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Abstract 

Vegetables are popular among consumers because of their versatility of preparation, 

unique sensory characteristics, and exceptional health benefits. Trends such as organic farming 

and breeding to increase nutrition and functional health components have increased interest in 

understanding the flavor of vegetables, such as leafy greens. A lexicon of thirty-two flavor 

attributes was created to help describe the flavor of fresh leafy vegetables. This lexicon includes 

five “green” attributes; mouth feel characteristics such as pungent, bite, tooth-etch, and 

heat/burn; fundamental tastes including bitter and umami; seven terms that describe unique 

flavors related to specific vegetables such as cabbage, celery, lettuce, spinach, parsley, beet, and 

radish leaves; and a group of other terms including citrus, piney, woody, water-like, 

musty/earthy, floral, sulfur, metallic, soapy, petroleum-like, and overall sweet. In addition, our 

study encompassed a series of sensory tests which will aid in better understanding the effects of 

several production variables on the sensory characteristics of pac choi and tomato. Variables 

evaluated were production systems (i.e. organic and conventional), fertilizer amount (i.e. high, 

low, and no fertilizer), environment (i.e. field and high tunnel), maturity level (i.e. 2.5, 4.5, and 

6.5-week old plants at the time of harvest), and shelf life (i.e. 1, 4, 9, 18 days of refrigerated 

storage). Samples were grown at the Kansas State University Horticulture Research Center 

located in Olathe, Kansas. Highly trained descriptive panelists from the Sensory Analysis Center 

at Kansas State University evaluated the samples. There do not appear to be major sensory 

differences between organic and conventional products specific to the crops and seasons studied. 

Furthermore, when differences were present, they generally were quite small and showed no 

clear trends or patterns favoring one production system over the other even after refrigerated 

storage. However, it is suggested that differences in flavor and volatile composition between 

organic and conventional pac choi may be more evident at early stages of growth.    
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Abstract 

Vegetables are popular among consumers because of their versatility of preparation, 

unique sensory characteristics, and exceptional health benefits. Trends such as organic farming 

and breeding to increase nutrition and functional health components have increased interest in 

understanding the flavor of vegetables, such as leafy greens. A lexicon of thirty-two flavor 

attributes was created to help describe the flavor of fresh leafy vegetables. This lexicon includes 

five “green” attributes; mouth feel characteristics such as pungent, bite, tooth-etch, and 

heat/burn; fundamental tastes including bitter and umami; seven terms that describe unique 

flavors related to specific vegetables such as cabbage, celery, lettuce, spinach, parsley, beet, and 

radish leaves; and a group of other terms including citrus, piney, woody, water-like, 

musty/earthy, floral, sulfur, metallic, soapy, petroleum-like, and overall sweet. In addition, our 

study encompassed a series of sensory tests which will aid in better understanding the effects of 

several production variables on the sensory characteristics of pac choi and tomato. Variables 

evaluated were production systems (i.e. organic and conventional), fertilizer amount (i.e. high, 

low, and no fertilizer), environment (i.e. field and high tunnel), maturity level (i.e. 2.5, 4.5, and 

6.5-week old plants at the time of harvest), and shelf life (i.e. 1, 4, 9, 18 days of refrigerated 

storage). Samples were grown at the Kansas State University Horticulture Research Center 

located in Olathe, Kansas. Highly trained descriptive panelists from the Sensory Analysis Center 

at Kansas State University evaluated the samples. There do not appear to be major sensory 

differences between organic and conventional products specific to the crops and seasons studied. 

Furthermore, when differences were present, they generally were quite small and showed no 

clear trends or patterns favoring one production system over the other even after refrigerated 

storage. However, it is suggested that differences in flavor and volatile composition between 

organic and conventional pac choi may be more evident at early stages of growth.   
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CHAPTER 1 - Literature Review 

Vegetable Market in the United States 

While the harvested area of vegetables and melons decreased 3.4% in the United States in 

the 2006 – 07 periods, production increased 4.7% in the same period (United States Department 

of Agriculture – Economic Research Service [USDA-ERS], 2008). At the same time, per capita 

utilization increased 2% moving from 179.1 pounds in 2006 to 182.8 pounds in 2007 and was 

projected to be at 180.5 in 2008 (USDA-ERS, 2008). It is evident from these values that 

production processes need constant change to improve yields and be able to increase production 

and fulfill increasing demand even though fields are less available for production. Some of the 

reasons for these increases in yield are (1) increased knowledge that certain areas are more 

suitable for production of certain vegetables, (2) increased use of irrigation, (3) increased 

knowledge in fertilization practices and plant nutrition, (4) new methods to control pests and 

diseases, and (5) the introduction of superior cultivars (Peirce, 1987).  

In 2007, the vegetable crops that showed the largest production were onion, head lettuce, 

watermelon, and tomato (Figure 1) mainly from states such as California, Florida, and Georgia. 

Texas also showed an important production of watermelon, Michigan was important for squash, 

and New York for cabbage (USDA-ERS, 2008). 

The United States also imports much of its vegetable supply to be able to fulfill an 

increasing demand. In 2007, the products that were imported the most were tomato (all 

varieties), cucumber, cantaloupe, and watermelon (Figure 2). Most of the U.S. imports come 

from countries such as Mexico and Canada. Other countries that also sell their products to the 

United States are Guatemala (cantaloupe, green peas, and snap beans), Peru (Asparagus, onions, 

and green peas), Chile (onions), and The Netherlands (bell peppers, tomatoes, and eggplant) 

(USDA-ERS, 2008).   

In relation to their exports, the United States exports mainly to Mexico, Canada, and 

Japan. In 2007, the main exports were lettuce, onions, tomatoes, and broccoli (Figure 3). Other 

destinations of U.S. products are the United Kingdom (onions, lettuce head, and sweet corn), The 

Netherlands (sweet corn and carrots), Switzerland (asparagus), South Korea (head lettuce and 

sweet corn), Hong Kong (celery), and Taiwan (broccoli, head lettuce, and onion). 
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Figure 1.1. Major vegetable crops produced in U.S. in the 2005-07 period 

 

  

Figure 1.2. Major U.S. imports of vegetable crops in the 2005-07 period 
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Figure 1.3. Major U.S. exports of vegetable crops in the 2005-07 period 

 

Vegetable Classification & Nutrition 

Many vegetables that are widely used in the occident (and specifically the United States) 

have their origin in Asia or are commonly used in that part of the world (Table 1). Vegetable 

products from Japan, India, Korea, Philippines, and Southeast Asia are the main focus of Asian 

cuisine, which is very popular in many countries (Creasy, 2000).  

 

Table 1.1. Vegetables commonly used in the Asian cuisine 
 Amaranth  Chinese celery  Lemon grass  Perilla 
 Bamboo  Coriander  Lime leaf  Sesame 
 Basil   Baby corn  Luffa    Shungiku 
 Beans   Cucumbers  Mitsuba  Spinach 
 Bitter melon  Daikon   Mibuna  Turnips 
 Bunching onions Eggplants  Mizuna  Water chestnuts 

Burdock  Garlic   Mustard  Winter melon 
Carrots   Garlic chives  Pac choi  Winter squash 
Chinese broccoli Chinese leek  Peas 
Chinese cabbage Ginger   Peppers 

Source: Creasy, 2000 
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To organize vegetables is essential because of the large amount of species that exist in the 

world and specifically in the United States. Different criteria exist to classify vegetables. 

According to Yamaguchi (1983) there are eight different ways of classifying vegetables. They 

can be classified by (1) botanical information, (2) optimum growing temperatures, (3) relative 

resistance to frost or low temperatures, (4) part of the plant used for food, (5) number of seasons 

the plant may live, (6) storage temperature and storage life, (7) optimum soil conditions, and (8) 

water requirements.  

From these classification schemes, the most exact is the classification by botanical 

information because it combines plants of similar characteristics according to flower type and 

structure. This can be of use to horticulturists because plants of similar characteristics will most 

likely be affected in the same way by the growing environment (Yamaguchi, 1983). Classifying 

vegetables by botanical information is also universal and can be used in any part of the world 

regardless of language. For the purposes of this dissertation, where leafy vegetables will be the 

basis of our work, we will use the classification based on the edible part, which is detailed below 

(Table 2). 

Yamaguchi (1983) also groups the different vegetables according to their source of 

nutrients. The author classifies vegetables into (1) high in carbohydrates (including potatoes, 

cassava, dry beans, taro, and yam); (2) high in oils (legume seeds and mature vegetable seeds); 

(3) high in proteins and amino acids (legumes, sweet corn, and most leafy vegetables); (4) high 

in vitamin A value (carrot, sweet potato, cucurbits, peppers, green leafy vegetables, green beans, 

and green peas); (5) high in vitamin C (crucifers, peppers, tomato, melon, seeds at immature 

stages, bean sprouts, freshly harvested white potatoes, and most leafy vegetables) and (6) high in 

minerals (including most leafy vegetables such as crucifers and root crops which are particularly 

rich in minerals). 

It is then important to notice that when specifically referring to green leafy vegetables, 

we are referring to products rich in proteins, amino acids, vitamin A, vitamin C, and minerals. 

This information is corroborated by some studies. Ejoh et al. (2007) investigated the nutritional 

composition of some non-conventional leafy vegetables consumed in Cameroon. The plants 

investigated were Vernonia calvoana var. bitter, V. amygdalina, V. colorata, and V. calvoana 

var. non-bitter. According to the authors, these plants are resistant to drought, have bitter taste, 

and are a good nutritional complement in the diets of Cameroon’s families.  
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Table 1.2. Classification of vegetables based on edible part 
Type Vegetables 
Root a. Enlarged taproot 

Beet, carrot, radish, salsify, rutabaga, turnip, 
parsnip, and celeriac. 
b. Enlarged lateral root 
Sweet potato, winged bean, cassava, and 
arracacha. 

Stem a. Above ground, not starchy 
Asparagus, celtuce, and kohlrabi. 
b. Below ground, starchy 
White or Irish potato, yam, Jerusalem 
artichoke, and taro. 

Leaf a. Onion group, leaf bases eaten (except 
chive) 

Onion, leek, shallot, garlic, and chive. 
b. Broad-leaved plants 

1. Salad use 
Lettuce, cabbage, chicory, Chinese 
cabbage, celery (petiole only), and 
endive. 
2. Cooked (may include tender stem 

in some) 
Spinach, chard, New Zealand 
spinach, Jew’s mallow, dandelion, 
rhubarb (petiole only), kale, edible 
amaranth, chicory, Chinese cabbage, 
mustard, and cardoon (petiole only). 

Immature flower bud Cauliflower, broccoli, broccoli raab, and 
artichoke. 

Fruit a. Immature 
Pea, snap bean, lima bean, broad bean, 
chayote, summer squash, cucumber, zucca 
melon, okra, sweet corn, and eggplant. 
b. Mature 

1. Gourd family (cucurbits) 
Pumpkin, winter squash, 
muskmelon, Chinese wax gourd, and 
watermelon.  
2. Potato family 
Tomato, pepper, pepino, and husk 
tomato. 

Source: Yamaguchi, 1983. 
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The authors found that these plants are good sources of proteins, carotenoids, vitamin C, 

and minerals such as iron, calcium, phosphorus, potassium, magnesium, and zinc. The authors 

also mentioned the non-bitter species (V. colorata, and V. calvoana var. non-bitter) as 

particularly good sources of dietary fiber and minerals such as iron, potassium, and magnesium. 

The Vernonia amygdalina variety, which may be the plant most used for food and medical 

purposes in tropical Africa, has also shown an important fatty acid content and antioxidant 

activity (Erasto et al., 2007). Oduro et al. (2008) conducted a study on Moringa oleifera and 

seven varieties of sweet potato leaves (Ipomoea batatas). These are leafy vegetables with an 

important nutritional content and are highly consumed in some poor countries, especially in 

Africa. The authors found that both species are very nutritious and high in proteins, fiber, and 

minerals. However, the M. oleifera species showed higher levels of calcium, iron, and proteins 

compared to the sweet potato leaves varieties.  

It also has been suggested that green leafy vegetables should be included in the diet to 

overcome iron and vitamin A deficiencies (Singh et al., 2001). Those authors investigated the 

nutrient composition of green leafy vegetables and herbs such as spinach, amaranth, Bengal 

gram, cauliflower, mint, coriander, and carrots. They found that these vegetables are good 

sources of ascorbic acid, -carotene, and iron. From the vegetables evaluated in this study, 

Bengal gram leaves showed higher contents of all three nutrients compared to the other 

vegetables evaluated. A study by Gupta and Wagle (1988) highlights the importance of green 

leafy vegetables as good sources of minerals. They evaluated chickpea, chenopodium, spinach, 

mustard, and cauliflower and investigated their content of different minerals such as copper, iron, 

zinc, manganese, sodium, potassium, magnesium, calcium, and phosphorus. Chickpea had the 

highest amount of iron, copper, manganese, and calcium, while mustard had the highest amount 

of phosphorus. Spinach, on the other hand, had the lowest content of copper, calcium, and 

phosphorus and the highest content of zinc and sodium compared to the other vegetables 

evaluated by these authors.  

Vegetable crops also contain certain phytochemicals used by the plant as defense 

mechanisms against predators, pests, and environmental stress that may provide some negative 

characteristics to the plant (Table 3). These chemicals are also known as anti-nutritional factors 

(ANF) (Enneking and Wink, 2000). Gupta and Wagle (1988) studied anti-nutritional factors such 

as nitrate, saponin, oxalate, and trypsin inhibitors in chickpea, chenopodium, spinach, mustard, 
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and cauliflower. They found that spinach was highest for nitrate, saponin, and oxalate, while 

cauliflower was higher for the trypsin inhibitor. Ejoh et al. (2007) also found oxalic acids, certain 

polyphenols, and saponins when evaluating leafy vegetables consumed in Cameroon. Some of 

these anti-nutritional factors will decrease the bioavailability of important nutrients by increasing 

complexity of compounds and decreasing digestibility (Enneking and Wink, 2000).   

The contents of the different nutrients in plants as well as phytochemicals will vary 

according to genotype, pest incidence, soil condition, fertilization, irrigation, pesticide 

application, season, location, climatic conditions, time of harvest, and storage conditions (Zhao 

et al., 2006).    

 

Table 1.3. Categories of anti-nutritional factors (ANF) and their effect on consumers 
 Categories    Compounds 
 Toxic Lectins 
  Cyanogenic glycosides 
  Non-protein Amino acids 
  Alkaloids 
 Unpalatable Saposins 
  Tannins 
  Non-protein Amino acids 
  Bitter alkaloids 
 “Anti-nutritive” (Reducing fitness Phytates 
 or growth of consumer by nutrient 
 complexation) 
 Metabolic inhibition Non-protein Amino acids 
  Cyanogenic glycosides 
  Isoflavones 
  Alkaloids 
 Reduction of digestion Protease inhibitors 
  Lectins 
  Oligosaccharides 
Source: Enneking and Wink, 2000 
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Leafy Vegetables Consumed in the United States 

The following is a review of different leafy vegetables that are commonly consumed in 

the United States.  

Arugula (Eruca sativa) 

Also known as Rocket salad, Roquette, Gargeer, White pepper, or Koka, this plant has its 

origin in southern Europe and western Asia. This is a cool season crop, because growing it on 

warm temperatures will cause its leaves to be bitter and pungent (Yamaguchi, 1983). This plant 

belongs to the Cruciferae family and is a close relative of the mustards and has a characteristic 

spicy flavor (Lovelock, 1972). Because of its strong and spicy flavor, arugula may be rejected by 

consumers if consumed alone in comparison to other green fresh vegetables (Zhao et al., 2007a). 

This crop is mostly consumed in salad combinations with other green leafy vegetables. This crop 

is a good source of protein, thiamin, riboflavin, vitamin B6, pantothenic acid, zinc and copper. It 

is also a very good source of dietary fiber, vitamin A, vitamin C, vitamin K, folate, calcium, iron, 

magnesium, phosphorus, potassium and manganese (Nutrition Data, 2008).    

Beet (Beta vulgaris) 

Table beets are believed to descend from sea beets (Beta maritima) native to southern 

Europe and transported to northern Europe by invading armies spreading its consumption 

throughout Europe, the Middle East, and India (Yamaguchi, 1983). The red-violet color of the 

root and the petioles are betacyanins, pigments with similar chemical properties to anthocyanins 

(specifically betanin, isobetanin, betanidin, and isobetanidin) and the yellow pigments 

betaxanthins (specifically vulgaxanthin I and vulgaxanthin II). The content ratios between the 

two pigment classes vary among varieties and are beneficial to human health because of their 

antioxidant capacity as well as valuable for the production of food colorants (Nagy Gasztonyi et 

al., 2001). This crop belongs to the Chenopodiaceae family and has a characteristic earthy flavor 

which is thought to be caused by trans-1,10-dimethyl-trans-9-decalol, also know as geosmin. 

This is an organic compound which is believed to be synthesized by the beet root itself (Lu et al., 

2003). The roots are commonly used in salads and the preparation of pickles and chutney while 

the leaves are mostly used as cooked vegetables (Tindall, 1983). Beets are a good source of 

vitamin C, iron, and magnesium, and a very good source of dietary fiber, folate, potassium and 

manganese. In addition, beet greens are good sources of pantothenic acid, phosphorus, zinc, β-
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carotene, vitamin E (alpha tocopherol), vitamin K, thiamin, riboflavin, and Vitamin B6. As 

negative points, it is indicated that much of the caloric content of the beet roots come from 

sugars and that the leaves have a high content of sodium (Nutrition Data, 2008).  

    Swiss Chard (Beta vulgaris var. cicla) 

Swiss chard and beet greens are very similar, when cooked, in appearance, flavor and 

nutritional value. They both belong to the Chenopodiaceae family and both are Beta vulgaris. 

However, Swiss chard belongs to the Cicla group which is a leafier form than the beets with 

prominent enlarged midribs (Peirce, 1987). A serving of Swiss chard provides 87% of the 

average adult daily requirements of vitamin A and 25% of the required vitamin C. Also, as 

related to spinach and beet greens, Swiss chard is high in minerals (Peirce, 1987). See table 1.5 

for details on the nutritional content of Swiss chard. It also has been found that Swiss chard is an 

important dietary source of phenolic antioxidants. The major phenolic acid and flavonoid found 

in Swiss chard leaves are syringic acid and kaempferol (Pyo et al., 2004).  

Because Swiss chard is considered a very perishable product, many studies have 

investigated the effect of different storage conditions on the quality of Swiss chard. It has been 

shown that refrigeration and high relative humidity are required to minimize weight, water, and 

chlorophyll losses as well as for maintaining sensory properties (Roura et al., 2000). 

Furthermore, other factors such as organic fertilization have shown positive effects on sensory 

characteristics such turgidity, color and brightness of the leaves after storage. However, these 

results were not conclusive (Moreira et al., 2003). Colored varieties of Swiss chard are also 

being investigated for their betalain content and its potential as food coloring (Kugler et al., 

2004). This study reported nineteen betaxanthins and nine betacyanins found in different 

varieties of colored Swiss chard. Swiss chard is also a very good source of vitamin E (alpha 

tocopherol), vitamin K, riboflavin, vitamin B6, calcium, iron, magnesium, phosphorus, 

potassium, copper, manganese, and sodium (Nutrition Data, 2008).       

Spinach (Spinacia oleracea) 

Spinach is considered the most important of the greens in the United States. It originated 

in Iran but was not introduced in the new world until the colonial era (Peirce, 1987). Spinach can 

be consumed cooked or raw. It is high in minerals and vitamins, particularly β-carotene, calcium, 

phosphorus, iron, and potassium, and contains moderate amounts of protein (Peirce, 1987). See 
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table 1.5 for the nutritional content of spinach among other vegetables consumed in the United 

States. Spinach also has some anti-nutritional properties. For example, calcium in spinach is not 

as readily available for human consumption as in other products such as milk probably due to the 

presence of oxalic acid (Heaney et al., 1988). Oxalic acid, a normal constituent in leafy 

vegetables, has also shown to negatively affect the absorption of zinc and magnesium but not the 

absorption of iron (Storcksdieck genannt Bonsmann et al., 2008). On the positive side, spinach 

has also shown to have high levels of carotenoids (Mueller, 1997), L-ascorbic acid (Davey et al., 

2000), and flavonoids (Cho et al., 2008) which have shown an inverse relationship with chronic 

diseases such as cardiovascular diseases or certain types of cancer. The main carotenoids present 

in spinach are lutein, violaxanthin, β-carotene, and neoxanthin. The content of these components 

in spinach is dependant upon stage of development and storage conditions (Bergquist et al., 

2006). Furthermore, the glycolipid fraction from spinach has been shown to have potential in the 

prevention of cancer which would make spinach a functional food with “anti-cancer activity” 

(Maeda et al., 2007). The most important world producers of spinach are China, United States, 

and Japan (FAO, 2005).  

Cabbage (Brassica oleracea var. capitata) 

Cabbage is part of the cole group which also includes cauliflower, broccoli, brussel 

sprouts, kohlrabi, and curly kale. It is thought that the cabbages and kales originated in Western 

Europe while the cauliflower and broccoli came from the Mediterranean region (Yamaguchi, 

1983). All Cole crops are high in vitamin C. Even though cabbage has a high nutritional value, it 

is not particularly high in vitamins and minerals compared to other cole crops such as broccoli or 

Brussels sprouts (Table 1.4). However, because it is consumed in relatively large amounts, it 

does serve the necessary adult daily requirements (Peirce, 1987). White and Portuguese cabbages 

have shown higher content of soluble sugars content compared to broccoli (Rosa et al., 2001). 

On the other hand, because leaves and stems can accumulate a large amount of nitrates, leafy 

vegetables such as cabbage are found to be major sources of nitrate intake by humans (Wang et 

al., 2008) which at high concentrations may pose a risk for human health (Boink and Speijers, 

2001).  
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Table 1.4. Nutritional comparison among Cole crops and cabbage cultivar types a 
 Crop             Water (%)    Vitamin A (IU)b    Vitamin C (mg)c         Ca (mg)  
 Broccoli  89.0  2,500   113   103 
 Brussels Sprouts 85.0  550   102   36 
 Green Cabbage 92.4  130   47   49 
 Red Cabbage  90.2  40   61   42 
 Savoy Cabbage 92.0  200   55   67 
 Napa Cabbage  95.0  150   25   43   
Source: Peirce, 1987 
a data per 100g sample 
b 1 IU = 0.03 μg vitamin A alcohol 
c Ascorbic acid. 

 

Sensory quality of cabbage can be affected by many production variables such as 

irrigation or production time (Radovich, et al., 2004; Rosa et al., 2001). For example, it has been 

shown that panelists could perceive a difference among cabbage samples irrigated at different 

times during the development process (Radovich, et al., 2004). Cabbage has a very distinctive 

taste reminiscent of hard boiled eggs due to the presence of many sulfur compounds (Bailey et 

al., 1961). 

In the year 2005, China was the largest world producer of cabbage, followed by India and 

Russia. The same year, the United States was the sixth largest world producer accounting for 2.2 

million MT (Food and Agricultural Organization of the United Nations [FAO], 2005).  

Collards and Kale (Brassica oleracea var. acephala) 

Native to the eastern Mediterranean region of Europe, collards and kale are the oldest 

forms of cabbage. Collards are very popular in the southern diet of the United States whereas 

Kale’s consumption is more widespread (Peirce, 1987). Even though they both belong to the 

same taxonomic group they are very different in appearance and nutritional value. Collard greens 

leaves are broad and flat while Kale leaves have abundant curls. Both crops have a very good 

nutritional value (Table 1.5). However, kale is nutritionally superior to most vegetables in 

protein, vitamin, and mineral content (Peirce, 1987). Furthermore, kale has been found to be a 

very good dietary source of phenolic antioxidants and its phytochemicals can be potentially used 

for pharmaceutical research (Ayaz et al., 2008). Collard greens are also an important source of 

phenolic compounds as found by Huang et al. (2007). Those authors conducted research on both 

kale and collard greens and suggested that as good sources of phenolic compounds, these 
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vegetables can be of use in the prevention of cardiovascular and other chronic diseases. 

Flavonoids such as isorhamnetin, quercetin, and kaempferol were found in kale. Collard greens 

also contained these flavonoid with the exception of Isorhamnetin. Ferulic acid was another 

phenolic compound common in both collard and kale (Huang et al., 2007). In addition to these 

constituents, both kale and collards are a very good source of vitamin K (Nutrition Data, 2008). 

As green leafy vegetables, collard and kale are a good source of phylloquinone (Vitamin K1), 

which is an important nutrient involved in the regulation of blood coagulation (Booth et al., 

1995).   

 

Table 1.5. Nutritional comparison among green leafy vegetables a 
Crop     Water (%)      Protein (g)       Vitamin A     Vitamin C         Ca (mg)  

                             (IU)b                    (mg)c    
 Spinach 91  3.2  8,100  51  93 
 Kale  83  6.0  10,000  186  249  
 Collards 85  4.8  9,300  152  250  
 Mustard 90  3.0  7,000  97  183 
 Chard  91  2.4  6,500  32  88 
 Turnip 
      greens 90  3.0  7,600  139  246 
 Beet 
                 greens 91  2.2  6,100  30  119   
Source: Peirce, 1987 
a data per 100g sample 
b 1 IU = 0.03 μg vitamin A alcohol 
c Ascorbic acid. 

Mustard Greens (Brassica juncea) 

Native to central Asia and the Himalayas, different varieties of mustard (Table 1.6) are used in 

many parts of the world as spice, flavoring, oilseed, fodder, and greens or salads (Peirce, 1987). 

Mustard greens (Brassica juncea) are cultivated in eastern Europe, Malaysia, India, Indonesia, 

China, and Africa (Sierra Leone and Guinea) and are one of the most pungent of the mustards 

and are very important for oilseed production (Tindall, 1983). In the United States, mustard 

greens are mostly concentrated in Texas, California, Florida, Georgia, Mississippi, Tennessee, 

Arkansas, and Alabama (Peirce, 1987).  
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 Table 1.6. Varieties and characteristics of Mustard greens 
Variety      Taxonomic group  Characteristics    

 White Mustard Sinapsis alba   Pungent 
 Brown Mustard Brassica juncea  Pungent, important for oilseed crops,  
        and mostly used as greens 
 Black Mustard  Brassica nigra   Pungent, important for oilseed crops 
 Ethiopian Mustard Brassica carinata  Important for oilseed crops and 
        resistant to extreme environmental 
        conditions (Rakow and Getinet, 
        1998)  
Source: Peirce, 1987 
 

Mustard greens, as well as all plants from the Brassica family, are also known for having a high 

concentration of glucosinolates, which are a group of more than a 100 sulfur compounds. These 

sulfur compounds are normally stable inside the plant cells. However, if tissue damage occurs, 

sulfur compounds are released and hydrolyzed by plant myrosinase. The breakdown products of 

glucosinolates are responsible for the “hot and spicy” flavors of mustard, radishes, and other 

plants from the Brassica family (Johnson, 2001). At the same time, breakdown products of 

glucosinolates, such as nitriles and isothyocianates, have shown positive effects against lung and 

gastrointestinal cancer (Johnson, 2001).  Processing factors such as storage and cooking may 

alter the concentration of both glucosinolates and myrosinase enzyme and alter the positive 

effects that these phytochemicals have on human health (Rungapamestry et al., 2007). Among 

the different varieties of Chinese Brassica vegetables, collards have the highest content of 

glucosinolates followed by mustard, kale, and pac choi (He et al., 2003). Table 1.7 shows the 

glucosinolate compounds present in different varieties of Chinese Brassica vegetables. 

Additionally, mustard greens are a very good source of dietary fiber, provitamin A, vitamin C, 

vitamin E, vitamin K, thiamin, riboflavin, vitamin B6, folate, calcium, iron, magnesium, 

potassium, copper, and manganese (Nutrition Data, 2008).  
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Table 1.7. Individual glucosinolate contents (μmol·100 g-1 FW) in Chinese Brassica 
vegetables 
Glucosinolate    Pac Choi  Mustard Kale  Collard 
  
3-methylsulfinylpropyl-GS  ---  ---  96.69  --- 
2-propenyl-GS   ---  423.16  53.30  146.12 
2-hydroxy-3-butenyl-GS  2.18  ---  6.77  314.16 
4-methylsulfinylbutyl-GS  ---  ---  2.17  2.86 
3-butenyl-GS    24.36  21.64  ---  69.11 
4-pentenyl-GS    13.26  ---  ---  --- 
2-phenylethyl    8.32  3.23  ---  --- 
4-hydroxy-3-indolylmethyl-GS 0.46  2.86  2.43  0.89 
3-indolylmethyl-GS   13.35  6.02  210.52  166.61 
4-methoxy-3-indolylmethyl-GS 2.17  1.67  7.97  6.68 
1-methoxy-3-indolylmethyl-GS 20.64  19.69  49.57  24.19   
*GS: glucosinolates 
Source: He et al., 2003 

Pac Choi (Brassica rapa Chinensis group) 

Chinese cabbage probably originated in Asia and it was not introduced in the United 

States until late nineteenth century. It is grown throughout the year in California, Florida, and 

Hawaii and in the spring and fall seasons in New Jersey. Pac Choi is the non heading form of 

Chinese cabbage and is characterized by dark green leaves and white petioles (Peirce, 1987). 

There are two main varieties of Pac Choi. A green-leafed, white stemmed pac choi or “Joi Choi” 

and a green-stemmed pac choi which includes many cultivars such as “Chinese Pac Choi,” “Mei 

Qing Choi,” “Shanghai Pak Choi,” and Tatsoi (Tah Tsai)” (Creasy, 2000). From these sub 

varieties, Chinese Pac Choi has the most intense taste followed by Mei Quing Choi, and Joi Choi 

has the least taste intensity (Schnitzler and Kallabis-Rippel, 1998). The leaves can be cooked or 

eaten raw in salads. It also has been shown that the process of cooking causes changes in the 

taste going from sweet, sour, bitter, and spicy in the raw form to sweet and cabbage-like in the 

cooked form (Schnitzler and Kallabis-Rippel, 1998). The flavor change is caused by the action of 

heat on the enzyme myrosinase and the altered availability of glucosinolates and breakdown 

sulfur products, which are highly available in plants from the Brassica family (Rungapamestry et 

al., 2007). The leafy cultivars have twice the nutritional value of white cabbage. However, the 

heading forms (also known as pe tsai) have lower nutritional value compared to the leafy forms 

(Tindall, 1983). Table 1.8 shows the nutritional differences between the heading form of Chinese 

cabbage or pe tsai and the leafy form (pac choi).  
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Table 1.8. Nutritional comparison between two varieties of Chinese cabbage 
Crop     Water (%)      Protein (g)       Vitamin A     Vitamin C         Ca (mg)  

                             (IU)                    (mg)    
 Pac choi 95  1.5  3,000  45  105 
 Pe-tsai  91  1.2  1,200  27  92 
Source: Yamaguchi, 1983 
 

Pac choi, as part of the Brassica family, is also an important source of polyphenols. A study 

detected eleven flavonoid derivatives and seventeen hydroxycinnamic acid derivatives in pac 

choi samples of the communis variety (Harbaum et al., 2007). Those authors found that the main 

flavonoids present in pac choi are kaempferol and isorhamnetin. Polyphenols can be beneficial to 

human health against coronary disease and certain types of cancer (Harbaum et al., 2008). The 

stability of these compounds during storage has also been of interest for many studies. Kevers et 

al. (2007) found that phenolic content is relatively stable in a selected group of fruits and 

vegetables during storage and that the sample is more likely to spoil before any significant 

change in antioxidant capacity occurs. Leafy greens are perishable mostly due to mechanical 

damage during post harvest handling (Mahmud et al., 1999). Some of the most important defects 

are yellowing (Lu, 2007) caused by degradation of the chlorophyll, and water-loss, which is 

increased by the high surface area to volume ratio (Burton, 1982). These factors are related to 

each other and are increased when not refrigerated (Lazan et al., 1987). Able et al. (2005) 

estimated that the shelf life of detached pac choi leaves is ~27 days when stored at 2°C, ~8 days 

when stored at 10°C, and ~3 days when stored at 20°C. End of shelf life was estimated by 

measuring yellowing, rot, and damage.  

The taste of Pac Choi has been previously studied by Scnitzler and Kallabis-Rippel 

(1998) in which plants of different varieties were evaluated by a trained sensory panel both 

cooked and fresh. Terms used by these authors were sweet, sour, bitter, spicy, and cabbage-like. 

Other studies focused on instrumental analysis of Pac Choi leaves to evaluate flavonoid 

composition (Rochfort et al., 2006), phenolic content in organic plants (Young et al., 2005), and 

the effect of packaging on their shelf life (Lu, 2007). 
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Turnip greens (Brassica campestris) 

Turnip greens originated in central and southern Europe, probably in the Mediterranean 

area, and are now distributed throughout the tropics (Tindall, 1983). There are many varieties of 

turnips which are cultivated for their roots. These varieties are Nozawana, Scarlet Ball, Shogoin, 

and Tokio Cross. From these varieties, Nozawana is breed also for their greens which can be 

cooked, pickled or used fresh in salads (Creasy, 2000). As a member of the Brassica family, this 

plant also has a high concentration of glucosinolates. These are phytochemicals that when broken 

down by enzyme myrosinase produce sulfur compounds which have been associated with 

reducing the risk of cancer (Rungapamestry et al., 2007). Glucosinolate degradation products 

specifically related to turnip greens are benzene acetonitrile, benzene propane nitrile, 1H-indole-

3-acetonitrile, and benzene ethyl isothiocyanate. It has been shown that the concentration of 

these compounds vary according to variety and maturity. The concentration increases as the plant 

matures (Jones et al., 2007). Other than the health benefits, isothiocyanates (the breakdown 

products of glucosinolates) provide turnip greens, and all vegetables from the Brassica family 

with unique flavor characteristics such as sulfurous aroma, pungent flavor and bitter taste (Jones 

and Sanders, 2002). Those researchers suggest that a mustard green aroma and taste, bitterness, 

and bitter aftertaste are specific attributes that vary across varieties and maturity of turnip greens. 

The authors also suggest that liking of turnip greens decreases as the plant gets older, probably 

linked to the increasing bitterness of the sample, which at the same time, is linked with the 

increased concentration of phytochemicals (Jones et al., 2007). Turnip greens are also a good 

source of provitamin A, vitamin C, vitamin E, vitamin K, vitamin B6, folate, calcium, 

magnesium, potassium, copper, and manganese (Nutrition data, 2008). See Table 1.5 for a 

comparison of nutritional characteristics between turnip greens and other green leafy vegetables.        

Watercress (Nasturtium officinale) 

Watercress is known to be one of the oldest leaf vegetables consumed by humans. Records exist 

of watercress being used as a medicinal plant even in the times of Christ. However, it has been 

cultivated for only 200 years as before it was obtained from the wilds only (Yamaguchi, 1983). 

The young shoots and the leaves are normally eaten raw in salads and used as garnishing but 

they are also cooked in South East Asia and added to soups (Tindall, 1983). Watercress belongs 

to the Cruciferae taxonomic group, and is a very good source of provitamin A, vitamin C, 
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vitamin E, vitamin K, thiamin, riboflavin, vitamin B6, calcium, magnesium, phosphorus, 

potassium and manganese (Nutrition Data, 2008). Also, watercress is known to be rich in 

isothiocyanates (the product of glucosinolates hydrolysis) and is believed to be an effective agent 

in reducing cancer risk in humans by reducing lymphocyte DNA damage (Boyd et al., 2006; Gill 

et al., 2007). In the same way, these compounds are known to inhibit Phase I enzymes, which are 

responsible for activating many carcinogens in animals, and induce phase II enzymes, which are 

associated with excretion of carcinogens (Rose et al., 2000).  

 Many production variables have been found to have an effect on the concentration of 

phytochemicals in watercress. For example, It has been found that the concentration of these 

compounds can be manipulated by varying the photoperiod, temperature, and light quality of the 

light source therefore increase the health benefits and overall quality of watercress (Engelen-

Eigels et al., 2006). Stage of harvest also has an effect on the concentration of nutritive 

components in watercress. Palaniswamy et al. (2003) evaluated the concentration of PEITC 

(Phenethyl isothiocyante, a secondary metabolite with anti-cancer properties product of the 

hydrolysis of gluconasturtiin), and vitamin C (ascorbic acid) on watercress leaves at different 

stages of maturity. Those authors found that PEITC increased almost 3 times at 60 days after 

transplant while ascorbic acid had a peak concentration at 40 days to decrease at 60 days after 

transplant to an amount of almost half compared to the control samples (at 0 days after 

transplant). Finally, fertilization has also shown to have an effect on the concentration of 

chemicals in watercress. Kopsell et al. (2007) found that the variation of concentration of both 

nitrogen (N) and sulfur (S) during fertilization altered the final amount of several phytochemicals 

present in watercress leaves such as gluconapin, glucobrassicin, 4-methoxyglucobrassicin, and 

gluconasturiin as well as carotenoid and chlorophyll pigment accumulation. 

Endive (Cichorium endivia) 

Cultivated in Egypt over 2000 years ago, Endive has spread around the world and today it 

is cultivated mainly in the Caribbean area, the Philippines, Central and West Africa (Tindall, 

1983). Endive belongs to the Compositae family, the same as lettuce, and is very popular in 

Europe and is increasing in popularity in the United States. 
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There are two types of endive known as endive and chicory. Both types differ from each 

other in both appearance and use (Table 1.9), and nutritional content (Table 1.10). Endives also 

contain moderate levels of certain minerals such as phosphorous, potassium, magnesium, iron, 

zinc, cooper, and manganese (Peirce, 1987; Nutrition Data, 2008).  

