SIMPLE CONTINUED FRACTIONS

by

WILLIAM NOLAND GILLMOR

B. A., Westminster College, 1962

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

- Department of Mathematics

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1964

Approved by:

2668 TABLE OF CONTENTS R41964G 482
C 2 Page1
II. FINITE SIMPLE CONTINUED FRACTIONS 3
III. PROPERTIES OF THE CONVERGENTS OF A SIMPLE CONTINUED FRACTION 7
IV. INFINITE SIMPLE CONTINUED FRACTIONS. 21
V. BIBLIOGRAPHY. 27
VI. ACKNOWLEDGMENT 28

INTRODUCTION

The purpose of this paper is to develop the framework of simple continued fractions, without considering any applications. Simple continued fractions are the most important and most extensively studied continued fractions, and lie at the root of almost all arithmetic and very many analytic applications of continued fractions. ${ }^{1}$

A continued fraction is a function of the form

$$
a_{1}+\frac{b_{2}}{a_{2}+\frac{b_{3}}{a_{3}+\frac{b_{4}}{a_{4}}}}
$$

where the $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$ are any real numbers whatever. In particular, a simple continued fraction is a continued fraction of the form

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}
$$

where the $a_{i}, i=1,2,3, \ldots$ are positive integers with the exception that the integer a_{1} may be positive, negative, or zero. If the number of
${ }^{1}$ A. Ya. Khintchine, Continued Fractions, p. 3.
a_{i} is finite, the simple continued fraction is said to be a finite simple continued fraction. If the number of a_{i} is infinite, the simple continued fraction is said to be an infinite simple continued fraction.

The paper is divided into three sections. The first part is concerned with the defining and development of the finite simple continued fraction. All the theory and definitions are provided, and no previous knowledge of continued fractions is assumed.

Secondly, the convergents of a simple continued fraction are defined, and from this, recursion formulae are developed. These make possible the development of the properties of the convergents and the numerators and denominators of the convergents of finite simple continued fractions.

In the last section of the paper, infinite simple continued fractions are introduced and it is noted that while finite simple continued fractions represent rational numbers, infinite simple continued fractions represent irrational numbers.

FINITE SIMPLE CONTINUED FRACTIONS

Let r be any rational number. Then $r=\frac{u_{1}}{u_{2}}$, where u_{1} and u_{2} are unique relatively prime integers with $u_{2}>0$. By the division algorithm, there exist integers a_{1} and u_{3} such that

$$
u_{1}=u_{2} a_{1}+u_{3}, \quad 0 \leqslant u_{3}<u_{2}
$$

If $u_{3}>0$, then the division algorithm applied to the positive integers u_{2} and u_{3} yields unique integers a_{2} and u_{4} such that

$$
u_{2}=u_{3} a_{2}+u_{4}, \quad 0 \leqslant u_{4}<u_{3}
$$

The repeated application of the division algorithm gives unique integers $a_{1}, a_{2}, a_{3}, \ldots, a_{j}$ and $u_{3}, u_{4}, \ldots, u_{j+2}$ such that

$$
\begin{equation*}
u_{i}=u_{i+1} a_{i}+u_{i+2}, \quad(i=1,2, \ldots, j) \tag{1}
\end{equation*}
$$

and $0=u_{j+2}<u_{j+1}<\cdots<u_{3}<u_{2}$.
Now let

$$
B_{i}=\frac{u_{i}}{u_{i+1}}, \quad i=1,2, \ldots, j
$$

Then,

$$
\begin{align*}
& B_{i}=a_{i}+\frac{1}{B_{i+1}}, i=1,2, \ldots, j-1, \\
& B_{j}=a_{j} . \tag{2}
\end{align*}
$$

Thus the successive substitution of the value $a_{i}+\frac{1}{B_{i+1}}$ for B_{i} in B_{i-1} for $i=2,3, \ldots, j-1$ yields

$$
B_{1}=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}+\cdots}}}
$$

Now, $B_{1}=\frac{{ }^{u_{1}}}{u_{2}}$ and $B_{j}=a_{j}$, so

$$
\begin{equation*}
\frac{u_{1}}{u_{2}}=B_{1}=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}+.}}} . \tag{3}
\end{equation*}
$$

