time On Time Off Time
12.0 L2 951.0 95.1
22.0 2.2 979.0 97.9
49.0 4.9 996.0 99.6
50.0 5.0 1028.0 102.8
68.0 6.8 1055.0 108.5
70.0 7.0 1227.0 128.7

121.0 12.1 1256.0 133.6
137.0 15.7 1351.0 144.1
151.0 15.1 1426.0 147.6
152.0 15.2 1481.0 130.6
239.0 23.9 1516.0 151.6
243.0 24.3 1526.0 152.6
251.0 25.1 1592.0 164.2
358.0 35.8 1668.0 1686.3
389.0 38.9 1746.0 178.6
479.0 47.9 1852.0 185.2
484.0 48.4 1871.0 187.1
493.0 9.3 2031.0 203.0
332.0 33.2 2043.0 204.5
556.0 35.6 2285.0 229.5
627.0 62.7 2591.0 253.1
734.0 72.4 3041.0 304.1
736.0 73.6 3427.0 341.7
768.0 76.8 3544.0 354.4
858.0 83.3

Means 1342 .48 104.89

Steady State Availability: 0.9086
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Table 4-B: Data Set 2 - Two Independent Sets of 40 Exponentially
Distributed System On and Off Times
On Time Off Time On Time Off Time
4.75 3.44 357.32 86.49
3.59 5.41 366.68 90.03
20.69 5.48 387.42 121.87
22.98 6.41 426.77 125.29
39.50 7.16 432.18 126.60
61.86 8.20 455.03 134.21
64.72 9.74 459.08 142.17
90.34 10.00 462.66 159.55
97.28 12.02 595.30 183.70
i38.14 12.91 730.25 150.79
142.77 13.82 765.68 208.02
179.69 14.15 78.70 212.62
151.68 17.06 923.80 243.07
249,32 23.67 936.76 275.30
256.10 29.29 968.24 350.08
260.00 30.10 1041.90 351.56
275.96 34.58 1160, 31 373.08
289.95 47.49 1180.43 409.50
292.94 58.62 1415.78 510.97
311.17 86.04 1544.31 816.34
Means 459.64 138.67
Steady State Availability: 0.7682
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availability was estimated using the three estimation methods previously
discussed. Relatively small samples (of sizes three, five, and eight) were
drawn, because it was assumed that the data from each of the systems was
extremely expensive or impossible to obtain. Because of this assumed un-
availability of large amounts of data, the use of Bayesian-type estimation
methods seemed logical and warranted. Therefore, this examination of small
sample sizes will help test the Bayesian methods' effectiveness versus the
classical maximum likelihood estimate.

In addition to size, the biasedness of the sample contributes to the
efficiency of any estimation method. To see how the biasedness of
a sample affects an estimate, both random and biased samples were drawn.

The random samples were determined with the use of a random number table [19].

The biased samples were formed with the authors' discretion.
To test each combination of biasedness and size, 3 x 2 or six samples
were needed. The samples for each data set, along with their characteristics

are illustrated in Tables 4-C(1)-(6) and 4-D(1)-f6).

4,1.3 Prior Information

For the Bayesian estimation methods, several priors were explored to
determine their effects on the availability estimates. The prior parameter
sets were denoted by the pair (V, U). These prior parameter sets represent
the experimenter's expectations of the mean on and off times which are
usually always subjective as they may be arrived at in any manner. V is
the mean of the negative exponential on time distribution represented
by eq. (51} in Chapter 3, while U is the mean of the negative exponential
off time distribution represented by eq. {52) in Chapter 3.

The prior parameter sets used are listed in Table 4-E. Three prior
parameter sets were used for each data set (population). One represented
the population's mean on time and off time, while the other two either

underestimated or overestimated both mean on time and mean off time.



Table 4-C(l): Random Sample of Size Three (Sample No. 1) From Data Set 1
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Observation On Time Off Time
1 356.00 187.10
2 1668.00 204.30
3 68.00 23.90

Means 764 .00 138.43

(Note: mean on time is somewhat low and mean off time is a bit high when
compared to the population means, so any availability estimate is
expected to be low when compared to the steady state availability)

Table 4-C{2): Biased Sample of Size Three (Sample No. 2) From Data Set 1

Observation On Time Qff Time
1 1351.00 82,70
2 3427.00 72.40
3 3544.00 48.40
Means 2774.00 61.17

[Note: mean on time is toc high, while mean off time is too low so any
availability estimate is expected to be too high)



Table 4-C{3): Random Sample of Size Five (Sample No. 3) From Data Set 1

Observation On Time Qff Time
1 2043.00 99.60
2 152.00 47.90
3 1516.00 33.90
4 1871.00 47 .90
5 22.00 204.50

Means 1120.80 87.72

(Note: mean on time 1is about right and mean off time is a bit low, so any
availability estimate is expected to be a bit high )

Table 4-C(4): Biased Sample of Size Five (Sample No. 4) From Data Set 1

Observation On Time 0ff Time
1 627.00 76.80
2 259.00 253.10
3 493.00 187.10
4 239.00 55.60
S5 137.00Q 187.10

Means 347.00 151.94

(Note: mean on time is too low, while mean off time is too high, so
any availability estimate is expected to be too low )



Table 4-C(5) Random Sample of Size Eight (Sample No. 5) From Data Set 1

Observation On Time Qff Time
1 121.00 128.70
2 2043.00 38.30
3 1871.00 5.00
4 1668.00 62.70
5 70.00 24.30
6 768.00 187.10
7 1351.00 25.10
8 151.00 253.10
Means 1005.38 90.61

(Note: mean on time and mean off time are about right so any availability
estimate should be close to the steady state availability-this is
the most representative sample of the six )

Table 4-C(b) Biased Sample of Size Eight (Sample No. 6) From Data Set 1

Observation On Time Qff Time
1 996.00 187.10
2 $84.00 144,10
3 479.00 97.90
4 484 .00 164.20
3 151.00 166.80
5] 1055.00 55.50
7 556.00 102.30
3 137.00 354.40
Means 542.75 139,11

{Note: mean on time is too low while mean off time is too high, so any
availability estimate is expected to be too low j



Table 4-D(1): Random Sample of Size Three (Sample No. 1} From Data Set 2

Observation On Time Off Time
1 39.50 29.29
2 432.18 6.41
3 968.24 159.55
Means 479.97 65.08

(Note: mean on time is just about right and mean off time is too low when
compared to the population means, so any availability estimate is
expected to be high when compared to the steady state availability )

Table 4-D(2): Biased Sample of Size Three (Sample No. 2) From Data 3et 2

Observation On Time 0ff Time
1 61.36 190.79
2 256.10 208.02
3 453.03 275.30
Means 257.00 224.70

(Note: mean on time is too low winile mean off time is too high, so any
availability estimate is expected to be too low )



Table 4-D(3): Random Sample of Size Five (Sample No. 3) From Data Set 2
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Qbservation On Time
1 97.28
2 366.68
3 142,77
4 387 .42
5 778.70
Means 354.57
(Note:

Off Time

8.2
183.70
351.56
212.62

14.15

154.05

mean on time is somewhat low and mean off time is somewhat high, so
any availability estimate is expected to be a bit low-however, this
is the most representative sample of the six)

Table 4-D(4): Biased Sample of Size Five (Sample No. 4) From Data Set 2
Observation On Time Qff Time

1 963.24 7.16

2 159,08 12.91

3 1041.90 5.41

4 292.94 134.21

5 1544.31 58.62
Means 361.29 +3.66

mean on time is too high while mean off time is too low, so any
availability estimate is expected to be too high}



Table 4-D(5): Random Sample of Size Eight (Sample No. 5) From Data Set 2

Observation On Time Off Time

1 426.97 23.67

2 90.34 7.16

3 765.68 12.91

4 823,80 275.30

5 311.17 3.44

6 730.25 350.08

T 249 .32 47 .49

8 459,08 5.48
Means 494 .58 90.69

{Note: mean on time is somewhat high while mean off time is a bit how, so
any availability estimate is expected to be a bit too high)

Table 4-D(6): Biased Sample of Size Eight (Sample No. 6) From Data Set 2

Qbservation On Time Qff Time

1 453.03 86.49

2 595.80 30.10

3 387.42 373.08

4 936.76 29.29

5 1180.43 10.00

& 765.68 34.58

7 249,32 125.29

8 2B9.95 243.07
Means 607.30 116.48

(Note: mean on time is too high while mean off time is somewhat low, so
any availability estimate is expected to be too high)
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U = the

Table 4-E: Prior Parameter Sets Used in Estimating System Availability
Data Set 1 Data Set 2
Prior 1: V = 1042.00 Vv = 460.00
U= 104.20 U= 139.00
Prior 2: V = 500.00 vV = 250.00
u 50.00 u= 50.00
Prior 3: V = 1600.00 vV = 600.00
U= 160.00 U= 250.00
V = the mean of the negative exponential on time distribution

mean of the negative exponential off time distribution
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4.2 Computation Methods

The five system availability estimates, listed in Table 3-2, were
calculated through the use of a Fortran computer routine. The flow
diagrams and the routine itself are found in Appendix F.

The maximum likelihood and Brenders' Bayesian estimates are fairly
straightforward, merely substituting desired parameters into the formulas.
The traditional Bayesian estimate, however, is not so easily calculated.
The indefinite integrals must be estimated, and care must be taken in the
selection of the upper and lower limits. For these examples, a numerical
approximation using Simpson's Rule is used. Note that more advanced numerical
integration techniques may improve the results of the traditional Bayesian

estimation technique.

4.3 General Results and Observations

The system availability estimates using the maximum likelihood, traditional
Bayesian, and Brender's Bayesian technigues are listed in Tables 4-1 to 4-6.
Tabies 4-1, 4-2, and 4-3 refer tc Data Set 1 found in Table 4-3 while Tables
4-4, 4-5, and 4-0 refer to Data Set 2 found in Table 4-B. Note the vari-
ations in the availability estimates due to the different samples, prior
parameter sets, time horizons, and methods. These differences will be ex-
piored and analyzed shortly.

Keep in mind that the results presented in Tables 4-1, to 4-6 will be
analyzed, for now, with only the following two criteria in mind:

(1) Closeness to steady-state availability

{2) Vvariability between samples (where smail variability is best,

because it signifies a lesser dependence on the sample).
Later, when the final selesction of the estimation method is being made,
additional criteria will be used. These additional criteria are not discussed

here, however, because they are not based upon the computational results.



TAELE 4-1:

SAMPLE 1 {N= 3}

MAXIMUM LIKELIHOGD
MAXIMUM LIKELIHGGD

SAMPLE 2 (N= 3)

MAXIMUM LIKELTIHCGCD
MAXIMUM LIKELIHOCD

SAMPLE 3 (N= 5)

MAXIMUM LIKELIHOCD
MAAIMUM LIKELIHGGD

SAMPLE 4 (N= 5)

MAXIMUM LIKELIHOGD
MAXIMUM LIKELIHOOD

SAMPLE 5 (N= 8)

MAXIMUM LIKELIHCOD
MAXITHMUM LIKELIHOOD

SAMPLE €& (N= 8)
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MAXIMUM LIKELIRCCD ESTIMATES OF

SYSTEM AVAILABILITY FCRK DATA SET 1

T=102

MAXIMUM LIKELIHOOD ESTIMATE

€.9120

ESTIMATE
ESTIMATE

J.6825

ESTIMATE
ESTIMATE

0.54806

ESTIMATE
ESTIMATE

0.8137

ESTIMATE
ESTIMATE

0.9421

ESTIMATE
ESTIMATE

0.8739

GF
OF

CF
CF

OF
oF

OF
CF

CF
CF

TIMES
T=200 T=300
Ce8744 0.8585
BETA IS  0.001309
ETA IS  0.007224
0.9792 0.5786
EETA 1S 0.0C0360
ETA 1S G.G016345
0.933¢ 0.9292
BETA IS  0.000892
ETA IS  0.011400
0.T4l4 0.7133
BETA IS  0.002882
ETA IS  0.006582
0.5248 0.5196
BETA IS  0.C00995
*ETA IS  0.011036é
0.817S 0.7531

=400

0.8517

0.57E&5

0.5279

CeT0c24

0.5180

0.7821



MAXIMUM LIKELIHGCD
MAXIMUM LIKELIHOOD

ESTIMATE
ESTIMATE

aF
oF

SETA
ETA

I

-
~
=
-

U.CClE42
0.006285

87
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TABLE 4-2: TRADITIONAL BAYESIAN ESTIMATES OF

SYSTEM AVAILABILITY FCR DATA SET 1

T=100

TRADITIGNAL BAYESIAN ESTIMATE

SAMPLE 1 (N= 3)

PARAMETER SET 1 0.9091
PARAMETER SET 2 0.8860
PARAMETER SET 3 0.5225

SAMPLE 2 (N= 3)
PARAMETER SET 1 0.8037

PARAMETER SET 2 0.6703
PARAMETER SET 3 0.8881

SAMPLE 3 (N= 5)
PARAMETER SET 1 0.9032

PARAMETER SET 2 0.8653
PARAMETER SET 3 0.5260

SAMPLE 4 (N= 5)

PARAMETER SET 1 0.8555
PARAMETER SET 2 J.8262
PARAMETER SET 3 0.8754

SAMPLE 5 (N= 8)
PARAMETER SET 1 0.5234

PARAMETER SET 2 0.9076
PARAMETER SET 3 0.5337

SAMPLE é {(N= 8}

PARAMETER SET 1 0.8886

T=200

0.8713
0.8459
G.8868

0.7817
C.5410
0.8720

C.8&01
0.8402
C.9039

0.7950
0.7611
0.81886

0.39019
0.8853
C.9126

08377

TIMES

T=300

0.8529
J0.8280
0.8&79

0.7774
0.6367
0.5¢&7°

0.8722
0.8330
0.8952

0.T7&76

J.T341
0.7909

O 8545
0.8784
C.5047

0.8132

T=400

0.8431
0.8162
0.8574

0.77¢C
D.6356
U.8c€3

C.8¢€88
C.8302
0.8911

0.7544
0.7221
0.7767

0.85916
C.8758
G.9015

0.8GC7



oo
-]