Endives have been researched for their flavonoid content; a compound with protective 

benefits against certain chronic diseases especially due to their antioxidant capabilities (DuPont 

et al., 2000).   

 

Table 1.9. Appearance and use of the two cultivars of Endive 
Type   Varieties  Characteristics 
I. Endive Escarole  A. Leaves broad, coarse, and crumbled; plant 

   medium large, deep-hearted; inner leaves well 
    blanched. 
 
 Curly Endive  B. Narrow leaf; leaf margins curled and deeply cut;  
    plant broad in diameter, with creamy inner leaves. 

   
II. Chicory    A. Leaves used as a salad or green, or for forcing.  
 
          Radichetta 1. Green type: leaves dark green, narrow and  
    Notched; petiole and leaf harvested for potherb.  
          Witloof, 
          Belgian endive  2. Forcing type: resembles Cos lettuce, but smaller; 
    leaves, narrow on broad stalks; may be used for  
    Salads; roots are enlarged as in Magdebourg  
    chicory; forcing produces tight, blanched heads.  
 Magdebourg  
 chicory  B. Roots enlarged, may be ground for use as coffee 
    adulterant or substitute; leaves resemble dandelion 
    and can be used in salad.  
Source: Peirce, 1987 
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Table 1.10. Nutritional comparison between endive cultivars and lettucea 
Crop     Water (%)      Protein (g)       Vitamin A     Vitamin C         Ca (mg)  

                             (IU)b                    (mg)c    
 Witloof 
     Chicory 95  1.0  Trace  --  18 
 Endive 
     Curly 93  1.7  3,300  10  81 
 Endive 
      Escarole na  na  14,000  100  na 
 Lettuced 96  0.9  330  6  20 
Source: Peirce, 1987 
a data per 100g sample 
b 1 IU = 0.03 μg vitamin A alcohol 
c Ascorbic acid. 
d Crisphead type 
na = Not available 
 

Regarding the flavonoid content, it is important to know that endive and lettuce do not 

have as high a flavonoid concentration compared to products such as onion, broccoli or green 

beans. However, because endive and lettuce are consumed in such large amounts, their role in 

providing these nutrients becomes significant (DuPont et al., 2000). Specifically, endive is 

considered a dietary source of the flavonoid kaempferol-3-glucuronide and its absorption 

through the digestive tract has been studied (DuPont et al., 2004). Those researchers found that 

kaempferol-3-glucuronide from endive soup was absorbed at the latter part of the small intestine.  

 Lastly, the volatile constituents of endive have also been studied by Götz-Schmidt and 

Schreier (1986). Those authors identified 119 volatiles and found that C6 aldehydes comprised 

about 70% of the total amount of volatiles found in endive. 

 Radicchio (Chicorium intybus) is an Italian leafy vegetable related to chicory. It has a 

rich maroon color and a characteristic peppery flavor and bitter taste. Both radicchio and endive 

have shown an important concentration of phenolic compounds even at prolonged stages of shelf 

life (Di Venere et al., 2005).  

Lettuce (Lactuca sativa) 

Lettuce is native to Europe and Asia. It is not especially rich in vitamins and minerals 

(ranks 26th among major vegetables) but because it is consumed in large amounts it actually 

ranks as the 4th most important crop nutritionally (Peirce, 1987). Among the different types of 
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lettuce, Romaine and leaf are the ones with higher amounts of vitamin A and C (Table 1.11) 

(Peirce, 1987).   

 

Table 1.11. Nutritional comparison among four varieties of lettucea 
Crop           Vitamin A (IU)b    Vitamin C (mg)c         Ca (mg)   

 Crisphead (Iceberg)  330   6   20 
 Butterhead (Boston)  970   8   35 
 Romaine (Cos)  1,900   18   68 
 Leaf    1,900   18   68 
Source: Peirce, 1987 
a data per 100g sample 
b 1 IU = 0.03 μg vitamin A alcohol 
c Ascorbic acid. 

 

As with other leafy vegetables, lettuce is also an important source of antioxidant 

compounds which offer health benefits against chronic diseases such as cancer (Nicolle et al., 

2004). Other than vitamin C, polyphenols (such as flavonols and anthocyanins) increase the 

antioxidant activity in lettuce (Llorach et al., 2008). Caffeic acid derivatives are the main 

polyphenols in green varieties of lettuce while flavonols were found mostly in red varieties and 

escarole (Llorach et al., 2008). The same study reports that anthocyanins were only found in red 

varieties of lettuce. Overall, red varieties showed higher concentrations of flavonols, caffeic acid, 

and vitamin C compared to green varieties of lettuce which translates in a higher antioxidant 

activity for the red-leaved varieties (Llorach et al., 2008; Liu et al., 2007). Flavonoid content has 

also been found to vary among different varieties of lettuce. Specifically, the content of 

conjugated quercetin has been found to differ among varieties of lettuce grown in the United 

Kingdom (Crozier et al., 1997). The content of carotenoids and vitamin E also have been found 

to influence positively the antioxidant capacity of lettuce of different varieties increasing their 

health properties (Nicolle et al., 2004). Both the hydrophilic and lipophilic sources of antioxidant 

activity in lettuce vary depending on the part of the plant consumed (Table 1.12) (Cano and 

Arnao, 2005).  
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Table 1.12. Antioxidant activity in different sections of three types of lettuce 
Plant Section        Lettuce variety 

           Iceberg                       Romaine         Baby head 
 HAAa  LAA  HAA  LAA  HAA  LAA  

Stem  7.3abb  1.4a  60.3a  1.7a  4.9a  1.5a 
Inner Leaf 8.8b  1.5a  111.1c  3.6a  9.0b  2.4b 
Medium Leaf 5.6a  3.3b  73.6b  9.6b  --  -- 
Exterior Leaf 6.7a  5.5c  129.7d  15.4c  4.8ª  3.1c 
        
Source: Cano and Arnao, 2005 
a Values are mg Trolox equivalent / 100gr of fresh weight (HAA = Hydrophilic LAA = Lipophilic). 
b If different letters, values are significantly different at the 0.05 level 

 

In 2005, China and the United States were the largest producers of lettuce in the world, 

followed by Spain, Italy, and India (FAO, 2005).  

Cilantro (Coriandrum sativum L.) 

Cilantro or Chinese parsley is the leaf portion of an annual herb that also produces a fruit 

known as coriander which is a very popular spice around the world as well. Coriander has a very 

different aroma compared to cilantro. This culinary herb is native to the eastern Mediterranean 

region and was introduced through cultivation to other regions of the world where is very 

popular today. Cilantro is used predominantly in places such as India, Thailand, China, Mexico, 

and South America (Teuscher, 2006). Cilantro leaves have a very distinctive soapy taste and 

pungent aroma caused by essential oils and volatile aromatics such as alkanals, 2-alkenals, 2-

alkenols, aliphatic aldehydes, alcohols, and nonane (Potter and Fagerson, 1990). However, it has 

been shown that the chemical profile of the plant changes according to its age and that quality 

and aroma decreases as the plant gets older (Potter, 1996; Kohara et al., 2006). Cilantro is mostly 

used as a fresh product because its characteristic aroma decreases quickly when they are cooked 

(Creasy, 2000). In the same way, this plant has a very limited shelf life because its characteristic 

aroma fades rather fast after its essential oils have been exposed to air (Creasy, 2000). The 

essential oils of coriander are used by the spirits industry as a flavor component of aperitifs and 

liqueurs and by the perfume industry as a raw material for the production of linalool (Teuscher, 

2006). Cilantro is a very good source of dietary fiber, vitamin A and vitamin C (Nutrition Data, 

2008).             
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Parsley (Petroselinum crispum) 

Parsley originated in Southwestern Europe and Western Asia. It has been known in this 

area for about 2,000 years were it was cultivated by Romans and Greeks mostly as a medicinal 

plant and for religious purposes (Teuscher, 2006). In the United States, it is produced 

commercially mostly in Texas, California, New Jersey, Florida, and New York. Parsley can be 

used as both a salad ingredient and for flavoring and garnishing (Peirce, 1987). Parsley is also 

known for its diuretic action and for aiding digestion by promoting secretion of bile and gastric 

juices (Teuscher, 2006). Parsley is also an excellent source of vitamin A, vitamin C, protein, and 

calcium, and has important amounts of potassium, iron, sodium, and phosphorus (Peirce, 1987; 

Teuscher, 2006).  

As with other culinary herbs, parsley is known for having high antioxidant activity and 

antimicrobial properties that can aid in preventing chronic diseases in humans, and at the same 

time, can help prevent food spoilage (Wong and Kitts, 2006). These characteristics are inherent 

to parsley due to the presence of secondary metabolites which at the same time provide parsley 

with a distinctive pungent aroma when released (Masanetz and Grosch, 1998).  

The essential oil of parsley is constituted mainly by the phenyl propane derivatives 

myristicin and apiol (Teuscher, 2006; Masanetz and Grosch, 1998). The predominating 

compound, myristicin, has shown to be of potential use as a cancer chemopreventive agent 

(Zheng et al., 1992).  

Shelf Life of Vegetables 

Leafy greens are perishable mostly due to mechanical damage during post harvest 

handling (Mahmud et al., 1999). Some of the most important defects are yellowing (Lu, 2007) 

caused by degradation of the chlorophyll, and water-loss, which is increased by the high surface 

area to volume ratio (Burton, 1982). These factors are related to each other and are increased 

when not refrigerated (Lazan et al., 1987). Other defects of prolonged shelf life may be the loss 

of nutrients such as ascorbic acid (Vitamin C), which is accelerated by water loss (Nwufo, 1994) 

and high temperatures (Table 1.13) (Lazan et al., 1987). Other nutrients such as phenolic acids 

and flavonoids may be affected during storage. However, this variation is highly dependant on 

the type and variety of the plant (Amarowicz, 2009). For example, DuPont et al. (2000) reported 

that storing endive and lettuce in the dark at 1°C and 98% humidity resulted in 7 – 46% losses of 

22  



 

flavonol glycosides after 7 days of storage. Lower temperatures decrease the respiration rate of 

vegetables, hence increasing the shelf life (Geronimo and Beevers, 1964). Other than refrigerated 

storage, other techniques to increase shelf life of minimally processed vegetables are washing 

with chlorinated water and modified atmosphere packaging (Wiley, 1994; Delaquis et al., 2000). 

In addition, innovative techniques such as gamma irradiation of the vegetables and treating the 

leaves with natural essential oils have been studied as ways of increasing shelf life of vegetables 

(Prakash et al., 2000; Ponce et al., 2004).    

It also has been suggested that organic farming increases the shelf life of leafy vegetables 

because it causes the nitrate contents to decrease in the leaf (Rembialkowska, 2007; Bourn and 

Prescott, 2002). These authors explain that this is likely due to the lower amounts of nitrogen 

used in organic fertilization which will generate less nitrogen available for the plant to absorb.  

 

 Table 1.13. Effect of storage on vitamin C (ascorbic acid) and total weigh of selected 
vegetables 

Vegetable         TAA at harvest         TAA after storagea   % Weight lossb 
Kohlrabi  60.0 ± 5.68  65.4 ± 1.79   0.73c 
Collard  136.0 ± 1.47  114.5 ± 6.14   2.26c 
Swiss Chard  30.6 ± 2.32  37.5 ± 2.41   3.47c 
Kale   146.5 ± 7.97  103.0 ± 1.00   2.67 
Cabbage  63.4 ± 3.80  59.2 ± 0.60   6.06 
Squash   41.0 ± 1.00  21.1 ± 1.11   8.08   
Source: McCombs, 1957 
a TAA = Total Ascorbic acid (mg/100g) after 5 days of storage at 55°C 
b Vegetables stored in slowly circulating air with relative humidity of 75 – 80% at 55°C for 6 days.  
c Stored in perfored polyethylene bags at 55°C for 4 days (kohlrabi and Chard) and 6 days (collard).  
 
 

The shelf life of vegetables has been studied based on two aspects: sensory characteristics 

(color, flavor, and turgidity) and microbial population count. Some methods may increase shelf 

life based on one aspect but may not affect the other. For example, a study by Ponce et al. (2004) 

studied the effect of treating leafy vegetables with natural essential oils. Those authors found that 

essential oils from eucalyptus, tea tree, and clove are successful in controlling the populations of 

different microbial groups but do not extend shelf life of vegetables from the sensory stand point.   

Some studies have focused on assessing the shelf life of vegetables based on sensory 

characteristics. Able et al. (2005) estimated that the shelf life of detached pac choi leaves 

(Chinese cabbage) is ~27 days when stored at 2°C, ~8 days when stored at 10°C, and ~3 days 

when stored at 20°C. The end of shelf life was estimated by measuring yellowing, rot, and 
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damage. Aranea et al. (2008) estimated that after 11 days, lettuce would be rejected by 25% of 

the consumers and that 50% of the consumers would reject the lettuce after 15 days of storage. 

Those authors explored the use of survival analysis as an efficient tool to asses the shelf life of 

different products.  

 Factors Affecting the Final Quality of Crops: Organic Production of Fruits 

and Vegetables 

As described by Zhao et al. (2006), foods are organic when have been produced by more 

“environmentally friendly” conditions. Crop rotation, cover crops, and the use of natural 

products (such as natural fertilizes and pesticides) are used to enhance or maintain long-term soil 

fertility, to minimize all forms of pollution, to avoid the use of synthetic fertilizers and 

pesticides, to maintain genetic diversity of the production system, to consider social and 

economic impact, and to produce high quality products (Winter and Davis, 2006; Bourn and 

Prescott, 2002). Synthetic substances are prohibited in organic farming, unless the substance is 

included in the “National List of Allowed and Prohibited Substances.” Emphasis is directed to 

the use of farmyard manures, crop residues, or composts made of animal manure and plant 

residues to meet plant nutritional needs (Wang et al., 2008). Forbidden substances cannot be 

used in a land intended for organic production at least 3 years before the harvest of an organic 

crop (Winter and Davis, 2006). 

Several studies have been conducted on the effect that organic fertilization can have on 

chemical, nutritional, and sensory characteristics of crops (Table 1.14). Results at this point seem 

inconsistent and show no clear trends of the effects that organic fertilization have on the sensory 

characteristics of crops (Bourn and Prescott, 2002) or nutritional composition (Zhao et al., 2006). 

Some studies suggest that crops produced using organic practices may be potentially richer in 

phenolic compounds and vitamin C (Zhao et al., 2006; Rembiałkowska, 2007), lower in 

pesticide residues, and lower in nitrate content (Woese et al., 1997). However, it has not been 

shown yet if these differences are biologically significant (Winter and Davis, 2006). It has been 

suggested that the inconsistencies of results is because the differences between organic and 

conventional practices are product specific and that this should be looked in a case-by-case basis 

(Fillion and Arazi, 2002). With no doubt, the study of organic fertilization effects is difficult, and 

is complicated even further by the large number of factors that also influence the characteristics 
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of crops. These factors include genotype, plant tissue, fruit size, stage of development, ripening, 

diseases and pests, soil condition, irrigation, and pesticide application (Zhao et al., 2006). This is 

the reason why well managed and well controlled cultivation tests are viewed by scientists as the 

most accurate way of studying the effects of organic farming practices because that way, 

researchers can control many of the factors that may be affecting the crops final characteristics 

(Woese et al., 1997).      

 

   Table 1.14. Literature related to the effect of organic fertilization on the chemical, 
nutritional, or sensory characteristics of crops 

Product Object Studied Conclusions    Reference  
Apples  Flavor and texture No consistent quality or sensory DeEll & Prange, 1992 
     differences. 
 
Carrots  Flavor and texture Conventional system produced Haglund et al., 1999 
     carrots were higher in carrot-taste 
     and less bitter than organic. 
 
Swiss Chard Instrumental,   No differences at initial time point. Moreira et al., 2003 
  sensory, and shelf Organic chard outlasted the 
  life   conventional chard 
 
Banana Flavor   No differences.   Caussiol & Joyce, 2004 
 

Tomato Vitamin C,   Organic tomatoes were higher in  Caris-Veyrat et al., 2004 
  carotenoids, and  vitamin C, carotenoids, and  
  polyphenols.  ployphenols compared to the 
     conventional tomatoes. 
 
Lettuce,  Phenolics  No differences in lettuce  Young et al., 2005 
collards, and    and collards. Phenolics higher 
pac choi    in organic pac choi. 
 
Grapes  Polyphenol Oxidase Higher content in organic grapes Nuñez-Delicado et al., 2005 
 

Lettuce Phenolics  No significant differences  Zhao et al., 2007a. 
 
Vegetables Polyamines,  Usually higher contents of  Pereira-Lima et al., 2008 
  phenols, and  polyamines and total phenols 
  flavonoids  in organic vegetables 
 

Swiss Chard Instrumental quality No significant effect of organic Daiss et al., 2008 
  parameters  practice in quality of crop 

 

25  



 

 
In addition to fertilizer type, the amount of fertilizer can also have an effect on the 

chemical profile and sensory characteristics of vegetables. This is because by manipulating 

nutrient availability, the amount of nitrogen the plant will absorb is modified and can affect its 

flavor, size of the plants and/or fruit, and shelf life (Mattheis and Fellman, 1999; 

Rembiałkowska, 2007). Light exposure is another important factor affecting quality and sensory 

characteristics of crops (Mattheis and Fellman, 1999). For example, a study conducted by 

Antonious et al. (1996) suggested that light reflecting from mulches of different colors into 

growing turnip plants, affected both chemical content and certain sensory characteristics.  

Sensory Analysis of Vegetables 

Vegetable growing trends such as organic farming have sparked interest in the better 

understanding of flavor of vegetables. Flavor lexicons are widely used to describe and compare 

products within a category (Drake and Civille, 2003). Lexicons have been used in the past to 

describe sensory properties of a wide range of different products including natural cheeses 

(Heisserer and Chambers, 1993), green tea (Lee and Chambers, 2007), floral honey (Galán-

Soldevilla et al., 2005), frozen vegetable soybeans (Krinsky et al., 2006), and soymilks (Day 

N’Kouka et al., 2004). In relation to lexicon development to specifically describe products with 

green characteristics such as vegetable products, a very important work is the one completed by 

Hongsoongnern and Chambers (2008a). Those authors developed a lexicon to describe green 

odor and flavor. They produced fourteen terms which included overall green, green unripe, green 

peapod, green grassy/leafy, green viney, green fruity, musty/earthy, floral, piney, overall sweet, 

pungent, and astringent. Those authors also evaluated aroma characteristics of chemicals 

associated with green. Lee and Chambers (2007) developed another lexicon, this time to describe 

flavor characteristics of brewed green tea including thirty-one descriptive terms such as green, 

parsley, spinach, citrus, and astringent. Krinsky et al. (2006) developed a lexicon to describe 

flavor of frozen soybeans. The lexicon was composed of fourteen terms and some of the 

descriptors included were green complex, sulfur, and astringent. Another study used terms such 

as crispness, pungent, and the basic tastes salty, acid, bitter, and umami to describe commercial 

samples of potherb mustard samples and relate these characteristics to their chemical content 

(Zhao et al., 2007b). The sensory characteristics of hearts of palm (palmito), a vegetable popular 

in Central and South America, was studied by Lawless et al. (1993). Those authors used 
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appearance attributes (visible fibers, core color, outer color, core/outer, and appearance of 

layers); texture attributes (springy, crunchy, core firmness, firmness, fibrousness, and flakiness); 

taste attributes (sour, bitter, salty, sweet, and umami); and flavor attributes (earthy flavor/aroma, 

vegetal, briny flavor/aroma, and umami/brothy flavor). Another study by Lyon et al. (1992) 

evaluated the flavor, aroma, and mouth feel sensations of persimmons, a popular crop in Japan, 

Asia, and South America. Those authors used a lexicon of seventeen terms including aroma 

(green/grassy, nutty, chlorine, earthy, fall vegetable complex, fresh cut corn, sugar cane, and 

floral); flavor (fall vegetable, raw vegetable, nutty, melon mango, sweet, sour, and bitter); and 

mouth sensations (astringent and mouth coating).   

The presence of “green” flavors in foods may be beneficial to human health as they may 

represent “sensory cues” to the presence of free fatty acids which are considered essential to 

human diet (Goff and Klee, 2006). On the other hand, having a better understanding of flavor 

characteristics of vegetable products may be useful for producers and scientists who want to 

know how the different production variables and storage conditions affect the flavor of 

vegetables. For example, organic farming, as a trend, has increased importance on the research of 

the flavor of fruits and vegetables as people want to know if these techniques provide a product 

with different flavor characteristics in comparison to conventional farming. Wszelaki et al. 

(2005) conducted research on soybeans and only used a general “taste” term for comparison. 

Haglund et al. (1999) used more descriptive terms such as hardness, crunchiness, juiciness, 

sweetness, bitterness, carrot-taste, and aftertaste to compare organically and conventionally 

grown carrots. DeEll and Prange (1992) used terms such as sweetness, tartness, off-flavor, 

firmness, and juiciness to compare organic and conventional apples. A single study by Basker 

(1992) also compared a general “taste quality” term to evaluate organically and conventionally 

grown vegetables such as tomatoes, carrots, orange juice, spinach, bananas, sweet corn, grapes, 

and mangoes.  

Other genetic, environmental, cultural, and developmental factors may as well affect the 

flavor of vegetables (Mattheis and Fellman, 1999). The flavor of leafy vegetables can also be 

altered during storage mainly due to chlorophyll degradation and water loss (Agüero et al., 

2008), which have an effect on the consumer’s purchase decision (Ares et al., 2007).  

Instrumental testing has been widely used to predict quality of vegetable products. 

However, interactions between different compounds will make conclusions about impact in 
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flavor difficult (Mattheis and Fellman, 1999). It is here were sensory analysis can make a 

meaningful contribution to better understanding the flavor of vegetable products and the effect of 

preharvest factors. 

Chemical and Sensory Analysis: Determining quality of vegetables 

A product of good quality is a product that has positive and “expected” sensory 

characteristics. In plants, these sensory characteristics are affected by chemical composition. 

Chemical composition in plants is defined by the presence of many volatile and non-volatile 

compounds generated from primary or secondary metabolites (Goff and Klee, 2006).  

The role of flavor chemistry is to identify and sometimes quantify these compounds to 

relate their occurrence to flavor characteristics. This science is of special importance to fresh 

produce because of the large number of factors that can affect chemical concentration and 

therefore, final sensory characteristics. These factors are genotype, stage of development 

(ripening), diseases, soil conditions, irrigation, pesticides, location, climate, and management 

practices among others (Zhao et al., 2006). It is by understanding the effect of these factors on 

chemical composition that researchers will be able to know their effect on sensory characteristics 

and final produce quality.  

Additionally, there is a correlation between human health and volatiles (Goff and Klee, 

2006). For example, the most abundant volatiles in tomatoes are derived from fatty acids which 

are classified as “essential” to human diet. These volatiles also provide tomatoes with “typical” 

flavors such as “tomato,” “green,” or “grassy” (Zhao et al., 2006).  

In the late 1980’s, approximately 15,000 different compounds were correlated with 

sensory characteristics (Teranishi et al., 1999). This is thirty times more than the number of 

compounds in the 50’s and possibly less than what we may have right now. This demonstrates 

the importance and the attention this area has received as better methodologies and more 

sophisticated technologies are available these days. 

However, measuring final sensory characteristics starting from chemical composition is 

not simple. There are many challenges in this science due to different thresholds and the effect of 

the food matrix (Drake and Civille, 2003).  
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When flavor chemistry data and analytical sensory data are collected simultaneously, 

results can be linked using multivariate analysis methods. Many publications have used different 

statistical techniques to find relationships between chemistry and sensory data. A very 

comprehensive publication exists that explores the use of multivariate statistics in understanding 

wine flavor (Noble and Ebeler, 2002). Those authors discuss and compare the use of three 

techniques that aid in modeling sensory and volatile data. These are principal component 

analysis of instrumental data (PCA-IV), generalized procrustes analysis (GPA) and partial least 

squares regression (PLS). Authors conclude that all three methods of modeling provide “fairly 

similar results”. This explanation is an oversimplification of the process and the results discussed 

by the authors. Working with these statistic methods involve many complex steps and some 

differences may still be found between methods depending on the final use of the results. 

Several research groups exclusively use PLS regression as their selected method to find 

relations between flavor research and sensory data. Some of these studied the effect of 

processing techniques on the volatile content and sensory properties of navel orange juices 

(Baxter et al., 2005), durian (Voon et al., 2007), and rye (Heiniö et al., 2003). Correlation, 

cluster analysis, and multidimensional scaling (MDS) techniques have also been used on virgin 

olive oil (Morales et al., 1995). In addition, the authors used regression techniques to “predict” 

consumer acceptability from volatile data. It is important to understand that multivariate 

techniques do not determine if compounds related to certain flavors are actually responsible for 

those flavors. However, they offer substantial evidence for future work (Noble and Ebeler, 

2002).  

Prior to the use of these relation techniques, some other univariate and multivariate 

methods can be used on the individual sets of data with different purposes. Analysis of Variance 

(ANOVA) can be used to asses for significant differences between samples (volatile data would 

need to be quantified). If the interest lies on finding what specific differences exist between 

specific sets of samples, pairwise comparison techniques such as Tuckey’s Honestly Significant 

Differences (HSD) can be used. All these techniques were used by the authors discussing the 

relationship between sensory perception and volatile content in rye (Heiniö et al., 2003). Another 

method that can be used to asses for significant differences and the nature of these differences 

between samples is the Least Significant Different (LSD) method. 

29  



 

Principal component analysis (PCA) may also be used on the individual sets of data if the 

researcher wants to reduce the number of sensory attributes or volatiles into fewer factors or 

components which group variables of similar characteristics. 

It is evident that a wide range of different techniques can be used to relate flavor 

chemistry data with sensory data. The selection of specific methods will be in function to the 

objectives of the study and the questions that need to be addressed. In the specific case of 

determining produce quality, where the chemical composition is greatly variable and reflective 

upon final sensory characteristics and quality perception, having flavor chemistry data available 

may be of great help in understanding quality differences.  
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CHAPTER 2 - Materials and Methods 

Part 1: Lexicon development for fresh leafy vegetables 

Fresh Leafy Vegetable Samples 

Samples of leafy vegetables were purchased from stores in Manhattan, Kansas and 

Kansas City, Kansas/Missouri one to three days prior to  testing. Only fresh leafy vegetables (i.e. 

not cooked) available in the United States and potentially available in local grocery stores or 

supermarkets were included in this study (Table 2.1). No attempt was made to select specific 

variations in harvest, shipping, and storage conditions among the vegetables selected. However, 

the range of products evaluated has inherent differences in those areas. After purchase, the 

vegetables were immediately stored in a walk-in refrigerator at 4ºC and 50% relative humidity 

until ready for testing. To maintain moisture, vegetables were sprayed with tap water once daily 

until ready for testing.  

On the day of testing, samples were retrieved from the refrigerator, rinsed using tap 

water, and excess water was eliminated using a salad spinner (Oxo International, Ltd., New 

York, NY). Random leaves of similar visual characteristics and with no deterioration were used 

for evaluation.  Samples were then served to the panelists monadically on 6” foam plates 

identified with a three-digit code to reduce bias associated with knowing the name of the 

vegetable.  In order to test a consistent sample of each leaf, panelists were instructed to hold the 

sample with both hands, fold the leaf, and bite one time through the middle of the folded leaf. To 

focus the evaluation on the leaf section of the vegetable, stems and large ribs were cut from the 

vegetable.  For small leaves, panelists were asked to sample 1 – 3 whole leaves depending on 

leaf size. Because of different leaf sizes, amounts served to panelists were different across 

vegetable types. For example, panelists received three sprigs of small leaf vegetables such as 

parsley, cilantro, and watercress; three leaves of medium leaf plants such as spinach or curly 

endive; and half a leaf cut lengthwise through the middle (not including the stem or rib sections) 

was served of larger leaves such as collards or romaine lettuce. 
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Table 2.1. Samples used to develop a lexicon to describe flavor characteristics of fresh leafy 
vegetables 
Common name Family* Genera / Species* Group* 
Beet Greens (Organic) Chenopodiaceae Beta vulgaris . 
Beet Greens, Golden (Organic) Chenopodiaceae Beta vulgaris . 
Swiss chard, Green Chenopodiaceae Beta vulgaris Cicla 
Swiss chard, Red (Organic) Chenopodiaceae Beta vulgaris Cicla 
Spinach Chenopodiaceae Spinacia oleracea . 

 
Endive, Belgian Compositae Cichorium endiva . 
Endive, Curly Compositae Cichorium endiva . 
Radicchio Compositae Cichorium intybus . 
Lettuce, Butterhead / Boston / Bibb Compositae Lactuca sativa . 
Lettuce, Crisphead / Iceberg Compositae Lactuca sativa . 
Lettuce, Green Leaf Compositae Lactuca sativa . 
Lettuce, Red Leaf Compositae Lactuca sativa . 
Lettuce, Romaine / Cos Compositae Lactuca sativa . 

 
Mustard Greens, Curly Cruciferae Brassica campestris Perviridis 
Turnip Greens Cruciferae Brassica campestris Rapifera 
Pak Choy Cruciferae Brassica rapa Chinensis 
Pak Choy, Baby Cruciferae Brassica rapa Chinensis 
Cabbage, Napa Cruciferae Brassica rapa Capitata 
Cabbage, Green Cruciferae Brassica oleracea Capitata 
Cabbage, Red Cruciferae Brassica oleracea Capitata 
Cabbage, Savoy Cruciferae Brassica oleracea Capitata 
Collard Greens Cruciferae Brassica oleracea Acephala 
Kale Cruciferae Brassica oleracea Acephala 
Kale, Lacinato Cruciferae Brassica oleracea Acephala 
Kale, Red Cruciferae Brassica oleracea Acephala 
Arugula Cruciferae Eruca sativa . 
Watercress Cruciferae Rorippa nasturtiumaquaticum . 

 
Cilantro Umbelliferae Coriandrum sativum . 
Parsley, Curly Umbelliferae Petroselinum crispum . 
Parsley, Italian Umbelliferae Petroselinum crispum . 
*Source: Yamaguchi, 1983 

Panelists 

Six highly trained panelists from the Sensory Analysis Center at Kansas State University 

(Manhattan, KS., U.S.A.) participated in this study. The panelists had completed more than 120 

hours of descriptive training, average more than 2000 hours of testing experience, and had prior 

experience testing vegetables and vegetable products. 
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Evaluation Procedures 

A method adapted from the flavor profile method (Caul, 1957; Keane 1992) was used.  

The method is a panel consensus method whereby the panelists must agree on attributes, 

definitions, and key reference products.  Our adaptation uses a 0-15 point scale divided in 0.5 

point increments, 0 meaning “none” and 15 meaning “extremely high”. This methodology has 

been previously used to describe a wide variety of products such as cheese (Heisserer and 

Chambers, 1993; Rètiveau et al., 2005), black walnut syrup (Matta et al., 2005), rose apples 

(Vara-Ubol et al., 2006) and tomatoes (Hongsoongnern and Chambers, 2008b).  

During lexicon development, panelists were asked to review previously developed terms 

used to describe “green” aroma characteristics (Hongsoongnern and Chambers, 2008a) and green 

tea (Lee and Chambers, 2007).  Those beginning lexicons were used to help start the creation of 

a lexicon to describe flavor characteristics of a wide variety of fresh leafy vegetables.  

Discussion of the terms helped ensure the use of terms that are discriminative, descriptive, and 

nonredundant; key characteristics of a good flavor lexicon (Drake and Civille, 2003). When new 

terms were needed, panelists were also asked to discuss terminology, select an appropriate term, 

develop a descriptive definition, and to assign one or more reference materials that could be 

helpful in understanding the attribute and evaluating intensity.  Lexicon development sessions 

were 90-minutes long and up to six samples were evaluated in each session depending on the 

complexity of flavor, carry over, and if new terms needed to be discussed, defined, and 

referenced.  Products were reviewed multiple times during the lexicon development phase of the 

study.   

Complete profiles were generated for each of the fresh leafy vegetables used during 

lexicon development.  Using a similar evaluation procedure, samples were evaluated once more 

and a consensus profile was developed.  At that point, a new sample was evaluated until the set 

of 30 samples was complete. No actions were taken to mask appearance differences between 

samples. 

Analysis 

Statistical analysis is required to clarify attribute relationships in the lexicon development 

process (Drake and Civille, 2003). Principal component analysis (PCA) was used on the 

consensus profiles to assess the relationships among terms. PCA was conducted on the 
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correlation matrix and the data was orthogonally rotated to facilitate interpretation of the results. 

This analysis was performed by SAS® (2002, version 9.1.3; SAS Institute, Cary, NC). 

Part 2: Effect of organic production and fertilizer variables on the sensory 

properties of pac choi and tomato  

Samples 

Trials were conducted at the K-State Horticulture Research and Extension Center, Olathe, 

Kansas, on experimental plots established in 2002 for comparison of crops grown under organic 

and conventional production systems in high tunnels (unheated, passively ventilated 

greenhouses) and open field plots (Zhao et al., 2007a).  The soil was a Kennebec silt loam. Six 

9.8 m x 6.1 m high tunnels with 1.5m sidewalls (Stuppy, North Kansas City, MO) and six 

adjacent 9.8 m x 6.1 m field plots were used for this study. High tunnels were covered with 

single layer 6-mil (0.153mm) K-50 polyethylene (Klerk’s Plastic Product Manufacturing, Inc., 

Richburg, SC).  At establishment of the experimental plots, the six high tunnels were divided 

into three groups (blocks) and the two high tunnels in each block were randomly assigned for 

long-term conventional or organic management treatments.  A similar set-up was used in the 

field plots. Organic plots were managed in compliance with USDA National Organic Program 

standards, and were inspected and certified in 2003, 2006, 2007 and 2008.  

For this study, beginning in 2007, each high tunnel or open field plot was subdivided into 

three 3.2 m x 6.1 m plots to which one of three fertilizer levels were assigned (high, low, and no 

fertilizer) following a latin square design to avoid bias due to position effects in the high tunnels.  

Fertilizer rates were determined based on soil analysis at the beginning of the study in 2007, and 

recommendations for vegetable crops in Kansas (Marr et al., 1998), with compost applied to 

organic plots and synthetic fertilizer applied to conventional plots.  Compost application rates 

were based on the assumption that 50% of the nitrogen from compost would be available to 

plants during the growing season, while 100% would be available from conventional fertilizers 

(Warman and Havard, 1997).  Low and high fertility plots were fertilized with equal amounts of 

compost or synthetic fertilizer at the beginning of the growing season, and high fertility plots 

received additional fertilization during the growing season as described below.  
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Pac choi (Brassica rapa L. chinensis ‘Mei Qing Choi’) (Johnny’s Selected Seed, Albion, 

ME, U.S.A.) and tomato (Lycopersicon esculentum ‘Bush Celebrity’) (Totally Tomatoes, 

Randolph, WI, U.S.A.) were grown in one half of each open field or high tunnel plot (6.8 m x 3 

m) in 2007 and 2008, with a rotation between pac choi and tomato plots each year.  In our 

experimental system, a spring and a fall crop of pac choi was grown each year, while a single 

crop of tomato was grown.  Between the spring and fall pac choi crops, plots were seeded with a 

summer cover crop of buckwheat (Fagopyrum sagittatum) (Albert Lea Seed, Albert Lea, MN, 

U.S.A.) at a rate of 134 kg/ha.  In the late fall, all plots were seeded with a cover crop of annual 

rye (Secale cereale) (Albert Lea Seed, Albert Lea, MN, U.S.A.) at a rate of 229 kg/ha.  

Conventional high and low fertility plots were fertilized with Jack’s Professional Peat-lite 

N-P2O5-K2O 20-10-20 (Allentown, PA, U.S.A.), at a rate of 98 kg/ha. Organic plots received 

MicroLeverage compost N-P2O5-K2O 0.6-0.8-0.5 (Hughesville, MO, U.S.A) at a rate of 197 

kg/ha.  Starting 2 weeks after planting, high fertility plots received additional fertilization at a 

rate of 7.2 kg/ha.  Fertilizer used on organic plots was fish hydrolyzate N-P2O5-K2O 2.23-4.35-

0.3 (Neptune’s Harvest, Gloucester, MA, U.S.A) and conventional plots received calcium nitrate 

and potassium nitrate at a rate calculated to apply an amount of calcium equivalent to that 

present in the fish hydrolyzate.  The tomato crop received 6 weekly applications, for a total of 43 

kg/ha, and the spring and fall pac choi crops each received three such applications.   

Pac choi and tomato transplants were started in a greenhouse in Sunshine Mix Special 

Blend E6340 (SunGro Horticulture, Bellevue, WA) supplemented with MicroLeverge compost.  

The pac choi trial was planted on April 1 and harvested on May 5.  The tomato trial was planted 

on May 5 and harvested on July 18. All testing occurred in 2008.   

Sample Preparation 

Pac choi 

 Plants were harvested one to three days before testing. After harvest, plants were 

immediately rinsed using cold tap water to remove excess dirt and stored in a refrigerated 

container for transport to the Kansas State University campus located in Manhattan, Kansas. 

Once samples arrived, they were moved to a walk-in refrigerator for storage at 4ºC until testing. 

