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Abstract 

The role of predators in ecosystems has not only intrigued and puzzled ecologists over 

time, but predators are charismatic icons of conservation whose status indicates threats of global 

change. Through habitat alteration and fragmentation, climate change, and species introductions, 

predation pressure has been altered globally through the loss of apex predators, introduction of 

predators, and changes in predator distributions and abundance. While we know predators can 

influence ecosystems through top-down processes, managing changes in predation pressure 

requires quantifying effects of predators at scales relevant to management and conservation. In 

lotic systems, scales relevant to management often span across drainage basins, so predator 

effects must be quantified across stream networks. Because lotic communities also respond to 

landscape change, understanding the role of predators across stream networks requires careful 

consideration of local and broad scale abiotic factors influencing both predators and prey. I 

combined simulated, experimental, and observational data to 1) assess sampling strategies to 

determine effects of landscape change on stream fish communities, 2) measure changes in 

predator consumption rates across spatial scales and the role of prey behavior in driving scaling 

relationships, and 3) quantify the relationship between the presence of predators and stream fish 

community structure while controlling for abiotic variability across stream networks. In chapter 

2, I compared how the distribution of sample sites (completely random, highly skewed, or 

uniform distributions) across landscape gradients influenced variability in measured responses of 

stream fish community metrics. Strong responses (species richness) to environmental gradients 

were robust to sample distributions, but large sample size and uniform distributions of samples 

across gradients were necessary to quantify more complex ecological responses (community 

composition). In chapter 3, I conducted a mesocosm study to quantify differences in per capita 



  

consumption across different arena sizes and measured three aspects of prey behavior 

hypothesized to be important in driving consumption rates: aggregation, movement, and spatial 

overlap with predators. Per capita consumption was highest in the largest arena relative to the 

smallest. I hypothesize the positive relationship between consumption and spatial scale was 

driven by lower group vigilance because prey aggregated less in large arenas. In chapter 4, I 

compared fish community structure, including richness and abundance of species, at sites in 

which a predatory fish, largemouth bass (Micropterus salmoides), were present or absent. I first 

identified which abiotic factors, including both natural stream attributes and anthropogenic 

landscape changes, drove the presence of largemouth bass and stream fish community structure. 

I then controlled for important abiotic factors to determine relationships between largemouth 

bass and stream fish community structure. Richness was higher than predicted based on abiotic 

factors at sites where bass were present. Several species associated with small impoundments 

exhibited significant co-occurrence patterns with largemouth bass, likely driving the heightened 

richness at sites with bass. Complex ecological phenomena such as community responses to 

predators are difficult to measures, especially in the context of landscape change. These studies 

highlight the importance of thoughtful study design, the scale-dependence of biotic interactions, 

and challenges of quantifying responses to predators at scales relevant to conservation and 

management. 
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Abstract 

The role of predators in ecosystems has not only intrigued and puzzled ecologists over 

time, but predators are charismatic icons of conservation representing threats of global change. 

Through habitat alteration and fragmentation, climate change, and species introductions, 

predation pressure has been altered globally through the loss of apex predators, introduction of 

predators, and changes in predator distributions and abundance. While we know predators can 

influence ecosystems through top-down processes, managing changes in predation pressure 

requires quantifying effects of predators at scales relevant to management and conservation. In 

lotic systems, scales relevant to management often span across drainage basins, so predator 

effects must be quantified across stream networks. Because lotic communities also respond to 

landscape change, understanding the role of predators across stream networks requires careful 

consideration of local and broad scale abiotic factors influencing both predators and prey. I 

combined simulated, experimental, and observational data to 1) assess sampling strategies to 

determine effects of landscape change on stream fish communities, 2) measure changes in 

predator consumption rates across spatial scales and the role of prey behavior in driving scaling 

relationships, and 3) quantify the relationship between the presence of predators and stream fish 

community structure while controlling for abiotic variability across stream networks. In chapter 

2, I compared how the distribution of sample sites (completely random, highly skewed, or 

uniform distributions) across landscape gradients influenced variability in measured responses of 

stream fish community metrics. Strong responses (species richness) to environmental gradients 

were robust to sample distributions, but large sample size and uniform distributions of samples 

across gradients were necessary to quantify more complex ecological responses (community 

composition). In chapter 3, I conducted a mesocosm study to quantify differences in per capita 



  

consumption across different arena sizes and measured three aspects of prey behavior 

hypothesized to be important in driving consumption rates: aggregation, movement, and spatial 

overlap with predators. Per capita consumption was highest in the largest arena relative to the 

smallest. I hypothesize the positive relationship between consumption and spatial scale was 

driven by lower group vigilance because prey aggregated less in large arenas. In chapter 4, I 

compared fish community structure, including richness and abundance of species, at sites in 

which a predatory fish, largemouth bass (Micropterus salmoides), were present or absent. I first 

identified which abiotic factors, including both natural stream attributes and anthropogenic 

landscape changes, drove the presence of largemouth bass and stream fish community structure. 

I then controlled for important abiotic factors to determine relationships between largemouth 

bass and stream fish community structure. Richness was higher than predicted based on abiotic 

factors at sites where bass were present. Several species associated with small impoundments 

exhibited significant co-occurrence patterns with largemouth bass, likely driving the heightened 

richness at sites with bass. Complex ecological phenomena such as community responses to 

predators are difficult to measures, especially in the context of landscape change. These studies 

highlight the importance of thoughtful study design, the scale-dependence of biotic interactions, 

and challenges of quantifying responses to predators at scales relevant to conservation and 

management. 
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Chapter 1 - The role of predators across riverscapes: spatial scale 

and interactions between abiotic and biotic factors  

The role of predators in ecosystems has long been debated by ecologists (Hairston et al. 

1960, Paine 1966, Polis 1999). The relative importance of top-down versus bottom-up controls 

of ecosystems (Hunter and Price 1992, Power 1992), the role of predation in maintaining 

biodiversity (Ives et al. 2004, Ritchie and Johnson 2009) and the vulnerability of apex predators 

to global change (Estes et al. 2011, Wallach et al. 2015) highlight the need to understand, 

conserve and manage predator-prey interactions in natural systems. Some predators have 

disproportional effects on ecosystem structure and function (“keystone predators”; Paine 1980) 

and many predators have been introduced into systems beyond their native range (Eby et al. 

2006). Introduced predators can replace native predators (Nakano et al. 1998, Simon and 

Townsend 2003), increase predator richness (Vander Zanden et al. 1999, Eby et al. 2006), and 

sometime have profound negative consequences on native prey (Sharpe et al. 2017). Ecosystem 

consequences of losing native predators and introducing nonnative predators are further 

amplified by climate and landscape change driving changes in predator distributions (Wisz et al. 

2013).  Further, predators are often considered charismatic fauna and are often public figures of 

conservation efforts (Estes 1996, Sergio et al. 2005). In short, most ecologist would agree 

predators play important roles in ecosystems and there is a need to understand these roles to 

conserve biodiversity in the face of global change.  

In streams, fishes are typically among top predators with birds, reptiles, mammals, and 

amphibians. Although terrestrial and semi-aquatic predators can play important roles in 

structuring stream communities (Angermeier and Karr 1983, Power et al. 1985), this dissertation 

will focus on stream fish predators and prey because stream fishes are highly diverse and 
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threatened relative to other vertebrate groups (Darwall and Freyhof 2016). To begin exploring 

the importance of predators in driving stream fish community structure, it is useful to consider 

evidence supporting nonrandom structure and the interacting effects of abiotic and biotic factors 

in driving community structure. The relative importance of stochastic (random) and deterministic 

(nonrandom) processes, including both abiotic and biotic interactions, as drivers of stream fish 

community structure have been largely debated (Grossman et al. 1982, Yant et al. 1984, Winston 

1995, Gotelli and McCabe 2002, Peres-Neto 2004, Giam and Olden 2016). While there is 

evidence of randomly structured stream fish communities (Matthews 1982, Gotelli and McCabe 

2002), many freshwater fish communities are organized in response to abiotic, biotic, and spatial 

factors (reviewed in Jackson et al. 2001). Due to the temporal and spatial heterogeneity of abiotic 

conditions in streams, some argue abiotic factors and disturbance events dominate as drivers of 

stream community structure (Grossman et al. 1998), and biotic interactions are more important in 

begin environments relative to harsh environments (Peckarsky 1983). Despite debate over the 

importance of biotic interactions relative to abiotic factors, there is evidence of biotic interactions 

playing a role in structuring freshwater communities (Holomuzki et al. 2010), including fish 

communities (Jackson et al. 2001). The relative importance of any factor is context and spatial 

scale dependent (Zorn and Wiley 2010), so that processes may be viewed as influencing 

communities through a series of hierarchical filters (Smith and Powell 1971, Jackson and Harvey 

1989, Tonn 1990, Poff 1997). Abiotic, biotic, historic, and stochastic process likely interact at 

multiple spatial scales to produce observed patterns of stream fish community structure.  

Stream fish predator-prey interactions started receiving more attention in the 1980s. 

Research conducted in the 1980-1990s focused on experimental studies (mesocosm and stream 

enclosure experiments) of a few single predator species (Micropterus, Semotilus, Esox, Hoplias) 
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and single prey species, with a focus on localized effects of predators on prey behavior, 

predominately through changes in habitat use and activity levels, as well as direct effects on 

mortality (reviewed in Matthews 1998 and in Hoeinghaus and Pelicice 2010). Matthews (1998) 

summarized experimental evidence of one or a few piscivores effects on one or a few prey 

species, as well as several case studies of introduced predator effects on natural stream systems 

(Garman and Nielsen 1982, Rincón et al. 1990, Ruppert et al. 1993) and pointed out the lack of 

studies investigating community level responses of stream fish to predators. Despite Matthews 

(1998) call for the “marriage of empirical and theoretical work” to assess predator effects on 

entire fish assemblages, studies conducted over the subsequent decade continued to remained 

focused on single predator-prey interactions and were largely experimental and local in scale. In 

their review of fish predator-prey interactions in streams, Hoeinghaus and Pelicice (2010) 

restricted their review to small scale experiments due to the lack of studies at broad spatial scales 

or in natural systems.  

Experimental work in streams suggest predators can have a wide array of consumptive 

and non-consumptive effects on stream fishes at fine spatial scales (reviewed in Hoeinghaus and 

Pelicice 2010; see Chapter 3 introduction) and evidence from natural systems suggest predator 

effects in streams, especially from introduced predators, can be variable (Townsend 2003, Billam 

et al. 2010, Turschwell et al. 2018) and/or weak relative to other factors (Giam and Olden 2016). 

The mixed effects of predators on stream fish communities is likely influenced by variation 

introduced by increasing spatial scale, measuring responses across environmental gradients, 

stochastic processes, and context dependency of responses. In this dissertation, I explore two of 

these sources of variation, spatial scale and environmental variability, to assess the role of a 
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widely introduced and voracious predator, largemouth bass (Micropterus salmoides) in driving 

stream fish community structure in Flint Hills streams.  

A critical step in understanding predator effects across environmental gradients is 

accurately quantifying community responses to abiotic variability across stream networks. In 

Chapter 2, I compared site-selection strategies, or the distribution of sample sites across 

landscape gradients, for modeling effects of landscape factors on stream fish community 

structure. I used randomization tests to compare responses of stream fish species richness and 

community composition in response to catchment agriculture and catchment area of sites 

distributed randomly, highly skewed, or uniformly across these landscape gradients. I compared 

variability in responses to these manipulated distributions for three difference sample sizes. In 

this chapter, I conclude that detecting ecological responses to subtle or complex environmental 

gradients can be difficult, but careful consideration of study design can help elucidate responses.  

In Chapter 3, I build off  Chapter 2 and not only quantify stream fish community 

responses to landscape gradients, but also quantify how the presence of a predator, largemouth 

bass (Micropterus salmoides), vary across these gradients as well. Identifying important abiotic 

drivers of both stream fish community structure and the presence of predators allowed me to 

measure responses to predator presence mediated by abiotic factors. Field data collected in the 

summers of 2017 and 2018 was used for structural equation modeling (SEM) and a multi-scale 

modeling approach to measure effects of largemouth bass presence on stream fish assemblage 

richness, species relative abundances, and co-occurrence patterns. I hypothesized the prevalence 

of impoundments in the study area would play an important role in supplementing largemouth 

bass  occurrences. Natural attributes of the stream network were important mediators of predator 

relationships with fish community structure and I observed positive relationships between bass 
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presence and richness and presence of several species. I discuss the challenges of quantifying 

landscape gradients, such as impoundments, in ecologically meaningful ways and the complex 

and often context depend effects of predators in driving community structure.   

I wrap up Chapter 3 discussing challenges associated with quantifying the effects of 

predators at broad spatial scales. We know predators can have strong local effects in 

experimental studies, but predicting how predators influence natural systems at broad spatial 

scales requires understanding how scale biases measurements of responses to predators. In 

Chapter 4, I present results of a mesocosm study in which I compared consumption and prey 

behavior across a gradient of experimental stream sizes. I predicted per capita consumption 

would vary across arena sizes driven by changes in prey behavior associated with prey vigilance 

and encounter rates between predators and prey. I measured prey behavior and consumption by 

largemouth bass for two minnows occupying different habitat guilds. I observed unexpected 

changes in consumption with increasing arena size and hypothesize group vigilance plays an 

important role in driving consumption rates in Flint Hill stream fish communities 

Collectively, these studies contribute to our understanding of predator-prey interactions 

across scales and environmental gradients to ultimately aide in the conservation of native fish. 

Conserving native fish is challenging due to the widespread effects of riverscape changes paired 

with the overwhelming number of introduced and often predatory fishes. I hope that this research 

contributes guidance for future studies to use more thoughtful experimental designs when 

developing sampling schemes to assess landscape change and urges others to continue to 

consider to impact of scale when interpreting biological interactions. My work highlights the 

challenges with identifying effects of predators in stream systems, and developing creative ways 
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to quantify predator-prey relationships across riverscapes is needed to help guide prioritized 

decision making regarding management of predators.  
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Chapter 2 - Assessing site-selection strategies for modeling the 

influence of landscape factors on stream fish assemblages 

 

Lindsey A. Bruckerhoff and Keith B. Gido 

 

 Abstract 

Linking landscape features, both natural and human-altered, to aquatic ecosystem structure and 

function is a fundamental objective in landscape ecology and freshwater science, but this process 

is data- and resource-intensive. Quantifying how landscape stressors influence aquatic 

communities requires balancing logistic and financial constraints with effectively sampling the 

landscape to capture gradients of interest. There is a variety of ways to balance these constraints, 

such as using existing data, handpicked site selection, or a statistical site selection scheme. Poor 

sampling design reduces statistical power; however, we do not know how differences in site-

selection designs influence our ability to measure ecological responses to landscape gradients. 

We quantified how the distribution of sample sites across landscape gradients affected the 

measured responses of stream fish assemblages to these gradients at different sample sizes. 

Specifically, we used randomization tests to compare the variability in the responses of fish 

assemblage structure (species richness and composition) to catchment area and land use 

(agricultural land) with manipulated distributions (random, highly skewed, and uniform) of sites 

across these landscape gradients. Assemblage composition was more sensitive than species 

richness to sampling design, and we observed less variability in the detected response of 

assemblage composition when samples were distributed uniformly across landscape gradients, 

especially when sample sizes were small. Although strong responses to environmental gradients, 



12 

such as species richness to catchment area, are robust to sampling distributions, large sample size 

and a uniform distribution of samples might help elucidate more subtle responses to 

environmental gradients. 

