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Abstract

This document presents two distinct designs for tools with potential to improve the

efficacy of using multirotor aerial systems in agricultural research. I show design methods and

results for constructing electrical, mechanical, and software subsystems capable of working in

concert to achieve functional results in each design case. The first presented design is a device

capable of remotely collecting pest samples directly from a multirotor to improve the speed

and efficiency with which researchers and observe and respond to insect infestations. Design

concepts, potential improvements, and construction methods are discussed culminating in

the presentation of a prototype. The second design presented here is a printed circuit board

for integration of a GNSS receiver with Real Time Kinematic correction capability, an IMU

for orientation estimation, and a microcontroller with firmware to support, condition, and

log data outputs. The purpose of this design is to provide precise logs of position and

orientation of an aircraft and attached camera while collecting images of cropland. This

reference data allows precise and accurate geolocation of the images and permits them to

be stitched together into a composite map of cropland without requirements for overlap in

the content of each individual image. Reduction in required image overlap allows composite

aerial images of cropland to be constructed with far less flight time and research expenditure.

The development and basic functionality of the device is discussed here. Deeper analysis of

performance and applications of this technology is reserved for future publications.
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Chapter 1

Applications of Unmanned Aerial

Systems in Automated Collection of

Insect Samples

1.1 Introduction

Crop losses due to disease and pests have been the subject of research for decades.

These losses have economic and ecological impacts that vary with differing locations and

crops, but the impacts are universally negative. Over the years many attempts have been

made to estimate the true global impact of these losses. One 2003 review by Thomas

Henneberry concluded that the approximate losses to arthropod pests at the time were in the

range of ten to fifteen percent of total production with worldwide costs of over 120 billion

dollars.1 Another review from 2005 provides similar estimates but also makes a worrying

observation that while pesticide use has increased dramatically, pest losses had not decreased

significantly in the previous forty years. Instead, increasing pesticide use seemed to only allow

agriculture to sustain the steady increase in production to meet demand while keeping loss

percentages constant.2 These observations are particularly worrying in the context of other

challenges faced by modern agriculture. There is significant political pressure on farmers
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in some areas, especially in Europe, to become more environmentally viable by reducing or

eliminating use of certain pesticides. This political pressure is backed by a significant body

of research suggesting that current levels of pesticide use can contaminate water and soil,

leading to negative environmental impacts.3 4 In the face of this challenge, communities are

looking to develop and adopt more holistic and targeted pest management schemes.5 Part of

this initiative is the search to improve chemical delivery techniques in a way that will more

specifically target the pest infestations and reduce the necessary dose.4 Research in these

areas presents an opportunity to both reduce crop loss and chemical pesticide use, and could

be the key to sustainably increasing yields and improving the viability of agriculture in the

long term.

In the course of searching for an agricultural pest management solution, it is useful to

look at concurrent research to identify similar challenges and successful solutions presented

throughout the field of applied ecology. Detection and control of invasive or destructive

species is a common subject in the study of many ecosystems, and focuses on the same

problems faced by modern agriculture in different settings. Researchers have found that

in pest management operations, one of the main factors that constrain a solution is the

availability of time and human resources to effectively search for and identify infestations.6

One example of an extremely successful response to an invasive species can be found in

California in the Agua Hedionda Lagoon where Caulerpa taxifolia posed a severe threat to

the ecosystem. The response to this particular infestation has become an example of what is

required to effectively suppress the appearance of an invasive pest infestation. One of the key

elements that made this response so successful was the speed with which the infestation was

identified. Researchers familiar with the project have suggested that similarly rapid responses

are necessary for successful invasive pest control in the future.7 In the spirit of this example,

some researchers have begun to investigate ways to leverage new technologies to reduce the

effort required to scout and identify infestations. During this same time period, we have

seen the popularity and availability of unmanned aerial systems (UAS) for both commercial

and recreational uses increase significantly. This has led to many projects attempting to use
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UAS to scout for information related to pest infestations. One ecology team successfully

used UAS with visual sensor and near infrared reflection systems to identify oak trees with

oak splendour beetle infestations.8 Researchers have outfitted UAS with a wide variety of

sensor systems depending on the intended applications, varying from basic visual cameras to

highly specialized sensor arrays. Agricultural researchers are no exception to this pattern,

with UAS being routinely used for a number of agricultural research applications. In the field

of precision agriculture, UAS are now being widely used as a method to gather information

in a lower cost, higher resolution, and more flexible process than using satellite imagery9.

The images collected using UAS can be used for any application where a spatial map of crop

properties is needed, including cursory evaluations of possible insect infestations.

At Kansas State University, the entomology department routinely uses DJI S1000

octorotor systems to collect images of cropland. Using these photos, the team is able to detect

locations where crops have potentially been damaged by insect infestations. Unfortunately,

this is where the usefulness of the UAS in this system ends. After the UAS imagery locates

areas of potential damage, researchers must manually walk to each of these locations and

visually assess damaging pests. With this approach, navigating fields to find the correct

location can be challenging, and assessing the severity of infestations can be labor intensive.

Despite our efforts to leverage technology to visually locate infestations, we find that this

workflow is still constrained by the previously discussed limitations of time and human

resources for sampling. This publication presents an alternative method by which a sample

can be collected directly from the UAS. This improvement has potential to improve the

speed at which researchers can identify threats to crop health, allowing more prompt and

precise intervention to prevent crop damage and reduce use of chemical insecticides.

1.2 Requirements

Designing an airborne apparatus with the capability to capture and hold captured

insects presents many challenges. I determined two main requirements that I had to adhere
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to in the design process in order to build a successful prototype. One of the main limitations

was the weight restriction inherent to any airborne design. The maximum takeoff weight of

the S100 is 11 kg, of which 4 kg is used by the multirotor, according to the user manual

provided by DJI10. With the addition of a camera load (two Sony a5100 cameras), the

entire system weighed 8.6 kg. I tested the system by flying it with different payload weights

and evaluating battery performance. I found that at this weight, the S1000 could fly for 29

minutes prior to running out of battery. Thus, according to the results of this flight test

and the manufacturer specifications, the absolute maximum allowable weight of our sampler

design was 2.4 kg.

Another challenge faced in the design process was the air currents that are produced by

the S1000 rotors. I tested this by flying the S1000 over crops and visually examining the crop

canopy, and found that if the S1000 was operated within roughly two meters of the canopy,

there was significant disturbance of the crop canopy by these air currents. Additionally, the

operator of the UAS was uncomfortable flying any closer to the ground than two meters

because of concerns with flight stability at very low altitudes. As a result, another major

design requirement was that the apparatus must be capable of sampling from heights greater

than two meters, meaning it must also be able to recognize and regulate its distance from

the canopy.

1.3 System Design

During the early stages of the design process, I determined that our solution would

need to be physically separated into two parts. The first component was a suction device

referred to as the ”sampler” that lowered into the canopy of the crop to trap insects. The

second component connected directly to the S1000 and controlled a spool to raise and lower

the sampler as needed, it was known as the ”base”. These two components each needed

their own power supply, processor, and a method for wirelessly communicating with each

other. The base lowered the sampler from the S1000 into the canopy, where it opened a
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sampling jar backed with an aluminum mesh and apply suction. This trapped any insect

in the vicinity in the jar, which then closed automatically after a predetermined amount of

time. The base then hoisted the sampler back up to the S1000 to be carried back to the

entomologist for analysis.

1.4 Physical Design

In my design for the mechanical components of the base station, the primary design

goals were ease of use, security, and compatibility with other mounting attachments. The

mounting platform on the underside of the S1000 is flanked by two carbon fiber rods that

serve as the connection points for most payloads that would be attached to the system.