PARAMETER SET 2 3.87E5S “eB253 0.8315 C.78%7
PARAMETER SET 3 0.8969 L8547 Ge.8225 Qe.8U%3
NO SAMPLE DATA
PARAMETER SET 1 0.53%9 C.21G7 D.892%9 0.82810
PAPAMETER SET 2 Ca.8724 O.841c C.8205 G.a177
PARAMETER SET 3 0.5658 0.5453 0.9314 0.9211
PARAMETER SET 1: PARAMETER SET 2: PARAMETER SET 3:

v=1042.00C V= 500.00 v=1£C0,.GC

U= 104.235 J=  S50.00 U= 160.00
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TABLE 4=3: BRENDERS BAYCSIAN ESTIMATES CF

SYSTEM AVAILABILITY FCR DATA 3ET 1

T=100

BRENDERS 3AYZSIAN ESTIMATE

SAMPLE 1 (N= 3)

PARAMETER SET 1 0.9201
OARAMETER SET 2 0.5089
PARAMETER SET 3 0.5289
SAMPLE 2 (N= 3]}
PARAMETER SET 1 C.5762
. PARAMETER SET 2 0.9772
PARAMETER SET 3 C.S757
SAMPLE 2 (N= 5)
PARAMETER SET 1 Ce 5464
PARAMETER SET 2 0. 5444
PARAMETER SET 3 0.9485
SAMPLE 4 {N= 5}
PARAMETER 5ET 1 J.35818
PARANETER SET 2 0.8320
PARAMETER SET 3 0.8783
SAMPLE 5 (N= 8)
PARAMETER SET 1 Q5413
PAFAMETER SET 2 0.5395
PARAMETER SET 3 0.9431

SAMPLE & (N= 8)

PARAMETER SET 1 0.8861

TIMES

T=200

C.2842
G.8718
J0.8945

Ce5684
0.9711
0.9€66

0.9278
C.5269
Ga9289

¢.7997
0.7681
0.8224

0.921&
0.9205
Q.9227

CaB8247

J. 8665
0.8545
Q. 6764

0.9€53
0.96&E8
Q. 9€28

J.9203
C.9204
0.920&

2.7733
0.7419
0. 7972

C.S142
B.9139
C.S147

C.8105

T=4G0

0.£571
G.2459
T.8662

0.9637
0.9678
C.9604

C.2171
Ce8177
G.9167

- 7608
C.73G3
0.784C

0.9113
0.%113
C.9114

Ga79886
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PARAMETER SET 2 0.8759 C.8222 Ue 7S79 O.TSS%
PARAMETER SET 3 0.8949 Ce845€ 0.821%5 0.8092

NO SAMPLE DATA

PAFAMETER SET 1 0.5377 0.9071 0.8&85 0.87€C
PAPAMETER SET 2 0.5051 Je8743 0.8592 0.85C4
PARAMETER SET 3 0.39538 09265 C.SC81 0.854S
PARAMETER SET 1: PARAMETER SET 2: PARAMETER SET z=:
V=1042.00 V= 500.00 V=1€C0.00
U= 104,20 U= 50.00 U= 1€G.00
CCRE USAGE CBJECT CODE= 12056 BYTES,ARRAY AREA= 20856
DIAGNCSTICS NUMBER CF ERRORS= 0, NUMBER OF WARNINGS=

COMPILE TIME= 0.96 SEC,EXECUTICN TIME= 21l.46 SEC, li



TABLE 4-4:

SAMPLE 1 (N= 3)

MAXIMUM LIKELIHCGD
MAXIMUM LIKELIHOOD

SAMPLE 2 (N= 3)

MAXIMUM LIKELTHGGCD
MAXIMUM LIKELIHOCD

SAMPLE 3 (N= 5)

MAXIMUM LIKELIHCGCD
MAYXIMUM LIKELIHCOD

SAMPLE 4 (N= 5)

MAXIMUM LIKELIHCGC
MAXIMUM LIKELIHOGD

SAMPLE 5 (N= 8)

MAXIMUM LIKELIHOGD
MAXIMUM LIKELIHCCO

SAMPLE €& (N= 3)

ESTIMATE
ESTIMATE

ESTIMATE
ESTIMATE

ESTIMATE
ESTIMATE

ESTIMATE
ESTIMATE

ESTIMATE
ESTIMATE

MAXTMUM

LIKELIRHOOD ESTIMATES

92

JF

SYSTEM AVAILABILITY FUR DATA SET 2

T=1060

MAXIMUM LIKELIHCOD ESTIMATE

0.5015

OF
OF

0.7361

OF
GF

0.8165

CF
gF

0.S561

OF
GF

0.8871

OF
OF

0.8969

-
i

7=200

J.3842

BETA IS
ETA IS

Je6215

SETA IS
ETA IS

Ca7442

EETA IS
ETA 1S

0.9521

BETA IS
ETA IS

D.8564

BETA IS
ETA IS

U.8E5¢S

IME

~
~
-

T=300

0.8812

€2083
15565

o
a @
oo

0.5717

0.0028°91
0004450

0.7157

0.062820
0.0C6492

C.S518

0.001161
0.022903

0.8481

0.002022
0.01102¢

0.8465

T=400

0.£807

o
[ ]

m
wm
(@]
[

Ce7C44

0.8459

0.8417



MAXIMUM LIKELIHCCTD ESTIMATE

MAXIMUM LIKELIHCGD ESTIMATE

oF BETZ IS
OF ETA IS

Je CQ1E47
0.008585

893



TASLE 4=-5: TRADITICNAL

SYSTEY AVAILAEILITY FCR

T=100

TRACITIOMAL BAYESIAN ESTIMATE

SAMPLE 1 (N= 3}

PAPAMETEZR SET 1 0.7582

PARAMETZR SET 2 2.5773

PARAMETER SET 3 0.8451
SAMPLE 2 (N= 3)

PARAMETER SET 1 0.7797

PARAMETER SET 2 Qe 7469

PARAMETER SET 3 Ja79532
SAMPLE 2 (N= S}

PARAMETER SET 1 0.8223

PARAMETER SET 2 0.8101

PARAMETER SET 3 J.3261
SAMPLE &4 (N= §5)

PARAMETER SET 1 0.8577

PAPAMETER SET 2 Je@l55

PARAMETER SET 3 J.83186
SAMPLE S (N= 3)

PARAMETER SET 1 D.355€

PARAMETER SET 2 J.8261

PARAMETER SET 3 0e£738

SAMPLE & (K= 3}

PARAMETER 3ET 1t J. 8925

T=20C

d.7122
J.5291
G.79E3

C.£833
J.04C1
0.6981

2.7506
07404
0.T48S

J.6215
Ja3737
C.802Z3

0.81%95
Ca7872
t.az19

TIMES

T=3200

J.£983
Ce 5154
C.7765

0.£281
Ce.86075
d.8496

C.7188
J.7122
C.7125

C.£155
0.2€90
e 7944

“e 8008
J.77863

348353

34

BAYESIAN ESTIMATES CF

OATA SET 2

T=433

0.6C27
C.2163
S.T7674

Je.£158
C.>885
D.€203

C.70420
0e&99%
Q.£9453

C.£14Q
0.3682
Qe751¢

G.8022
3.7727

De.21C5

(]
L]

m
LAY}
w
m
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PARAMETER 3ET 2 J.827) JaB&4EZ GeEZ4D C.2282
PARAMETER SET 3 0.83+2 C.85LC Ce8321 S.5234

NG SAMPLE CATA

PAFAMETER SET 1 Ce 8630 0.801¢ Ce 7825 De7430
PARAMETER SET 2 0.7375 0.7560C 0.73233 J.72%9
PARAMETZK SET 3 0.878¢ 0.2104 Ca7677 D.T32E9
PARAMETER 3ET 1: PARAMETER SET 2: PARAMETER SE7T 3:
V= 460.2C V= 250.00 ¥= &CJ.00

U= 136,00 U= 50.00 U= 28Q.C3
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TABLE &-6&: BRENDERS BAYESIAN ESTINMAKTES CF

SYSTEM AVAILAEILITY FCR CATE SET 2

TIMES
T=1C9 T=20C T=300 T=400
BRENDcFRS SAYESIAN ESTIMATE
SAMBLE 1 (N= 3)
PARAMETER SET 1 J.3E51 C.BEC5 0.EZTS J.822¢
PARAMETER 5ET 2 0.8828 Je863¢ Q. 8564 2.2538
PARAMETER SET 3 0.88C3 V.835¢& J.8165 0.807¢
SAHPLE 2 (N= 3)
PARAMETER SET 1 0.7833 0.687¢ 08423 Je6157
PARAMETER SET 2 0. 7530 U.&56¢ G.£154 UaE9¢4
PARAMETER SET 3 J.7970 0.6997 G. €203 C.0240C
SAMPLE 2 (N= 5)
PARAMETER SET 1 0.8264 0.7555 C.T7252 0.7112
PARAMETER SET 2 0.8161 Q.747¢ G.7202 0.TOES
PARAMETER SET 3 0.38306 Q0.75¢&2 C.7217 2.7049
SAMPLE 4 (N= %)
PARAMETER SET 1 Je 9558 Ca928&2 C.5225 Q.5210
PARAMEZTER SET 2 D.54&7 Ja9z8% 0.5366 J.53¢&0
PRRAMETER SET 3 3.632% 0.9131 GeSCOL 0.5C34
SAMPLE 5 (N= 3)
PARAMETER 35T 1 J.58328 C.8463 C.8336 G.8252
PARAMETER SET 2 J.8328 G.3501 C. 8329% C.E2¢€3
PARAMETER SET 3 Q.5825 0.336¢ J.8241 C.E13C
SAMPLE & (N= 2)
PAPAMETER SET 1 Q.8932 0.852Z J«B8356 Ue2Z284
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PARAMETER SET 2 J.B8G25 CeS241 Ce294 Ce£23

PAFAMETER SET 3 0.8S24 Ce.84E1 C.828¢8 0.£200
NO SAMPLEZ DATA

PAPAVNETER SET 0.2631 C.8320 G.TEES G.Tas7

PAPAMETER SET
PARAMETER SET

0.8333 0.7918 CaT747 0.7458
9.3788 C.8L11 CeT631 Q.7412

W R

PARAMETEP SET 1: PARAMETER SET 2: PARAMETER SET 2:
V= 460.0C v= 250,30 V= £03.0C
U= 13%.090 U= 50.00 L= 25G.008
CORE USAGE 03JELT CODE= 12064 SYTES+ARRAY ARcA= 20E5¢
CIAGNGSTICS NUMSER CF ERRCRS= Oy NUMEER CF wARNINGS=

COMPILE TiME= Q.90 SEC,EXECJTION TlMg= 211.2C SEC, 11
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Section 5.2 lists these additional criteria.

4.3.1 Time Horizon Variation

The variation in availability estimation methods due to time horizon is
very slight. For Data Set 1, the average decrease in estimate from time
T=100 to time T=400 for the maximum likelihood estimate (MLE) was 0.0481.
The traditional Bayesian estimate's (TB) average decrease was 0.0576, and
the decrease for Brender's Bayesian (BB) was 0.0541. The decreases for the
Data Set 2 estimates are similarly alike in variation: MLE - 0.0693,

TB - 0.0894, and BB - 0.0828. Thus, the estimation methods are equally
variable with respect to time horizon, so no one method stands out as 'best".
To ease future comparisons, the availability estimate at time T=400 will
be used, ignoring the others, since this is the value which, in theory, most

approximates the estimate as T + =, i.e., the steady state availability.

4.3.2 Variability Between Samples

Using the availability estimates at time T=400, the variabilities
between samples for each method for each data set are outlined in Table
4-7 . The variability was calculated by simply subtracting the lowest
value observed from the highest within each method for each data set. For
the Bayesian estimators, since different prior parameter sets were used,
the variability between samples was calculated for each parameter set,
then all three were averaged to obtain the sample variability for each
methed. Note that the traditicnal Bayesian estimate exhibits the lowest
variability between samples for both of the data sets, with the maximum
likelihood estimate exhibiting the iargest. This means the traditional
Bayesian estimation method compensates for smaller and/or more biased

samrples than do the other methods.



Table 4-7:  Variability Between Samples

Data Set 1 Data Set 2

Maximum Likelihood Estimate 0.2761 0.4017
Traditional Bayesian Estimate 0.1739 0.2913

Parameter Set 1 0.1372 0,2148

Parameter Set 2 0.2402 0.4600

Parameter Set 3 0.1444 0.1991
Brender's Bayesian Estimate 0.2056 0.3068

Parameter Set 1 0.2029 0.3013

Parameter Set 2 0.2375 0.3396

Parameter Set 3 0.1764 0.2794

Parameter Set 1: V and U correspond exactly to the

population mean on and off times

Vand U are too low _

~Parameter Set 2:

Parameter Set 3: V and U are too high
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4.3.3 Closeness to Steady State Availability

Recall, the steady state availabilities are 0.9086 and 0.7682 for
Data Sets 1 and 2, respectively. To evaluate the methods in terms of
closeness, determine the percentages of estimates for each method that come
within +5% of the steady state availability. Thus, to be counted as "close"
an estimate must fall between 0.8586 and 0.9586 for Data Set 1 and between
0.7282 and 0.8082 for Data Set 2. Table 4-8 1lists the "close'" estimates
for each data set. Note that the traditional Bayesian estimation method
provides the most "close' estimates, with Brender's Bayesian estimation a
close second. The maximum likelihood method provides the least amount of
"close' estimates

4.4 Sensitivity Analyses

The preceding results are useful when the three methods are being
compared without regard to sample composition or prior parameter selection
(for the Bayesian methods). But, often, it is desired to know what estimation
method fares better given a certain sample size, or a certain sample type
(i.e., biased or not), or a certain "adequacy' of prior parameters.