 Introduction 

Lotic communities face multiple stressors as humans continue to modify landscapes 

(Roth et al. 1996, Allan et al. 1997, Allan 2004). Land-use change is one of the primary drivers 

of biodiversity loss in freshwater systems (Sala et al. 2000), so determining how landscapes 

influence the structure and function of riverine systems is a top goal in freshwater ecology and 

management. Landscape alterations influence freshwater systems through a variety of 

mechanisms at multiple spatial scales (Schlosser 1991, Townsend et al. 2003, Allan 2004). For 

example, land-use changes alter physiochemical attributes of stream habitats through 

sedimentation, nutrient enrichment, contaminant pollution, hydrologic alteration, riparian 

modification, and loss of woody debris (summarized in Allan 2004). These impacts may be the 

result of landscape change at multiple spatial scales, including changes in areas directly 

connected to the river channel, areas within the floodplain and riparian zones, and areas with 

indirect contact through surface-water, groundwater, and sediment flows into the river channel 

(Wang et al. 2006). Landscape alterations interact with natural characteristics across these spatial 

scales, as well as with stochastic (such as precipitation or temperature) and historic 

(biogeography) factors, to produce ecological patterns across river networks.  

Because multiple environmental gradients interact at multiple spatial scales to drive 

patterns of lotic community structure, quantifying ecological responses to even a single 

landscape factor is a data intensive task. Capturing coarse-scale gradients of environmental 

features requires sampling large areas and collecting many samples. In addition to the intensive 
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sampling required to capture terrestrial landscape features, researchers must also consider the 

hierarchical structure of riverine systems. Broad scale landscape features may interact with 

properties of the stream network (e.g., stream size or location in the network). For example, in 

one study, insects unique to headwaters were at greater risk of extirpation from urbanization than 

species common throughout the stream network (Smith and Lamp 2008). To capture these types 

of interactive effects, stream network features must also be adequately sampled. As a result, 

researchers are often constrained in their ability to sample enough sites to capture complex 

responses across multiple environmental gradients, and it is critical to develop efficient sampling 

strategies to optimize allocation of effort.  

There are many biomonitoring datasets collected by a variety of institutions (e.g. local, 

state, and federal governments, citizen science, universities, and museums) available to study 

impacts of landscape change on various ecological responses (see Buss et al. 2015 for summary 

of national datasets). To save time and money, many studies have used these existing datasets to 

assess how landscape patterns influence stream systems. We performed a cursory review of 

papers written since 2002 assessing the effects of land-use on stream fish assemblages. Our 

review included the first 50 papers found from major freshwater science and landscape journals. 

From this review, we found 18 out of 50 papers used pre-existing datasets (Table 2.1). Although 

few people may criticize scientists for being resourceful, there is potential bias associated with 

using existing landscape-stream datasets because data were likely collected with different 

objectives, sampling designs, and sampling methods (Deweber et al. 2014, Maas-Hebner et al. 

2015). For example, the U.S. Environmental Protection Agency (USEPA) collects biological, 

chemical, and physical data at stream sites throughout the country through the National Aquatic 

Resource Survey (NARS). Stream sites in this program are randomly selected based on stream 
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size, spatial distribution (interspersed across the U.S.), and accessibility (USEPA 2012). Thus, 

they may not be ideal for studying, for example, the influence of impervious surfaces on aquatic 

communities within a state, because they were not collected with this intention. The NARS data 

likely cover a full gradient of stream sizes in the study area, but may not capture the full gradient 

of impervious surfaces. In addition to using pre-existing data, many studies also used what we 

classified as hand-picked sites (Table 2.1). In those studies, authors provided little to no rationale 

for choosing sample sites. For example, an author investigating the influence of impervious 

surfaces on fish assemblages may indicate sites were sampled along a gradient of urbanization 

intensity, but not provide any information about how that gradient was quantified or how sites 

were chosen.  

Our observation that many broad-scale analyses quantifying impacts of landscape 

features on stream biota used existing data or provided little rationale for site selection led us to 

ask, how does sample-site selection across environmental gradients influence the measured 

response of ecological metrics? Specifically, we tested how the measured relationships between 

stream fish assemblage structure (species richness and composition) and landscape factors (both 

natural and human land-use changes) varied with different sampling designs (random, highly 

skewed, or uniformly distributed) of sample sites (stream segments) across landscape gradients. 

We also compared variation in measured responses across different sample sizes to evaluate the 

importance of sample designs at different levels of effort. This study provides insight into the 

importance of study design when conducting landscape studies and may serve as a resource to 

those designing studies to quantify the relationship between landscape change and stream biotic 

responses. 
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 Methods 

 General Framework 

We combined two datasets to quantify how the distribution of sample sites across 

environmental gradients influenced measured ecological responses. Our two response variables 

were fish species richness (hereafter richness) and assemblage composition, and the predictors 

were catchment area and the proportion of agricultural lands in the catchment of each site. We 

calculated catchment areas based on data included in the National Hydrography Dataset (USGS 

2016) using Arc Hydro Tools in ArcMap 10.4 (ESRI 2011). Use of the term “catchment” in this 

paper refers to true upstream catchments delineated from the downstream point of all sites 

(Omernik et al. 2017). We then calculated the proportion of agricultural land within each 

catchment using Landsat raster data from the Kansas Satellite Image Database (KARS 2005). 

Agricultural land in this dataset was classified as cropland planted with corn, soybeans, sorghum, 

winter wheat, or alfalfa, or land used as fallow or planted with multiple crops, but did not include 

land classified as pasture (Peterson et al. 2010). We defined a site as a stream segment, or the 

portion of stream between two confluences. Our general framework consisted of grouping 

similar sites based on each predictor (e.g. small catchment area, low proportion of agriculture), 

randomly drawing sites from each group to fit different sample designs (random, right-skewed, 

and uniform) and modeling the relationship between the ecological responses (richness or 

composition) and gradients of interest (e.g., linear regression of richness versus catchment area). 

We repeated draws of sites for each relationship at varying sample sizes (25, 50, 75, and 100) 

1,000 times (without replacement), developed models for each draw, and assessed the 

distribution of estimated coefficients across those 1,000 draws. We were interested in the 
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variability in our ability to detect a response (the proportion of times we detected a non-zero 

slope or significant relationship). All analyses were completed in R 3.4.2 (R Core Team 2017).   

 Fish Assemblage Datasets 

We combined fish assemblage data for streams in the Flint Hills Ecoregion of Kansas 

(Figure 2.1) using existing records from the Kansas Department of Wildlife, Parks, and Tourism 

(KDWPT) and Kansas State University (KSU). KDWPT conducts streams surveys to monitor 

distributions of native fish throughout different parts of Kansas each year; this dataset contains 

data from different sites collected between 1995 and 2012. The KDWPT sites are selected using 

a variety of methods depending on the goals of sampling for each particular year. The KSU data 

were collected in the summer of 2017 to determine the influence of multiple stressors on stream 

fish assemblages. These sites were selected using a random stratified design across a range of 

stream sizes and gradient of agricultural land-use. All sites in the KSU dataset were wadeable 

and sampled using backpack electroshocking and seining. We combined these two datasets to 

increase the pool of sites used to create manipulated sampling distributions. All results in this 

study are constrained by the ecological responses apparent in the global pool of sites. In other 

words, the largest effect sizes produced by combinations of sample sizes and sampling 

distributions were constrained by the effect sizes observed in the global dataset.  In addition, our 

random samples actually represent random samples of the sites in this combined dataset, not 

random samples of the environmental gradients. For the sake of this study, we consider patterns 

observed in the global pool of sites to represent the “true” relationships. We then compared how 

our ability to detect these relationships changed with different combinations of sample sizes and 

site-selection designs. 
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 Sample Distributions 

We chose to test fish assemblage responses across environmental gradients with random, 

right-skewed, and uniform distributions (Figure 2.2). We chose these distributions because they 

are (based on the authors’ experience) commonly encountered by researchers conducting 

landscape studies. Completely random and random stratified designs are commonly used to 

designate samples across space (Manly 2001, Quinn and Keough 2002). Because completely 

random sampling does not account for probabilities of encountering different environmental 

gradients, more samples are likely needed to capture a full range of variability across gradients. 

Random-stratified designs distribute sites across strata representing different levels of gradients 

of interest, but samples are randomly designated within each stratum. If samples are allocated 

equally across strata, (i.e. equal-random-stratified), this design gives rise to uniform distributions 

of predictor variables, whereas random designs will produce distributions that mirror the 

proportional distribution of gradients across the landscape. Because samples are allocated 

equally across strata, fewer samples are needed to capture variability of environmental gradients 

of interest. However, the choice of strata may be inappropriate for other studies or other 

inferences. Highly skewed distributions may arise from a combination of the natural distribution 

of the gradient across the landscape and bias associated with sampling. For example, within a 

drainage basin, stream networks are dominated by small streams (regardless of how you measure 

stream size). Within a given area, a histogram of stream sizes will likely be right-skewed, so a 

randomly sampled stream network will produce right-skewed distributions of stream size. In 

addition, stream size bias may also arise from sampling bias. Smaller streams are typically easier 

to access and sample relative to larger streams, potentially adding further bias toward a right-

skewed distribution of sample sites. We therefore distributed our samples randomly, right-
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skewed, and uniformly (using an equal-random-stratified design) to capture those common 

sampling distributions.  

 Landscape Predictors and Ecological Responses 

We chose catchment area and the proportion of agricultural lands in upstream catchments 

as predictor variables because we expected to see differences in our ability to detect a response 

between those variables. The influence of catchment area on fish assemblage structure is well 

documented for stream fishes (Matthews 1998). Although this pattern may not be considered an 

ecological response in the same way communities respond to land-use change, this known 

pattern allowed us to confidently explore the influence of sample design. Because we expected a 

strong effect, we predicted the influence of sample design on detecting a relationship between 

catchment area and fish assemblages would be less important. Land-use effects on fish 

assemblages, however, were expected to be harder to detect because of multiple indirect 

influences on instream physical and chemical conditions that influence fish (Berkman et al. 

1986, Schlosser 1991, Hering et al. 2006), therefore we expected the importance of study design 

to be more conspicuous when assessing the influence of agricultural lands.  

We chose richness and assemblage composition (Jaccard dissimilarity) as response variables 

because they are basic descriptors of assemblage structure. Jaccard dissimilarity was used rather 

than other distance matrices because it is based on presence/absence data, and abundance data 

from these datasets was unreliable due to the variety of methods and range of years included. 

Species richness and Jaccard dissimilarity capture both univariate (richness) and multivariate 

(composition) responses so that we could compare the influence of sample design on response 

variables with different statistical properties.  
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 Randomization Tests 

To quantify the influence of sample design on the response of richness to landscape 

factors, we developed ordinary least squares linear regression models for 1,000 random draws of 

sites with varying sample sizes (N=25, 50, 75, and 100) across the three sample distributions 

(random, right-skewed, and uniform) of catchment area and the proportion of catchment 

agricultural lands. Before drawing, we removed sites with catchment areas greater than 1,000 

km2 or less than 2.7 km2 because those few outlier sites influenced the classification scheme 

used to draw samples. From this final dataset, we classified sites into five strata (Table 2.2) for 

each predictor (catchment area and proportion of agricultural lands) using the Jenks natural 

breaks classification method (Jenks 1977). The Jenks algorithm finds natural groups inherent in 

the dataset and maximizes differences between classes. We used these groups to draw samples 

with uniform (equal number of samples in each group) and highly right-skewed (dominated by 

low values) distributions for both landscape predictors. Catchment area was log transformed in 

regression models to improve linearity. Across each sample size and distribution combination, 

we calculated the mean slope and 95% confidence intervals in the predicted slopes across the 

1,000 draws. We also calculated the proportion of draws that produced slopes of zero (indicating 

no relationship). We tested for positive slopes for the relationship between richness and 

catchment area because we expected richness to increase with increasing stream size. We also 

tested for negative relationships between the proportion of agricultural lands and richness 

because we expected decreases in richness with increasing upstream area converted for 

agricultural use.  

To evaluate the relationship between fish assemblage composition and landscape 

features, we used Mantel tests to quantify the concordance of fish assemblage dissimilarity and 
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landscape features across sites. We started with the same global pool of sites used in richness 

regressions (outlier sites based on catchment area removed) and then removed rare species (those 

not present across at least 5% of the sites). We used the same strata used in regression models to 

draw sites exhibiting the three sampling distributions. For each draw, a Jaccard dissimilarity 

index representing the proportion of unique taxa between samples was computed for each pair of 

sites. We also calculated the differences between catchment areas or proportion of agricultural 

land between these same pairs of sites. Two matrices, one of Jaccard dissimilarity and one of 

differences in environmental gradients, were generated to represent all pair-wise comparisons for 

each set of samples. We then completed a permutational (N=1,000) Mantel test to determine if 

the correlation between assemblage distance and difference in catchment area or proportion of 

agricultural lands between all pairs of sites was significant. We calculated the proportion of tests 

with non-significant Mantel tests and assessed the distribution of p-values across all draws and 

sample distributions.  

We tested for correlations between the distance between sites, differences in richness, and 

assemblage dissimilarity to test for potential issues regarding spatial autocorrelation. Richness 

was not correlated with distance between sites (Pearson’s r=0.04) and assemblage dissimilarity 

was only moderately correlated with distance between sites (Pearson’s r=0.32), so we did not 

correct for spatial proximity in our analysis. We also tested for correlations between the two 

predictor variables, catchment area and proportion of agriculture, which were also not correlated 

(Pearson’s r=0.08, Figure 2.3). 

 Results 

Our combined fish assemblage dataset had 279 sites after removing outliers. For richness 

regressions, 72 species were included in the global species pool. After removing rare species, 
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there were 33 in the global pool for composition comparisons. Strata classifications allowed us to 

produce a gradient of skewness in the distribution of sites across landscape gradients (Table 2.3). 

Sites in the combined dataset were evenly distributed across the gradient of catchment size, but 

most sites had low catchment agriculture regardless of catchment size (Figure 2.3). 

 Fish Species Richness 

Richness had a significant, positive relationship (p <0.001, m= 2.35, Adjusted r2 =0.29) 

with catchment area in the global dataset (Figure 2.4a). This positive relationship was detected 

across all combinations of sample sizes and sampling distributions (Figure 2.5a).  

Richness also had a significant, negative relationship (p=0.005, m=-3.93, Adjusted 

r2=0.03) with the proportion of agricultural land in the catchment of each site (Figure 2.4b). 

Mean slopes derived from randomization tests varied between -5.02 and -3.48 across all sample 

sizes and sampling distributions, with lower, steeper slope means for uniform distributions across 

all sample sizes (Figure 2.5b). Confidence intervals did not overlap zero for uniform 

distributions at samples sizes of 50, 75, or 100 (Figure 2.5b), suggesting robust analyses at those 

levels of effort. The proportion of draws that produced non-negative slopes for the relationship 

between richness and the proportion of agricultural lands decreased with increased sample size 

and was consistently lowest for uniform sampling distributions (Figure 2.6).  

 Assemblage Composition 

Jaccard dissimilarity was significantly correlated with difference in catchment area (p 

<0.001) and the proportion of agricultural lands (p < 0.001) in the global dataset. Mantel tests 

evaluating the correlation between Jaccard dissimilarity and catchment area were significant 

across all sampling distributions at sample sizes greater than 50 and for all sample sizes with a 
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uniform distribution (Figure 2.7a). When the sample size was 25, 6% and 4% of the draws 

produced non-significant Mantel test for random and right-skewed distributions (Figure 2.7a).  

There was more variability, however, in the distribution of p-values when testing for 

associations between assemblage composition and catchment agriculture (Figure 2.7b). There 

were at least some non-significant Mantel tests across all combinations of sample sizes and 

sampling distributions except uniform distributions with sample sizes of 100 (Figure 2.7b). The 

proportion of non-significant Mantel tests decreased with sample size and was consistently the 

lowest for uniform distributions (Figure 2.8). Over 50% of draws produced non-significant 

Mantel tests at sample sizes of 25 with random and right-skewed distributions, whereas less than 

2% of draws were not significant with uniform distributions and sample sizes greater than 25 

(Figure 2.8). 