Typically, a device will have a series of mounting brackets that are attached near the midpoint

of these rods. I noticed that the ends of these rods are exposed and rarely used for anything,

so I designed a two piece frame that would fit on over the ends of the rods and connect

in the middle. This method creates an extremely secure connection using only two screws,

and it can be mounted without interfering with any payload attachments connected near the

middle of the mounting rods. Figure 1.1 shows a labeled CAD model of the initial design of

the physical system including a rough model of the underside of the S1000. The mounting

frame discussed here can be identified as the white part labeled ”Attachment Frame”. The

frame was 3D printed from ”ngen” copolyester for temperature resistance and toughness11,

and includes mounting locations for the motor and spool components. I added press fit

needle bearings to the frame as support for an anodized aluminum shaft coupled to a motor,

and friction fit a 3D printed ABS spool onto the shaft. This apparatus was functional in

raising and lowering objects to and from the S1000, but I observed over time that the motor

mounting locations were flexing from load, and the midpoint connections for the two pieces

of the attachment frame were difficult to connect and disconnect. I addressed these two

weaknesses in the second design iteration.
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To help ease the integration of my device into the existing workflow used to collect field

samples, I decided to incorporate a readily available mesh backed sample jar that was already

being used in ground-based samplin g into my design as a removable part. Through careful

measurement and iterative design, I was able to create a part with threads that mate with

the sample jar. Careful design of the thread geometry allows this part to be 3D printed on

most FDM machines with no support structure for rapid adjustment and replacement. I used

this design to create a motorized lid for the sample jars that can be actuated electronically.

I was also able to create a removable fixture for the back side of the sample jar that housed

a motorized fan to create suction, and also served as a connection point to the base station.

These two elements are also labeled in figure 1.1.

Figure 1.1: Physical System Design: First Iteration

UAS Model

Attachment Frame

Spool

Suction Housing

Sample Jar
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Once I assembled an initial prototype of this design, I began testing it for basic func-

tionality. It performed well at low fan speeds up to 80% power, but when the fan was run at

higher than 80% power the system experienced a catastrophic failure. The aluminum mesh

on the backside of our sample jar impeded the flow of air and created a pressure drop. This

caused a partial vacuum to form between the fan and the sample jar. As a result, the fan

blades bent inward and made contact with the housing at full speed, causing the ducted fan

unit to fracture.

This failure resulted in a complete redesign of the suction system using two horizontal

fans. The new design addressed the previously observed design flaws related to fan interfer-

ence and reduced the down force created by the airflow through the apparatus. The redesign

introduced more weight by adding a second fan, but remained within our design limitations.

Figure 1.2 is an image of the updated sampler design, and Figure 1.3 is an exploded view of

the same updated design.
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Figure 1.2: Physical System Design: Second Iteration

SOLIDWORKS Educational Product. For Instructional Use Only.

Electronics Housing

Sensor

Stepper Motor
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Figure 1.3: Physical System Design: Exploded View

SOLIDWORKS Educational Product. For Instructional Use Only.

Arduino Mega +
Support Circuitry

Power Bus

Main Body

Ground Bus

ESCs

Sample Jar

Lid Assembly

9



1.4.1 Detailed Component Selection

1.4.1.1 Hoist Motor Selection

My application requires high torque but has no special environmental or lifetime con-

straints. I also have no need for precise measurements of motor position. This is because the

relevant controllable parameter in this system is the distance between the sampler module

and the ground, which varies independently of motor position. This leads to the conclusion

that there is no need for the precision of a stepper motor or the durability of a brushless

motor, and the most cost effective choice is a simple brushed DC motor equipped with a

speed reducing gearbox. Choosing the correct speed reduction and motor power requires

some basic engineering analysis of the system.

τ

J

M

r

Mg

J

τ
rT1

M

Mg

T2

Figure 1.4: Spool Free Body Diagrams
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Figure 1.4 shows a simplified diagram of the physics that describes the spool raising the

sampler. By Newton’s second law, the equations of motion for this system are:

θ̈ =
τ

J
− rT1

J
(1.1)

ẍ =
T2

M
− g (1.2)

I ignore viscous friction here because I are choosing this motor for an application that calls

for high torque and low velocity. Because viscous friction is typically modeled as either a

linear or exponential function of velocity, I can conclude that it will be negligible within the

desired operating range. The system can be simplified to a single equation by considering

the following:

x = rθ (1.3)

T1 = −T2 (1.4)

J =
M1r

2

2
(1.5)

M1 << M (1.6)

Using these properties, I can solve for the following by substitution:

ẍ =
2τ + 2Mgr

M1r + 2Mr
(1.7)

τ ' ẍdMr −Mgr (1.8)

In equation (1.8) I have an approximate design constraint where ẍd is our desired upward

acceleration capability. Some parameters are attained by estimation based on an intuitive

understanding of the system. For instance, the drone will lower the sampler about two

meters, and the maximum reasonable time to hoist that distance is about five seconds. This

translates to a velocity of about 0.4 meters per second. Because I chose a design velocity of
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0.4 m/s and reasonably I want to reach that velocity in 1 second, our desired steady state

acceleration is ∆v
∆t

= 0.4m
s2

. I must account for a maximum sampler mass of four kilograms

and spatial considerations constrain r / 6mm. Plugging these values in to equation (1.8) I

find a minimum torque rating of 0.2448 kg*m for our motor selection.

Ultimately, this analysis lead me to select the RKI-1420 DC motor. This cost effective motor

advertises the capability to generate 0.32kg*m of torque with a maximum speed of 200 RPM

and a stall current of 8 A12. The torque delivered by this motor is well within our calculated

specification and the current demand can easily be supplied by a typical lithium-polymer

battery.

1.4.1.2 Stepper Motor Selection

The sampler lid assembly calls for two motors to open and close the lid. The movement

of these motors only require them to rotate 70 degrees one direction, and then the same

distance in the opposite direction. Because this motion calls for some degree of precision, a

stepper motor is the most viable product for this application. There are no special constraints

on the power output of the motor because the lid can open or close as slowly as it needs

to without significantly affecting the performance of the system. This means that I can

introduce any gear reduction necessary to extract the appropriate amount of torque from

the motor I use. The 28BYJ-48 unipolar stepper motor is a very small, light, and cheap

product that can be easily driven by four simple darlington pair circuits. While by many

criteria this stepper motor is an inferior product to most bipolar stepper motors, it meets

the design needs of this application while offering a more simple driving circuit scheme and

ready availability. Based on this reasoning, I selected the 28BYJ-48 stepper motor to actuate

the lid of the sampler.

1.4.1.3 Ducted Fan Selection

The sampling device requires two ducted fan units to generate suction to capture bugs.

Ducted fans are common and cheap because of their use in the hobby RC aircraft industry.
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They typically use brushless motors and are compatible with a myriad of driver circuits called

”ESCs” that are brushless speed control circuits. They typically use back-EMF sensing to

perform closed loop speed control in the absence of hall effect sensors that would sense the

position of the magnets in the motor. Because of the mass production for the hobby industry,

these items can be purchased for a price far cheaper than I could ever build them myself. The

disadvantage is the lack of documentation on these parts. Because most RC hobbyists are

looking for ”plug and play” solutions, integrating these parts into a design or determining

whether they have enough power for a certain application can be difficult. Because of their

low cost, I decided that the easiest solution in this case was to purchase the most basic

ducted fan I could find in an appropriate size and evaluate its performance experimentally.

