1	Measurement and Modeling of Soil CO ₂ Flux in a Temperate
2	Grassland under Mowed and Burned Regimes
3	
4	Dale J. Bremer* and Jay M. Ham
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	Revised: December 17, 2001
16	
17	
18	
19	D.J. Bremer, Dept. of Horticulture, Forestry & Recreation Resources, 2021 Throckmorton Hall,
20	Kansas State Univ., Manhattan, KS 66506; and J.M. Ham, Dept. of Agronomy, 2004
21	Throckmorton Hall, Kansas State Univ., Manhattan, KS 66506. Contribution no. 01-245-J from
22	the Kansas Agric. Exp. Station.* Corresponding author. E-mail: bremer@ksu.edu

ABSTRACT

2	Soil-surface CO_2 flux (R_s), which is a large component of the carbon (C) budgets in
3	grasslands, usually is measured infrequently using static or dynamic chambers. Therefore, to
4	quantify annual C budgets, estimates of R_s are required during days when no direct
5	measurements of R_s are available. Other researchers have developed empirical models based on
6	soil temperature, soil volumetric water content (θ_v), and leaf area index (<i>LAI</i>) that have provided
7	reasonable estimates of R_s during the growing season in ungrazed tallgrass prairie. However, the
8	effects of mowing and grazing, which are common in grasslands, on predictions of R_s from those
9	models are uncertain. Predictions of R_s during dormancy (post-senescence to spring fire) also are
10	uncertain. Data from a year-long mowing study, which simulated grazing, were used to refit
11	these models. Output from the models then was compared to independent data collected from
12	nearby prairie sites. Results showed that LAI must be included to accurately estimate R_s in
13	mowed prairie ecosystems. When LAI was not included in the model, predicted daily R_s
14	following mowing was nearly four times greater than measured R_s , and cumulative, annual R_s
15	was overestimated by 95-102%. When LAI was included in the model, predictions of R_s were
16	comparable to measured R_s in the mowing study. Annual estimates of cumulative R_s ranged from
17	3.93 to 4.92 kg CO_2 m ⁻² . When comparing the model with independent chamber data from
18	nearby sites, cumulative R_s during those studies was within $\pm 9\%$ of cumulative estimates
19	calculated from measured R_s . The model overestimated daily R_s during a dry period, suggesting a
20	nonlinear response of R_s to soil water content; matric potential may be more appropriate than θ_v
21	for modeling R_s . Data suggest that R_s , in addition to being dependent on soil temperature and soil
22	water content, is dependent on the photosynthetic capacity of the canopy and the subsequent
23	translocation of C belowground.

- 1 Key words: Carbon; soil-surface CO₂ flux; soil respiration; Konza Prairie; carbon budgets; fire;
- 2 prairie; grazed.

1	The effect of terrestrial ecosystems on global atmospheric CO ₂ concentrations is
2	uncertain. However, a number of ecosystems may have the potential to sequester or release
3	substantial quantities of CO_2 in response to climate change, increasing atmospheric CO_2 , and
4	land management (Glenn et al., 1993; White et al., 1999; Post and Kwon, 2000; Schimel et al.,
5	2000). In many grasslands, high levels of soil organic matter, microbial activity, and root
6	biomass (Rice and Garcia, 1994) make the rhizosphere a potentially large source or sink for
7	atmospheric CO ₂ (Ojima et al., 1993; Van Ginkel et al., 1999). Furthermore, land management
8	practices such as mowing, grazing by ungulates, and burning of dead biomass may alter carbon
9	(C) fluxes (Bremer et al., 1998; Knapp et al., 1998; LeCain et al., 2000) and, thus, may affect the
10	amount of C sequestered or released annually from grasslands.
11	Efforts to quantify the global C budget have led to the recent implementation of a
12	worldwide network of towers to monitor long-term CO ₂ flux, several of which are located in
13	grasslands (Baldocchi et al., 1996; Wofsy and Hollinger, 1997; Ham and Knapp, 1998). These
14	towers typically measure net ecosystem exchange (NEE) of C above the canopies using eddy
15	covariance methods. However, tower-based measurements of NEE are often suspect at night,
16	during periods of low windspeed, and during periods of extremely low fluxes. Thus, chamber
17	measurements and models of soil respiration (R_s ; root and microbial) and dark respiration (R_d)
18	are required to replace the missing data. Furthermore, measurements of soil and aboveground
19	respiration also are required in order to partition the C balance of the ecosystem and estimate
20	canopy photosynthesis. In grasslands, the C budget can be calculated as

 $21 \qquad NEE = P_c - R_s - R_d \tag{1}$

1	where P_c is canopy photosynthesis. Soil respiration represents a significant component of the C
2	balance in grasslands (Gale et al., 1990; Kim et al., 1992; Ham et al., 1995). Therefore, accurate
3	estimates of R_s are crucial when partitioning prairie C budgets.
4	Although automated soil respiration chambers are used in a few instances (Goulden and
5	Crill, 1997), soil-surface CO ₂ flux is usually measured only periodically, by static or dynamic
6	chambers (Bremer et al., 1998; Ham and Knapp, 1998; Knapp et al., 1998). Therefore, for
7	calculations of seasonal and annual C budgets, estimates of R_s are required during days when no
8	direct measurements are available. Norman et al. (1992), during the First International Satellite
9	Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE; Sellers et al., 1992),
10	developed two simple models for estimating R_s in tallgrass prairie. One of their models predicted
11	$R_{\rm s}$ as a function of soil temperature and volumetric soil water content ($\theta_{\rm v}$), whereas their other
12	model also included leaf area index (LAI). They found both models to be acceptable, although
13	inclusion of LAI slightly improved accuracy. Similar models have been developed to estimate R_s
14	in other grasslands (Mielnick and Dugas, 2000) and in other ecosystems (Schlentner and Van
15	Cleve, 1985; Oberbauer et al., 1992; Hanson et al. 1993).
16	Research after FIFE in the same study area indicated that land management practices
17	such as mowing, grazing, and fire caused significant alterations in prairie R_s (Bremer et al., 1998;
18	Knapp et al., 1998). Bremer et al. (1998) reported that R_s decreased substantially in response to
19	mowing and grazing and attributed the reduction to a decrease in canopy photosynthesis and
20	reduced translocation of C to the rhizosphere. Knapp et al. (1998) found that fire caused prairie
21	$R_{\rm s}$ to increase significantly, presumably because exposed soils were warmer which stimulated
22	biological activity in burned prairie. Therefore, models of R_s also may need to account for
23	differences in fluxes introduced by mowing, grazing, and fire. The models of Norman et al.