 Discussion 

Study design, as indicated by differing predictor variable distributions, influenced the 

variability in our ability to detect fish assemblage responses. We observed less variability in the 

response of both fish species richness and assemblage composition to catchment area versus the 

proportion of catchment agriculture. This fit our prediction that land-use effects on fish 

assemblages would be weaker than the influence of catchment area. Similarly, we observed more 

variation in our ability to detect these relationships using Jaccard dissimilarity than species 

richness. However, we consistently observed less variation with uniform distributions and large 

sample sizes for both Jaccard index and species richness responses to catchment agriculture. This 

indicates sample design is especially important to consider when investigating relatively weak or 

multivariate ecological relationships. We expect this result to be consistent across different 
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regions, although the strength of the relationship between fish community structure (species 

richness and composition) and environmental gradients may vary.  

We observed more variability in assemblage responses when samples sizes were small, 

but sample design could offset those differences. For example, our ability to detect correlations 

between assemblage dissimilarity and differences in catchment area or catchment agriculture 

declined with fewer samples, but was improved when those samples were from a uniform 

variable distribution. This is an important consideration because factors such as study objectives, 

timelines, funding, personnel, and other logistic constraints (e.g. access, distance between sites) 

limit the number of sample sites included in a study (Hughes and Peck 2008). Although 

statistical power is always a consideration when determining how many sites to sample (Toft and 

Shea 1983, Fairweather 1992, Quinn and Keough 2002), our study and others (Albert et al. 2010) 

suggest poor sample design can reduce statistical power by incorporating unnecessary variability. 

Further, if a response is tested across multiple environmental gradients, power will further be 

limited, as more samples are needed to capture multiple gradients. Thus, efficient sample design 

across multiple gradients may help optimize the designation of sample units to improve 

statistical power (see Additional Research and Management Needs).  

We observed less variation in our ability to detect relationships between fish assemblage 

structure and environmental gradients when sites were drawn across uniform gradients. Uniform 

designation of sites incorporates prior knowledge about the system by requiring identification of 

important environmental gradients before sampling. These designations are achieved using 

equal-random-stratified sampling designs (Figure 2.2), in which an equal number of samples are 

allocated to each stratum, but samples are randomly allocated within strata. Equal-random-

stratified designs are ideal, as gradients can be sampled efficiently without wasting effort 
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oversampling any part of the gradient. Similar to the current study, Hirzel and Guisan (2002) 

observed equal-stratified designs were the most accurate and robust when predicting habitat 

suitability and the presence/absence of virtual species in simulated terrestrial landscapes relative 

to random, regular, or proportional-stratified designs. However, other studies comparing 

ecological responses across different sample designs produced mixed results and do not always 

suggest the use of uniform gradient distributions. For example, Albert et al. (2010) used similar 

methods as those used in this study and discovered the efficiency of different sample designs 

were dependent on the types of parameters being estimated. Mean values of biological variables 

were best estimated by simple-random sampling designs, whereas optima were best predicted 

using model-based designs (iterative learning methods that incorporate prior knowledge; Albert 

et al. 2010). Mohler (1983) used simulations to recommend sampling designs that favor the 

extremes of gradients to best quantify abundance patterns of multiple species. Alternatively, 

sample design did not influence the prediction accuracy of species distribution models (SDMs) 

because the extent of individual species distributions had more influence on SDM predictions 

than sample design (Tessarolo et al. 2014). These studies suggest sample design is (usually) 

important and influences the ability to detect a response, but different designs may be better 

suited for different response variables. Similarly, the importance of sample design may also vary 

with different modeling approaches, with some statistical models being more robust to sampling 

distributions. More work is needed to determine which type of designs are ideal for different 

ecological responses (presence/ absence, abundance, diversity metrics, disturbance indices, etc.) 

and different types of statistical models.  

Comparisons of sample designs are primarily studied using either real or simulated data. 

We drew samples from existing data to maintain some realism in our ecological relationships. 
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Our dataset included some of the biases that are apparent in true sample schemes (such as issues 

with accessibility or sampling close to roads) and provide realistic estimates of variability that 

would be detected in the study system. Albert et al. (2010) called this approach a “semi-virtual 

simulation”. Whereas the decision to use a semi-virtual approach allowed us to capture realism, 

it did not allow us to account for some potential bias. For example, we did not account for 

differences in detection probabilities of species across environmental gradients. In addition, our 

observed ecological responses may also be biased due to the different methods of site selection 

used by our two data sources. Although we potentially could have avoided some of this bias by 

utilizing a larger dataset, such as one of the publically available datasets mentioned in the 

Introduction, we would have to alter the geographic extent of our study. Alternatively, we could 

have simulated data to compare different gradient distributions. Simulated datasets are useful 

because the true correlation structure between the response and predictor is known (Olden et al. 

2004), making them useful in assessing the performance of different statistical tests used in 

ecology (Jackson 1993, Olden and Jackson 2000, Olden et al. 2004). Although we did not use 

simulated data in this study, other comparisons of sample designs that did use simulated data 

(Hirzel and Guisan 2002) produced similar results. 

  Additional Research and Management Needs 

Our study is a first step in assessing the influence of sample design on the ability to detect 

ecological responses in stream systems. More work is needed to determine how unique 

properties of stream systems can be incorporated into sampling designs. The structure and 

function of streams is driven by heterogeneity at multiple spatial scales (hierarchical filters; Poff 

1997), and stochastic events (disturbance; Townsend 1989). Although these processes have been 

integrated and studied in terrestrial systems using classic landscape principles like hierarchical 
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patch dynamics (Wu and Loucks 1995), unique properties of dendritic networks challenge direct 

application of these ideas in streams (Benda et al. 2004). For example, confluences have unique 

geomorphological properties (Poole 2002), and the placement and number of confluences within 

a network may create uneven patterns of heterogeneity within and between networks (Benda et 

al. 2004). These unique properties of confluences and the spatial position of sites within stream 

networks are known to influence relationships between fish community metrics and local 

environmental conditions (Hitt and Angermeier 2008). The age of geomorphic landforms might 

also vary from headwaters to main-stems (Benda et al. 2004) and other attributes of stream 

ecosystems (e.g. sediment size, functional trait composition, primary production, allochthonous 

inputs) vary longitudinally in stream networks (Vannote et al. 1980). Heterogeneity is also 

inherent in studies with extents that include multiple ecoregions or cross biogeographic 

boundaries (Pinto et al. 2009). Those sources of heterogeneity are common in broad scale studies 

across stream networks and should be considered when designing studies to measure effects of 

landscape change of stream ecosystems. Further work is needed to assess the effect of these 

attributes (location in the network, proximity to a confluence, differences in drainage density 

between networks, ecoregion, etc.) on the ability to detect ecological responses to landscape 

changes. One promising method proposed to account for spatially structured patterns of 

heterogeneity are spatial stream network (SSN) models that capture spatial auto-correlation in 

stream networks due to confluences, network connectivity, and the direction of stream flow  (Ver 

Hoef et al. 2006, Ver Hoef and Peterson 2010).  

Controlling for these sources of variability while simultaneously comparing the effects of 

multiple landscape stressors requires many samples and it is likely difficult to efficiently capture 

multiple landscape gradients (both natural and altered). Although we did not investigate multiple 
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gradients in the current study, we know statistical power will decline as more strata are included 

in a statistical model, and more samples are needed to capture multiple gradients. Obtaining a 

representative sample of multiple stressors across stream networks is complicated by both 

difficulties in calculating a priori landscape metrics for streams and the lack of sampling schemes 

based on multiple gradients. Typically, variables describing upstream catchments (e.g. catchment 

area, proportion of catchment land-cover classes) are calculated post hoc for sample sites (reach 

or segments). This makes stratifying across these types of variables a priori difficult, as one 

would have to compute catchment-based metrics for every possible site within a study area. 

Estimates of catchment-based metrics can be made at coarser spatial scales (e.g. using HUCs or 

ecoregions), but these estimates may not accurately reflect the true upstream conditions for an 

individual sample unit, complicating the use of stratified designs for catchment-based predictors. 

In addition, current sampling strategies are largely based on single predictor variables. Stratified 

sampling requires classifying gradients into multilevel strata, and capturing multiple gradients 

requires sampling all factorial combinations of strata levels. This is difficult to do when the 

natural gradient distribution is skewed because all factorial combinations of strata may not exist. 

For example, in the current study, it would be difficult to find sites with both intermediate sized 

catchments areas and intermediate levels of agriculture, or both large catchment areas and high 

catchment agriculture, but there are many sites with low catchment agriculture at a variety of 

catchment areas (Figure 2.3). Response surface methodology, a sequential process involving 

several designed experiments (Box and Wilson 1951),has been suggested as a method to 

incorporate multiple predictor variables when trying to estimate the optimal value of a response 

(e.g. peak abundance of species), and its application to ecology has been explored in terrestrial 

systems (Albert et al. 2010). Other options for capturing multiple gradients may include 



28 

compressing variability in multi-dimensional environmental space using ordination techniques 

(such as Principal Coordinate Analysis) and stratifying samples in lower dimensional space 

(across a few axes; Stevens and Olsen 2004). Overall, a methodological framework for capturing 

multiple strata in stream networks is needed.  

 Policy Implications 

Understanding the effect of study design on our ability to detect ecological responses can 

help inform the management of riverine systems by improving the interpretation of studies and 

by helping managers effectively allocate sampling effort to detect ecological relationships. 

Inefficient study designs may run the risk of producing Type II errors (false negative), and 

researchers may conclude environmental gradients are not important when in reality they are. For 

example, if policy makers were interested in the impact of agriculture on fish community 

structure, they should be aware that a lack of pattern might be due to low statistical power, as 

observed in our results.  Thus, management recommendations should consider the nature of the 

data, including the spatial distribution of sample sites, prior to any decision-making process. 

Thorough descriptions of study design and the use of post hoc power analysis may help provide 

clarity on how much confidence can be placed in results so policy makers and managers can 

make decisions based on studies with robust designs. Beyond robust study designs, the biological 

significance is also an important consideration when translating science into policy and 

management decisions. While this paper was mainly focused on the influence of study design on 

detecting statistical relationships, detected statistical relationships may not always translate into 

biologically significant responses.  Detailed investigation into individual species responses, for 

example, might be more relevant to specific management goals.  
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 Conclusions 

Overall, sample design influences our ability to detect ecological responses to 

environmental gradients, especially when sample sizes are low. This point has already been 

developed as a main component of study design theory, but we would like to emphasize that 

sample design is particularly important when assessing subtle or complex ecological phenomena. 

The unique attributes of stream networks and the interactions between terrestrial and aquatic 

environments likely make most landscape-stream ecology relationships complex. Stream 

ecologists should strive to develop new ways to overcome these inconveniences to maximize the 

probability of detecting complex but ecologically important relationships. Implementation of 

improved study designs is needed to help us uncover environment-ecological relationships, 

especially as humans continue to modify many landscape attributes. 
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 Tables 

Table 2.1 Site selection methods used in 50 papers investigating the influence of landscape 

factors on fish assemblage data. These papers were compiled by conducting a cursory review of 

papers written since 2002 assessing the effects of land-use on stream fish assemblages, and 

included the first 50 papers found from major freshwater science and landscape journals. Hand-

picked designs were those with vague description indicating sites were distributed across 

environmental gradients, but no formal method for the allocation of sample units across these 

gradients was provided. Studies were classified as using existing data if they indicated the use of 

data from a publicly available dataset from a public or private institution or used data collected in 

another study for a different purpose. Designed studies were those in which a clear description of 

the sample unit allocation (random, systematic, etc.) was provided. SDM and historic 

occurrences represents samples that were allocated based on species distribution models or 

historic occurrence data. 

 

Site Selection Method Number of Papers 

Hand-picked 20 

Existing Data 18 

Not Provided 6 

Designed 5 

SDM and Historic Occurrences 1 
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Table 2.2 Predictor variables were classified into five strata using the natural Jenks algorithm to 

produce distributions with right-skewed and uniform distribution. 

 Range 

Variable Stratum 1 Stratum 2 Stratum 3 Stratum 4 Stratum 5 

Proportion of agricultural land 0.00-10.20 10.30-25.40 25.50-48.20 48.30-67.60 67.70-89.00 

Catchment area (km2) 2.85-10.27 10.28-27.67 27.68-79.64 79.65-246.23 246.24-864.19 
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Table 2.3 Mean skewness values of the distribution of agricultural land across draws with 

different sample sizes and random, right-skewed, and uniform distributions. Distributions of 

catchment area across the three distributions exhibited similar skewness values as these.  

Gradient Distribution Sample Size Skewness 

Random 25 0.91 

 50 0.91 

 75 0.91 

 100 0.92 

Right-Skewed 25 1.27 

 50 1.24 

 75 1.16 

 100 1.17 

Uniform 25 0.16 

 50 0.16 

 75 0.16 

 100 0.16 
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 Figures 

 

Figure 2.1 Locations of sites included in the combined fish assemblage dataset sampled by 

Kansas Department of Wildlife, Parks, and Tourism (KDWPT; black) and Kansas State 

University (KSU; grey). All sites were located in the Kansas River Basin and the Flint Hills 

ecoregion of Kansas, USA.  
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Figure 2.2 Random, highly skewed, and uniform gradient distributions are produced by different 

sampling distributions, and there are different strengths and weaknesses associated with each 

distribution. 
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Figure 2.3 The density of sites across log transformed catchment area (km2) and the proportion 

of catchment agriculture. Shading represent kernel density estimates of sites, with darker values 

representing a higher density of sites.  
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Figure 2.4 Fish species richness increased (p <0.001, m= 2.35, Adjusted r2= 0.29; a.) with 

increased catchment area and decreased (p=0.005, m=-3.93, Adjusted r2= 0.03 ; b.) with 

increased proportion of agricultural land in each catchment across the global pool of sites.  
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Figure 2.5 Mean slope and confidence intervals derived from 1,000 iterations of regressions of 

stream fish species richness against catchment area (a) and the proportion of agricultural land in 

the catchment (b) for N= 25, 50, 75, and 100 samples. Samples were drawn randomly (Ran), 

right-skewed (Skw), and uniformly (Uni) from an existing dataset. The dotted line at mean slope 

= 0 indicates when no relationship was observed between richness and catchment area or 

proportion catchment agriculture. 
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Figure 2.6 The proportion of runs (N=1,000) with slopes less than or equal to zero indicating no 

relationship between catchment land-use and fish species richness for sample sizes of 25, 40, 75, 

and 100 for random (Ran), right-skewed (Skw), and uniform (Uni)  distributions. 
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Figure 2.7 Distribution of p-values obtained from Mantel tests of difference in catchment area (a) 

and the proportion of agricultural land in the catchment (b) versus fish assemblage Jaccard 

dissimilarity for sample sizes of 25, 50, 75 and 100. Samples were drawn randomly (Ran), highly 

right-skewed (Skw), and uniformly (Uni) from an existing dataset. 
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Figure 2.8 The proportion of runs (N=1,000) with non-significant Mantel tests indicating no 

relationship between upstream land-use and fish assemblage composition for sample sizes of 25, 

40, 75, and 100 for random (Ran), right-skewed (Skw), and uniform (Uni)  distributions. 
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Chapter 3 - Disentangling effects of predators and landscape factors 

as drivers of stream fish community structure 

Lindsey A. Bruckerhoff, Keith B. Gido, Michael Estey, and Pamela J. Moore 

 

 Summary 

1. Experimental and fine-scale studies indicate predators can have strong effects on stream 

fishes. It is unclear, however, how these responses scale up to influence stream fish communities 

at coarse spatial scales relevant to management and conservation. Because predators and prey 

respond to environmental variability, measuring community responses to predators requires 

resolving the effects of abiotic factors on both predators and prey.  

2. We collected fish community data in the summers of 2017 and 2018 and used a multi-scale 

modeling approach paired with structural equation modeling to test whether factors measured at 

the watershed and reach spatial scales influence the distribution of a predatory fish, largemouth 

bass (Micropterus salmoides). We then compared how fish species richness and community 

composition responded to the presence of bass mediated by environmental factors.  