My initial purchase was a generic 4500 KV plastic ducted fan with a diameter of 64mm

that lacked an identifying part number or any documentation. The first test I ran on this

component was to place it in the main body of the sampler, place objects of varying density

from the lab beneath it, and run the motor at varying power levels. To our surprise, even at

a modest power level it was obvious from visual inspection and qualitative observation that

the suction generated by this ducted fan was sufficient and possibly even excessive for our

needs. Because I was able to verify that this component is easily sufficient without any time

consuming analysis, I turned our time and attention to analyze and design more vulnerable

points in our system.

1.5 Electronics Design

In this section, I will discuss the prototyped electronics that drive the mechanical design

and run the firmware. I will also show how the prototyped electronics I used in testing can

translate to a far lighter and more integrated solution using custom printed circuit boards.

Figure 1.5 is a block diagram of the functional prototyped electrical system that will be

discussed first.
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Figure 1.5: Electronics Block Diagram
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1.5.1 First Prototype for Functional Demonstration

The circuitry used initially to demonstrate basic functionality was mostly composed

of development boards stitched together by headers and jumper wires. While this may not

be the most durable or compact solution, it is very effective for demonstrating the efficacy

of a design concept. The main electrical components of the system are two microcontroller

development boards, two XBee radio modules, eight darlington pairs, two brushless speed

controllers, one ultrasound proximity sensor, one H-Bridge, and any voltage regulators or

level shifting circuitry to power and interface these components with each other.

1.5.1.1 Basic Component Selection

When selecting components for the first prototype, development speed was impera-

tive. Despite the disappointing performance characteristics of the ATmega328 compared to

ARM processors of comparable price, I chose to use the ”Redboard” arduino compatible AT-

mega328 development board from Sparkfun Electronics. The main reasoning for the choice

of this specific product was the availability of plug-and-play arduino compatible shields that

would allow us to use XBee radios to get a wireless microcontroller communication solution

up and running in a matter of hours. I used an Arduino Mega development board equipped

with an ATmega1280 processor for the sampler because it has more digital input/output

(DIO) pins. This was a consideration because of the additional IO pins that would be re-

quired to drive stepper motors. The Arduino Mega is equally compatible with the arduino

shields used on the base redboard, so there were no integration concerns arising as a result of

changing processors in this case. I used XBee Series 1 radio modules because I only required

point-to-point communication, and the Sparkfun XBee shields I purchased were equipped

with onboard 3.3V regulators and mosfet level shifters to allow the 3.3V radios to integrate

easily with the 5V Arduino boards. For the proximity sensor, I decided to use the XL series

of MaxSonar sensors from Maxbotix. These sensors offer 1 cm resolution between 0 and 765

cm, and output the latest sensor readings in the form of pulse width, analog, and serial com-

munication. The presence of three different interfaces made this sensor ideal for prototyping

15



because of increased flexibility. For driving the stepper motors, the seller of the 28BYJ-48

provided small driver circuits that used the ULN2003A IC containing seven Darlington pairs

with common cathode diodes to prevent damage from back-EMF when driving inductive

loads. At first I used the provided boards to drive the stepper motors, but upon inspection

of the boards I concluded that the electrical connections would be less prone to failure if

I etched a custom arduino uno shield with two ULN2003A ICs and dedicated labeled IO

ports to ensure external components were connected correctly. Driving the brushless motors

is the system was best accomplished by external driver circuits that use back-emf sensing to

achieve sensorless speed control of brushless motors. I selected the HobbyWing Skywalker

60A ESC for this purpose, because it was inexpensive and rated for far more current than

I ever expected our brushless fans to require. This ESC was specifically designed to run on

a 4s lithium polymer battery, so battery selection for the sampler was extremely easy. The

amount of current draw during full power operation of these fans is extremely large, so I

decided to use 100A rated busbars to create power and ground buses. This drastically re-

duced the amount of soldering required and resolved some odd behavior I observed in initial

component testing. Because our brushed motor on the base was designed to run at 12V, I

selected a 3s 11.1V nominal lithium polymer battery to power the base. Because of these

relatively high voltages (compared to our processor operating voltage) I added a pair of 5V

switching regulators from Pololu and used them to bypass the linear regulator on the ar-

duino development boards. This prevented excessive heat buildup and extended battery life

because the typical efficiency of the switching regulators was 85%-95% depending on current

draw and operating conditions, as compared to around 45% efficiency of the on-board linear

regulators. The final component is the brushed motor driver, which required sa bit more

design because there was no prepackaged solution to use for quick prototyping.

1.5.1.2 Detailed Motor Driver Selection

The RKI-1420 datasheet states that the nominal operating voltage for the motor is

12V, and the maximum current draw is 8 A. The most convenient method for controlling a
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motor is to use a pulse width modulated signal (PWM) to open and close the gates of an

H-bridge circuit. A PWM signal is similar to a square wave, except that the high state and

the low state can differ in length. The ratio of time at the high state to the total time (high

state plus low state) is called the duty cycle. PWM signals roughly approximate an analog

voltage of V u (duty cycle) ∗ VMAX, this approximation is most effective when the PWM

frequency is much faster than the natural frequency of the system being controlled. This

approach is easily implemented using the counter-timer peripheral supplied on microcon-

trollers and doesn’t require a negative power supply rail like a comparable analog amplifier

circuit would, because the transistors in a PWM driven H-bridge circuit can easily reverse

the output voltage terminal connections. Although an H-bridge consists of four transistors,

most major manufacturers offer H-bridges as fully integrated circuits (IC) for convenience.

In particular, the VNH5019 H-bridge from ST Microelectronics has the capability to handle

input voltages up to 24 V and continuous currents of 12 A. It can operate at frequencies up

to 20 kHz and also features integrated current sensing. These capabilities indicate that this

IC should be capable of driving the RKI-1420 at its maximum current and at an appropriate

PWM frequency without dangerous heat buildup or significant noise in the motor voltage.

For prototyping purposes, I chose to purchase the ”VNH5019 Carrier Board” from Pololu

because it is a convenient platform for testing the motor driver without needing surface

mount soldering or a custom breakout board.

1.5.1.3 First Prototype Results

While the construction of the first round of circuitry may appear crude when compared

to commercial solutions, it ultimately performed its task of demonstrating a functional pro-

totype very well. In simple benchtop tests the system was able to perform all desired tasks

and demonstrated the ability to collect test objects placed beneath it, including dead insects

of varying sizes. Although mostly successful, the prototype was prone to occasional failures.

Testing with an oscilloscope showed that many of the connections, especially the ones made

using jumper wires, were prone to noise and signal interruption due to unreliable electrical
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contacts. In the following section, I will present a far more reliable, robust, and compact

solution based on the same technologies used in the first prototype.

1.5.2 Integrated and Optimized Electrical Prototype

Integrating a multifaceted design like this onto a single custom printed circuit board has

many advantages. Firstly, printed circuit boards are generally lighter because they avoid the

weight of cables and wires used for connections in non-PCB setups. Because they reduce the

length of wires and contain ground planes under each trace, well designed PCBs significantly

reduce noise from electromagnetic interference, parasitic resistance, and parasitic inductance

when compared to the alternative implementation of a circuit. The electrical connections

are also far more reliable, and the designer has freedom to decide the size and shape of the

finished product to fit with other mechanical components of the design.