This expression for $\frac{u_{1}}{u_{2}}$ is called a continued fraction expansion, and the integers a_{i} are called the partial quotients, since they are the quotients obtained in the application of the division algorithm. By assumption, u_{2} is positive, but u_{1} may be positive, negative, or zero. Thus, a_{1} may be positive, negative, or zéro; but since $0<u_{i+1}<u_{i}$, $i=2,3, \ldots, j-1$, the succeeding partial quotients $a_{2}, a_{3}, \ldots, a_{j}$ are positive integers. In case $j \geqslant 2$, then $a_{j}=\frac{u_{j}}{u_{j+1}}$ and $0<u_{j+1}<u_{j}$ imply
that $a_{j}>1$.
The notation $\left\langle a_{1}, a_{2}, \ldots, a_{j}\right\rangle$ is used to designate the continued fraction in (3). In general, if $X_{1}, X_{2}, \ldots, X_{j}$ are any real numbers, all positive except possibly for X_{1}, then

$$
\begin{equation*}
\left\langle x_{1}, x_{2}, \ldots, x_{j}\right\rangle=x_{1}+\frac{1}{x_{2}+\cdot .+\frac{1}{x_{j-1}+\frac{1}{x_{j}}}} \tag{4}
\end{equation*}
$$

If all the X_{i} are integers, then the continued fraction in (4) is said to be a simple continued fraction. By a finite simple continued fraction is meant a simple continued fraction with a finite number of partial quotients.

The result in equation (3) implies that every rational number can be expanded into a finite simple continued fraction. However, a finite simple continued fraction has an alternate form to that of (3); namely

$$
\frac{u_{1}}{u_{2}}=\left\langle a_{1}, a_{2}, \ldots, a_{j-1}, a_{j}\right\rangle=\left\langle a_{1}, a_{2}, \ldots, a_{j-1}, a_{j}-1,1\right\rangle .
$$

The following theorem establishes that these are the only two simple continued fraction expansions of the rational number $\frac{u_{1}}{u_{2}}$.

THEOREM 1. If $\left\langle a_{1}, a_{2}, \ldots, a_{j}\right\rangle=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$, where the se are finite simple continued fractions, and if $a_{j}>1$ and $b_{n}>1$, then $j=n$ and $a_{i}=b_{i}$ for $i=1,2, \ldots, n$.

Proof. Let $y_{i}=\left\langle b_{i}, b_{i+1}, \ldots, b_{n}\right\rangle$. Then

$$
y_{i}=\left\langle b_{i}, b_{i+1}, \ldots, b_{n}\right\rangle=b_{i}+\frac{1}{\left\langle b_{i+1}, b_{i+2}, \ldots, b_{n}\right\rangle}
$$

Therefore,

$$
\begin{equation*}
y_{i}=b_{i}+\frac{1}{y_{i+1}} \tag{5}
\end{equation*}
$$

Thus, $y_{i}>b_{i}$ and $y_{i+1}>1$ for $i=1,2, \ldots, n-1$ and $y_{n}=b_{n}>1$. Hence, b_{i} is equal to the greatest integer in y_{i}, denoted by $\left[y_{i}\right], i=1,2, \ldots, n$. From the hypothesis that the simple continued fractions are equal, it follows that $y_{1}=B_{1}$. Now $B_{i}>1$ for $i=2, \ldots, j$, since $B_{i}=\frac{u_{i}}{u_{i+1}}$, and $0<u_{i+1}<u_{i}$ for $i=2, \ldots, j$. Thus $a_{i}=\left[B_{i}\right]$ for $i=1, \ldots, j-1$ from equations (2). Now since $y_{1}=B_{1}$, by taking integral parts, $b_{1}=\left[y_{1}\right]=$ $\left[B_{1}\right]=a_{1}$, and then from equations (2) and (5),

$$
\frac{1}{B_{2}}=B_{1}-a_{1}=y_{1}-b_{1}=\frac{1}{y_{2}} .
$$

Thus, $B_{2}=y_{2}$, and hence $a_{2}=\left[B_{2}\right]=\left[y_{2}\right]=b_{2}$.
Now assume that $B_{k}=y_{k}$ and $a_{k}=b_{k}$ for $k=1,2, \ldots$, i where $i \leqslant j-1$, $i \leqslant n-1$. From equations (2) and (5), it follows that $\frac{1}{B_{i+1}}=$ $B_{i}-a_{i}=y_{i}-b_{i}=\frac{1}{y_{i+1}}$, which implies that $B_{i+1}=y_{i+1}$. Hence $a_{i+1}=$ $\left[B_{i+1}\right]=\left[y_{i+1}\right]=b_{i+1}$. Thus, by induction, $B_{k}=y_{k}$ and $a_{k}=b_{k}$ for $k=1,2, \ldots, i$ where $i \leqslant j$ and $i \leqslant n$. It remains to be shown that $j=n$.