The plants were sprayed daily with tap water to maintain moisture. The day of testing the plants 

were retrieved from the refrigerator. Random leaves of similar visual characteristics were 
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removed from each stalk (not including the stem) of each treatment, rinsed using distilled water 

and excess water was eliminated using a salad spinner (Oxo International, Ltd., New York, NY). 

Samples were served to the panelists monadically in 6” foam plates identified with a three-digit 

code to eliminate potential panelist bias.  

Tomatoes 

Tomatoes were harvested at the pink stage, three to six days before testing (United States 

Department of Agriculture [USDA], 1975).When harvested, samples were placed in labeled 

boxes for their transportation to the Kansas State University campus located in Manhattan, 

Kansas. Special care was taken when handling the tomatoes to avoid damage because it had been 

suggested that internal bruising may alter the quality and flavor of tomatoes (Moretti et al., 

2002). Once tomatoes arrived, they were organized in trays sorted by treatment and placed on a 

flat surface (no tomato on top of another) to avoid damage. On the day of testing three tomatoes 

at the red stage (USDA, 1975) with similar visual characteristics were selected from each 

treatment. Samples were washed thoroughly using tap water at room temperature and then cut in 

half lengthwise. One half of each tomato was cut in ½-inch wedges and served to the panelists in 

covered, odor-free 3.25 oz. plastic cups. Cups with the samples were labeled with a 3-digit code 

to avoid potential bias. The tomatoes were never refrigerated.   

Panelists 

Six highly trained panelists from the Sensory Analysis Center at Kansas State University 

(Manhattan, Kans., U.S.A.) were selected for this study. The panelists had completed more than 

120 hours of descriptive training, averaging more than 2000 hours of testing experience and had 

prior experience testing vegetables and vegetable products. 

Evaluation Procedure 

Previously developed lexicons were used for this study. The lexicon for pac choi was 

developed by Talavera-Bianchi et al. (2009) to describe the flavor of different leafy vegetables 

and was produced using an adaptation of the flavor profile method (Caul, 1957; Keane 1992) 

which has been used by many studies in the past to describe a variety of products such as cheese 

(Heisserer and Chambers, 1993; Rètiveau et al., 2005), green tea (Lee and Chambers, 2007), 

tomatoes (Hongsoongnern and Chambers, 2008b)  and green flavors (Hongsoongnern and 
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Chambers, 2008a). The lexicon for tomatoes was previously developed by Hongsoongnern and 

Chambers ( 2008b) to describe flavor of fresh and processed tomatoes. Lexicons with definitions 

and references were presented to the panelists in one 90-minute session prior to the start of 

testing so they could become familiar with the terminology, test procedures and samples.   

For testing, panelists were presented with the lexicon and references used during 

orientation. Data were collected using a computerized collection system (Compusense Five 

version 4.4.8, 2002, Guelph, ON, Canada). Intensities for each attribute were recorded using a 0-

15 point scale divided in 0.5 point increments, 0 meaning none and 15 meaning extremely high. 

Panelists evaluated the samples individually and followed a completely randomized block design 

with replication as the blocking factor. Twelve samples of pac choi were evaluated in each of 

three 180-minute sessions. Twelve samples of tomatoes also were evaluated in another set of 

three 180-minutes sessions. Reverse osmosis, deionized, carbon-filtered water and unsalted 

crackers were used to rinse the palate between the samples. A similar procedure has been used in 

the past to evaluate the sensory characteristics of four samples of calcium-biofortified lettuce 

(Park et al., 2009). 

Analysis 

Treatments were organized in a split plot design with production system (i.e. organic vs. 

conventional) as the whole plot and fertilizer amount (i.e. control, low and high) as the sub-plot. 

Analysis of variance (ANOVA) was used to detect significant differences between treatments for 

individual attributes. Principal component analysis (PCA) was used to evaluate relationships 

between treatments and to provide a graphic representation of the results. Cluster analysis (Ward 

method) was used to separate groups of similar sensory characteristics. This analysis was 

computed in SAS® (2002, version 9.1.3; SAS Institute, Cary, NC).  Because of the complexity 

of the design, plots for field vs. high-tunnel production were not randomized and thus a statistical 

comparison of those data is not made. 
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Part 3: Relation between developmental stage, sensory properties, and volatile 

content of organically and conventionally grown pac choi 

Samples 

Trials were conducted at the K-State Horticulture Research and Extension Center, Olathe, 

Kansas, on experimental plots established in 2002 for comparison of crops grown under organic 

and conventional production systems in high tunnels (unheated, passively ventilated 

greenhouses) and open field plots (Zhao et al., 2007a).  The soil was a Kennebec silt loam. Six 

9.8 m x 6.1 m high tunnels with 1.5m sidewalls (Stuppy, North Kansas City, MO) and six 

adjacent 9.8 m x 6.1 m field plots were used for this study. High tunnels were covered with 

single layer 6-mil (0.153mm) K-50 polyethylene (Klerk’s Plastic Product Manufacturing, Inc., 

Richburg, SC).  At establishment of the experimental plots, the six high tunnels were divided 

into three groups (blocks) and the two high tunnels in each block were randomly assigned for 

long-term conventional or organic management treatments.  A similar set-up was used in the 

field plots. Organic plots were managed in compliance with USDA National Organic Program 

standards, and were inspected and certified in 2003, 2006, 2007 and 2008.  

For this study, beginning in 2007, each high tunnel or open field plot was subdivided into 

three 3.2 m x 6.1 m plots to which one of three fertilizer levels were assigned (high, low, and no 

fertilizer) following a latin square design to avoid bias due to position effects in the high tunnels.  

Fertilizer rates were determined based on soil analysis at the beginning of the study in 2007, and 

recommendations for vegetable crops in Kansas (Marr et al., 1998), with compost applied to 

organic plots and synthetic fertilizer applied to conventional plots.  Compost application rates 

were based on the assumption that 50% of the nitrogen from compost would be available to 

plants during the growing season, while 100% would be available from conventional fertilizers 

(Warman and Havard, 1997).  Low and high fertility plots were fertilized with equal amounts of 

compost or synthetic fertilizer at the beginning of the growing season, and high fertility plots 

received additional fertilization during the growing season as described below.  

Pac choi (Brassica rapa L. chinensis ‘Mei Qing Choi’) (Johnny’s Selected Seed, Albion, 

ME, U.S.A.) and tomato (Lycopersicon esculentum ‘Bush Celebrity’) (Totally Tomatoes, 

Randolph, WI, U.S.A.) were grown in one half of each open field or high tunnel plot (6.8 m x 3 

m) in 2007 and 2008, with a rotation between pac choi and tomato plots each year.  In our 
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experimental system, a spring and a fall crop of pac choi was grown each year, while a single 

crop of tomato was grown.  Between the spring and fall pac choi crops, plots were seeded with a 

summer cover crop of buckwheat (Fagopyrum sagittatum) (Albert Lea Seed, Albert Lea, MN, 

U.S.A.) at a rate of 134 kg/ha.  In the late fall, all plots were seeded with a cover crop of annual 

rye (Secale cereale) (Albert Lea Seed, Albert Lea, MN, U.S.A.) at a rate of 229 kg/ha.  

Conventional high and low fertility plots were fertilized with Jack’s Professional Peat-lite 

N-P2O5-K2O 20-10-20 (Allentown, PA, U.S.A.), at a rate of 98 kg/ha. Organic plots received 

MicroLeverage compost N-P2O5-K2O 0.6-0.8-0.5 (Hughesville, MO, U.S.A) at a rate of 197 

kg/ha.  Only pac choi grown in the outside plots with low amounts of fertilizer were considered 

for this specific study. 

Pac choi transplants were started in a greenhouse in Sunshine Mix Special Blend E6340 

(SunGro Horticulture, Bellevue, WA) supplemented with MicroLeverge compost.  Pac choi was 

planted on April 1, 2008 and harvested on April 20 (2.5 weeks old for baby pac choi), May 5 

(4.5 weeks old for optimum growth), and May 19 (6.5 weeks old for overgrown pac choi).  

Sample Preparation 

Sensory analysis 

 Plants were harvested one to three days before testing. After harvest, the plants were 

immediately rinsed using cold tap water to remove excess dirt and stored in a refrigerated 

container for transport to the Kansas State University campus located in Manhattan, KS. Once 

arrived, the samples were moved to a walk-in refrigerator for storage at 4ºC until testing.  The 

plants were sprayed daily with tap water to maintain moisture.  On the day of testing, plants were 

retrieved from the refrigerator. Random leaves of similar visual characteristics were removed 

from each stalk (not including the stem) and rinsed using distilled water. Excess water was 

eliminated with a salad spinner (Oxo International, Ltd., New York, NY). Samples were served 

to the panelists monadically in 6” foam plates identified with a three-digit code to eliminate 

potential panelist bias. The sample amount was dependant on leaf size. For example, for baby 

pac choi (2.5 weeks old plant) one whole sprig comprised of several leaves was served to each 

panelist, 1-2 leaves were served to each panelist when leaves were 4.5 weeks old and  6.5 week 

old.  
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Volatile analysis 

The same day of sensory testing, approximately 5-10 g from leaves of each treatment was 

vacuum sealed and frozen at 80°C for 30 d until volatile analysis. The day of the analysis, 

samples were retrieved from the freezer and thawed at room temperature (22  1°C) for 

approximately 30 min. For solid-phase microextraction (SPME) sampling, 4 g pac choi leaves 

were blended with 200-mL of reverse osmosis, deionized, carbon-filtered water using an electric 

hand blender (Rival, Peoria, IL) for 20 s. The mixture was then filtered through double layered 

cheese cloth. From the filtered solution, 1-mL was transferred to a 10-mL clear headspace vial 

and mixed with 0.2 g of sodium chloride (NaCl). Additionally, 5-μl of 0.2 ppm 1,3 

dichlorobenzene in methanol (internal standard) was added. Glass vials were closed using an 

open-center screw cap with a 1.8 mm silicone/PTFE septum (Varian, Palo Alto, CA).  

Panelists 

Six highly trained panelists from the Sensory Analysis Center at Kansas State University 

(Manhattan, KS, U.S.A.) were used for this study. The panelists had completed more than 120 

hours of descriptive training, average more than 2000 hours of testing experience, and had prior 

experience testing vegetables and vegetable products. 

Experimental procedure 

Sensory analysis 

The lexicon for pac choi was used based on Talavera-Bianchi et al., (2009) to describe 

flavor of different leafy vegetables. A lexicon consisting of twenty-nine terms with definitions 

and references was presented to the panelists prior the start of testing so they could become 

familiar with the terminology, test procedures, and samples. The original lexicon consisted of 

twenty-six flavor and mouth feel attributes. However, three texture attributes were added because 

we believed that this would aid in describing changes in the plant during the maturation process. 

Similar lexicons have been developed and used for other products such as green tea (Lee and 

Chambers, 2007), tomatoes (Hongsoongnern and Chambers, 2008b), ice cream (Thompson et 

al., 2009), and brewed coffee (Seo et al., 2009). 

The day of testing, panelists were presented with the lexicon and references used during 

orientation. Data were collected using a computerized collection system (Compusense Five 
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version 4.4.8, 2002, Guelph, ON, Canada). Intensities for each attribute were recorded using a 0-

15 point scale divided in 0.5 point increments, 0 meaning “none” and 15 meaning “extremely 

high”. Panelists evaluated the samples individually and followed a completely randomized block 

design with the stage of development as the blocking factor. Six samples of pac choi were 

evaluated in each of three 90-minute sessions. Reverse osmosis, deionized, carbon-filtered water 

and unsalted crackers were used to rinse the palate between the samples. A similar procedure has 

been used in the past to evaluate the sensory characteristics of four samples of calcium-

biofortified lettuce (Park et al., 2009).       

  Gas chromatography – mass spectrometry 

Volatile compounds were identified and quantified using a Varian Saturn CP-3800 Gas 

Chromatograph / Mass Spectrometer 2200 (Varian Inc., Walnut Creek, CA). The sample vials 

were equilibrated at 40°C/500 rpm for 10 min. SPME was performed using a StableFlex 

Divinylbenzene / Carboxen / Polydimethylsiloxane 50/30 μm fiber (Sigma Aldrich, Saint Louis, 

MO) for 20 min at 40°C. The agitation during extraction was of 250 rpm. The extracted 

compounds were thermally desorbed at 250°C for 3 min in the front injection port of the gas 

chromatograph. After the injection, the fiber was baked at 270°C for 30 min. An RTX®-5 

Capillary Column (30 m length × 0.25 mm internal diameter × 0.25 μm film thickness; Restek 

U.S., Bellefonte, PA) was used to separate the volatiles desorbed from the fiber. The initial 

temperature of the column was set at 40°C for 2 min and then raised to 200°C at a rate of 5°C 

min-1 and held for 1 min (total GC run time was 35 min). Varian MS Workstation software 

(version 6.8) was used for system control, data collection, and data processing. Compound 

identification was based on NIST 2005 version 2.0 Mass Spectra library search. The final 

compounds concentration was based on the concentration of the internal standard. Three 

replications were analyzed for each treatment. Kovats retention indices were calculated to aid in 

the identification of the volatile compounds. A blend of hydrocarbon (HC) mix and carbon 

disulfide (1 drop of HC mix in 1 ml of CS2 directly injected to the GC) was also run under the 

same methodology to generate the retention times of the n-alkanes (C6-C20) for calculating the 

Kovats indices. Comparing Kovats indices from chemicals previously identified using the same 

column and stationary phase under similar conditions has shown to be an accurate method of 

identification (Moustafa, 2008).   
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Analysis 

Analysis of variance (ANOVA) with PROC MIXED (panelist and replication as the 

random effects) was used to detect overall differences among treatments for individual sensory 

attributes. PROC GLM was used to detect differences for individual volatile compounds. 

ANOVA was computed in SAS® (2002, version 9.1.3; SAS Institute, Cary, NC). Partial least 

squares regression (PLS2) was used to correlate sensory and instrumental data. PLS is a soft 

modeling method which is widely used to predict a set of dependant variables (sensory 

attributes) from a large set of independent variables (volatile compounds) (Noble and Ebeler, 

2002). This method has been previously used to correlate instrumental and sensory data in 

cheese (Hough et al., 1996), diced tomatoes (Lee et al., 1999), and ice cream (Chung et al., 

2003). Even though this analysis does not determine which volatile components are actually 

responsible for specific sensory attributes, it does help in studying the relationship between 

certain volatiles and sensory characteristics (Noble and Ebeler, 2002). This analysis was 

performed using Unscrambler (2005, version 9.2; Camo Process AS, Oslo, Norway). 

Part 4: Sensory and chemical properties of organically and conventionally 

grown pac choi change little during 18 days of refrigerated storage 

Samples 

Trials were conducted at the K-State Horticulture Research and Extension Center, Olathe, 

Kansas, on experimental plots established in 2002 for comparison of crops grown under organic 

and conventional production systems in high tunnels (unheated, passively ventilated 

greenhouses) and open field plots (Zhao et al., 2007a).  The soil was a Kennebec silt loam. Six 

9.8 m x 6.1 m high tunnels with 1.5m sidewalls (Stuppy, North Kansas City, MO) and six 

adjacent 9.8 m x 6.1 m field plots were used for this study. High tunnels were covered with 

single layer 6-mil (0.153mm) K-50 polyethylene (Klerk’s Plastic Product Manufacturing, Inc., 

Richburg, SC).  At establishment of the experimental plots, the six high tunnels were divided 

into three groups (blocks) and the two high tunnels in each block were randomly assigned for 

long-term conventional or organic management treatments.  A similar set-up was used in the 

field plots. Organic plots were managed in compliance with USDA National Organic Program 

standards, and were inspected and certified in 2003, 2006, 2007 and 2008.  
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For this study, beginning in 2007, each high tunnel or open field plot was subdivided into 

three 3.2 m x 6.1 m plots to which one of three fertilizer levels were assigned (high, low, and no 

fertilizer) following a latin square design to avoid bias due to position effects in the high tunnels.  

Fertilizer rates were determined based on soil analysis at the beginning of the study in 2007, and 

recommendations for vegetable crops in Kansas (Marr et al., 1998), with compost applied to 

organic plots and synthetic fertilizer applied to conventional plots.  Compost application rates 

were based on the assumption that 50% of the nitrogen from compost would be available to 

plants during the growing season, while 100% would be available from conventional fertilizers 

(Warman and Havard, 1997).  Low and high fertility plots were fertilized with equal amounts of 

compost or synthetic fertilizer at the beginning of the growing season, and high fertility plots 

received additional fertilization during the growing season as described below.  

Pac choi (Brassica rapa L. chinensis ‘Mei Qing Choi’) (Johnny’s Selected Seed, Albion, 

ME, U.S.A.) and tomato (Lycopersicon esculentum ‘Bush Celebrity’) (Totally Tomatoes, 

Randolph, WI, U.S.A.) were grown in one half of each open field or high tunnel plot (6.8 m x 3 

m) in 2007 and 2008, with a rotation between pac choi and tomato plots each year.  In our 

experimental system, a spring and a fall crop of pac choi was grown each year, while a single 

crop of tomato was grown.  Between the spring and fall pac choi crops, plots were seeded with a 

summer cover crop of buckwheat (Fagopyrum sagittatum) (Albert Lea Seed, Albert Lea, MN, 

U.S.A.) at a rate of 134 kg/ha.  In the late fall, all plots were seeded with a cover crop of annual 

rye (Secale cereale) (Albert Lea Seed, Albert Lea, MN, U.S.A.) at a rate of 229 kg/ha.  

Conventional high and low fertility plots were fertilized with Jack’s Professional Peat-lite 

N-P2O5-K2O 20-10-20 (Allentown, PA, U.S.A.), at a rate of 98 kg/ha. Organic plots received 

MicroLeverage compost N-P2O5-K2O 0.6-0.8-0.5 (Hughesville, MO, U.S.A) at a rate of 197 

kg/ha.  Starting 2 weeks after planting, high fertility plots received additional fertilization at a 

rate of 7.2 kg/ha.  Fertilizer used on organic plots was fish hydrolyzate N-P2O5-K2O 2.23-4.35-

0.3 (Neptune’s Harvest, Gloucester, MA, U.S.A) and conventional plots received calcium nitrate 

and potassium nitrate at a rate calculated to apply an amount of calcium equivalent to that 

present in the fish hydrolyzate.  The tomato crop received 6 weekly applications, for a total of 43 

kg/ha, and the spring and fall pac choi crops each received three such applications. Only pac choi 

grown in the outside plots with high amounts of fertilizer were considered for this specific study. 
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Pac choi transplants were started in a greenhouse in Sunshine Mix Special Blend E6340 

(SunGro Horticulture, Bellevue, WA) supplemented with MicroLeverge compost.  An 

amendment of fish hydrolysate was fertigated at a rate 18.1lbs/ hectare. Pac choi was planted on 

September 4, 2008 and harvested on October 6 of the same year, at approximately 4.5 wks of 

age, a typical time for pac choi. 

Sample Preparation 

Sensory analysis 

 After harvest, the plants were immediately rinsed using cold tap water to remove excess 

soil and stored in a refrigerated container for transport to the Kansas State University campus 

located in Manhattan, KS. The samples were placed in a walk-in refrigerator for storage at 4ºC 

until testing at 1, 4, 9, and 18 days of storage. This temperature was selected to reduce 

deterioration of the pac choi leaves while recreating normal conditions in the refrigerator of a 

consumer. The interval selected was based on previous research by Able et al. (2005). The plants 

were sprayed once every two days with tap water to maintain moisture. On the day of testing, 

plants were retrieved from the refrigerator. Random leaves of similar visual characteristics were 

removed from each stalk (not including the stem) and rinsed using distilled water. Excess water 

was eliminated with a salad spinner (Oxo International, Ltd., New York, NY). Samples were 

served to the panelists monadically on 6” foam plates identified with a three-digit code to 

eliminate potential panelist bias. One leaf was served to each panelist. 

Volatile analysis 

Volatile analysis for each shelf life point occurred the same day as sensory testing. For 

solid-phase microextraction (SPME) sampling, 4 g pac choi leaves were blended with 200-mL of 

reverse osmosis, deionized, carbon-filtered water using an electric hand blender (Rival, Peoria, 

IL) for 20 s. The mixture was then filtered through a double layered cheese cloth. From the 

filtered solution, 1-mL was transferred to a 10-mL clear headspace vial and mixed with 0.2 g of 

Sodium Chloride (NaCl). Additionally, 5-μl of 0.2 ppm 1,3 dichlorobenzene in methanol 

(internal standard) was added. Glass vials were closed using an open-center screw cap with a 1.8 

mm silicone/PTFE septum (Varian, Palo Alto, CA).  
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 Panelists 

Six highly trained panelists from the Sensory Analysis Center at Kansas State University 

(Manhattan, KS, U.S.A.) were used for this study. The panelists had completed more than 120 

hours of descriptive training, averaged more than 2000 hours of testing experience, and had prior 

experience testing vegetables and vegetable products. 

Experimental procedure 

Sensory analysis 

The lexicon used for pac choi was created to describe the flavor of different leafy 

vegetables and was developed by Talavera-Bianchi et al. (2009) using an adaptation of the flavor 

profile method (Caul, 1957; Keane, 1992), which has been used by many studies in the past to 

help describe a variety of products such as cheese (Heisserer and Chambers, 1993; Rètiveau et 

al., 2005), green tea (Lee and Chambers, 2007) or tomatoes (Hongsoongnern and Chambers, 

2008b). The previously developed lexicon consisting of thirty-two attributes with definitions and 

references was presented to the panelists prior to the start of testing so they could become 

familiar with the terminology, test procedures, and samples. Twenty-six flavor and mouth feel 

attributes were selected to evaluate pac choi. However, three texture attributes (i.e. crispness, 

moistness and fiber awareness) and three off-flavor attributes (i.e. stale/refrigerator, cardboard 

and moldy) were added because they were needed to describe changes in the leaves during shelf 

life.  

The day of testing, panelists were presented with the lexicon and references determined 

while in orientation. Data were collected using a computerized collection system (Compusense 

Five version 4.4.8, 2002, Guelph, ON, Canada). Intensities for each attribute were recorded using 

a 0-15 point scale divided in 0.5 point increments, 0 meaning “none” and 15 meaning “extremely 

high”. Panelists evaluated the samples individually and followed a completely randomized block 

design with the shelf life stage as the blocking factor. Six samples of pac choi were evaluated in 

each of four 90-minute sessions at 1, 4, 9, and 18 days after storage. Reverse osmosis, deionized, 

carbon-filtered water and unsalted crackers were used to rinse the palate between the samples. A 

similar procedure has been used in the past to evaluate the sensory characteristics of four 

samples of calcium-biofortified lettuce (Park et al., 2009).   
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Gas chromatography – mass spectrometry 

Volatile compounds were identified and quantified using a Varian Saturn CP-3800 Gas 

Chromatograph / Mass Spectrometer 2200 (Varian Inc., Walnut Creek, CA). The sample vials 

were equilibrated at 40°C/500 rpm for 10 min. SPME was performed using a StableFlex 

Divinylbenzene / Carboxen / Polydimethylsiloxane 50/30 μm fiber (Sigma Aldrich, Saint Louis, 

MO) for 20 min at 40°C. The agitation during extraction was of 250 rpm. The extracted 

compounds were thermally desorbed at 250°C for 3 min in the front injection port of the gas 

chromatograph. After the injection, the fiber was baked at 270°C for 30 min. An RTX®-5 

Capillary Column (30 m length × 0.25 mm internal diameter × 0.25 μm film thickness; Restek 

U.S., Bellefonte, PA) was used to separate the volatiles desorbed from the fiber. The initial 

temperature of the column was set at 40°C for 2 min and then raised to 200°C, at a rate of 5°C 

min-1, and held for 1 min (total GC run time was 35 min). Varian MS Workstation software 

(version 6.8) was used for system control, data collection, and data processing. Compound 

identification was based on NIST 2005 (National Institute of Standards and Technology, U.S. 

Department of Commerce, Gaithersburg, MD) version 2.0 Mass Spectra library search. The final 

compounds concentration was based on the concentration of the internal standard. Three 

replications were analyzed for each treatment. Kovats retention indices were calculated to aid in 

the identification of the volatile compounds. A hydrocarbon (HC) mix (1 drop of HC mix in 1 ml 

of carbon disulfide – CS2 – directly injected to the GC) was also run under the same 

methodology to generate the retention times of the n-alkanes (C6-C20) for calculating the Kovats 

indices. Comparing Kovats indices from chemicals previously identified using the same column 

and stationary phase under similar conditions has shown to be an accurate method of 

identification (Moustafa, 2008).   

Analysis 

Analysis of variance (ANOVA) with PROC MIXED (panelist and replication as the 

random effects) was used to detect overall differences among treatments for individual sensory 

attributes. PROC GLM was used to detect differences for individual volatile compounds. 

ANOVA was computed in SAS® (2002, version 9.1.3; SAS Institute, Cary, NC). Partial least 

squares regression (PLS2) was used to correlate sensory and instrumental data. PLS is a soft 

modeling method which is widely used to predict a set of dependant variables (sensory 
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attributes) from a large set of independent variables (volatile compounds) (Noble and Ebeler, 

2002). This method has been previously used to correlate instrumental and sensory data in 

cheese (Hough et al., 1996), diced tomatoes (Lee et al., 1999) and ice cream (Chung et al., 

2003). Even though this analysis does not determine which volatile components are actually 

responsible for specific sensory attributes, it does help in studying the relationship between 

certain volatiles and sensory characteristics (Noble and Ebeler, 2002). This analysis was 

performed by Unscrambler (2005, Version 9.2; Camo Process AS, Oslo, Norway). 
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CHAPTER 3 - Lexicon to describe flavor of fresh leafy vegetables 

Abstract 

Practices such as organic farming and breeding to increase nutrition and functional health 

components have increased interest in understanding the flavor of vegetables, such as leafy 

greens. The main objective of this study was to select, define, and reference a lexicon for 

describing the flavor of fresh leafy vegetables.  A highly trained descriptive sensory panel 

determined a list of 32 sensory attributes that was able to describe the flavor of the fresh leafy 

greens studied.  This lexicon includes five “green” attributes; mouth feel characteristics such as 

pungent, bite, tooth-etch, and heat/burn; fundamental tastes including bitter and umami; seven 

terms that describe unique flavors related to specific vegetables such as cabbage, celery, lettuce, 

spinach, parsley, beet, and radish leaves; and a group of other terms including citrus, piney, 

woody, water-like, musty/earthy, floral, sulfur, metallic, soapy, petroleum-like, and overall 

sweet.     

Practical applications 

Understanding the effects that different breeding, growing, harvesting, shipping, and 

storage technologies have on properties of leafy vegetables has increased the need for 

appropriate evaluation tools.  Using this lexicon can guide researchers to a better understanding 

of differences in flavor among various fresh leafy vegetables and can help in understanding 

changes in flavors of those vegetables resulting from various alterations in the breeding and 

production systems.  This project provides researchers with specific sensory terminology to track 

changes in fresh leafy greens instead of using generic terms such as “taste” or “typical flavor.”  

Introduction 

Flavor lexicons are widely used to describe and compare products within a category 

(Drake and Civille, 2003). Lexicons for a number of product categories have been published over 

the last 20 years. In recent years, lexicons have been developed or supplemented for flavor and 

texture of many products such as brewed coffee (Seo et al., 2009), tomato (Hongsoongnern and 

Chambers, 2008b), yogurt (Coggins et al., 2008), cheese (Talavera-Bianchi and Chambers, 2008; 

Drake et al., 2007; Karagul-Yuceer et al., 2007), green tea (Lee and Chambers, 2007), rose 
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apples, an Asian fruit (Vara-Ubol et al., 2006), soy products (Drake et al., 2007; Chambers et al., 

2006; Krinsky et al., 2006), chemical compounds (Bott and Chambers, 2006), and honey (Galán-

Soldevilla et al., 2005).    

Recently, several lexicons related to green, leafy, or vegetable materials have been 

developed.  For example, a lexicon was developed specifically to describe products with “green” 

flavor characteristics such as vegetable products (Hongsoongnern and Chambers, 2008b) and a 

lexicon for a specific vegetable, tomato, also was published (Hongsoongnern and Chambers, 

2008a).  As part of those lexicons, terms associated with green vegetative materials such as 

overall green, green-unripe, green-peapod, green-grassy/leafy, green-viney, and green-fruity 

were determined.   

Lee and Chambers (2007) developed a lexicon, to describe a particular brewed green leaf 

tea, which included thirty-one descriptive terms such as green, parsley, spinach, citrus, and 

astringent.  Krinsky et al. (2006) published a lexicon to describe the flavor of frozen soybeans. 

The lexicon was composed of fourteen terms and some of the descriptors included were green-

complex, sulfur, and astringent. Another study used terms such as crispness, pungent, and the 

basic tastes salty, acid, bitter, and umami to describe commercial samples of mustard greens and 

relate those characteristics to their chemical content (Zhao et al., 2007b).  

The presence of “green” flavors in foods may be beneficial to human health as they may 

represent “sensory cues” to the presence of free fatty acids which are considered essential to 

human diet (Goff and Klee, 2006). Having a better understanding of flavor characteristics of 

vegetable products may be useful for producers and scientists who want to know how different 

production variables and storage conditions affect the flavor of vegetables. For example, Park et 

al. (2009) conducted descriptive sensory studies to determine whether increasing nutritive value 

of lettuce, i.e. biofortification with calcium, had an impact on flavor or texture.  Additionally, 

organic farming, as a trend, has increased the importance of research on the flavor of fruits and 

vegetables because people want to know if these techniques provide a product with different 

flavor characteristics in comparison to conventional farming. Unfortunately, the sensory 

vocabulary to describe differences in many vegetables often is quite general.  Wszelaki et al. 

(2005) conducted research on soybeans and only used a general “taste” term for comparison. 

Haglund et al. (1999) used more descriptive terms such as hardness, crunchiness, juiciness, 

sweetness, bitterness, carrot-taste, and aftertaste to compare organically and conventionally 
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grown carrots. DeEll and Prange (1992) used terms such as sweetness, tartness, off-flavor, 

firmness, and juiciness to compare organic and conventional apples. A study by Basker (1992) 

also compared a general “taste quality” term of organically and conventionally grown vegetables 

such as tomatoes, carrots, orange juice, spinach, bananas, sweet corn, grapes, and mangoes. 

Other genetic, environmental, cultural, and developmental factors may, as well, affect the flavor 

of vegetables (Mattheis and Fellman, 1999).  

The flavor of leafy vegetables also can be altered during storage mainly because of 

chlorophyll degradation and water loss (Agüero et al., 2008).  Those changes can affect 

consumer’s purchasing decisions (Ares et al., 2007).  However, in order to track those effects it 

is necessary to have a sensory terminology that is specific rather than general and can be used in 

various laboratories.   

This study was designed to provide a tool for better understanding the flavors present in 

fresh leafy vegetables commonly consumed in the United States and may be used to clarify the 

effect of production variables on the flavor of fresh leafy vegetables if used by an appropriately 

trained sensory panel. 

The objectives of this study were (1) to develop a lexicon that will describe the flavor 

characteristics of fresh leafy vegetables and (2) to assess relationships among the terms to 

determine if specific terms overlap or are duplicative of other terms in the lexicon. 

Materials and Methods 

Fresh Leafy Vegetable Samples 

Leafy vegetable samples were purchased one to three days before testing at local stores in 

Manhattan, Kansas and Kansas City, Kansas/Missouri. Only fresh leafy vegetables (i.e. not 

cooked) available in the United States and potentially available in local grocery stores or 

supermarkets were included in this study. No attempt was made to select specific variations in 

harvest, shipping, and storage conditions among the vegetables selected. However, the range of 

products evaluated have inherent differences in those areas. After purchase, the vegetables were 

immediately stored in a walk-in refrigerator at 4ºC and 50% relative humidity until ready for 

testing. To maintain moisture, vegetables were sprayed with tap water once daily until ready for 

testing.  
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On the day of testing, samples were retrieved from the refrigerator, rinsed using tap 

water, and excess water was eliminated using a salad spinner (Oxo International, Ltd., New 

York, NY). Random leaves of similar visual characteristics and with no deterioration were used 

for evaluation.  Samples were then served to the panelists monadically on 6” foam plates 

identified with a three-digit code to reduce bias associated with knowing the name of the 

vegetable.  In order to test a consistent sample of each leaf, panelists were instructed to hold the 

sample with both hands, fold the leaf, and bite one time through the middle of the folded leaf. To 

focus the evaluation on the leaf section of the vegetable, stems and large ribs were cut from the 

vegetable.  For small leaves, panelists were asked to sample 1 – 3 whole leaves depending on 

leaf size. Because of different leaf sizes, amounts served to panelists were different across 

vegetable types. For example, panelists received three sprigs of small leaf vegetables such as 

parsley, cilantro, and watercress; three leaves of medium leaf plants such as spinach or curly 

endive; and half a leaf cut lengthwise through the middle (not including the stem or rib sections) 

was served of larger leaves such as collards or romaine lettuce. 

Panelists 

Six highly trained panelists from the Sensory Analysis Center at Kansas State University 

(Manhattan, Kans., U.S.A.) participated in this study. The panelists had completed more than 

120 hours of descriptive training, average more than 2000 hours of testing experience, and had 

prior experience testing vegetables and vegetable products. 

Evaluation Procedures 

A method adapted from the flavor profile method (Caul, 1957; Keane 1992) was used.  

The method is a panel consensus method whereby the panelists must agree on attributes, 

definitions, and key reference products.  Our adaptation uses a 0-15 point scale divided in 0.5 

point increments, 0 meaning “none” and 15 meaning “extremely high”. This methodology has 

been previously used to describe a wide variety of products such as cheese (Heisserer and 

Chambers, 1993; Rètiveau et al., 2005), black walnut syrup (Matta et al., 2005), rose apples 

(Vara-Ubol et al., 2006) and tomatoes (Hongsoongnern and Chambers, 2008b).  

During lexicon development, panelists were asked to review previously developed terms 

used to describe “green” aroma characteristics (Hongsoongnern and Chambers, 2008a) and green 

tea (Lee and Chambers, 2007).  Those beginning lexicons were used to help start the creation of 
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a lexicon to describe flavor characteristics of a wide variety of fresh leafy vegetables.  

Discussion of the terms helped ensure the use of terms that are discriminative, descriptive, and 

nonredundant; key characteristics of a good flavor lexicon (Drake and Civille, 2003). When new 

terms were needed, panelists were also asked to discuss terminology, select an appropriate term, 

develop a descriptive definition, and to assign one or more reference materials that could be 

helpful in understanding the attribute and evaluating intensity.  Lexicon development sessions 

were 90-minutes long and up to six samples were evaluated in each session depending on the 

complexity of flavor, carry over, and if new terms needed to be discussed, defined, and 

referenced.  Products were reviewed multiple times during the lexicon development phase of the 

study.   

After lexicon development, complete profiles were generated for each of the same fresh 

leafy vegetables used during lexicon development.  Using a similar evaluation procedure, 

samples were evaluated once more and a consensus profile was developed.  At that point, a new 

sample was evaluated until the set of 30 samples was complete. No actions were taken to mask 

appearance differences between samples. 

Analysis 

Statistical analysis is required to clarify attribute relationships in the lexicon development 

process (Drake and Civille, 2003). Principal component analysis (PCA) was used on the 

consensus profiles to assess the relationships between terms. PCA was conducted on the 

correlation matrix and the data was orthogonally rotated to facilitate interpretation of the results. 

This analysis was performed by SAS® (2002, version 9.1.3; SAS Institute, Cary, NC). 

Results and Discussion 

Lexicon Development and Validation 

A lexicon of thirty-two attributes (Table 3.1) was developed to describe flavor 

characteristics of fresh leafy vegetables consumed in the United States. From this list of 

attributes, five attributes specifically describe the green flavor of vegetables and were adapted 

from Hongsoongnern and Chambers (2008a). Those authors related the occurrence of these 

flavor characteristics to the presence of certain chemicals such as hexanal, cis-3-hexen-1-ol, 1-

penten-3-ol, 2-isobutylthiazole, citronellal, trans-2-hexenal, trans-2-hexen-1-ol,  
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     Table 3.1. Lexicon to describe flavor characteristics of fresh leafy vegetables 
Attribute Definition  References and Intensities1 
Overall Green2 Aromatic characteristics of 

plant-based materials. A 
measurement of the total 
green characteristics and 
the degree to which they 
fit together. Green 
attributes include one or 
more of the following: 
green-unripe, green-
peapod, green-
grassy/leafy, green-
viney, and green-fruity. 
These may be 
accompanied by 
musty/earthy, pungent, 
astringent, bitter, sweet, 
sour, floral, beany, 
minty, and piney. 

 

 Hexanal in Propylene Glycol (5,000ppm) = 5.0 
(aroma) 2 

2-isobutylthiazole in Propylene Glycol = 7.0  
(aroma) 2 

Fresh Parsley Water = 7.0 (flavor) 
25 g chopped fresh curly parsley soaked in 300 ml 

room temperature de-ionized water for 15 
minutes, filtered.   

 

Green-Unripe2 A green aromatic 
associated with unripe or 
not-fully-developed 
plant-based materials; 
characterized by 
increased sour, 
astringent, and bitter. 

 

 1:1 Diluted Fresh Parsley Water + 0.2% Alum 
Solution (1:1) = 3.0 (flavor) 

Fresh parsley water preparation: Same as above 
 

Green-Peapod2 A green aromatic 
associated with green 
peapods and raw green 
beans; characterized by 
increased musty/earthy. 