1	(1992) were developed from unmowed, ungrazed, burned and unburned grasslands using a small
2	dataset collected during the growing season (July 24 to August 11). The applicability of the
3	models to predict annual R_s , especially under grazed or mowed conditions, is uncertain.
4	Furthermore, a closer examination of the effect of fire on predictions of R_s may be useful.
5	As part of a year-long mowing (i.e., simulated grazing) study by Bremer et al. (1998), R_s ,
6	soil temperature, θ_v , and <i>LAI</i> were measured intensively. This provided the opportunity to test
7	the accuracy of the models of Norman et al. (1992) under mowed conditions. Because they
8	developed their models from measurements collected only during the growing season, the
9	accuracy of predicted R_s during dormancy (i.e., post-senescence to spring fire) is uncertain.
10	Therefore, the results from the year-long mowing study were used to refit the coefficients of the
11	Norman model to improve accuracy when predicting annual R_s . Furthermore, measurements of
12	soil temperature, θ_v , R_s , and LAI at nearby flux monitoring towers provided the opportunity to
13	test the models against independent data sets.
14	
15	MATERIALS AND METHODS
16	Measurements of R_s , soil temperature, θ_v , and <i>LAI</i> for this report were obtained from four
17	study sites (Table 1). The initial testing and recalibration of the models of Norman et al. (1992)
18	were conducted with data from Bremer et al. (1998), who investigated the effects of mowing on
19	$R_{\rm s}$. Additional data from the three separate sites, unrelated to the mowing study, were used to test
20	the model after recalibration. Two of those independent sites were components in a nearby fire
21	study (both unmowed and ungrazed) and were located on adjacent burned and unburned
22	watersheds. The fourth independent site was on another nearby burned, unmowed, and ungrazed
23	watershed.

2 Study area

3 The research for this report was conducted in the Flint Hills Prairie region near 4 Manhattan, Kansas, USA. Three of the four sites, including the mowing study site and the two 5 sites in the fire study, were located on Konza Prairie Biological Station (Konza Prairie [39° 06' 6 N. 96° 33' W, ~340 m above mean sea level]). The fourth site was on the adjacent Rannells Flint 7 Hills Prairie Preserve (referred to as Rannells Prairie; Agronomy Department, Kansas State 8 University). 9 Alternating layers of Permian limestone and shale lie beneath soils that vary from deep 10 (>1 m) silty clay loams in lowlands to rocky shallow soils on ridges. The Flint Hills region has a 11 typical Midwestern continental climate, with warm, wet summers and cold, dry winters. Mean 12 annual air temperature is 12.9°C, and average precipitation is 844 mm (100 year averages). 13 Interannual climatic variability is high (Borchert, 1950), with average maximum and minimum 14 air temperatures of 19.6°C (standard deviation=11.9°C) and 6.3°C (standard deviation=11.1°C), 15 respectively, and the standard deviation of annual precipitation is 207 mm. 16 Vegetation was tallgrass prairie dominated by warm-season (C_4) grasses, including 17 Andropogon gerardii and Sorghastrum nutans. Growth is characterized by a rapid increase in canopy size following spring fire (Fig. 1), with peak aboveground biomass ranging from 178 g 18 m^{-2} on burned uplands to 755 g m^{-2} on burned lowlands; most of the variability in above ground 19 20 biomass and is caused by precipitation (Briggs and Knapp, 1995). Growth is typically slower and 21 peak aboveground biomass lower on unburned sites than on burned sites (Knapp and Seastedt, 22 1986; Briggs and Knapp, 1995). Senescence typically begins in late July, resulting in a decline in 23 green above ground biomass that is nearly complete by late October. During this study, peak

aboveground biomasses were 365 g m⁻² on the mowed site (unmowed plots), 285 g m⁻² and 217 g m⁻² on the adjacent burned and unburned sites (in the fire study), respectively, and 637 g m⁻² on the fourth independent site (i.e., Rannells Prairie). Belowground biomass (0-90 cm), which was not measured in this study, may be two to four times greater than aboveground biomass, with values ranging from 700-2100 g m⁻² (Rice et al., 1998).

Baseline properties of the soils in the 0-15 cm profile were similar among sites, and
exhibited the following average values: 6.1 (pH), 1.20 g m⁻² (bulk density), 25% (sand), 47%
(silt), 28% (clay), 2.8% (soil organic carbon), and 0.22% (total nitrogen). Soil bulk densities
were determined from volumetric samples (4.8 x 5.0 cm). All other analyses of baseline soil
properties were conducted by the Soil Testing Laboratory, Kansas State University.

11

12 Mowing study

13 The mowing study by Bremer et al. (1998) was conducted on a lowland site on Konza 14 Prairie from June 1996 to June 1997. Soils were deep (>1m), silty clay loams (Benfield series: 15 fine, mixed, mesic, Udic Argiustolls). Twenty-seven plots (2 x 3 m, separated by 4-m-wide 16 unclipped aisles) were established for the mowing study. Three treatments were applied to the 17 plots: early-season clipping (EC); full-season clipping (FC); and no clipping (NC). Treatments 18 simulated two cattle-grazing strategies and a control, where EC represented intensive-early 19 stocking rate; FC represented the traditional, full-season stocking rate; and NC represented ungrazed prairie. Traditional, full-season stocking (1.62 ha steer⁻¹) in Kansas typically occurs 20 21 between May 1 and October 1, and intensive-early stocking is practiced between May 1 and July 15, at 2x the traditional stocking rate (0.81 ha steer⁻¹; Smith and Owensby 1978). Vegetation in 22 23 EC and FC plots was clipped to 5 cm and removed three times during the season. Clipping dates

1	were June 7, June 25, and July 19 (DOY 159, 177, and 201), 1996 in EC and June 7, July 19, and
2	September 20 (DOY 159, 201, and 264), 1996 in FC. On April 25, 1997, the dead aboveground
3	biomass was burned from all plots and the surrounding area.
4	Soil CO ₂ flux was measured weekly to monthly using a portable photosynthesis system
5	(LI-6200, Li-Cor, Inc., Lincoln, NE) equipped with a 0.70-L chamber that covered a surface area
6	of 4.13 x 10^{-3} m ² (Norman et al., 1992). Data were collected from two locations in each plot; the
7	exact locations varied from one measurement date to the next. The bottom edge of the chamber
8	was pushed about 1 cm into the soil between crowns of plants, so that all vegetation was
9	excluded from the chamber.
10	Cumulative R_s for each treatment was estimated by summing the products of weekly
11	mean flux rates and the number of days between samples; it was corrected further for diurnal
12	patterns in flux. Our measurements, collected during mid-afternoon, were assumed to represent
13	daily maximums. Minimum daily flux was estimated as 80% of the maximum, based on diurnal
14	data collected during the study (not shown) and on diurnal patterns observed by others working
15	at this grassland (Grahammer et al., 1991; Norman et al., 1992; and Ham et al., 1995). Assuming
16	that R_s followed an ellipsoid pattern over a 24-h period, the calculated average daily fluxes were
17	95.7% of the observed daily maximum. The corrected daily flux then was multiplied by the
18	number of days between measurements to compute the cumulative flux over the period.
19	Soil temperature and θ_v at 10 cm were measured concurrently with R_s using dual-probe
20	heat-capacity sensors (Tarara and Ham, 1997; Song et al., 1998; Basinger, 1999). The 10-cm
21	sampling depth was chosen because previous studies had indicated that soil temperature and θ_{v}
22	at 10 cm were correlated strongly with soil-surface CO ₂ flux (Norman et al., 1992).
23	Above ground biomass was measured on clipping dates from 1 m^2 in the center of EC and FC