Suppose that $j<n$. From the preceding argument, $a_{k}=b_{k}$ and $B_{k}=y_{k}$ for $k=1,2, \ldots, i$, where $i \leqslant j$, and $i \leqslant n$. From equation (2), $B_{j}=a_{j}$ and from equation (5), $y_{j}>b_{j}$. Thus, in particular, $a_{j}=b_{j}$ and $B_{j}=y_{j}$ and hence a contradiction. Now, assume that $j>n$. A similar contradiction arises, and it is concluded that $\mathrm{j}=\mathrm{n}$.

PROPERTIES OF THE CONVERGENTS OF'A SIMPLE CONTINUED FRACTION

The part of the simple continued fraction up to and including a_{k} is called the $k^{\text {th }}$ convergent and is denoted by $C_{k}{ }^{2}$. Thus, the convergents of the simple continued fraction $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, are

[^0]\[

$$
\begin{aligned}
& C_{1}=\left\langle a_{1}\right\rangle \\
& C_{2}=\left\langle a_{1}, a_{2}\right\rangle \\
& \cdots \cdot \\
& C_{n}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \cdot
\end{aligned}
$$
\]

For a finite simple continued fraction $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, the $n^{\text {th }}$ convergent is, by definition, the simple continued fraction itself.

$$
\text { Let } X_{i}=\left\langle a_{i}, a_{i+1}, \ldots, a_{n}\right\rangle, \text { for } 1 \leqslant i \leqslant n
$$

Then, X_{i} is called the $i^{\text {th }}$. complete quotient. ${ }^{3}$ The continued fraction itself may be called the first complete quotient.

Consider the first few convergents, say $C_{1}, C_{2}, C_{3}, C_{4}$ of the simple continued fraction $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$. When expressed as simple fractions, these become

$$
\begin{aligned}
& C_{1}=\frac{a_{1}}{1} \\
& C_{2}=\frac{a_{2} a_{1}+1}{a_{2}} \\
& C_{3}=\frac{a_{1}\left(a_{3} a_{2}+1\right)+a_{3}}{a_{3} a_{2}+1} \\
& C_{4}=\frac{a_{1}\left(a_{2}\left(a_{4} a_{3}+1\right)+a_{4}\right)+a_{4} a_{3}+1}{a_{2}\left(a_{4} a_{3}+1\right)+a_{4}} .
\end{aligned}
$$

[^1]Now, rearrangement of terms gives

$$
\begin{aligned}
& C_{1}=\frac{a_{1}}{1} \\
& C_{2}=\frac{a_{2} a_{1}+1}{a_{2}} \\
& C_{3}=\frac{a_{3}\left(a_{2} a_{1}+1\right)+a_{1}}{a_{3} a_{2}+1}
\end{aligned}
$$

and

$$
C_{4}=\frac{a_{4}\left(a_{3}\left(a_{2} a_{1}+1\right)+a_{1}\right)+\left(a_{2} a_{1}+1\right)}{a_{4}\left(a_{3} a_{2}+1\right)+a_{2}}
$$

A definite pattern appears to be developing in the se simple fractions. Let

$$
\mathrm{p}_{1}=\mathrm{a}_{1} \text { and } \mathrm{q}_{1}=1
$$

so that

$$
\mathrm{c}_{1}=\frac{\mathrm{p}_{1}}{\mathrm{q}_{1}}
$$

Then,

$$
C_{2}=\frac{a_{2} p_{1}+1}{a_{2}}
$$

Now let

$$
p_{2}=a_{2} p_{1}+1 \text { and } q_{2}=a_{2}
$$

so that

$$
C_{2}=\frac{p_{2}}{q_{2}}
$$

Then,

$$
c_{3}=\frac{a_{3} p_{2}+p_{1}}{a_{3} q_{2}+q_{1}}
$$

Finally, let

$$
p_{3}=a_{3} p_{2}+p_{1}
$$

and

$$
q_{3}=a_{3} q_{2}+q_{1},
$$

so that

$$
C_{3}=\frac{p_{3}}{q_{3}}
$$

Then,

$$
C_{4}=\frac{a_{4} p_{3}+p_{2}}{a_{4} q_{3}+q_{2}}
$$

This sugge sts that if p_{i}, q_{i} are defined by the recursion formulae

$$
\begin{align*}
& p_{i}=a_{i} p_{i-1}+p_{i-2} \tag{6}\\
& q_{i}=a_{i} q_{i-1}+q_{i-2} \tag{7}
\end{align*}
$$