 

 Kroger Frozen Baby Lima Beans (thawed) = 6.0 
(flavor, aroma) 

Green 
Grassy/Leafy2 

A green aromatic 
associated with newly 
cut-grass and leafy 
plants; characterized by 
sweet and pungent 
characters. 

 

 Hexanal in Propylene Glycol = 3.5 (aroma) 2 
Kroger Fresh Spinach = 4.5 (flavor) 
Fresh Parsley Water = 7.0 (flavor) 
Fresh parsley water preparation: Same as above 
 

Green-Viney2 A green aromatic 
associated with green 
vegetables and newly cut 
vines and stems; 
characterized by 
increased bitter and 
musty/earthy character. 

 
 
 
 
 
 
 

 Hexanal in Propylene Glycol = 3.5 (aroma) 2 
1/8 inch Sliced Fresh Cucumber = 5.0 (flavor, 

aroma) 
2-isobutylthiazole in Propylene Glycol = 7.0  

(aroma) 2 
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Cabbage The green, somewhat 
sharp, slightly sulfur, 
sometimes sweet, 
pungent aromatics 
associated with raw 
cabbage and Brussels 
sprouts. 

 

 Green Cabbage water = 5.5 (flavor) 
25 g chopped fresh green cabbage soaked in 300 ml 

room temperature de-ionized water for 15 
minutes, filtered. 

 
 
 
 

Celery The slightly sweet, green, 
brown, slightly bitter 
aromatics associated 
with dried celery leaves. 

 Fresh Celery water = 5.5 (flavor) 
25 g chopped fresh celery soaked in 300 ml room 

temperature de-ionized water for 15 minutes, 
filtered. 

 
Lettuce Green, slightly musty and 

sometimes bitter water-
like aromatics associated 
with lettuce like Bibb 
and Iceberg. 

 

 Lettuce water = 4.0 (flavor) 
25 g chopped fresh Iceberg Lettuce soaked in 300 ml 

room temperature de-ionized water for 15 
minutes, filtered. 

 

Spinach The brown, green, slightly 
musty, earthy aromatics 
associated with fresh 
spinach. 

 Spinach water = 3.0 (flavor) 
25 g chopped fresh spinach soaked in 300 ml room 

temperature de-ionized water for 15 minutes, 
filtered. 

 
Parsley The clean fresh green, 

bitter, pungent aromatics 
associated with fresh 
parsley. 

 Fresh Parsley water = 5.5 (flavor) 
25 g chopped fresh curly parsley soaked in 300 ml 

room temperature de-ionized water for 15 
minutes, filtered. 

 
Beet The dark, musty, dusty, 

earthy aromatics 
reminiscent of fresh 
beets. 

 

 Del Monte Sliced Beets Juice diluted w/ water (1:1) 
= 6.0 (aroma) 

 

Radish The sharp, pungent, 
somewhat bitter 
aromatics associated 
with a fresh radish. 

 Fresh Radish water = 3.5 (flavor) 
25 g chopped fresh radish soaked in 300 ml room 

temperature de-ionized water for 15 minutes, 
filtered. 

 
Citrus3 The aromatics associated 

with commonly known 
citrus fruits, such as 
lemons, limes, oranges, 
could also contain a 
peely note. 

 

 Lemon Lime Juice = 4.0 (flavor) 
1 Part of equal amounts of lemon and lime juices 

with 24 of water 
McCormick Lemon Grass = 4.5 (aroma) 
Weight 0.1 g of McCormick Lemon Grass. Place in a 

medium snifter. Add 100 mL of room 
temperature water. Cover. 

 
Piney2 Aromatics reminiscent of 

resinous pine tree; can 
be medicinal or 
disinfectant in character. 

 

 Diamond raw Pine Nuts = 4.0 (flavor, aroma) 

Woody Brown, musty aromatics 
associated with very 
fibrous plants and bark. 

 

 Asparagus Stem (fresh 1/2” piece) = 6.0 (flavor) 
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Water-like Liquid perception during 
mastication of some 
fruits and vegetables 
such as watermelon, 
peaches, tomatoes, and 
lettuce. 

 

 Asparagus Stem (fresh 1/2” piece) = 3.0 
Dole Pineapple Tidbits = 7.5 
Del Monte Mandarin Oranges = 12.0 

Musty/Earthy Aromatics associated with 
damp, wet soil. 

 

 Hexanal in Propylene Glycol = 2.0 (aroma) 2 
2-isobutylthiazole in Propylene Glycol = 2.5 

(aroma)* 
Kroger Frozen Baby Lima Beans (thawed) = 3.0 

(flavor) 
Fresh chopped mushrooms = 8.5 (flavor, aroma) 
 

Floral2 Sweet, light, slightly 
perfumey impression 
associated with flowers 

 

 Welch’s White Grape Juice = 5.0 (flavor) 
Dilute with water 1:1 
 

Sulfur The aromatics associated 
with hydrogen sulfide 
resulting from the 
heating of eggs or egg 
products. 

 

 Warm chopped hard boiled eggs = 3.0 (flavor), 7.0 
(aroma). 

Hard boil 1 egg for 9 minutes. Peel, chop, and place 
1 Tbsp (even yolk-egg white ratio) in 1 oz. cups. 

 

Metallic An aromatic and mouth 
feel associated with tin 
cans or aluminum foil. 

 

 Dole Canned Pineapple Juice, Unsweetened = 6.0 
(flavor) 

 

Soapy An aromatic commonly 
found in unscented hand 
soap. 

 Ivory Bar Soap Dilution = 6.5 (aroma) 
Place 0.5 g of bar soap in 100 ml of room 

temperature 
 

Petroleum-like A specific chemical 
aromatic associated with 
crude oil and its refined 
products that have heavy 
oil characteristics. 

 

 Vaseline Petroleum Jelly = 3.0 (aroma) 
 

Pungent The sharp aromatics with a 
physically penetrating 
sensation in the nose 
reminiscent of radish and 
horseradish. 

 

 2-isobutylthiazole in Propylene Glycol = 4.0 
(aroma)* 

Fresh Radish = 4.0  
Slice radish thin (1/8”) 
Heinz White Vinegar (1 part vinegar with 8 parts of 

water) = 8.0  
Reese Horseradish = 12.0  
 

Bite The slight burning, 
prickling and/or 
numbness of the tongue 
and/or mouth surface. 

 

 Fresh Radish = 4.0 
Slice radish thin (1/8”) 
Heinz White Vinegar (1 part vinegar with 8 parts of 

water) = 8.0 
Reese Horseradish = 12.0  
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Tooth-etch A chemical feeling factor 
perceived as 
drying/dragging when 
the tongue is rubbed 
over the back of the 
tooth surface. 

 

 0.1% alum solution = 4.0 
Welch’s Grape Juice = 6.0 
Dilute with water 1:1 
0.2% alum solution = 9.0 

Heat/burn A chemical feeling factor 
described as a burning 
sensation perceived on 
the tongue and mouth 
surface. 

 

 Radish = 2.0 
Slice radish thin (1/8”) 
0.4 ppm capsaicin solution = 5.0 
 

Sweet, Overall Aromatics associated with 
the impression of sweet 
substances such as fruit 
or flowers. (Note: This 
refers to the aromatics of 
sweetness rather than the 
sweet taste). 

 

 Asparagus (fresh 1/2” piece) = 2.0 (flavor) 
Edible pea pods = 5.0 (flavor) 
 

Sour The fundamental taste 
sensation of which citric 
acid is typical. 

 

 0.015% Citric Acid solution = 1.5 
0.025% Citric Acid solution = 2.5 

Bitter A basic taste factor of 
which caffeine is typical. 

 

 0.01%   caffeine solution = 2.0 
0.02%   caffeine solution = 3.5 
0.035% caffeine solution = 5.0 
0.05%   caffeine solution = 6.5 
0.06%   caffeine solution = 8.5 
 

Salty The fundamental taste 
factor of which sodium 
chloride in water is 
typical. 

 

 0.15% Sodium Chloride Solution = 1.5 
 

Umami Flat, salty flavor sometime 
thought of as brothy 
naturally occurring in 
products such as 
monosodium glutamate 

 

 0.35% Accent Salt Solution = 7.5 
 

Astringent The drying, puckering 
sensation on the tongue and
other mouth surfaces. 

 0.03%    alum solution = 1.5 
0.05%    alum solution = 2.5 
0.1%      alum solution = 5.0 
 

1 Intensities are based on a 15-point numerical scale with 0.5 increments, where 0 means “none” and 15 means “extremely 
strong.” 

2 Adapted from Hongsoongnern & Chambers, 2008a 
3 Adapted from Lee & Chambers, 2007 
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trans-2-pentenal, geranyl formate, and heptyl butyrate. King et al., (2006) also mentioned (E)-2-

hexenal and (Z)-3-hexen-1-yl acetate, in addition to hexanal, as responsible for providing an 

orthonasal “green” perception. The five terms related to “green” in our study are overall green, 

green-unripe, green-peapod, green-grassy/leafy, and green-viney. Of those attributes, overall 

green and green-grassy/leafy were present in all of the vegetables at moderate to high intensities 

while green-unripe, green-peapod, and green-viney were present more sporadically at lower 

intensities. For example, spinach was moderately green overall and green-grassy/leafy but had no 

intensity for green-unripe, green-peapod, and green-viney. Conversely, collard greens were 

moderate in overall green and green-grassy/leafy, but also had low intensities of green-peapod, 

green-viney, and green-unripe attributes (Table 3.2). The different types of lettuces exhibited 

similar “green” profiles with the exception of Romaine lettuce which received low intensity 

scores for both green-peapod and green-viney attributes. This lexicon can also be used to 

evaluate the effect that different production technologies have on the flavor of a selected variety 

of vegetables. For example, selected attributes from this lexicon were used by Park et al. (2009) 

to study differences in genetically modified lettuce.  

Other leaf samples scored in the lower range for the green attributes. For example, the 

different cabbage varieties generally were low in overall green, green-peapod, and green-

grassy/leafy. Arugula was moderate in overall green and green-peapod, and low in green-

grassy/leafy and green-viney. The term “green” or “green-complex” has been previously used to 

describe flavor of frozen vegetable soybeans (Krinsky et al., 2006) and green tea (Lee and 

Chambers, 2007). The term “grass” has been used in the past to describe flavor of wine 

(Vilanova and Soto, 2005) and durian (Voon et al., 2007). Additionally, the term “green-leaf” 

was used to describe the sensory properties of virgin olive oil (Morales et al., 1995). 

Attributes also were broken down into seven vegetable-like flavors to describe more 

specific flavor properties. Panelists had been instructed only to develop specific vegetable 

attributes when they believed that the perceived flavor characteristic was unique and could not be 

explained by using other terms including green. Lee and Chambers (2007) used six vegetable-

like terms to describe flavor of green tea because they believed that using a single “green” term 

would be too general and may miss to describe more specific characteristics.  Those authors used 

terms such as asparagus, Brussels sprouts, celery, green beans, parsley, and spinach.  In this 

study, the terms used were cabbage, celery, lettuce, spinach, parsley, beet, and radish.  

57  



 

Table 3.2. Flavor profiles for each of the thirty fresh leafy vegetables evaluated1 

Product Plant Family 
Overall 
Green 

Green- 
Unripe 

Green- 
Peapod 

Green- 
Grassy/ 
Leafy 

Green- 
Viney 

Beet Greens (Organic) Chenopodiaceae 6.5 0.0 1.0 5.0 1.5 
Beet Greens, Golden (Organic) Chenopodiaceae 5.5 0.0 0.0 4.0 2.0 
Spinach Chenopodiaceae 6.5 0.0 0.0 4.5 0.0 
Swiss Chard, Green Chenopodiaceae 6.5 0.0 0.0 4.5 2.0 
Swiss Chard, Red (Organic) Chenopodiaceae 5.5 0.0 0.0 4.0 1.5 
Endive, Belgian Compositae 3.5 1.0 0.0 2.0 2.0 
Endive, Curly Compositae 9.0 1.5 0.0 6.0 4.5 
Lettuce, Butterhead / Boston  Compositae 5.0 0.0 0.0 4.5 0.0 
Lettuce, Crisphead / Iceberg Compositae 4.5 0.0 0.0 3.5 0.0 
Lettuce, Green Leaf Compositae 6.0 0.0 1.5 5.0 0.0 
Lettuce, Red Leaf Compositae 7.0 0.0 0.0 5.0 1.0 
Lettuce, Romaine / Cos Compositae 6.5 0.0 1.5 5.5 2.0 
Radicchio Compositae 2.5 1.0 0.0 0.0 2.5 
Arugula Cruciferae 6.0 0.0 4.0 2.0 2.5 
Cabbage, Green Cruciferae 4.0 0.0 2.5 2.0 0.0 
Cabbage, Napa Cruciferae 4.0 0.0 2.0 2.0 0.0 
Cabbage, Red Cruciferae 3.0 0.0 2.5 2.0 0.0 
Cabbage, Savoy Cruciferae 5.5 0.0 3.0 2.5 0.0 
Collard Greens Cruciferae 9.0 1.5 2.0 5.5 3.5 
Kale Cruciferae 7.0 0.0 2.0 4.0 3.5 
Kale, Lacinato Cruciferae 8.0 1.5 1.5 5.0 2.0 
Kale, Red Cruciferae 4.0 0.0 2.0 2.5 0.0 
Mustard Greens, Curly Cruciferae 8.5 0.0 0.0 5.5 5.5 
Pac Choi Cruciferae 8.0 0.0 2.0 4.5 3.5 
Pac Choi, Baby Cruciferae 6.0 0.0 1.5 2.5 2.5 
Turnip Greens Cruciferae 8.5 2.0 0.0 5.5 5.5 
Watercress Cruciferae 7.0 0.0 0.0 4.0 3.0 
Cilantro Umbelliferae 7.0 0.0 0.0 4.5 2.0 
Parsley, Curly Umbelliferae 9.0 1.0 0.0 7.5 2.5 
Parsley, Italian Umbelliferae 7.5 0.0 0.0 6.0 2.5 
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Product Plant Family Cabbage Celery Lettuce Spinach Parsley Beet 
Beet Greens (Organic) Chenopodiaceae 0.0 0.0 2.0 2.0 0.0 2.0 
Beet Greens, Golden (Organic) Chenopodiaceae 0.0 1.5 1.5 3.0 0.0 0.0 
Spinach Chenopodiaceae 0.0 0.0 1.5 5.5 1.5 0.0 
Swiss Chard, Green Chenopodiaceae 0.0 0.0 2.0 0.0 1.0 0.0 
Swiss Chard, Red (Organic) Chenopodiaceae 0.0 0.0 1.5 2.0 0.0 3.5 
Endive, Belgian Compositae 0.0 0.0 2.5 0.0 0.0 0.0 
Endive, Curly Compositae 0.0 2.0 3.5 0.0 3.0 0.0 
Lettuce, Butterhead / Boston / Bibb Compositae 0.0 1.5 5.0 0.0 0.0 0.0 
Lettuce, Crisphead / Iceberg Compositae 0.0 0.0 5.0 0.0 0.0 0.0 
Lettuce, Green Leaf Compositae 0.0 0.0 5.0 0.0 0.0 0.0 
Lettuce, Red Leaf Compositae 0.0 1.5 5.0 1.5 0.0 0.0 
Lettuce, Romaine / Cos Compositae 0.0 1.5 5.0 1.5 0.0 0.0 
Radicchio Compositae 2.5 0.0 1.5 0.0 0.0 0.0 
Arugula Cruciferae 2.5 0.0 0.0 2.5 0.0 0.0 
Cabbage, Green Cruciferae 6.5 0.0 0.0 0.0 0.0 0.0 
Cabbage, Napa Cruciferae 4.0 0.0 1.0 0.0 0.0 0.0 
Cabbage, Red Cruciferae 5.5 0.0 0.0 0.0 0.0 0.0 
Cabbage, Savoy Cruciferae 5.5 0.0 0.0 0.0 0.0 0.0 
Collard Greens Cruciferae 4.0 0.0 1.5 2.0 0.0 0.0 
Kale Cruciferae 3.0 0.0 1.5 1.5 2.0 0.0 
Kale, Lacinato Cruciferae 4.0 0.0 0.0 2.0 1.5 0.0 
Kale, Red Cruciferae 1.5 0.0 0.0 0.0 0.0 3.0 
Mustard Greens, Curly Cruciferae 2.5 1.0 2.0 1.5 1.5 0.0 
Pac Choi Cruciferae 3.0 0.0 4.0 1.0 1.5 0.0 
Pac Choi, Baby Cruciferae 3.0 0.0 0.0 1.5 0.0 0.0 
Turnip Greens Cruciferae 2.0 0.0 1.5 1.5 1.5 0.0 
Watercress Cruciferae 2.5 1.0 0.0 0.0 1.5 0.0 
Cilantro Umbelliferae 0.0 1.5 0.0 1.5 3.5 0.0 
Parsley, Curly Umbelliferae 0.0 1.0 0.0 0.0 9.0 0.0 
Parsley, Italian Umbelliferae 0.0 1.5 0.0 0.0 8.5 0.0 
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Product Plant Family Radish Citrus Piney Woody 
Water- 

like 
Musty/
Earthy 

Beet Greens (Organic) Chenopodiaceae 0.0 0.0 0.0 2.0 1.5 3.0 
Beet Greens, Golden (Organic) Chenopodiaceae 0.0 0.0 0.0 1.5 1.5 2.0 
Spinach Chenopodiaceae 0.0 0.0 0.0 2.0 2.0 2.5 
Swiss Chard, Green Chenopodiaceae 1.0 0.0 0.0 2.0 2.0 2.5 
Swiss Chard, Red (Organic) Chenopodiaceae 0.0 0.0 1.0 3.0 2.0 4.5 
Endive, Belgian Compositae 0.0 0.0 0.0 0.0 2.5 1.0 
Endive, Curly Compositae 0.0 0.0 1.5 2.5 1.0 2.5 
Lettuce, Butterhead / Boston / Bibb Compositae 0.0 0.0 0.0 1.5 4.0 2.0 
Lettuce, Crisphead / Iceberg Compositae 0.0 0.0 0.0 1.0 4.5 1.5 
Lettuce, Green Leaf Compositae 0.0 0.0 0.0 1.5 3.5 2.0 
Lettuce, Red Leaf Compositae 0.0 0.0 0.0 2.5 2.5 2.5 
Lettuce, Romaine / Cos Compositae 0.0 0.0 0.0 2.0 2.5 2.0 
Radicchio Compositae 0.0 0.0 0.0 1.5 2.0 2.5 
Arugula Cruciferae 2.5 0.0 3.0 2.0 1.5 2.5 
Cabbage, Green Cruciferae 1.0 0.0 0.0 1.5 2.0 2.0 
Cabbage, Napa Cruciferae 2.0 0.0 0.0 1.5 2.5 1.5 
Cabbage, Red Cruciferae 2.5 0.0 0.0 2.0 2.0 2.5 
Cabbage, Savoy Cruciferae 1.0 0.0 0.0 2.0 2.0 2.0 
Collard Greens Cruciferae 1.5 0.0 2.0 3.0 1.5 3.0 
Kale Cruciferae 2.0 0.0 1.0 2.5 1.0 2.5 
Kale, Lacinato Cruciferae 1.5 0.0 1.5 2.0 1.0 2.5 
Kale, Red Cruciferae 0.0 0.0 0.0 3.0 1.0 5.0 
Mustard Greens, Curly Cruciferae 4.0 0.0 0.0 2.5 2.0 2.5 
Pac Choi Cruciferae 2.0 0.0 0.0 3.0 3.0 2.5 
Pac Choi, Baby Cruciferae 0.0 0.0 0.0 2.0 1.0 2.5 
Turnip Greens Cruciferae 3.0 0.0 2.0 2.5 1.0 3.0 
Watercress Cruciferae 4.5 0.0 1.5 2.0 1.5 2.0 
Cilantro Umbelliferae 0.0 1.0 2.5 2.0 1.0 3.0 
Parsley, Curly Umbelliferae 0.0 0.0 1.5 3.0 1.0 2.5 
Parsley, Italian Umbelliferae 0.0 0.0 1.5 2.5 1.0 2.0 
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Product Plant Family Floral Sulfur Metallic Soapy 
Petroleum-

like 
Beet Greens (Organic) Chenopodiaceae 0.0 0.0 0.0 2.0 0.0 
Beet Greens, Golden (Organic) Chenopodiaceae 0.0 0.0 0.0 3.0 0.0 
Spinach Chenopodiaceae 0.0 0.0 0.0 0.0 0.0 
Swiss Chard, Green Chenopodiaceae 0.0 1.5 0.0 2.5 0.0 
Swiss Chard, Red (Organic) Chenopodiaceae 0.0 0.0 0.0 3.0 0.0 
Endive, Belgian Compositae 0.0 0.0 1.5 0.0 0.0 
Endive, Curly Compositae 0.0 0.0 0.0 2.0 0.0 
Lettuce, Butterhead / Boston / Bibb Compositae 0.0 0.0 0.0 0.0 0.0 
Lettuce, Crisphead / Iceberg Compositae 0.0 0.0 0.0 0.0 0.0 
Lettuce, Green Leaf Compositae 0.0 0.0 0.0 0.0 0.0 
Lettuce, Red Leaf Compositae 0.0 0.0 0.0 0.0 0.0 
Lettuce, Romaine / Cos Compositae 0.0 0.0 0.0 0.0 0.0 
Radicchio Compositae 0.0 1.5 1.5 2.0 1.0 
Arugula Cruciferae 0.0 0.0 0.0 1.5 2.0 
Cabbage, Green Cruciferae 0.0 2.0 0.0 0.0 0.0 
Cabbage, Napa Cruciferae 0.0 1.5 0.0 0.0 0.0 
Cabbage, Red Cruciferae 0.0 2.0 0.0 0.0 0.0 
Cabbage, Savoy Cruciferae 0.0 2.0 0.0 0.0 0.0 
Collard Greens Cruciferae 0.0 0.0 0.0 1.5 1.5 
Kale Cruciferae 0.0 0.0 0.0 1.0 0.0 
Kale, Lacinato Cruciferae 0.0 1.0 0.0 0.0 0.0 
Kale, Red Cruciferae 0.0 0.0 0.0 0.0 0.0 
Mustard Greens, Curly Cruciferae 0.0 0.0 0.0 0.0 0.0 
Pac Choi Cruciferae 0.0 1.0 0.0 0.0 0.0 
Pac Choi, Baby Cruciferae 0.0 0.0 0.0 1.0 0.0 
Turnip Greens Cruciferae 0.0 2.5 0.0 2.0 3.0 
Watercress Cruciferae 0.0 1.5 0.0 1.5 1.0 
Cilantro Umbelliferae 1.5 1.0 1.0 1.5 3.0 
Parsley, Curly Umbelliferae 0.0 0.0 0.0 2.0 1.5 
Parsley, Italian Umbelliferae 1.5 0.0 0.0 3.0 2.0 
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Product Plant Family Pungent Bite Toothetch Heat/burn 
Sweet, 
Overall 

Beet Greens (Organic) Chenopodiaceae 0.0 1.0 2.0 0.0 1.5 
Beet Greens, Golden (Organic) Chenopodiaceae 0.0 0.0 1.5 0.0 1.5 
Spinach Chenopodiaceae 0.0 0.0 2.0 0.0 1.5 
Swiss Chard, Green Chenopodiaceae 0.0 0.0 0.0 0.0 1.5 
Swiss Chard, Red (Organic) Chenopodiaceae 0.0 0.0 1.5 0.0 1.5 
Endive, Belgian Compositae 0.0 0.0 0.0 0.0 1.5 
Endive, Curly Compositae 0.0 2.0 0.0 0.0 1.0 
Lettuce, Butterhead / Boston / Bibb Compositae 0.0 0.0 0.0 0.0 2.0 
Lettuce, Crisphead / Iceberg Compositae 0.0 0.0 0.0 0.0 2.0 
Lettuce, Green Leaf Compositae 0.0 0.0 0.0 0.0 2.0 
Lettuce, Red Leaf Compositae 0.0 0.0 1.5 0.0 1.5 
Lettuce, Romaine / Cos Compositae 0.0 0.0 0.0 0.0 2.5 
Radicchio Compositae 1.0 2.5 1.5 0.0 1.0 
Arugula Cruciferae 1.5 2.0 1.5 2.0 1.5 
Cabbage, Green Cruciferae 1.0 1.5 0.0 0.0 1.5 
Cabbage, Napa Cruciferae 1.0 2.0 0.0 0.0 2.0 
Cabbage, Red Cruciferae 0.0 2.0 1.0 0.0 1.5 
Cabbage, Savoy Cruciferae 0.0 1.0 0.0 0.0 1.5 
Collard Greens Cruciferae 1.5 2.5 2.0 0.0 1.0 
Kale Cruciferae 0.0 1.5 1.5 0.0 1.5 
Kale, Lacinato Cruciferae 0.0 1.5 1.5 0.0 1.5 
Kale, Red Cruciferae 0.0 0.0 0.0 0.0 1.0 
Mustard Greens, Curly Cruciferae 4.5 6.5 0.0 4.5 1.5 
Pac Choi Cruciferae 1.0 1.5 0.0 0.0 2.0 
Pac Choi, Baby Cruciferae 0.0 1.5 1.5 0.0 2.0 
Turnip Greens Cruciferae 1.5 3.0 2.0 0.0 1.0 
Watercress Cruciferae 3.0 5.0 1.5 3.5 1.5 
Cilantro Umbelliferae 0.0 1.5 1.5 0.0 1.5 
Parsley, Curly Umbelliferae 0.0 0.0 1.0 0.0 1.5 
Parsley, Italian Umbelliferae 0.0 1.0 0.0 0.0 1.5 
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Product Plant Family Sour Bitter Salty Umami Astr.2 
Beet Greens (Organic) Chenopodiaceae 1.0 3.5 1.0 1.5 2.5 
Beet Greens, Golden (Organic) Chenopodiaceae 2.0 4.0 3.0 2.0 2.5 
Spinach Chenopodiaceae 1.5 2.5 1.0 1.0 2.0 
Swiss Chard, Green Chenopodiaceae 1.5 3.0 1.5 2.5 2.0 
Swiss Chard, Red (Organic) Chenopodiaceae 1.5 4.0 2.0 2.5 2.0 
Endive, Belgian Compositae 1.5 5.5 1.0 0.0 2.5 
Endive, Curly Compositae 1.5 7.0 1.0 0.0 2.0 
Lettuce, Butterhead / Boston / Bibb Compositae 1.0 2.5 0.0 1.5 1.5 
Lettuce, Crisphead / Iceberg Compositae 1.0 2.5 0.0 0.0 1.0 
Lettuce, Green Leaf Compositae 1.0 3.0 1.0 1.5 1.5 
Lettuce, Red Leaf Compositae 1.5 2.5 1.0 1.5 2.0 
Lettuce, Romaine / Cos Compositae 1.0 3.0 1.0 1.5 2.5 
Radicchio Compositae 1.5 8.0 1.0 1.5 2.5 
Arugula Cruciferae 1.5 3.5 1.5 2.5 2.5 
Cabbage, Green Cruciferae 1.5 3.5 0.0 1.0 2.0 
Cabbage, Napa Cruciferae 1.0 3.0 1.0 2.0 1.5 
Cabbage, Red Cruciferae 1.5 4.0 0.0 0.0 2.0 
Cabbage, Savoy Cruciferae 1.5 3.5 0.0 0.0 2.0 
Collard Greens Cruciferae 2.0 8.5 1.0 0.0 3.5 
Kale Cruciferae 1.5 5.0 1.0 2.0 2.5 
Kale, Lacinato Cruciferae 2.0 6.0 1.0 2.0 3.0 
Kale, Red Cruciferae 1.5 3.5 1.0 1.5 2.0 
Mustard Greens, Curly Cruciferae 2.0 7.0 1.0 2.0 2.0 
Pac Choi Cruciferae 1.5 4.5 1.0 2.0 2.5 
Pac Choi, Baby Cruciferae 2.0 3.5 1.5 1.5 3.0 
Turnip Greens Cruciferae 1.5 9.0 0.0 0.0 3.5 
Watercress Cruciferae 1.5 6.5 1.0 1.5 2.5 
Cilantro Umbelliferae 2.0 4.5 1.0 2.0 2.0 
Parsley, Curly Umbelliferae 1.0 5.5 1.0 2.0 2.0 
Parsley, Italian Umbelliferae 1.5 6.5 1.0 2.5 2.0 

1 Intensities are based on a 15-point numerical scale with 0.5 increments, where 0 means “none” and 15 means “extremely 
strong.” 

2 Astr. stands for Astringent 

 

Interestingly, these terms did not necessarily describe actual vegetables tested in this 

study (e.g. celery) and also varied in intensity within vegetable type. For example, among all the 

different types of cabbages evaluated, green cabbage was considered as having the most 

cabbage-like flavor while napa cabbage was the least. Other vegetables with cabbage-like notes 

were pac choi, collard greens, and kale. All of the samples that showed a cabbage-like flavor 

belong to the Cruciferae family. The only exception to this rule was radicchio which belongs to 

the Compositae family and was slightly cabbage-like. On the other hand, the different types of 

lettuces were all scored similarly at the moderate level for the lettuce-like flavor. Cilantro, curly 
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endive, and kale scored at a low intensity for the parsley-like flavor (other than both Italian and 

curly parsleys which received a high intensity score). Watercress and curly mustard greens 

scored at a moderate level for radish-like flavor. Other vegetables such as turnip greens, red 

cabbage, and arugula were low in radish-like flavor. Golden beet greens and arugula scored at a 

low intensity for the spinach flavor. Celery flavor was present at low levels in a few samples 

such as curly endive and Italian parsley. Finally, red Swiss chard, red kale, and beet greens were 

the only ones to score for the beet-like flavor. All the samples with “beet-like” notes were 

pigmented mainly because of the presence of betacyanins (also present in beets), which also 

provide an antioxidant benefit to human health (Nagy Gasztonyi et al., 2001). A very particular 

characteristic of the beet-like flavor is the “earthy” note which is believed to be caused by 

geosmin, an organic compound which is believed to be synthesized by the beet root itself (Lu et 

al., 2003). In our study, beet and earthy/musty flavors were correlated (r = 0.79). 

Other terms adapted from Hongsoongnern and Chambers (2008a) are piney and floral. 

Piney was found in eleven samples at low intensities. Among these samples, the ones with the 

highest intensities were arugula, cilantro, turnip greens, and collard greens. Floral was found in 

only two samples, cilantro and Italian parsley, at very low intensities. The citrus attribute was 

adapted from Lee and Chambers (2007) who used this attribute to describe flavor of green tea. 

The attributes citrus and floral were found only in cilantro and Italian parsley. Those 

characteristics are important because they differentiated those two small leafy greens from the 

other fresh leafy vegetables. 

Sulfur is an attribute reminiscent of hard boiled eggs which is present in vegetables 

mainly from the Cruciferae family including cabbage probably because of the presence of many 

sulfur compounds in vegetables from that family (Bailey et al., 1961). The samples with the 

highest sulfur notes were turnip greens, and cabbages from the savoy, red, and green varieties. 

Other samples with lower intensity of sulfur were green Swiss chard, radicchio, and napa 

cabbage.  

Other terminology included was to describe mouthfeel attributes such as pungent, bite, 

toothetch, heat/burn, and astringent, and the basic tastes sweet, sour, bitter, salty, and umami. All 

these terms have been previously used to describe flavor of products with “green” characteristics 

(Hongsoongnern and Chambers, 2008a; Lee and Chambers, 2007; Morales et al., 1995).    
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Attribute Relationships  

Principal component analysis was conducted to evaluate the relationships among 

attributes. Nine factors accounting for 86% of the total variability between samples were used. 

Selection was based on the Kaiser criterion in which only eigenvalues above one are considered. 

This criterion has been previously used when evaluating terms used to describe green tea (Lee 

and Chambers, 2007) and cheese (Talavera-Bianchi and Chambers, 2008).  In some instances, 

when attributes group in a single factor they may be redundant if they are present in the same 

products, at similar levels, and represent similar sensory experiences.  However, attribute 

grouping may not represent redundancy, but merely the general tendency of particular attributes 

to change similarly over a large group of products.  It is necessary to review the correlated 

attributes to determine whether any are redundant and can be eliminated from further testing.   

Factor 1 groups bitter, astringent, green-unripe, and green-viney attributes.  Bitter taste 

and astringent were both correlated to green-unripe (r = 0.76 and 0.57) and green-viney (r = 0.78 

and 0.61) respectively. Both green-unripe and green-viney must be kept separate because they 

explain different characteristics and some samples that were green-viney were not green-unripe. 

For example, mustard greens and watercress samples were green-viney and bitter at a moderate 

level but were not considered green-unripe. In the same way, even though bitter scored at a lower 

level, pac choi and kale samples were green-viney and not green-unripe. On the other hand, 

turnip and collard greens were very bitter, astringent, green-viney, and slightly green-unripe. 

Lacinato kale was also bitter, astringent, slightly green-unripe and slightly green-viney. The 

green, bitter, and astringent attributes previously have been grouped in a single factor (with a 

positive correlation) when evaluating green tea (Lee and Chambers, 2007), but those authors also 

suggested that the terms were not synonymous and needed to be evaluated separately. Two more 

attributes present in this factor were water-like and overall sweet (negatively correlated).  That 

negative correlation suggests that when samples were green-unripe, green-viney, bitter, and 

astringent, they were not considered as water-like and sweet overall or viceversa. For example, 

all the lettuce samples scored at a low to moderate level for water-like and overall sweet but 

generally were not considered green-unripe and/or green-viney. Only the red leaf and romaine 

samples were considered as green-viney at very low levels. They were also slightly bitter and 

slightly astringent. Lee and Chambers (2007) also reported that overall sweet was negatively 
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correlated with “green”, perhaps because sugars begin to form as products continue to ripen, 

which might result in less “green” character. 

The second factor groups attributes mostly related to mouth feel sensations such as 

heat/burn, bite, pungent, and radish-like flavor. This means that these attributes are normally 

present at the same time. However, they did so at different intensities. For example, turnip greens 

were considered as radish-like, biting, slightly pungent, with no heat/burn. Curly endive was 

considered only as slightly biting. Green Swiss chard was perceived only as slightly radish-like. 

Sometimes, factors can group attributes that scored in the moderate to high range for only a few 

samples or even a single sample, again indicating that the attributes are not redundant, but are 

grouped or correlated for other reasons. Watercress and mustard green both scored moderately 

for the attributes present in factor two which may be the reason why these attributes grouped 

together.  

Factor three grouped attributes such as cabbage-like, green-peapod, and sulfur. This may 

be caused by the cabbage samples which scored at low to moderate levels for these three 

attributes. Sulfur may be considered as a characteristic flavor of cabbage because of the high 

content of sulfur compounds present in this vegetable (Bailey et al., 1961). However, cabbage-

like flavor also includes green, sweet, and pungent notes. This is why some vegetables were 

considered as cabbage-like but did not have a sulfur flavor. For example, kale, baby pac choi, 

and collard greens were considered as having a cabbage-like flavor with little or no sulfur flavor. 

On the other hand, green Swiss chard and cilantro had a slight sulfur note and no cabbage-like 

flavor. Also, green-peapod was not always found in samples that were cabbage-like and 

sulfurous. For example, green leaf and romaine lettuces were slightly green-peapod and had 

neither cabbage-like nor sulfur notes. Arugula had a moderate intensity of green-peapod but was 

only slightly cabbage-like and no sulfur. Celery-like and lettuce-like attributes were negatively 

correlated to this factor. This is probably due to the lettuce and curly endive samples which were 

low to moderate on celery-like and lettuce-like but hardly scored for green-peapod, cabbage-like, 

and/or sulfur. 

The fourth factor groups citrus, floral, petroleum-like, and piney. This grouping may be 

caused by the cilantro sample, which had a unique flavor compared to the rest of the samples 

evaluated and scored at low to moderate intensities for all these attributes. Some other samples 

scored sporadically for these attributes. For example, Arugula was piney and petroleum-like but 
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neither citrus nor floral. Both kale samples and curly endive were slightly piney. Italian parsley 

was slightly floral, slightly petroleum-like, and slightly piney but no citrus. Citrus and floral have 

also been grouped in the same factor in the past (Lee and Chambers, 2007), but clearly represent 

different sensory experiences. 

The fifth factor grouped green-grassy/leafy, overall green, woody, and parsley-like. 

“Green” and “grassy” attributes have been previously used together to describe aroma of 

products such as virgin olive oil (Morales et al., 1995) and durian (Voon et al., 2007). Panelists 

perceived that many times, the majority of the overall green character of the samples was 

specifically related to green-grassy/leafy. This is especially true for the parsley samples that 

scored at a high intensity for both. This is the reason why the parsley-like flavor also is included 

in this factor. However, in some cases, overall green was explained by notes other than green-

grassy/leafy and parsley-like. For example, the cabbage samples scored moderately for overall 

green while green-peapod and green-grassy/leafy were scored at a lower intensity. The parsley-

like attribute was not present in any of the cabbage samples. Arugula also scored at a moderate 

level for overall green but was perceived as more green-peapod and green-viney than green-

grassy/leafy and was not parsley-like. Parsley samples scored the highest for the woody attribute 

in comparison to the other samples evaluated which also explains the presence of woody in this 

factor. Woody was also high in samples such as red kale, red Swiss chard, and pac choi. The 

metallic attribute correlated negatively in this factor. Cilantro, radicchio, and Belgian endive 

were the only samples to have a slight metallic note present. It is important to note that radicchio 

and Belgian endive were the samples with the lowest overall green score among all the samples 

evaluated. This suggests that samples with “green” characteristics are usually not metallic.  