Again, using only the estimates at time T=400, the averages of the
estimates according to the categories of sample size and sample type for each
of the estimates in each of the data sets were calculated. The estimates
according to sample size are given in Table 4-9 and the estimates according
to sample type are listed in Table 4-10. An analysis of variance was run to
determine the significance of and interaction between the two sample effects
and the three availability estimation methods on the availability estimate.
The analysis of variance showed no significant main or interaction effects.
Therefore, in general, one cannot say a particular estimation method is
better given a biased sample or given a certain sample size, based on this

formal analysis.
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Table 4-8: Number of Availability Estimates Close to the Steady-State

Availability (+ 5%)

Maximum Likelihood Estimate
Traditional Bayesian

Brender's Bayesian

Data Set 1 Data Set 2 Overall
3 (50%) 0 (0%) 3 (25%)
7 (33%) 7 (33%) 14 (33%)
9 (43%) 4 (19%) 13 (31%)



Table 4-9:

Availability Estimates by Sample Size

102

Sample Size 3

MLE
TB
BB

Sample Size 5

MLE
TB
BB

Sample Size 8
MLE

TB
BB

No Sample Data
MLE

TB
BB

* "close'" to steady state (+ 5%)

steady-state availabilities

Data Set 1:
Data Set 2:

oo o oC o

oo o

Data Set 1

.9151 *
. 7996
.9102 *

8152
.8072
.8378

.8501
.8448
.8547

L8733 *
.8738 *

Data Set 2

0.7154
L6342
0.7223

o

o

.8281
.6454
0.8142

o

.8438
.8110
.8276

oo o

0.7389 *
0.7519 *



Table 4-10: Availability Estimates by Sample Type (biasedness)

Random Samples

MLE
TB
BB

Biased Samples

MLE
TB
BB

* '"close" to steady state (+ 5%)

steady-state availabilities

Data Set 1: 0.9086
Data Set 2: 0.7682

o

o oo

Data Set 1

.8992 =
.8643 *
.8950 *

.8210
.7701
.8402

o oo

o

Data Set 2

.8103
L7178
. 7891

.7812
.6759
. 7869
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However, if an informal analysis is conducted (i.e., merely studying
Tables 4- 9 and 4-10), the following observations are made:
(1) for the smallest sample size (N=3) Brender's Bayesian estimates
are closest to steady-state
(2) the no-sample-data case provides, in general, closer estimates
to steady-state than the larger sample size cases
(3) the random samples yield closer estimates to steady state than
the biased samples (for Data Set 1)
(4) overall, traditional Bayesian estimation method yields the most

estimates closest to steady state

(3) for tne Bayesiar i2tnods, the no-data case yields estimates

closer to steady state than the data cases.

Again, using an informal analysis on Tables 4-1 to 4-7, the following
observations can be made with regard to "adequacy" of prior parameters:
(1) the variability between samples is less with Parameter Set 3
and greatest with Parameter Set 2.
(2) Parameter Set 3 provides the greatest amount of estimates closest
to steady-state for the traditional Bayesian estimate and for
Brender's Bayesian estimate.
In other words, if the experimenter cannot determine a good, close set
of prior parameters, it is better to overestimate rather than underestimate
them, given these two types of data sets.

One final comment: the traditional Bayesian estimates are almost

always uniformly less than those of the other methods, which may
be a fault in the method, but also this may be due to the numerical integration
techniques. As stated befors, these estimates may be slightly improved with

a more refined numerical intergration technique.
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Chapter 5 - EVALUATION AND SELECTION USING MULTIPLE ATTRIBUTE DECISION
MAKING METHODS

Now that the estimates have been calculated using each of the three esti-
mation methods: maximum likelihood, traditional Bayesian and Brender's Bayesian,
under various conditions, the remaining task is to evaluate these results in
order to select the best estimation method. But how is the choice to be made?
Each method has its own unique advantages. Clearly, tradeoffs, along with
their magnitudes, must be discovered and defined. But, again, how?

To begin the selection process, as with all problem solving processes,
a set of goals (and/or objectives) must be established. These goals are
more readily usable when translated into a set of attributes by which the
alternatives are then judged. Many multiple attribute decision making (MADM)
methods are available for this judging process [9]. For this selection problem,
five methods: dominance, simple additive weighting, linear assignment, ELECTRE
and TOPSIS, are used and the results will be compared, since different methods
sometimes yield different choices. First, however, a brief introduction to
the concepts of MADM are presented, along with the formulation of the goals

and attributes of this particular problem.

5.1 An Introduction to MADM

In the study of decision making in complex environments, terms such as
"multiple objectives," "multiple attributes,' "multiple criteria,'" or "multi-
dimensional'" are used to describe decision situations. Often these terms
are usad interchangeably [13 8, and no universal definitions of these terms
are available [11d. However, the term multiple criteria decision making
(MCDM) has become the accepted designation for all methods dealing with
multiple objective decision making (MODM) and/or multiple attribute decision

making (MADM). MODM methods are used for an infinite set of alternatives



implicity defined by a set of constraints, similar to linear programming,
while MADM methods are used for a finite set of alternatives each with
specified characteristics. In other words, MODM involves a design problem
and MADM involves a selection problem. Note that the selection of the
best estimaticn method problem falls into the MADM genre.

MADM methods, as inferred earlier, are management decision aids used
in evaluating and selecting a desired alternative (here, estimation method)
from several available {10]. They are used in decision analysis when two
or more goals (objectives) are to be achieved and two or more alternatives
are available. However, if one alternmative is better for achieving one
goal, another alternative for another goal, etc..., no single alternative
dominates the others by being better than all other alternatives for all
objectives, hence, a tradeoff of the achievement of one goal for the
achievements of others must ultimately be made. This tradeoff is made
by the decision maker (DM).

Many MADM methods are available. Different methods are used according
to the type of information garnered from the DM and the salient feature
of the information available., Because of the nature of the best estimation
method problem, the MADM methods of dominance, linear assignment, simple
additive weighting, ELECTRE, and TOPSIS will be used. For a complete

review of all other MADM methods see Hwang and Yoom [9].

5.2 Soiution of the Best Estimation Method Problem

In order to choose the best estimation method for system availability,

the goals of estimation must first be specified, i.e., what is desirable

for an estimation method.

Common sense would dictate that one goal should be closeness to the true

availability. But, since the true availability is never known for a system,

106
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the steady state availability serves as the most logical approximationm.
Another goal for the estimation method would be for it to have a lesser
dependence on the size and type of sample drawn. This would be convenient
because if, perhaps, an extremely small or biased sample is the only one
available, a fairly good estimate of the system availability could still
be made, since the biasedness or small size would not affect the estimate
much. Other important goals would be short computation time on a computer
with the programming irself not too difficult; and, of course, the theory
and methodology should not be too complex as to confuse the user.

These goals can easily be translated into a set of attributes by which
the three estimation methods can be evaluated. These attributes are:

1. Closeness to steady state availability (+5%)
2. Variability between samples

3. Computer execution time

4. Ease of programming

5. Ease of understanding

Now, how can each estimation method be rated omn each of the five
attributes? The first three are specified through the results of the
examples carried out in Chapter Four. The last two are essentially sub-
jective, with the experimenter rating each of the methods on 2 scale from
very easy, easy, moderate, difficult to very difficult. The methods,
along with their ratings within the attributes are listed in Figure 5.1.
This figure is then transformed into a decision matrix as seen below. The

decision matrix is an important tool used in all MADM methods.

_ Ml .\!2 _‘-l3 .
Al | 0.325 0.33 0.31
Az ' 0.3389 0.2526 0.2562
D= AS 0.38 143.28 2.99
A4 very easy difficult =asy

A L— gasy moderate difficult
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5.2.1 Transformation of the Attributes

Note that only three of the attributes have quantitative ratings. How
can the qualitative attributes be evaluated to_compare with the quantitative
attributes? This is important because most MADM methods evaluate the alter-
natives according to the aggregate of the attribute values. One cannot add
apples and oranges. Also, the decision matrix is most easily handied when
all of its elements are numerical and on the same scale. So, all the quan-
titative values must also be modified so thev are on a common scale.

To quantify the qualitative attributes, use a bipolar scale as shown in
Figure 5.2.

Next, to scale the quantitative attributes, -a range of values must first
be picked. For this example values from 0.0 - 1.0 will be handy since A4
and As are already using this interval., To convert each attribute row, a

linear transformation is made by using the formulae

Xos 5
P — T , for benefit (1)
ij max (X..) ; P
. ij criterion
l/xii min {Xi.)
T i = ——— , for cost 3
Boom L) ij criterion

1

where Xij are the original decision matrix values and rij are the transformed

decision matrix values. Note that Al, A4 and AS are benefit criteria (i.e, higher

values are best) while A2 and AS are cost criteria (i.e., lower values are best).
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Qs =y=

_t very difficult
0.2 ——

_1 difficult
0.4 —

i moderate
0.6 +

_|_ easy
0.8 —+—

_|_ very easy
1.0 —)—

Figure 5-2: Bipolar scale for qualitative attributes A, and AS.



The transformed decision matrix, using the bipolar scale and equations (1)

and (2) is:
~ Ml MZ M3 N
Al 0.7576 1.0 0.9394
AZ 0.6863 1.0 0.5079
AS 1.0 0.0040 0.1940
A4 .9 3 7
A il .5 o3
5 L -

Note that any value closest to 1.0 is best, be it a benefit or a cost, due to

the linear transformation used in eq. (2).

5.2.2 Weights of the Attributes

Some MADM methods such as simple 3dditive yeighting, the linear assignment
method, ELECTRE, and TOPSIS require the decision maker (DM) to supply infor-
mation about the relative importance cf each of the attributes. This is
usually stated by a set of weights normalized to sum to 1 . In the case of

n attributes, the weight set is defined as
T .
W= (s o o) (3)
n
Lw =1 (4]
Many methods can be used to determine this weight set using pairwise

comparisons of the attributes, since the DM usually cannot state the waight

set outright. For simplicity, however, in this problem assume the DM

Ik



has supplied the following weights for each of the attributes:

w = (0.3, 0.3, 0.1, 0.2, 0.1) (5)

This weight vector states the DM feels attributes Al and A, are equally
important with attributes A; and Ag being only 1/3 as important. Attribute

A, is twice as important as A3 and As but not quite as important as Al and Az.

5.2.3 Solution by Dominance Method

Method

The MADM method of dominance does not require any transformation of
attributes, so the original decision matrix can be used. The method of
dominance creates a set of nondominated solutions (i.e. those which have no
sclutions better than this) through a simple screening process which eliminates
all of the dominated alternatives from the decision process.

An alternative is said to be dominated if there is another alternative
which excels it in one or more attributes and equals it in the remainder.

It is desirable to umcover and eliminate these alternatives from further
consideration so attention can be focused on the nondominated solutioms.

The dominance method has the following steps:

{1) Ccmpare the first alternative, attribute Dy attribute, with the
second alternative. If one is dominated by the other, it is discarded.

{2} Compare the undominated alternative, attribute by'attribute, with
the third alternative. Again, discard the dominated one.

(3) Continue this process until all alternatives have been compared
with each of the others,

The set of nondominated solutions remaining usually has multiple elements.
Therefore, it is common to use this method as a first step in conjunction

with other MADM methods, as a "weeding out' of clearly inferior alternatives.
g Y
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Solution
Recall -the original decision matrix.

M M M

"1 2 3
Al B 0.25 0.33 0.31 |
AZ 0.3389 0.2326 0.2562
AS 0.58 143.28 2.99
A4 Very Easy Difficult Easy
A Easy Moderate Difficult

Also remember that for attribute Al, the larger the value, the better; while

for attributes A, and A_, the smaller the value, the better.

i 3

Comparing methods 1 and 2 (maximum likelihood and traditional Bayesian,

respectively ), note that Mz is better than Ml in terms of Al and A2 while

Ml excels M2 in terms of As, A4 and AS. Therefore neither dcminates the other
and both are nondominated.

Comparing methods Ml and MS, neither dominate the other; and when comparing
M, and M;, neither dominates. In this case, the dominance method was not of

-

much help, for none of the alternatives was eliminated.

5.2.4 Solution by Simple Additive Weighting

Method

Probably the best known MADM methed is simple additive weighting. This
nmethod selects as best, the alternative that has the maximum value of the
weighted averages of the attributes. In other words, the altermative that

satisfies the equation
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where
wj = weight of the L attribute
.th ) .th . . .
Xjj= the value of the 1 attribute for the J alternative, using numerically

comparable scales -
n

Note: Usually the weights are normalized such that I w = L
=1

This approach is intuitively appealing and easy to execute, but has some
drawbacks:

(1) This method assumes independence of attributes, and sometimes this

is not easy to accomplish.

{(2) Sometimes assessing the weights is difficult.

(3) How to change the X3 into comparable values is sometimes a problem.
Solution

Using the weight vector specified by the DM in eq. (5) and the trans-

formed decision matrix, the average weighted values for each method, using

eq. (6) are:

]

(-33(.7576) + (.3)(.6863) + (.1)(1) + (.2)(.9) + (.13(.7)

0.7832

=
[}

0.7104

=
[}

0.7436



Therefore method 1, the maximum likelihood method, is chosen as the

pest with methods 3 and 2 being the second and third best, respectively.

5.2.5 Solution by Linear Assignment Method

Method

The linear assignment method was developed by Bernardo and Blin [lb}
and is based upon attributewise rankings with a set of attribute weights.
This method, unlike simple additive weighting, features a linear com-
pensatory process for attribute interactions and combinations. Another
attractive feature is that qualitative attributes need not be scaled, nor
the quantitative attributes need be put on a similar scale because the
process uses ordinal rather than cardinal data.

The first task is to rank the methods by attributes and transform

these attributewise ranks into overall ranks. A simple way to do this

is to compute the sum™ of the ranks for each alternative, then rank the

alternatives from the lowest sum to the highest sum.

For example, consider the following attributewise ranks assuming

equal weights for the attributes.

Attributes
Xl Xz X3
1st A1 Al A,
Ranks 2nd Az AS A
3rd AS A2 AS

115
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Here, A, stands for alternative 1, and so on.

1

Adding to obtain the overall ranks:

rank (AI) = 1+1+2-=4
rank {AZ) = 6
rank (AS] = 8

Therefore Al should be the best alternative.