for $i \geqslant 3$, then

$$
c_{i}=\frac{p_{i}}{q_{i}}
$$

To see that this is the case, suppose for $k<n$, and $i=3,4, \ldots, k$,

$$
c_{i}=\frac{p_{i}}{q_{i}}
$$

where p_{i}, q_{i} are defined as in equations (6) and (7), respectively. Then,

$$
c_{k}=\frac{a_{k} p_{k-1}+p_{k-2}}{a_{k} q_{k-1}+q_{k-2}}
$$

Now from the recursion formulae defining the p_{i} and q_{i}, it follows that $p_{k-2}, p_{k-1}, q_{k-2}, q_{k-1}$ do not involve a_{k}. However, by definition the $(k+1)^{\text {st }}$ convergent is obtained from the $k^{\text {th }}$ convergent by replacing a_{k} by $a_{k}+\frac{1}{a_{k+1}}$.

Thus,

$$
C_{k+1}=\frac{a_{k}+\frac{1}{a_{k+1}} p_{k-1}+p_{k-2}}{a_{k}+\frac{1}{a_{k+1}} q_{k-1}+q_{k-2}}
$$

$$
\begin{aligned}
c_{k+1} & =\frac{\left(a_{k+1} a_{k}+1\right) p_{k-1}+a_{k+1} p_{k-2}}{\left(a_{k+1} a_{k}+1\right) q_{k-1}+a_{k+1} q_{k-2}} \\
& =\frac{a_{k+1}\left(a_{k} p_{k-1}+p_{k-2}\right)+p_{k-1}}{a_{k+1}\left(a_{k} q_{k-1}+q_{k-2}\right)+q_{k-1}} \\
& =\frac{a_{k+1} p_{k}+p_{k-1}}{a_{k+1} q_{k}+q_{k-1}} .
\end{aligned}
$$

Hence,

$$
c_{k+1}=\frac{p_{k+1}}{q_{k+1}}
$$

where p_{k+1}, q_{k+1} are defined by equations (6) and (7). Thus,

$$
c_{i}=\frac{p_{i}}{q_{i}},
$$

where

$$
p_{i}=a_{i} p_{k-1}+p_{i-2}
$$

and

$$
q_{i}=a_{i} q_{i-1}+q_{i-2}
$$

for $i=3,4, \ldots, n$. Now define

$$
\begin{aligned}
& p_{-1}=0, \quad p_{0}=1 \\
& q_{-1}=1, \quad q_{0}=0
\end{aligned}
$$

Then,

$$
\begin{aligned}
& p_{1}=a_{1} p_{0}+p_{-1}, \\
& p_{2}=a_{2} p_{1}+p_{0} ;
\end{aligned}
$$

and

$$
\begin{aligned}
& q_{1}=a_{1} q_{0}+q_{-1} \\
& q_{2}=a_{2} q_{1}+q_{0} .
\end{aligned}
$$

Thus, the recursion relation holds for $\mathrm{i}=1,2, \ldots, \mathrm{n}$.
The p_{i} and q_{i} in $C_{i}=\frac{p_{i}}{q_{i}}$ shall be referred to as the numerator and
denominator of the $i^{\text {th }}$ convergent, respectively.
THEOREM 2. The denominators of the successive convergents form an increasing sequence of integers.

Proof. The fact that $q_{i}>q_{i-1}$ follows immediately, since $q_{i}=$ $a_{i} q_{i-1}+q_{i-2}$, where a_{i}, q_{i-1}, and q_{i-2} are non negative integers.

THEOREM 3. The ratios of successive numerators and denominators of the successive convergents of a simple continued fraction may be expressed as follows:

$$
\begin{equation*}
\frac{p_{i}}{p_{i-1}}=\left\langle a_{i}, a_{i-1}, \ldots, a_{1}\right\rangle \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{q_{i}}{q_{i-1}}=\left\langle a_{i}, a_{i-1}, \ldots, a_{2}\right\rangle \tag{9}
\end{equation*}
$$

Proof. From equation (6), for $i=2$,

$$
\frac{p_{2}}{p_{1}}=a_{2}+\frac{1}{a_{1}} \ldots
$$

Assume

$$
\frac{p_{k}}{p_{k-1}}=\left\langle a_{k}, a_{k-1}, \ldots, a_{1}\right\rangle \text { for } k=1,2, \ldots, i-1 .
$$

To show that

$$
\frac{p_{i}}{p_{i-1}}=\left\langle a_{i}, a_{i-1}, \ldots, a_{1}\right\rangle,
$$

equation (6) states

$$
p_{i}=a_{i} p_{i-1}+p_{i-2}
$$

Therefore,

$$
\frac{p_{i}}{p_{i-1}}=a_{i}+\frac{p_{i-2}}{p_{i-1}}
$$

$$
\begin{aligned}
\frac{p_{i}}{p_{i-1}} & =a_{i}+\frac{1}{\frac{p_{i-1}}{p_{i-2}}} \\
& =a_{i}+\frac{1}{\left\langle a_{i-1}, \ldots, a_{1}\right\rangle} \\
& =\left\langle a_{i}, a_{i-1}, \ldots, a_{1}\right\rangle
\end{aligned}
$$

Thus, $\frac{p_{i}}{p_{i-1}}=\left\langle a_{i}, a_{i-1}, \ldots, a_{1}\right\rangle, i=1,2, \ldots, n$.