1	plots. Leaf area was measured from a 0.25-m ² subsample of this area. Clipped samples were
2	transported to the laboratory, where leaf area was measured using an area meter (LI-3100, Li-
3	Cor Inc.); samples were dried for 72 hours at 60°C and weighed.
4	
5	Independent test sites
6	Data from the following three independent test sites were used to validate the model of R_s
7	after it had been tested and recalibrated using data from the mowing study.
8	
9	Fire study
10	Two of the independent test sites were components of a fire study that was conducted on
11	Konza Prairie within 1 km of the mowing study from April to November, 1997. One site was on
12	a burned watershed (B), and the other on an adjacent, unburned watershed (UB); both were
13	expansive upland sites. For 16 years, the B watershed had been burned annually, and the UB
14	watershed had been burned biennially. Neither site had been grazed during that time. In the year
15	of this study, vegetation was removed by fire on the B site on April 17, and the UB site remained
16	unburned. Further details of these sites are included in Bremer and Ham (1999).
17	Concurrent measurements of soil respiration, θ_v , and soil temperature were collected
18	weekly to monthly using the same instrumentation and methods as described for the mowing
19	study. Dual-probe sensors were installed at 2.5- and 10-cm depths at four locations along 36 m
20	transects. Three measurements of R_s were collected from within 1.5 m of each dual-probe
21	location; thus, 12 measurements of R_s were collected from each site on each measurement day.
22	Green LAI and aboveground biomass were measured at 2-week intervals from May 6 to
23	August 13, 1997. On each measurement date and at each site (i.e., burned and unburned), six 0.1

1	m ² areas were harvested within 20 m of the dual-probe transects. Green LAI also was measured
2	on the B site from May 26 to August 12, 1998 and was used in developing a simple model of
3	green LAI described later in this section.
4	
5	Third independent site
6	Measurements of R_s , soil temperature, θ_v , and <i>LAI</i> also were collected from May to
7	October, 1999 on the Rannells Prairie, which lies adjacent to Konza Prairie. This study site (B1)
8	was an expansive upland watershed that had been burned annually for several decades. In the
9	year of the study, B1 was burned on April 19. The site had been ungrazed since 1997; further
10	details on the site can be found in Bremer et al. (2001).
11	Soil respiration was measured weekly to biweekly using the same portable chamber
12	method as in the mowing and fire studies. On each measurement day, 10 measurements of R_s
13	were collected at 5-m intervals along two 20-m transects. Soil temperature and θ_v were measured
14	at 5- and 10-cm depths with automated dual-probes that were placed along a 6-m transect within
15	20 m of R_s measurements. The dual-probes at this site operated continuously in contrast to those
16	at the other three study sites, where dual-probes had been read manually and concurrently with
17	$R_{\rm s}$ measurements. At the Rannells Prairie site, dual-probe measurements of soil temperature were
18	logged every 60 s, then averaged and recorded every 30 min, and θ_v was estimated one to four
19	times daily. The soil temperatures used in the R_s model were only those recorded concurrently
20	with measurements of R_s . Green LAI and above ground biomass were determined at 2-week
21	intervals from May 18 to September 30, 1999, using the same methods as in the other studies.
22	

1 Models of soil CO₂ flux

2 This section introduces the models of R_s developed by Norman et al. (1992). The 3 accuracy of the models was tested under mowed conditions, and the coefficients then were 4 adjusted using the intensive data set from the mowing study. Following that recalibration, the 5 models were tested using additional data from the three independent study sites. 6 The first model of Norman et al. (1992) was: $R_{s} = (a + bLAI)\theta_{10}e^{\left[c\left(T_{s,10} - T_{s,ref}\right)\right]}$ 7 [2] where θ_{10} is the 0- to 10-cm volumetric water content in percent, $T_{s,10}$ is the soil temperature at 8 10-cm (degrees Celsius), $T_{s,ref}$ is the reference temperature appropriate to the (a + b LAI) θ_{10} 9 10 value (i.e., the average soil temperature during the period of R_s measurements used to obtain a 11 and b), a is the minimum soil CO₂ flux at a given θ_{10} , b defines the sensitivity of soil CO₂ flux to *LAI* and θ_{10} , and *c* is a temperature coefficient so $Q_{10} = \exp(10c)$; R_s is in unol m⁻² s⁻¹. The 12 13 second model of Norman et al. (1992) was: $R_{s} = a \left[\frac{(\theta_{20} - 12)}{(40 - 12)} \right] e^{[c(T_{s,10} - T_{s,ref})]}$ 14 [3] 15 where a is a maximum soil CO₂ flux at field capacity (maximum soil water holding capacity 16 after drainage) and $T_{s, ref}$, c is the temperature coefficient, θ_{20} is the 0- to 20- cm volumetric 17 percent soil water content (40% is near the soil field capacity, and 12% is the soil water content 18 when soil CO₂ fluxes approach zero). This model placed a greater emphasis on available soil 19 water than the model that included LAI. Our measurements of θ_v were sometimes above 40%, which artificially inflated predicted fluxes. Therefore, θ_v greater than 40% were adjusted 20 21 downward to 40%.

1 *Estimating daily green leaf area index*

2	Green LAI, θ_{10} , and $T_{s,10}$, were required by Eq. [2] to predict R_s . However, LAI seldom
3	was measured on the same day as θ_{10} and $T_{s,10}$. Thus, LAI was modeled from available
4	measurements of LAI at each site. In EC and FC plots in the mowing study, estimates of green
5	LAI were interpolated from measurements of LAI on mowing dates. For NC plots, a simple
6	model was devised to estimate daily green LAI for Eq. [2]. This model was derived from
7	measurements of green LAI in the fire study (i.e., B site) and site B1 on Rannells Prairie (Fig. 1);
8	from other studies on Konza Prairie (Kim and Verma, 1991); and from another tallgrass prairie
9	in Oklahoma (Svejcar and Browning, 1988). Our model assumed a linear increase in green LAI
10	from zero on the burn date to a peak on DOY 185, and then a linear decrease to zero again by
11	DOY 300, the approximate end of senescence. In NC plots, the only measurement of LAI (2.23)
12	was assumed to be the peak value. On the independent sites B, UB, and B1, LAI was
13	interpolated from measurements of LAI at each respective site.