However, this method is too simplistic because it fails to take into
account all of the other alternative attributewise ranks at the same time,
since a final rank is merely dependent upon its own summed attributewise
rankings. The basic linear compensation requirement is violated. What
is needed is a method which does take into account all the attributewise
rankings at the same time, rather than using this information sequentially
as in the sum-of-the-ranks method. Such a method is now outlined.

First, define a product-attribute matrix, called w, as a square {m x m)
nonnegative matrix whose elements Tk represent the frequency with which

h

an A; is ranked in the k° places of the attributewise rankings. Using

the previous example, the 7 matrix is (again, assuming equal attribute

weights):
1st 2nd 3rd
2 1
Al 0
T = A2 1 1 1
0 1 2
AS

If equal attribute weights are not assumed, (i.e., for example, a weight

vector, w = (.2, .3, .5) is usec)the m matrix becomes
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- - - =
c2%.3 = .0 .5 5 0
™= 1.5 2 3 = 5 2 3
0 .3 .2+.5 0 .3 .7

Each . measures the contribution of Ai to the overall ranking

if Ai is assigned to the kth overall rank. The larger Tik indicate more

concordance in assigning Ai to the kth overall rank, so the objective
m

is to find the Ai for each k, k=1,2,...m, which maximizes I L
k=1
Note this is an m! comparison problem, so a linear programming model is

recommended for large m.
Define a permutation matrix P as a square {m x m) matrix‘whpserelement
P., =1 if Ai is assigned to the overall rank k and Pi = 0 otherwise.

ik k

The linear assignment method can be expressed in the following LP format:

m ]
max 151 kil ﬁik Pik (7)
ST:
m
I Pik =1 kFly & & o M (8)
1=1
m
§1 Pik =1 i=1, . . .m (9)
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Note that if any attribute is tied in the ranking, for example,

X ()
1st Al, Az
Ranks 2nd -
3rd | A,
Po ]

"split" the attribute xltwl) into two, xll (wl/Z) and Xlz (w1/2) each with

one-half the original weight value and reassign the alternative as follows:

Xp W72) 0 X, 0w /2)
1st Al AZ
Ranks 2nd Az Al
3rd AS AS

Solution
Using the original decision matrix and the same weight vector, eq. (5),
as in the simple additive weighting method, the attributewise rankings of

the three methods are:

W 1st 2nd 3rd
(:3) A | M, My My r
(-3) Ay | M My My
(1) Ap | M Mg M,
(.2) & g My M M,
3 A i_ My M, iy |
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Therefore, the product attribute matrix becomes:

1st 2nd 3rd
M1 A+ 2+ 01 0 3+ .3
M2 3+ .3 .1 d o+ .2
M 0 3+ L3+ .1+ L2 sl
3 —
4 0 6
T = .6 1 3
0 .9 1
b ki

The LP formulation with the above m matrix is

303
B g ik Pik (10)
ST: 3
X B..= = 3
guy TAE €= 1,23 (11)
3
kzl pik=1 i= 1,2.3 (12)
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The optimal permutation matrix, P* is

o 0 1
P* =11 o o
o 1 0

In other words, the final ranking of the methods is.(M,, M,, M), or method 2

traditional Bayesian, is best.

5.2.6 Solution by ELECTRE

Method

The ELECTRE (Elimination et Choice Translating Reality) method was
originally introduced by Benayoun, et al [1la]., Roy, Nijkamp, and van Delft,
et al , then further developed the method into its présent form [13b], [13c},
[lea], [16b], [1l6¢], -[21la].

ELECTRE uses the concept of outranking relationships. An outranking
relationship, Ak + A, means that even though two alternatives k and L are
mathematically nondominated (see 5.2.3, Solution by Dominance), the decision
maker accepts the risk of regarding Ak as almost surely better than Ag.
Through the successive assessments of outranking relationships of the other
alternatives, the dominated alternatives generated by the outranking
relationships can be eliminated. ELECTRE sets the criteria for the mechanical
assessment of the outranking relationships, since the construction of them
is not an unambiguous task for the DM.

This method consists of pairwise comparisons of alternatives which are
based on the degree to which evaluations of the alternatives and their preference

weights confirm or contradict the pairwise dominance relationships between

the alternatives.
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ELECTRE examines both the degree to which the preference weights are in
agreement with the pairwise dominance relationships and the degree at which

the weighted evaluations differ from each other. These stages are based on

a "concordance and discordance'" set, so this method is also known as concordance

analysis. The method has nine steps:

Step 1 - Calculate the normalized decision matrix

This procedure transforms the various attribute dimensions into non-
dimensional attributes, allowing comparison across the attributes. Each

normalized value rij of the normalized decision matrix R is calculated as




¥1s Tg v Tin
R = Yap T -
l'ml I'mz WG .rm

= no. of alternatives
= no., of attributes

Now, all attributes have the same vector unit length.

Step 2 - Calculate the weighted normalized decision matrix

122

This matrix is calculated simply by multiplying each row of the

R matrix with its associated weight W Label this matrix V.

V= WR
i W, 0 . 0 1 T2,
0 Woe 0 Tyy  Tpp-
X
__P 0 W ] _fml Too-
#‘:VI' w.T . .WI'— r\’ v .
1711 M1fu 171n 11 V12
ve |21 Mfaz Ty Yau Yz
I
Lfmrml WTos oo 'wmrmg_ _fml Voo -




Step 3 - Determine the concordance and discordance set

For each pair of alternatives k and 2 (k,2=1,2,...n, with k#L),
the set of decision criteria J ={ili=1,...m} is divided into two distinct
subsets. The concordance set Ckl of Ak and Az is composed of all attributes

for which Ak is preferred to A In other words,

.
B * fdlmg > 2yl (14)
the complementary subset is called the discordance set, which is

Do = {il"ik<xiz} (15)
I -0

ke

Step 4 - Construct the concordance matrix

The concordance matrix is a composite of all the concordance indices

Ckz' The concordance index C‘kz measures the relative value of the con-

cordance set Ckz, is equal to the sum of the weights associated with those

attributes in the Ckz. It is defined as

I wi
_ ieg g
k2 ) (i6)
vk Ww.
i=l 1
But, when the weights are normalized (i.e., sum to one) the concordance
index becomes simply
< » o
= © .
ey (17)

The concordance index reflects the relative importance of Ak with

respect to A,. Obviously, C< C . < £, and a higher value of o 1ndicates

Akis more preferred to AZ as far as the concordance criteria are concerned.
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The (nxn) concordance matrix is then formed by these concordance indices:

— ¢ - Sy Sip
€21 — ' “2m-1) mn

g = )
a1 %2 ' Sam-1)

n= no. of alternatives

Note that , in general, the concordance matrix is not Symmetric.

Step 5 - Construct the discordance matrix

The discordance matrix is formed from the discordance indices which
represent the degree at which the evaluations of certain Ak are worse than

the evaluations of competing Az The discordance index dkz is defined as

?g Vik T Viz
d, = [ (18)
£
?2; Vik T Vip

where Vij are the values from the weighted normalized decision matrix.

Note that 0 < di, £ 1 and a higher value of dkz implies A, is

less favorable than AE’ according to the discordance criteria. The (nxn)
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discordance matrix is therefore

12 dlS T dln

Sy & . R -

Again,_matfii Dx is generally not symmetric.
It is very important to note that the information contained in the
concordance matrix differs significantly from that contained in the discor-
dance matrix. Differences among weights are represented in the concerdance
matrix, while differences among attribute values are represented in the

discordance matrix.

Step 6 - Determine the concordance dominance matrix

The concordance dominance matrix is determined with a threshold value
of the concordance index. Define that Ak will dominate Ai only if its

corresponding concordance index C 2 exceeds a certain threshold vaiue

k
C, i.e., if Ck2<i Coe

This threshold value can be determined many ways. For example, it

could be the average concordance index:

Cki / n{n-1) (19)

(@]
1]
-
LS LI o =]

71‘
=
© o
N

Cn the basis of this threshold value, a (nxn) Boolean matrix F (the con-

cordance dominance matrix) can be constructed with the elements (0,1) where
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xt =1, if Cki >C
{20)
= i < C
sz 0, if Ckz C
Each element of 1 in the matrix F therefore represents a dominance of
one alternative over another.
Step 7 - Determine the discordance dominance matrix
The discordance dominance matrix is constructed exactly like the
concordance dominance matrix. A threshold value d is calculated as
d= 1 t 4,/ n(n-1) (21)
k=1 g=1 < :
k#2  2#k

and the elements of the (nxn) discordance dominance matrix G are either (0,1)

where

gy = 1. i deg <4

g =0, if 4, >3

Each element of 1 in the matrix G also represents a dominance of one alter-

native over another.



127

Step 8 - Determine the aggregate dominance matrix

Next, the intersection of the concordance dominance matrix F and the
discordance dominance matrix G is determined. The resulting matrix,

called the (nxn) aggregate dominance matrix E, has its elements s

defined as

L =1, if (sz = 1) and (gkl = 1)
(23)
ekz = 0, otherwise

Step 9- Eliminate the less favorable alternatives

The aggregate dominance matrix E gives the partial preference ordering

of the alternatives. If g = 1, then Ak is preferred to Az for both the

concordance and discordance criteria, but Ak may still be dominated by other
alternatives. Hence, the condition that Ak is not dominated, by the

ELECTRE method, is

- l1,for at least one 2, £ =1, . . . n; k # 2

ik = O,for all i, i=1,2, .. .n; 1#%k, 1#2
This condition appears difficult to apply, but the dominated alternatives
are easily identified in the E matrix. If any column of the E matrix has

at least one element of 1, then this column is "ELECTREcally'" dominated



by the corresponding row{s).

1 are eliminated.

Solution

128

Hence, any columns which have an element of

To begin, use the original decision matrix with the qualitative var-

iables quantified using the bipolar scale in Fig. 5-2 .

Attributes

A

i S

ot

ol
_
0.25
0.3389
0.58

9

wd

The weight vector is again w

"

0.33
0.2326
143.28
.3
D

- -

= (-Js

Alternatives

M

-
2

0.31

0.2562

2.99

o7

o

oL 3B, OO

Step 1 - Calculate the normalized decision matrix.

(0.4834
0.6998
0.0040
0.7634

0.7684

b

0.6381

0.4803

0.9993

0.2545

0.5488

0.5994
0.5290
0.0209
0.5937

0.3293
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Step 2 - Calculate the weighted normalized decision matrix.

[70.1450  0.1914  0.1798
0.2099  0.1441  0.1587
V = |0.0004 0.1000 0.0021
0.1527  0.0509  0.1187

0.0768 0.0549 0.0329

Step 3 - Determine the concordance and discordance set

Remember that attributes A,, A, and AS are benefit criteria (i.e., the
i

4
higher the value, the better) while A, and As are cost criteria (i.e., the
lower the value, the better). Then ClE = {i}xil>n xiz} = {3,4,5 and D12 =

t1adks

The remaining combinations of Cki are:

s =13,4,51 D,z =1{1,2}
Coy ={1,2} Dyy ={3,4,5}
Cys =% 02,80 Dy; =1{3,4}
Cg =11,2} Dy; =13,4,5)
C., =13,4} Dy, =1{1,2,5]

Step 4 - Construct the concorcdance matrix

Recall, an eslement Ckz is defined as

Ce ©

W.
1

z
ieCkl

s0 %o < -Z W. = W, + W, + W = .1+ .2+ el
l:

Ci2

1]
=



The complete concordance matrix is then

e 0.4 0.4
C= |0.6 - 0.7

0.6 0.3 -

L -

Step 5 - Construct the discordance matrix

Recall, an element dkl is defined as

maX V.. - V.
vl il i2
dkg - lEDki l ‘
max V., - V.
i | ik 11,
S0 d = max V., = V.
12 ieD ] il 12l
12 _  max { .0464, .06583}
max |V11 - vizl max { .0464, .0653, .0996,
ieJ .1018, .0219}
_ .0658 _
* 518 0.6464

The complete discordance matrix is then

o -=

- .0.6464 1.0
D. = [1.0 - 1.0

0.8574 0.2247 -
— =

Step 6 - Determine the concordance dominance matrix.

Taking the threshold value c to be the average of the Ckl’ then

- 4+ 4+ 6+ T+ .6+ .3

c = = 0.5
6
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The concordance dominance matrix is

Step 7 - Determine the discordance dominance matrix

Taking the threshold value d to be the average of the dKz’ then

q 6464 + 1 + 1 + 1 + .8574 + ,2247 = 0.7881

6

The discordance dominance matrix is
’_-10—{
0

Step 8 - Determine the aggregate dominance matrix

Combining matrices F and G,

"- 0 0T
E= 1o . o]
0

{
J .
(0 9

L

Step 9 - Eliminate less favorable alternatives

From the E matrix, no dominance relationships evolve (since there are no
1's in the matrix). Therefore, in this case, the ELECTRE method yields no
less favorable alternatives. Has the method been a waste of time? No. Con-
sider what determines the concordance dominance and discordance deminance
matrices: the threshold values of C and d. This is one weak point in the
ELECTRE method, since these values are rather arbitrary and yet still have a
significant impact on the final solution.

Since the values are fairly arbitrary, as a remedy for this problem, relax
the threshold values to permit more l's in the F and G matrices which, hopefully,

will leave some 1's in the E matrix with which to make some dominance conclusions.
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To relax c, lower it; and to relax &, raise it. For this problem, relax

¢ to 0.4 and d to 0.86. The F and G matrices then become

- 1 1 - 1
F=!:.-l-[ G=|0 -
Lo

The aggregate dominance matrix, E, is therefore

[: 1 o
s ‘_’}

Now, some dominance relationships can be recognized. It is clear that
\
.H 7 MZ

MS ’ M1

so the following ranking of alternatives can be made:

N
MS’ Ml, M,

Therefore, the best alternative is M_, or Brender's Bayesian method!'