In a similar manner, equation (9) may be established.
THEOREM 4. Any simple continued fraction with a finite number of terms represents a rational number.

Proof. Since the simple continued fraction terminates, then by the definition of the last or $i^{\text {th }}$ convergent, the simple continued fraction is equal to $C_{i}=\frac{p_{i}}{q_{i}}$. Since p_{i} and q_{i} are integers, the simple continued fraction represents a rational number.

THEOREM 5. For $i=0,1,2, \ldots, n$,

$$
\begin{equation*}
p_{i} q_{i-1}-p_{i-1} q_{i}=(-1)^{i} \tag{10}
\end{equation*}
$$

Proof. By definition,

$$
p_{0} q_{-1}-p_{-1} q_{0}=(1 \cdot 1-0 \cdot 0)=1=(-1)^{0}
$$

Assume

$$
p_{k} q_{k-1}-p_{k-1} q_{k}=(-1)^{k} \text { for } k=0,1, \ldots, i-1
$$

Now

$$
\begin{aligned}
p_{i} q_{i-1}-p_{i-1} q_{i} & =q_{i-1}\left(a_{i} p_{i-1}+p_{i-2}\right)-p_{i-1}\left(a_{i} q_{i-1}+q_{i-2}\right) \\
& =a_{i} p_{i-1} q_{i-1}+p_{i-2} q_{i-1}-a_{i} p_{i-1} q_{i-1}-p_{i-1} q_{i-2} \\
& =-\left(p_{i-1} q_{i-2}-p_{i-2} q_{i-1}\right) \\
& =-(-1)^{i-1}=(-1)^{i}
\end{aligned}
$$

COROLLARY 1. The expression $\frac{p_{i}}{q_{i}}$ for the $i^{\text {th }}$ convergent of a simple continued fraction is in its lowe st terms.

Proof. If p_{i} and q_{i} have a common factor, then by Theorem 5, it will divide $(-1)^{i}$. Hence, p_{i} is prime to q_{i}, and $\frac{p_{i}}{q_{i}}$ is in its lowest terms.

COROLLARY 2. The difference between two consecutive convergents is a fraction whose numerator is unity. In fact,

$$
\begin{equation*}
\frac{p_{i}}{q_{i}}-\frac{p_{i-1}}{q_{i-1}}=\frac{(-1)^{i}}{q_{i} q_{i-1}} \quad, \quad \text { for } i=2,3, \ldots, n \tag{11}
\end{equation*}
$$

Proof. From Theorem 5,

$$
p_{i} q_{i-1}-p_{i-1} q_{i}=(-1)^{i}
$$

Now, divide both sides of the previous equation by $q_{i} q_{i-1}$. Thus

$$
\frac{p_{i}}{q_{i}}-\frac{p_{i-1}}{q_{i-1}}=\frac{(-1)^{i}}{q_{i} q_{i-1}}
$$

THEOREM 6. The difference between two convergents of a simple continued fraction whose indices differ by two is

$$
\begin{equation*}
\frac{p_{i}}{q_{i}}-\frac{p_{i-2}}{q_{i-2}}=\frac{a_{i}(-1)^{i-1}}{q_{i} q_{i-2}}, \quad \text { for } i=3,4, \ldots, n \text {, or } i=1 \tag{12}
\end{equation*}
$$

Proof. Now,

$$
\frac{p_{i}}{q_{i}}-\frac{p_{i-2}}{q_{i-2}}=\frac{p_{i}}{q_{i}}-\frac{p_{i-1}}{q_{i-1}}+\frac{p_{i-1}}{q_{i-1}}-\frac{p_{i-2}}{q_{i-2}}
$$

From Corollary 2,

$$
\frac{p_{i}}{q_{i}}-\frac{p_{i-1}}{q_{i-1}}=\frac{(-1)^{i}}{q_{i} q_{i-1}}
$$

and

$$
\frac{p_{i}}{q_{i}}-\frac{p_{i-2}}{q_{i-2}}=\frac{(-1)^{i-1}}{q_{i-1} q_{i-2}}
$$