1.5.2.1 Revised Sampler Design

One major difference between the previous iteration and the integrated circuit board

is the voltage level. Instead of using a 5V arduino, I decided to use a PJRC Teensy 3.6

development board. The Teensy is much smaller, lighter, and is based on a much more

powerful ARM Cortex-M4 processor clocked at 180 MHz. The operating voltage for the

Teensy board is 3.3V, which means that no level shifting will be required to interface with

the radio module. However, the stepper motors still need to be run at 5V to achieve the

necessary torque. To regulate the 14.8V battery efficiently down to 5V, I chose to use a Texas

Instruments LMZ12008 integrated switching module. The efficiency of the fully integrated

module is around 88%, smaller than a typical system with an external inductor. Despite

this reduction in efficiency, the module simply offers far superior board space utilization,

EMI shielding, and is far easier to solder into place than most alternative configurations.

The switcher uses two external voltage dividers to set the output voltage to 5V and the

input undervoltage disable condition at 14 V. For stability, the output needs three 270

microFarad capacitors with very small equivalent series resistance. This can only be achieved
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using special solid polymer aluminum capacitors as noted in the product datasheet. To

further regulate the 5V into 3.3V for most of the components, I added a Texas Instruments

TPS7A7200 Low Dropout Regulator. This device is unique in that it doesn’t require an

external resistor network to set its output voltage, and instead has a series of internal resistors

that can be connected to ground to set the output voltage. This has the benefit of saving

board space that would otherwise be used for the resistor feedback divider.

The serial output of the ultrasound sensor is an inverted TTL serial, so I used a mosfet

with a pull up resistor to invert the signal and let it be read by an ordinary UART. I also used

the surface mount version of the ULN2003A to build motor drivers schematically identical

to the ones provided with the stepper motors. The XBee radio requires very little support

circuitry, I only added a simple bypass capacitor to the power line and connected LEDs with

current limiting resistors to its status outputs. I designed the power ports so that XT60

connectors could be soldered directly to the board, allowing LiPo batteries and brushless

drivers to be directly connected to the power and ground planes, eliminating the need for

an external busbar. Finally, I added indicator LEDs for power and the stepper motors,

and all relevant output ports, and the integrated design was complete for the sampler. The

schematic of the integrated board for the sampler is shown in figure 1.6.

Based on the schematic shown in figure 1.6, I designed a two layer printed circuit

board to house all the components and minimize space. In PCB design it is important

to consider the length of each connection made, as long connections introduce additional

parasitic properties to a trace. The bottom layer of the board is a mostly continuous ground

plane to prevent the top layer traces from producing magnetic fields. This is generally

effective because the ground plane is a near-ideal conductor and therefore any electric fields

passing through it are canceled out by induced currents in the plane. In this case, when

large currents may flow between the battery connector and the brushless motor outputs, it is

important to ensure that enough copper is present to carry the currents without introducing

losses from parasitic resistance. These high current areas should also be kept physically as
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Figure 1.6: Sampler PCB Schematic
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far away from any sensitive signals as possible to prevent interference. With these ideas in

mind, I produced the board layout shown in figure 1.7. A photo of the fabricated circuit

board is shown in figure 1.8.

Figure 1.7: Sampler PCB Layout

1.5.2.2 Revised Base Design

In the case of the PCB design for the base, problems with component availability and

temporal constraints ultimately made the construction of the board design impossible. I am

including the design here regardless, as I believe it will be helpful to researchers working on

improving this project in the future.

I made a number of changes to the base design in the second revision. The voltage

regulators and new processor are identical to the changes described for the revised sampler

design, with the exception that the base uses a Teensy 3.2 instead of a Teensy 3.6 for

spacing purposes. The one additional change made to the base design is the H-bridge choice.
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Figure 1.8: Sampler PCB Photo
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The VNH5019 is perfectly effective for driving our brushed motor, but its current rating is

significantly higher than the stall current of our motor, and in that sense it is overspecified

for its task. By using the similar but smaller VNH5180 IC, I was able to reduce the size and

component costs of the circuit. A schematic of my proposed design is shown in figure 1.9,

and a proposed board layout is shown in figure 1.10.

Figure 1.9: Base Circuit Schematic
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Figure 1.10: Base PCB Layout

1.6 Firmware Design

The firmware portion of this design is probably the most important, and definitely the

most error prone of the three. The firmware controls both the electrical and mechanical

components of the design, and is responsible for ensuring that they work together to com-

plete the complex sampling task. Figure 1.11 is a summary flowchart showing the series of

successive tasks and logic that the firmware on this device must perform.

1.6.1 Development Platform

In the interest of prototyping quickly, I decided to use the popular Arduino development

environment. The primary advantage of Arduino is the abundance of reliable community

developed libraries that are typically open source. Arduino uses a slightly modified version

of the C++ programming language and a series of libraries to abstract interaction with

processor registers. However, in most cases it will compile C code and allow the user to

bypass the abstraction layers it uses if modifications need to be made at the processor
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Figure 1.11: Firmware Architecture: Operational Overview
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level. In the past, using Arduino for development restricted users to a small subset of 8 bit

microcontrollers. Recently developed products like the Teensy line of development boards

from PJRC are breaking that mold and allowing code compiled in Arduino to run on 32 bit

ARM processors. My initial prototype used an Arduino Uno development board equipped

with an 8 bit AVR microcontroller. After inital testing was successful, I switched to a Teensy

3.6 development board equipped with a 32 bit ARM Cortex-M4 microcontroller for superior

performance and peripheral availability.

1.6.2 Architecture

At the most basic level, the firmware on this device consists of two complimentary state

machines linked by a JavaScript Object Notation (JSON) based communication protocol for

the exchange of commands and data. Two state machines are necessary because the system

contains two processors with two distinct sets of inputs and outputs. Each state machine

has eight possible states: paused, opening, lowering, sucking, retracting, closing, raising,

and terminated. The system is designed so that the base station acts as a master, sending

commands to the sampler and awaiting predefined responses indicating that its commands

have been carried out. This is intended to ease the debugging process by allowing a tester to

easily emulate one of the nodes via a serial terminal. It also simplifies the interface behavior

between the two parts of the system, allowing a designer to make changes to one node and

cause minimal impact on the operation of the other.

1.6.3 Base Station

I designed the firmware for the base such that all relevant information about the state

of the physical system could be stored in a single global variable. This serves to make

the firmware less complicated and therefore less error prone, but also far more readable. I

declared an enumerated type to track the logical operating states of the machine, and then

I included that enumerated type as the first entry of a struct that also contains the physical

parameters needed to determine when to change from one state to another. Listing 1.1 is
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a code snippet showing the declaration and initialization of both new types and the global

instance used to drive the state machine logic.

Listing 1.1: Type definitions for tracking states

1 enum s t a t e t {LOWERING, OPENING, SUCKING, RETRACTING, CLOSING, RAISING, PAUSED

, TERMINATED} ;

2

3 typede f s t r u c t {

4 s t a t e t mode ;

5 i n t he ight ;

6 bool l idOpen ;

7 bool fanOn ;

8 } s t a t u s t ;

9

10 s t a t u s t Status = {PAUSED, 0 , f a l s e , f a l s e } ;

During each loop iteration, the base waits for a response from the sampler, and upon

receiving any message (including an invalid one) it executes one iteration of its main loop,

outputs a message, and then continues awaiting a response. If a high input from the limit

switch on the spool is detected, this indicates that the sampler is in contact with the base,

and the base immediately pauses operation to avoid damage. The actions performed in each

case, and the conditions to cause a case switch are shown in figure 1.12.

In addition to performing its state machine logic, the base station has two additional

tasks it must perform during its loop. First it must monitor the RC receiver for user input,

and then it must also filter the height data received from the sampler.