3. Probability of occurrence of bass increased with catchment area, while richness responded to 

both natural stream variation and anthropogenic modifications in the watershed. Richness was 

greater at sites with bass, likely driven by co-occurrence between bass and several species 

associated with impoundments.  

4. As stream habitats and predation pressure continue to change  through species introductions 

and landscape change, it is necessary to understand the effects of predators and environmental 

variation as drivers of community structure to inform management of stream biota. We outline 



47 

several challenges and the need for creative solutions to understanding effects of predators in 

natural systems.  

 Introduction 

Do predators influence stream fish communities? This question is not only a fundamental 

aspect of basic community ecology, but also has implications regarding the conservation of 

freshwater fishes. Although stream fishes participate in all types of biotic interactions, 

understanding predator-prey interactions in streams is of particular interest because predatory 

fishes can produce strong effects across all levels of biological organization in freshwater 

systems (Cucherousset & Olden, 2011). Further, predatory fishes have been both introduced to 

(Welcomme, 1988) and lost from (Estes et al., 2011; Winemiller, Humphries, & Pusey, 2016) 

freshwater systems globally. Negative effects of introduced predators in lake systems are well 

known, including reduced abundance of small-bodied fishes (MacRae & Jackson, 2001; Jackson, 

2002), homogenization of freshwater fauna (Rahel, 2002), species extinctions (Kaufman, 1992; 

Ligtvoet, Goldschmidt, Van Oijen, Wanink, & Goudswaard, 1991), and changes in food web 

structure (Vander Zanden, Olden, Thorne, & Mandarak, 2004). Most of what we know about 

predator effects in streams has been observed at relatively fine spatial scales (mesocosm 

experiments or within a stream reach). Direct consumption by piscivores increases mortality 

rates and decreases densities of prey, mediated by predator and prey identity (Schlosser 1987, 

Marsh‐Matthews et al. 2013), body size (Schlosser, 1988; Magoulick, 2004; Layman & 

Winemiller, 2004), habitat characteristics (Harvey & Stewart, 1991; Angermeier, 1992; White & 

Harvey, 2001), and predator density (Gilliam & Fraser, 1987; Harvey, 1991). Non-consumptive 

effects are wide ranging, including well-documented shifts in habitat use (Power, Matthews, & 

Stewart, 1985; Schlosser, 1987; Schlosser, 1988; Harvey, 1991; Fraser & Gilliam, 1992; 
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Greenberg, 1994; Magoulick, 2004) and changes in prey activity levels, foraging behavior, 

growth, life history, reproduction, and movement/dispersal patterns (reviewed in Hoeinghaus & 

Pelicice, 2010). Predators can increase emigration rates (Power et al., 1985; Fraser & Gilliam, 

1992; Schaefer, 2001) or act as both barriers and promoters of dispersal (Fraser, Gilliam, & Hip-

Hoi, 1995). While experimental studies provide evidence for several mechanisms that may elicit 

a variety of prey responses to predators at fine spatial scales (within a stream reach or segment), 

we do not yet understand the role of these mechanisms in structuring stream fish communities in 

natural stream systems or how predators interact with landscape factors to produce patterns of 

fish assemblage structure at coarse spatial scales (across stream networks). 

Several studies have documented effects of predators on prey fishes in natural streams. 

Much of this literature documents relationships between a nonindigenous predator with one or 

several prey species. Nonindigenous predators can lower prey abundance at local sites (Gilliam, 

Fraser, Alkins-Koo, 1993; Labbe and Fausch, 2000), create source-sink dynamics (Woodford & 

McIntosh, 2010), and influence genetic diversity (Vanhaecke, Garcia de Leanix, Gajardo, 

Dunham, Giannico, & Consuegra, 2015). Negative associations between predator-prey pairs 

have been observed across drainage basins, revealed through both taxonomic and functional 

group analysis (Hoeinghaus, Winemiller, & Birnbaum., 2007; Giam & Olden, 2016). Nonnative 

predation pressure may be uneven throughout stream networks (Hedden, Gido, & Whiteny, 

2016), and nonnative predators may feed disproportionately on native prey fishes relative to 

nonnative prey (Pilger, Franssen, & Gido, 2008). For example, nonnative Ictalurus punctatus, 

Ameiurus melas, and Lepomis cyanellus lowered the abundance of several native prey species 

and altered food web networks in the San Rafael River (Walsworth, Budy, & Thiede, 2013). 

These studies highlight the potential for nonnative predators to influence fish community 
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structure, and we predict predators interact with abiotic factors to produce patterns of stream fish 

community structure across stream networks.    

Understanding how community structure responds to predators in stream systems 

requires isolating predation effects from abiotic drivers of community structure. Natural 

landscape features, including both terrestrial and stream network attributes, influence fish 

communities, and anthropogenic landscape modifications can significantly alter population and 

community dynamics of stream fishes (Schlosser, 1991; Allan, 2004). Attributes throughout a 

watershed interact at hierarchical spatial scales to influence the ecological integrity of streams by 

driving habitat characteristics, water quality, connectivity, flow regime, and biotic processes 

(Poff, 1997; Labbe & Fausch, 2000). Landscape context may therefore not only influence the 

distributions of predators and prey, and therefore where they overlap in space and time, but also 

influence the magnitude of predation impacts. For example, densities of native small-bodied 

cyprinids in the Gila River watershed of New Mexico declined during low-flow years but were 

lowest at sites that also had nonnative Micropterus dolomieu (Stefferud, Gido, & Propst., 2011).  

Ecologists recognize the complex interactions of landscape factors at multiple spatial scales and 

strive to conserve stream fish communities using a “riverscape” perspective (Fausch, Torgersen, 

Baxter, & Li., 2002). To conserve fishes across riverscapes, we need to understand how biotic 

processes, such as predation, interact with abiotic factors across spatial scales to produce patterns 

of community assembly.  

 Objectives 

 We used a multi-scale modeling approach and structural equation modeling to assess the 

effect of a predator on stream fish community structure (richness and composition) mediated by 

abiotic factors. Our goal was to identify abiotic drivers of fish community structure and the 
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presence of predators, then control for abiotic drivers to assess how fish community structure 

responded to the presence of a voracious and widely introduced predator, largemouth bass 

(Micropterus salmoides, Centrarchidae). Predation pressure in streams has likely changed and 

will continue to change over time in response to stocking programs, accidental introductions, 

impounding waterways, overfishing, habitat fragmentation and alteration, and changing 

temperature and flow regimes. Stream fish communities already face challenges responding 

directly to these same alterations, so we need to understand how alterations in predation pressure 

influence fish communities to manage and conserve this threatened fauna. 

 Methods 

 Study Area 

This study was conducted in Great Plains prairie streams in the Neosho and Kansas River 

basins in the Flint Hills ecoregion of eastern Kansas (Figure 1). Great Plains prairie streams are 

characterized by a large proportion of intermittent streams with highly variable hydrographs and 

watersheds historically dominated by grasslands (Dodds, Gido, Whiles., 2004). Small 

impoundments are a major landscape modification in and around the Flint Hills (Perkin et al., 

2015). Impoundments are often stocked with sportfish species (especially M. salmoides) that 

may increase predation in nearby streams by expanding the distribution of predators across the 

landscape or if stocked fish act as more voracious predators than other potentially less aggressive 

piscivores commonly found in Great Plains prairie streams (e.g., creek chub Semotilus 

atromaculatus, Cyprinidae; green sunfish Lepomis cyanellus, Centrarchidae; black bullhead 

Ameiurus melas, Ictaluridae; and spotted bass Micropterus puntulatus, Centrarchidae). Our study 

is in the western edge of what is considered the native range of largemouth bass, but because 

bass have been moved around and stocked since the late 1800s (Long, Allen, Porak, & Suski 
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2015), it is unclear if the largemouth bass in the study area are predominately from native or 

nonnative stocks. While the nonnative status of largemouth bass in our study area is unclear, this 

system provided the opportunity to investigate the relationships between altered predation 

pressure, abiotic factors, and stream fish assemblage structure.  

 Site Selection 

Sites were selected using a random-stratified design (Bruckerhoff & Gido, 2019) with the 

goal of capturing both the hierarchy of stream networks (drainage basin and stream order) and 

land use. Major anthropogenic land use gradients in the region used for stratification included 

percentage of cultivated land, number of impoundments, and number of road crossings in each 

10-digit Hydrologic Catalog Unit (HUC; Seaber et al., 1987) watershed within the study area. 

We calculated the proportion of agricultural land using Landsat raster data from the Kansas 

Satellite Imagery Database (KARS, 2006), the number of impoundments using both the National 

Wetlands Inventory (USFWS, 2018) and National Hydrography Dataset (USGS, 2016), and the 

number of road crossings by calculating intersections between the 2001 Topologically Integrated 

Geographic Encoding and Referencing (TIGER) database (US Census Bureau, 2001) and a 

modified stream layer based on NHD stream lines. We then classified each HUC into three 

classes based on 15 and 85% quantiles for the three land use variables. We randomly drew two 

stream segments across all combinations of stream order (1st- 4th order) and the three 

classifications (low, medium, high) of the three land use variables (road crossing density, percent 

agriculture, impoundment density). We limited our sites to 1st-4th order streams to target 

wadeable streams.  

Our random stratification process provided us with around 200 stream segments with 

each iteration. We then tried to sample the randomly selected stream segments but were often 
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limited by landowner permission. After a round of selected streams had been successfully or 

unsuccessfully sampled, a new round of sites was drawn (without replacement) and targeted for 

sampling. 

 Stream Fish and Habitat Sampling 

 We collected stream fish community data in the summers of 2017 and 2018 from several 

pools and riffles (mesohabitats) at each site. We aimed to sample at least two pools and two 

riffles at each site but were sometimes limited by habitat availability or landowner permission. 

Typically, we sampled enough mesohabitats to cover 8 times the median width at each site.  

Fishes were sampled using single pass backpack electroshocking (Smith-Root LR-20, 

Vancouver, WA) followed by multiple seine hauls (4.6 x 1.8 m, 3.2-mm mesh) in all habitat 

types (debris, vegetation, root wads, etc.) within each mesohabitat. Only electrofishing was used 

in riffle mesohabitats. All fish were identified, measured, counted, and released in the field. 

Small specimens difficult to identify in the field were preserved in 10% formalin solution and 

identified in the laboratory. 

 We measured habitat characteristics in all sampled mesohabitats. Width was measured at 

a minimum of three transects in each mesohabitat (more transects were added in pools or riffles 

longer than 30m). Along each transect, we documented the depth and substrate type (modified 

Wentworth scale; Wentworth, 1922) for five points and measured canopy cover using a 

densiometer at the center of each transect. We also measured the length of each mesohabitat and 

the dimensions of any cover habitat (root wads, overhanging vegetation, boulders, log 

complexes, etc.).   
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 Geospatial Data 

 We delineated catchment boundaries of all sampled sites using Arc Hydro Tools in 

ArcMap 10.4 (ESRI, 2011) using digital elevation models from the National Elevation Dataset 

(USGS, 2002) and stream lines from the National Hydrography Dataset (USGS, 2016). Use of 

the term “catchment” or “watershed” in this paper refers to true upstream catchments delineated 

from the downstream point of all sites (Omernik et al., 2017). Within each catchment, we 

calculated the area, density of roads, the proportion of catchment surface area impounded, and 

proportion of cultivated land (cropland planted with corn, soybeans, sorghum, winter wheat, or 

alfalfa, or land used as fallow or planted with multiple crops) using the same datasets used in 

stratification procedures. We also calculated the linear distance to the nearest impoundment from 

each site.  

 Analysis 

 Our general framework included determining which abiotic factors calculated at 

watershed and reach scales drove the presence of bass, stream fish richness, and community 

composition, followed by assessing the effects of bass on stream fish community richness and 

composition mediated by important abiotic drivers. All abiotic factors included in analyses and 

any transformations used to improve linearity and minimize variability are included in Table 1. 

We narrowed important abiotic factors using a multi-scale modeling approach, in which we 

created separate models at either the reach or watershed scale and included significant predictors 

in final models that also included the effect of bass presence (Figure 2). All analyses were 

completed in Microsoft R Open 3.5.3 (Microsoft Corporation and R Core Team, 2019).  

 Bass Presence and Richness 
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We used binomial generalized linear mixed effect models with logit link function with 

presence of bass as a response and Gaussian mixed effect models with rarefied richness as a 

response to assess abiotic factors influencing the occurrence of bass and richness at the reach and 

watershed scales. We used rarefied richness to control for different probabilities of detecting 

more species with different numbers of individuals sampled using Hurlbert’s (1971) equation 

based on a sample size of 100 individuals. We also ran models using raw richness values and 

observed the same results, so only rarefied richness is presented here. Because fish community 

structure responses to abiotic factors are often spatially autocorrelated (Bruckerhoff, Leasure, & 

Magoulick, 2019), we included HUC level 10 watershed nested within major drainage basin as a 

random effect to control for spatial clumping of sites within watersheds. Year was also included 

as a main effect in all models. Correlations between predictor variables were assessed before 

building models and predictor variables had variance inflation factors less than 2 in all models, 

so multicollinearity was not considered an issue. We assessed significance of abiotic factors 

using likelihood ratio tests and retained significant predictors for further analysis. All mixed-

effect models were developed using the package lme4 (Bates, Maechler, Bolker, &Walker., 

2015).  

  A structural equation model (SEM) was developed to test the relationship between 

presence of bass and stream fish species richness using the package piecewiseSEM (Lefcheck, 

2016). Structural equation models allow for the simultaneous analysis of multiple predictors and 

response variables and the visualization of relationships using path diagrams (Shipley, 2000). 

The package piecewiseSEM allows SEM to be applied to generalized, mixed effect models and 

uses directed acyclic SEM, in which each equation is solved separately and goodness of fit is 

determined using Shipley’s test of directed separation (Shipley, 2000; 2009). Relationships 
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between all variables identified in exploratory generalized linear models were included as 

predictors of either bass presence or rarefied richness, and the mediated effect of bass presence 

on richness was also included. We also included the random effect of HUC level 10 watershed 

nested within major basin across all paths to control for spatial clumping of sites within 

drainages. No latent variables were included in our model.  

 Community Composition 

 We used the function manyglm from the package mvabund (Wang, Naumann, Wright, & 

Warton2012) to identify important reach and watershed scale abiotic variables influencing fish 

community composition and the effect of bass on community composition. This function allows 

individual generalized linear models to be developed for each species, provides a global estimate 

of significance that controls for multiple testing and can be more powerful than distance-based 

multivariate methods (Wang, Naumann, Wright, & Warton2012). We used negative binomial 

distributions appropriate for overdispersed count data. Our fish community matrix included 

counts of adults collected at each stream reach (mesohabitats were pooled together). We only 

included fish with total lengths above 30 mm to avoid bias associated with different spawning 

times and sampling efficiency of small fishes. To eliminate the influence of rare species. only 

species present in at least 5% of samples were used. We removed largemouth bass from the 

community matrix because their presence was used as a predictor variable. Models were 

developed separately for the two drainage basins, as some species do not occur in both basins. As 

with bass occurrence and richness models, we included the effect of year in all models. Because 

random effects cannot be included in manyglm models, we included HUC level 10 watershed as 

a fixed effect. Since these models included fish raw counts, we included the total number of 

individuals captured at each site as a predictor variable. This allows the interpretation of results 
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to be similar to interpreting relative abundance of species to control for varying effort in 

sampling across sites but avoids the quantitative difficulties of using relative abundances 

(proportions) as response variables. Significant variables from this analysis were then used in 

proceeding manyglm models that also included the presence of bass as a predictor variable.  