Therefore,

$$
\frac{p_{i}}{q_{i}}-\frac{p_{i-2}}{q_{i-2}}=\frac{(-1)^{i}}{q_{i} q_{i-1}}+\frac{(-1)^{i-1}}{q_{i-1} q_{i-2}}
$$

Thus,

$$
\begin{aligned}
\frac{p_{i}}{q_{i}}-\frac{p_{i-2}}{q_{i-2}} & =\frac{(-1)^{i} q_{i-2}+(-1)^{i-1} q_{i}}{q_{i} q_{i-1} q_{i-2}} \\
& =\frac{(-1)^{i-1}\left(-q_{i-2}+a_{i} q_{i-1}+q_{i-2}\right)}{q_{i} q_{i-1} q_{i-2}} \\
& =\frac{(-1)^{i-1} a_{i} q_{i-1}}{q_{i} q_{i-1} q_{i-2}} \\
& =\frac{a_{i}(-1)^{i-1}}{q_{i} q_{i-2}}
\end{aligned}
$$

THEOREM 7. The $i^{\text {th }}$ convergent $\frac{p_{i}}{q_{i}}$ may be expressed by

$$
\begin{equation*}
\frac{p_{i}}{q_{i}}=a_{1}+\frac{1}{q_{1} q_{2}}-\frac{1}{q_{2} q_{3}}+\cdots+\frac{(-1)^{i}}{q_{i-1} q_{i}} \tag{13}
\end{equation*}
$$

where $i=1,2, \ldots, n$.

Proof. First,

$$
\frac{p_{i}}{q_{i}}=\frac{p_{i}}{q_{1}}+\left(\frac{p_{2}}{q_{2}}-\frac{p_{1}}{q_{1}}\right)+\left(\frac{p_{3}}{q_{3}}-\frac{p_{2}}{q_{2}}\right)+\cdots+\left(\frac{p_{i}}{q_{i}}-\frac{p_{i-1}}{q_{i-1}}\right) .
$$

Thus, by definition, $\frac{p_{i}}{q_{i}}=a_{1}$ and from Corollary 2, the term
$\frac{p_{i}}{q_{i}}-\frac{p_{i-1}}{q_{i-1}}$ in parentheses is equal to $\frac{(-1)^{i}}{q_{i-1} q_{i}}$. Hence, the theorem
is proved.
COROLLARY 3. For $i=1,2, \ldots, n$,

$$
\begin{equation*}
p_{i} q_{i-2}-p_{i-2} q_{i}=(-1)^{i-1} a_{i} \tag{14}
\end{equation*}
$$

Proof. By substituting for p_{i} and q_{i} from equations (6) and (7),

$$
\begin{aligned}
p_{i} q_{i-2}-p_{i-2} q_{i} & =\left(a_{i} p_{i-1}+p_{i-2}\right) q_{i-2}-p_{i-2}\left(a_{i} q_{i-1}+q_{i-2}\right) \\
& =\left(p_{i-1} q_{i-2}-p_{i-2} q_{i-1}\right) a_{i}
\end{aligned}
$$

Thus, by Theorem 5,

$$
p_{i} q_{i-2}-p_{i-2} q_{i}=(-1)^{i-1} a_{i}
$$

C_{i} will be called an odd convergent if i is odd, and an even convergent if i is even.

THEOREM 8. The odd convergents of a finite simple continued fraction form an increasing finite sequence, the even convergents form a decreasing finite sequence, every odd convergent is less than any even convergent, every odd convergent is less than any following
convergent, and every even convergent is greater than any following convergent.

Proof. From Corollary 2,

$$
\begin{equation*}
C_{i}-C_{i-1}=\frac{(-1)^{i}}{q_{i} q_{i-1}} \tag{15}
\end{equation*}
$$

and from Theorem 6,

$$
C_{i}-C_{i-2}=\frac{a_{i}(-1)^{i-1}}{q_{i} q_{i-2}}
$$

Now, $\frac{(-1)^{i}}{q_{i} q_{i-1}}$ and $\frac{a_{i}(-1)^{i-1}}{q_{i} q_{i-2}}$ are opposite in sign, which implies that
C_{i} lies between C_{i-1} and C_{i-2}. Thus, from equation (15)

$$
c_{2}-c_{1}=\frac{1}{q_{2} q_{1}}
$$

Hence

$$
C_{1}<C_{2} \text { and } C_{1}<C_{3}<C_{2}
$$

Similarly,

$$
C_{3}<C_{5}<C_{4}, C_{5}<C_{6}<C_{4}, \cdots .
$$

Combining the se inequalities,

$$
c_{1}<c_{3}<c_{5}<\cdot \cdot<c_{6}<c_{4}<c_{2}
$$

INFINITE SIMPLE CONTINUED FRACTIONS

An infinite simple continued fraction is an array of the
following form,

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}
$$

where the a_{i} are positive integers except for the fact that the integer a_{1} may be positive, negative, or zero.