Factor six grouped only beet-like and musty/earthy flavors. Even though all samples with 

beet-like notes were also musty/earthy, not all samples with the musty/earthy character were 

considered as beet-like. Only the pigmented samples red Swiss chard, beet greens, and red kale 

were considered as beet-like. As previously explained, organic compounds in the beet root can 

explain the earthy flavors in this type of plant. 

Factor seven groups salty, umami, and soapy attributes which are mostly present in 

samples such as golden and red beet greens, Italian and curly parsley, and red Swiss chard. 

Factor eight grouped spinach-like and tooth-etch flavors which were present in spinach, golden 

and red beet greens, and red Swiss chard. Some variations were also present. For example, 
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radicchio was perceived as slightly tooth-etch but no spinach-like while romaine lettuce was 

slightly spinach-like with no tooth-etch. Finally, sour taste is correlated alone with factor nine 

and was present in all of the samples at low intensities.     

In summary, the thirty-two attributes used are important to describe flavor of fresh leafy 

vegetables and should be kept separate. Some attributes such as overall green, green-

grassy/leafy, musty/earthy, overall sweet, and bitter are present in all the samples and describe 

more general flavor characteristics varying in intensity among samples. Other attributes such as 

citrus, floral, metallic, petroleum-like, and soapy are more sporadically present and can be used 

to describe samples with unique flavor characteristics such as cilantro or parsley. The attributes 

used by certain studies will depend on the type of vegetable used and the need to describe 

general characteristics such as overall green or more specific characteristics such as citrus or 

floral.  

Conclusions 

Thirty-two attributes were selected, defined, and referenced by a highly trained 

descriptive panel to explain the flavor characteristics of fresh leafy vegetables commonly 

consumed in the United States. Additionally, this lexicon was validated and principal component 

analysis was conducted on the consensus data finding no major redundancies between attributes. 

This lexicon can be used to evaluate flavor of vegetables in a more specific manner avoiding the 

use of general terms such as “taste” or “typical flavor.”   
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CHAPTER 4 - Effect of Organic Production and Fertilizer Variables 

on the Sensory Properties of Pac Choi (Brassica rapa cv. Mei Qing 

Choi) and Tomato (Solanum lycopersicum cv. Bush Celebrity) 

Abstract 

The increased popularity of organic production has amplified the need for research that 

will help in understanding how this production system affects the final quality of vegetables. The 

effects of organic and conventional production on the sensory characteristics of pac choi (often 

called bok choy) and tomato were studied. Samples were grown in two environments at the 

Kansas State University Horticulture Research Center located in Olathe, Kansas. Highly trained 

descriptive panelists from the Sensory Analysis Center at Kansas State University used 

previously developed flavor lexicons for tomatoes and leafy greens to evaluate the samples. 

Crispness, green-grassy/leafy, piney, and pungent attributes were normally higher in 

conventional pac choi only for the field samples. Pac choi grown in high tunnels showed slight 

differences only at certain levels of fertilizer. Organic tomatoes grown in the field were generally 

juicier and less mealy compared to conventionally grown tomatoes. In the high tunnel, tomatoes 

were generally stronger in tomato aroma. However, all differences generally were very small. It 

can be concluded that organic and conventional production systems do not create major sensory 

differences in the vegetables evaluated. The few differences that were detected were so small 

they may not be of practical importance.  

Practical Applications 

The increased popularity of organic production has amplified the need for research that 

will help in understanding how this production system affects the final quality of food products 

and more specifically vegetables. This study suggested no major differences between organic 

and conventional production systems applied in two environments and using three levels of 

fertilizer.  
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Introduction 

Organic foods are produced using more environmentally friendly conditions than foods 

produced conventionally (Zhao et al., 2006). Organic production uses crop rotation, cover crops 

and natural fertilizers and pesticides to maintain long term soil fertility, minimize pollution and 

produce high quality products (Winter and Davis, 2006; Bourn and Prescott, 2002). However, 

studies of food quality seem inconsistent and show no clear trends on the effects that organic 

fertilization has on the final quality (Bourn and Prescott, 2002; Basker, 1992). 

Several studies have been conducted to study the effects that organic production has on 

the chemical, nutritional and sensory characteristics of foods. For example, some studies that are 

focused on the nutritional content of vegetables suggest that crops produced under organic 

methods may be richer in phenolic compounds and vitamin C (Zhao et al., 2006; 

Rembialkowska, 2007), lower in pesticide residues, and lower in nitrate content (Woese et al., 

1997). Nonetheless, it is unknown if these differences are biologically significant or if they 

translate into quality differences perceivable by consumers (Winter and Davis, 2006). Thus far, 

research has shown that consumers do not find sensory difference between organically and 

conventionally grown vegetables (Schutz and Lorenz, 1976; Zhao et al., 2007a).  

Similarly, the differences between organic and conventional products for individual 

sensory characteristics detected by trained panelists remain inconsistent and show no clear 

patterns at this point. For example, Haglund et al. (1999) found that conventional carrots had a 

higher “carrot taste” while organic carrots were more bitter. DeEll and Prange (1992) suggested 

that organic apples were firmer than conventional apples at the time of harvest but did not differ 

in juiciness, sweetness or sourness. Similarly, Caussiol and Joyce (2004) showed that there were 

no flavor differences between organically and conventionally grown bananas. All these 

inconsistencies might exist because the differences between organic and conventional practices 

may be product specific and should be observed in individual categories rather than all together 

(Fillion and Arazi, 2002).  

Certainly to study the effects of organic production on the quality of vegetables is 

difficult and complicated even further by the large number of factors that influence the quality of 

crops. Those factors include genotype, plant tissue, fruit size, stage of development, ripening, 

diseases and pests, soil condition, irrigation, light exposure and pesticide application (Zhao et al., 

2006). Manipulating the amount of fertilizer can have an effect on the quality of vegetables 
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because the amount of nitrogen the plant will absorb is modified, which could affect the plants’ 

flavor, size and shelf life (Rembialkowska, 2007; Mattheis and Fellman, 1999). Because of the 

large number of variables involved in the production of vegetables, well managed and controlled 

cultivation tests are viewed by scientists as the most accurate way of studying the effects of 

organic farming practices (Woese et al., 1997).      

The objective of this study is to evaluate the effects of production systems (i.e. organic 

and conventional) on the sensory characteristics of pac choi (also known as bok choy, pak choy 

or bai tsai) and tomatoes grown in two controlled environments (i.e. field and high tunnel) and 

using three concentrations of fertilizer (i.e. high, low and no fertilizer). 

Materials and Methods 

Samples 

Trials were conducted at the K-State Horticulture Research and Extension Center, Olathe, 

Kansas, on experimental plots established in 2002 for comparison of crops grown under organic 

and conventional production systems in high tunnels (unheated, passively ventilated 

greenhouses) and open field plots (Zhao et al., 2007a).  The soil was a Kennebec silt loam. Six 

9.8 m x 6.1 m high tunnels with 1.5m sidewalls (Stuppy, North Kansas City, MO) and six 

adjacent 9.8 m x 6.1 m field plots were used for this study. High tunnels were covered with 

single layer 6-mil (0.153mm) K-50 polyethylene (Klerk’s Plastic Product Manufacturing, Inc., 

Richburg, SC).  At establishment of the experimental plots, the six high tunnels were divided 

into three groups (blocks) and the two high tunnels in each block were randomly assigned for 

long-term conventional or organic management treatments.  A similar set-up was used in the 

field plots. Organic plots were managed in compliance with USDA National Organic Program 

standards, and were inspected and certified in 2003, 2006, 2007 and 2008.  

For this study, beginning in 2007, each high tunnel or open field plot was subdivided into 

three 3.2 m x 6.1 m plots to which one of three fertilizer levels were assigned (high, low, and no 

fertilizer) following a latin square design to avoid bias due to position effects in the high tunnels.  

Fertilizer rates were determined based on soil analysis at the beginning of the study in 2007, and 

recommendations for vegetable crops in Kansas (Marr et al., 1998), with compost applied to 

organic plots and synthetic fertilizer applied to conventional plots.  Compost application rates 

were based on the assumption that 50% of the nitrogen from compost would be available to 
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plants during the growing season, while 100% would be available from conventional fertilizers 

(Warman and Havard, 1997).  Low and high fertility plots were fertilized with equal amounts of 

compost or synthetic fertilizer at the beginning of the growing season, and high fertility plots 

received additional fertilization during the growing season as described below.  

Pac choi (Brassica rapa L. chinensis ‘Mei Qing Choi’) (Johnny’s Selected Seed, Albion, 

ME, U.S.A.) and tomato (Lycopersicon esculentum ‘Bush Celebrity’) (Totally Tomatoes, 

Randolph, WI, U.S.A.) were grown in one half of each open field or high tunnel plot (6.8 m x 3 

m) in 2007 and 2008, with a rotation between pac choi and tomato plots each year.  In our 

experimental system, a spring and a fall crop of pac choi was grown each year, while a single 

crop of tomato was grown.  Between the spring and fall pac choi crops, plots were seeded with a 

summer cover crop of buckwheat (Fagopyrum sagittatum) (Albert Lea Seed, Albert Lea, MN, 

U.S.A.) at a rate of 134 kg/ha.  In the late fall, all plots were seeded with a cover crop of annual 

rye (Secale cereale) (Albert Lea Seed, Albert Lea, MN, U.S.A.) at a rate of 229 kg/ha.  

Conventional high and low fertility plots were fertilized with Jack’s Professional Peat-lite 

N-P2O5-K2O 20-10-20 (Allentown, PA, U.S.A.), at a rate of 98 kg/ha. Organic plots received 

MicroLeverage compost N-P2O5-K2O 0.6-0.8-0.5 (Hughesville, MO, U.S.A) at a rate of 197 

kg/ha.  Starting 2 weeks after planting, high fertility plots received additional fertilization at a 

rate of 7.2 kg/ha.  Fertilizer used on organic plots was fish hydrolyzate N-P2O5-K2O 2.23-4.35-

0.3 (Neptune’s Harvest, Gloucester, MA, U.S.A) and conventional plots received calcium nitrate 

and potassium nitrate at a rate calculated to apply an amount of calcium equivalent to that 

present in the fish hydrolyzate.  The tomato crop received 6 weekly applications, for a total of 43 

kg/ha, and the spring and fall pac choi crops each received three such applications.   

Pac choi and tomato transplants were started in a greenhouse in Sunshine Mix Special 

Blend E6340 (SunGro Horticulture, Bellevue, WA) supplemented with MicroLeverge compost.  

The pac choi trial was planted on April 1 and harvested on May 5.  The tomato trial was planted 

on May 5 and harvested on July 18. All testing occurred in 2008.   

Sample Preparation 

Pac choi 

 Plants were harvested one to three days before testing. After harvest, plants were 

immediately rinsed using cold tap water to remove excess dirt and stored in a refrigerated 
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container for transport to the Kansas State University campus located in Manhattan, Kansas. 

Once samples arrived, they were moved to a walk-in refrigerator for storage at 4ºC until testing. 

The plants were sprayed daily with tap water to maintain moisture. The day of testing the plants 

were retrieved from the refrigerator. Random leaves of similar visual characteristics were 

removed from each stalk (not including the stem) of each treatment, rinsed using distilled water 

and excess water was eliminated using a salad spinner (Oxo International, Ltd., New York, NY). 

Samples were served to the panelists monadically in 6” foam plates identified with a three-digit 

code to eliminate potential panelist bias.  

Tomatoes 

Tomatoes were harvested at the pink stage, three to six days before testing (United States 

Department of Agriculture [USDA], 1975). When harvested, samples were placed in labeled 

boxes for their transportation to the Kansas State University campus located in Manhattan, 

Kansas. Special care was taken when handling the tomatoes to avoid damage because it had been 

suggested that internal bruising may alter the quality and flavor of tomatoes (Moretti et al., 

2002). Once tomatoes arrived, they were organized in trays sorted by treatment and placed on a 

flat surface (no tomato on top of another) to avoid damage. On the day of testing three tomatoes 

at the red stage (USDA, 1975) with similar visual characteristics were selected from each 

treatment. Samples were washed thoroughly using tap water at room temperature and then cut in 

half lengthwise. One half of each tomato was cut in ½-inch wedges and served to the panelists in 

covered, odor-free 3.25 oz. plastic cups. Cups with the samples were labeled with a 3-digit code 

to avoid potential bias. The tomatoes were never refrigerated.   

Panelists 

Six highly trained panelists from the Sensory Analysis Center at Kansas State University 

(Manhattan, Kans., U.S.A.) were selected for this study. The panelists had completed more than 

120 hours of descriptive training, averaging more than 2000 hours of testing experience and had 

prior experience testing vegetables and vegetable products. 

Evaluation Procedure 

Previously developed lexicons were used for this study. The lexicon for pac choi was 

developed by Talavera-Bianchi et al. (2009) to describe the flavor of different leafy vegetables 
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and was produced using an adaptation of the flavor profile method (Caul, 1957; Keane, 1992) 

which has been used by many studies in the past to describe a variety of products such as cheese 

(Heisserer and Chambers, 1992; Retiveau et al., 2005), green tea (Lee and Chambers, 2007), 

tomatoes (Hongsoongnern and Chambers, 2008b) and green flavors (Hongsoongnern and 

Chambers, 2008a). The lexicon for tomatoes was previously developed by Hongsoongnern and 

Chambers (2008b) to describe flavor of fresh and processed tomatoes. Lexicons with definitions 

and references were presented to the panelists in one 90-minute session prior to the start of 

testing so they could become familiar with the terminology, test procedures and samples.   

For testing, panelists were presented with the lexicon and references used during 

orientation. Data were collected using a computerized collection system (Compusense Five 

version 4.4.8, 2002, Guelph, ON, Canada). Intensities for each attribute were recorded using a 0-

15 point scale divided in 0.5 point increments, 0 meaning none and 15 meaning extremely high. 

Panelists evaluated the samples individually and followed a completely randomized block design 

with replication as the blocking factor. Twelve samples of pac choi were evaluated in each of 

three 180-minute sessions. Twelve samples of tomatoes also were evaluated in another set of 

three 180-minutes sessions. Reverse osmosis, deionized, carbon-filtered water and unsalted 

crackers were used to rinse the palate between the samples. A similar procedure has been used in 

the past to evaluate the sensory characteristics of four samples of calcium-biofortified lettuce 

(Park et al., 2009)  

Analysis 

Treatments were organized in a split plot design with production system (i.e. organic vs. 

conventional) as the whole plot and fertilizer amount (i.e. control, low and high) as the sub-plot. 

Analysis of variance (ANOVA) was used to detect significant differences between treatments for 

individual attributes. Principal component analysis (PCA) was used to evaluate relationships 

between treatments and to provide a graphic representation of the results. Cluster analysis (Ward 

method) was used to separate groups of similar sensory characteristics. This analysis was 

computed in SAS® (2002, version 9.1.3; SAS Institute, Cary, NC).  Because of the complexity 

of the design, plots for field vs. high-tunnel production were not randomized and thus a statistical 

comparison of those data is not made. 
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Results and Discussion 

Pac choi  

Results indicated few differences between organic and conventional production systems. 

In addition, the few differences found were generally small (Table 4.1). Additionally, differences 

between organic and conventional pac choi were present only in field plants. Green-grassy/leafy, 

piney and pungent attributes were higher (P-value ≤ 0.05) in conventional pac choi than 

organically produced pac choi. However the differences were quite small ranging from 0.2-0.4 

points. Organic and conventional production systems applied in the fields also were compared at 

varying concentrations of fertilizer (Table 4.2). For example, the green-grassy/leafy attribute was 

significantly different when high and no fertilizer were applied. There were no differences when 

a low concentration of fertilizer was applied. Crispness and moistness attributes were higher for 

conventional pac choi only when a high concentration of fertilizer was applied. Again, the 

differences were small, approximately 0.5.  

In the high tunnels a few small differences were present between organic and 

conventional pac choi for individual fertilizer concentrations only (Table 4.3). For example, 

Soapy and petroleum-like attributes were higher for organic pac choi only when no fertilizer was 

applied in a high tunnel. When low concentrations of fertilizer were applied the conventional pac 

choi was more petroleum-like and bitter. In addition, conventional pac choi was more sweet 

overall when no fertilizer was applied.   
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Table 4.1. Sensory differences between organic and conventional pac choi grown in the 
field and high tunnel 

Attribute Environment Organic Conventional 
Field1 3.0b 3.3a Crispness 
High Tunnel 3.5 3.5 
Field 4.0 4.0 Moistness 
High Tunnel 4.0 4.1 
Field 4.1 4.2 Fiber Awareness 
High Tunnel 4.4 4.5 
Field 5.9 6.2 Green Overall 
High Tunnel 6.3 6.3 
Field 1.1 1.1 Green-Unripe 
High Tunnel 0.9 0.9 
Field 0.4 0.5 Green-Peapod 
High Tunnel 0.5 0.5 
Field1 4.8b 5.2a Green-

Grassy/Leafy High Tunnel 5.3 5.3 
Field 1.9 1.9 Green-Viney 
High Tunnel 2.0 2.0 
Field 2.5 2.6 Cabbage 
High Tunnel 2.7 2.7 
Field 1.9 1.8 Lettuce 
High Tunnel 1.8 1.8 
Field 2.0 1.9 Spinach 
High Tunnel 2.1 1.9 
Field 1.3 1.5 Parsley 
High Tunnel 1.4 1.3 
Field 2.0 2.0 Radish 
High Tunnel 2.2 2.2 
Field1 0.5b 0.8a Piney 
High Tunnel 1.0 0.8 
Field 1.5 1.7 Woody 
High Tunnel 1.9 1.8 
Field 1.8 1.8 Water-like 
High Tunnel 1.8 1.8 
Field 2.2 2.3 Musty/Earthy 
High Tunnel 2.4 2.5 
Field 1.6 1.8 Sulfur 
High Tunnel 2.1 2.0 
Field 1.0 1.2 Soapy 
High Tunnel 1.5 1.4 
Field 0.3 0.5 Petroleum-like 
High Tunnel 0.8 0.7 
Field1 1.9b 2.1a Pungent 
High Tunnel 2.3 2.2 
Field 2.0 2.1 Bite 
High Tunnel 2.3 2.4 
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Field 1.9 2.0 Tooth etch 
High Tunnel 2.1 2.1 
Field 1.3 1.4 Overall Sweet 
High Tunnel 1.1 1.3 
Field 1.5 1.6 Sour 
High Tunnel 1.7 1.7 
Field 6.7 6.7 Bitter 
High Tunnel 6.9 7.1 
Field 0.4 0.5 Salty 
High Tunnel 0.5 0.5 
Field 2.0 2.0 Umami 
High Tunnel 2.0 2.0 
Field 1.8 1.8 Astringent 
High Tunnel 1.9 2.0 

1Significant differences at 95% confidence.  
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Table 4.2. Sensory differences between organic and conventional pac choi grown in the 
field at three fertilizer levels 

Attribute Fertilizer Amount Organic Conventional 
Control 2.9 3.0 
Low 3.2 3.3 

Crispness 

High1 2.8b 3.5a 
Control 4.1 3.8 
Low 4.1 4.2 

Moistness 

High1 3.8b 4.2a 
Control 3.9 3.8 
Low 4.3 4.2 

Fiber Awareness 

High 4.2 4.6 
Control 5.9 6.0 
Low 5.9 6.1 

Green Overall 

High 6.0 6.3 
Control 1.4 1.3 
Low 1.0 0.9 

Green-Unripe 

High 0.9 1.0 
Control 0.4 0.6 
Low 0.4 0.4 

Green-Peapod 

High 0.4 0.5 
Control1 4.7b 5.2a 
Low 5.0 5.0 

Green-
Grassy/Leafy 

High1 4.8b 5.4a 
Control 1.8 1.7 
Low 1.8 2.0 

Green-Viney 

High 2.1 2.0 
Control 2.4 2.5 
Low 2.6 2.6 

Cabbage 

High 2.6 2.7 
Control 2.0 1.9 
Low 1.9 1.8 

Lettuce 

High 1.7 1.7 
Control 2.0 1.9 
Low 2.0 2.0 

Spinach 

High 1.9 2.0 
Control 1.2 1.4 
Low 1.4 1.5 

Parsley 

High 1.3 1.5 
Control 1.9 1.9 
Low 1.9 1.9 

Radish 

High 2.1 2.2 
Control 0.3 0.6 
Low 0.4 0.8 

Piney 

High 0.8 1.1 
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Control 1.2 1.4 
Low 1.5 1.7 

Woody 

High 1.7 2.1 
Control 1.9 1.8 
Low 1.9 1.8 

Water-like 

High 1.8 1.8 
Control 1.9 2.2 
Low 2.3 2.3 

Musty/Earthy 

High 2.3 2.5 
Control 1.3 1.6 
Low 1.7 1.7 

Sulfur 

High 1.9 2.1 
Control 0.8 1.1 
Low 1.2 1.3 

Soapy 

High 1.0 1.3 
Control 0.2 0.3 
Low 0.3 0.5 

Petroleum-like 

High 0.4 0.7 
Control 1.4 1.8 
Low 2.0 2.1 

Pungent 

High 2.1 2.4 
Control 1.7 1.9 
Low 2.1 2.2 

Bite 

High 2.1 2.3 
Control 1.8 1.8 
Low 2.0 2.1 

Toothetch 

High 1.9 2.1 
Control 1.4 1.4 
Low 1.3 1.5 

Overall Sweet 

High 1.3 1.3 
Control 1.4 1.5 
Low 1.5 1.6 

Sour 

High 1.6 1.6 
Control 6.3 6.3 
Low 7.0 6.6 

Bitter 

High 6.8 7.2 
Control 0.4 0.4 
Low 0.4 0.6 

Salty 

High 0.4 0.5 
Control 1.9 1.9 
Low 2.1 2.1 

Umami 

High 2.0 2.1 
Control 1.8 1.7 
Low 1.8 1.8 

Astringent 

High 1.8 1.9 
1Significant differences at 95% confidence.  
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Table 4.3. Sensory differences between organic and conventional pac choi grown in the 
high tunnel at three fertilizer levels 

Attribute Fertilizer Amount Organic Conventional 
Control 3.5 3.4 
Low 3.6 3.8 

Crispness 

High 3.6 3.3 
Control 4.1 4.1 
Low 4.0 4.3 

Moistness 

High 3.9 3.9 
Control 4.3 4.4 
Low 4.5 4.6 

Fiber Awareness 

High 4.4 4.4 
Control 6.4 6.3 
Low 6.2 6.3 

Green Overall 

High 6.2 6.3 
Control 0.9 0.9 
Low 0.9 0.9 

Green-Unripe 

High 1.0 0.9 
Control 0.4 0.6 
Low 0.5 0.4 

Green-Peapod 

High 0.5 0.5 
Control 5.4 5.3 
Low 5.2 5.4 

Green-Grassy/Leafy 

High 5.1 5.2 
Control 1.8 1.8 
Low 2.0 2.1 

Green-Viney 

High 2.1 1.9 
Control 2.6 2.6 
Low 2.8 2.7 

Cabbage 

High 2.8 2.7 
Control 1.8 1.8 
Low 1.9 1.8 

Lettuce 

High 1.6 1.7 
Control 2.0 1.9 
Low 2.1 2.0 

Spinach 

High 2.0 2.0 
Control 1.4 1.4 
Low 1.4 1.3 

Parsley 

High 1.3 1.2 
Control 2.3 2.2 
Low 2.1 2.2 

Radish 

High 2.3 2.1 
Control 1.2 0.9 
Low 1.0 1.1 

Piney 

High 0.9 0.7 
 
 

80  



 

Control 1.8 1.8 
Low 1.9 1.9 

Woody 

High 1.9 1.7 
Control 1.8 1.9 
Low 1.8 1.9 

Water-like 

High 1.8 1.8 
Control 2.3 2.5 
Low 2.4 2.5 

Musty/Earthy 

High 2.5 2.4 
Control 2.1 2.0 
Low 2.1 2.2 

Sulfur 

High 2.1 1.8 
Control1 1.6a 1.3b 
Low 1.3 1.6 

Soapy 

High 1.5 1.3 
Control1 1.2a 0.6b 
Low1 0.4b 0.9a 

Petroleum-like 

High 0.8 0.6 
Control 2.3 2.3 
Low 2.2 2.3 

Pungent 

High 2.3 2.0 
Control 2.3 2.4 
Low 2.3 2.5 

Bite 

High 2.3 2.2 
Control 2.2 2.1 
Low 2.1 2.2 

Toothetch 

High 2.0 2.0 
Control1 1.2b 1.5a 
Low 1.2 1.2 

Overall Sweet 

High 1.0 1.3 
Control 1.7 1.6 
Low 1.6 1.8 

Sour 

High 1.8 1.7 
Control 7.1 7.0 
Low1 6.6b 7.3a 

Bitter 

High 6.9 7.1 
Control 0.7 0.5 
Low 0.5 0.5 

Salty 

High 0.4 0.4 
Control 2.1 2.1 
Low 2.0 2.1 

Umami 

High 2.0 1.8 
Control 1.9 2.0 
Low 1.9 2.0 

Astringent 

High 2.0 1.9 
1Significant differences at 95% confidence.  
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Different results between plants grown in the field and high tunnels may exist because 

plants grown in the field are exposed to a number of environmental factors such as temperature 

changes, weather, wind, light, and disease which may affect their final quality (Zhao et al., 

2007a; Peirce, 1987; Antonious et al., 1996). In our study it appears that when plants are more 

protected in the high tunnels, they have even fewer small sensory differences than field grown 

pac choi perhaps because they are growing more similarly.  For example, Antonious et al. (1996) 

suggested that that even a small difference in light reflecting from mulches of different colors 

had an effect on the flavor strength of growing turnip plants because it varied the amount of 

glucosinolates, compounds frequently found in plants of the Cruciferous family.  

It is important to stress that the few sensory differences found between production 

systems and among fertilizer amounts were very small and may not be detected by untrained 

consumers. Previous testing has shown that a panel of untrained consumers did not find sensory 

differences between organic and conventional produce (Zhao et al., 2007a). The few differences 

found may be related to stage of maturity at the time of harvest which can be affected by many 

of the factors included in this experiment. After genotype, plant maturity at the time of harvest 

may be the most important factor affecting quality of vegetables (Kader, 2008).  

Principle component analysis (Figure 4.1) shows the distribution of the pac choi samples 

grown under different treatments in the attribute space. Cluster analysis suggests that the samples 

are separated into two general groups, based mainly on environmental conditions (field and high 

tunnel). It has been shown in the past that the effect of a protected environment on final plant 

quality outweighs the effect of fertilizer (Zhao et al., 2007a). In our study all the plants grown in 

the high tunnel grouped together while the samples grown in the field, with the exception of one 

sample, grouped together in the other cluster. Interestingly, the sample that failed to group with 

the other field plants and grouped with the high tunnel plants instead was the one that had been 

treated with a high amount of conventional fertilizer. This may suggest that, because this plant 

had higher amounts of nutrients available, it was able to develop more than the other field plants. 

This translated into flavor characteristics more similar to the plants grown in the high tunnels. 

The plants grown in the high tunnel, including the field plant produced with conventional high 

fertilizer, had numerically higher intensities of attributes such as crispness, sulfur, green overall 

or woody. On the other hand, the field plants and especially the organic plants with no fertilizer 

had seemingly higher intensities of green-unripe, lettuce and sweet overall. These results may  
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Figure 4.1. Principal component and cluster analyses of sensory attributes for pac choi 
grown in two environments (field and high tunnel), two production systems (organic and 
conventional), and three amounts of fertilizer (high, low, and no fertilizer [control]). 
CFC=conventional-field-control; CFL=conventional-field-low fertilizer; 
CFH=conventional-field-high fertilizer; OFC=organic-field-control; OFL=organic-field-
low fertilizer; OFH=organic-field-high fertilizer; CHC=conventional-high tunnel-control; 
CHL=conventional-high tunnel-low fertilizer; CHH=conventional-high tunnel-high 
fertilizer; OHC=organic-high tunnel-control; OHL=organic-high tunnel-low fertilizer; 
OHH=organic-high tunnel-high fertilizer.   
 

suggest that the differences observed in this study are linked to the maturity of the plant at the 

time of harvest rather than fertilizer amount or environmental conditions. Plants grown in the 

high tunnel and plants with higher amounts of fertilizer where able to develop more and 

therefore had different flavor characteristics. The influence of maturity level at the time of 

harvest is a critical factor as it affects flavor because production of flavor and aroma volatiles 

changes as ripening progresses (Mattheis and Fellman, 1999).  

This study suggests that flavor and texture differences between organic and conventional 

pac choi are few and quite small if found.  Prior research has hypothesized that flavor could be 

changed by organic production because organic production may increase the chance of insect 
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attack, therefore increasing the concentration of phenolic compounds which effect the flavor of 

pac choi (Young et al., 2005). The content of phenolic compounds has been positively correlated 

with bitterness and astringency (Mondy et al., 1971).   

Tomato 

Results indicate that out of the twenty-five sensory attributes evaluated, only three 

showed significant overall differences (P-value ≤ 0.05) between organic and conventionally 

grown tomatoes (Table 4.4). When tomatoes were grown in the field, the organic tomatoes 

generally were more juicy and less mealy compared to conventionally grown tomatoes. When 

the plants were grown in the high tunnels, organic tomatoes had a higher tomato aroma than 

conventional tomatoes. However, these differences were small. Differences also were studied for 

individual amounts of fertilizer (Table 4.5). For plants grown in the field, the difference in 

juiciness favoring the organic plants was higher for tomatoes to which no fertilizer was applied 

(control). Similarly, the mealy attribute was higher for conventional tomatoes only when a low 

concentration of fertilizer was applied. In addition, there was a very slight cardboard flavor in 

organic tomatoes only when low fertilizer was applied.  

For tomatoes grown in a high tunnel, a few minor differences also were noted for 

individual amounts of fertilizer (Table 4.6). When no fertilizer was applied, conventionally 

grown tomatoes were higher in seed awareness and green-viney flavor while organic tomatoes 

were higher in ripeness perception. Organic tomatoes also were more mealy when tomatoes were 

grown with a high amount of fertilizer. It is important to stress that all of the differences found 

were rather small and may be related to environment or maturity. Differences between 

environments may exist because the high tunnels protect the plants against environmental factors 

such as weather and temperature changes, insect attacks or winds which may affect the quality of 

the plant by reducing stress (Zhao et al., 2007a). 

Organic fertilization releases nutrients slower than conventional fertilization, which may 

cause reduced concentrations of sulfur and phosphorus in the leaves, limiting the yield and 

growth of organic tomatoes (Heeb et al., 2006). However, these limitations have not yet proven 

to affect the flavor of tomatoes. Our study does not show major differences or tendencies 

favoring one production system over the other. Organic tomatoes may show superior 

characteristics because they have a higher tomato aroma and are more juicy than conventional 
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tomatoes. However, these differences are too small to provide clear conclusions. Superior taste 

of organic tomatoes is possible because  

 

Table 4.4. Sensory differences between organic and conventional tomato grown in the field 
and high tunnel 

Attribute Environment Organic Conventional 
Field 7.8 7.8 Tomato Aroma 
High Tunnel1 8.3a 8.1b 
Field 5.0 5.2 Green-Viney Aroma 
High Tunnel 4.7 4.9 
Field 0.2 0.1 Overripe Aroma 
High Tunnel 0.2 0.3 
Field 7.2 7.4 Color 
High Tunnel 8.1 8.2 
Field 9.2 8.9 Uniformity of Color 
High Tunnel 9.7 8.9 
Field1 9.9a 9.3b Juiciness 
High Tunnel 10.0 9.8 
Field1 2.6b 2.9a Mealy 
High Tunnel 3.2 2.9 
Field 4.2 4.4 Skin Awareness 
High Tunnel 4.6 4.6 
Field 2.3 2.3 Seed Awareness 
High Tunnel 2.6 2.9 
Field 4.1 4.3 Fiber Awareness 
High Tunnel 3.8 3.9 
Field 8.0 7.9 Tomato 
High Tunnel 8.6 8.6 
Field 7.5 7.4 Ripeness 
High Tunnel 8.6 8.5 
Field 5.1 4.9 Green-Viney 
High Tunnel 4.4 4.6 
Field 1.9 1.8 Umami 
High Tunnel 2.3 2.2 
Field 2.9 2.8 Fruity 
High Tunnel 3.3 3.2 
Field 0.1 0.0 Cardboard 
High Tunnel 0.0 0.0 
Field 0.1 0.1 Fermented 
High Tunnel 0.1 0.2 
Field 2.6 2.6 Musty/Earthy 
High Tunnel 2.6 2.7 
Field 2.7 2.6 Overall Sweet 
High Tunnel 3.1 3.0 
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Field 1.4 1.3 Sweet 
High Tunnel 1.5 1.6 
Field 2.9 2.8 Sour 
High Tunnel 2.6 2.7 
Field 1.4 1.3 Salty 
High Tunnel 1.4 1.4 
Field 2.7 2.5 Bitter 
High Tunnel 2.4 2.6 
Field 1.8 1.7 Astringent 
High Tunnel 1.7 1.7 
Field 0.7 0.7 Metallic 
High Tunnel 0.7 0.7 

1Significant differences at 95% confidence.  
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Table 4.5. Sensory differences between organic and conventional tomatoes grown in the 
field at three fertilizer levels 

Attribute Fertilizer Amount Organic Conventional 
Control 7.3 7.6 
Low 8.2 8.0 

Tomato Aroma 

High 7.9 7.9 
Control 5.1 5.4 
Low 5.1 5.1 

Green-Viney Aroma 

High 4.8 5.0 
Control 0.0 0.1 
Low 0.2 0.0 

Overripe Aroma 

High 0.4 0.3 
Control 7.1 7.2 
Low 7.5 7.5 

Color 

High 7.1 7.4 
Control 8.8 8.5 
Low 9.2 9.5 

Uniformity of Color 

High 9.6 8.7 
Control1 9.6a 8.9b 
Low 10.0 9.4 

Juiciness 

High 10.2 9.6 
Control 2.8 3.0 
Low1 2.4b 3.0a 

Mealy 

High 2.5 2.7 
Control 4.2 4.2 
Low 4.1 4.8 

Skin Awareness 

High 4.3 4.1 
Control 2.2 2.1 
Low 2.3 2.6 

Seed Awareness 

High 2.5 2.3 
Control 4.2 4.4 
Low 4.0 4.3 

Fiber Awareness 

High 3.9 4.0 
Control 7.6 7.6 
Low 8.3 8.0 

Tomato 

High 8.3 8.1 
Control 7.1 7.0 
Low 7.7 7.5 

Ripeness 

High 7.8 7.6 
Control 5.5 5.0 
Low 4.9 5.1 

Green-Viney 

High 4.8 4.5 
Control 1.7 1.7 
Low 2.1 1.8 

Umami 

High 2.0 1.9 
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Control 2.7 2.6 
Low 2.9 2.9 

Fruity 

High 3.1 2.9 
Control 0.0 0.0 
Low1 0.2a 0.0b 

Cardboard 

High 0.0 0.0 
Control 0.0 0.1 
Low 0.1 0.2 

Fermented 

High 0.3 0.1 
Control 2.6 2.4 
Low 2.7 2.7 

Musty/Earthy 

High 2.6 2.6 
Control 2.5 2.4 
Low 2.9 2.6 

Overall Sweet 

High 2.8 2.7 
Control 1.3 1.2 
Low 1.4 1.3 

Sweet 

High 1.4 1.3 
Control 3.0 2.9 
Low 2.9 2.6 

Sour 

High 2.9 2.8 
Control 1.4 1.3 
Low 1.3 1.3 

Salt 

High 1.4 1.4 
Control 2.8 2.6 
Low 2.8 2.6 

Bitter 

High 2.5 2.3 
Control 1.8 1.8 
Low 1.8 1.8 

Astringent 

High 1.8 1.7 
Control 0.7 0.8 
Low 0.7 0.8 

Metallic 

High 0.8 0.7 
Control 0.0 0.1 
Low 0.0 0.0 

Chemical 

High 0.1 0.0 
1Significant differences at 95% confidence.  
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Table 4.6. Sensory differences between organic and conventional tomatoes grown in high 
tunnel at three fertilizer levels 

Attribute Fertilizer Amount Organic Conventional 
Control 8.2 7.9 
Low 8.3 8.0 

Tomato Aroma 

High 8.5 8.2 
Control 4.7 4.9 
Low 4.7 4.9 

Green-Viney Aroma 

High 4.6 4.9 
Control 0.3 0.3 
Low 0.1 0.3 

Overripe Aroma 

High 0.2 0.2 
Control 7.9 8.3 
Low 8.1 8.2 

Color 

High 8.3 8.3 
Control 9.2 8.6 
Low 10.2 9.1 

Uniformity of Color 

High 9.6 9.0 
Control 9.9 9.5 
Low 10.3 9.8 

Juiciness 

High 9.8 10.1 
Control 3.3 3.3 
Low 3.1 2.8 

Mealy 

High1 3.2a 2.6b 
Control 4.3 5.2 
Low 5.0 4.7 

Skin Awareness 

High 4.9 3.9 
Control1 2.6b 3.3a 
Low 2.5 2.8 

Seed Awareness 

High 2.8 2.7 
Control 4.0 3.9 
Low 3.8 3.9 

Fiber Awareness 

High 4.0 3.9 
Control 8.6 8.2 
Low 8.7 8.6 

Tomato 

High 8.6 9.0 
Control1 8.7a 7.8b 
Low 8.8 8.6 

Ripeness 

High 8.3 8.9 
Control1 4.3b 5.0a 
Low 4.4 4.3 

Green-Viney 

High 4.6 4.4 
Control 2.3 2.0 
Low 2.3 2.2 

Umami 

High 2.2 2.4 
 
 

89  



 

Control 3.3 3.0 
Low 3.3 3.2 

Fruity 

High 3.3 3.3 
Control 0.0 0.0 
Low 0.0 0.0 

Cardboard 

High 0.0 0.0 
Control 0.1 0.2 
Low 0.2 0.4 

Fermented 

High 0.0 0.1 
Control 2.5 2.7 
Low 2.7 2.7 

Musty/Earthy 

High 2.5 2.6 
Control 3.1 2.8 
Low 3.1 3.2 

Overall Sweet 

High 3.0 2.9 
Control 1.7 1.5 
Low 1.5 1.5 

Sweet 

High 1.5 1.7 
Control 2.6 2.8 
Low 2.7 2.5 

Sour 

High 2.6 2.8 
Control 1.4 1.4 
Low 1.4 1.4 

Salt 

High 1.3 1.4 
Control 2.5 2.5 
Low 2.4 2.5 

Bitter 

High 2.4 2.6 
Control 1.6 1.7 
Low 1.6 1.7 

Astringent 

High 1.7 1.7 
Control 0.7 0.7 
Low 0.8 0.7 

Metallic 

High 0.7 0.7 
Control 0.0 0.0 
Low 0.0 0.0 

Chemical 

High 0.0 0.0 
1Significant differences at 95% confidence.  
 

plants under organic conditions grow slower, which may generate lower concentrations of water 

and higher concentrations of sugars, acids, and volatiles, providing more of the characteristic ripe 

tomato flavor (Heeb et al., 2006; Baldwin et al., 2008). However, there is still no clear evidence 

to confirm these findings and Zhao et al. (2007a) showed that consumers did not find differences 

among leafy greens grown in organic vs. conventional conditions. 
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Figure 4.2 – Principal component and cluster analyses of sensory attributes for tomato 
grown in two environments (field and high tunnel), two production systems (organic and 
conventional), and three amounts of fertilizer (high, low, and no fertilizer [control]). 
CFC=conventional-field-control; CFL=conventional-field-low fertilizer; 
CFH=conventional-field-high fertilizer; OFC=organic-field-control; OFL=organic-field-
low fertilizer; OFH=organic-field-high fertilizer; CHC=conventional-high tunnel-control; 
CHL=conventional-high tunnel-low fertilizer; CHH=conventional-high tunnel-high 
fertilizer; OHC=organic-high tunnel-control; OHL=organic-high tunnel-low fertilizer; 
OHH=organic-high tunnel-high fertilizer.   
 