 We were also interested in determining if bass presence was associated with community 

composition based on simple presence of species. We used permutational MANOVA of 

Jaccard’s distance to determine if there was a global association between occurrence of bass and 

community composition (based on presence/absence of species). We restricted this analysis to 

sites in the 50th percentile for watershed area because the probability of bass occurrence was 

highest in these streams (49% of sites in the Kansas basin, 54% of sites in the Neosho basin). If 

permutational MANOVAs indicated a significant association between community composition 

and the presence of bass, we then used generalized linear models and permutational chi-square 

tests to test for associations between bass and individual species. Because watershed area 

captured the most variability in both bass and species occurrences, logistic regression models 

with species presences as a response variable and watershed area as a predictor were first used to 

determine whether individual species varied significantly across the restricted subset of large 

streams. If this relationship was not significant, we then used permutational chi-square tests to 

determine whether individual species co-occurred with bass more frequently than expected by 

chance. These analyses were completed separately for each major drainage basin. 

 

 Results 

 Our final dataset included abiotic and fish community data for 336 stream sites (188 sites 

in 2017, 148 in 2018; Figure 1), with watershed area of sites ranging 0.06 -725.74 km2. Fifty-five 
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species (see Supporting Information Table S1) were captured across all sites, and mean species 

richness was 10.60. We collected largemouth bass at 26% of sites.  

 Mixed effect models suggested watershed area should be retained as a predictor of bass 

occurrence, and substrate size, mean depth, distance to nearest pond, catchment agriculture, road 

crossing density, and watershed area as predictors of richness in SEM (Table 2). We therefore 

only included watershed area as a predictor of bass presence, but included links of all other 

abiotic factors and bass as drivers of richness (Figure 3). Shipley’s test of directed separation 

produced a Fisher’s C of 9.10 and p-value of 0.52, indicating good model fit and no missing 

paths in the model. The estimated conditional R2 was 0.41 for richness and 0.06 for the presence 

of bass. All paths were significant except for the effect of distance to the nearest pond on 

richness (Figure 3, Table 2). Probability of bass occurrence and richness increased with 

watershed area (Figure 4, Figure 5). Richness also increased in response to the proportion of 

large substrates and mean pool depth, but decreased with increasing catchment agriculture and 

density of road crossings (Figure 5). Bass presence had the strongest effect on richness, with an 

increase of almost three species at sites with bass mediated by environmental factors included in 

SEM (no bass: predicted richness = 8.0, S.E. = 0.20; bass present: predicted richness = 10.6, S.E. 

= 0.33).  

 The presence of bass was a significant predictor of community composition in the Kansas 

basin, but not in the Neosho. Despite significance at the community level, no individual species 

abundance in the Kansas basin exhibited a significant response to bass presence. Four species 

contributed more than 10% of deviance described by the presence of bass in the Kansas basin 

(redfin shiner Lythurus umbratilus, Cyprinidae: 19%, bluegill Lepomis machrochirus, 

Centrarchidae: 11%, yellow bullhead Ameiurus natalis, Ictaluridae: 11%, and black bullhead: 
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11%). Significant abiotic predictors of community composition (abundance of species) included 

year, HUC 10 level watershed, number of individuals, watershed area, and catchment agriculture 

for both the Kansas and Neosho river basins (Table 3). Five species had significant negative 

relationships with catchment area, while seven species had significant positive relationships 

(Figure 6). Abundance of only one species, southern redbelly dace Chrosomus erythrogaster 

(Cyprinidae), responded significantly (and negatively) to catchment agriculture (deviance = 

22.92, p = 0.04; Figure 7). Abundance of spotted bass (deviance = 12.81, p = 0.03) and golden 

redhorse Moxostoma erythrurum (Catostomidae; deviance = 17.98, p = 0.01) were significantly 

higher in 2018 than 2017. Proportion of catchment impounded was also a significant predictor of 

composition in the Neosho basin, while mean depth was significant in the Kansas basin (Table 

3), but no individual species had significant responses to these variables. 

 Permutation MANOVAs indicated a weak association between bass presence and 

community composition in the Kansas basin (F = 2.21, R2 = 0.02, p = 0.01), but not in the 

Neosho basin (F = 1.63, R2 = 0.03, p = 0.09). The presence of four species from the Kansas basin 

had nonsignificant relationships with watershed area, but positive significant associations with 

bass presence (Figure 8), including western mosquitofish Gambusia affinis (Poeciliidae; Χ2 = 

7.86, p < 0.01), redfin shiner (Χ2 = 5.81, p = 0.03), longear sunfish Lepomis megalotis 

(Centrarchidae; Χ2 = 5.33, p = 0.02), and bluegill (Χ2 = 8.78, p < 0.01). 

 Discussion 

 Richness was higher than predicted based on abiotic characteristics at sites where bass 

were present, and this increased richness seemed to be driven by a higher probability of 

occurrence of several species (bluegill and western mosquitofish) associated with lentic or 

altered habitats. Increased richness due to co-occurrence of stream and reservoir fishes has been 
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documented in the study area (Falke & Gido, 2006) and likely played a role in the increased 

richness observed here. Two centrarchid species (bluegill and longear sunfish) had positive 

associations with the presence of bass when controlling for measured abiotic factors. Centrarchid 

species, especially bluegill and largemouth bass, are frequently stocked in impounded waters 

(Dauwalter & Jackson, 2005) and can become dominant in watersheds after impoundments are 

constructed (Taylor, Knouft, & Hiland., 2001; Hedden, unpublished data). Similarly, another 

species positively associated with bass, western mosquitofish, is non-native to the study area, 

known to be tolerant of harsh abiotic conditions (Hubbs, 2000; Hopper et al., 2020), and prefers 

backwater, non-flowing habitats (Casterlin & Reynolds, 1977; Matthews & Hill, 1980). The 

positive association between largemouth bass and western mosquitofish may have been driven 

stream habitats having more lentic characteristics due to landscape modifications (Sabater, 

2008). Redfin shiner presence was also positively associated with the occurrence of bass. This 

species is a known nest associate of Lepomis species (Hunter & Wisby, 1961; Hunter & Hasler, 

1965) and is also known to inhabit deep, slow-moving pools, which may explain observed co-

occurrence patterns.  

 In addition to preferred habitat conditions, associations between stream fish species and 

bass may also be due to true effects of largemouth bass on fish communities. Largemouth bass 

may contribute to increased richness by disproportionately feeding on competitive species, acting 

as “keystone predators” (Paine, 1969). Predation can drive coexistence when consumption 

prevents competitive exclusion (Paine, 1966; Caswell, 1978). It is possible bass facilitate 

coexistence, and therefore higher richness, by reducing the intensity of competitive interactions 

among competitors. Predators may also maintain increased diversity and coexistence by 

preventing “mesopredator release” (Ritchie & Johnson, 2009), in which loss of apex predators 
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allows lower trophic level predators to increase in abundance, which can cause declines or local 

extinction of prey species (Courchamp et al., 1999). We did not, however, observe higher 

densities of any species at sites in which bass were absent, which is inconsistent with these 

mechanisms of coexistence. Although field studies across organisms and systems, including 

streams (Rodríguez-Lozano, Verkaik, Rieradevall, & Prat, 2015), suggest predation can facilitate 

coexistence (Gurevitch et al., 2000, Ritchie & Johnson, 2009), we express caution in this 

interpretation of our results without corresponding empirical evidence.  

While predation may promote coexistence and increase richness, predators can also 

influence dominance patterns. We observed a significant effect of bass on community 

composition based on abundance of different species. Although not statistically significant, we 

were able to identify four species likely contributing to the significant effect of bass at the 

community level, including bluegill, redfin shiner, yellow bullhead, and black bullhead. All of 

these species had higher predicted abundance at sites with bass. Larger prey species, such as 

bullheads and bluegill, might not respond negatively to bass due to gape limitation. Hambright 

(1994) found gape-limited predation can lead to dominance by deep-bodied species when fish 

communities are made up of a mix of body sizes. Thus, positive associations with bluegill and 

bullhead species could be driven by bass consuming shallow-bodied species (Hambright, 1991), 

such as minnows. Although juvenile black bullhead (Rickett 1976,Phelps, Ward, Paukert, 

Chipps, & Willis, 2005;) and bluegill (Turner and Mittelbach, 1990; Olsen, 1996), are known 

prey of bass, these species are likely too large or difficult to handle (due to spines) to be  

consumed by bass after they reach some threshold size. Escaping predation by growing to large 

sizes is an evolutionary response of prey fish to predators (Reznick, Bryga, & Endler, 1990) and 

potentially a mechanism contributing ecosystem dynamics in reservoir systems (e.g., Dorosoma 
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cepedianum, Noble, 1981; Michaletz, 1998; Vanni et al., 2005), so it is possible similar sized-

based interactions influence stream fish community structure. We recommend more work 

understanding the role of predators and land use (Perkin et al., 2017; Sutton & Jones 2019) in 

driving size distributions of stream fishes.  

It is possible habitat characteristic that were not measured, and therefore not accounted 

for, drove observed fish community associations with predators. The only significant predictor of 

bass presence, watershed area, only explained 6% in the variation in bass occurrence. The large 

confidence intervals obtained when predicting bass presence likely indicates either high 

sampling error (variability in detecting bass) or relevant abiotic variables were not included in 

our analysis, and both of these sources of variability could have influenced observed 

relationships between predators and stream fishes. Hydrology, for example, can drive stream fish 

community structure (Poff & Allan, 1995; Mims & Olden, 2012), and local temperature can 

drive largemouth bass distributions (Sowa & Rabeni, 1995), but neither were considered in this 

analysis. Sampling variability, such as local conditions at sites also likely introduced variation in 

our ability to detect bass presence. Further, some environmental variables could have been 

measured at the wrong spatial scale (Fausch, Torgersen, Baxter, & Li, 2002). We expected to see 

stronger relationships between metrics capturing small impoundment distributions (upstream 

impounded area, distance to nearest impoundment), but these metrics were not important 

predictors of bass presence and only important predictors of community structure in one basin. 

This lack of relationship was surprising because another study within our study area indicated 

small impoundments are associated with declines in native and endangered fishes, presumably 

by supplementing bass populations in streams through emigration (Schrank, Guy, Whiles, & 

Brock, 2001). Densities of impoundments in a watershed also can interact with other landscape 
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changes to influence stream fish communities by increasing the dominance of impoundment 

species (Perkin, Troia, Shaw, Gerken, & Gido, 2016), and we observed co-occurrence of bass 

and other species associated with impoundments. It is possible our summary metrics of small 

impoundment distributions were measured at spatial scales weakly related to the responses 

measured, potentially biasing observed relationships between predators and fish community 

structure.  

Fish community structure, including richness and composition, responded to both natural 

variation in stream habitats and landscape alterations. As expected, species richness increased 

positively with stream size, pool depth, and the proportion of large substrates (Schlosser, 1987) 

but decreased with increasing road crossing density and catchment agriculture (Wang, Lyons, 

Kanehl, & Gatti, 1997; Allan, 2004; Perkin & Gido, 2012). Road crossings can fragment stream 

systems, especially on smaller-order streams, leading to less accessibility and lower species 

richness (Perkin & Gido, 2012). Upstream agriculture can lead to lower species richness and 

shifts in community structure due to changes in water chemistry, altered flow regimes, and 

increased sediment inputs (Allan, 2004). Whereas we were able to quantify responses of stream 

fish richness to landscape modifications, composition responses were more difficult to detect. 

We detected significant responses of fish communities to catchment agriculture in both basins 

and upstream impoundments in one basin, but only detected a species-specific response to 

agriculture for one species, southern redbelly dace, which has been documented in another study 

(Stasiak, 2007). Overall, our targeted sampling to capture these complex environmental gradients 

allowed us to quantify responses of fishes to landscape alterations and natural heterogeneity, 

which is often difficult to detect (Bruckerhoff & Gido, 2019), but even accounting for these 
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known important gradients revealed complex relationships between stream fish community 

structure and the presence of predators.  

 Challenges and Future Directions 

Quantifying predator effects requires disentangling complex interactions between 

predators, prey, and the abiotic environment, which presents several challenges. As already 

discussed, it is difficult to capture all sources of variability driving both predator distributions 

and abundance and stream fish community structure. Despite our best efforts, including a 

sampling protocol designed specifically to capture landscape gradients, we predict some of the 

associations between predator presence and community structure observed here were likely 

driven by unmeasured environmental variability or other factors influencing stream fish. For 

example, stochastic process are known to drive variability in stream fish communities across 

space and time (Matthews, 1982; Gotelli & McCabe, 2002). Predators likely interact with 

stochastic process to shape community structure and population dynamics over time. Further, 

predator effects are likely context dependent, interactive, and plastic, so that the effects of a 

predator on community structure is likely dependent on the abiotic and biotic context in which 

interactions take place. Predator behaviors, diets, and interactions with other species may be 

plastic (Chamberlain, Bronstein, & Rudgers, 2014), so that the same species effects on 

communities in one context may not predict effects in another (Preston, Henderson, Falke, Segui, 

Layden, & Novak, 2018). Last, measuring prey responses to predators is cofounded by bias 

associated with the scale in which measurements are made. For example, consumption rates are 

known to vary across different scales of measurement (Englund & Leonardsson, 2008) and are 

typically underestimated at fine scales (Bruckerhoff., unpublished data). In the current study, 

estimates of species richness, occurrences, and relative abundance may also be influenced by the 
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scale at which we measured these responses (reach scale), potentially biasing estimates of 

predator effects.   

 Conclusions 

Predator-prey interactions are complex, but critical to understand as we try to manage 

complex assemblages of native and nonnative fishes. To truly understand how predators shape 

communities in stream systems, we need long-term studies of predator effects on community 

structure and ecosystem processes. Long-term, manipulated studies at coarse scales, such as 

replicated watersheds, are likely the best way to understand both the context dependency and 

long-term outcomes of predators being both lost from and introduced into systems. Long-term 

data is needed to distinguish between random co-occurrence or abundance relationships 

identified in correlative studies versus true, long-term impacts of predators. Unfortunately, 

decisions to remove or control predators need to be made now, so allocating time and resources 

to long-term studies may not be feasible. Our data help establish a baseline of expectations when 

quantifying predator effects in natural systems, and we hope our efforts set the path for other 

researchers to think creatively about how to understand the role of predators in structuring stream 

fish communities in the context of continued landscape modification, species introductions, and 

species declines to better conserve freshwater fishes.  
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 Tables 

Table 3.1 Abiotic variables included in richness and composition models were collected at watershed and reach scales.  

Scale Variable Description Transformation 

Watershed Catchment area (km2) Total upstream catchment area from the downstream 

point of each sample site.  

 

Logarithmic 

 Proportion of catchment agriculture Proportion of agricultural land in each catchment.  

 

Square root 

 Proportion of catchment impounded  Proportion of impounded area in each catchment. 

 

Logarithmic 

 Catchment road crossing density (# per 

km2) 

Density of road crossings (all road types) in each 

catchment.  

 

Logarithmic 

Reach Distance to nearest impoundment (km) Euclidean distance to nearest impoundment.  

 

Logarithmic 

 Proportion of large substrates Proportion of samples containing pebble, cobble, or 

boulder substrates using a modified Wentworth scale 

(Wentworth 1922).  

 

None 

 Proportion of cover habitat Proportion of sampled surface area providing cover 

habitat for fishes, including overhanging vegetation, 

undercut banks, root-wads, log complexes, and large 

boulders.  

 

Logarithmic 

 Mean Depth Mean pool depth at each site.  Logarithmic 
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Table 3.2 The structural equation model (SEM) included predictor variables identified in 

preliminary mixed effect models and included the random effect of HUC 10 watershed level 

nested within major drainage basin. Shipley’s test of directed separation indicated good model fit 

and no missing paths (Fisher’s C = 9.10, p = 0.52). 