The part of the infinite simple continued fraction

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ddots+}}
$$

after a_{i} will be called the $i^{\text {th }}$ remainder of the infinite simple continued fraction and is denoted by ${ }^{4}$

$$
r_{i}=\left\langle a_{i+1}, a_{i+2}, \cdots\right\rangle
$$

Thus, an infinite simple continued fraction has the alternate form

$$
\left\langle a_{1}, a_{2}, \ldots, a_{i}, r_{i}\right\rangle
$$

[^2]If the process of writing the infinite simple continued fraction, is stopped at a_{i}, the resulting array is the finite simple continued fraction

$$
\left\langle a_{1}, a_{2}, \ldots, a_{i}\right\rangle
$$

A section ${ }^{5}$ of the infinite simple continued fraction $\left\langle a_{1}, a_{2}, \ldots\right\rangle$, denoted by S_{i}, is defined to be

$$
S_{i}=\left\langle a_{1}, a_{2}, \ldots, a_{i}\right\rangle, \quad i \geqslant 1 .
$$

The $i^{\text {th }}$ section of an infinite simple continued fraction is a finite simple continued fraction. Now the $i^{\text {th }}$ convergent of an infinite simple continued fraction is defined to be the $i^{\text {th }}$ convergent of the $i^{\text {th }}$ section of the infinite simple continued fraction. Thus, with the convergents of an infinite simple continued fraction so defined, the same recursion formulae, and hence the same properties that were developed for the convergents of a finite simple continued fraction are valid for the convergents of an infinite simple continued fraction.

Now, the infinite simple continued fraction is said to converge to S, denoted by writing

$$
s=\left\langle a_{1}, a_{2}, \cdots\right\rangle
$$

${ }^{5}$ Ibid.
if the infinite sequence of rational numbers $\left\{s_{i}\right\}=\left\{\left\langle a_{1}, a_{2}, \ldots, a_{i}\right\rangle\right\}$ converges to S. If the infinite sequence of rational numbers converges, then the infinite simple continued fraction is said to be convergent. Every simple continued fraction is convérgent.

THEOREM 9. Every infinite simple continued fraction converges to a limit which is greater than any odd convergent and less than any even convergent.

Proof. The convergents of odd order, denoted by $C_{2 i+1}$ form a monotonically increasing sequence $\left\{C_{2 i+1}\right\}$, each term of which is less than any even convergent $C_{2 i}$. Thus, the convergents $C_{2 i+1}$ converge to a limit S_{1} as i tends to infinity. Also, the even order convergents, $C_{2 i}$, form a monotonically decreasing sequence $\left\{C_{2 i}\right\}$, each term of which is greater than any odd convergent $C_{2 i+1}$. Thus, they converge to a limit S_{2} as i tends to infinity.

Now, since both sequences are monotonic and convergent,

$$
S_{1}=\operatorname{lub} C_{2 i+1} \text { and } S_{2}=g l b C_{2 i}
$$

so that

$$
c_{2 i+1} \leqslant s_{1} \leqslant s_{2} \leqslant c_{2 i}
$$

Thus,

$$
0 \leqslant S_{2}-S_{1} \leqslant c_{2 i}-c_{2 i+1}
$$

and

$$
\lim _{i \rightarrow \infty}\left(C_{2 i}-C_{2 i+1}\right)=S_{2}-S_{1} ;
$$

from Corollary 2,

$$
c_{2 i}-c_{2 i+1}=\frac{1}{q_{2 i} q_{2 i+1}}
$$

so

$$
0 \leqslant s_{2}-S_{1} \leqslant c_{2 i}-C_{2 i+1}=\frac{1}{q_{2 i} q_{2 i+1}}
$$

However,

$$
\lim _{i \rightarrow \infty} \frac{1}{q_{2 i}{ }^{q_{2 i+1}}}=0
$$

since $q_{2 i} \rightarrow \infty$ and $q_{2 i+1} \rightarrow \infty$ as $i \rightarrow \infty$.