3,

5.2.7 Solution by TOPSIS

Method
TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)
rznks the altermatives in a multi-attribute decision making probiem according
to their closeness to the "ideal" solution and their distance from the '"megative-
ideal" solution. Each attribute is assumed to have monotonically increasing
(or decr=asing) utility, (i.e., the larger the attribute outcome, the greater
the preference for '"benefit " criteria and the lesser the preference for
"cost'" criteria). It is then easy to locate both the 'ideal" solution
{i.e., the one composed of all the best attribute values attainable) and the

"egative-ideal" solution, (i.e., the one composed of all the worst possible



attributes values attainable). TOPSIS considers the alternatives' distances
to both the ideal and negative-ideal solutions simultaneously by calculating
the relative closeness to the ideal solution. The best alternative ends up
as the point which is closest (in terms of Euclidean distance) to the ideal
solution, but yet is far from the negative-ideal solution.

The TOPSIS method evaluates the following decision matrix containing m

attributes and n alternatives.

X, X, .. X
A %1 %2 o Xy

D= . .
; X .8 Ges X
Am | ml mn
where
.th . .
Ai = the 1™ attribute considered
.th . .
Xj = the j alternative considered
; .th s : ;
xij = the numerical outcome of the j alternative with respect to the

-
hed

i™ attribute
Any outcome which is expressed in a nonnumerical way must be quantified,
and each attribute must be weighted according to its importance in the

final decision. The method can be summarized in the following steps.

[
Step 1 - Calculate the normalized decision matrix

As in the ELECTRE method, this procedure transforms the various attribute

dimensions into nondimensional attributes, allowing comparison across the

sttributes. Each normalized value rij of the normalized decision matrix R

(92 ]

(92
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is calculated as
X. .
P, & e
I
n 2

z e 24
Jj=1 *ij (%

Each attribute now has the same vector unit length.

Step 2 - Calculate the weighted normalized decision matrix

Again, same as in the ELECTRE method, this matrix is calculated simply
by multiplying each row of the R matrix with its associated weight W Label

the matrix V.

_ _ _
Vin Yiz e Vi | “Ifia "1Yiz 0 "1
Vo1 Vo2 o0 Vo Mol alsy  mxs  Wels,
]
V = = !
V. v eV .
! ml m2 mn wmrml Mmrmz e wmrmn
= d & |

Step 3 - Determire the ideal and negative-ideal solutions

Let the two artifical alternatives A* and A  (the ideal and negative-ideal

solutions, respectively) be defined as

A* = { (max v,. | ied), (minv | ieJ') | j = 1,2,...,n}
ij ij
= ¥ * *
{vs, Vs e vm} (25)
where J ={ i =1,2,...,m|1i associated with benefit criteria}
J'={ i=1,2,...,m| i associated with cost criterial}
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Step 4 - Calculate the separation measure

The separation between each alternative can be measured by the n-dimensional
Euclidean distance. The separation of each alternative from the ideal is given

as

& :
- - * =
s*j = 121 (vij Vi3 3 J 1,2,...,n 27

Similarly, the separation from the negative-ideal is

ﬁ D’
X Z (v.. -v.)", b
= j=g 4t

Step S - Calculate the relative closeness to the ideal solution

w
"

1,2,...,n (28)

The relative closeness of Ai with respect to the ideal A* is defined as

& .
Cuy = .. J— j=1,...,n, (29)
S,.. + 5 . ‘
(Se5 + 5_5)

Note that C*j must be in the interval [0,1], and C*j =1 if Ai = A* and
C*j =0 if A, = A”. Therefore, an alternative is closer to A* as C*j approaches
1.

Step 6 - Construct the preference order

Using the C*j’ the alternatives can now be ranked from most preferred
to least preferred. The alternatives are ranked according to the descending
order of the C*j‘

Solution
The first two steps of the solution are exactly the same as for the

ELECTRE method.
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Step 1 - Calculate the normalized decision matrix

0.4834 0.6381 0.5994

0.6998 0.4803 0.5290

R = 0.0040 0.9998 0.0209
0.7634 0.2545 0.5937
;0.7684 0.5488 0.3293

Step 2 - Calculate the weighted normalized decision matrix

— -
0.1450 0.1914 0.1798
0.2099 0.1441 0.1587
V = 0.0004 0.1000 0.0021

0.1527 0.0509 0.1187
0.0768 0.0549 0.0329

b —

Step 3 - Determine ideal and negative-ideal solutions

* = i .
A {mgx vy WD vz3

, min v_., max Vyio MaX Vo,
& 3 . K} s ] .
J J ] ] ]

2]

(0.1914, 0.1441, 0,0004, 0.1527, 0.0768)

b
"

{m%n Vyss Wax sz, max Vsj’ min V&j’ min vs.)
J J ] J J

]

{0.1450, 0.2099, 0.1000, 0.0509, 0.0329)

Step 4 - Calculate the separation measures

5 i
Sus = Z (v.. -v.) i =125
* < L] 14y
. =1 4
Sey = ¢.0805
Sy, = 0.1441
S.. = 0.0586
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-2 :
S. = b (vij - viJ 4 j

u

i

= 0.1490

wn
I

0.0835

[#7]
1]

= 0.0918

wn
|

Step S - Calculate the relative closeness to the ideal solution

i S 0.1490 0 eis
o1 7 (G, +5.)  0.0805 +0.1990 - - .
C,, = 0.3669
C,. = 0.6104

Step 6 - Construct the preference order

The descending order of the C*i gives the preference ranking of
alternatives:
My, My, M,

5.3 Overall Results and Selection

5.3.1 Using Original Weight Set

The results of the five MADM methods using the weight vector
(.3, .3, .1, .2, .1) are presented in Table 5-1. Why are the ressults
different? If one availability estimation method was truly best, it stands
to reason that it should turn up best in all the MADM methods. This is not
necessarily so, however, because recall that each method evaluates the

alternatives using different principles and perspectives. The simple



Table 5-1:
MADM Results Using
w= (.5,.53.1,.2,.1 )

MADM RANKING

Method 1st 2nd 3rd
Dominance My, My, Mo My My, Mo Mo My, M,
Simple
Additive
Weighting Ml MS Mz
Linear
Assignment M, M, M

- ] 1

ELECTRE MS M1 M2
TOPSIS Hl HS M:

M1= Maximum Likelihood Estimate
M2= Traditional Bayvesian Estimate

M5= Brender's Bayesian Estimate
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additive weighting method comstructs the preference order according to the
alternatives' weighted average outcomes, while the linear assignment method
uses ordinal attributewise rankings and then combines them into an overall
preference ranking which is in closest agreement with the attributewise
rankings. The ELECTRE method uses pairwise comparisons of alternatives and
the preference order is based on the degree to which alternative outcomes and
attribute weights confirm or contradict the pairwise dominance relationships
between alternatives. The TOPSIS method ranks the alternatives according to
the relative closeness to the ideal solution, along with the relative distance
from the negative ideal solution. Hence, it is expected that even with the
same data and the same weight set, the preference order obtained by each method
could be different. Note that M, and Ms most frequently turn up as the first

1
or second choice, suggesting the best estimation method is either M, or M._.

1 3
But which? Only one must ultimately be chosen. Hwang and Yoon [9] suggest
three ordering techniques to be used especially when there are conflicting
results from the use of two or more MADM methods on the same data with the
same weight set. Only one, the average ranking procedure, will be used here.

The average ranking procedure produces an aggregate rank order by cal-
culating an average rank for each of the altermatives and uses these average
ranks to determine the aggregate. If two or more alternatives are tied, then
the one with the smallest standard deviation is ranked higher,

Using the average ranking procedure for this problem, alternative Mg
(Brender's Bayesian method) turns out to be the best. Table 5-2 lists the
average ranks for each azlternative along with their standard deviatioms. MS is
the alternative with both the smallest average rank and smallest standard de-

viation.

5.3.2 Using Different Weight Sets

Up until now, the assumption has been that the DM feels attributes Al and

A,, the closeness to steady-state availability and the variability between



Table 5-2:
Preference Rankings by
the Four MADM Methods
W #((:3543,01y02y0))
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MADM M1 M, M.

Method Maximum Traditional Brender's
Likelihood Bayesian Bayesian

Simple
Additive
Weighting 1 3 2
Linear
Assignment 3 1 2
ELECTRE 2 3 1
TOPSIS 1 3 2
Average Rank 1.75 2.5 1.75
Std. Dev. 0.9574 - 0.5
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samples, respectively, are mcst important in determining the best estimation
method of system availability. The normalized weights assigned (.3 for each)
reflect the magnitude of this importance over the other three attributes AS
(computer execution time), A4 (ease of programming) and As (ease of under-
standing) which were weighted as .1, .2 and .1, respectively.

But what if the DM considered the importance of each attribute differently?
For example, perhaps the DM, due to a severe budgetary constraint, had to place
a heavier importance on As, the computer execution time attribute. How would
the results of the MADM analysis change? Would they change at all? In other
words, how sensitive are the MADM methods to the data in conjunction with its
attribute weight set?

Table 5-3 outlines the results of the last four MADM methods (the deminance
method, since it is not dependent on any attribute weights, remains the same
and therefore is not listed) when even more weight is given to the first two
attributes (.4, .4, .03, .1, .05). Note, again, that more than one alter-
native is ranked first; but this time M?. and MS are the contenders. Using the
average ranking procedure, the average ranks being listed in Table 5-4, note
MZ becomes the best alternative with an average rank of 1.4, slightly edging
out M3 with its average rank of 1.6,

Assume, now, that the DM has no preconceived notion of what the attribute
weights are, s/he just has the data of the decision matrix. One method of
determining the weights using simply the data available is the entropy method
{9], which is based on the amount of uncertainty present in the data. Ul-
timately, the attribute with the most uncertainty will exhibit the higher
weight. The resultant weight set using this method, incorporating the original
weight set of (.3, .3, .1, .2, .l1) as the DM's a priori bias, is (.0159, .0316,
L7732, .1356, .0437). Note that the heaviest weight is on AS’ the computer

execution time, because this is the attribute that exhibits the largest range

of data values (0.38 to 143.28), i.e., the largest uncertainty. The results
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Table 5-3:
MADM Results Using
w=(.4,.4,.05,.1,.05)
MADM RANKINGS
Method Ist Z2nd 3rd
Simple
Additive
Weighting Mz HS Ml
Linear .
Assignment M, My Ml
ELECTRE Mz'MS MZ,MS Ml
3 M A
TOPSIS 13 5 “1

M1= Maximum Likelihood Estimate

M2= Traditional Bayesian Estimate

M3= Brender's Bayesian Estimate
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Table 5-4:
Preference Rankings by
the Four MADM Methods
(w = (.4,.4,.05,.1,.05) )

MADM M MZ M
Method 1 3
L Maximum Traditional Brender's

Likelihood Bayesian Bayesian
Simple
Additive
Weighting 3 1 2
Linear
ASsignment 3 1 2
ELECTRE (1) 3 1 2
ELECTRE (2) 3 2 1
TOPSIS 3 2 1
Average 3.0 1.4 1.6
Rank
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of the four MADM methods using this weight set are found in Table 5-5. Ml’
the maximum likelihood method, is the undisputed choice; meaning that, here,
the savings in computer time greatly outweighs its system availability
estimation inaccuracies. Realize, however, that this is the case simple

because an enormous weight is given to the computer execution time attribute.

5.3.3 Discussion

Notice that with the given data in the matrix, the four MADM methods used
yield a different aggregate 'best" estimation method, when different weight
sets are used. With the DM's original weight set, w = (.3, .3, .1, .2, .1);
MS’ Brender's Bayesian method, is the best estimation method for system avail-
ability. When more weight is placed on the first two attributes of closeness
to steady-state availability and variability between samples, w= (.4, .4, .05,

.1, .05); M,, the traditional Bayesian method is best. The reason for this

52
stems from the fact that the traditional Bayesian method yields availability
estimates closer to steady-state with smaller variability than Brender's
Bayesian method. So when more emphasis is placed on these two attributes, the
alternative that is best with regards to those attributes would be regarded
as best overall if its deficiencies in the other attributes are not very great.
However, when more weight is placed on attribute AS’ computer execution
time, as is the case when the weights are arrived at by the entropy method,

alternative M., the maximum likelihood method, is the best method. But these

1’
weights do not truly reflect the DM's attribute weights, so any answer arrived at
when using these entropy weights cannot be regarded as valid and in accordance -
with the DM's feelings about the attributes. It is extremely important to realize
that in order to arrive at a correct solution using the four MADM methods of
simple additve weighting, linear assignment, ELECTRE and TOPSIS, the DM's feelings
about the attributes' importance on the final decision be correctly stated in

the weight set. When this is not possible it would be better to use other MADM

methods [9],
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Table 5-5:
MADM Results Using
w = (.0159, .0316, .7732, .1356, .0437)

MADM Rankings

Method 1st 2nd 3rd
Simple Additive

Weighting My Mg Mz
Linear M M M
Assignment i A :
ELECTRE Ml MS Hg
TOPSIS My MS M2

M., = Maximum Likelihood Estimate

M, = Traditional bayesian Estimate

L)

=
]

Brender's Bayesian Estimate
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The most important conclusion that is wrought from the MADM analysis is
that, when the DM's attribute weights are correctly established, the Bayesian
methods of estimation are better than the classical maximum likelihood method.
Both Bayesian methods prove better because they produce a larger proportion of
estimates close (+5%) to the steady-state availability, along with dampening the
sample-to-sample variability of availability estimates, which is extremely desirabl
when large, unbiased samples are unavailable. And the Bayesian estimation methods
are able to do this without much undue sacrifices pertaining to computer ex-
ecution time, ease of computer programming and ease of understanding (theory-wisel.
of the methods.

More specifically, when comparing the two Bayesian methods, Brender's Bayesian
method is considered better than the traditional Bayesian method proposed by
Kuo {12] when the original weight set, implicitly assumed to be the correct
assessment of the DM's feelings, is used. Even though MS has a lesser amount
of estimates close to steady-state, a larger variability between samples, and is a
bit harder, theoretically, to understand, the fact that is much easier to program
and takes 45 times less computer time to calculate overrides the former defi-
clencies. So when an aggregate of the attributes is taken, as is done with the

MADM methods, Brender's Bayesian method turns out to be superior.