Response Predictor Estimate 

Standard 

Error DF 

p 

value 

Standardized 

Estimate 

Bass presence Watershed area 0.24 0.09 322 0.01 -- 

Richness Large substrate 2.89 0.72 281 < 0.01 0.18 

Richness Mean depth 4.51 1.47 281 < 0.01 0.14 

Richness Distance to nearest pond 0.42 0.85 281 0.62 0.02 

Richness Catchment agriculture -1.78 0.67 281 < 0.01 -0.13 

Richness Road crossing density -2.06 0.80 281 0.01 -0.13 

Richness Watershed area 0.70 0.12 281 < 0.01 0.28 

Richness Bass presence 2.63 0.37 281 < 0.01 0.32 

  



81 

Table 3.3 Final manyglm models (Wang, Naumann, Wright, & Warton, 2012) included 

predictors identified in landscape only and local models for each drainage basin; all included 

counts of species as predictors and year, HUC level 10 watersheds, and the total number of 

individuals captured at each site as predictors. This table indicates significant of variables in final 

models including the effect of bass presence on stream fish community composition. 

 Kansas Basin  Neosho Basin  
Variable Deviance p value Deviance p value 

Year 79 0.001 107 0.001 

HUC 10 1904 0.001 853 0.001 

Number of individuals 900 0.001 809 0.001 

     

Landscape     

Catchment area (km2) 319 0.001 198 0.002 

Proportion of catchment agriculture 103 0.022 74 0.035 

Proportion of catchment impounded  --- --- 114 0.03 

Catchment road crossing density (# per km2) --- --- --- --- 

     

Local     

Distance to nearest impoundment (km) --- --- --- --- 

Proportion of large substrates --- --- --- --- 

Proportion of cover habitat --- --- --- --- 

Mean depth 121 0.046 61 0.307 

     

Predators     

Bass presence 113 0.023 66 0.208 
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 Figures 

 

Figure 3.1 Fish communities were sampled in wadeable stream reaches throughout the Kansas 

and Neosho river basins in eastern Kansas, USA in 2017 (grey triangles) and 2018 (black 

triangles). 
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Figure 3.2 This workflow diagram displays the different analytical methods used to first identify 

abiotic factors predicting presence of bass, species richness, and stream fish community structure 

(grey) and then to account for these variables while assessing the effect of bass presence on 

species richness and stream fish community structure (black). GLMM= generalized linear mixed 

effect models; manyglm= multivariate models develop using the manyglm function from Wang 
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et al. (2012); SEM= structural equation model, perMANOVA= permutational multivariate 

analysis of variance, P/A= presence absence community matrix. 
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Figure 3.3 The structural equation model (SEM) included predictor variables identified in 

preliminary mixed effect models and included the random effect of HUC 10 watershed level 

nested within major drainage basin. Shipley’s test of directed separation indicated good model fit 

and no missing paths (Fisher’s C = 9.10, p = 0.52). Black lines indicate significant predictors, 

with solid lines representing positive and dashed lines negative relationships. The grey line 

indicates a non-significant predictor and the size of all lines corresponds to the weight or 

importance of predictors based on standardized coefficient estimates (numbers). 
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Figure 3.4 Bass were present (black) at more sites with larger watershed areas (A.), and the 

probability of occurrence of bass increased positively with watershed area across all sites (B.). 

Watershed area (km2) is displayed on a log-transformed axis in both panels and the line displays 

the predicted probability of occurrence while points display raw data of bass presences and 

absences in panel B.   
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Figure 3.5 Richness increased significantly with watershed area (axis log scaled) (A), mean pool 

depth (axis log scaled) (B), and increased proportion of large substrates (C), but decreased with 

catchment agriculture (axis square root scaled) (D) and increased catchment road crossing 

density (axis log scaled) (E). Significance of these predictors was identified both based on 

preliminary hierarchical models and through a structural equation model; shading represents 

95% confidence intervals. 
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Figure 3.6 Twelve species exhibited significant responses to watershed area across both the 

Kansas and Neosho river basins in manyglm models. Slope estimates of five species were below 

zero, indicating a negative relationship with watershed area, while seven species exhibited 

significant positive relationships with watershed area. Lines represent 95% confidence intervals.   
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Figure 3.7 Upstream catchment agriculture was a significant predictor of fish community 

composition in both the Kansas and Neosho drainage basins, but abundance of only one species, 

southern redbelly dace, exhibited a significant response to agriculture. Abundance displayed on a 

log-transformed scale, and shading represents 95% confidence interval.   
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Figure 3.8 Frequency of co-occurrence between stream fish species and largemouth bass was 

asses using permutational chi-square tests. These plots show deviance residuals of predicted 

probability of occurrence of western mosquitofish (A), redfin shiner (B), longear sunfish (C), and 

bluegill (D) derived from a model including than main effect of watershed area from a reduced 

dataset including only streams in the top 50% of stream sizes in each the Kansas river basin. The 

mean deviance residuals are summarized for each species at sites in which bass were present and 

absent and lines represent standard errors. 
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Supporting Information 

Table S1: List of species included in analyses.  

Ameiurus melas 

Ameiurus natalis 

Aplodinotus grunniens 

Campostoma anomalum 

Carpiodes carpio 

Catostomus commersonii 

Chrosomus erythrogaster 

Cyprinella camura 

Cyprinus carpio 

Cyprinella lutrensis 

Dorosoma cepedianum 

Etheostoma flabellare 

Etheostoma nigrum 

Etheostoma spectabile 

Fundulus kansae 

Fundulus notatus 

Gambusia affinis 

Ictiobus bubalus 

Ictiobus furcatus 

Ictiobus niger 

Ictalurus punctatus 

Labidesthes sicculus 

Lepomis cyanellus 

Lepomis gulosus 

Lepomis humilis 

Lepomis macrochirus 

Lepomis megalotis 

Lepisosteus osseus 

Luxilus cardinalis 

Luxilus cornutus 

Lythurus umbratilis 

Micropterus punctulatus 

Micropterus salmoides 

Moxostoma erythrurum 

Moxostoma macrolepidotum 

Notropis atherinoides 

Notemigonus crysoleucas 

Notropis dorsalis 

Noturus exilis 

Noturus flavus 
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Notropis percobromus 

Notropis stramineus 

Notropis topeka 

Notropis volucellus 

Percina caprodes 

Percina maculata 

Percina phoxocephala 

Phenacobius mirabilis 

Pimephales notatus 

Pimephales promelus 

Pimephales tenellus 

Pimephales vigilax 

Pylodictis olivaris 

Pomoxis annularis 

Pylodictis olivaris 

Semotilus atromaculatus 

 

 

. 
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Chapter 4 - Scale-dependent patterns of prey aggregation and 

spatial overlap with predators mediate consumption rates 

Lindsey A. Bruckerhoff, Casey A. Pennock, and Keith B. Gido1 

 

 

 Abstract 

Understanding ecological processes across spatial scales helps link observations and 

predictions from experiments to ecological patterns and processes occurring at coarser scales 

relevant to management and conservation. Using stream fish, we experimentally manipulated the 

size of arenas to measure variation in predator consumption and prey behavior (prey aggregation, 

spatial overlap with predators, and movement) with increasing arena size in. Variation in prey 

behavior across arena sizes was hypothesized to drive consumption patterns by altering prey 

vigilance and encounter rates with predators. Per capita consumption was highest, prey were less 

aggregated and overlapped less with predators in the largest arena relative to the smallest, while 

movement was influenced by the presence of predators but not arena size. We hypothesize low 

prey aggregation in large arenas lowered group vigilance, leading to more successful attacks, 

driving the observed increase in consumption with increasing arena size.  

 Introduction 

Understanding ecological phenomena across spatial scales is necessary to make 

management and conservation decisions (Fausch et al. 2002), and important ecological processes 

often occur at broad, landscape scales (Dunning et al. 1992). Predator-prey interactions are 

typically characterized in laboratories or other fine-scale studies, but using fine-scale 

observations to predict processes at broader spatial scales may be difficult due to scaling effects 
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(Englund & Cooper 2003, Levin 1992, Wiens 1989). Different processes drive predator and prey 

densities across space and time, with classic functional response relationships predicting 

predator-prey dynamics only at the smallest spatial and temporal scales (Hunsicker et al. 2011).  

Phenomena measured at greater temporal or spatial scales tend to have more variability because 

both fine- and broad-scale effects are at play (Levin 1992). Thus, scaling up observations from 

experimental and fine-scale predator-prey studies requires transition corrections to account for 

scale-dependent variability (Englund & Leonardsson 2008, Bergström et al. 2006, Chesson 

1998). A large body of theoretical work accounting for variability across spatial scales includes 

methods such as partitioning (Rastetter et al. 1992), calibration (Rastetter et al. 1992), or moment 

approximation (Bergström et al. 2006). While theoretical and computational methods provide 

scaling frameworks, we still need empirical measures of predator-prey responses across spatial 

scales to accurately account for scale transitions in ecological models.  

Quantifying scale transitions requires measuring ecological responses across spatial 

scales and identifying mechanisms driving those transitions. Empirical and theoretical work 

suggests predator-prey scaling effects are often (but not always) driven by spatial covariance or 

movement dynamics (i.e., exchange dynamics) of predators and prey (Englund  2005, Englund & 

Cooper 2003, Englund 1997), both of which influence the likelihood of interactions. For 

example, at relatively coarse spatial extents (3-300 km), bird predator and fish prey distributions 

are hierarchically structured into patches and overlap between predators and prey increases with 

spatial scale (Fauchald et al. 2000). Similarly, stream benthic invertebrate densities can vary in 

response to scale-dependent emigration into patches in response to fish predators (Englund 

2005). However, most studies investigating scale dependent predator-prey dynamics have been 

conducted only at very fine scales (<1 m2) and focus on invertebrate prey (Englund 2005, 
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Bergström & Englund 2004, Bergström & Englund 2002, Luckinbill 1974). This body of work 

suggests functional responses of invertebrate predator-prey systems vary with the size of 

experimental arena, with higher mortality rates in larger arenas (Bergström & Englund 2004, 

Bergström & Englund 2002). Increased consumption rates with increasing arena size was driven 

by higher attack rates due to aggregative behavior of predators and prey (Bergström & Englund 

2002). In these studies, aggregative behavior was attributed to be an artifact of confinement; both 

predators and prey preferred perimeters of experimental arenas, biasing estimates of 

consumption rates (Bergström & Englund 2004, Bergström & Englund 2002). These 

experimental studies highlight that prey aggregation and dispersal influence the overlap of 

predators and prey in space and time, influencing the observed functional response.  

Previous research with invertebrate prey suggests increasing arena size biases estimates 

of consumption due to increased prey aggregation, but many taxa might aggregate as an anti-

predator defense mechanism (Blumstein & Daniel 2003, Magurran 1990, Pulliam 1973, Vine 

1971). Aggregation can be beneficial if it decreases encounter rates (Ioannou et al. 2011), but 

increases group vigilance (Lima 1995). In species that naturally aggregate regardless of spatial 

scale, variation in consumption rates across scales may be lower. Further, the spatial arrangement 

or shape of arenas in which predators and prey interact may influence scaling effects (Dickie et 

al. 2017, McKenzie et al. 2012). Much research investigating scaling effects of predator-prey 

interactions has taken place in open arenas (circular tanks, marine systems, terrestrial systems). 

The interaction between prey movements, aggregative behavior, and scale might differ in linear 

or dendritic systems because movement is confined. For example, simulation models suggest 

encounter rates between wolves and their prey increases in linear systems (McKenzie et al. 2012) 

and movement rates of wolves is higher along linear features (Dickie et al. 2017). In dendritic 
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river networks, predators can interact with abiotic factors and prey traits to influence prey 

movement through the network (Gilliam and Fraser 2001), and landscape features such as 

waterfalls can act as barriers to predator movement, creating refuge for prey (Cathcart et al. 

2018; Covich et al. 2009). Scaling effects on prey movement and spatial distributions (and 

overlap with predators) may therefore be context-dependent across taxa and spatial arrangement 

of arenas.  

 Objectives 

We conducted a mesocosm experiment to quantify how predator consumption rates and 

prey aggregation, movement, and spatial overlap with predators vary across spatial scales (arena 

sizes). We chose these prey behaviors because they are related to encounter rates between 

predators and prey (Hatle et al. 2001, Englund & Olsson 1996, Christensen & Persson 1993) and 

prey vigilance, which influences whether or not an attack by a predator is successful (Krause & 

Godin 1996, FitzGibbon 1989). We measured these responses for fish prey in the absence of 

predators and in response to both consumptive and non-consumptive effects of a predator, 

Micropterus salmoides (Largemouth Bass, hereafter referred to as bass). Contrary to previous 

studies investigating invertebrate prey, we predicted consumption rates would decrease with 

arena size, driven by lower encounter rates with increased arena size. We predicted prey would 

spread out in larger arenas, driving lower spatial overlap between predators and prey and 

therefore lower encounter rates. Understanding how consumption rates, movement, aggregation, 

and spatial overlap between predators and prey vary with spatial scale may help inform scale 

transition corrections to apply ecological models to broader spatial scales more relevant to real 

world applications.  
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 Methods 

 Mesocosm Design 

This experiment was conducted at the Konza Prairie Biological Station using 18 outdoor 

recirculating mesocosms consisting of alternating riffle and pool habitats (see Matthews et al. 

2006 for complete description). Although shallow riffles can act as movement barriers to fishes 

(Schaefer 2001), these riffles were deep enough (0.38 m) for both predators and prey to move 

freely among all habitats. Arena size was manipulated using a combination of two, four, and six 

riffle-pool configurations (Figure 4.1). Mesocosms were continuously supplied with local spring 

water and filled with rocky substrate (mean diameter approximated 25 mm). A trolling motor 

recirculated water within each mesocosm unit through a large polyvinyl chloride pipe from the 

downstream pool to the upstream riffle, creating directional flow.  

 Fish Collection and Stocking 

Cyprinella lutrensis (Red Shiner) and Pimephales notatus (Bluntnose Minnow) were 

collected from several local streams and ponds and used as prey. These species are common and 

abundant in streams in the study area and represent two different feeding/habitat guilds. C. 

lutrensis are found in riffles and pools, but are known to feed on a variety of foods in open water 

throughout the water column (Gido & Matthews 2001, Hale 1963). P. notatus tend to occupy 

habitats closer to shore (Etnier & Starnes 1993, Moyle 1973) and feed in the benthos (Moyle 

1973, Keast & Webb 1966). Prey density was held constant at 6.7 fish m-2 (20 fish per pool) 

across all arena sizes and was in the upper 95th percentile of streams containing both species in 

the study area (Bruckerhoff, unpubl. data). This total density was achieved using an equal 

number of both species. Any dead fish observed during the experiment were replaced with new 

individuals to keep densities constant, except during feeding treatments (see below). We aimed 
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to avoid density-dependent effects while predators were eating by keeping trials short (24 hours) 

and having initially high prey densities. 

We chose bass as predators for this experiment because they are known to drive prey 

behavior and exert trophic cascades in streams (Power et al. 1985), share an evolutionary history 

with prey, and are important due to their introductions into watersheds globally (Welcomme 

1988). Bass were collected from a local pond. All bass in the experiment were similar in length 

(mean total length=286 mm, SD=22 mm) and stocked at the same density across arena sizes 

(0.17 fish m-2, 1 bass per pool). To minimize effects of gut fullness in trials, we collected bass 

using angling to capture presumably hungry fish and did not feed them for two days before 

introduction into experiments.  

 Fish Identification and Behavior 

All fish were marked with passive integrated transponder (PIT) tags (8 mm x 1.44 mm; 

Biomark Inc., Boise, Idaho) so we could track individual movements. Small PIT tags were 

necessary to maximize survival and tag retention in prey fish (Pennock et al. 2016, Pennock 

2017). Fish were anesthetized in a 100 mg L-1 concentration of buffered tricaine 

methanesulfonate (MS-222), and PIT tags were inserted into all fish following puncture of the 

peritoneal cavity with the tip of a hypodermic needle (Pennock 2017). Based on previously 

measured tag retention rates for small-bodied minnows, we only included prey fish larger than 

45 mm total length (P. notatus : 45-80 mm, C. lutrensis : 45-72 mm; Pennock 2017; Pennock et 

al. 2016). Prey fish and bass were tagged one day after collection and kept in holding tanks for 

two days after tagging to ensure fish survived tagging and retained tags prior to introduction in 

the experiment.  
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Antenna receivers were placed in each pool habitat (Figure 1) to track movement of 

predators and prey among pools. Antennas were not placed in riffles due to size constraints. 