14

15 *Methods of analysis*

16 Data (R_s as dependent; θ_v , $T_{s,10}$, and *LAI* as independent) from the mowing study were fit 17 by the least squares method to obtain the two modified parameters (a and b) in Eq. [2]. To 18 optimize those parameters, various values for Q_{10} and $T_{s,ref}$ were used. Norman et al. (1992) 19 assumed a Q_{10} of 2 for R_s across a wide range of θ_v , based on calculations from their site and 20 from a literature review of Q_{10} values on Konza Prairie (Grahammer, 1989). The Q_{10} is also 2 for 21 the microbial population on Konza Prairie and does not change appreciably during the year 22 (C.W. Rice, personal communication). In the current study, regressions performed with Q_{10}

1 values greater than or less than 2 showed no improvement in predicting R_s . Therefore, Q_{10} also 2 was assumed to be 2 in our final analyses, resulting in c = 0.069.

3 Norman et al. (1992) fixed $T_{s,ref}$ at 25°C in Eqs. [2] and [3], presumably because soil temperatures at 10 cm were between 20° and 30°C from July 24 to August 11, 1989 when they 4 5 measured R_s , so 25°C represented an approximate average. Because our mowing study included 6 annual measurements of R_s , the average annual soil temperature at 10 cm likely would be more 7 appropriate for T_{s.ref}. Fluker (1958), during a 5-year study, reported that mean annual soil 8 temperature averaged about 3.3°C warmer than mean annual air temperature at all depths to 3 m. 9 Thus, T_{s,ref} can be estimated from mean annual air temperature; mean annual air temperature was 10 12.9°C on Konza Prairie (100-yr average). Consequently, T_{s.ref} was fixed at 16°C before the data 11 from the mowing study were refit to Eq. [2] to obtain new values for coefficients a and b. 12 To compare modeled R_s with measured R_s , we used the single plot bias and the single

13 plot root mean square error (RMSE):

14
$$bias = \frac{\sum_{i=1}^{N} \left(\hat{R}_{s} - R_{s} \right)}{N}$$
[4]

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} \left(\hat{R}_{s} - R_{s}\right)^{2}}{N}}$$
[5]

16 where \hat{R}_s denotes modeled R_s , and N is the number of observations. These statistics, combined 17 with their respective goodness of fit (r²) and mean predicted R_s values in each analysis, gave an 18 indication of how well the models performed compared to measured quantities.

19

RESULTS

2	In the following sections, measurements of $T_{s,10}$ and θ_{10} and estimates of <i>LAI</i> from the
3	mowing study were used first in Eqs. [2] and [3] with the original coefficients of Norman et al.
4	(1992) to compare predicted to measured R_s . Secondly, data from the mowing study were used to
5	refit the coefficients in Eq. [2]. Finally, the model with the revised coefficients was tested using
6	data from the three independent prairie sites.
7	
8	Test of original models of Norman et al.
9	In mowed plots, the model without LAI (Eq. [3]) severely overestimated daily fluxes of
10	$R_{\rm s}$ by up to 3.8 times during the growing season (Figs. 2a and 2b). Overestimates were greatest
11	following mowing, when actual R_s decreased but higher soil temperatures (Bremer et al., 1998)
12	caused predicted R_s to increase. For example, between DOY 165 and 219 (first mowing of plots
13	was on DOY 159), cumulative predicted R_s overestimated measured R_s by 83 and 120% in FC
14	and EC plots, respectively. In comparison, cumulative R_s in NC plots (Fig. 2c) during the same
15	period was overestimated by only 10%. During dormancy, however, Eq. [3] overestimated daily
16	$R_{\rm s}$ in all plots by up to 10.5 times. Cumulative $R_{\rm s}$ was overestimated in all treatments by 50 to
17	102% on an annual basis compared with cumulative values calculated from measured R_s (Table
18	2).
19	Inclusion of LAI in the model (Eq. 2) improved estimates of R_s , both during the growing
20	season and during dormancy when LAI=0 (Figs. 2a-2c). The greatest improvements in predicted
21	$R_{\rm s}$ were in EC and FC plots during the growing season, because allowance was made for

22 defoliation (i.e., mowing). Annual estimates of cumulative R_s also were improved by Eq. [2],

with overestimates of only 4 to 19% among treatments (Table 2); the majority of overestimation
 occurred when the canopy was dormant.

3

4

Refitting coefficients of model to data from clipping study

5 Least squares analyses initially were performed separately on growing-season data from 6 EC, FC, and NC treatments and then on data pooled from all three treatments during the growing 7 season (i.e., when LAI > 0) (Table 3). Compared with Eq. [2], predictions of mean R_s were 8 improved in all treatments by these analyses, as was bias, RMSE, and r^2 . However, the best fit 9 overall occurred when all data from the mowing study were pooled, including data collected 10 during dormancy. The modified coefficients from this regression were substituted into Eq. [2]:

11
$$F_s = (0.052 + 0.047 LAI) \theta_{10} e^{[0.069(T_{s,10} - 16)]}$$
 [6]

12 The mean annual R_s predicted by Eq. [6] was 4.44 compared with the measured 4.53 μ mol m⁻² s⁻¹ (Table 3). Equation [6] generally overestimated R_s when measured fluxes were 13 below 1.5 μ mol m⁻² s⁻¹ (Fig. 3). When measured R_s was above 1.5 μ mol m⁻² s⁻¹, predictions of R_s 14 15 were more accurate, but scatter about the 1:1 line was noticeably greater. This scatter was caused by high spatial variation in R_s measurements (Fig. 4), which is typical during the growing 16 17 season. For example, nine individual measurements of R_s on DOY 187 ranged from 3.46 to 9.08 μ mol m⁻² s⁻¹ in NC plots; spatial variation also was high in EC and FC plots. This variation likely 18 19 was caused by great spatial heterogeneity in soil water content and in soil physical properties, which may impact rates of CO_2 evolution in the soil and the pathways for diffusion of CO_2 to the 20 21 surface.

Equation [6] was applied to the individual treatments in the clipping study (Fig. 5a-5c).
Predicted *R*_s from Eq. [6] was more accurate than that from Eq. [2], particularly in mowed

1 treatments during the growing season and in all treatments during dormancy. Cumulative, annual 2 R_s from Eq. [6] was within ±1% of measured R_s (Table 2). Therefore, Eq. [6] appears suitable to 3 use in mowed and unmowed tallgrass prairies for estimates of seasonal and annual R_s .