1.6.3.1 User Input

The user input to our system comes in the form of a pulse from an RC receiver. The

signal frequency is at 50 Hz, and consists of a pulse with a duration of 1-2 ms long. The

Arduino development environment contains a function PulseIn() that measures the length of

an incoming pulse on a specific pin. However, this function is known for being expensive in
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Figure 1.12: Base Station State Machine
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terms of code execution timing and often introduces limitations to a project when used. To

alleviate this, I considered several possible solutions including an analog filter and amplifier

to convert the pulses to analog voltages, or writing my own interrupt handlers to measure

the pulse length with non-blocking code. In the end, the most economical solution was to

add a second processor on an Arduino Nano board, and program it to constantly poll input

pulses and output a digital high when the pulse is longer than 1.5 ms or a digital low when

the pulse is shorter than 1.5 ms. In the second iteration, this component was eliminated

because the new 32 bit processor was able to easily handle the PulseIn() function without

delays. In both cases, the firmware checks the user input during each loop and alters the

state machine case in the event of a change.

1.6.3.2 Data Processing

Because the information from the height sensor can be noisy, the base station uses a

discrete approximation of a low pass filter to ensure stability of the height control loop in

the event of large spikes in the sensor reading. The limitations of ultrasound sensing means

that the update rate of the incoming data is only 10 Hz, which means that the Nyquist

Frequency for the system is only 5 Hz. In this case, I found that any filter slower than 5

Hz caused unwanted delays in the system response time, so I drove the cutoff frequency up

to 10 Hz. This obviously invalidates any continuous time approximations of the impact of

the filter, and instead it simply becomes a less computationally intensive alternative to a

moving average, but with a similar effect. While this filter certainly is not an ideal solution,

it does exhibit the desired behavior of limiting the effect of noise in the sensor signal while

not significantly limiting the controller response time. Future design iterations of this device

should investigate ways to increase the sampling rate of the height sensors or implement a

more sophisticated state estimation algorithm to improve this element of the design.
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1.6.4 Sampler

The sampler also contains the code shown in listing 1.1, because the states and variables

of the system must be common between the sampler and the base. The primary differences

between the sampler and the base are the actions that are performed during each state, the

triggers that cause movement between the states, and the additional tasks that each must

perform regardless of their state. Figure 1.13 shows the actions taken by the sampler in each

state, and its causes for moving between the states.

Figure 1.13: Sampler State Machine
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1.6.4.1 Brushless Driver Calibration

The brushless speed controllers used to drive the fans operate based on the same type

of RC pulse used for the user input to the base. In this case, our microcontroller must

produce a 50 Hz wave of pulses between 1 ms and 2 ms. Unfortunately, the standard of 1

and 2 ms pulses is only loosely defined, and each device has its own input errors to deal with.

To cope with this, most speed controllers have a programming and calibration sequence that

can be used to set the minimum and maximum pulse lengths it will read. In the case of the

Hobbywing Skywalker 60A controllers I used, the calibration must be performed via a series

of pulse outputs from the movement of the control stick and throttle of a hobby remote

control device. In my case, I was able to use the microcontroller to simulate the appropriate

pulse output to automatically perform the programming and calibration procedure to match

our pulse outputs each time the sampler is powered on.

1.6.5 Communication Protocol

Because of the complexity of the data that needs to be exchanged, and the relatively

slow transmission rates required, I chose to use a human-readable ASCII character based

protocol for transmission. This allows for easy error checking by the microcontrollers and

debugging by any person watching the data stream. Specifically, I decided to encode all data

about the state and inputs of the system into JavaScript Object Notation (JSON) because it

is a simple, lightweight, and platform independent way to organize data. Most programming

languages have free libraries available to parse and generate JSON strings, and Arduino is no

exception. This makes it easier to interpret or edit the code I’ve written for the JSON data

exchange, and it also provides a simple and effective way for other devices to interface with

my code in the event that this system is expanded in future research. Specifically, KSU BAE

uses National Instruments LabVIEW in a majority of research projects, which has inbuilt

JSON support.
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1.6.5.1 JSON

The ”JSON Data Interchange Syntax” is defined in standard ECMA-404 Second Edi-

tion13, adopted in December of 2017. A JSON string consists of some combination of ”ob-

jects” or ”arrays” which may be nested. An object in JSON consists of a series of key-value

pairs and must be enclosed by curly brackets. The key must be a string, and it is separated

from the value by a colon. The value may be a number, boolean, string, array, or object.

Values can also be null, but this is rare and not used in my implementation. Multiple key-

value pairs are separated by commas within an object. An array in JSON consists of a series

of values in a specific order, separated by commas and surrounded by square brackets. The

values in an array can take any of the forms allowed for the values in an object.

1.6.5.2 Implementation

Both the base and the sampler use the same bits of code in their main loop to await

a string, process it, and then construct and output a new string reflecting any changes.

Two functions, void outputState(status t current status) and void updateState(status t*

current status, char* inputStr), are called in this bit of code. They have the same declaration,

but are implemented differently on the sampler and the base to reflect each node’s unique

responsibility to update certain fields of the exchanged message. Listing 1.2 shows the code

snippet that is common between the two nodes, in which each processor awaits a complete

string message and calls the two data exchange functions at the appropriate times.
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Listing 1.2: Data Exchange Code: Common

1 { //add a scope here , we don ’ t need any o f the temporary v a r i a b l e s l a t e r

2 i n t i = 0 ;

3 char i nS t r [ 1 0 0 ] ;

4 whi le (1 ) {//wait f o r a new s t r i n g

5 i f ( S e r i a l 1 . a v a i l a b l e ( ) ) {

6 char tempstr = S e r i a l 1 . read ( ) ;

7 i f ( tempstr == ’ \n ’ ) {

8 i nS t r [ i ] = ’ \0 ’ ;

9 break ; // s t r i n g r e c e i v ed

10 }

11 i nS t r [ i ] = tempstr ;

12 i++;

13 }

14 }

15 updateState(&Status , i nS t r ) ;

16 }

17

18 . . . S tate Machine Logic . . .

19

20 outputState ( Status ) ;

The updateState function has the task of parsing the data out of the input string and

writing it to the relevant status t struct for access by the rest of the code. In the event that

local inputs would indicate a different state than the one received, the function alters the

appropriate information to match the local inputs before updating the struct. This ensures

that the logic in the main loop acts on the most recent information available both locally

and from the other node. In the case of the sampler, this means that the lidOpen value

should be updated according to the position of the stepper motors, and the height value

should be updated according to the readings from the analog to digital converter. Note that
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the sensor’s onboard digital to analog converter has the same resolution as the analog to

digital converter on the ATmega328, meaning that the value can be read directly with no

need for processing. In the case of the base, no local values need to overwrite the incoming

data values because the base doesn’t read any sensors. Listing 1.3 shows the implementation

of this function on the sampler, while Listing 1.4 shows the implementation on the base.