Chapter 6 - CONCLUSION

The purpose of this study was to compare three methods of estimating
system availability: the classical maximum likelihood method, the trad-
itional Bayesian method with squared error loss function, and Brender's
Bayesian method; with the objective of determining the best of the three.
These three estimates were calculated for twelve samples, varying in size
and type, drawn from two exponentially distributed sets of on and off
time data. Using these numerical calculations and five multiple attribute
decision making (MADM) techniques, the best method for estimating system

availability was determined: Brender's Bayesian method.

6.1 Study Review

System availability was defined as the probability a system was oper-
ating satisfactorily at any point in time when used under stated conditions,
where the {total] time considered was operating time and active repair time
[22]. Availability, rather than reliability, was studied because of its
increased usage as a measure of system effectiveness. System availability
is most often estimated through the accumulation of data of a system's
observed on and coff times. However, problems can occur with the estimation
when the amount of data is very small or nonexistant. When this is the case,
Bayesian methods are most helpful.

The main reason for this study was to discover if, indeed, Bayesian
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methods were superior to a classical estimator. Two numerical examples
incorporating small samples, biased samples, or no samples at all were explored.
Also, since two Bayesian-type estimation methods were used, analyses were

made to determine which, if either, was best. Further sensitivity analyses
were made to discover, given certain combinations of sampling conditions,

which estimation method was best. Not much work has been done, with the
exception of Kuo [12],to make these determinations; hence, the impetus of

this study.

System availability was represented using renewal theory; the states
being the on and off states. An analytical expression was then derived for
(1) a gamma distributed system, and (2) an exponentially distributed system.
Analytical expressions for the maximum likelihood estimate and the tradi-
tional Bayesian estimate with squared error loss function for both system
cases were derived with these system analytical expressions in mind. The
aralytical expression of Brender's Bayesian estimate was derived only for the
exponentially distributed system case, and was derived separately, due to
its unique theoretical background utilizing the Euler distribution.

To test and compare the three methods, numerical expressions of system
availability were calculated, via computer, for six samples each drawn from
two exponentially distributed systems. For comparative purposes, the samples
were either biased or unbiased, and were comprised of either three, five or
eight observations. Also, three different prior distributions were used

for the Bayesian estimators.



149

The estimation methods were judged in terms of the five following criteria:

number of values close (£.5%) to steady-state availability, variability

between samples (determined from the samples themselves) , computer execution
time, ease of programming and ease of understanding. The evaluation process

was conducted using five MADM methods: dominance, simple additive weighting,
linear assignment, ELECTRE, and TOPSIS. Also, further sensitivity analyses
were conducted to determine, in terms of the first two criteria only, which
method proved a better estimator given a certain bias of sample, or a certain

size of sample.

6.2 Overall Results

The results of each of the five MADM methods were often conflicting,
i.e., one MADM method chose one estimation method as best, while another
MADM method chose a different estimation method as best. Initially, this
seemed like something was wrong with either the alternatives or the MADM
methods, but, as stated earlier this is a common occurrence, because each
MADM method evaluates the alternatives according to different principles
and perspectives. Because of these conflicting results, an ordering tech-
nique was used to determine the aggregate rank of each alternative based
on each alternatives' rank in each of the MADM methods. Using the average
ranking procedure as the ordering technique, Brender's Bayesian method was
determined as best, with the maximum likelihood method as second best, and
the traditional Bayesian method as the worst.

Recall, however, that these results were based on the assumption that
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the DM placed the following weights on the attributes: w
.2, .1). [If the DM placed more weight on the first two criteria of closeness
to steady-state and variability between samples with w = (.4, .4, .05, .1, .05);
the traditional Bayesian method was considered best, with Brender's Bayesian
method second best and the maximum likelihood method worst. When the attri-
bute weight vector was determined through the entropy method, w = (.0159,
.0316, .7732, .1356, .0437), the maximum likelihood estimate was considered
best with Brender's Bayesian and traditional Bayesian following in that
order. The noteworthy conclusion was that the preference order was highly
dependent upon the DM's weighting scheme, so to obtain an accurate solution,
the DM's attribute weights must have been correctly assessed, which, in
any particular instance, may or may not be an easy task.
When analyzing the numerical example results in terms of the first two
criteria only, the following observations were made:
(1) For the smallest sample size (n=3) Brender's Bayesian estimates
were closest to steady-state.
(2) The no-sample-data case provided, in general, estimates closer to
steady-state than the larger sample size cases.
(3) The random samples yielded estimates closer to steady-state than
the biased samples.
(4) overall,'théi?iaditipﬁél'Bé}ékiaﬂ'method vielded thé’m?éf"estimafés‘
closest to steady state.
(5) If the experimenter could not determine a good close prior para-
meter set, it would be better, for these data sets, to overestimate

rather than underestimate them.

(6) for the Bayesian methods, the no-data case yields estimates

closer to steady state than the data cases.
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Note that only the above informal observations could be made in terms of sample
biasedness and size, because a formal analysis of variance between sample
biasedness, size and estimation method showed no - significant main or inter-

action effects between the three.

6.3 Ideas for Future Study

The conclusions from this study should not be construed as all encompassing
for any system whose availability estimate is desired. Here, only two data
sets, both exponentially distributed, were explored; only exponential priors
were used; only three estimation methods were compared; only five MADM methods
were used; only three weighting schemes were explored. Therefore, basically,
the ideas for future study incorporate variations on the data sets and
mathematical analyses used in this study. This is sorely needed, since not
much other work has been done to explore Bayesian methods of estimating system
availability. These ideas for future study include:

(1) Use the more general gamma distributed system,

(2) Use gamma distributed priors,

(3) Derive the availability expression, g%, other than via renewal

theory (possibly through the use of a transition matrix),

(4) For the traditional Bayesian estimation method, experimentation can

be done with different loss functions.

(5) Use other MADM methods that do not depend on a weight vector,

(6) The criteria for judging the alternatives could be expanded from

the original five .



152

(7) The traditional Bayesian estimate could be refined through the use
of better integral approximation techniques.
Hopefully, more studies will be conducted with respect to Bayesian
estimation methods. This research is definitely worthy of attention because
of its numerous practical applications to systems where no (or very little)

sample data is available.
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APPENDIX A

Proof That The Renewal Counting
Process for Gamma Distributed
Inter-arrival Times is Poisson [12]
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To prove the theorem, it suffices to show that for any t>s>0, the
increment n(t)-n(s) is Poisson distributed with mean A(t-s) regardless
what value N(t') is for t'<s.

Let {n(t)-n(s), t>s} be a renewal counting process, where n{t) = k N(t)
and n(s) = k N(s), where N(t) is given as the number of cycles finished at
time t.

Let {N(t)-N(s), t>s}! be the renewal counting process corresponding to

independent random variables T,, T .., where T. is the time from s to the

1’ "2° 1
first event occurring after time s, and so on. Recall, the cycle times T2,

T .. are gamma distributed with mean k/iA. Note, this is equivalent to

3’
the set of exponentially distributed random variables X_ , X , ... Xk, X,
0 I K+l,

., where Xj is the first subset of T2 and each random variable has mean %u

This set of independent variables can also be described by the previously

defined renewal counting process {n(t)-n(s), t>s}.

Similarly, since T, is gamma distributed with mean k also, X., X , ... Xk
1 T 0’ "1 -1
are also exponentially distributed with mean 1, no matter what the values of
A

n(t') for t“+s. Therefore, this fact allows the conditional distribution of
n(t)-n(s) (which describes the exponential probability of a cycles endpoint
occurring within a s -t interval) be equivalent to the unconditional dis-
tribution of N(t-s) (which describes the gamma probability of the system having
a cycles' endpoint outside the interval s» t; i.e., the system being on)

The proof is completed by showing, for any t> 0, n(t} is Poisson dis-

tributed with mean At.
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APPENDIX B

The Equivalence of the Gamma Function
and the Cumulative Poisson Distribution [8]
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Ba xa-l e-Bx

Let x be a G(u,8) random variable so that f(x) = —__TTET-_—-

, X > 0.

Then F(x; a,B) is the cumulative distribution function defined as
o

B Jx wa-l e-Bw dw
I'(a) 0

F(x; a,B) =

To solve, perform an integration by parts letting

u = o v = w/a
du = -ge P qw dv = WL dw
50,
a x  -Bw X X
F(x; a,B) = B ud ae + g- J W e‘Bw dw
I'(a) 0
lo
g% & -Bx Ba+1 X _8w
= £ + J w e dw
al (o) al (a) 0
X
a -Bx a+l
F(x; &,8) = (Bx) e + 8 W e_Bw dw
al T'(a+l) O
-Alk
Let Po(k;A) indicate the Poisson probability T
then

Fix: BB} Po(a; Bx) + F(x; a+l, B)

Po(a; Bx) « P _(a+l, 8x} + F(x; a+2,8)

Po(a; Bx) + Po(a+l, Bx) + PO(a+2; Bx) + ..

+

Po( a+r; Bx) + ...

this is a convergent series since

F(x; a+r, B) - 0 asr + =
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Thus,

-]

F(x; o,B) = £ Po(k; %) where X = 8x and ¢ must be an integer .
k=a

(i.e., the left hand tail of a gamma distribution can be evaluated from

the right hand tail of a suitably chosen Poisson distribution.)
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APPENDIX C
Proof of the Theorem:

If X ~ G(a,8) then 2XB - xz(Za)
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X ~ G(a,B) means X has the density function

f(x)

dx _ 1
od = < 3@
Since g(u) =
gu) =

gu) =

Let a = —%%

g(u) =

a a-1 -Bx
e

B~ x
) (1)
[(a)
Make a transformation of variables. Let u = 2xB; then x = 5%
dx ]
f(x)r——— due to the chain rule,
du
8{! xa—_l e'Bx
28 T'(a)
a-1 Bu
(u -5%
BC! L?g-) e 28
28 T(a)
-u
a-1 =
u eaz (2)
T'(a) 2
( so that v = 2a). Thus,
u u
Ay
(3)
Y] v/a
T ( 5} 2

. : . 2 2.
Note that this density function denotes u ~ x (v) or u ~ x {(2a).
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APPENDIX D
Proof of Convergence of

Eq. (61), Chapter 3 [12]
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Eq. (61) in Chapter 3 states
B = vy Jﬁ Jw n e'n(T'“) [:%3 (1-e_3't) e_usil dg'dn (b1)
0 /n

Since the integrand in eq. (D1) is continuous, the following inequality

holds true:

B < vy r { ne M (Y~V) %. (1-e7?'t) e'\’B':[ dg'dn
070

)

'l _at _yat
= vy jm ne-ﬂ(Y-U) dn -é, (1-e B t) 5B dg!
0 0
. Tl (emBYy o UB g D2

In order for Dl to converge, the integral

q = r 5 (1) e ape (03)

must exist.
Since
lim

B' - 0+

lim t e
B0+
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*
because of L'Hopital's Rule, for each e>0, there exists a 6>0 such that

_Blt
0 < —1-:%—‘-—< t+e

for all R'c(0,8).

Therefore,

5
= J -é- (1-eB'Y)  _upr

€ dg' +
0
Jl 1 [l—e-a't] e agr .
§ B!

1

8 i '
i f e'\-’s (t"‘E )dB' + J _é_' [l—e_B't) e-VB' dp' + J‘n} e'VB da?
0 § 1
and since
8
J e-vB! [t+€) g = t+e (1_e-v6)
0 v

=R s '
[ 7 [1=e B't) ¢™VB" 4gr is finite
8

then C is finite. Hence, C exists and the proof is completed.

* =

L'Hopital's Rule:

Cog(t) - gy 8
e W0 2@ TN e




167

APPENDIX E
SAS Generation of a Gamma

Distributed Data Set [12]
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To generate a gamma random variable X (exponential, if shape parameter

=1) with parameters o,B and y, and probability density function

ﬁu(x—y)u_l e-ﬁ(x-y)
I'(a)

for a,B,y > 0 with 1 = a/B, 02 = 3/82

where

¢ = integer shape parameter

B

scale parameter

Y = location parameter
the following procedure is used:
(1) Generate v = 2o independent unit normal random variables,

N . Nz ~ N(0,1)

1) Nz!
(2) The distribution of
v
= B N
i=1 *
is then the chi-square distribution with v degrees of freedom
2 2
and x (vJ = x (20)
(3) Use the transformation

X = —%- oy

to obtain the gamma random variable X with parameters (a,B,Y).

A computer program using SAS (Statistical Analysis System) used for

generating two sets of gamma random variables (on and off times} is listed.
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* NCTE:
WHEN X IS GAMMA DISTRIBUTED WITH
PARAMETERS ALPHAs, BETA, AND GAMMA,
THE DENSITY FUNCTION IS (3ETA**ALPHA)
*EXP(—BETA*(X—GAMMA) ) *(X~-GAMMA)
**(ALPHA-1)/ (ALPHA-1} ;

* HERE,

ALPHA=]1 FCR BOTH TON AND TGFF (HENCE, EXPONENTIAL

(THEREFORE, NU=2 FOR BOTH TON ANC TOFF)
BETA=1/4 FGR TON AND 1/2 FCR TOFF
GAMMA=Q FTR BGTH TON AND TOFF;

* NGTE:
TCN IS CN TIME
TJOFF IS CFF TIME
TO IS TOTAL CYCLE TIME;

* CCLYl IS TCN
CoOL2 1S TOFF
CCL2 IS TO;

* THE GAMMA PANDCM VARIABLE TC IS GENERATED
FRCM THE SUM OF THE RANDCM VARIABLES
TON AND TOFF;

* THE PRCCEDURES TO GENEFATE THE GAMMA
RANDOM VARIABLES CAN Be REFERENCED TO
JCHNSOM AND KOTZ'S CONTINUGUS
DISTRIBUTIONS;
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STATISTICAL ANALYSIS SYSTEM

4é

47

48 -
49 GPTICNS LS=64 NODATE PS=49 NCNUMBER NOCENTER SKIP=3;
EC

51 CATA CS¥;

52 DO N_ =1 TGO 80;

52 E=NORMAL{57593) ;

£4 P=NCRMAL(82G681);

55 QUTPUT;

56 END

NOTz: DATA SET WORK.CSY HAS 80 OBSERVATIONS AND & VARIABLES. 253
CBS/TRK
NCTE: THE DATA STATEMENT USED 0.67 SECGNDS AND 123K.