Principal component and cluster analyses again were used to map the different treatments 

and the sensory attributes evaluated in the tomato samples (Figure 4.2). Cluster analysis again 

suggested the existence of two groups with separation based mainly on the environment. All the 

tomatoes grown in the field grouped together with the exception of the low organic fertilizer, 

which was grouped with the high tunnel samples. All the high tunnel samples were grouped 

together with the exception of the no fertilizer conventional sample, which was grouped with the 

field samples. This may be related to the fact that the high tunnel sample with no fertilizer was 

not as ripe as the other samples of the same environment and had flavor characteristics more 

similar to the field samples. In the same way, the field sample with low fertilizer appears to have 
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a riper flavor and therefore was more similar to the high tunnel samples than the field samples. 

Differences generally were small. As a general rule, field samples were better explained by 

attributes such as green-viney flavor and aroma, fiber awareness, metallic, salt and astringent, 

which may be characteristics of less ripe tomatoes. High tunnel samples are more juicy, sweet, 

umami, ripe, fruity and had more tomato flavor and aroma. This may be characteristic of 

tomatoes that are more mature. The flavor of fresh tomatoes is a combination of sugars, organic 

acids, free amino acids and salts, in addition to volatile chemicals that vary at different stages of 

maturity (Baldwin et al., 2008; Yilmaz, 2001). It also has been suggested that, while ripening, 

the increase of sugar concentration in tomatoes decreases the perception of green flavors, bitter 

and sour tastes (Baldwin et al., 2008). This may indicate, as observed with the pac choi, that the 

differences observed are more related to ripeness of the tomatoes. Samples grown in the high 

tunnel with higher amounts of fertilizer may have flavor more reminiscent of a ripe product 

(higher intensities of tomato aroma and flavor, ripeness, overall sweet and juiciness) compared to 

samples grown in the field with lower amounts of fertilizer which will have greener, more unripe 

flavors.  

 Conclusions 

 There did not appear to be major differences between organic and conventional products 

at both comparison levels (i.e. overall comparison and at single concentrations of fertilizer). 

Furthermore, when differences were present, they generally were quite small and showed no 

clear trends or patterns favoring one production system over the other. Principal component and 

cluster analyses suggest that some differences existed in plant maturity between field and high 

tunnel crops. Plants grown in the high tunnel with higher amounts of fertilizer may have sensory 

characteristics more reminiscent of a mature product compared to samples grown in the field 

with lower amounts of fertilizer, which may have been less mature at the time of harvest. Results 

were similar for pac choi and tomato.  
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CHAPTER 5 - Relation Between Developmental Stage, Sensory 

Properties, and Volatile Content of Organically and Conventionally 

Grown Pac Choi (Brassica rapa cv. Mei Qing Choi)  

Abstract 

This study was conducted to identify and quantify the sensory characteristics and 

chemical profile of organically and conventionally grown pac choi (Brassica rapa var. Mei Qing 

Choi), also called bok choy, at three stages of growth (2.5, 4.5, and 6.5 weeks). Sensory and 

instrumental data were correlated using partial least squares regression (PLS). Pac choi was 

grown in late spring. Descriptive sensory analysis was conducted by a highly trained panel and 

compounds were identified and quantified using a gas chromatograph / mass spectrometer. The 

findings of the study indicated that the differences in sensory characteristics and chemical 

profiles among stages of growth were more substantial than the differences between organic and 

conventional production. Green-unripe, musty/earthy, lettuce, and sweet flavors were 

representative in pac choi at early stages of growth. When older, pac choi has higher intensities 

of green-grassy/leafy, bitter, cabbage, and sulfur flavors which are associated with the increase 

of (Z)-3-hexen-1-ol, octyl acetate, 1-nonanol, 2-decanone, 1-penten-3-ol, linalool, camphor, 

menthol, isobornyl acetate, geranylacetone, and cedrol compounds. Conventional pac choi was 

higher than organic pac choi in green overall, bitter, and soapy flavors only at 2.5 weeks of age. 

This may be associated with the presence of (Z)-3-hexenal, 2-hexyn-1-ol, and (E)-2-hexenal 

compounds. 

Practical Applications 

The increased popularity of organic production has amplified the need for research that 

will help in understanding how this production system affects the final quality of food products. 

This study suggests that the stage of development has a much larger impact on sensory quality 

than organic or conventional growing of pac choi.  Findings from this study promote consumer 

choice by showing that comparable sensory quality can be obtained using either production 

system making the ultimate choice not only based on sensory quality but consumer choice 

related to environmental beliefs or economics.   
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Introduction 

Zhao et al. (2006) suggests that organic foods are ones that have been produced by more 

environmentally friendly conditions. Crop rotation, cover crops, and natural products (such as 

natural fertilizes and pesticides) are used to enhance or maintain long-term soil fertility, 

minimize pollution, avoid synthetic fertilizers and pesticides, consider the social and economic 

impact, and produce higher quality products (Winter and Davis, 2006; Bourn and Prescott, 

2002). However, results at this point seem inconsistent and show no clear trends or patterns 

regarding the effects that organic fertilization have on the crops’ final quality (Basker, 1992; 

Bourn and Prescott, 2002). Those inconsistencies may exist because the differences between 

organic and conventional practices are product specific (Fillion and Arazi, 2002) or because 

differences are dependent on confounding factors such as age, picking time, or transportation.  

Pac choi (Brassica rapa var. Mei Qing Choi) is a variety of Chinese cabbage well known in 

Asia that is gaining popularity in the United States. The flavor of pac choi has been previously 

studied by Schnitzler and Kallabis-Rippel (1998). Those authors studied different varieties of 

cooked and fresh pac choi using a trained sensory panel. Descriptive terms used by these authors 

were sweet, sour, bitter, spicy, and cabbage-like. Other studies focused on instrumental analysis 

of pac choi leaves to evaluate flavonoid composition (Rochfort et al., 2006), phenolic content in 

organic plants (Young et al., 2005), and the effect of packaging on their shelf life (Lu, 2007). 

However, stage of development was not included in these studies. Stage of development at the 

time of harvest should be included when evaluating pac choi because this plant is frequently 

consumed at different maturity levels (i.e. baby or mature stage) (Rochfort et al., 2006).  

Plant maturity at the time of harvest is critical for flavor and texture development (Mattheis 

and Fellman, 1999). It has been suggested that age has an effect on the content of flavor 

compounds such as catechins and amino acids which tend to create off-flavors in young tea 

leaves (Kinugasa et al., 1997). It also has been suggested that some fruits such as muskmelon 

must be harvested at their ripening stage for best post-harvest quality (Asghary et al., 2005). 

Tomatoes, where harvest maturity is a critical factor related to sensory properties, have been the 

object of many studies to assess the relation between fruit ripeness, sensory properties, and 

chemical composition (Hayase et al., 1984; Shewfelt et al., 1988; Stern et al., 1994; Yilmaz et 

al., 2002).   
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The relation between sensory properties and chemical composition has received important 

attention in the past. Studies that relate sensory and instrumental data have been conducted for 

products such as wheat bread (Quílez et al., 2006), virgin olive oil (Morales et al., 1995), durian 

fruit (Voon et al., 2007), navel oranges (Baxter et al., 2005), and exotic salad crops (Price et al., 

1990) using different statistical methodologies. A study focused on wine flavor (Noble and 

Ebeler, 2002) explored and compared three different multivariate methodologies that can be used 

to relate sensory and instrumental data. These studies used principal component analysis, 

generalized procrustes analysis, and partial least square regression. Authors concluded that all 

three methods provide similar results. However, some differences were noted. 

Many studies have been able to link aroma volatiles found in foods with sensory 

characteristics. For example, butyl acetate, 1-hexanal, and camphor are aroma volatiles found in 

apples linked to fruity, green, and piney odors respectively (Mehinagic et al., 2006). Pentanal, 

heptanal, and octanal are related to nutty, floral, and citrus aromas in rice (Yang et al., 2008). 

Similarly, hexanal, nonanal, and acetaldehyde are related to green, soapy, and fruity aromatics in 

grapefruit juice (Buettner and Schieberle, 2001).  Bott and Chambers (2006) found combinations 

of chemicals that produced beany odors and Hongsoongnern and Chambers (2008a) related 

chemicals to “green” characteristics found in various food products.    

The objectives of this study are (1) to evaluate the sensory characteristics and the aroma 

volatile content of organically and conventionally grown pac choi leaves at three stages of 

development and (2) to correlate sensory and instrumental data by means of partial least squares 

regression. 

Materials and Methods 

Samples 

Trials were conducted at the K-State Horticulture Research and Extension Center, Olathe, 

Kansas, on experimental plots established in 2002 for comparison of crops grown under organic 

and conventional production systems in high tunnels (unheated, passively ventilated 

greenhouses) and open field plots (Zhao et al., 2007a).  The soil was a Kennebec silt loam. Six 

9.8 m x 6.1 m high tunnels with 1.5m sidewalls (Stuppy, North Kansas City, MO) and six 

adjacent 9.8 m x 6.1 m field plots were used for this study. High tunnels were covered with 

single layer 6-mil (0.153mm) K-50 polyethylene (Klerk’s Plastic Product Manufacturing, Inc., 
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Richburg, SC).  At establishment of the experimental plots, the six high tunnels were divided 

into three groups (blocks) and the two high tunnels in each block were randomly assigned for 

long-term conventional or organic management treatments.  A similar set-up was used in the 

field plots. Organic plots were managed in compliance with USDA National Organic Program 

standards, and were inspected and certified in 2003, 2006, 2007 and 2008.  

For this study, beginning in 2007, each high tunnel or open field plot was subdivided into 

three 3.2 m x 6.1 m plots to which one of three fertilizer levels were assigned (high, low, and no 

fertilizer) following a latin square design to avoid bias due to position effects in the high tunnels.  

Fertilizer rates were determined based on soil analysis at the beginning of the study in 2007, and 

recommendations for vegetable crops in Kansas (Marr et al., 1998), with compost applied to 

organic plots and synthetic fertilizer applied to conventional plots.  Compost application rates 

were based on the assumption that 50% of the nitrogen from compost would be available to 

plants during the growing season, while 100% would be available from conventional fertilizers 

(Warman and Havard, 1997).  Low and high fertility plots were fertilized with equal amounts of 

compost or synthetic fertilizer at the beginning of the growing season, and high fertility plots 

received additional fertilization during the growing season as described below.  

Pac choi (Brassica rapa L. chinensis ‘Mei Qing Choi’) (Johnny’s Selected Seed, Albion, 

ME, U.S.A.) and tomato (Lycopersicon esculentum ‘Bush Celebrity’) (Totally Tomatoes, 

Randolph, WI, U.S.A.) were grown in one half of each open field or high tunnel plot (6.8 m x 3 

m) in 2007 and 2008, with a rotation between pac choi and tomato plots each year.  In our 

experimental system, a spring and a fall crop of pac choi was grown each year, while a single 

crop of tomato was grown.  Between the spring and fall pac choi crops, plots were seeded with a 

summer cover crop of buckwheat (Fagopyrum sagittatum) (Albert Lea Seed, Albert Lea, MN, 

U.S.A.) at a rate of 134 kg/ha.  In the late fall, all plots were seeded with a cover crop of annual 

rye (Secale cereale) (Albert Lea Seed, Albert Lea, MN, U.S.A.) at a rate of 229 kg/ha.  

Conventional high and low fertility plots were fertilized with Jack’s Professional Peat-lite 

N-P2O5-K2O 20-10-20 (Allentown, PA, U.S.A.), at a rate of 98 kg/ha. Organic plots received 

MicroLeverage compost N-P2O5-K2O 0.6-0.8-0.5 (Hughesville, MO, U.S.A) at a rate of 197 

kg/ha.  Only pac choi grown in the outside plots with low amounts of fertilizer were used for this 

specific study. 
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Pac choi transplants were started in a greenhouse in Sunshine Mix Special Blend E6340 

(SunGro Horticulture, Bellevue, WA) supplemented with MicroLeverge compost.  Pac choi was 

planted on April 1, 2008 and harvested on April 20 (2.5 weeks old for baby pac choi), May 5 

(4.5 weeks old for optimum growth), and May 19 (6.5 weeks old for overgrown pac choi).  

 Sample Preparation 

Sensory analysis 

 Plants were harvested one to three days before testing. After harvest, the plants were 

immediately rinsed using cold tap water to remove excess dirt and stored in a refrigerated 

container for transport to the Kansas State University campus located in Manhattan, KS. Once 

arrived, the samples were moved to a walk-in refrigerator for storage at 4ºC until testing.  The 

plants were sprayed daily with tap water to maintain moisture.  On the day of testing, plants were 

retrieved from the refrigerator. Random leaves of similar visual characteristics were removed 

from each stalk (not including the stem) and rinsed using distilled water. Excess water was 

eliminated with a salad spinner (Oxo International, Ltd., New York, NY). Samples were served 

to the panelists monadically in 6” foam plates identified with a three-digit code to eliminate 

potential panelist bias. The sample amount was dependant on leaf size. For example, for baby 

pac choi (2.5 weeks old plant) one whole sprig comprised of several leaves was served to each 

panelist, 1-2 leaves were served to each panelist when leaves were 4.5 weeks old and 6.5 week 

old.  

Volatile analysis 

The same day of sensory testing, approximately 5-10 g from leaves of each treatment 

were vacuum sealed and frozen at 80°C for 30 d until volatile analysis. The day of the analysis, 

samples were retrieved from the freezer and thawed at room temperature (22  1°C) for 

approximately 30 min. For solid-phase microextraction (SPME) sampling, 4 g pac choi leaves 

were blended with 200-mL of reverse osmosis, deionized, carbon-filtered water using an electric 

hand blender (Rival, Peoria, IL) for 20 s. The mixture was then filtered through double layered 

cheese cloth. From the filtered solution, 1-mL was transferred to a 10-mL clear headspace vial 

and mixed with 0.2 g of Sodium Chloride (NaCl). Additionally, 5-μl of 0.2 ppm 1,3 
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dichlorobenzene in methanol (internal standard) was added. Glass vials were closed using an 

open-center screw cap with a 1.8 mm silicone/PTFE septum (Varian, Palo Alto, CA).  

Panelists 

Six highly trained panelists from the Sensory Analysis Center at Kansas State University 

(Manhattan, KS, U.S.A.) were used for this study. The panelists had completed more than 120 

hours of descriptive training, average more than 2000 hours of testing experience, and had prior 

experience testing vegetables and vegetable products. 

Experimental procedure 

Sensory analysis 

The lexicon for pac choi was used based on Talavera-Bianchi et al. (2009) to describe 

flavor of different leafy vegetables. A lexicon consisting of twenty-nine terms with definitions 

and references was presented to the panelists along orientation samples in one 90-minute 

orientation session prior the start of testing so they could become familiar with the terminology, 

test procedures, and samples. The original lexicon consisted of twenty-six flavor and mouth feel 

attributes. However, three texture attributes were added because we believed that this would aid 

in describing changes in the plant during the maturation process. Similar lexicons have been 

developed and used for other products such as green tea (Lee and Chambers, 2007), tomatoes 

(Hongsoongnern and Chambers, 2008b), ice cream (Thompson et al., 2009), and brewed coffee 

(Seo et al., 2009). 

The day of testing, panelists were presented with the lexicon and references used during 

orientation. Data were collected using a computerized collection system (Compusense Five 

version 4.6.702, Guelph, ON, Canada). Intensities for each attribute were recorded using a 0-15 

point scale divided in 0.5 point increments, 0 meaning “none” and 15 meaning “extremely high”. 

Panelists evaluated the samples individually and followed a completely randomized block design 

with the stage of development as the blocking factor. Six samples of pac choi were evaluated in 

each of three 90-minute sessions. Reverse osmosis, deionized, carbon-filtered water and unsalted 

crackers were used to rinse the palate between the samples. A similar procedure has been used in 

the past to evaluate the sensory characteristics of four samples of calcium-biofortified lettuce 

(Park et al., 2009).       
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Gas chromatography – mass spectrometry 

Volatile compounds were identified and quantified using a Varian Saturn CP-3800 Gas 

Chromatograph / Mass Spectrometer 2200 (Varian Inc., Walnut Creek, CA). The sample vials 

were equilibrated at 40°C/500 rpm for 10 min. SPME was performed using a StableFlex 

Divinylbenzene / Carboxen / Polydimethylsiloxane 50/30 μm fiber (Sigma Aldrich, Saint Louis, 

MO) for 20 min at 40°C. The agitation during extraction was of 250 rpm. The extracted 

compounds were thermally desorbed at 250°C for 3 min in the front injection port of the gas 

chromatograph. After the injection, the fiber was baked at 270°C for 30 min. An RTX®-5 

Capillary Column (30 m length × 0.25 mm internal diameter × 0.25 μm film thickness; Restek 

U.S., Bellefonte, PA) was used to separate the volatiles desorbed from the fiber. The initial 

temperature of the column was set at 40°C for 2 min and then raised to 200°C at a rate of 5°C 

min-1 and held for 1 min (total GC run time was 35 min). Varian MS Workstation software 

(version 6.8) was used for system control, data collection, and data processing. Compound 

identification was based on NIST 2005 version 2.0 Mass Spectra library search. The final 

compounds concentration was based on the concentration of the internal standard. Three 

replications were analyzed for each treatment. Kovats retention indices were calculated to aid in 

the identification of the volatile compounds. A blend of hydrocarbon (HC) mix and carbon 

disulfide (1 drop of HC mix in 1 ml of CS2 directly injected to the GC) was also run under the 

same methodology to generate the retention times of the n-alkanes (C6-C20) for calculating the 

Kovats indices. Comparing Kovats indices from chemicals previously identified using the same 

column and stationary phase under similar conditions has shown to be an accurate method of 

identification (Moustafa, 2008).   

Analysis 

Analysis of variance (ANOVA) with PROC MIXED (panelist and replication as the 

random effects) was used to detect overall differences among treatments for individual sensory 

attributes. PROC GLM was used to detect differences for individual volatile compounds. 

ANOVA was computed in SAS® (2002, version 9.1.3; SAS Institute, Cary, NC). Partial least 

squares regression (PLS2) was used to correlate sensory and instrumental data. PLS is a soft 

modeling method which is widely used to predict a set of dependant variables (sensory 

attributes) from a large set of independent variables (volatile compounds) (Noble and Ebeler, 
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2002). This method has been previously used to correlate instrumental and sensory data in 

cheese (Hough et al., 1996), diced tomatoes (Lee et al., 1999), and ice cream (Chung et al., 

2003). Even though this analysis does not determine which volatile components are actually 

responsible for specific sensory attributes, it does help in studying the relationship between 

certain volatiles and sensory characteristics (Noble and Ebeler, 2002). This analysis was 

performed using Unscrambler (2005, version 9.2; Camo Process AS, Oslo, Norway). 

Results and Discussion 

Sensory analysis 

Findings from the study show that stage of development is an important factor affecting 

sensory characteristics of pac choi. Twenty-one flavor and texture attributes were significantly 

different among maturity levels (P-value ≤ 0.05) (Table 5.1). Most of the attributes’ intensities 

increased as the plants get older although some decreased. For example, attributes such as 

crispness, fiber awareness, overall green, green-grassy-leafy, woody, sulfur, soapy, toothetch, 

and bitter had lower intensities in younger plants and higher intensities in older plants. The 

attributes that remained stable throughout the plant development process were green-viney, 

radish, water-like, petroleum-like, pungent, bite, and the sour taste. The typical green, bitter, and 

sulfur flavors of pac choi and other vegetables of the Brassica family are believed to be caused 

by glucosinolate-derived compounds. The main glucosinolates found in pac choi are 3-butenyl- 

and 1-methoxy-3-indoylmethyl (He et al., 2003). It would be expected that as the concentration 

of these compounds increase when the plant matures, the intensity of typical flavors may 

increase as well.  
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Table 5.1. Analysis of variance showing the significant differences (95% confidence) 
between stages of development for individual attributes 

  Stage of Development 
Attributes1,2 Fertilization 2.5 Weeks 4.5 Weeks 6.5 Weeks 

Organic 2.7b 3.2ab 3.5a Crispness 
Conventional 2.7b 3.3a 3.6a 
Organic 5.5a 4.1c 4.5b Moistness 
Conventional 5.7a 4.2c 4.6b 
Organic 2.9c 4.3b 4.7a Fiber 

Awareness Conventional 3.3c 4.2b 4.9a 
Organic 5.9b 5.9b 7.0a Overall Green 
Conventional 6.9a 6.1b 7.0a 
Organic 1.6a 1.0b 0.9b Green-unripe 
Conventional 1.7a 0.9b 0.9b 
Organic 1.3a 0.4b 1.3a Green-peapod 
Conventional 1.5a 0.4b 1.1a 
Organic 4.6b 5.0b 6.0a Green-

grassy/leafy Conventional 5.3ab 5.0b 5.8a 
Organic 1.6 1.8 1.9 Green-Viney 
Conventional 1.6 2.0 1.8 
Organic 2.4 2.6 2.7 Cabbage 
Conventional 2.2b 2.6ab 2.8a 
Organic 1.8a 1.9a 1.4b Lettuce 
Conventional 1.7 1.8 1.5 
Organic 1.6b 2.0a 1.9a Spinach 
Conventional 1.7b 2.0a 1.8ab 
Organic 0.9b 1.4a 1.1b Parsley 
Conventional 1.1b 1.5a 1.1b 
Organic 2.0 1.9 1.8 Radish 
Conventional 1.9 1.9 2.0 
Organic 1.1a 0.4b 0.9a Piney 
Conventional 1.6a 0.8b 0.8b 
Organic 1.3b 1.5b 2.0a Woody 
Conventional 1.3b 1.7a 1.9a 
Organic 1.6 1.9 1.6 Water-like 
Conventional 1.6 1.8 1.7 
Organic 2.3 2.6 2.3 Musty/Earthy 
Conventional 2.9a 2.3b 2.4b 
Organic 1.0c 1.7b 2.2a Sulfur 
Conventional 1.3c 1.7b 2.3a 
Organic 0.5c 1.2b 1.6a Soapy 
Conventional 1.1b 1.3ab 1.5a 
Organic 0.4 0.3 1.0 Petroleum-like 
Conventional 1.2 0.5 0.7 
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Organic 2.1 2.0 2.0 Pungent 
Conventional 2.2 2.1 2.1 
Organic 1.9 2.1 2.3 Bite 
Conventional 1.9 2.2 2.2 
Organic 1.1b 2.0a 2.3a Toothetch 
Conventional 1.3b 2.1a 2.1a 
Organic 1.4a 1.3ab 1.1b Overall Sweet 
Conventional 1.3ab 1.5a 1.2b 
Organic 1.6 1.5 1.6 Sour 
Conventional 1.6 1.6 1.6 
Organic 4.9b 7.0a 7.0a Bitter 
Conventional 6.3 6.6 6.7 
Organic 0.6ab 0.4b 0.9a Salty 
Conventional 0.5b 0.6ab 0.9a 
Organic 2.1a 2.1a 1.7b Umami 
Conventional 2.0 2.1 1.9 
Organic 1.4b 1.8a 1.9a Astringent 
Conventional 1.8 1.8 1.9 

1Significant differences are at the 95% confidence level. Different letters indicate statistically significant differences. 
2Significant differences are at the 95% confidence level. Different letters indicate statistically significant differences. 

 

When glucosinolates are released from the plant cells, they are broken down by 

enzymatic action into products such as nitriles and isothiocyanates which are also responsible for 

the “hot and spicy” flavors of mustard, radishes, and other plants from the Brassica family 

(Johnson, 2001). The lower concentration of glucosinolates in pac choi compared to other plants 

of the Brassica family is consistent with its milder flavor (He et al., 2003). Contrarily, attributes 

such as moistness, green-unripe, and overall sweet had higher intensity in younger plants and 

lower intensities in older plants. It may be that as the plant matures, sugar may be used by the 

plant and the development of other flavor characteristics such as sulfur or bitterness may mask 

the sweet taste as well as reducing the perception of unripeness in pac choi. Many of these flavor 

characteristics have been reported for pac choi in the past. Schnitzler and Kallabis-Rippel (1998) 

used terms such as sweet, sour, bitter, and spicy to describe flavor of raw pac choi. In our study, 

we also used the sour and spicy (bite) attributes. However, they were not significantly different 

among stages of maturity or production system (i.e. organic and conventional).  

Few differences were found between organically and conventionally grown pac choi. The 

few small differences that exist were found only at the 2.5-week stage of development (Table 

5.2). In this case, conventionally grown pac choi had significantly higher intensities (P-value ≤ 

0.05) of overall green, soapy, and bitter attributes.  No differences were found at 4.5-week or 
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6.5-week old pac choi. This suggests that the effect of organic production may be more evident 

at early stages of development. It has been suggested that organic treatment may increase the 

opportunity of insect attack in pac choi which may cause the amount of total phenolics to 

increase affecting its flavor (Young et al., 2005). Kobue-Lekalake et al. (2007) suggest that 

phenolic compounds increase the bitterness and astringency of sorghum grains. Another study 

also reported higher bitterness in organically grown carrots (Haglund et al., 1999). In our study, 

bitterness was lower in the organic pac choi at 2.5 weeks maturity and there were no differences 

in astringency. It also may be that conventionally grown pac choi was more mature at the time of 

harvest generating higher intensities for these flavor attributes.  

 
Table 5.2. Individual attributes that showed significant differences (P-value ≤ 0.05) between 
organic and conventional pac choi at the baby stage (2.5 weeks)1 

Attributes2 Organic Conventional 

Overall Green 5.9b 6.9a 

Soapy 0.5b 1.1a 

Bitter 4.9b 6.3a 
1No differences between organic and conventional pac choi were observed at 4.5 or 6.5-week 
maturity. 
2Significant differences are at the 95% confidence level. Different letters indicate statistically 
significant differences. 

Gas chromatography – mass spectrometry 

Forty-eight volatile compounds were identified and quantified (Table 5.3). The chemicals 

that were mostly present in pac choi leaves are the aldehydes (Z)-3-hexenal (9), (E)-2-hexenal 

(11), (E,E)-2,4-hexadienal (15), and benzeneacetaldehyde (21); alcohols such as 2-hexyn-1-ol 

(10), (Z)-3-hexen-1-ol (12), (E)-3-hepten-1-ol (13), and (E)-2-nonen-1-ol (27); as well as 

noncyclic and cyclic hydrocarbons such as 4,5-dimethylthiazole (30) and isothiocyanato-

cyclohexane (40) respectively. Many of these compounds have been previously reported as 

providing “green” aromas in foods. For example, (Z)-3-hexenal (9) was reported as providing 

aromas reminiscent of “green”, “green leaves”, and “grassy” in virgin olive oil (Morales et al., 

1995; Aparacio et al., 1997). This compound was also described as providing “strong green” 

characteristics in green olives (Iraqi et al., 2005).  
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Table 5.3. Volatile aromatics found in organically and conventionally grown pac choi at three stages 
of development 

  
  Treatments1,2 

 
Volatile Compound 

Retention 
Time 
(min) 

RI3 O2.5 C2.5 O4.5 C4.5 O6.5 C6.5 

1 2-butanone 2.5 585.6 26.7 25.9 21.2 18.7 24.2 20.7 

2 Methyl propionate 2.8 622.2 Trace Trace Trace Trace Trace Trace 

3 3-methyl-2-butanone 3.1 657.3 Trace Trace 10.8 Trace 10.0 Trace 

4 1-penten-3-ol 3.3 685.1 13.2 14.8 25.4 21.2 20.5 31.8 

5 
Butanoic acid, methyl 
ester 3.9 728.1 44.8 34.9 41.4 33.8 36.1 31.6 

6 2-methyl-3-pentanone 4.4 754.1 Trace Trace Trace Trace Trace Trace 

7 (E)-2-hepten-1-ol  4.9 775.7 16.8 19.3 25.2 19.5 22.9 29.8 

8 
2-methyl-butanoic acid, 
methyl ester 5.0 781.7 32.7 29.1 32.3 29.5 29.1 29.5 

9 (Z)-3-hexenal 5.5 805.7 1296.1 1835.7 1773.3 2647.3 424.7 1058.2

10 2-hexyn-1-ol 6.7 851.7 78.2 122.0 151.9 215.5 45.9 111.4 

11 (E)-2-hexenal  6.9 857.5 768.6 974.2 1389.9 1843.1 596.7 1475.3

12 (Z)-3-hexen-1-ol 7.0 860.7 188.0 253.7 356.9 328.2 507.6 1000.0

13 (E)-3-hepten-1-ol  7.2 867.0 338.9 315.1 402.4 328.3 175.7 249.8 

14 Heptanal 8.3 903.9 Trace Trace Trace Trace Trace Trace 

15 (E,E)-2,4-hexadienal 8.6 917.3 97.9 109.0 175.2 205.6 55.2 89.8 

16 1-isothiocyanato-butane  9.2 938.2 Trace 13.9 55.0 53.2 11.7 14.1 

17 1-octen-3-ol 10.7 984.4 15.1 11.8 14.9 11.2 Trace Trace 

18 
4-isothiocyanato-1-
butene 10.8 989.0 31.5 39.6 13.9 Trace 24.8 11.4 

19 Octanal 11.3 1004.5 Trace Trace Trace Trace Trace Trace 

20 (E)-2-octenal 12.1 1032.9 36.2 49.4 56.1 46.0 55.8 58.2 

21 Benzeneacetaldehyde 12.6 1049.3 279.3 309.8 349.0 276.7 162.1 223.9 

22 4-methyl-1-undecene 13.3 1072.3 20.1 20.0 20.5 17.9 16.1 16.3 

23 1-octanol 13.4 1075.1 41.9 27.8 61.4 35.5 16.8 18.8 

24 4-ethyl-5-methylthiazole 13.8 1086.9 154.7 144.0 49.4 32.3 40.3 10.1 

25 2-nonanone 14.1 1095.7 Trace Trace Trace Trace N.D. N.D. 

26 
3,7-dimethyl-1,6-
octadien-3-ol (linalool) 14.3 1100.8 Trace Trace 13.1 11.2 15.1 15.6 

27 (E)-2-nonen-1-ol 14.4 1105.7 204.5 142.4 192.9 127.2 25.9 30.6 

28 Isopinocarveol 14.8 1118.4 Trace Trace Trace Trace Trace Trace 
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29 1-nonanol 14.9 1124.8 N.D. N.D. N.D. N.D. Trace Trace 

30 4,5-dimethyl-thiazole 15.0 1128.7 94.9 68.0 202.6 69.7 166.2 69.7 

31 Acetic acid, octyl ester 15.3 1137.1 N.D. N.D. Trace Trace Trace Trace 

32 Benzyl nitrile 15.5 1145.2 22.9 44.5 21.4 24.1 14.0 Trace 

33 Camphor 15.7 1151.3 N.D. N.D. Trace Trace Trace Trace 

34 (Z)-6-nonenal 16.1 1165.4 Trace Trace Trace Trace N.D. N.D. 

35 
4-methylpentyl 
isothiocyanate 16.3 1172.1 Trace Trace Trace Trace Trace Trace 

36 Menthol 16.5 1177.6 22.2 18.8 39.3 27.0 39.3 46.0 

37 2-decanone 17.0 1194.6 Trace Trace Trace Trace 11.4 Trace 

38 (E)-2-decen-1-ol  17.4 1208.3 19.6 20.6 22.8 18.9 13.7 16.1 

39 

2,6,6-trimethyl-1-
cyclohexene-1-
carboxaldehyde 17.9 1229.9 72.6 61.7 56.7 73.7 72.1 79.4 

40 
Isothiocyanato-
cyclohexane 18.2 1243.5 102.8 159.9 202.0 177.3 214.2 219.3 

41 Isobornyl acetate 19.7 1301.8 Trace Trace Trace Trace 13.0 14.1 

42 2-undecanone 19.8 1305.5 Trace Trace Trace Trace N.D. N.D. 

43 Dodecanal 22.8 1410.8 Trace Trace Trace 10.3 Trace Trace 

44 

6,10-dimethyl-5,9-
undecadien-2-one 
(geranylacetone) 24.0 1457.2 Trace 10.6 26.1 16.8 34.6 41.4 

45 
2-isothiocyanatoethyl-
benzene 24.4 1476.4 41.0 65.6 64.5 39.7 26.0 36.7 

46 Butylated hydroxytoluene 25.5 1518.8 Trace Trace Trace Trace Trace Trace 

47 Lilial 25.8 1534.5 Trace Trace Trace Trace Trace Trace 

48 Cedrol 27.7 1615.0 Trace Trace Trace Trace Trace Trace 
1O2.5=Organic at 2.5 weeks maturity; C2.5=Conventional at 2.5 weeks maturity; O4.5=Organic at 4.5 weeks 
maturity; C4.5=conventional at 4.5 weeks maturity; O6.5=Organic at 6.5 weeks maturity; C6.5=Conventional at 6.5 
weeks maturity.  
2Concentration of volatile shown in pg/g of pac choi 
3Retention index (Kovats) calculated from DB5 column. 
N.D: Not detected. 

 

Similarly, (E)-2-hexenal (11) was described as being present in blackberries providing 

“fruit”, “orange”, and “green” aroma characteristics (Klesk and Qian, 2003). The same 

compound was reported as present in virgin olive oil providing “bitter” characteristics (Aparicio 

et al., 1997). (Z)-3-hexen-1-ol (12) was reported as providing “green” aromas in a study focusing 

on describing sensory characteristics of musty compounds in foods (Chambers et al., 1998). Iraqi 

et al. (2005) reported that (Z)-3-hexen-1-ol (12) provided “vanilla” and “green” characteristics in 
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green olives. (E,E)-2,4-hexadienal (15) was identified in fish oil enriched milk and reported to 

provide “green” and “vegetable” aromas (Venkateshwarlu et al., 2004). The same compound had 

been previously found in mayonnaise and was described as “green” and “burnt” (Hartvigsen et 

al., 2000). Other compounds found in pac choi at lower concentrations that have been previously 

reported as having “green” characteristics are 1-penten-3-ol (4), octanal (19), (E)-2-octenal (20), 

(Z)-6-nonenal (34), 2-undecanone (42), acetic acid octyl ester (octyl acetate) (31), and cedrol 

(48) (Chida et al., 2004; Buettner and Schieberle, 2001; Aparicio et al., 1997; Beaulieu, 2005; 

Klesk and Qian, 2003; Thi Minh Tu et al., 2002). In a study that focused on the chemicals 

associated with green odors and flavors in foods, several aldehydes, alcohols, ketones, azoles, 

and ester derivatives were reported as responsible for the green aroma in foods (Hongsoongnern 

and Chambers, 2008a). The same study reported that the “green” characteristics in foods can be 

of various types such as unripe, peapod, grassy/leafy, viney, fruity, or may appear as a 

combination of these. Benzeneacetaldehyde (21) was identified in extruded Amilo rye and 

described as “flower”, “honey”, and “bitter almond” (Heiniö et al., 2003). Interestingly, 

benzeneacetaldehyde was also described as “green” at a lower intensity in the same study. In 

addition, 4, 5-dimethylthiazole (30) was identified in fried beef steaks and was described as 

having “smoky”, “roasty”, “fragrant”, and “nutty” aroma characteristics (Specht and Baltes, 

1994). Other compounds found in pac choi at low concentrations were 2-butanone (1) described 

as “fragrant” and “pleasant” (Morales et al., 1995); 1-octen-3-ol (17) and 1-butene-4-

isothiocianato (18) described as “mushroom” and “sulfur” respectively (Engel et al., 2002); 

heptanal (14) and 2-nonanone (25) described as “floral” as well as 1-nonanol (29) and 2-

decanone (37) which were previously described as “fatty” (Yang et al., 2008); camphor (33) 

described as “piney” and “spicy” (Mehinagic et al., 2006); and dodecanal (43) which was 

previously described as having “citrus” and “skin-like” characteristics (Hashizume and Samuta, 

1997). 