- 4
- 5

Testing refitted model with independent data

6 On the B and UB sites in the Konza Prairie fire study (Table 1), predictions of daily R_s 7 were within ± 1 umol m⁻² s⁻¹ of measured values on 10 of the 15 days when measurements were 8 collected (Figs. 6a and 6b). Furthermore, cumulative R_s during the study estimated from Eq. [6] 9 was within $\pm 9\%$ of cumulative R_s estimated from measured R_s on both the B and UB sites 10 (Table 4). Therefore, Eq. [6] generally resulted in reasonable predictions of R_s on both burned 11 and unburned prairies.

12 One notable exception to the accuracy of the model occurred during a dry spell on the B 13 site and to a lesser degree on the UB site between DOY 171 and 199 (Figs. 6a and 6b). Daily R_s 14 was overestimated by up to 2.6x, and cumulative R_s was overestimated by 71% on the B site; this 15 overestimate caused the higher RMSE on the B site compared with the other independent sites 16 (Table 4). Further investigation revealed that the trend in measured R_s during the dry period was 17 related closely to θ_v above 10 cm (i.e., in the 0-10 cm profile)(Figs. 6a and 6b). In order to 18 determine the impact of θ_v in the surface layer on predictions of R_s , θ_v values from 2.5 and 10 cm 19 were pooled and used in Eq. [6]. Pooling of θ_v resulted in improved predictions of R_s , although 20 predicted daily R_s continued to overestimate measured R_s by up to 2.2x, and cumulative R_s 21 remained overestimated by 50% during the dry period. 22 On site B1, the third independent test site, predictions of daily R_s from Eq. [6] were

23 within ± 1 unol m⁻² s⁻¹ on 9 of 16 days when measurements of R_s were collected (Fig. 7).

1	Estimates of cumulative R_s from predicted R_s (Eq. [6]) during the growing season were
2	within 2% of values calculated from measured R_s (Table 4). When pooled θ_v from 5 and 10 cm
3	were used in Eq. 6, the change in cumulative R_s on site B1 was negligible (not shown).
4	
5	DISCUSSION
6	Equation [3], which did not include LAI, grossly overestimated R_s in EC and FC plots
7	during the growing season (Fig. 2). This illustrates the effect of neglecting the contribution of
8	canopy photosynthesis and translocation to R_s when predicting fluxes in mowed or grazed
9	grasslands. After EC and FC plots were mowed, soil temperatures at 10 cm typically increased
10	by 2 to 3°C (Bremer et al., 1998). Therefore, the overestimation was caused by the combination
11	of higher soil temperatures after mowing and not including the effects of defoliation on root
12	metabolism, root exudation, and, consequently, on microbial activity in the rhizosphere. The
13	dramatic improvement in predictions of R_s by Eq. [2] in EC and FC plots confirms the
14	importance of including some measure of canopy photosynthesis potential (e.g., LAI) in models
15	of R_s . During dormancy, model sensitivity to θ_v (Bremer et al., 1998) probably contributed to the
16	overestimation of R_s by both Eqs. [2] and [3]. The mechanism by which θ_v affects R_s also is
17	different during the dormant season, when its impact on photosynthesis (plant water status) is not
18	applicable.
19	Although predictions of R_s improved when LAI was included in the model (Eq. [2]),
20	estimates of cumulative, annual R_s in mowed plots remained 16-19% higher than estimates
21	calculated from measured R_s (Table 2). This overestimation may have occurred because the
22	coefficients for Eq. [2] published by Norman et al. (1992) were developed from data collected

23 only from unmowed prairie during the growing season. The refitting of the model to data from

1	mowed and unmowed plots and to data collected during dormancy improved predictions of daily
2	R_s (Figs. 5a-5c) and of cumulative, annual R_s (Table 2). Therefore, Eq. [6] is appropriate for
3	predicting cumulative R_s in mowed and unmowed tallgrass prairie on an annual basis.
4	Although Eq. [6] consistently overestimated R_s during dormancy when fluxes were low,
5	the overestimation was slight (Figs. 5a-5c). For example, when measured R_s was below 1 µmol
6	m ⁻² s ⁻¹ , fluxes were overestimated by an average of 0.47 μ mol m ⁻² s ⁻¹ (Fig. 3). Because θ_v was
7	consistently high during the winter of 1996-97 when measurements of R_s were collected, the
8	impact of dry soils on R_s during dormancy is uncertain. Further research may be needed to
9	clarify the effect of dry soils on fluxes during dormancy.
10	In the test of Eq. [6] with independent data from the B and UB sites (1997), the
11	overestimation of R_s during the dry period was caused partially by soil temperature, which
12	increased as the soil dried (not shown). However, exclusion of θ_v at 2.5 cm also contributed to
13	the overestimation (Fig. 6). The sensitivity of R_s to θ_v above 10 cm probably is related closely to
14	a high percentage of root and microbial biomasses in the 0-10 cm profile of tallgrass prairie. For
15	example, Rice et al. (1998) reported that on Konza Prairie, 44% of total root mass was in the 0-
16	10 cm profile compared with only 25% at 10-20 cm. Also, microbial C biomass was up to 1.6x
17	higher in the 0-5 cm compared with the 5-15 cm profile in a nearby tallgrass prairie (Rice et al.
18	1994; Bremer 1998; Williams et al. 2000). Thus, changes in θ_v above 10 cm, which are typically
19	more severe than those deeper in the profile, likely would have significant effects on total
20	microbial and root respirations and ultimately on R_s .
21	When θ_v from 2.5 and 10 cm were pooled and substituted into Eq. [6], predictions of R_s
22	were improved on the B site. However, predicted daily R_s continued to respond poorly to

23 extremes in observed R_s during the dry period, suggesting a possible nonlinear relationship

between R_s and θ_v. Davidson et al. (2000), in a discussion of the effects of soil water content on
 R_s, suggested that matric potential may be more appropriate than θ_v for modeling soil respiration.
 Further research may be necessary to determine the appropriate relationship between soil water
 content and R_s in tallgrass prairie during drought.

