MCCS

The Design and Implementation
of a Multi-Computer
Communications System

by

SHELDON LEE FOX

B.S., Kansas State University, 1973

A MASTER'S BEPORT

submitted in partial fulfillment of the
requirements for the degree
HhéTER OF SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY

Manhattan, Kansas

1976

Approved by:

I.

1I.

III.

Iv.

Ve

LD

266E

R¥
1776
FG5

e.2
Document TABLE OF CONTENIS

INTRODUCTION-....l-..............I......".'1‘

NCCS SYSTEN SPECIPICATIONS soseanenisonvenn venassl
Process-Lev91 Interface -----o-.-.--o--oqcno.u
system overvie“ ...Ill.ﬂl.I.I..l..l..l..l....7
Data StrUCLUILES cescsccsccscsscccncscsnsnsnassal
Functional DesScriptionl ccceccecccsocccccscscces?d

* Algorithmic DesCription ecccccccscvsacescsanesld
Hessage Forat .C'.....Il.IOOQOOOIGCDQOOOQOOOZZ
Asynchronous Line ProtoCol ..cceaccscssscsscss2ll
Binary Synchronous Line ProtocCcl .ceecesccces2?
Future EnhancenentsS cceccscccccscscccnsesssesssl?d

MCCS/370 - THE VM/370 IMPLEMENTATION OF MCCS31
Operating Environment .ecececececccsscecccaeall
Flo“ Of contrOI ..‘I...-‘..I..-.........-..-‘32
Operator Commands ...I..'I‘........lll.l..l...us
Testing Aids .tl.‘....l.'tl.llll......l..l.-.ug
System Correctness, Status, and Extensions ..51

BIBLIOGREPBI I....I...-.I...."......I..I......‘,ss

LPPBNDICES ..II...I..I.'l"'.I.C......."........S?
Appendix A - MCCS/370 Module Summaries e.....57"

Appendix B - HCC5/370 ABEND COdeS'....-----..7Q
Appendix C - MCCS/370 VM/370 Dependencies ...78
Appendix D - MCCS/370 Update Procedures80
Appendix E -

MCCS/370 Contrcl BloCkS ceceeee.B81

Figure
Figure
Figure
Figure
Figure
Pigure
Pigure
Figure
Figure

Table 1

VOYANEWN =

FIGURES AND

ABLES

SEND and RECV Calling FOTrMatS eeececsasccasssd
MCCS Control and Data FlOW cescssscssasscscadl

PROBLOK FOLBAL .evpsveosrnvspnsnnsonssneensene]l
MSGBLOEK FOrmat .ccesscscscsnscssscccscsnanaesll
Message POrRat ceccecsceccccsosanccsecssssces23
PLAG2 Bit DefinitionNsS cccecsencenccsnncnceesald
MCCS/370 Module Dia&Qgram esescescccsecscasacse33
MCCHSG "msg" Header FOrmat .cssesccencsvesessdl
MCCMSG File Header FOormat ..cecececccccccscsccsadl

Control Character Replacement .ceeecscecececess2d

ACKNOWLEDGEMENTS

I would 1like to thank my major professor, Dr. Virgil
Wallentine, for his" help and guidence throughout this
project and Drs. Kenneth Conrow and Fred Maryanski for
their comments and suggestions concerning this pager. I
would also 1like to thank the Kansas State University
Computing Center for letting me use their binary synchronous
lines and modems for testing the bisync support in MNCCS
along with the technical consultation provided by the
Systerns Programming staff there throughtout - the
implementation period. Finally, I would like to thank the
University of Waterloo, and more specifically, Bruce Uttley,
for making available their version of the CMS SCRIPT text
formatting program which made the preparation of this paper
many times less difficult than it would of fkeen using other
metheds, :

I. IXIROCUCTION

This rpaper describes the Multi-Computer Communications
System (¥CCS). HMCCS allows tasks executing in one computer
to corrunicate, via “messages", with tasks executing in one
of several other computers. '

MCCS provides two process-level primitives, SEND and RECV,
to facilitate inter-process communicaticn. MCCS is simple
enough to allow it to be implemented easily on a
mini-computer which provides a minimal level of hardware and
software support using the asynchronous line protocol. On
the other hand, employing the MCCS bipnary synchronous (BSC)
line protocol [IBMO1] on a more sophisticated computer
syster allovs the speed and error detection/recovery
facilities of BSC to be utilized to achieve more efficient
conmupnication.

MCCS message protocol was designed to ke straightforward and
does not depend on the existence of any complex operating
syster functions. Although this somewhat restricts the
flexitility of the nmessage system (or at least shifts sone
of the burden to the user process), it makes MCCS simple
enough to be implemented on nearly any computer which
supports the execution of one or more processes and can have
a teleprocessing (TP) line attached to it. The original
design goal of providing the capatkility for inter-process
comaunication on multiple computers may then be realized.