Hence,

$$
0 \leqslant S_{2}-S_{1} \leqslant 0,
$$

which implies

$$
S_{2}=S_{1}=S .
$$

Thus,

$$
\lim _{i \rightarrow \infty} C_{i}=S
$$

and for each i,

$$
c_{2 i+1} \leqslant s \leqslant c_{2 i}
$$

THEOREM 10. The values of the infinite simple continued fraction $\left\langle a_{1}, a_{2}, \ldots\right\rangle$ satisfies the inequality

$$
\left|S-\frac{p_{i}}{q_{i}}\right|<\frac{1}{q_{i} q_{i+1}} \quad \text { for all } i \geqslant 1
$$

Proof. Now $\frac{p_{i}}{q_{i}}, S, \frac{p_{i+1}}{q_{i+1}}$ are in order of magnitude either
ascending or descending. Therefore

$$
\left|S-\frac{p_{i}}{q_{i}}\right|<\left|\frac{p_{i+1}}{q_{i+1}}-\frac{p_{i}}{q_{i}}\right|=\frac{1}{q_{i} q_{i+1}} \quad \text { for all } i \geqslant 1
$$

THEOREM 11. The value of any infinite simple continued fraction

$$
\left\langle a_{1}, a_{2}, \ldots\right\rangle
$$

is irrational.
Proof. Let Q represent the infinite simple continued fraction

$$
\left\langle a_{1}, a_{2}, \ldots\right\rangle
$$

From Theorem 9, Q lies between C_{i} and C_{i+1}, so that the following chain of inequalities holds:

$$
0<\left|Q-C_{i}\right|<\left|C_{i+1}-C_{i}\right| .
$$

Multiplying by q_{i}, and making use of the result of Theorem 7 that

$$
\left|c_{i+1}-c_{i}\right|=\frac{1}{q_{i} q_{i+1}}
$$

gives

$$
0<\left|q_{i} \quad Q-p_{i}\right|<\frac{1}{q_{i+1}} .
$$

Now suppose that Q is rational, say $Q=\frac{a}{b}$, where a and b are integers with b 0 . The above inequality becomes upon multiplying by b,

$$
0<\left|q_{i} a-p_{i} b\right|<\frac{b}{q_{i+1}} .
$$

The integers q_{i} increase with i, so choose i sufficiently large so that $b<q_{i+1}$. Then the integer $\left|q_{i} a-p_{i} b\right|$ would lie between 0 and 1 which is impossible. Hence, a contradiction and Q is irrational.

1. Chrystal, G. Textbook of Algebra, Part II. New York: Dover Publications, Inc., 1961.
2. Hall, H. S., and S. R. Knight. Higher Algebra. London: Macmillan and Company, 1924.
3. Hardy, G. H., and E. M. Wright. An Introduction to the Theory of Numbers. Oxford: At the Clarendon Press, 1938.
4. Khintchine, A. Ya. Continued Fractions, trans. Peter Wynn. Groningen; The Netherlands: P. Noordhoff, Ltd., 1963.
5. Niven, I. M., and H. S. Zukerman. An Introduction to the Theory of Numbers. New York: John Wiley \& Sons, Inc., 1960.
6. Stewart, B. M. Theory of Numbers. New York: The Macmillan Company, 1962.
7. Wright, Harry N. First Course in Theory of Numbers. New York: John Wiley \& Sons, Inc., 1959.

ACKNOWLEDGMENT

The author wishes to express his appreciation to Dr. N. E. Foland, who has given generously of his time in criticism and editorial assistance during the writing of this paper.

SIMPLE CONTINUED FRACTIONS

by
WILLIAM NOLAND GILLMOR
B. A., Westminster College, 1962

AN ABSTRACT OF A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Mathematics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

The purpose of this paper is to develop the framework of simple continued fractions, without considering any applications. Simple continued fractions are the most important and most extensively studied continued fractions, and lie at the root of almost all arithmetic and very many analytic applications of continued fractions.

A simple continued fraction is a function of the form

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ddots}}
$$

where the $a_{i}, i=1,2,3, \ldots$ are positive integers with the exception that the integer a_{1} may be positive, negative, or zero.

The paper is divided into three sections. The first part deals with the development of the finite simple continued fraction. All the the ory and definitions are provided and no previous knowledge of continued fractions is assumed. Secondly, the properties of the convergents of a simple continued fraction are developed. Finally, the theory of infinite simple continued fractions is developed and it is shown that, while finite simple continued fractions represent rational numbers, infinite simple continued fractions represent irrational numbers.

[^0]: ${ }^{2}$ Harry N. Wright, First Course in Theory of Numbers, p. 17.

[^1]: ${ }^{3}$
 G. Chrystal, Textbook of Algebra, Part II, p. 431 .

[^2]: ${ }^{4}$ Khintchine, op. cit. , p. 7.