Listing 1.3: Data Exchange Code: Sampler updateState Implementation

1 void updateState ( s t a t u s t ∗ cu r r en t s t a tu s , char ∗ i nputStr ) {

2 Sta t i cJ sonBuf f e r <400> j s onBu f f e r ;

3 JsonObject& root = j s onBu f f e r . parseObject ( inputStr ) ;

4 i f ( root . s u c c e s s ( ) ) {

5 i n t dummy = root [ ”mode” ] . as<int >() ; // pu l l mode as i n t e g e r

6 cu r r en t s t a tu s−>mode = ( s t a t e t )dummy; // ca s t i n t e g e r mode as s t a t e t

7 cu r r en t s t a tu s−>he ight = analogRead (0 ) ;

8 i f ( s t epper1 . cu r r en tPo s i t i on ( ) == 0) {

9 cu r r en t s t a tu s−>l idOpen = f a l s e ;

10 }

11 e l s e i f ( s t epper1 . cu r r en tPo s i t i on ( ) == (REV ∗ 2 .0 / 8 . 0 ) ) {

12 cu r r en t s t a tu s−>l idOpen = true ;

13 }

14 e l s e {

15 cu r r en t s t a tu s−>l idOpen = root [ ” l idOpen” ] ; // pre s e rve value

16 }

17 cu r r en t s t a tu s−>fanOn = root [ ”fanOn” ] ; // pre s e rve value

18 outputState ( Status ) ;

19 }

20 i f ( ! root . s u c c e s s ( ) ) {

21 S e r i a l 1 . p r i n t ( ’ \n ’ ) ;

22 }

23 }

24
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Listing 1.4: Data Exchange Code: Base updateState Implementation

1 void updateState ( s t a t u s t ∗ cu r r en t s t a tu s , char ∗ i nputStr ) {

2 Sta t i cJ sonBuf f e r <400> j s onBu f f e r ;

3 JsonObject& root = j s onBu f f e r . parseObject ( inputStr ) ;

4 i f ( root . s u c c e s s ( ) ) {

5 cu r r en t s t a tu s−>he ight = root [ ” he ight ” ] ;

6 cu r r en t s t a tu s−>l idOpen = root [ ” l idOpen” ] ;

7 cu r r en t s t a tu s−>fanOn = root [ ”fanOn” ] ;

8 outputState ( Status ) ;

9 }

10 i f ( ! root . s u c c e s s ( ) ) {

11 S e r i a l 1 . p r i n t ( ’ \n ’ ) ;

12 }

13 }

14

The output state function implementation is incidentally the same between the two

nodes, because it is currently impossible for any operation to take place between the two

function calls that would change the state. The output function is essentially the opposite

of the update function, it takes the information about the current state in the form of a

struct and transforms it into a JSON string. This string is then delimited with a newline

and printed to the appropriate serial port. Listing 1.5 shows the common implementation

of this function.
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Listing 1.5: Data Exchange Code: Output State Implementation

1 void outputState ( s t a t u s t c u r r e n t s t a t u s ) {

2 char temporary s t r ing [ 1 0 0 ] = ”” ;

3 Sta t i cJ sonBuf f e r <400> j s onBu f f e r ;

4 JsonObject& root = j s onBu f f e r . c r ea teObjec t ( ) ;

5 root [ ”mode” ] = ( i n t ) Status .mode ;

6 root [ ” he ight ” ] = Status . he ight ;

7 root [ ” l idOpen” ] = Status . l idOpen ;

8 root [ ”fanOn” ] = Status . fanOn ;

9 root . printTo ( temporary s t r ing ) ;

10 f o r ( i n t i = 0 ; i < s t r l e n ( t emporary s t r ing ) ; i++)

11 {

12 i f ( t emporary s t r ing [ i ] == ( ’ } ’ ) )

13 {

14 t emporary s t r ing [ i + 1 ] = ’ \n ’ ;

15 t emporary s t r ing [ i + 2 ] = ’ \0 ’ ;

16 break ;

17 }

18 }

19 S e r i a l 1 . p r i n t ( t emporary s t r ing ) ;

20 }

21

1.7 Testing and Performance

1.7.1 Indoor Test Methods

I constructed a small indoor testing apparatus that suspends the attachment approxi-

mately one meter above the ground for indoor functionality testing. This testing rig allowed

me to test and make improvements much more quickly than if I had to drive out to the

testing site and fly the UAS each time I wanted to evaluate the system.
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The KSU entomology department provided me with a sweep sample of insects that had

been captured by sweeping a net across the canopy in a patch of damaged cropland. The

sample contained a variety of insects of different weights and sizes. I scattered the sample

on a tray, placed it below the sampling system, and turned it on. Once the sampling system

had completed its routine, I removed the sample jar and visually inspected the insects had

been captured by the suction and compared them to the insects that remained on the tray.

1.7.2 Results

My tests initially revealed some minor errors in our design. These were primarily

software bugs that caused the system to behave in an unexpected manner under certain

specific circumstances. Once these problems were revealed in testing I was able to rework

the firmware so that the system functioned as intended. Once these issues were resolved,

the system successfully captured 100% of the insects in the sweep sample regardless of size,

weight, and species. Repeated execution of the procedure revealed no inconsistencies or

remaining design flaws, and the battery life of the system during normal operation was

demonstrated to be greater than the typical flight time of 20-30 minutes. A photo of the

captured insects is shown in Figure 1.14.

1.7.3 Outdoor Test Methods

I performed our outdoor testing at the Kansas State University Agronomy North Farm.

My first set of tests revealed that the UAS remote control and communications system oper-

ated on the same 2.4 GHz band as our XBee radios, so I simply exchanged the XBee radios

for 900 MHz models with the same footprint and pinout. This fixed the communications

problem. A photo of the apparatus in flight can be seen in figure 1.15. The figure shows the

apparatus being tested shortly before I made improvements to the cable management and

lengths.
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Figure 1.14: Bugs Collected in Lab Tests

This system works well on the ground while the UAS is powered on, but when the

UAS is in the air the base station fails to send the appropriate commands to the sampler. A

series of tests to rule out possible causes eliminated all possibilities except interference from

the additional EMI created by the extra current drawn to the brushless motors on the UAS

while lifting a full load.
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Figure 1.15: Flight Test

1.8 Conclusions and Recommendations

In this chapter, I have demonstrated a full design for a prototype device capable of performing

sampling operations and collecting insects via suction in indoor bench tests. I have also

presented an analysis and diagnosis of the barriers preventing the system from operating in

flight. Future work should focus on reducing the impact of environmental EMI from the

UAS. One possible solution is to create an EM shield to protect the circuitry in the device

from EMI. An alternative solution is to reduce the weight of the system and thereby reduce

the load on the UAS motors, this will reduce the current draw and therefore reduce the EMI

generated by them. The solution most likely to be successful will incorporate both of these

strategies to minimize the system’s sensitivity to EMI.
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Chapter 2

Integrated IMU and GNSS System

for Improved Image Geolocation

2.1 Introduction

As part of a larger initiative to improve the process of collecting aerial imagery to assess

crop health, we are investigating ways to quickly and efficiently geolocate the images that

we collect during multirotor flights over cropland. Onboard GNSS systems have proven to

be too imprecise for these operations, and the aircraft weight constraints prevent the use

of gimbals for image orientation. To correct these insufficiencies, we resolved to develop a

lightweight and platform independent device that can be attached to a multirotor aircraft to

record precise position, velocity, and orientation information for use in geolocating images

that do not have sufficient landmarks to be identified by image stitching software. This

chapter will cover the design and integration process as it pertains to the electronics and

firmware of the first functional prototype of this device.
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2.2 System Level Operation

The proposed solution is centered around 4 core components: a B110 GNSS Receiver, a Pico

P900 Radio Module, a Teensy 3.6 Microcontroller Development Board, and an MPU-9250

Inertial Measurement Unit (IMU). The solution must also incorporate whatever additional

circuitry is required to support the operation of those four components, including voltage

regulators and IO interfaces. The overarching operational goal is to receive GNSS correction

packets using the Pico P900, transmit them to the B110, receive NMEA strings from the

B110 into the Teensy microcontroller, where the data is concatenated with an orientation

quaternion obtained by performing a sensor fusion algorithm on the sensor readings from the

IMU obtained by the Teensy over SPI, and output the complete data string to the Teensy’s

onboard microSD card. A detailed block diagram showing the system level operations of the

prototype is shown in figure 2.1.
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Figure 2.1: Electronics Block Diagram
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2.3 Components Operation and Design

2.3.1 Voltage Regulators

The purpose of the voltage regulators on this device are to supply the varying input voltages

required by each component by efficiently reducing the voltage from either a 11.1V nominal

battery or a single cell 3.7V nominal battery. All of the circuitry on this board can be

powered by two input voltages, one in the range from 3.6V-4.5V and another at 3.3V. This

system includes two voltage regulators to supply these needs, an 8A 4V switching regulator

and a 3A 3.3V low dropout linear regulator. If the board is being powered by a single cell

battery, the switching regulator can be bypassed entirely, as the battery voltage is already

within the desired range.