Correlating Sensory and Chemical Data 

Partial least squares regression (PLS2) was used to correlate sensory and chemical data 

(Figure 5.1). Only the sensory attributes and volatiles that showed significant differences (P-

value ≤ 0.05) were included in this analysis. The analysis showed that 85% of the chemical data 

explains 86% of the sensory data.  
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The samples that were harvested late (at 6.5-weeks) are more correlated with attributes 

such as overall green, green-grassy/leafy, and salty. The volatile compounds related to these 

attributes are (Z)-3-hexen-1-ol (12), octyl acetate (31), 1-nonanol (29), and 2-decanone (37).  
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Figure 5.1. Partial least squares regression (PLS) correlating sensory and instrumental 
data. O2.5=Organic at 2.5 weeks maturity; C2.5=Conventional at 2.5 weeks maturity; 
O4.5=Organic at 4.5 weeks maturity; C4.5=conventional at 4.5 weeks maturity; 
O6.5=Organic at 6.5 weeks maturity; C6.5=Conventional at 6.5 weeks maturity.  

 

These volatiles were present at higher concentrations in the pac choi harvested at 6.5 

weeks. In fact, 1-nonanol (29) was only present in these samples and not in the samples 

harvested earlier. These chemicals have been associated with “bitter”, “green”, “fruity”, and 

“fatty” aromatics (Aparicio et al., 1997; Iraqi et al., 2005; Yang et al., 2008; Ti Minh Tu et al., 

2002). Other compounds which are also closely associated with samples harvested at 6.5 weeks 

are 1-penten-3-ol (4), 3,7-dimethyl-1,6-octadien-3-ol (linalool) (26), camphor (33), menthol (36), 

isobornyl acetate (41), 6,10-dimethyl-5,9-undecadien-2-one (geranylacetone) (44), and cedrol 

(48). These chemicals have also been associated with “green”, “floral”, “woody”, “citrus”, and 

“piney” aromatics (Chida et al., 2004; Mehinagic et al., 2006). In our study, these compounds 
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were closely related to attributes such as bitter, toothetch, soapy, cabbage, sulfur, and woody. 

Fiber awareness and crispness are textural attributes also related to these samples and these 

volatiles.  This may indicate co-linear attributes that change similarly but have different 

etiologies.    

The spinach flavor attribute was related to with dodecanal (43), an aldehyde with citrus 

aromatics that has also been found in cilantro and carrots in the past (Hashizume and Samuta, 

1997; Fan and Sokorai, 2002; Buttery et al., 1968). Similarly, butylated hydroxytoluene (BHT) 

(46) was closely related to the spinach flavor of pac choi. Parsley flavor was correlated to butyl 

isothiocyanate (1-isothiocyanato-butane) (16), a derivative from glucosinolates which are 

frequently found in vegetables from the Brassica family and more specifically cabbage (Ciska 

and Pathak, 2004). In another study, butyl isothiocyanate (16) was also identified in cooked 

cauliflower and was described as having “sulfur”, “green”, and “pungent” aroma characteristics 

(Engel et al., 2002). Other volatile compounds closely related to the parsley flavor were 2-

hexyn-1-ol (10) and (E,E)-2,4-hexadienal (15). It has been suggested that several aldehydes, 

alcohols, ketones or ester derivatives with 6 carbon atoms (C6) in their molecules are responsible 

for the “green” aroma in foods (Hongsoongnern and Chambers, 2008a). (E,E)-2,4-hexadienal 

(15) has been previously described as having “ripe fruit”, “green”, and “vegetable” aroma 

characteristics (Aparicio et al., 1997; Venkateshwarlu et al., 2004). The pac choi samples 

harvested at 4.5 weeks also were correlated to the parsley and spinach flavors. This means that 

samples harvested at 4.5 and 6.5 weeks were usually rated at a higher intensity for these flavors 

compared to the samples harvested at 2.5 weeks of maturity.  

Another group of volatiles is correlated with the lettuce, umami, and overall sweet 

attributes. This suggests that these volatiles may have “green” characteristics that are less strong 

compared to other chemicals more closely associated with parsley, green-grassy/leafy, and 

overall green attributes. The chemicals associated with lettuce, umami, and sweet flavors are (Z)-

3-hexenal (9), octanal (19), benzeneacetaldehyde (21), 4-methyl-1-undecene (22), 1-octanol (23), 

2-nonanone (25), (E)-2-nonen-1-ol (27), (Z)-6-nonenal (34), (E)-2-decen-1-ol (38), and 2-

undecanone (42). This is in agreement with past studies in which many of these compounds have 

been described as having “sweet”, “floral”, “citrus”, “fruity”, and “green” characteristics. For 

example, (Z)-3-hexenal (9), octanal (19), and 2-undecanone (42) were described as “green” 

(Aparicio et al., 1997; Buettner and Schieberle, 2001; Klesk and Qian, 2003). At the same time, 
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octanal (19) has also been described as having “sweet” and “citrusy” aroma characteristics (Thi 

Minh Tu et al., 2002). Benzeneacetaldehyde (21) has been reported as having “flower”, “honey”, 

“sweet” and “green” aroma characteristics (Heiniö et al., 2003). 2-nonanone (25) was described 

as “fruity and “floral” (Yang et al., 2008) and (Z)-6-nonenal (34) was reported as “citrus”, 

“green”, “cucumber”, and “melon-like” (Beaulieu, 2005). These compounds are more correlated 

to pac choi samples harvested at both 2.5 and 4.5 weeks maturity. This means that their 

concentration is higher at early stages and decrease as the plants get older. Another compound 

which is also closely related to samples at their early stage of development is benzyl nitrile 

(benzene acetonitrile) (32) which is another chemical formed from the degradation of 

glucosinolates. This compound was previously identified and quantified in turnip greens at 

different stages of development (Jones et al., 2007). Those authors found that benzene 

acetonitrile actually increased as the plant got older. However, the concentrations were generally 

small. The pac choi samples harvested at an early stage of growth (2.5 weeks) were generally 

associated with green-unripe, piney, and musty/earthy flavors as well as moistness.  

The concentrations of many volatiles varied among maturity levels of pac choi. In 

addition, differences are also noted between organically and conventionally grown pac choi for a 

few volatiles. Analysis of variance (ANOVA) on the volatiles shows that eight volatiles found in 

pac choi differed between organic and conventional production.  The volatiles that were 

generally higher for conventionally grown pac choi were (Z)-3-hexenal (9), 2-hexyn-1-ol (10), 

(E)-2-hexenal (11). These compounds are responsible for the “green” and “bitter” aroma in foods 

(Aparicio et al., 1997). This is in agreement with the sensory analysis of pac choi which showed 

that conventional pac choi had significantly higher intensities of overall green, bitter, and soapy 

flavors compared to organic pac choi at the earliest stage of development (2.5 weeks). However, 

the intensities of overall green, bitter, and soapy are similar between organic and conventional 

pac choi at both 4.5 and 6.5 weeks maturity levels. It may be that the introduction of other flavor 

volatiles such as 1-penten-3-ol (4), linalool (26), and geranylacetone (44) balanced the 

perception of overall green and bitter at later stages of growth. These compounds also have been 

associated with “green” and “floral” aromas in the past (Chida et al., 2004). Butanoic acid 

methyl ester (8) and 4,5-dimethylthiazole (30) were significantly higher in organic pac choi. 

However, this difference did not translate to sensory flavor differences between organic and 

conventional pac choi. Other compounds that were higher for organic pac choi were 2-methyl-3-
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pentanone (6), camphor (33), and (Z)-6-nonenal (34). However, these chemicals were present at 

low concentrations.  

In summary, the differences in volatile compounds among stages of growth are more 

substantial compared to the differences between organic and conventional production systems. In 

many cases, these differences in chemical composition do translate into the flavor characteristics 

observed in pac choi. 

Conclusions 

Many more differences in sensory characteristics and chemical profile are observed 

among stages of growth of pac choi compared to the production method. Pac choi harvested 

early (2.5 weeks) is described as green-unripe, piney, musty/earthy, and moist. As the plant 

grows, other flavors such as lettuce, umami, and overall sweet develop. These flavors are 

correlated with volatiles that have been associated with “sweet”, “floral”, “citrus”, “fruity”, and 

“green” aromas. These volatiles are (Z)-3-hexenal (9), octanal (19), benzeneacetaldehyde (21), 

4-methyl-1-undecene (22), 1-octanol (23), 2-nonanone (25), (E)-2-nonen-1-ol (27), (Z)-6-

nonenal (34), (E)-2-decen-1-ol (38), and 2-undecanone (42). Lastly, when the plant reaches a 

mature stage at 6.5 weeks, it is perceived as having higher intensities of green, bitter, cabbage, 

sulfur, and woody flavors. These flavors may be associated with the presence of volatiles such as 

(Z)-3-hexen-1-ol (12), octyl acetate (31), 1-nonanol (29), 2-decanone (37), 1-penten-3-ol (4), 

linalool (26), camphor (33), menthol (36), isobornyl acetate (41), geranylacetone (44), and cedrol 

(48) which have been associated with “strong green”, “bitter”, “fruity”, and “fatty” odors in the 

past.  

Finally, conventional pac choi was slightly higher in green overall, bitter, and soapy 

flavors compared to organic pac choi when harvested at 2.5 weeks only. This may be associated 

with the presence of (Z)-3-hexenal (9), 2-hexyn-1-ol (10), and (E)-2-hexenal (11). The difference 

in flavor between organic and conventional pac choi disappears as the plant gets older probably 

due to the increase of other volatile compounds also with “green”, “bitter”, and “floral” 

characteristics such as 1-penten-3-ol (4), linalool (26), and geranylacetone (44). 
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CHAPTER 6 - Sensory and chemical properties of organically and 

conventionally grown pac choi (Brassica rapa cv. Mei Qing Choi) 

change little during 18 days of refrigerated storage 

Abstract 

Sensory and chemical characteristics of organically and conventionally grown pac choi 

(often called bok choy) were identified and quantified during 18 days of shelf life storage. 

Sensory and instrumental data were correlated using partial least squares regression. Pac choi 

was grown in early autumn at the Research and Extension Center owned by Kansas State 

University located in Olathe, Kansas. Samples were refrigerated at 4°C and evaluated at 1, 4, 9, 

and 18 days after storage. Sensory analysis was conducted by a trained descriptive panel and 

compounds were identified and quantified using a gas chromatograph / mass spectrometer. Most 

of the decrease in the quality of pac choi during refrigerated storage is related to a decrease of 

textural attributes such as crispness and moistness as well as the increase in off-flavors such as 

stale/refrigerator and moldy. However, differences generally were small. Most of the flavor 

characteristics remained constant or varied slightly. Volatiles such as heptanal, octanal, 

benzeneacetaldehyde, 1-octanol, and (E)-2-nonen-1-ol generally were higher in organic pac choi, 

but those differences did not translate into sensory differences as none were found between the 

organic and conventionally grown leaves at any point in the shelf life.  

Practical Applications 

  The popularity of organically grown vegetables has increased the interest in 

understanding the sensory differences between organic and conventional vegetables. This study 

shows that organic and conventional pac choi have a similar a quality after storage. This may 

clarify previous theories regarding organic products lasting longer than conventional products. 
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Introduction 

Freshness, taste, and appearance are critical factors driving consumers’ purchase 

decisions of minimally processed vegetables (Ragaert et al., 2004). Because vegetables are 

highly perishable products, the study of their shelf life becomes important. Leafy greens are 

perishable mostly due to mechanical damage during post harvest handling (Mahmud et al., 

1999). Some of the most common defects are yellowing (Lu, 2007) caused by degradation of the 

chlorophyll and water-loss, which is increased by the high surface area to volume ratio of leafy 

vegetables (Burton, 1982). These factors are related to each other and are increased when not 

refrigerated (Lazan et al., 1987). Lower temperatures decrease the respiration rate of vegetables 

and hence increase their shelf life (Geronimo and Beevers, 1964).  

Some production methods are also alleged to affect the shelf life of vegetable products. 

For example, some studies propose that organic farming systems increase the shelf life of leafy 

vegetables because it causes the nitrate contents to decrease in the leaves (Rembialkowska, 2007; 

Bourn and Prescott, 2002). Those authors explain that this is likely due to the lower amounts of 

nitrogen used in organic fertilization which will generate less nitrogen for the plant to absorb. 

However, some studies failed to find sensory differences between organic and conventional 

products during storage which makes this issue controversial. For example, DeEll and Prange 

(1992) found no differences in firmness, sweetness, tartness, or off-flavors after storage between 

organically and conventionally grown apples. Nonetheless, Moreira et al. (2003) suggested that 

organically grown Swiss chard retained turgidity, color, and brightness longer than the 

conventionally grown chard. In contrast, Boonyakiat et al. (2007) suggested that cabbage and 

spinach grown under a conventional system had a longer shelf life than the organic vegetables. 

The same study did not find differences in Cos lettuce.  

Sensory analysis has been used by other studies to evaluate the effects of storage. 

Jacobsson et al. (2004) evaluated samples of broccoli for aroma and flavor attributes such as 

freshness, cooked cabbage, sweetness, and bitterness; textural attributes including chewing 

resistance and crispness; as well as appearance characteristics such as freshness, greenness, 

compactness, brownness, evenness, and size. The shelf life of vegetables has also been evaluated 

from the sensory standpoint by other studies using more general terms. For example, Ares et al. 

(2008) evaluated appearance, discoloration, and off-odour of butterhead lettuce to compare the 

effects of different packaging during shelf life. A greater number of studies have used survival 
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analysis to evaluate shelf life of products from the perspective of consumers rejecting the 

products (Hough et al., 2003; Giménez et al., 2008; Salvador et al., 2007).   

In addition to sensory characteristics, the profile of aroma volatiles has also been studied 

to evaluate shelf life. For example, the volatile composition of mushrooms was generated to be 

used as a tool for monitoring shelf life (Dongkham and Srzednicki, 2006). Once identified and 

quantified, the chemical information of a vegetable can be correlated with its sensory 

characteristics, using a variety of multivariate statistical analyses including principal component 

analysis, generalized procrustes analysis, or partial least squares regression (Noble and Ebeler, 

2002). This may give an idea of the relationships between aroma volatiles and sensory attributes. 

Echeverría et al. (2003) correlated volatile profiles, quality, and sensory characteristics of Fuji 

apples after storage under different conditions using principal component analysis. Voon et al.  

(2007) used partial least squares regression (PLS2) to correlate sensory and volatile data from 

durian, an exotic seasonal fruit from Southeast Asia. In Addition, Baxter et al. (2005) also used 

PLS to correlate sensory and volatile flavor data from orange juices.  

The objectives of this study are (1) to evaluate the sensory characteristics and the aroma 

volatile content of organically and conventionally grown pac choi leaves at four times during the 

shelf life  (1, 4, 9, and 18 days) and (2) to correlate sensory and instrumental data by means of 

partial least squares regression. 

Materials and Methods 

Samples 

Trials were conducted at the K-State Horticulture Research and Extension Center, Olathe, 

Kansas, on experimental plots established in 2002 for comparison of crops grown under organic 

and conventional production systems in high tunnels (unheated, passively ventilated 

greenhouses) and open field plots (Zhao et al., 2007a).  The soil was a Kennebec silt loam. Six 

9.8 m x 6.1 m high tunnels with 1.5m sidewalls (Stuppy, North Kansas City, MO) and six 

adjacent 9.8 m x 6.1 m field plots were used for this study. High tunnels were covered with 

single layer 6-mil (0.153mm) K-50 polyethylene (Klerk’s Plastic Product Manufacturing, Inc., 

Richburg, SC).  At establishment of the experimental plots, the six high tunnels were divided 

into three groups (blocks) and the two high tunnels in each block were randomly assigned for 

long-term conventional or organic management treatments.  A similar set-up was used in the 
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field plots. Organic plots were managed in compliance with USDA National Organic Program 

standards, and were inspected and certified in 2003, 2006, 2007 and 2008.  

For this study, beginning in 2007, each high tunnel or open field plot was subdivided into 

three 3.2 m x 6.1 m plots to which one of three fertilizer levels were assigned (high, low, and no 

fertilizer) following a latin square design to avoid bias due to position effects in the high tunnels.  

Fertilizer rates were determined based on soil analysis at the beginning of the study in 2007, and 

recommendations for vegetable crops in Kansas (Marr et al., 1998), with compost applied to 

organic plots and synthetic fertilizer applied to conventional plots.  Compost application rates 

were based on the assumption that 50% of the nitrogen from compost would be available to 

plants during the growing season, while 100% would be available from conventional fertilizers 

(Warman and Havard, 1997).  Low and high fertility plots were fertilized with equal amounts of 

compost or synthetic fertilizer at the beginning of the growing season, and high fertility plots 

received additional fertilization during the growing season as described below.  

Pac choi (Brassica rapa L. chinensis ‘Mei Qing Choi’) (Johnny’s Selected Seed, Albion, 

ME, U.S.A.) and tomato (Lycopersicon esculentum ‘Bush Celebrity’) (Totally Tomatoes, 

Randolph, WI, U.S.A.) were grown in one half of each open field or high tunnel plot (6.8 m x 3 

m) in 2007 and 2008, with a rotation between pac choi and tomato plots each year.  In our 

experimental system, a spring and a fall crop of pac choi was grown each year, while a single 

crop of tomato was grown.  Between the spring and fall pac choi crops, plots were seeded with a 

summer cover crop of buckwheat (Fagopyrum sagittatum) (Albert Lea Seed, Albert Lea, MN, 

U.S.A.) at a rate of 134 kg/ha.  In the late fall, all plots were seeded with a cover crop of annual 

rye (Secale cereale) (Albert Lea Seed, Albert Lea, MN, U.S.A.) at a rate of 229 kg/ha.  

Conventional high and low fertility plots were fertilized with Jack’s Professional Peat-lite 

N-P2O5-K2O 20-10-20 (Allentown, PA, U.S.A.), at a rate of 98 kg/ha. Organic plots received 

MicroLeverage compost N-P2O5-K2O 0.6-0.8-0.5 (Hughesville, MO, U.S.A) at a rate of 197 

kg/ha.  Starting 2 weeks after planting, high fertility plots received additional fertilization at a 

rate of 7.2 kg/ha.  Fertilizer used on organic plots was fish hydrolyzate N-P2O5-K2O 2.23-4.35-

0.3 (Neptune’s Harvest, Gloucester, MA, U.S.A) and conventional plots received calcium nitrate 

and potassium nitrate at a rate calculated to apply an amount of calcium equivalent to that 

present in the fish hydrolyzate.  The tomato crop received 6 weekly applications, for a total of 43 
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kg/ha, and the spring and fall pac choi crops each received three such applications. Only pac choi 

grown in the outside plots with high amounts of fertilizer were used for this specific study. 

Pac choi transplants were started in a greenhouse in Sunshine Mix Special Blend E6340 

(SunGro Horticulture, Bellevue, WA) supplemented with MicroLeverge compost.  An 

amendment of fish hydrolysate was fertigated at a rate 18.1lbs/ hectare. Pac choi was planted on 

September 4, 2008 and harvested on October 6 of the same year, at approximately 4.5 wks of 

age, a typical time for pac choi. 

Sample Preparation 

Sensory analysis 

 After harvest, the plants were immediately rinsed using cold tap water to remove excess 

dirt and stored in a refrigerated container for transport to the Kansas State University campus 

located in Manhattan, KS. The samples were placed in a walk-in refrigerator for storage at 4ºC 

until testing at 1, 4, 9, and 18 days. This temperature was selected to reduce deterioration of the 

pac choi leaves while recreating normal conditions in the refrigerator of a consumer. The interval 

selected was based on previous research by Able et al. (2005). The plants were sprayed once 

every two days with tap water to maintain moisture. On the day of testing, plants were retrieved 

from the refrigerator. Random leaves of similar visual characteristics were removed from each 

stalk (not including the stem) and rinsed using distilled water. Excess water was eliminated with 

a salad spinner (Oxo International, Ltd., New York, NY). Samples were served to the panelists 

monadically on 6” foam plates identified with a three-digit code to eliminate potential panelist 

bias. One leaf was served to each panelist. 

Volatile analysis 

Volatile analysis for each shelf life point occurred the same day as sensory testing. For 

solid-phase microextraction (SPME) sampling, 4 g pac choi leaves were blended with 200-mL of 

reverse osmosis, deionized, carbon-filtered water using an electric hand blender (Rival, Peoria, 

IL) for 20 s. The mixture was then filtered through a double layered cheese cloth. From the 

filtered solution, 1-mL was transferred to a 10-mL clear headspace vial and mixed with 0.2 g of 

Sodium Chloride (NaCl). Additionally, 5-μl of 0.2 ppm 1,3 dichlorobenzene in methanol 
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(internal standard) was added. Glass vials were closed using an open-center screw cap with a 1.8 

mm silicone/PTFE septum (Varian, Palo Alto, CA).   

Panelists 

Six highly trained panelists from the Sensory Analysis Center at Kansas State University 

(Manhattan, KS, U.S.A.) were used for this study. The panelists had completed more than 120 

hours of descriptive training, averaged more than 2000 hours of testing experience, and had prior 

experience testing vegetables and vegetable products. 

Experimental procedure 

Sensory analysis 

The lexicon used for pac choi was created to describe the flavor of different leafy 

vegetables and was developed by Talavera-Bianchi et al. (2009) using an adaptation of the 

profile method (Caul, 1957; Keane, 1992), which has been used by many studies in the past to 

help describe a variety of products such as dairy products (Thompson et al., 2009; 

Oupadissakoon et al., 2009; Rètiveau et al., 2005; Heisserer and Chambers, 1993), green tea 

(Lee and Chambers, 2007) or tomatoes (Hongsoongnern and Chambers, 2008a). The previously 

developed lexicon consisting of thirty-two attributes with definitions and references was 

presented to the panelists prior to the start of testing so they could become familiar with the 

terminology, test procedures, and samples. Twenty-six flavor and mouth feel attributes were 

selected to evaluate pac choi. However, three texture attributes (i.e. crispness, moistness and 

fiber awareness) and three off-flavor attributes (i.e. stale/refrigerator, cardboard and moldy) were 

added because they were needed to describe changes in the leaves during shelf life.  

The day of testing, panelists were presented with the lexicon and references determined 

while in orientation. Data were collected using a computerized collection system (Compusense 

Five version 4.6.702, Guelph, ON, Canada). Intensities for each attribute were recorded using a 

0-15 point scale divided in 0.5 point increments, 0 meaning “none” and 15 meaning “extremely 

high”. Panelists evaluated the samples individually and followed a completely randomized block 

design with the shelf life stage as the blocking factor. Six samples of pac choi were evaluated in 

each of four 90-minute sessions at 1, 4, 9, and 18 days after storage. Reverse osmosis, deionized, 

carbon-filtered water and unsalted crackers were used to rinse the palate between the samples. A 
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similar procedure has been used in the past to evaluate the sensory characteristics of four 

samples of calcium-biofortified lettuce (Park et al., 2009).   

Gas chromatography – mass spectrometry 

Volatile compounds were separated, identified and quantified using a Varian Saturn CP-

3800 Gas Chromatograph / Mass Spectrometer 2200 (Varian Inc., Walnut Creek, CA). The 

sample vials were equilibrated at 40°C/500 rpm for 10 min. SPME was performed using a 

StableFlex Divinylbenzene / Carboxen / Polydimethylsiloxane 50/30 μm fiber (Sigma Aldrich, 

Saint Louis, MO) for 20 min at 40°C. The agitation during extraction was at 250 rpm. The 

extracted compounds were thermally desorbed at 250°C for 3 min in the front injection port of 

the gas chromatograph. After the injection, the fiber was baked at 270°C for 30 min. An RTX®-5 

Capillary Column (30 m length × 0.25 mm internal diameter × 0.25 μm film thickness; Restek 

U.S., Bellefonte, PA) was used to separate the volatiles desorbed from the fiber. The initial 

temperature of the column was set at 40°C for 2 min and then raised to 200°C, at a rate of 5°C 

min-1, and held for 1 min (total GC run time was 35 min). Varian MS Workstation software 

(version 6.8) was used for system control, data collection, and data processing. Compound 

identification was based on NIST 2005 (National Institute of Standards and Technology, U.S. 

Department of Commerce, Gaithersburg, MD) version 2.0 Mass Spectra library search. The final 

compounds concentration was based on the concentration of the internal standard. Three 

replications were analyzed for each treatment. Kovats retention indices were calculated to aid in 

the identification of the volatile compounds. A hydrocarbon (HC) mix (1 drop of HC mix in 1 ml 

of carbon disulfide – CS2 – directly injected to the GC) was also run under the same 

methodology to generate the retention times of the n-alkanes (C6-C20) for calculating the Kovats 

indices. Comparing Kovats indices from chemicals previously identified using the same column 

and stationary phase under similar conditions has shown to be an accurate method of 

identification (Moustafa, 2008).   

Analysis 

Analysis of variance (ANOVA) with PROC MIXED (panelist and replication as the 

random effects) was used to detect overall differences among treatments for individual sensory 

attributes. PROC GLM was used to detect differences for individual volatile compounds. 

ANOVA was computed in SAS® (2002, version 9.1.3; SAS Institute, Cary, NC). Partial least 
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squares regression (PLS2) was used to correlate sensory and instrumental data. PLS is a soft 

modeling method which is widely used to predict a set of dependant variables (sensory 

attributes) from a large set of independent variables (volatile compounds) (Noble and Ebeler, 

2002). This method has been previously used to correlate instrumental and sensory data in 

cheese (Hough et al., 1996), diced tomatoes (Lee et al., 1999) and ice cream (Chung et al., 

2003). Even though this analysis does not determine which volatile components are actually 

responsible for specific sensory attributes, it does help in studying the relationship between 

certain volatiles and sensory characteristics (Noble and Ebeler, 2002). This analysis was 

performed by Unscrambler (2005, Version 9.2; Camo Process AS, Oslo, Norway). 

Results and Discussion 

Sensory analysis 

From the 32 attributes evaluated, 25 were statistically different among days of shelf life 

for both organically and conventionally grown pac choi (P-value ≤ 0.05). However, differences 

generally were very small (Table 6.1).  

Most of the green flavors did not vary throughout shelf life. Overall green, green-

grassy/leafy, and green-viney flavors remained stable after 18 days of storage. The intensity of 

green-unripe and green-peapod attributes did show some differences during shelf life. Green-

unripe was slightly present at day 1 and its intensity decreased until it practically disappeared at 

day 18. Green-peapod started lower and increased as the storage time progressed. Most of the 

time, the intensity of flavor attributes changed by less than 1 point out of 15 as the shelf life 

increased. Other attributes that slightly increased during shelf life were the stale/refrigerator and 

the moldy off-flavors. Off-flavors may be caused by the fermentative metabolism or the transfer 

of undesirable flavors from air, water, or packaging materials (Kader, 2008).   

The intensities of other attributes such as crispness, moistness, green-unripe, spinach, 

water-like, overall sweet, and umami decreased as shelf life progressed. Water loss may be 

responsible for the reduction of textural attributes such as crispness and moistness while 

degradation of chlorophyll may be affecting some of the green flavor characteristics explained 

by the green-unripe and spinach attributes. These are common aspects associated with the 

decrease of quality of leafy vegetables during storage (Burton, 1982; Lu, 2007).  
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Table 6.1. Analysis of variance showing significant differences between shelf life points for 
organically and conventionally grown pac choi1,2 

  Shelf Life 
Attributes1 Production Day 1 Day 4 Day 9 Day 18 

Organic 4.0ab 4.1ab 4.4a 3.9b Crispness 
Conventional 4.0ab 4.4ab 4.4a 3.8b 
Organic 4.5a 4.6a 4.3ab 3.9b Moistness 
Conventional 4.7a 4.7a 4.0b 3.6b 
Organic 4.3b 4.1c 4.7a 4.1bc Fiber Awareness 
Conventional 4.4ab 4.1b 4.4a 4.2b 
Organic 7.2 7.0 7.1 6.9 Overall Green 
Conventional 7.1 7.3 6.9 6.9 
Organic 0.6a 0.4ab 0.2b 0.1b Green-Unripe 
Conventional 0.5a 0.5a 0.4a 0.0b 
Organic 0.9c 1.4b 1.8a 1.8a Green-Peapod 
Conventional 1.2b 1.3b 1.5a 1.7a 
Organic 6.4 6.5 6.5 6.5 Green-

Grassy/leafy Conventional 6.2 6.6 6.3 6.5 
Organic 2.6 2.5 2.6 2.4 Green-Viney 
Conventional 2.4 2.7 2.5 2.5 
Organic 2.9 2.7 2.7 2.9 Cabbage 
Conventional 2.9ab 2.4c 2.6bc 3.0a 
Organic 1.7b 2.0a 1.5b 1.6b Lettuce 
Conventional 1.6 1.6 1.7 1.7 
Organic 2.2a 2.1ab 1.8bc 1.8c Spinach 
Conventional 2.0 1.9 1.8 1.8 
Organic 1.4b 1.6ab 1.3b 1.9a Parsley 
Conventional 1.4b 1.4b 1.4b 1.8a 
Organic 1.6c 1.7bc 2.2a 2.1ab Radish 
Conventional 1.8ab 1.6b 2.0ab 2.1a 
Organic 1.0b 0.8b 0.9b 1.7a Piney 
Conventional 0.9b 0.8b 1.0b 1.4a 
Organic 1.6b 1.6b 1.8b 2.3a Woody 
Conventional 1.4c 1.8b 1.9ab 2.2a 
Organic 1.3b 1.6a 1.4ab 1.4ab Water-like 
Conventional 1.5ab 1.6a 1.3b 1.3b 
Organic 2.0c 1.9c 2.2b 2.8a Musty/Earthy 
Conventional 1.8c 2.0bc 2.0b 2.4a 
Organic 1.5b 1.5b 1.7b 2.2a Sulfur 
Conventional 1.7ab 1.5b 1.6ab 1.8a 
Organic 0.5b 0.7b 0.8b 1.3a Soapy 
Conventional 0.6b 0.8ab 0.9ab 1.1a 
Organic 0.6b 0.4b 0.8b 1.4a Petroleum-like 
Conventional 0.3b 0.7b 0.6b 1.3a 
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Organic 2.2b 2.2b 2.6b 2.9a Pungent 
Conventional 2.6a 2.2b 2.4ab 2.7a 
Organic 2.5ab 2.3b 2.6a 2.5ab Bite 
Conventional 2.6a 2.2b 2.4ab 2.3ab 
Organic 1.8ab 1.8b 1.9ab 2.0a Toothetch 
Conventional 1.7b 1.8b 1.8b 2.1a 
Organic 1.3b 1.8a 1.3b 1.2b Overall Sweet 
Conventional 1.3b 1.8a 1.3b 1.2b 
Organic 1.7b 1.7b 1.9a 1.8ab Sour 
Conventional 1.6b 1.6b 1.9a 1.7ab 
Organic 6.1b 6.1b 7.1a 7.2a Bitter 
Conventional 5.9b 5.9b 6.9a 6.9a 
Organic 0.9b 1.1ab 1.0b 1.2a Salty 
Conventional 0.9b 1.0ab 0.9b 1.2a 
Organic 2.1b 2.5a 1.9b 1.9b Umami 
Conventional 1.9b 2.3a 1.9b 1.9b 
Organic 2.0b 1.8b 1.9b 2.3a Astringent 
Conventional 1.8b 1.7b 1.8b 2.2a 
Organic 0.0c 0.2c 0.8b 1.4a Stale/Refrigerator 
Conventional 0.0b 0.0b 0.4b 1.4a 
Organic 0.0b 0.1b 0.3ab 0.4a Cardboard 
Conventional 0.0 0.0 0.2 0.3 
Organic 0.0b 0.0b 0.1b 0.5a Moldy 
Conventional 0.0b 0.0b 0.1b 0.4a 

1Intensities are based on a 15-point numerical scale with 0.5 increments, where 0 means “none” and 15 means 
“extremely strong.” 
2Different letters show significant different among shelf life points at 95% confidence 

 

No differences were found between organic and conventional pac choi at any point 

during shelf life. This means that production system had no effect on sensory properties up to 18 

days of shelf-life.  

The flavor of pac choi was generally similar between days 1 and 4 with some variation 

for days 9 and 18. However, differences again were small. It is apparent that most of the decrease 

in the quality of pac choi during refrigerated storage is related to a decrease in the intensity of 

textural attributes such as crispness and moistness as well as the increase of off-flavors such as 

stale/refrigerator and moldy. Loss of crispness and moisture is likely due to water loss which has 

been suggested to be one of the main factors affecting quality of pac choi during shelf life (Lu, 

2007). The appearance of off-flavors is also and important factor indicating the end of shelf life 

for leafy vegetables (Kader, 2008). Most of the flavor characteristics evaluated remained stable 
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or varied only slightly throughout shelf life. Further flavor quality decline may be observed at a 

shelf life longer than 18 days.   

 Gas chromatography – mass spectrometry 

Thirty-eight flavor volatiles were identified and quantified (Table 6.2) in the pac choi 

leaves. Seventeen volatiles were significantly different among shelf life stages (P-value ≤ 0.05). 

In all of the cases, the concentration of the volatiles decreased as the shelf life increased. These 

volatiles were 1-penten-3-ol (4), (E)-2-hepten-1-ol (6), 2-methyl-butanoic acid, methyl ester (7), 

2-hexyn-1-ol (9), (E,E)-2,4-hexadienal (14), (E)-2-octenal (18), 4-methyl-1-undecene (20), 1-

octanol (21), 3,7-dimethyl-1,6-octadien-3-ol (also known as linalool) (23), camphor (27), 

menthol (29), (E)-2-decen-1-ol (30), 2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde (31), 

isobornyl acetate (33), dodecanal (34), 6,10-dimethyl-5,9-undecadien-2-one (also named 

geranylacetone) (35), and lillial (38). Water loss, the loss of aroma volatiles, the reduction of 

sugars and acids, and the development of off-flavors are common factors dictating the post 

harvest life of vegetable products (Kader, 2008). In our study, many of the aroma volatiles that 

reduced at prolonged stages of shelf life have been linked to “green” aromas in the past (Table 

6.3). It would be expected that the reduction of these aroma volatiles during storage may cause 

the reduction in the intensity of certain sensory characteristics. The flavor attributes that also 

showed a reduction in intensity were green-unripe, spinach, overall sweet, and umami. Other 

flavor attributes that also explain “green” characteristics such as overall green, green-

grassy/leafy, and green-viney were not statistically different (P-value ≤ 0.05) among the times 

evaluated and remained relatively stable throughout the shelf life of the pac choi.  

Aroma volatiles that are present in high concentrations were statistically similar (P-value 

≤ 0.05) throughout shelf life. Some of these volatiles are (Z)-3-hexenal (8), (E)-2-hexenal (10), 

(Z)-3-hexen-1-ol (11), 4-isothiocyanato-1-butene (16), and 4-ethyl-5-methylthiazole (22). These 

volatiles have also been associated with “green” characteristics in the past (Table 6.3).   