57 DATA SQUARES;
58 SET CSM;
59 SR=E*E;
60 SP=pP%p;
£1 KEEP SQ SP;

NCTE: DATA SET WORKeSQUARES HAS 80 CBSERVATIGWNS ANC 2 VARIABLES.
§53 CBS/TRK
NCTE: THE DATA STATEMENT USED 0.23 SECCNDOS AND 128K

€2 PRCC MATRIX;

£2 Y=J(80,2,0);

&4 FETCH X DATA=3QUARESS

€5 DO I=1 TC 80 3Y 2;

&€ II=1I+1;

67 Y(Is1)=X{1,13+X(I1I,1)3
&8 Y{I,2)=X{1,2)+X(11,2);
69 END;S

70 A= 2 0 / 0 1;

T1 XX=Y*A;

T2 CQUTPUT XX OUT=XEND;

NCTE: DATA SET WORK.XEND HAS 80 OBSERVATIONS AND 32 VARIABLES. 68
9 C€BS/TRK
NCTE: THE PROCEDURE MATRIX USED Q.74 SECCONDS AND 144K

AND PRINTED PAGE 1.

T3 DATA MCCN;
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STATISTICAL ANALYSIS SYSTEM
74 SET XEND;
75 IE COL1-=0.0 ANLC COL2-=C 03
NCTE: CATA SET WORK.MCCN HAS 40 Q23ERVATIONS AND 3 VARIARLES. 42
0 CBS/TRK
NCTE: THE DATA STATEMENT USED C.26 SECGNDS AND 123K.
7¢ CATA GAMMAS
77 SET MCCN;
78 COL2=COL1+CCL2;
75 T=_N_3
8¢ KEEP T COL1 COL2 COL3;
NCTE: DATA SET WORK.GAMMA HAS 40 OBSERVATICNS AND 4 VARIABLES. 5
25 GBS/TPX
NCTE: THE DATA STATSMENT USED C.25 SECONDS AND 122K.
81 PRCE PRINT DATA=GA44A;
82 TITLE A SET CF GAMMA DISTRIZUTED RANDCM VARIABLES
NCTE: THE PRCCEDURE PRINT USED C.50 SECONDS AND 134K
AND PRINTED PAGE 2.
NCTE: SAS USED 144K MEMCRY.,
NCTE: SAS INSTITUTE IMC.
SAS CIFCLE
BGX 8009
CARY, NeCo 27511



A SET

CEE T |
1 0C.2lsé
2 2.3612
3 4.5332
4 0.2089
5 QJ.0&3¢
& 5.9580
7 V9728
8 32.6¢6613
9 la4al77
U 38742
11 7.7878
12 S.3878
2 l.3tle
14 11.8043
15 14.1578
18 2:9732
17 0.0475
13 11.6C31
15 (.22¢98
20 4.56¢
2zl  G.3%50C
22 443218
23 9.5824
24 4.2£37
25 Q.9024
25 T.6558
27 9.2328
28 3.1217
25  7.3025
20 2a.4532
21 4.5538
22 242935
23 C.6472
24 10.4150
35 2.7596
2 l1.5168
IT  2.9294
8 2.6C2¢C
29 141989
40 13.4431

1.307&7
264692
1.28550
C.8&Q23¢
1.42172
J.30102
0.38155
1.826G7
S%slE57
2412615
Celalsg
0.17237
2.J08018
0.5CG21
CeZ561¢
B.163Z9
4. CG5C3
2.730&1
0. 05406
0.12015
C.252%4
U« 26414
1.59550
023673
CeC7164
C.1290C9
275301
C.034326
3.50084
CedT4S0
GeT35433
0.10003
1.24214
C.122924
0.£5740
C.3457¢
1.25289
1.21870
£.10970
2443065

LLL2

2a 5265
3.4256
5.7662
1.0872
1.5376
6.2593
1.0543
5.5038
4.9432
6.0003
T.9285
S.5382
3.4€18
12.7046
14,7425
11.7266
401425
15.2340
0.2835
4 T467
0.6879
4.3859
11.2779
4.5064
0.5751
T.7859
11.9910
2.l461
10,8033
2.9681
4.6456
249995
1.5853
10.5573
2.8570
2.2€26
4.1823
2.8187
6.9066
17.8737

Uf GAM#a DISTRIBUTED RANCTH VARIA

T

DO~ P LN

L2S



APPENBIX F

Flow Diagrams of Estimate Computations
and Fortran Computer Routine

]
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Flow Diagram of Maximum Likelihood Estimate Computation [Eg. (33) in Ch. 3]

CLEXP = T * NA
SYZ/PYZ

START T=T+ 100
i _

Read N,NT,NS

v 0 s
KKK = 1
KYZ =1

CLE=TYZ+ _ _

° 2 (1-TYZ) *EXP CLE = TYZ
" (-CLEXP) KKK + KKK+1
Read Y(I),Z(I] KKK = KKK+1

L T

YES

SY
SZ

oo o

= o0 ol

—3
nuwnn

m
=2
m
H
"
1]

N/SY
= N/SZ

A4

SY=SY+Y(I) o
SZ=SZ+I(I) KYZ = KYZ + 1

I=I+1

tm
m
—]
2
1]

YES

NO

SYZ=SY+SZ
PYZ=SY*SZC
TYZ=S8Y/SYZ

&




Flow Diagram of Traditional Bayesian Estimate Computations of [Egqs. (62) 175
and (68) 1n Ch. 3]

START

ﬁead N,NT,NS,
NP

O; ¥

KKK
KYZ
KUv

[T
—

v

Read Y(I),Z(1]

SY

s ek i o L e
oo o

o R |

SY=SY+
SZ=SZ+

I=I+}

[ B A
—~ -~

L B |

St !

Py
Read U,V

-
non
<
+
w
[ ]




DX=(ED-ST} /KK

DY=(ED-ST) /KK

@

J=1 I =i
= $
T=T + 100 T=T+ 100
C12 = 0.0 €34 = 9.0
D12 = 0.0 D34 = 0.0
DXJ = ST [ DYJ = ST
F1=TRAP(DXJ, GL=TRAP(DYJ,
.1,60,FX) .1,60,FX)
DXJ=DX*J+ST DXJ=DY*J+ST

176



Cl=TRAP(DXJ,

Q.07,60Q,FX)

Cl2=4*C1+C12
=J+2

DXJ=DX*J+ST

D1=TRAP(DXJ,
0.07,50,FX)
D12=2*D1+D12

j=J+2

C3=TRAP(DYJ,
0.02,80,FX1)
C34=4*C3+C34
J=J+2

DYJ=DY*J+ST

D3=TRAP(DYJ,
0.02,80;FX1)

D34=2+D3+D34

J=J+2

©

177



E12 = D**
(C12+D12+F1) /S

TBND=N*V/
((UsT*(V+T))
+U*V*E12

KKK = KKK + 1

E34=DY*(C34+
D34+G1)/3

FHK= (H*K/ (T+H]
*(TeR))** (N T

.

TBD = FHK +
E12/ (FAC(N))
**2
KKK = KKK -1

KUV=KUV+1




KYZ+KYZ+1

179



Flow Diagram of Brender's Bayesian Estimate Computations [Egqs. (119)

and [122) in Ch. 3]

START

4

Read N, NT,
NS, NP

Y

Fs)
~

-~
2g
W unn
—

J

(
Read Y(I),

(1)
SY = 0.0
Z=20.0
T =0.0
I =1
SY = SY+Y(I)
Z = 5Z+Z(I)
I = I+1

V+5Y
U+SZ

~ =
won

180



T=T+100
Al=(V/ (V+T)) ¥
(U/ (U+T))
A2=(1-A1

2

J=1

uvli=i-0/v
Uv=1-((U+T)/
(V+T))

¥

KK=J+2

B1=FAC(J)/
FAC (KK) * (UV1
** J-AL*UV**]

BBND=Al+A2

=T+100

1= (H/ (H+T) )
e NH* (K/K+T))
F* (N+1)

v

C=FAC(2N+2)
/ (2*FAC(N))
C2=(1-C1)/2

v

L=N+J
LL=2N+2+J

ic

Y

C3=((1-K/H)*1
J-CI*(1-(K+T}
(H+T) ) **J)*

EACr) /EACTLL]

181



BBD=C1+C2

KUuv = KUv+l

NO

KYZ=KYZ+l

18



183
Flow Diagram of FAC Function

START

( Read N

<
T~

FAC

([}

—
o O

FAC FAC*I

I+1

nou ‘é;;

YES

RETURN



Flow Diagram of TRAP Function

( START )

A 4
,
Read A,B,M

¥

Q=(B-A) /M
SUM=0
J=M-2

12=1+1
SUM=SUM+
2*FX(A+K*Q) +

4*FX (A+K2*Q)

SUM = SUM +
4*FX (A+Q)

\

TRAP=(FX(A) +
FX(B)+SUM)/3

RETURN

184



185

Flow Diagram ¢f FX Function

( START )

\

Ve
Reads Z,V,V,
T,DXJ

v

FX=(1/Z)*
C1-EXP(-Z*T))
*EXP (~2*V)

v

FX=FX*DXJ
*EXP(-DXJ* (U
-V))

Y

( RETURN )




Flow Diagram of FX1 Function

( START )

A 4

y
Read,Z,U,Vv,
T,H,K,DYJ,N

v

FX1=(DYJ*H*
K)** (NH)

¥

FX1=FX1*(1-
EXP(-2*T))/Z

v

FX1=FX1*
(Z-DYJ)**N

¥

FX1=FX1*
EXP(-Z*H)

v

FX1=FX1*
EXP (-DYJ* (K-H

RETURN

186
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JOB

OO0 COOOO00O0OOO OO0 O0O0NO0O00C0000000O0000O00000000000000000

s TIME=5,PAGES=20

THIS PROGRAM CALCULATES THE MAXIMUM LIKELIHGCD,
TRADITIONAL BAYESIAN, AND BRENDER'S BAYESIAN
ESTIMATES OF SYSTEM AVAILABILITY WHEN THE

SYSTEM IS COMPOSED OF MEGATIVE EXPCNEMTIALLY
OISTRIBUTED CN AND QOFF TIMES. THE RCUTINE,AS IS,
CAN ACCCMMODATE UP TO 10 SAMPLES AT A TIME wlITH
UP TC 25 OBSERVATIONS EACH, AND WITH 10 CTIFFERENT
PRICRS EACH.

NOTATION:
Y{I,J) = THE J TH ON TIME OBSERVATICN FOR
THE I TH SAMPLE
Z{I+J) = THE 4 TH OFF TIME CBSERVATICN FCER

THE T TH SAMPLE
ESETA(I) = THE 9AXIMUM LIKELIHCOCLC ESTIMATE
OF THE SYSTEM GN TIME PARAMETER
BETA FCR THE I TH SAMPLE
EETA{I) = THE MAXIMUM LIKELIHCGCD ESTIMATE OF
THE SYSTEM CFF TIME PARAMETER
ETA FOR THE I TH SAMPLE
CLE(I) = THE HMAXIMUM LIKELIHCOD ESTIMATE
OF THE SYSTEM AVAILABILITY FCR
THE I TH SAMPLE
TEND(I,J) = THE TRADITICMAL BAYESIAN ESTIMATE

CF SYSTEM AVAILAZILITY FCR THE I TH

PARAMETER SET AND THE J TH TIME
aHEN SAMPLE CATA IS NOT AVAILAELE
T3D0(I,JsK) = THE TRADITICMAL BAYESIAN ESTIMATE

OF SYSTEM AVAILABILITY FGR ThE I TH

SAMPLE, THE J TH PARAMETER SET,

ANO THE K TH TIHE, WHEN SAMPLE DATA

IS AVAILABLE
38ND{1,J) = THE BRENDER'S BAYESIAN ESTIVATE

OF SYSTEM AVAILABILITY FCR ThE I TH

PARAMETER SET AND THE J TH TIME
WHEN SAMPLE CATA IS NOT AVAILABLE
3BD(I,JsK) .= THE BRENDER'S BAYESIAN ZS5TIMATE

OF SYSTEM AVAILABILITY FOR THE I TH

SAMPLE, THE J TH PARAMETER SET.