2.3.1.1 Operation Theory

The switching regulator works by switching an integrated mosfet on and off at 500 kHz, with

the output current flowing into the load through an inductor. Because current through an

inductor cannot change suddenly, when the switch turns off the energy from the collapsing

magnetic field in the inductor draws current from ground through a diode, allowing the

circuit to drive the load even when the switch is closed. This effect inherently creates a

ripple at 500 kHz that must be managed by a large bank of low ESR ceramic capacitors at

the output. The linear regulator takes this 4V output as an input, and uses a comparatively

simple analog circuit to reduce the input voltage to 3.3V while the current remains almost

the same from input to output. This causes the linear regulator to be significantly less

efficient than the switcher, but it outputs a much cleaner voltage and requires significantly

less output capacitance.

2.3.1.2 Component Selection and Design

The primary design concerns when designing the switching voltage regulator were board

space, efficiency, and weight. Because all of the power drawn by the board passes through
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this circuit when powered by the main battery on the multirotor, power efficiency could have

an effect on the total flight time. Because of concerns with payload weight and size, I looked

for a solution with few external components and simple implementation. I decided to use

the Texas Instruments TPS53318 because it is capable of up to 91% efficiency and comes in

a small 5mm by 6mm QFN package. The MOSFETs for power switching are integrated into

this IC, reducing the external component count. It also has large voltage and current ranges

of up to 8A and 1.5V to 22V, making it flexible if the design should change later on in the

prototyping process. Figure 2.2 is a schematic of the connections to the TPS53318 IC and

all the external support components that form the switching voltage regulator.

Figure 2.2: Switching Voltage Regulator

The primary design concerns when designing the linear regulator were dropout voltage

and current rating. In a linear regulator, the dropout voltage describes the minimum dif-

ference between the input voltage and output voltage that can exist while still allowing the

regulator to maintain the desired output voltage. In our circuit, the switching regulator or

fully charged battery outputs about 4V and we need a stable source of 3.3V from a regula-

tor that takes this 4V supply as an input. This means that the linear regulator must have

a bare minimum dropout voltage of 0.7V. Preferably the dropout voltage would be lower

than this because battery voltages can drop below their nominal values while they are being

discharges, so a lower dropout voltage will increase the time that our circuit can be safely

powered by a single charge of a one cell battery. The other concern is current capability.

Most voltage regulators I found with low dropout voltages had relatively low current ratings.

Our low dropout regulator needs to power an IMU and a radio module. The main issue is
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that the radio module’s current needs can fluctuate based on its configuration. A customer

service representative from Microhard advised me that the radio could draw as much as 2A

depending on a variety of factors, so I started looking for regulators with suitable dropout

voltages and current capabilities greater than 2.5A to give some headroom in case of inciden-

tal jumps in power demand. The LP38503 Low Dropout Regulator from Texas Instruments

meets these two requirements with a maximum dropout voltage of 550mV (420mV typical)

and a current rating of 3A. Figure 2.3 shows our circuit design based around the LP38503

with the necessary feedback voltage divider to set the output voltage and capacitors to ensure

stability and reduce noise.

Figure 2.3: Low Dropout Voltage Regulator

2.3.2 GNSS

The GNSS receiver in this system is a B110 receiver from Topcon. The subject of GNSS is

exceptionally complex, so I will restrict this paper to a cursory overview. The basic principle

relies on a large number of satellites orbiting the earth in predictable orbits with extremely

precise clocks. They use radio signals to transmit their time and identification number. If a
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receiver can see three or more satellites, it can solve a clock correction algorithm to determine

its own local time precisely and then compute the distance to each satellite based on the clock

time differences. From this information, it can use a process called trilateration to estimate

its own position. There are several problems with this approach that introduce error, chief

among them being ionospheric interference in the signal. Sophisticated devices like the B110

have a series of strategies to mitigate these errors, some requiring another stationary GNSS

receiver on a base station to communicate with the B110 via a radio connection. We have

configured the B110 to receive its error correction information from the radio over a simple

UART connection to a radio module, and output an NMEA string over another UART to

our Teensy development board.

2.3.3 Inertial Measurement Unit (IMU)

Inertial measurement units such as the popular MPU-9250 use MEMS (MicroElectroMechan-

ical Systems) sensors to implement three axis accelerometer, gyroscope, and magnetometer

sensing inside the IC chip. This is achieved by measuring the electrical properties (such as

capacitance) of tiny internal mechanical elements that are affected by motion and ambient

magnetic fields. This process requires internal analog to digital converters, embedded signal

processing, and other circuitry elements to support operating requirements such as charge

pumps, buffers, and voltage regulators. The MPU-9250 is an extremely robust example of

this technology that includes advanced features such as internal programmable sensor ranges,

signal processing, and extremely fast 1MHz SPI communication for reading and writing its

registers for both configuration and data retreival. It is also extremely small, in a 3mm by

3mm QFN package. The MPU-9250 requires only a three external capacitors and commu-

nicates with our Teensy board using a SPI bus at the maximum supported speed of 1MHz.

The MPU-9250 allows its IO voltage level to be different from its operating voltage, provided

the prior is the lower of the two. I took advantage of this feature when designing the board,

and I was able to keep the board to two layers and avoid cutting the ground plane under

the SPI traces by sourcing VDDIO from the Teensy 3.6 onboard regulator and VDD from
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the LDO discussed in section 2.3.1. Figure 2.4 shows the schematic of the MPU-9250 as it

is used in my design.

Figure 2.4: IMU

2.3.4 Teensy 3.6

The Teensy 3.6 is a development board that houses an ARM Cortex-M4 microcontroller. It

is set up by its manufacturer with a loader application that allows the M4 processor to be

configured and programmed using the Arduino development environment. In the case of this

project, it performs all input and output operations and processes data from the IMU and

GNSS receiver into a useful format. This includes running the open source Madgwick sensor

fusion algorithm at a 1KHz timestep to filter the IMU information into useful orientation

estimates.
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2.3.5 Ideal Diode

The Teensy 3.6 can be powered either by the 4V regulator on the board, or through a micro

USB cable. To allow both power sources to be safely active simultaneously, I used an ideal

diode controller with a low RDSon mosfet to create a circuit that very closely mimics an

ideal diode by sensing voltages on either side of the mosfet switch and opening or closing

it accordingly. When the USB power is unconnected, current can flow through the mosfet

from the 4V switcher into the Teensy Vin connection. However, when the USB power is

connected, the mosfet is closed and the 5V USB power is completely isolated from the 4V

output of the switcher. The schematic for this section of the circuit is shown in figure 2.5.