 

Table 6.2. Volatile aromatics found in organically and conventionally grown pac choi during shelf life1,2 

Day 1 Day 4 Day 9 Day 18 
  
  
  
  ORG CON ORG CON ORG CON ORG CON 

1 2-butanone 14.0 12.7 12.4 13.0 10.2 Trace 10.7 11.3 

2 Methyl propionate Trace Trace Trace Trace Trace Trace Trace Trace 

3 3-methyl-2-butanone  Trace Trace Trace Trace Trace Trace Trace Trace 

4 1-Penten-3-ol 53.6 42.0 43.8 41.8 36.6 30.1 24.9 27.8 
5 Butanoic acid, methyl ester 20.0 19.0 18.9 17.9 15.5 15.3 21.2 17.8 

6 (E)-2-hepten-1-ol  63.1 48.8 46.8 47.9 37.7 30.2 25.8 30.8 
7 2-methyl-butanoic acid, methyl ester 24.7 23.8 21.2 21.9 20.5 18.8 19.3 19.2 

8 (Z)-3-hexenal 12371.3 13437.6 12037.8 15677.1 10579.0 10406.1 9445.3 10920.3 

9 2-hexyn-1-ol 1143.0 1042.2 969.5 1090.8 783.6 657.7 631.0 751.7 

10 (E)-2-hexenal 14144.7 10304.2 12577.2 10492.9 10470.2 7636.7 7239.0 7394.7 

11 (Z)-3-hexen-1-ol 1029.7 941.4 848.9 748.5 889.5 680.4 541.1 606.1 

12 (E)-3-hepten-1-ol  470.6 347.0 395.5 368.9 315.8 251.8 238.8 290.1 

13 Heptanal 10.8 Trace 11.7 Trace 12.3 Trace 10.4 Trace 

14 (E,E)-2,4-hexadienal 470.6 512.8 351.6 459.2 277.2 269.8 252.7 335.8 

15 1-isothiocyanato-butane 98.9 265.1 253.1 388.7 149.6 219.7 324.4 129.4 

16 4-isothiocyanato-1-butene 12475.6 10540.6 10898.3 9921.3 11141.6 10826.1 7267.5 9718.9 

17 Octanal Trace Trace Trace Trace Trace Trace Trace Trace 

18 (E)-2-octenal  72.1 74.4 46.1 38.0 48.5 45.6 18.8 22.0 

19 Benzeneacetaldehyde 356.2 247.4 361.8 270.7 300.9 226.3 245.2 216.8 

20 4-methyl-1-undecene 25.0 24.7 21.8 21.5 18.9 17.6 15.9 17.3 

21 1-octanol 76.9 58.0 64.7 42.5 56.7 39.2 31.9 34.5 

22 4-ethyl-5-methylthiazole 14432.5 12443.5 14440.6 12882.2 14022.2 13621.4 9610.7 12896.5 
23 3,7-dimethyl-1,6-octadien-3-ol (linalool) 30.4 22.7 28.1 20.1 24.3 22.0 16.6 17.3 

24 (E)-2-nonen-1-ol 138.0 59.8 108.4 63.9 110.2 45.5 70.8 47.4 

25 4,5-dimethyl-thiazole 284.6 185.5 165.5 234.6 198.0 165.3 117.3 189.8 

122  



 

26 Benzyl nitrile Trace Trace Trace 28.4 Trace Trace Trace Trace 

27 Camphor Trace Trace Trace Trace Trace Trace Trace Trace 
28 4-Methylpentyl isothiocyanate 179.4 98.6 161.9 104.4 121.1 136.5 100.6 117.4 

29 Menthol 26.1 29.3 19.3 16.8 15.0 17.5 11.5 17.7 

30 (E)-2-decen-1-ol 38.7 27.7 38.9 33.9 28.1 21.1 24.5 27.4 

31 
2,6,6-trimethyl-1-cyclohexene-1-
carboxaldehyde 375.7 290.1 277.1 242.3 240.5 211.8 173.6 192.8 

32 Isothiocyanato-cyclohexane 266.6 252.5 221.2 229.8 212.0 199.2 179.8 211.9 

33 Isobornyl acetate Trace Trace Trace Trace Trace Trace Trace Trace 

34 Dodecanal Trace Trace Trace Trace Trace Trace Trace Trace 

35 
6,10-dimethyl-5,9-undecadien-2-one  
(Geranylacetone) 31.0 24.2 30.5 25.3 22.8 24.6 11.9 12.1 

36 2-isothiocyanatoethyl-benzene  3995.0 2556.9 4646.2 3032.2 3521.3 2746.2 2370.7 2899.2 

37 Butylated hydroxytoluene Trace Trace Trace Trace Trace Trace Trace Trace 

38 Lilial Trace Trace Trace Trace N.D. N.D. N.D. N.D. 
1ORG=Organic; CON=Conventional 
2Concentration of volatile shown in pg/g of pac choi 
N.D: Not Detected 
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Table 6.3. Volatile aromatics found in organically and conventionally grown pac choi during shelf life including retention index and 
expected aroma characteristics 

 
RI1 

Literature  
Retention Index Expected Aroma 

1 2-butanone 585.6 580 
Baloga et al., 1990 

Fragrant, pleasant 
Morales et al., 1995 

2 Methyl propionate 622.2 621 
Beaulieu and Grimm, 2001 

 

3 3-methyl-2-butanone  657.3 654 
Larsen and Frisvad, 1995 

 

4 1-Penten-3-ol 685.1 680 
Meynier et al., 1999 

Powerful grassy green aroma 
Chida et al., 2004 

5 Butanoic acid, methyl ester 728.1 717 
Beaulieu and Grimm, 2001 

 

6 (E)-2-hepten-1-ol  775.7 
970 

Rembold et al., 19892 
 

7 2-methyl-butanoic acid, methyl ester 781.7 772 
Beaulieu and Grimm, 2001  

8 (Z)-3-hexenal 805.7 796 
Beaulieu and Grimm, 2001 

Strong green, green leaves, grassy 
Morales et al., 1995 

Iraqi et al., 2005 

9 2-hexyn-1-ol 851.7 847 
Lee and Kim, 2002 

 

10 (E)-2-hexenal 857.5 848 
Gómez et al., 1993 

Green, green-fruity, bitter 
Morales et al., 1995 
Klesk and Kian 2003 

11 (Z)-3-hexen-1-ol 860.7 849 
Gómez et al., 1993 

Green, banana-like 
Morales et al., 1995 

Chambers et al., 1998 

12 (E)-3-hepten-1-ol  867.0 
968 

NIST3 
 

13 Heptanal 903.9 898 
Gómez et al., 1993 

Floral 
Yang, Shewfelt, Lee, & Kays, 2008 

14 (E,E)-2,4-hexadienal 917.3 911 
Flamini et al., 2003 

Green, vegetable, burnt 
Venkateshwarlu et al., 2004 

Hartvigsen et al., 2000 
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15 1-isothiocyanato-butane 938.2 943 
Afsharypuor et al., 1998 

 

16 4-isothiocyanato-1-butene 989.0 978 
Engel et al., 2002 

Sulfur 
Engel et al., 2002 

17 Octanal 1004.5 1003 
Flamini et al., 2003 

Green, citrus-like 
Buettner and Schieberle, 2001 

Iraqi et al., 2005 

18 (E)-2-octenal  1032.9 1057 
Beaulieu and Grimm, 2001 

Green 
Aparicio et al., 1997 

19 Benzeneacetaldehyde 1049.3 1045 
Gómez et al., 1993 

Green, flower, honey, 
bitteralmond 

Heiniö et al., 2003 

20 4-methyl-1-undecene 1072.3 1085 
Timón et al., 1998 

 

21 1-octanol 1075.1 1070 
Beaulieu and Grimm, 2001 

Grass, pepper 
Mehinagic et al., 2006 

22 4-ethyl-5-methylthiazole 1086.9 
1068 

Mottram and Whitfield, 
19954 

 

23 
3,7-dimethyl-1,6-octadien-3-ol 
(linalool) 

1100.8 1090 
Senatore et al., 1997 

Sweet, floral, citrus, woody 
Thi Minh Tu et al., 2002 

Chida et al., 2004 

24 (E)-2-nonen-1-ol 1105.7 
1149 

Flath et al., 19835 
 

 

25 4,5-dimethyl-thiazole 1128.7 945 
Parker et al., 2000 

Smoky, roasty, fragrant, nutty 
Specht and Baltes, 1994 

26 Benzyl nitrile 1145.2 1142 
Tellez et al., 2002 

 

27 Camphor 1151.3 1144 
Sagrero-Nieves et al., 1997 

Piney, spicy 
Mehinagic et al.,  2006 

28 4-Methylpentyl isothiocyanate 1172.1 
1166 

Afsharypuor and 
Suleimany, 20026 

 

29 Menthol 1177.6 
1171 

Egolf and Jurs, 19937 
Refreshing, light, sweet, pungent 

Chida et al.,  2004 
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30 (E)-2-decen-1-ol 1208.3 
1254 

Smallfield et al., 19948 
 

31 
2,6,6-trimethyl-1-cyclohexene-1-
carboxaldehyde 

1229.9 1223 
Bader et al., 2003 

 

32 Isothiocyanato-cyclohexane 1243.5 1231 
Rapior et al., 2003 

 

33 Isobornyl acetate 1301.8 1317 
Porta et al., 1999 

 

34 Dodecanal 1410.8 
1411 

Högnadóttir and Rouseff, 
2003 

Green, sour, citrus 
Thi Minh Tu et al.,  2002 

Hashizume and Samuta, 1997 

35 
6,10-dimethyl-5,9-undecadien-2-one  
(Geranylacetone) 

1457.2 1448 
Beaulieu and Grimm, 2001 

Pungent, floral, sweet, slightly 
green, magnolia-like 

Chida et al.,  2004 

36 2-isothiocyanatoethyl-benzene  1476.4 
1465 

Afsharypuor and 
Suleimany, 20029 

 

37 Butylated hydroxytoluene 1518.8 1504 
Gómez et al., 1993  

38 Lilial 1534.5 
1543 
NIST3 

 
1Retention index (Kovats) calculated from DB5, 30m column; 2Calculated with a SE-54, 30m column; 3Column used unknown; 
4Calculated with a DB5, 50m column; 5Calculated with a DB1, 60m column; 6Calculated with a HP5MS, 30m column; 
7Calculated with an OV101, 50m column; 8Calculated with a DB1, 9.5m column; 9Calculated with a HP5MS, 30m column. 
 

 

 

 

 

 

 



 

The lack of change in those compounds may relate to the relative stability of the overall 

flavor of pac choi throughout its shelf life. Some sensory attributes increased in intensity but the 

differences generally were very small. 

Heptanal (13), octanal (17), benzeneacetaldehyde (19), 1-octanol (21), and (E)-2-nonen-

1-ol (24) volatiles were generally higher for organic pac choi throughout shelf life. Possibly 

because these chemicals were present at relatively low concentrations, these differences did not 

appear to translate into sensory differences. Organic and conventionally grown pac choi were not 

different from the sensory standpoint throughout shelf life.  

Relationship between sensory and chemical data 

Partial least squares regression (PLS) was performed to further assess the relationships 

between sensory and chemical data for the samples evaluated (Figure 6.1). Results indicate that 

83% of the chemical data explains 61% of the sensory data. Aroma volatiles and sensory 

attributes that were not found to be significant (P-value ≤ 0.10) in the analysis of variance were 

not included in PLS analysis. Results show that both organic and conventional samples evaluated 

at days 1 and 4 are more similar to each other compared to the samples evaluated at days 9 and 

18. This shows that during the first 4 days of storage, the quality of pac choi remains stable.  

All the aroma volatiles were more related to samples evaluated at days 1 and 4 compared 

to samples evaluated at days 9 and 18. This means that the concentration of the chemicals started 

higher in most of the cases and then declined at longer stages of shelf life. The concentration of 

aroma volatiles is expected to decline during storage (Kader, 2008; Dongkham and Srzednicki 

2006). These changes in volatile composition may affect the sensory characteristics of the 

vegetables. For example, it was reported that the loss of certain chemicals such as 1-octen-3-ol 

and 3-octanone was correlated to the loss of freshness and aroma of mushrooms during storage 

(Dongkham and Srzednicki 2006). In our study, the loss of volatile concentration is correlated 

with the reduction of attributes such as spinach, green-unripe, umami, overall sweet, water-like, 

moistness, and crispness. Other attributes such as cabbage, sulfur, woody, or bitter increased 

slightly towards the last days of shelf day evaluated. However, the variation was very small.  
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Figure 6.1. Partial least squares regression (PLS) correlating sensory and instrumental 
data. CON1=Conventional Day 1; ORG1=Organic Day 1; CON4=Conventional Day 4; 
ORG4=Organic Day 4; CON9=Conventional Day 9; ORG9=Organic Day 9; 
CON18=Conventional Day 18; ORG18=Organic Day 18. 

 

This study suggests that certain volatiles may have higher concentrations in organic 

samples. This is the case of heptanal (13), octanal (17), benzeneacetaldehyde (19), octanol (21), 

linalool (23), (E)-2-nonen-1-ol (24), Methylpentyl isothiocyanate (28), and 2-

isothiocyanatoethyl-benzene (36). Conversely, other volatiles have higher concentrations in 

conventional samples. This is the case of (Z)-3-hexenal and (E,E)-2,4-hexadienal which have 

been associated with “green” aromas in the past (Iraqi et al., 2005; Venkateshwarlu et al., 2004).  

The analysis confirms that the few differences in volatile concentration that were found 

among shelf life points and production systems did not translate into sensory differences 

probably because the volatiles with highest concentration  such as (E)-2-hexenal (10) and 4-

isothiocyanato-1-butene (16) remained relatively stable throughout shelf life. These chemicals 

have been previously associated with “green” and “sulfur” aromas respectively (Klesk and Kian, 
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2003; Engel et al., 2002), key characteristics of pac choi and other plants from the Brassica 

family.  

Conclusions 

The sensory characteristics of pac choi grown under organic and conventional system 

remained similar throughout the 18-day storage period. This means that the vegetable grown 

under a certain production system did not outlast the other from a sensory perspective.  From the 

chemical perspective a few differences are noted. Aroma volatiles such as heptanal (13), octanal 

(17), benzeneacetaldehyde (19), 1-octanol (21), and (E)-2-nonen-1-ol (24) were generally higher 

in organic pac choi. However, these differences did not translate into sensory differences. PLS 

analysis suggests that little change occurred in the pac choi in the first 4 days of shelf life. It is 

apparent that most of the decrease in the quality of pac choi during refrigerated storage is related 

to a decrease in the intensity of textural attributes such as crispness and moistness as well as the 

increase of off-flavors such as stale/refrigerator and moldy, however those changes were small. 

Most of the flavor characteristics evaluated remained constant or varied slightly throughout shelf 

life. This may be because major volatile compounds such as (E)-2-hexenal (10) and 4-

isothiocyanato-1-butene (16) remained relatively stable throughout shelf life.  
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Appendix A - SAS® Program Code used for analysis of leafy 

vegetables  

Principal Component Analysis 

 
data leafy; 
input sample$ Green_Overall Green_Unripe Green_Peapod Green_Grassy_Leafy 
Green_Viney Cabbage Celery Lettuce Spinach Parsley Beet Radish Citrus Piney 
Woody Water_like Musty_Earthy Floral Sulfur Metallic Soapy Petroleum_like 
Pungent Bite Toothetch Heatburn Sweet_Overall Sour Bitter Salty Umami 
Astringent 
; 
cards; 
***DATA DELETED*** 
; 
proc factor data=leafy method=principal msa rotate=varimax scree; 
proc print; 
run; 

 

Cluster Analysis 

 

data leafy; 
input sample$ Green_Overall Green_Unripe Green_Peapod Green_Grassy_Leafy 
Green_Viney Cabbage Celery Lettuce Spinach Parsley Beet Radish Citrus Piney 
Woody Water_like Musty_Earthy Floral Sulfur Metallic Soapy 
Petroleum_likePungent Bite Toothetch Heatburn Sweet_Overall Sour Bitter Salty 
Umami Astringent 
; 
cards; 
***DATA DELETED*** 
; 
proc cluster standard method=average ccc pseudo outtree=tree; 
var Green_Overall -- Astringent; 
ID Sample; 
run; 
Proc tree data=tree nclusters=9; 
copy Green_Overall -- Astringent; 
ID sample; 
run; 
proc print data=tree; 
run; 
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Appendix B - Factor loadings of flavor attributes of green leafy 

vegetables 

 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9 

          

Green, Unripe 0.90 -0.06 -0.04 -0.03 0.10 -0.09 -0.21 0.08 -0.05 

Bitter 0.87 0.39 -0.03 0.13 0.08 -0.01 0.02 -0.05 0.08 

Astringent 0.64 0.11 0.24 -0.07 0.11 -0.05 0.10 0.53 0.19 

Green, Viney 0.61 0.51 -0.20 0.05 0.32 -0.09 0.17 0.14 0.14 

Water-like -0.51 -0.02 -0.30 -0.28 -0.24 -0.23 -0.43 -0.14 -0.35 

Sweet, Overall -0.72 -0.08 -0.09 -0.12 0.10 -0.44 -0.02 0.00 -0.16 

Pungent 0.12 0.96 0.04 -0.04 0.02 -0.02 -0.02 0.01 0.02 

Heatburn -0.10 0.93 -0.08 -0.01 0.04 -0.01 0.12 0.00 0.06 

Bite 0.27 0.90 0.17 0.08 0.03 -0.04 -0.05 -0.02 0.14 

Radish 0.11 0.84 0.40 -0.04 0.13 -0.09 -0.05 0.06 -0.09 

Cabbage 0.07 0.26 0.87 -0.13 -0.07 -0.07 -0.22 -0.07 0.20 

Green, Peapod -0.25 -0.02 0.80 -0.14 0.07 0.00 -0.10 0.12 0.02 

Sulfur 0.23 0.19 0.60 0.16 -0.24 -0.09 -0.21 -0.20 -0.13 

Celery -0.04 0.05 -0.57 0.32 0.33 -0.19 0.10 -0.23 0.25 

Lettuce -0.24 -0.11 -0.65 -0.34 0.08 -0.19 -0.40 0.00 -0.21 

Citrus -0.12 -0.03 -0.12 0.87 -0.13 0.05 -0.11 0.13 0.21 

Floral -0.04 -0.11 -0.11 0.86 0.07 -0.05 0.19 -0.17 0.15 

Petroleum-like 0.44 0.16 0.06 0.76 0.10 -0.02 0.09 0.17 -0.27 

Piney 0.42 0.17 0.12 0.59 0.31 0.03 0.17 0.28 -0.17 

Green, Grassy/Leafy 0.14 -0.01 -0.45 0.13 0.82 -0.04 0.01 0.03 -0.06 

Green, Overall 0.31 0.21 -0.21 0.15 0.82 -0.07 0.04 0.20 0.08 

Woody 0.15 0.12 0.11 0.07 0.71 0.55 0.11 0.06 0.09 

Parsley 0.26 -0.09 -0.12 0.47 0.51 -0.12 0.36 -0.36 -0.05 

Metallic 0.31 -0.07 -0.23 0.30 -0.75 -0.13 -0.02 -0.05 0.11 

Musty/Earthy 0.11 -0.04 0.05 0.08 0.17 0.93 0.07 0.18 0.09 

Beet -0.10 -0.14 -0.07 -0.14 -0.08 0.90 0.17 0.02 -0.08 

Salty -0.04 -0.04 -0.29 -0.13 -0.03 0.09 0.76 0.36 0.29 

Umami -0.38 0.13 -0.07 0.16 0.15 0.12 0.74 0.06 -0.01 

Soapy 0.45 -0.06 -0.19 0.22 0.07 0.18 0.68 0.07 -0.14 

Spinach -0.08 -0.02 -0.10 -0.01 0.15 0.06 0.11 0.86 0.19 

Tooth-etch 0.34 0.02 0.09 0.16 -0.01 0.17 0.15 0.78 -0.05 

Sour 0.29 0.24 0.14 0.19 -0.04 0.05 0.12 0.32 0.76 
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Appendix D - SAS® Program Code used for analysis of pac choi in 

different environments 

Field 

Data opt; 
input lscolumn lsrow Pa M$ L$ F$ Rep Crispness Moistness Fiber_Awareness 
Green_Overall Green_Unripe Green_Peapod Green_Grassy_Leafy Green_Viney  
Cabbage Lettuce Spinach Parsley Radish Piney Woody Water_like Musty_Earthy 
Sulfur Soapy Petroleum_like Pungent Bite Toothetch Sweet_Overall Sour 
BitterSalty Umami Astringent; 
cards; 
***DATA DELETED*** 
; 
%macro mix(y); 
proc mixed; 
class M F lscolumn lsrow Pa; 
model &y=M|F/ddfm=satterth; 
random Pa lscolumn lsrow lscolumn*M Pa*lscolumn*M; 
lsmeans M|F/pdiff; 
run; 
%mend mix; 
%mix (Crispness); 
%mix (Moistness); 
%mix (Fiber_Awareness); 
%mix (Green_Overall); 
%mix (Green_Unripe); 
%mix (Green_Peapod); 
%mix (Green_Grassy_Leafy); 
%mix (Green_Viney); 
%mix (Cabbage); 
%mix (Lettuce); 
%mix (Spinach); 
%mix (Parsley); 
%mix (Radish); 
%mix (Piney); 
%mix (Woody); 
%mix (Water_like); 
%mix (Musty_Earthy); 
%mix (Sulfur); 
%mix (Soapy); 
%mix (Petroleum_like); 
%mix (Pungent); 
%mix (Bite); 
%mix (Toothetch); 
%mix (Sweet_Overall); 
%mix (Sour); 
%mix (Bitter); 
%mix (Salty); 
%mix (Umami); 
%mix (Astringent); 
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High Tunnel 
Data opt; 
input lscolumn lsrow Pa M$ L$ F$ Rep Crispness Moistness Fiber_Awareness 
Green_Overall Green_Unripe Green_Peapod Green_Grassy_Leafy Green_VineyCabbage 
Lettuce Spinach Parsley Radish Piney Woody Water_like Musty_Earthy Sulfur 
Soapy Petroleum_like Pungent Bite Toothetch Sweet_Overall Sour Bitter Salty 
Umami Astringent; 
cards; 
***DATA DELETED*** 
; 
%macro mix(y); 
proc mixed; 
class M F lscolumn lsrow Pa; 
model &y=M|F/ddfm=satterth; 
random Pa lscolumn lsrow lscolumn*M Pa*lscolumn*M; 
lsmeans M|F/pdiff; 
run; 
%mend mix; 
%mix (Crispness); 
%mix (Moistness); 
%mix (Fiber_Awareness); 
%mix (Green_Overall); 
%mix (Green_Unripe); 
%mix (Green_Peapod); 
%mix (Green_Grassy_Leafy); 
%mix (Green_Viney); 
%mix (Cabbage); 
%mix (Lettuce); 
%mix (Spinach); 
%mix (Parsley); 
%mix (Radish); 
%mix (Piney); 
%mix (Woody); 
%mix (Water_like); 
%mix (Musty_Earthy); 
%mix (Sulfur); 
%mix (Soapy); 
%mix (Petroleum_like); 
%mix (Pungent); 
%mix (Bite); 
%mix (Toothetch); 
%mix (Sweet_Overall); 
%mix (Sour); 
%mix (Bitter); 
%mix (Salty); 
%mix (Umami); 
%mix (Astringent); 
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Principal Component Analysis 
data assign2; 
input Judge$ Sample$ Rep$ Crispness Moistness Fiber_Awareness Green_Overall 
Green_Unripe Green_Peapod Green_Grassy_Leafy Green_Viney Cabbage Lettuce 
Spinach Parsley Radish Piney Woody Water_like Musty_Earthy Sulfur Soapy 
Petroleum_like Pungent Bite Toothetch Sweet_Overall Sour Bitter Salty 
UmamiAstringent; 
datalines; 
***DATA DELETED*** 
; 
ods rtf; 
proc sort; 
by sample rep judge; 
proc means mean noprint; 
by sample; 
var Crispness Moistness Fiber_Awareness Green_Overall Green_Unripe 
Green_Peapod Green_Grassy_Leafy Green_Viney Cabbage Lettuce Spinach Parsley 
Radish Piney Woody Water_like Musty_Earthy Sulfur Soapy Petroleum_like 
Pungent Bite Toothetch Sweet_Overall Sour Bitter Salty Umami Astringent; 
output out = meancheese mean = mCrispness mMoistness mFiber_Awareness 
mGreen_Overall mGreen_Unripe mGreen_Peapod mGreen_Grassy_Leafy 
mGreen_VineymCabbage mLettuce mSpinach mParsley mRadish mPiney mWoody 
mWater_like mMusty_Earthy mSulfur mSoapy mPetroleum_like mPungent mBite 
mToo hetch t mSweet_Overall mSour mBitter mSalty mUmami mAstringent; 
proc factor data = meancheese scree score cov outstat = cheese rotate = 
varimax method = prin mineigen = 0.05; 
var mCrispness mMoistness mFiber_Awareness mGreen_Overall mGreen_Unripe 
mGreen_Peapod mGreen_Grassy_Leafy mGreen_VineymCabbage mLettuce mSpinach 
mParsley mRadish mPiney mWoody mWater_like mMusty_Earthy mSulfur mSoapy 
mPetroleum_like mPungent mBite mToothetch mSweet_Overall mSour mBitter mSalty 
mUmami mAstringent; 
proc score data = meancheese scores = cheese out = sccheese; 
var mCrispness mMoistness mFiber_Awareness mGreen_Overall mGreen_Unripe 
mGreen_Peapod mGreen_Grassy_Leafy mGreen_VineymCabbage mLettuce mSpinach 
mParsley mRadish mPiney mWoody mWater_like mMusty_Earthy mSulfur mSoapy 
mPetroleum_like mPungent mBite mToothetch mSweet_Overall mSour mBitter mSalty 
mUma i m mAstringent; 
proc print data = sccheese; 
run; 
ods rtf close; quit; 
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Cluster Analysis 
data assign2; 
input Sample$ Crispness Moistness Fiber_Awareness Green_Overall Green_Unripe 
Green_Peapod Green_Grassy_Leafy Green_Viney Cabbage Lettuce Spinach Parsley 
Radish Piney Woody Water_like Musty_Earthy Sulfur Soapy Petroleum_like 
Pungent Bite Toothetch Sweet_Overall Sour Bitter Salty Umami; 
datalines; 
***DATA DELETED*** 
; 
proc cluster data = assign2 outtree=treesl method=ward ccc; 
id sample; run; 
titl 2 'We ard-tree'; 
proc tree; 
id sample; run; 
proc cluster data = assign2 outtree=treesl method=average ccc; 
id sample; run; 
title2 'Average-tree'; 
proc tree; 
id sample; run; 
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Appendix E - SAS® Program Code used for analysis of tomato in 

different environments 

Field 

Data tomato; 
input lscolumn lsrow Pa M$ L$ F$ Rep Tomato_ID_AR Green_Viney_AROver_Ripe_AR 
Cardboard_AR Color Uniformity_Color Juiciness Mealy Skin_Awareness 
Seed_Awareness Fiber_Awareness Tomato_ID Ripeness Green_Viney Umami Fruity 
Cardboard Fermented Musty_Earthy Overall_Sweet Sweet Sour Salt Bitter 
Astringent Metallic Chemical 
; 
cards; 
***DATA DELETED*** 
; 
%macro mix(y); 
proc mixed; 
class M F lscolumn lsrow Pa; 
model &y=M|F/ddfm=satterth; 
random Pa lscolumn lsrow lscolumn*M Pa*lscolumn*M; 
lsmeans M|F/pdiff; 
run; 
%mend mix; 
%mix (Tomato_ID_AR); 
%mix (Green_Viney_AR); 
%mix (Over_Ripe_AR); 
%mix (Cardboard_AR); 
%mix (Color); 
%mix (Uniformity_Color); 
%mix (Juiciness); 
%mix (Mealy); 
%mix (Skin_Awareness); 
%mix (Seed_Awareness); 
%mix (Fiber_Awareness); 
%mix (Tomato_ID); 
%mix (Ripeness); 
%mix (Green_Viney); 
%mix (Umami); 
%mix (Fruity); 
%mix (Cardboard); 
%mix (Fermented); 
%mix (Musty_Earthy); 
%mix (Overall_Sweet); 
%mix (Sweet); 
%mix (Sour); 
%mix (Salt); 
%mix (Bitter); 
%mix (Astringent); 
%mix (Metallic); 
%mix (Chemical); 
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High Tunnel 
Data tomato; 
input lscolumn lsrow Pa M$ L$ F$ Rep Tomato_ID_AR Green_Viney_AR Over_Ripe_AR 
Cardboard_AR Color Uniformity_Color Juiciness Mealy Skin_Awareness 
Seed_Awareness Fiber_Awareness Tomato_ID Ripeness Green_Viney Umami Fruity 
Cardboard Fermented Musty_Earthy Overall_Sweet Sweet Sour Salt Bitter 
Astringent Metallic Chemical 
; 
cards; 
***DATA DELETED*** 
; 
%macro mix(y); 
proc mixed; 
class M F lscolumn lsrow Pa; 
model &y=M|F/ddfm=satterth; 
random Pa lscolumn lsrow lscolumn*M Pa*lscolumn*M; 
lsmeans M|F/pdiff; 
run; 
%mend mix; 
%mix (Tomato_ID_AR); 
%mix (Green_Viney_AR); 
%mix (Over_Ripe_AR); 
%mix (Cardboard_AR); 
%mix (Color); 
%mix (Uniformity_Color); 
%mix (Juiciness); 
%mix (Mealy); 
%mix (Skin_Awareness); 
%mix (Seed_Awareness); 
%mix (Fiber_Awareness); 
%mix (Tomato_ID); 
%mix (Ripeness); 
%mix (Green_Viney); 
%mix (Umami); 
%mix (Fruity); 
%mix (Cardboard); 
%mix (Fermented); 
%mix (Musty_Earthy); 
%mix (Overall_Sweet); 
%mix (Sweet); 
%mix (Sour); 
%mix (Salt); 
%mix (Bitter); 
%mix (Astringent); 
%mix (Metallic); 
%mix (Chemical);



 

Principal Component Analysis 

data assign2; 
input Judge$ Sample$ Rep$ Tomato_ID_AR Green_Viney_AR Over_Ripe_AR Color 
Uniformity_Color Juiciness Mealy Skin_Awareness Seed_Awareness iber_Awareness 
Tomato_ID Ripeness Green_Viney Umami Fruity Fermented Musty_Earthy 
Overall_Sweet Sweet Sour Salt Bitter Astringent Metallic; 
datalines; 
***DATA DELETED*** 
; 
ods rtf; 
proc sort; 
by s mple a rep judge; 
proc means mean noprint; 
by sample; 
var Tomato_ID_AR Green_Viney_AR Over_Ripe_AR Color Uniformity_Color 
Juiciness Mealy Skin_Awareness Seed_Awareness Fiber_Awareness Tomato_ID 
Ripeness Green_Viney Umami Fruity Fermented Musty_Earthy Overall_Sweet Sweet 
Sour Salt Bitter Astringent Metallic; 
output out = meancheese mean = mTomato_ID_AR mGreen_Viney_AR mOver_Ripe_AR 
mColor mUniformity_Color mJuiciness mMealy mSkin_Awareness mSeed_Awareness 
mFiber_Awareness mTomato_ID mRipeness mGreen_Viney mUmami mFruity mFermented 
mMusty_Earthy mOverall_Sweet mSweet mSour mSalt mBitter mAstringent 
mMetallic; 
proc factor data = meancheese scree score cov outstat = cheese rotate = 
varimax method = prin mineigen = 0.05; 
var mTomato_ID_AR mGreen_Viney_AR mOver_Ripe_AR mColor mUniformity_Color 
mJuiciness mMealy mSkin_Awareness mSeed_Awareness mFiber_Awareness mTomato_ID 
mRipeness mGreen_Viney mUmami mFruity mFermented mMusty_Earthy mOverall_Sweet 
mSweet mSour mSalt mBitter mAstringent mMetallic; 
proc score data = meancheese scores = cheese out = sccheese; 
var mTomato_ID_AR mGreen_Viney_AR mOver_Ripe_AR mColor mUniformity_Color 
mJuiciness mMealy mSkin_Awareness mSeed_Awareness mFiber_Awareness mTomato_ID 
mRipeness mGreen_Viney mUmami mFruity mFermented mMusty_Earthy mOverall_Sweet 
mSweet mSour mSalt mBitter mAstringent mMetallic; 
proc print data = sccheese; 
run; 
ods rtf close; quit; 
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Cluster Analysis 
data assign2; 
input Sample$ Tomato_ID_AR Green_Viney_AR Over_Ripe_AR Color Uniformity_Color 
Juiciness Mealy Skin_Awareness Seed_Awareness Fiber_Awareness Tomato_ID 
Ripeness Green_Viney Umami Fruity Fermented Musty_Earthy Overall_Sweet Sweet 
Sour Salt Bitter Astringent Metallic; 
datalines; 
***DATA DELETED*** 
; 
proc cluster data = assign2 outtree=treesl method=ward ccc; 
id sample; run; 
titl 2 'We ard-tree'; 
proc tree; 
id sample; run; 
proc cluster data = assign2 outtree=treesl method=average ccc; 
id sample; run; 
title2 'Average-tree'; 
proc tree; 
id sample; run; 
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Appendix F - SAS® Program Code used for ANOVA analysis of 

sensory characteristics of pac choi at different stages of development 

 

data stage; 
input Pa T$ M$ Rep Crispness Moistness Fiber_Awareness Green_Overall 
Green_Unripe Green_Peapod Green_Grassy_Leafy Green_Viney Cabbage Lettuce 
Spinach Parsley Radish Piney Woody Water_like Musty_Earthy Sulfur Soapy 
Petroleum_like Pungent Bite Toothetch Sweet_Overall Sour Bitter Salty 
UmamiAstringent; 
cards; 
***DATA DELETED*** 
; 
%macro mix(y); 
PROC mixed covtest cl; 
class pa rep M T; 
model &y=T|M/ddfm=satterth; 
random rep rep*M Rep*M*T Pa*Rep*M; 
lsmeans T|M/pdiff cl; 
run; 
%mend mix; 
%mix (Crispness); 
%mix (Moistness); 
%mix (Fiber_Awareness); 
%mix (Green_Overall); 
%mix (Green_Unripe); 
%mix (Green_Peapod); 
%mix (Green_Grassy_Leafy); 
%mix (Green_Viney); 
%mix (Cabbage); 
%mix (Lettuce); 
%mix (Spinach); 
%mix (Parsley); 
%mix (Radish); 
%mix (Piney); 
%mix (Woody); 
%mix (Water_like); 
%mix (Musty_Earthy); 
%mix (Sulfur); 
%mix (Soapy); 
%mix (Petroleum_like); 
%mix (Pungent); 
%mix (Bite); 
%mix (Toothetch); 
%mix (Sweet_Overall); 
%mix (Sour); 
%mix (Bitter); 
%mix (Salty); 
%mix (Umami); 
%mix (Astringent); 
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Appendix G - Principal component analysis of pac choi at different 

stages of development 

Dimensions 1 vs. 3 
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Appendix H - Canonical variate analysis of pac choi at different 

stages of development 

Dimensions 1 vs. 2 
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Dimensions 1 vs. 3 
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Appendix I - The Unscrambler® output of partial least squares 

regression of pac choi at different stages of development including 

sensory and instrumental data 
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Appendix J - SAS® Program Code used for ANOVA analysis of 

sensory characteristics of pac choi at different stages of shelf life 

data stage; 
input Pa T$ M$ Rep Crispness Moistness Fiber_Awareness Green_Overall 
Green_Unripe Green_Peapod Green_Grassy_Leafy Green_Viney Cabbage Lettuce 
Spinach Parsley Radish Piney Woody Water_like Musty_Earthy Sulfur Soapy 
Petroleum_like Pungent Bite Toothetch Sweet_Overall Sour Bitter Salty 
UmamiAstringent Stale_Refrigerator Cardboard Moldy 
; 
cards; 
***DATA DELETED*** 
; 
%macro mix(y); 
PROC mixed covtest cl; 
class pa rep M T; 
model &y=T|M/ddfm=satterth; 
random rep rep*M Rep*M*T Pa*Rep*M; 
lsmeans T|M/pdiff cl; 
run; 
%mend mix; 
%mix (Crispness); 
%mix (Moistness); 
%mix (Fiber_Awareness); 
%mix (Green_Overall); 
%mix (Green_Unripe); 
%mix (Green_Peapod); 
%mix (Green_Grassy_Leafy); 
%mix (Green_Viney); 
%mix (Cabbage); 
%mix (Lettuce); 
%mix (Spinach); 
%mix (Parsley); 
%mix (Radish); 
%mix (Piney); 
%mix (Woody); 
%mix (Water_like); 
%mix (Musty_Earthy); 
%mix (Sulfur); 
%mix (Soapy); 
%mix (Petroleum_like); 
%mix (Pungent); 
%mix (Bite); 
%mix (Toothetch); 
%mix (Sweet_Overall); 
%mix (Sour); 
%mix (Bitter); 
%mix (Salty); 
%mix (Umami); 
%mix (Astringent); 
%mix (Stale_Refrigerator); 
%mix (Cardboard); 
%mix (Moldy); 
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Appendix K - Principal component analysis of pac choi at different 

stages of shelf life 

Dimensions 1 vs. 3 
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Appendix L - Canonical variate analysis of pac choi at different 

stages of shelf life 

Dimensions 1 vs. 2 
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Dimensions 1 vs. 3 

 

18O

18C

9O

9C 4O

4C

1O1C

Moldy

Cardboard

Stale_Refrigerator

Astringent

Umami

Salty

Bitter

Sour

Sweet_Overall

Toothetch

Bite

Pungent

Petroleum_like

Soapy

Sulfur

Musty_Earthy

Water_like
Woody

Piney

Radish

Parsley

Spinach

Lettuce

Cabbage

Green_Viney Green_Grassy_Leafy

Green_Peapod

Green_Unripe

Green_Overall

Fiber_Awareness

Moistness

Crispness

-6

-4

-2

0

2

4

6

-8 -6 -4 -2 0 2 4 6

CV1 (54%)

C
V

3 
(1

4%
)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

166  



 

Appendix M - The Unscrambler® output of partial least squares 

regression of pac choi at different stages of shelf life including 

sensory and instrumental data 
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Appendix N - Main flavor and texture changes in pac choi after 18 

days of refrigerated storage 
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