Antennas recorded detections of individual tags at 1-minute intervals, meaning once a tag was 

detected at an antenna it would not be recorded again for at least 1 minute. Two types of 

antennas were used: square (1 × 1 m) antennas monitored by a multiplexing reading station 

(QuBE-IS1001, Biomark, Boise, Idaho) and circular (1 m diameter) submersible antennas 

(Biomark, Boise, Idaho). Preliminary data indicated detection rates were similar between the two 

antenna types, and we haphazardly placed antennas in pools across trials. 

 Experimental Design and Schedule  

Prey behavior data were collected for the three arena sizes across three experimental 

treatments: without predators, predators present without consumption, and predators present with 

consumption. This design allowed us to compare prey responses to both consumptive and non-

consumptive effects. This also allowed us to track prey behavior in response to predators with no 

changes in prey density, as we did not restock prey fish after they were eaten in the consumption 

treatments. In treatments with predators present (but no consumption), bass mouths were secured 

shut with a cable tie (Clark & Schaefer 2016, Knight & Gido 2005), while in predator treatments 

with consumption, bass mouths were not secured.  

Prey were introduced into mesocosms during the morning of the first day of each 

experiment, 48 h before predators with secured mouths were introduced (“no predators” 

treatment). Movement of prey in the presence of predators was then recorded for 48 h 

(“predators present” treatment), followed by recapture of bass from mesocosms using dip nets. 

Cable ties were cut and predators were reintroduced into mesocosms for 24 h (“predators eating” 

treatment). The same individual predators were used in both treatments within a trial based on 
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preliminary data suggesting bass still feed after having mouths tied shut for 48 h and to minimize 

the number of fish needed for the study. We only allowed predators to feed for 24 h to avoid 

density-dependent effects on consumption and based on preliminary data indicating bass would 

digest and pass prey PIT tags in time-periods longer than 24 h. At the end of each trial, we 

removed and euthanized bass and surveyed their full digestive tract for prey PIT tags. We ran 

several additional consumption trials immediately after the first 24 h trial. Prey fish were 

restocked to pre-consumption densities and new bass were introduced for additional 

consumption trials. Due to limited antenna battery life, prey behavior was not tracked during 

additional consumption trials. 

We ran four replicates of all treatments and three additional consumption trials across 

each arena size from June to August 2019. One antenna malfunctioned in the middle of a six-unit 

trial, so that trial was dropped. Our final sample size per arena was n= 7 for consumption trials 

and n=4 (n=3 for six-unit) for movement, aggregation, and spatial overlap trials. Tag retention 

was high for all species (bluntnose minnow: 98%, red shiner: 95%, largemouth bass: 100%) and 

non-consumptive mortality was low (mean=2%, SD=0.02) across all replicates. 

 Analyses 

Due to potentially low power associated with small sample sizes in this study, we a priori 

chose a significance level of 0.10 for all statistical tests. We removed all prey fish that were 

consumed, died, or lost tags from the analyses of prey behavior. All analyses were performed in 

Program R version 3.6.1 (R Core Team 2019). 

 Consumption 

We calculated both overall differences in per capita consumption across arena sizes and 

differences in prey composition in diets of bass across arena sizes. Per capita consumption was 
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calculated as the total number of prey eaten divided by the number of predators within each 

replicate. Due to concerns about meeting the assumption of heteroscedasticity, we used 

generalized least squares regression and mixed-effects models in the package nmle (Pinheiro et 

al. 2020) to compare per capita consumption rates across arena sizes. We compared models 

including a modified variance structure to model heterogeneity across arena sizes, models 

assuming equal variance, and models with and without a random effect of trial. All models 

included the same fixed effect (arena size) and were compared using likelihood ratio tests. We 

also assessed the importance of random effects by comparing marginal R2 (variance explained by 

fixed effects only) to conditional R2 (variance explained by both fixed effects and random 

effects) using the piecewiseSEM package (Lefcheck 2016). We used Tukey’s HSD for pairwise 

comparisons among arena sizes.  

To compare composition of the two prey species in diets across arena sizes, we used the 

manyglm function from the package mvabund (Wang et al. 2012). This function develops 

generalized linear models for counts of each prey species in predator diets across arena sizes and 

provides a global estimate of significance, as well as significance of factors for the two prey 

species while controlling for multiple testing (Wang et al. 2012). We used negative binomial 

distributions for manyglm models due to the large number of zero occurrences in diets. Because 

replicates in this analysis were individual predators, we included the number of bass in each 

arena as a fixed effect to control for uneven sample sizes. 

 Aggregation 

We used the mean distance to detected conspecifics of each prey species as an index of 

aggregation. For each individual fish, we calculated the number of pools between individuals of 

the same species so that distance equaled 0 for individuals in the same pool. We calculated the 
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mean distance across individuals detected in every 30 min interval of each replicate (total 

replicate time = 15 hrs), but dropped any fish detected in more than one pool during a 30 min 

interval (~20% of detections). We chose 30 min intervals to maximize the number of detections 

within a time interval, but to minimize the number of individuals that switched pools and 

because predicted responses were similar across time intervals (see Appendix S1 in Supporting 

Information). Higher values of average nearest conspecific represent less aggregation while 

lower values represent more aggregation. We only included observations between 4:30 pm and 

7:30 am to capture predicted peak activity time of predators (dawn, night, and dusk) and to avoid 

any bias due to researcher activity during the day (predator and prey introductions and cable tie 

removal occurred during hours omitted from analyses). Even though treatments with no 

predators and those where predators were not able to consume prey were run for 48 h, we 

removed the first 24 h of observation to avoid bias during acclimation to mesocosms. These 

periods were used for all metrics and analyses. 

We used manyglm models to compare prey species responses in aggregation to effects of 

arena size and predator treatment. These models allowed us to obtain a global estimate of 

significance for the two prey species, as well as significance tests (corrected for multiple testing) 

for individual species. The model is similar to the manyglm method described in the 

consumption section, but assumes a Gaussian distribution, more appropriate for continuous 

variables (mean distance to conspecifics within a 30 min interval). This model does not allow for 

the inclusion of random effects, so we included trial number as a fixed factor to control for 

differences between trials and time interval to control for difference in activity at different times 

of day. Because arena sizes had different absolute numbers of individual fish to hold densities 

constant, we first checked to see if there was a relationship between the number of individuals 
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detected within a 30 min interval and the distance between conspecifics. Because there was no 

significant relationship (likelihood ratio=1.34, p=0.52), we did not include the number of 

individuals detected in our final models.  

 Movements 

To compare movement patterns across arena sizes and treatments, we calculated the 

mean number of times individuals switched pools for the entire treatment period (15 h) because 

most fish did not switch pools at smaller time scales. Like the aggregation index, we used the 

manylm function to compare movements across treatments and arena sizes, but did not include 

an effect of time interval since this metric was calculated across the entire treatment period. 

 Spatial Overlap 

We calculated the number of pools separating each predator and all detected prey at 30 

min intervals across trials during the same time periods used to calculate the aggregation index 

(see Appendix S1). Following the same procedure used when calculating the aggregation index, 

we omitted any observations in which individuals (including predator and prey fish) were 

detected in more than one pool. We compared the distance (number of pools) each predator was 

from all detected prey across arena sizes, treatments, and between prey species. We used the 

same model structure and method used to assess aggregation.   

 Results 

 Consumption 

Per capita consumption differed across arena sizes (F2,17= 2.99, p=0.07) and post-hoc 

comparisons indicated per capita consumption was higher in the largest arena relative to the 

smallest (Figure 4.2; t=2.44, p=0.06). The fixed-effects only model was selected over models 

including random effects of trial or modified variance structure based on likelihood ratio tests 
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(see Table S2). While overall consumption varied across arena sizes, there was no difference in 

prey composition across arena sizes (deviance=1.29, p=0.61). The number of predators in the 

arena did not significantly influence the composition of prey consumed (deviance=3.74, p=0.18).  

 Aggregation 

The global manylm model indicated trial (likelihood ratio=186.10, p<0.01), arena size 

(likelihood ratio=761.90, p<0.01), treatment (likelihood ratio=13.50, p=0.02), and the interaction 

between arena size and treatment (likelihood ratio=21.20, p=0.01) were significant predictors of 

prey aggregation (see Table S3). The main effect of arena size was significant for C. lutrensis 

(Figure 4.3A), while the interaction between arena size and treatment was significant only for P. 

notatus (Figure 4.3B). For both species, the distance from conspecifics increased with increasing 

arena size, so aggregation was highest in the smallest arena (Figure 4.3).  

 Movement 

Only trial (likelihood ratio=23.66, p<0.01) and treatment (likelihood ratio=41.09, p<0.01) 

were significant predictors of prey movements in the global manylm model (see Table S3). Both 

C. lutrensis (likelihood ratio=20.71, p<0.01) and P. notatus (likelihood ratio=20.39, p<0.01)  

movements responded significantly to treatment, with more movements occurring when 

predators were absent relative to when they were present or eating (Figure 4.4).  

 Spatial Overlap 

Spatial overlap between predators and prey was significantly influenced by trial 

(likelihood ratio=29.21, p<0.01) and arena size (likelihood ratio=111.26, p<0.01) for both prey 

species (see Table S3). C. lutrensis and P. notatus both had less spatial overlap (larger distances 

from predators) with bass with increasing arena size (Figure 4.5). C. lutrensis were also further 

from predators than P. notatus in the largest arena size.  
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 Discussion 

Contrary to our prediction, we observed increased per capita consumption with increasing 

arena size. While this pattern has been observed in previous work (Bergström & Englund 2004, 

Bergström & Englund 2002, Kaiser 1983, Copper & Goldman 1982), these studies attributed this 

pattern to increased encounter rates between predators and prey. We hypothesize the mechanism 

driving increased consumption in our experiment was related to prey vigilance rather than 

encounter rates (Figure 4.6) and discuss how are prey behavior data support this hypothesis. 

Collectively, our work and others indicate predation rates are likely underestimated when 

measured at fine spatial scales, but the mechanisms driving this pattern may vary. 

 As we predicted, prey spread out and used the space provided, leading to a decline in 

aggregation with increasing arena size. Aggregations can provide protection from predators 

because more individuals have a higher probability of detecting a predator, leading to higher 

group vigilance (the “many eyes hypothesis”; Lima 1995, Lima & Dill 1990). We refer to group 

vigilance as the increased probability of prey detecting a predator before an attack due to more 

individuals watching for predators. If aggregative behavior leads to higher group vigilance, we 

hypothesize the negative relationship between aggregation and consumption observed here 

indicates group vigilance may be an important predator defense mechanism for P. notatus and C. 

lutrensis, as it is for other fishes (Pitcher 1986). In other studies investigating prey aggregation 

and predator consumption across arena sizes (Bergström & Englund 2004, Bergström & Englund 

2002), aggregation of prey increased with increasing arena size due to changes in perimeter to 

area ratios because prey preferred edge habitat, resulting in increased spatial overlap between 

predators and prey and therefore increased consumption. In general, animals may aggregate in 

preferred habitats (Jeanson et al. 2005, Croft et al. 2003, Kaiser 1983), so if that habitat 
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availability changes with scale, so will aggregation patterns. In the current study, habitat 

availability (e.g., edge habitat) did not vary with scale because we increased scale linearly by 

attaching additional pool/riffle units. Thus, constant perimeter to area ratios across arena sizes 

might explain why we did not observe increases in aggregation. Our study does not shed light, 

however, on the potential mechanisms driving decreased aggregation with increasing spatial 

scale, especially if aggregation does provide strong anti-predator responses; this is an important 

avenue for future research 

Spatial overlap between predators and prey decreased with increasing arena size. Other 

studies have documented hierarchical patterns of spatial overlap between predators and prey 

across spatial scales, but overlap typically increased with increased spatial scale (Bergström & 

Englund 2002, Fauchald et al. 2000, Rose & Legget 1990) and was associated with large 

aggregations of prey. Predators make foraging decisions based on local prey densities at multiple 

spatial scales (Fauchald 1999), so prey aggregation likely plays an important role for some 

predators to choose where to spend time and therefore how much spatial overlap there is between 

predators and prey. The observed negative relationship between aggregation and arena size likely 

drove the decrease in spatial overlap between prey and predator with arena size. Despite lowered 

overlap at larger arena sizes, which should be correlated with lowered encounter rates, we still 

observed higher consumption rates in larger arenas. It follows consumption would only be high 

when encounter rates are low if the proportion of successful attacks increases and/or handling 

times decrease. We hypothesize that low group vigilance resulting from less aggregation in large 

arenas potentially offset low encounter rates to drive high consumption rates in large arenas.  

The presence of predators (both actively eating and not eating) reduced movement of 

prey, regardless of arena size. The effect of predators on prey movement is not surprising, as 
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predators can have strong non-consumptive effects on prey (Peckarksy et al. 2008, Lima 1998, 

Sih & Wooster 1994). Altering movement patterns or activity levels can be an effective defense 

against predation because more movement is often associated with higher encounter or 

consumption rates with predators (Hatle et al. 2001, Englund & Olsson 1996, Christensen & 

Persson 1993), so movement is likely associated with individual prey vigilance. Variation in 

individual prey vigilance is driven by changes in prey perception of predation threat (Brown 

1999) and may vary spatially in response to habitat heterogeneity, creating a “landscape of fear” 

(Laundre et al. 2010). Because we did not observe a relationship between movement and arena 

size, we suspect individual preys’ fear of predation did not vary across spatial scales, which may 

be an artifact of our experimental systems or a true pattern. Many fishes use chemical cues to 

sense nearby predators (Chivers & Smith 1998), especially fishes in the family Cyprinidae 

(Ferrari et al. 2010), such as the prey in this study. The strong movement response to predator 

treatments indicates prey were able to successfully detect predators, even in the largest arena.  

The lack of relationship between movement and arena size may be related to chemical cues 

being redistributed throughout the arenas by recirculating water. Alternatively, differences in 

movement associated with arena size may have occurred within pools or between pools and 

riffles, which we were unable to measure. Small-bodied fish are likely to make many fine-scale 

movements within pools rather than among pools over short temporal scales (i.e., < 24 hours; 

Pennock et al. 2018). Overall, the lack of variation in movement across arena sizes suggests 

observed variation in consumption likely was not driven by movement patterns.  

We observed an increase in consumption, decrease in aggregation and spatial overlap, 

and no change in movement with increasing spatial scale (Figure 4.6) and hypothesize the 

increase in consumption was due to more successful attacks and/or decreased handling times, 
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despite potentially lower encounter rates. Although individual fish decreased movement between 

pools in the presence of predators, indicating individuals were vigilant, we hypothesize small 

aggregations of fish had a lower probability of detecting an attack by a predator (lower group 

vigilance), leading to either an increase in the frequency of successful attacks and/or decreased 

handling times. In addition to group vigilance, predatory strategy may also explain observed 

increased consumption. Largemouth bass are typically considered ambush predators, which are 

expected to be more effective when prey are less aggregated, especially at intermediate prey 

densities (Taylor 1976). If this is true, we would predict largemouth bass to consume more in 

larger arenas where prey were less aggregated, as observed in this study. Predators are also 

known to vary their predation strategy with habitat complexity. For example, largemouth bass 

can switch from predominately using ambush techniques to stalking prey in habitats with low 

habitat complexity (Savion & Stein 1982). It is possible predators may also change their 

predation strategy in response to spatial constraints. The relative importance of pre-capture (e.g., 

search time) versus post-capture (e.g., handling time) constraints on predation is known to 

change with arena size (Christenson 1996), and predation strategies may do the same. We did not 

observe significant changes in predator activity with increases in spatial scale (number of 

movements, F2,13= 0.99, p=0.40), but did not measure other aspects of predator behavior. 