Figure 2.5: Ideal Diode Circuit

2.3.6 Indicator LEDs

The B110 outputs operate at LVTTL, which essentially means that they have very little

output current capability. For this reason, I decided to drive my UART indicator LEDS

with a pair of comparators with well defined input resistance characteristics. I selected

the MAX9019 dual comparator because it contains two comparators in a single IC and

it retains its accuracy even when the input voltages extend marginally beyond the supply

voltages (sometimes called ”rails”). This is important because the B110 has its own onboard
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regulators, and I cannot guarantee that my nominal 3.3V supply will not be marginally

below the B110’s logic level voltage. If this were to be the case, most comparators would

be operating in a range of undefined behavior, because the inverting input voltage would be

larger than the rail voltage. I used a resistor divider to create a 1.1V reference voltage on

the noninverting inputs of the comparators and connected Tx and Rx from the B110 to the

inverting inputs of the comparators. At the output, I placed a current limiting resistor and

LED. This circuit results in the LED lighting up when the UART line is low and data is

being transmitted. The schematic for this section of the circuit is shown in figure 2.6.

Figure 2.6: UART Indicator LED Driver

2.3.7 Full Schematic

With inclusion of all components listed in this section, the full design schematic showing all

electrical connections is shown in figure 2.7. All schematic designs shown in this document

were created using a free and open source electronics design suite called KiCad. Specifically,

this schematic was created in a subprogram called Eeschema.
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Figure 2.7: Full Design Schematic

50



2.4 Physical Design and Board Layout

The final product of this work takes the form of a printed circuit board that serves as a

motherboard for all components shown in figure 2.7. I performed the circuit board layout in

KiCad, specifically a subprogram called PcbNew. Careful component placement allowed all

the connections to be made on a two layer board for superior cost and manufacturing lead

times while preserving the ground plane under all signal traces. I gave careful consideration to

power traces and planes to minimize the inductance of any copper shapes carrying significant

current. For the USB connection traces, I used a feature of KiCad called ”differential pair

routing” to ensure that the D+ and D- traces have exactly the same length, and I placed the

relevant components in such a way as to minimize the length of those traces. This endeavor

produced the printed circuit board shown in figure 2.8.

Figure 2.8: PCB Layout
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2.5 Firmware

During this stage of the project, our first priority was to show a functional prototype within

our time constraints, and so our firmware development was focused on developing a minimum

viable solution very quickly. Development speed is important in this case because other

researchers at KSU need a device meeting the minimum specifications to perform evaluations

on the accuracy and effectiveness of the B110 GNSS receiver for their research applications.

2.5.1 Platform

We decided to develop the first prototype firmware using the Arduino environment to pro-

gram a PJRC Teensy 3.6 development board. As discussed in chapter 1, the Arduino en-

vironment has the benefit of a large user base and hardware abstraction, at the cost of

precision and performance. We saw huge value in two particular open source libraries for the

Teensy 3.6 in Arduino. From a communication perspective, the two most difficult items on

the board for the processor to interact with are the MPU-9250 and the micro SD card slot

included on the Teensy 3.6. These both require SPI communication, and reading any data

from the MPU-9250 requires sending a one byte request message containing the address of

the register containing the desired value. Obviously this is a cumbersome task to program,

as it requires mapping of the MPU-9250 registers and interpretation of the returned binary

values. The software package that allows Arduino to interface with the Teensy board (called

”Teensyduino”) includes a library with a simple class to read and write files on the SD Card.

There is also a library available under the MIT license from Bolder Flight Systems that

handles all interactions with the MPU-9250 using a simple API. It is these two libraries that

primarily led us to choose the Arduino platform over a more traditional microcontroller.

2.5.2 Architecture

The firmware for this device has two main sections: a 1 KHz interrupt handler that performs

most of the calculations, and a series of serial interrupt driven buffers that process incoming
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strings. A third more trivial element of the firmware is the main loop, that outputs debugging

information to the micro USB port. Figure 2.9 is a block diagram showing the order of the

tasks performed by the firmware and the interactions between the interrupt handler and the

rest of the code.

Figure 2.9: Firmware Block Diagram
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2.5.3 Input and Output

2.5.3.1 UART Serial

In Arduino, all serial communications are automatically handled by a serial buffer object.

These circular buffers are driven by interrupt handlers bound to the serial port’s register

status and are generally opaque to programmers using the platform. Arduino is typically
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used to program microcontrollers with relatively small amounts of memory, so these buffer

objects have very small capacities. NMEA strings on the other hand, can be somewhat

large, leading to concerns that the serial buffers might not be large enough to manipulate

the B110 output. Because the Teensy 3.6 has about 1 MB of memory, there is little concern

for the memory space consumed by these buffers. I examined the supporting files used by

the Arduino IDE and found the location in a file named serial1.c where the input and output

buffers are declared for UART1. I changed their size from 40 (TX) and 64 (RX) to 4096 to

avoid any chance of overflow and subsequent data loss.

2.5.3.2 SPI

The Bolder Flight library for reading the MPU-9250 uses blocking code to read and process

the data from the IMU registers. This means that the processor must wait for the read

operation to be completed before performing any other calculations. Changing this operation

to run either via processor interrupts or direct memory access (DMA) should be a subject

of focus in future work on this project.

2.5.4 String Processing

In my main loop, I continually read all available characters out of the modified serial object

into my own circular buffer implementation build using C structs. My implementation of the

circular buffer checks for delimiting characters, and is able to easily detect when a complete

message is available in the buffer. This approach allows the 1 KHz interrupt to easily detect

when a new string is available and operate on it with minimal processing requirements. All

strings from the B110 are delimited with newlines, so the buffer is set up to detect newlines

and use them as the basis for when strings begin and end.

2.5.5 Sensor Fusion

The inherent error introduced by each sensor in our IMU is a significant problem when

attempting to estimate the orientation of an aircraft. Accelerometers can effectively use
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gravitational acceleration to detect the downward direction in an inertial reference frame,

but any acceleration due to speed changes or turns will cause temporary errors in the reading.

Similarly, gyroscopes detect short term changes in angular rate very well, but their reading

drifts over time because the mathematical procedures used integrate the error they produce.

Magnetometers provide a good reference direction for magnetic north, but are susceptible

to local distortion in magnetic fields caused by certain nearby objects with electromagnetic

properties. In this application, I’ve used an optimized C implementation of the Madgwick

Filter developed by Sebastian Madgwick at the University of Bristol14. The algorithm uses a

series of mathematical methods to approximate the gyroscope error using magnetometer and

accelerometer readings, and ultimately filter all the data together to achieve very accurate

and stable estimates of orientation. The performance of a Madgwick filter rivals that of tra-

ditional Kalman Filter based approaches but with significantly less computational intensity

or memory usage.

2.6 Results and Conclusions

Upon testing the circuit board for functionality, we discovered the need for additional output

capacitance on the linear regulator, and additional decoupling capacitors near the P900 Vin

pads. We added an additional 47 uF capacitor to each of these locations, and it stabilized

the circuit. Further testing outdoors revealed that when the B110 reads more than about 8-9

satellites with the GR5 base station switched on, the 4V power supply is prone to sudden

brown outs. These appear to be caused by sudden current demand that the switching

regulator is unable to compensate for. The solution to this problem was simple, as we

discovered that from a flight logistics standpoint it is much more convenient to operate this

board powered by its own single cell battery. We simply scrapped the 4V regulator because

it was adding extra weight and causing unwanted behavior for no measurable benefit. When

powered through an independent single cell battery, the system performs all desired functions

and has demonstrated the ability to achieve an RTK correction solution and properly log the

desired orientation and position information. A more detailed evaluation of the performance
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parameters of this system is reserved for future work.
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