AND THE K TH TIME, WHEN SAMAPLE CATA

IS AVAILABLE
THE NUMBER JF C33ERVATICMS PER SAMPLE
THE NEGATIVE EXPGNENTIAL PRICR PARAMETER
CF THE CN TIME DISTRIEUTICN
THE NEGATIVE EXPCNENTIAL PRICR PARAMETER
CF THE CFF TIME OISTRIBUTICN
THE NUMBER OF SAMPLES EXAMINED
THE NUM3ER CF PRICR PARZMETER SETS
EXPLGRED PER SAMPLE
= THE NUM3ER CF TIME VALUES USED FOR
CALCJULATING THE SYSTEM AVAILABILITY
ESTIMATES (IN INCREMENTS CF 103)
(MCTE: THE NP AND NT MUST BE EQUAL FCR ALL
SAMPLES, ALTHCUGH THE PARAMETER SETS
THEMSELVES 4AY 2E DIFFERENT)

[ <
1} W

w
nn

F4
pur
I
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o LN

0o~ o

10
11
12
13
14
15

16
17
13
18

20
21
2
232
24

(e Ne gl

(&1

o

DIMENSION Y{10425),Z(10,25),NN{10)
DIMENSION CLE{(10,10},EBETA(10],EETA(1Q]
CIMENSICN TBNO(10,10).780(10,10,+10)
DIMENSICN BBNO{(10,10).,B8B80(10,10,10}
DIMENSICN VV(10) ,UU(LQ)}

COUBLE PRECISICN V,UsTeFACH K

OOUBLE PRECISION SYZ,PYZ.TYZ,LLE,CLEXP

DOUBLE PRECISICN E3ETA,EETA

JCUBLE PRECISICN JX+0XJeFleClsCl2,D1.,012,E12
JOUBLE PRECISICN OY,CYJeGleC3,L34,03,+0344E34,FHK
JOUBLZ PRECISICN ST,ED,TBNKD,TBD

DOUBLE PPECISICN TRAP,FX,FXL

OCUSLE PRECISION Al,A2,51,BBND

O0usLE PRECISICN CC,CCl.CC2.0C3,880

COUBLE PRECISICN UV,uVL,VV,JU

COMMCN/CML/0XJ
COMMCN/CM2/DYd s KyHyN
COMMCN/CM3/ T, V.U
EXTERNAL FX,FX1

4 FCRMAT (12}

5 FORMAT (2F8.3)

& FORMAT (312)

20 FORMAT ('1%,///)

21 FORMAT (18X,°*TABLE 4=",I1,": MAXIMUM LIKELIHCCD®,
1v ESTIMATES OF'",/)

22 FORMAT {18X,'TABLE 4=',I1,%': TRADITICNAL BAYESIANT,
l* ESTIMATES QF?/)

23 FORMAT (18X,'TABLE 4-%,I1,': BREMDERS SAYESIAN',
1Y CSTIHAATES QF1',/)

24 FORMAT (30X,'SYSTEM AVAILABILITY FOR DATA SET ,11,//)

25 FORMAT (45X ,*TINMES',/)

26 FORMAT {30X,'T=1J0",y5X,'T=20C";5X,'T=3007,5X,
1'T=400",//)

30 FCPMAT (5X,'MAXIMUM LIKELIROGCD ESTIMATE',//)

32 FORMAT (8Xy"SAMPLE?, 124" (N='4123?) 06X sFSH.4,
L3{4XFbal) /)

33 FORMAT (//+8Xy"MAXIMUM LIKELIHCGD ESTIMATE CF Z2ETA',
L' IS *,Fl0.6])

24 FORMAT ( 8Xy "HAXIMUM LIKELIMCCD ESTIMATE CF  ETA",
1t 1S *3Fl0e64/7)

49 FORMAT (SX,'TRADITICNAL BAYESIAN ESTIMATZ?)

41 FORMAT [//28Xy'NC SAAPLE CATA', /)

&2 FORMAT (/738X SAAPLEY (2,0 (N=1,[2,%),/)

43 FORMAT (3{11Xy"PARAMETER SET 4124 2X4F6a432(4AsFLa@ly/))

44 FORMAT (/7777 45Xy "OARAMETER SET 12! ,5X,"PARAMETER SET 2:1',
15X, "PARAMETER SET 3:',/)

45 FORAAT (3{10Xy'VY=',FT7.2}y/)

46 FORMAT (3{10Xe'd=",F7.2))

S1 FUPMAT {S5X,'BRENCEARS IAYESIAN ESTIVATE')

63 FORMAT (30X,'0ATA SET!',I2.,/7)

61 FORMAT (///+29Xet SAMPLE NCa'yI12,/77)

62 FORMAT (11X,'0B3CSRVATICN® 10X, *TCN, 20X, 'TOFF4,//7]

63 FOAMAT (1SX,I12410X,Fl0ac l23X,FlQ0.2,7)
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46
47
48
49
50
51

52

54
5&
5¢

58
59
6d
-3
62
&3
&4
65
b66&
67
68

70
71
72
73

91
92
S2
G4

36

aNeNaXel

OO0

50

70
71

T2
73

READ (546) NSgNP,ONT
DO 500 K¥Z=1,NS
READ (5,.4) N
READ (5,5) (Y(KYZsI)+ZIKYZ:I)yI=1yN)
NN{KYZ)=N
D0 400 XUV=L1,NP
READ (5,5) V,U
VVIKUV)=V
ULIKUV)=U
SY=0.0
§$Z=0.0
D0 50 I=1.,N
SY=SY+Y(KYZ,I)
SZ=SZ+Z(KYZ,1)
H=V+SY
K=U+SZ
SYZ=SY+SZ
PYZ=5Y=*5Z
TYZ=SY/SYL
$T=1.0D-09
cD=2.00-01
KK=100
DX=(ED=-ST) /KK
KK1=KK~-1
KK2=KK=2
T=0.0000
00 400 KKK=L14NT
T=T+1.0C02
CLEXP=T#DFLOATINI=SYZ/PYZ

CALCULATICN OF TRADITIGNAL BAYESIAN ESTIMATE

AHEN SAMPLE 0ATA IS NOT AVAILABLE

€l2=0.00C0

212=0.00C2

OXJ=ST

F1=TRAP(CXJ+1.3D0-01+40,FX)

DO 70 J=1,KKl,2
DXJ=0X*J+ST
IE(DXJ GE.T.JD-G2) GC TC T1
C1=TRAP(DXJ+T400-22+€0,FX)
Cl2=4.000C*C1i+Cl2

DO 72 J=2,KK2+2
JAJ=0XFJ+ ST
[F{OXJeGE.TaJD=-02) G50 TCO 72
D1=TRAP(DXJ,7,00-22,62,FX)
012=2.000C*D1+D12

S12=0X*(F1+C12+D012)/(2.0C03)

TINDUKUV KKK =us v/ ({U+T) *{V+T)) +UFVHELZ

CALCULATICN CF BRENDERS Z2AYESIAN ESTIMATE

WHEN SAMPLE DATA IS NDT AVAILABLE

ALl=(V/(V+T))*{U/(U+T))
A2=(1.,0000-41)/2.20C0
Jv1l=1.0000~-u/V
UV=1.0DCC-{U+T) /(Vv+T)
00 100 J=1,20

JI=J+2
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97
98
S9

100
101
102
103
104
135
136
107
108
109
119
111
112
113
114
115
116
117

118

120
121
122
123
124

-
25

b
)

127
122
125
139
131

122
133
124
135
136
127
138
13s
149

(3 Ralelyl

OO0

o000

OO oOon

100

90
el

92
93

175
400

5CQ

81=FAC{J}/FAC({JJ)*(UVLi**J-UVEx xAl) 190

A2=42+B1
IBNDKUV, KKK )=A1+A2

CALCULATICN CF TRADITICNAL 3AYESIAN ESTIMATE
WHEN SAMPLE CATA IS AVAILABLE

DY={ED=ST) /K«

C34=0.0D00

034=0.0D00

DYJ=ST

Gl=TRAP{DYJ,1.00-02,80,FX1)

CO 90 J=1,KKl,2
DYJ=CY*J+ST
[F(DYJ.GE.2.00-32) GC TO 91
C3=TRAF(DYJ+2.00-02,83+FX1}
C34=4.0D0C*C3+C34

00 92 J=2,KK2,2
DYJ=DY*J+ST
IF{DYJ.GE.2.0D-22) 50 TG 93
03=TRAP(0YJ+2.00-02,80,FX1)
D24=2,000C*03+034

£34=0Y*(G1+C34+034)/(3.000G0)

FHK={HEK/{ {T+HI* (T+K) ) ) 2 (N+1]

T3D(KYZ, KUV KKK )=FHK+E34/({FACIN) ) *%2

CALCULATICN CF BREMDERS BAYESIAN ESTIMATE
WHEN SAMPLE DATA [S AVAILABLE

CC=FACI2*N+2)/(2.0%FACIN})
COLl=(H/(H+T ) ) =% [N+L) & (K/(K+T))**(N+1}
CC2=(1.0000-CC1) /2.CC00
00 150 JJ=1.30
JJL=N+JJ
JILL=2¥N+2+JJ
CC3=1({1.0000-K/H)** ) -CC1l*(1.0C00~
(K+T) /UH+T))=xJJ) #FAC(JJLI /FAC{JILL)
CC2=CC2+CC*C(3
BBD(KYZ,KUV,KKK)=CC1+Cl2

CALCULATICN OF ¥AXIAUM LIKELIHOGD ESTIMATE

IF(CLEXP.GT.150) 30 TGO 175

CLE(KYZ KKK)=TYZ+(1.30C0-TYZ)*DEXP(-CLZXP)
GO TC 400

CLE(KYZ,KKK)=TYZ

CONTINUE

CALCULATICN CF MAXIMUM LIKELIHGOD ESTIMATES
OF THE SYSTEM PARAMETERS

EOETA(KYZ)=DFLOAT(N)/3Y
EETALKYZ}=0OFLCAT{NI)/SL
CONTINUE
WRITE (6+2C)
WRITE (6460) 1
00 700 IWl=L1,NS
WRITE (&461) IWL
WRITE (6+862)
NN1=NN({IW1l)



141
142
143
l44
145
146
147
148
149
150
151
152
153
154
155
156
157
158
155
160
ls1
l62
13
164
165
166
167
168
169
172
171
172
173
174
175
176
177
178
179
16C
151
182
183
184

138
187
123
13s
150

OOOOOO0O0O0

700

750

125

300

WRITE (6963) (1,Y(TWl,1),Z(IW1sI),I=1,NN1]} 191
CCNTINUE
WRITE (6,20)
WRITE (6,21) 1
WRITE (6,24) 1
WRITE (6,25)
WRITE [&,26)
WRITE (6,30)
DO 750 Iw2=1,NS
WRITE (6,32) IW2,NN(IW2),(CLE(INZsLL) sLL=1,NT}
WRITE (6,33) EBETA(IA2)
WRITE (6,34) EETA(INZ)
WRITE (6,20)
WRITE 16,22) 2
WRITE (6,24) 1
WRITE (6,25)
WRITE (6,26)
ARITE {6,40)
00 725 IW4=1,NS
WRITE (6542} IWa,NN{IN&)
WRITE (6,43) (KL1,(T2D(Iw4sKLsL1)sL1=1,NT) K121 NP)
CONTINUE
WRITE (6,41)
WRITE (6,43) (K2,(TBND(K2,L2) oL 2=1,NT] K2=1,NP]
WRITE (6,44)
WRITE (6,45) (VV(I1),I1=1,AP)
WRITE (6,46) (UU(I2),12=1,NP)
WRITE (6,20)
WRITE (6,23) 2
WRITE (6524) 1
WRITE (8,25)
WRITE (6426)
WRITE (&,51)
00 800 IwW3=1,4S
WRITE (6,42} 1#3,NN(Ia3)
WRITE (6,43) (KL {330(IW34K1,L1),L1=1,NT) ,K1=1,AP)
CONTINUE
WRITE (6,41)
WRITE (6s43) (K2,(BB3ND(K2,L2) L2=1,NT),K2=1+NP)
WRITE (6444)
WRITE (8445) (VV(I1),11=1,NP}
WRITE {6446) (UUCI2)y12=1,NP)
STCP
=™ND

FAC IS A DCUBLE PRECISICN FUNCTION WHICH DETERMINES
THE FACTCRIAL JF ITS ARGUMENT.

OCUBLE PRECISICN FUNCTICN FaC(N])

FAC=1.0

D3 5 I=14N
FAC=FAC=*I
RETURN

END
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TRAP IS A DOUBLE PRECISICN FUNCTICN wnICH JSES
THE TRAPEZODICAL APPROXIMATICN (wWITH SIMPSON®S
RULE] TOD EVALUATE THE FINITE INTEGRAL,FX.

ODUBLE PRECISICMA FUNCTICN TRAP{A,ByM,FX)
DOUBLE PRECISICN A,3,3:5UM,DXJ,40YJ
J0UBLE PRECISICN VeUsheKsTeFXeFX1
COMMCN/CM1/DXJ

COMMON/CM2/0YJd e KpHaN

COMMON/CM3/T,V,.U

A=({B=-A) /M
SUM=0.0000
J=M=2
DO 10 I=2,d+2
I12=1+1
SUM=SUM+2 .0000%FX{ A+1*Q)+4.0D00*FX(A+12%C)
SUM=SUM+4,. 0D00*FX(A+Q}
TRAP=(FX(A)+FX(E3)+SUM)*(G/(3.0DCQ))
RETURN
END

FX IS A DOUBLE PRECISICM FUNCTICN WHICH DEFINES
THE INTEGRAND USED IN THE FUNCTICN TRAP IN THE
CASE WHERE SAMPLE CATA IS NCOT AVAILABLE.

DCOUBLE PRECISICK FUNCTIGN FX(Z).
OQUBLE PRECISICN Z,T,UsV,0XJ
COMHGN/CML/DXY

COMMCN/CM2/T 74U

FX={1.000Q1/Z*((1.3D0C)}-DEXP(=L*T))=
LDEXP{=-Z*>V)

FX=FX*0¥J*DEXA(=-CxJ={U=-V])

RETURN

END

FX1 IS A DCUBLE PRECISICGN FUMTICN wHICH DEFINES
THE INTEGRANC JSED IN THE FUNCTICN TRAP IN THE
CASE AHERE SAMPLE OATA IS AVAILAELE.

JCUBLE PRECISICN FUNCTION FX1(Z)
JCUBLE PRECISICN d.K
J0ugLe PRECISICN Z.TsVeUs3YJ
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COMMON/CM2/DYJsKyHeN
COMMON/CM3/T,V,U

FX1={DY JeH#K ) 3 (N+1)
FX1=FX1%{1.0000=-0EXP(=2%T}}/Z
FX1=FX1*(Z=0YJ)*=N
FX1=FX1L#DEXP{-Z*H/5.,0000])
FX1=FX1#%DEXP(-2*H/5.0D00)
FX1l=FX1*DEXP(~Z*H/5.00G0)
FX1=FX1*DEXP{-2%*H/5.0000)
FX1=FX1#DEXP(-2%H/5.000G}
FX1=FX1*DEXP{-0YJ*(K=H]}
RETURN
END

c

SENTRY
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System availability is estimated for two systems whose on and off times
are exponentially distributed. Three estimates, the classical maximum like-
lihood estimate, a traditional Bayesian estimate, and Brender's Bayesian
estimate, are calculated numerous times using different sizes and types of
samples. Prior distributions with different parameters are also investigated
for the Bayesian estimators. From the three, a 'best'" system availability
estimate is chosen given certain criteria via five multiple attribute decision
making methods: dominance, simple additive weighting, linear assignment,
ELECTRE and TOPSIS. In terms of the five criteria and their importance
(weight) on the final decision, Brender's Bayesian estimation method was

determined as superior over the other two methods.