5

6 Summary

In general, Eq. [6] predicted instantaneous R_s to within $\pm 1 \mu mol m^{-2} s^{-1}$ of measured R_s 7 although variances were sometimes greater than $\pm 1 \ \mu mol \ m^{-2} \ s^{-1}$ between predicted and 8 9 measured values, such as during drought. Nevertheless, cumulative fluxes on an annual or 10 growing season basis were within $\pm 9\%$ on all four study sites (Tables 1, 2, and 4). When LAI 11 was not included in the model (Eq. [3]), predictions of R_s in mowed plots were overestimated 12 grossly (Table 2; Figs. 2a and 2b) because no allowance was made for the reduced contribution 13 by canopy photosynthesis to root respiration. Fluxes were substantially overestimated during a 14 dry period on the B site (Fig. 6), but the pooling of θ_v from 2.5 and 10 cm improved predictions 15 of R_s , presumably because a high degree of R_s originates above 10 cm where a high percentage 16 of roots and microbial populations reside. More importantly, the relationship between R_s and soil 17 water content may be nonlinear, and, therefore, Eq. [6] should be used with caution when soils 18 are extremely dry; matric potential may be more appropriate than $\theta_{\rm v}$ for modeling $R_{\rm s}$. 19 Because Eq. [6] provided reasonable estimates of cumulative annual and growing season 20 $R_{\rm s}$, it appears well suited for use at long-term tower sites where frequent estimates of $R_{\rm s}$ are

21 required for calculating annual C budgets. Furthermore, new technologies are being developed

that may improve the feasibility of application of Eq. [6]. For example, automated dual-probe

23 heat-capacity sensors such as those used in this study and automated heat dissipation matric

water potential sensors (Model 229, Campbell Scientific, Logan, UT) both can measure soil
 water content at shallow depths. Remote sensing techniques are being developed that estimate
 LAI (Knyazikhin et al., 1998) and soil water content in the surface layer (Passive microwave;
 Schmugge et al., 1992).
 Equation [6] provided accurate predictions of *R*_s for a tallgrass prairie in northeastern

Equation [6] provided accurate predictions of R_s for a tallgrass prairie in northeastern Kansas, USA, and should be accurate for other tallgrass prairies in the Midwestern US with 6 7 similar climates and soils. The functional form of the equation is likely viable for grasslands 8 worldwide although it should be reparameterized for grasslands with different climates, soils, 9 and vegetative characteristics (e.g., C₃ prairies, short- or mixed-grass prairies). Furthermore, 10 because the model does not include all of the mechanisms (e.g., soil texture, plant lignin content, 11 nitrogen input) that affect R_s , periodic field measurements of R_s are recommended to validate the 12 accuracy of the model. Nevertheless, results show that R_s in tallgrass prairie probably can be 13 modeled to within \pm 10% using the relatively simple empirical model (Eq. [6]).

- 14
- 15

ACKNOWLEDGEMENTS

16 This research was funded by the Kansas Agricultural Experiment Station and by the U.S. 17 Department of Energy's (DOE's) National Institute for Global Environmental Change (NIGEC) 18 through the NIGEC Great Plains Regional Center at the University of Nebraska-Lincoln. 19 Support was also provided by the National Aeronautics and Space Administration's (NASA's) 20 Land Cover Land Use Change (LCLUC) Program and the Long Term Ecological Research 21 (LTER) Program of the National Science Foundation (NSF). The authors appreciate the 22 contribution of data from the Rannells Flint Hills Prairie Preserve by Dr. C.E. Owensby and 23 L.M. Auen.

1	References
2	Baldocchi, D., Valentini, R., Running, S., Oechel, W., and Dahlman, R. 1996. Strategies for
3	measuring and modelling carbon dioxide and water vapour fluxes over terrestrial
4	ecosystems. Global Change Biology 2:159-168.
5	Basinger, J.M. 1999. Laboratory and field evaluation of the dual-probe heat-pulse method for
6	measuring soil water content. Master's Thesis. Kansas State University, Manhattan,
7	Kansas, USA.
8	Borchert, J.R. 1950. The climate of the central North American grassland. Annals of the
9	Association of American Geographers. 40:1-39.
10	Bremer, D.J. 1998. Effect of burning and grazing on carbon and energy fluxes in a tallgrass
11	prairie. Dissertation. Kansas State University, Manhattan, Kansas, USA.
12	Bremer, D.J., J.M. Ham, C.E. Owensby, and A.K. Knapp. 1998. Responses of soil respiration to
13	clipping and grazing in a tallgrass prairie. Journal of Environmental Quality 27:1539-
14	1548.
15	Bremer, D.J., and J.M. Ham. 1999. Effect of spring burning on the surface energy balance in a
16	tallgrass prairie. Agricultural and Forest Meteorology 97:43-54.
17	Bremer, D.J., L.M. Auen, J.M. Ham, and C.E. Owensby. 2001. Evapotranspiration in a prairie
18	ecosystem: Effects of grazing by cattle. Agronomy Journal 93:338-348.
19	Briggs, J.M., and A.K. Knapp. 1995. Interannual variability in primary production in tallgrass
20	prairie: climate, soil moisture, topographic position, and fire as determinants of
21	aboveground biomass. American Journal of Botany. 82:1024-1030.

1	Davidson, E.A., L.V. Verchot, J.H. Cattanio, I.L. Ackerman, and J.E.M. Carvalho. 2000. Effects
2	of soil water content on soil respiration in forests and cattle pastures of eastern
3	Amazonia. Biogeochemistry 48:53-69.
4	Fluker, B.J. 1958. Soil temperatures. Soil Science 86:35-46.
5	Gale, W.J., M.B. Kirkham, E.T. Kanemasu, and C.E. Owensby. 1990. Net carbon dioxide
6	exchange in canopies of burned and unburned tallgrass prairie. Theoretical and Applied
7	Climatology 42:237-244.
8	Glenn, E., V. Squires, M. Olsen, and R. Frye. 1993. Potential for carbon sequestration in the
9	drylands. Water, Air, and Soil Pollution 70:341-355.
10	Goulden, M.L., and P.M. Crill. 1997. Automated measurements of CO ₂ exchange at the moss
11	surface of a black spruce forest. Tree Physiology 17:537-542.
12	Grahammer, K. 1989. Respiration of soil and vegetation in grassland. Master's Thesis.
13	University of Nebraska, Lincoln, Nebraska, USA.
14	Grahammer, K., M.D. Jawson, and J. Skopp. 1991. Day and night soil respiration from a
15	grassland. Soil Biology & Biochemistry 23(1):77-81.
16	Ham, J.M., C.E. Owensby, P.I. Coyne, and D.J. Bremer. 1995. Fluxes of CO ₂ and water vapor
17	from a prairie ecosystem exposed to ambient and elevated atmospheric CO ₂ . Agricultural
18	and Forest Meteorology 77:73-93.
19	Ham, J.M., and Knapp, A.K., 1998. Fluxes of CO ₂ , water vapor, and energy from a prairie
20	ecosystem during the seasonal transition from carbon sink to carbon source. Agricultural
21	and Forest Meteorology 89:1-14.
22	Hanson, P.J., S.D. Wullschleger, S.A. Bohlman, and D.E. Todd. 1993. Seasonal and topographic
23	patterns of forest floor CO ₂ efflux from an upland oak forest. Tree Physiology 13:1-15.