Considering how predators adapt to spatial constraints may have important implications for 

scaling up predator-prey interactions and understanding how predation strategies vary in 

different sizes of habitat patches (Ryall & Fahrig 2006).  

Our results indicated statistically robust patterns despite several potential sources of bias 

in our experiment. We quantified our metrics based on detections at antennas placed only in pool 

habitats, so we were unable to detect fish in riffles. This limited the number of total detections, 
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especially during treatments including bass, because movement and activity levels were low. We 

had the same number of riffles relative to pools across all arena sizes, so effects of movement 

into and out of riffles were considered minimal. Time of day is also likely an important driver of 

predator and prey activity levels and behavior. Pooling observations across the 15 h overnight 

period captured predicted peak activity times, but likely introduced variation into our indices. 

Finally, we did not measure the distribution of food resources, which can influence prey 

distributions (McMahon & Matter 2006). However, in previous studies there were minimal 

differences in algae or macroinvertebrate biomass among connected pools in this experimental 

system (Martin et al. 2016).  

Measuring predator-prey response metrics across arena sizes is critical for making 

predictions at spatial scales relevant to higher order biological process and may also provide 

insight into how predator-prey interactions vary with changes in the size of natural arenas 

(habitat loss and fragmentation). Our study and others cited above indicate measures of predator 

effects are biased across different spatial scales and predict consumption may be underestimated 

when measured at fine spatial scales. This has important implications for predicting outcomes of 

predator-prey interactions in natural systems. For example, home range estimates of largemouth 

bass range from 100 to 37,600 m2 in lake systems (Minns 1995, Lewis & Flickinger 1967), 

although estimates of home ranges in stream systems are typically smaller (~ 500 m2; Paller et al. 

2005, Minns 1995). The maximum area assessed in this study was around 24 m2, suggesting our 

estimates of consumption, even in our largest arena, likely underestimated consumption by 

largemouth bass in natural systems. In addition to using these rates to inform predictions through 

scale transitions, the observed patterns of consumption and prey behavior may also help predict 

impacts of habitat loss and fragmentation if we assume habitat patches act as different sized 
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arenas for predator-prey interactions. Although we observed lower consumption rates in smaller 

arenas, we also observed changes in prey behavior both in response to arena size and the 

presence of predators. Although predators in smaller habitat patches may not consume more, 

non-consumptive responses can have strong negative effects on prey populations (Lima 1998, 

Pecarksy et al. 2008). We hypothesize prey vigilance in smaller arenas played an important role 

in keeping consumption rates low. Vigilance is associated with prolonged stress (Vitousek et al. 

2018) and foraging costs (Balaban-Feld et al. 2019), both of which influence prey vital rates and 

food web structure (Ho et al. 2019). Overall, our results build on previous work suggesting 

predator-prey response metrics vary across spatial scales and are likely underestimated in 

experimental studies, and we provide testable predictions of potential mechanisms driving 

scaling relationships (Figure 4.6). 
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 Figures 

 

Figure 4.1Schematic of experimental mesocosms, including (A) six riffles and six pools, (B) four 

riffles and four pools, and (C) two riffles and two pools, with arrows indicating direction of 

water flow. Submersible antennas were placed under the return pipe in the center of each pool 

(D).  
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Figure 4.2 Mean per capita consumption by largemouth bass of Cyprinella lutrensis and 

Pimephales notatus was higher in arena with six pools and riffles relative to arena with only two 

pools and riffles. Error bars represent standard error around mean per capita consumption rates 

across arena sizes. 
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Figure 4.3 Aggregation of Cyprinella lutrensis (A) and Pimephales notatus (B) varied across 

arena sizes, with less aggregation (longer distance between individuals) in larger arenas. 

Treatment and arena size had interactive effects on P. notatus, but aggregation was still lowest in 

the largest arena size. Error bars represent 90% confidence intervals of predicted distance from 

conspecifics derived from manylm models. 
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Figure 4.4 Number of movements (number of times individual fish switched pools across entire 

treatment period) differed across treatments, but not arena sizes. Both Cyprinella lutrensis (A) 

and Pimephales notatus (B) moved more when predators were not in mesocosms, but there was 

no difference in number of movements when predators were actively eating or just present. Error 

bars represent 90% confidence intervals of predicted number of movements derived from 

manylm models.  
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Figure 4.5 Spatial overlap (mean distance from individual prey) between bass and prey fish 

varied across arena size. Spatial overlap between bass and both prey species decreased with 

increasing arena size; differences were more profound for Cyprinella lutrensis (A) than 

Pimephales notatus (B). Error-bars represent 90% confidence intervals of predicted distance 

between bass and prey species derived from manylm models.  
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Figure 4.6 Summary of observed consumption, movement, aggregation, and spatial overlap 

between predators and prey across spatial scales (arena sizes), and hypothesized mechanism 

driving the increased consumption with spatial scale. We predict decreased aggregation of prey, 

and therefore decreased group vigilance, led to increased consumption rates despite decreased 

encounter rates.  
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 Appendix S1 

We used 30 min time intervals to calculate aggregation and spatial overlap metrics to balance out 

more detections and less number of pools visited. However, differences in the estimated distance 

from conspecifics (aggregation) and distance from predators (spatial overlap) across arena sizes 

were similar across intervals greater than 5 min.  
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Figure S1: Number unique detections, number of pools visited, aggregation, and spatial 

overlap measures at different time scales (1, 5, 10, 20, 30, 60 and 120 min). Error bars are 

standard error around means. 
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 Table S2 

Table S2: Comparison of models assessing effect of arena size on per capita consumption by 

Largemouth Bass 

Model Df AIC Log-

likelihood 

Likelihood 

Ratio 

p-value 

Fixed effects only 4 49.82 -20.91   

Fixed effects + variance 

structure  

6 50.04 -19.02 3.78 0.15 

Fixed effects+ random effect of 

trial 

5 51.82 -20.91 <0.001 0.99 
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 Table S3 

Table S3. Multivariate models of species responses of aggregation (mean distance to conspecifics), movement (number of times 

individual fish switched pools), and spatial overlap with predators (mean distance to largemouth bass) were assessed using the manylm 

function. Aggregation and spatial overlap of both prey species responded to arena size, while treatment effects (bass absent, present, 

or eating) were the only significant predictor of movement. Aggregation and spatial overlap models included a fixed effect of trial and 

time interval to account for pseudo-replication (repeated measures) within each trial since manylm models do not allow for random 

effects. Movement models did not include an effect of time interval because the number of movements was calculated across the 

entire treatment period. Significant effects (P ≤ 0.10) are shown in bold. 

  Aggregation  Movement  Spatial Overlap 

Predictor Species DF 

Likelihood 

Ratio P   DF 

Likelihood 

Ratio P   DF 

Likelihood 

Ratio P 

Trial 

 

636 186.10 0.002 

 

32 23.66 0.007 

 

165 29.21 0.003 

 

Cyprinella lutrensis 

 

79.01 0.002 

  

5.45 0.13 

  

21.31 0.002 

 

Pimephales notatus 

 

107.06 0.002 

  

18.21 0.003 

  

7.91 0.053 

             
Time Interval 

 

606 53.00 0.763 

 

NA NA NA 

 

135 84.07 0.123 

 

Cyprinella lutrensis 

 

18.72 0.959 

      

48.87 0.128 
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Pimephales notatus 

 

34.28 0.492 

      

35.20 0.448 

             
Arena Size 

 

604 761.90 0.002 

 

30 9.14 0.139 

 

133 111.26 0.002 

 

Cyprinella lutrensis 

 

347.91 0.002 

  

3.90 0.186 

  

81.49 0.002 

 

Pimephales notatus 

 

413.97 0.002 

  

5.24 0.132 

  

29.77 0.002 

             
Treatment 

 

602 13.50 0.019 

 

28 41.09 0.002 

 

132 0.95 0.688 

 

Cyprinella lutrensis 

 

0.82 0.713 

  

20.71 0.002 

  

0.05 0.824 

 

Pimephales notatus 

 

12.70 0.007 

  

20.39 0.002 

  

0.90 0.649 

             
Arena Size:Treatment 

 

598 21.20 0.013 

 

24 7.84 0.635 

 

130 7.86 0.214 

 

Cyprinella lutrensis 

 

5.16 0.309 

  

7.28 0.383 

  

0.67 0.745 

 

Pimephales notatus 

 

16.09 0.013 

  

0.56 0.984 

  

7.19 0.135 
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Chapter 5 - Conclusions 

In this dissertation, I highlight the importance of study design and scale in quantifying 

complex ecological patterns. It is not surprising I concluded large sample sizes and making sure 

to evenly capture environmental gradients of interest is needed to measure subtle ecological 

responses. Proper study design is a basic principle of science, but efficiently quantifying biotic 

responses to abiotic gradients is significant when resources, especially time, are limited. Long-

term experimental studies are ideal for understanding mechanistic drivers of population and 

community dynamics (Brown et al. 2001, Bruckerhoff et al. 2020), but Chapters 2 and 3 of this 

dissertation highlight that space for time substitutions can provide snapshots of predator-prey 

dynamics, such as co-occurrence of impoundment and disturbance associated fishes with 

largemouth bass or the underestimation of consumption rates at large scales. Our suggestions for 

designing landscape studies and the analytical framework used to assess predator effects 

mediated by environmental variability are applicable in other riverine systems. Pairing multi-

scale, landscape approaches with experiments would provide a better understanding of the 

context dependency of predator effects on stream fish communities.  

 Similar to known effects of study design on quantifying ecological responses, scale is an 

issue when measuring most ecological phenomena (Wiens 1989, Levin 1992), but is critical to 

consider when making predictions (Englund and Cooper 2003). Predictive models, including 

those predicting outcomes of predator-prey interactions, are often parameterized with metrics 

measured at different scales from which the predictions are made (Chesson 1998, Bergström et 

al. 2006, Englund and Leonardsson 2008). This dissertation and other work (Bergström and 

Englund 2002, Bergström and Englund 2004, Englund 2005, Luckinbill 1974, Fauchald et al. 
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2000) suggest estimates of such parameters change with spatial scale. It is therefore important 

that researchers and managers either estimate these parameters, such as consumption rates, at 

scales of predictions or are able to estimate how parameters change with scale (scale transitions; 

Bergström et al. 2006, Englund and Leonardsson 2008). Predictive models and underlying 

parameters need to be developed at scales relevant to mangers and conservation actions to 

actually have real world applications. There is often a “mismatch” between scales in which 

ecological processes are measured or take place and the social scales in which decisions are 

made (Cumming et al. 2006). In terms of managing predators, important questions to consider 

include what scale is important to managers? and at what scale do populations and communities 

operate (Faush et al. 2002)? Predator effects in streams have often been studied at fine scales 

(see introduction) and are often considered to only operate at the finest spatial scales (Hunsicker 

et al. 2011). However, there is evidence that predators do shape ecological patterns in stream 

systems at coarse spatial scales (Giam and Olden 2016, Turschwell et al. 2018). While ecologists 

have become quite good at quantifying patterns at fine scales, we do not yet understand how to 

apply these observations to predict predator effects at coarse scales relevant to species 

distributions, abundances, and long-term population viability, and this dissertation highlights that 

these fine scale observations may be underestimating coarser scale processes.  

Fine scale processes and biotic interactions can be important (Power et al. 1988), but more 

conceptual and empirical work is needed to know how to incorporate fine scale observations into 

conservation and management actions.  

 My attempt to measure predator effects across riverscapes suggest predators (largemouth 

bass) exhibit positive co-occurrence patterns with species, some of which are associated with 

disturbance or impoundments, ultimately leading to increased richness at sites with predators. 
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Increased richness and/or abundance of predators after introduction of stocked or non-native 

fishes has been documented in other studies (Eby et al. 2006). This can lead to “top-heavy” food 

webs, which is potentially supported in aquatic systems due to lack of resource limitation, habitat 

coupling (Tunney et al. 2012) and/or communities not being saturated (Gido and Brown 1999).  

In the Flint Hills, increased predator richness has the potential to shape stream fish communities, 

as many of the species associated with impoundments are predators and can consume fish and 

because impoundments are so numerous. Increasing predator richness has highly variable effects 

on ecosystems, including changes in prey density, shifts in prey assemblage structure, 

outperformance of single predator species in suppressing prey populations, or null effects 

(reviewed in Bruno and Cardinale 2008). The outcome of increased predator richness on stream 

fish communities is likely dependent on the combination of several processes, including resource 

partitioning (Ives et al. 2005), selection (Ives et al. 2005), intraguild predation (Polis and Holt 

1992), and predator-predator interactions (Sih et al. 1998). In this dissertation I only considered 

the effects of largemouth bass, but there are other native or supplemented piscivorous fish (i.e. 

spotted bass, green sunfish) that likely interact through competition and predation of smaller life 

stages. Further, terrestrial predators in the system (i.e. Great Blue Herons, Northern Water 

Snakes) are severely understudied, but were often observed when collecting data for this 

dissertation. These contingencies make managing the effects of multiple predators difficult and 

outcomes of managing for predator richness will likely produce unexpected outcomes (Bruno 

and Cardinale 2008).  

 This dissertation focused on predator effects on stream fish communities, but predator 

effects likely extend beyond fish communities. Predator effect are known to cascade down food 

webs, influencing the distribution and abundance of algal biomass in streams (Townsend 2003, 
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Power et al 1985). In addition to these known effects on primary production, predators may 

influence nutrient cycling (Schindler et al. 2001, Simon et al. 2004), aquatic subsidies into 

terrestrial systems (Baster et al. 2004), and abundance and distribution of other taxa. As most 

fish are omnivores, predators likely influence macroinvertebrate communities through direct 

consumption and through effects on other fish species. Because intraguild predation is common 

(Arim and Marquet 2004, Thompson et al. 2007), roles of predators in stream food webs and 

ecosystem processing is complex and historic studies emphasizing linear links between predators 

and lower trophic levels (Pace et al. 1999, Oksanen et al. 1981) are likely to simplistic to 

realistically represent stream systems.  

Predators can have important impacts on ecosystems, but quantifying their effects at 

spatial scales relevant to management and conservation can be difficult. As landscapes, 

riverscapes, and climate continues to change, we are faced to make conservation decisions 

regarding protecting apex predators and mitigating effects of non-native predators. Management 

actions, such as removing non-native predators or creating refugia for native predators facing 

habitat loss, are resource intensive. It is critical we understand and predict outcomes of predator-

prey interactions to inform prioritization of limited conservation resources (Beamesderfer 2000). 

Non-native and predominately predatory fish have been stocked into freshwater systems globally 

(Gozlan 2008, Gozlan et al. 2009). Although the ecological impacts of non-native species in 

general are variable (Gurevitch and Padilla 2004, Didham et al 2005, Gozlan 2008), purposeful 

stocking of predatory species may lead to inflated negative effects of non-native species in 

freshwater system by replacing native predators, increasing predator richness, increasing 

consumption of native fish, an increasing top-down control on ecosystem structure and function 

(Eby et al. 2006). Deciding whether or not to remove and manage non-native species needs to be 
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based on evidence that these predators are having effects and whether or not those effects can 

actually be mitigated with action (Beamesderfer 2000). Unfortunately, some of the challenges 

discussed in this dissertation with quantifying predator effects make prioritizing management 

decisions regarding predators difficult, and often there is limited time to untangle the complex 

interactions between landscape change, predators, and native fish community dynamics. I hope 

this dissertation sheds some light in regards to study design, spatial scale, and quantitative 

methods to help untangle these relationships in other systems. 
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