Normally executing as a priviliged system task, MCCS should
run wvithout operator intervention. The procedures for
automatic connection and disconnection of ccmputers to one
another have been defined. MCCS also handles any error
conditions that should arise during its execution.

A message network employing MCCS.consists of two or more
computers, each of which may have connections, and therefore
communicate, with one or more of the others. MCCS places no
restrictions on the size and complexity of the network; it
is instead restricted only by the ‘hardware and software
limitations of the computers which compose the network.

This project (and hence the paper) was motivated by a desire
to provide a means of communications Letween an existing
mini-computer (a NOVA 2,10) and a maxi-computer (an IBH
370/158) . one of the major constraints placed on this
copnupication was that the method of conmunications,
vhatever it be, require as few hardware and operating systen
modifications as possible. It was decided to utilize

existing teleprocessing lines designed to support

-

MCCS =-- A Nulti-Computer Communications Systen

teletype-like terminals. This was done fcr two reasons.
FPirstly, the hardware and operating system TP drivers
already existed on the 370 and the TEF drivers on the NOVA so
they could be copied or used directly in MCCS. Secondly, it
meet the original constraint of requiring minimal changes to
the existing configuration.

Once the original desgin work had been done, it becanme
obvious that there was a need to generalize the system to
take on a much broader scope than Jjust communications
between a NOVA and a 370. Several applications requiring a
generalized inter-computer communications facility appeared
so it vas decided to make the design changes necessary to
support multiple computers in the configuration. These
changes also included consideration for the implementation
problens expected on different types of computers other than
the two that were immediately involved.

some ¢f the applications for the message system (in the area
of data base management) required large amounts of data be
transeitted. Therefore it was decided to add support for
BSC TF lines since much higher transmission speed and error
detection and recovery could be then be obtained. (Even
with the additiom of the BSC support, the original
constraints could still be nmet. ESC hardware support
existed on the 370 and sources of software drivers could be
obtained from Data General for the Rova.) :

The following list shows some commonly used system functloms
which can be achieved by providing the approprlate set of
processes(1) communicating using MCCS. 2

1) Yachine synchronization using operating system tasks to

: coordinate the machines by the sending and rece1v1mg of
messages.

2) 1ask synchronization (on either an inter- or
intra-computer basis) by proper application of SEND and
RECV primitives. <

3) Buffer management,
4) The management of teleprocessing resources.
Part II ccntains the general design specifications for MCCS.

It should serve both as a users' guide for someone wishing
to use MCCS and as an implementation guide for soneone

1 This paper does not attempt to define these processes any
further, They are mentioned here only to suggest
applications for which MCCS might be used.

G

MCCS -- A Multi-Computer Communications Systen

wishing to develop a version of MCCS on another computer.

Part III deals with an actual implementation of MCCS on an
IBM 370,158 running VM/370 with CMS.(2) (It is referred to
as MCCS/370 when it is necessary to distinguish it from
other implementations of MCCS.) Someone familiar with IBM's
370s, teleprocessing, and VM/370 should be able to utilize
Part III, along with the appendices, to operate, maintain,
or enhance MCCS/370. .

_—— —— ————— - —— - -

2 hlthough not descrited in thlS paper, a version of MCCS
bas kteen implemented on a 32K (word) Data General NOVA
(running RDCS) by Lee Allen, Richard McBride, and Jinm
Ratliff of the Kansas State University Computer Science
Cepartment., It was used in the initial testing of the
asynchronous line protocol in the version of MCCS
implemented on the 370. -

-3-

MCCS -- A Multi-Computer Communications Systenm

II. SYSTEM_SPECIFICATIONS

T e i T e e it e T e S e S S S i e s

Part 1II describes the general specifications for MCCS and is
intended for use by someone who wishes to implement a
version of MCCS and needs to know the details necessary to
insure the implementation is compatible with existing MCCS
systens.

Sample control block format and execution flow descriptions
will ke given as well as the format that must be used for
message transmission. The protocol used with both
asynchronous and binaty synchronous communication, including
error detection and retry procedures, is also shown. i

¥

(]

Process:zlevel Interface.

An executing process wishing to wutilize MCCS does so by
invoking the MCCS SEND or RECV routines. A high-level
language CALL statement similar to that shown in Figure 1(a)
will serve to illustrate the parameters necessary to send a
message.,

TO_ID specifies a six character process-identifier(3?
cf the process to which the message to being seat.
The first two characters of the TO_ID designate a
particular computer with which MCCS has a
communication link (therefore each. computer must
te assigned a unigue two character id). The last .
four characters (at 1least one of which must be a
pcn-klank character) designate a particular
process on that computer. 1f the first two
characters specify a computer that MCCS does not
have a 1link to, the request to send the message
will be ignored and the TO_ID is set to all blanks
tefore returning in order to notify the process of
the invalid specification.