1	Kim, J., and S.B. Verma. 1991. Modeling canopy stomatal conductance in a temperate grassland
2	ecosystem. Agricultural and Forest Meteorology 55:149-166.
3	Kim, J., S.B. Verma, and R.J. Clement. 1992. Carbon dioxide budget in a temperate grassland
4	ecosystem. Journal of Geophysical Research 97:6057-6063.
5	Knapp, A.K., and T.R. Seastedt. 1986. Detritus accumulation limits productivity of tallgrass
6	prairie. BioScience 36(10):662-668.
7	Knapp, A.K., S.L. Conard, and J.M. Blair. 1998. Determinants of soil CO ₂ flux from a sub-
8	humid grassland: Effect of fire and fire history. Ecological Applications 8:760-770.
9	Knyazikhin, Y., J.V. Martonchik, D.J. Diner, R.B. Myneni, M.M. Verstraete, B. Pinty, and N.
10	Gobron. 1998. Estimation of vegetation canopy leaf area index and fraction of absorbed
11	photosynthetically active radiation from MISR data. Journal of Geophysical Research
12	103:32,239-32,256.
13	LeCain, D.R., J.A. Morgan, G.E. Schuman, J.D. Reeder, and R. H. Hart. 2000. Carbon exchange
14	rates in grazed and ungrazed pastures of Wyoming. Journal of Range Management
15	53:199-206.
16	Mielnick, P.C., and W.A. Dugas. 2000. Soil CO ₂ flux in a tallgrass prairie. Soil Biology &
17	Biochemistry 32:221-228.
18	Norman, J.M., R. Garcia and S.B. Verma. 1992. Soil surface CO ₂ fluxes and carbon budget of a
19	grassland. Journal of Geophysical Research 97:18845-18853.
20	Oberbauer, S.F., C.T. Gillespie, W. Cheng, R. Gebauer, A. Sala Serra, and J.D. Tenhunen. 1992.
21	Environmental effects on CO ₂ efflux from riparian tundra in the northern foothills of the
22	Brooks Range, Alaska, U.S.A. Oecologia 92:568-577.

1	Ojima, D.S., Parton, W.J., Schimel, D.S., Scurlock, J.M.O., and Kittel, T.G.F. 1993. Modeling
2	the effects of climatic and CO ₂ changes on grassland storage of soil C. Water, Air, and
3	Soil Pollution 70:643-657.
4	Post, W.M., and K.C. Kwon. 2000. Soil carbon sequestration and land-use change: Processes and
5	potential. Global Change Biology 6:317-327.
6	Rice, C.W., and F.O. Garcia. 1994. Biologically active pools of soil C and N in tallgrass prairie.
7	In: Dorand, J. et al. (Eds), Defining soil quality for a sustainable environment. Spec.
8	Publ. No. 35. Soil Science Society of America, Madison, WI.
9	Rice, C.W., F.O. Garcia, C.O. Hampton, and C.E. Owensby. 1994. Soil microbial response in
10	tallgrass prairie to elevated CO ₂ . Plant and Soil 165:67-74.
11	Rice, C.W., T.C. Todd, J.M. Blair, T.R. Seastedt, R.A. Ramundo, and G.W. Wilson. 1998.
12	Belowground biology and processes. p. 244-264. In A.K Knapp, J.M. Briggs, D.C.
13	Hartnett, and S.L. Collins (eds.) Grassland dynamics. Oxford University Press. New
14	York, NY.
15	Schlentner, R.E., and K. van Kleve. 1985. Relationships between CO ₂ evolution from soil,
16	substrate temperature, and substrate moisture in four mature forest types in interior
17	Alaska. Canadian Journal of Forest Research 15:97-106.
18	Schimel, D., J. Melillo, H. Tian, A.D. McGuire, D. Kicklighter, T. Kittel, N. Rosenbloom, S.
19	Running, P. Thorton, D. Ojima, W. Parton, R. Kelly, M. Sykes, R. Neilson, and B. Rizzo.
20	2000. Contribution of increasing CO_2 and climate to carbon storage by ecosystems in the
21	United States. Science 287:2004-2006.

1	Schmugge, T.J., T.J. Jackson, W.P. Kustas, and J.R. Wang. 1992. Passive microwave remote
2	sensing of soil moisture: Results for HAPEX, FIFE, and MONSOON 90. ISPRS Journal
3	of Photogrammetry & Remote Sensing.
4	Sellers, P.J., F.G. Hall, G. Asrar, D.E. Strebel, and R.E. Murphy. 1992. An overview of the First
5	International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment
6	(FIFE). Journal of Geophysical Research 97:18343-18371.
7	Song, Y., J.M. Ham, M.B. Kirkham, and G.J. Kluitenberg. 1998. Measuring soil water content
8	under turfgrass using the dual-probe heat-pulse technique. The Journal of the American
9	Society for Horticultural Science 123 937-941.
10	Smith, E.F., and C.E. Owensby. 1978. Intensive-early stocking and season-long stocking of
11	Kansas Flint Hills range. Journal of Range Management 27:433-436.
12	Svejcar, T.J., and Browning, J.A., 1988. Growth and gas exchange of Andropogon gerardii as
13	influenced by burning. Journal of Range Management 41:239-244.
14	Tarara, J.M., and J.M. Ham. 1997. Evaluation of dual-probe heat-capacity sensors for measuring
15	soil water content in the laboratory and in the field. Agronomy Journal. 89:535-542.
16	Van Ginkel, J.H., A.P. Whitmore, and A.Gorissen. 1999. Lolium perenne grasslands may
17	function as a sink for atmospheric carbon dioxide. Journal of Environmental Quality
18	28:1580-1584.
19	White, A., M.G.R. Cannell, and A.D. Friend. 1999. Climate change impacts on ecosystems and
20	the terrestrial carbon sink: A new assessment. Global Environmental Change 9:S21-S30.
21	Williams, M.A., C.W. Rice, and C.E. Owensby. 2000. Carbon dynamics and microbial activity
22	in tallgrass prairie exposed to elevated CO_2 for 8 years. Plant and Soil 227:127-137.

- 1 Wofsy, S.C., and D.Y. Hollinger. 1997. Science plan for AmeriFlux: Long-term flux
- 2 measurement network of the Americas. Available at
- 3 <u>http://cdiac.esd.ornl.gov/programs/ameriflux/scif.htm</u> (Verified 17 Dec. 2001).

Location [*]	Date	Treatment	Use in	Number of $R_{\rm s}^{\dagger}$
			Model	Measurements
KPBS Mowing Study	1996-97	Mowed [‡]	Calibration	776
KPBS Fire Study	1997	Burned [§]	Validation	180
KPBS Fire Study	1997	Not Burned [§]	Validation	180
Rannells Prairie	1999	Burned [§]	Validation	160

<u>Table 1</u>. Description of four study sites from which data were obtained for model calibration and 1 2 validation.

3

^{*} The three sites on Konza Prairie Biological Station (KPBS) were located on separate [†] Soil-surface CO₂ flux (*R*_s).
[‡] Experiment included mowed and unmowed plots; all were annually burned.
[§] Unmowed and ungrazed.

measured a	nd modeled f	luxes.					
		Cumulativ	ve Fluxes				
Treatment*	Measured		Modeled			% Error	
		Eq. 2 [±]	Eq. 3 [‡]	Eq. 6 [§]	Eq. 2 ^{±±}	Eq. 3 ^{‡‡}	Eq. 6 ^{§§}
		kg	m ⁻²			%	
EC	3.93	4.66	7.94	3.90	19	102	-1
FC	4.08	4.74	7.95	4.04	16	95	-1
NC	4.92	5.14	7.36	4.96	4	50	1

Table 2. Estimates of cumulative soil-surface CO₂ flux on an annual basis calculated from 1

* Early-season clipping (EC), full-season clipping (FC), and no clipping (NC).
† From Norman et al. (1992); included leaf area index.
‡ From Norman et al. (1992); did not include leaf area index.
§ Our recalibrated version of Eq. 2; also included leaf area index.

1 <u>Table 3</u>. Data from no clipping (NC), full-season clipping (FC), and early-season clipping (EC) 2 treatments in the mowing study were used to refit coefficients *a* and *b* in Eq. [2] (Norman et al., 3 1992). Coefficients *a* and *b* from each analysis are presented, as well as predicted soil CO₂ flux 4 (R_s), single plot bias (Bias), root mean square error (RMSE), and goodness of fit (r^2). The same 5 values are provided from Eq.[2] for comparison.

Model	a	b	Measured	Predicte	d Bias	RMSE	r^2	n^*
			Rs	Rs				
				umol	$m^{-2} s^{-1}$			
1. NC (LAI>0) [†]	0.163	0.040	6.84	6.90	+0.060	1.65	0.637	193
Eq. [2]	0.135	0.054		6.63	-0.215	1.70	0.635	
2. FC (LAI>0) ^{†††}	0.100	0.098	5.61	5.61	-0.004	1.60	0.568	187
Eq. [2]	0.135	0.054		5.92	+0.306	1.66	0.550	
3. EC (LAI>0) ^{†††}	0.093	0.119	5.23	5.36	+0.129	1.59	0.520	183
Eq. [2]	0.135	0.054		5.75	+0.515	1.92	0.371	
4. Pooled [‡]	0.121	0.069	5.91	6.04	+0.129	1.73	0.574	563
(LAI>0) ^{†††}	0.135	0.054		6.11	+0.195	1.76	0.546	
Eq. [2]								
5. Pooled ^{‡‡‡} (annual) [*]	0.052	0.047	4.53	4.44	-0.090	1.53	0.770	776
Eq. [2]	0.135	0.054		4.84	+0.308	1.55	0.765	

^{*} Number of observations in each respective data set.

[†] Derived from data collected only during the growing season, when green leaf area index (LAI) was >0.

[‡] Pooled refers to the combined data sets of NC, FC, and EC.

* Derived from pooled, annual data that included the dormant period (when green LAI=0); this model represents Eq. [6].

<u>Table 4</u>. Estimates of cumulative soil CO_2 flux during the growing season from independent test 1 sites unrelated to mowing study and the percent error, single plot bias, and root mean square 2 error (RMSE) of predicted compared with measured soil CO₂ flux. 3

4							
5	Site	Measured	<u>Eq. 6</u>	Single Plot	RMSE	% Error [*]	
6				Bias			
7	kg $CO_2 m^{-2}$						
	\mathbf{B}^{\dagger}	4.48	4.87	+0.51	2.19	+9	
	UB^\ddagger	3.83	3.50	-0.49	1.33	-9	
	B1 [§]	4.52	4.43	-0.15	1.12	-2	

* % Error = 100*(Modeled-Measured)/Measured.
[†] Site B was a burned watershed on Konza Prairie Biological Station (DOY 107-324, 1997).

[§] Site B1 was a burned watershed on the adjacent Rannells Prairie (DOY 142-300, 1999).

[‡] Site UB was an unburned watershed on Konza Prairie Biological Station (DOY 107-324, 1997).

1	<u>Fig. 1</u> .	Green leaf area index (LAI) from various years in the burned (B) and unburned (UB)
2		sites of the fire study and in the adjacent Rannells prairie (B1). All three sites were
3		ungrazed and unmowed (Table 1).
4	<u>Fig. 2</u> .	Comparison of modeled and measured soil CO ₂ fluxes in early-season clipping (EC), full-
5		season clipping (FC), and no clipping (NC) treatments. Predicted fluxes were calculated
6		using models of Norman et al. (1992); Eq. (2) included green leaf area index (LAI) and
7		Eq. (3) did not.
8	<u>Fig. 3</u> .	Comparison of modeled and measured values of instantaneous soil CO ₂ fluxes. All soil
9		CO_2 flux data collected from all treatments during the mowing study are shown (n=776).
10	<u>Fig. 4.</u>	Daily measurements of soil-surface CO_2 flux (F _s) during course of one year from each of
11		9 unclipped (NC) plots. Range of F_s on each respective day illustrates the high spatial
12		variability that is typical in F _s measurements in tallgrass prairie.
13	<u>Fig. 5</u> .	Comparison of modeled and measured soil CO ₂ fluxes in early-season clipping (EC),
14		full-season clipping (FC), and no clipping (NC) treatments. Modeled fluxes were
15		calculated using the original model of Norman et al. (1992) that included LAI (Eq. 2) and
16		the model refitted to data from the mowing study (Eq. 6).
17	<u>Fig. 6</u> .	Comparison of measured and predicted soil CO_2 fluxes (R_s) from Eq. (6) and volumetric
18		soil water content (average between 2.5 and 10 cm) on burned (a) and unburned (b)
19		tallgrass prairie. This represents a test of Eq. (6) to an independent set of R_s
20		measurements from nearby prairie sites.
21	<u>Fig. 7</u> .	Comparison of modeled (Eq. 6) and measured soil CO ₂ fluxes during the growing season
22		on site B1.

Figure 1

Day of Year

Figure 2

Figure 3

Day of Year

Figure 5

Figure 6

Figure 7