- ——— - — A —— -

3 All IDs are transmitted as ASCII characters. The SEND and
RECV routines, however, may perform translation to and
from ASCII if the processes sending and receiving
pessages normally use another character set, such as
EECDIC. :

MCCS -- A Multi-Computer Communications Systean

CALL SEND (TO_ID,MESSAGE,MSG_ID,USER_ID)

(a)

CALL RECV (FROM_ID,MESSAGE,MSG_ID,USER_ID,STATUS)

(b)
Figure 1: SENC and RECV Calling Fcrmat

MESSAGE specifies a 128 byte(*) area containing the
information to be sent. The content and format of
this message are not examined by MCCS so any
necessary translation or reformatting must be done
Ly mutual agreement of the communicating
Frocesses. The message is simply treated as a
stream of binary data and transmitted to the
receiving process unaltered. .

MSG_IL specifies a 16 bit field that will be set to an
integer upon return. This integer will unigquely
jdentify the message that is sent. It is also
available to the receving process for examination
when the message is received. MSG_ID, when used
in conjunction with USER_ID, provides the two
frocesses a means of coordinating messages and
responses if they so desire. '

USER_ID specifies a 16 bit field that will be

' transmitted along with the message and made
available to the receiving process. (If USER_ID
is all binary =zeros, the value of MSG_ID will be
used for the value of USER_ID, otherwise, it is
sent exactly as specified.) This field, with
prior arrangement between the conmunicating
processes, may be used to specify the content and
format of the message, sequencing of messages,
message priorities, return codes, etc.

The parameters needed to invoke the MCCS RECV routine are
shown in Figure 1(b) and described Lelow.

PROM_ID specifies a six character process-identifier.
If it is all blanks, the first message in the list

—— . —— T —— - —

4 All references to a byte or character within MCCs
designate a field containing eight Eits.

.

MCCS =-- A Multi-Computer Communications Systen

¢f messages that have been received by MCCS for
this process is retrieved. If FROM_ID is
pon-blank, the first message in the list which was
sent by a process with an identifier equal to
FROM_ID will be retrieved. (See the explanation
of USER_ID kelow for additional message selection
criteria.,) Upon return to the process from RECV,
FEOM_ID will be set to the process-id of the
process which sent the message, or to blanks if
the message could not be found or if there is no
MCCS link to the computer specified by the first
two characters of FROM_ID. (See the description
cf the STATUS parameter below.)

MESSAGE specifies a 128 byte field into which the
received message will be placed if found.

MSG_IL specifies a 46 bit integer into which is.
returned the MSG_ID of the message received.

USER_ID specifies a 16 bit field which functions in a
panner similar to FROM_ID in that it @may be used
to select specific messages for retrieval. If it
is all binary zeros, the first message on the list
cf messages received for the process will be
retrieved (subject to the restrictions imposed by
FROM_ID). If it is non-zero, only a message with
a matching USER_ID (set by the USER_ID parameter
cf the call to SEND which created the message)
will be retrieved (again subject to the
testrictions impocsed by FROM_IL). Upon return
from the RECV call, USER_ID is set to the USER_ID
cf the message that is retrieved. By specifing a
pon-blank FROM_ID and a non-zero USER_ID on the.
call to RECV, a process may selectively receive
messages instead of receiving them in the order
that they were sent.

STATUS designates a 16 bit field that is examined only
when FROM_ID specifies a computer to which MNCCS
‘has a link - but there is no nmessage from that
computer sent to this process with the specified
FROM_ID and USER_ID. In this case, if STATUS is
ncn-zero FROM_ID is set to Llanks and control
ipmediately returns to the process. If STATUS is
2ero the process is suspended until such time that
a message is sent to it and is subject to
retrieval bLased on the values of FROM_ID and
USER_ID.

MCCS -- A Multi-Computer Communications Systenm

Systen_ Overview.

Figure 2 gives a conceptual view of the routines in MCCS
(the left and right columns) and the data structures which
they access (the middle column). This diagranm is
oversimplified (it doesn't show the interrupt structure
necessary for BSC timeouts, for example), yet it is
sufficient for a general discussion of control and data
flows with MCCS. The dotted 1lines represent execution flow
between the routines and the dashed 1lines represent data
flow tetween the routines and the data structures with the
arrowheads showing the direction of flow.

This diagram obviously does not represent the only way in
wvhich MCCS may be implemented. It should, however, provide
a general guideline that can be modified to fit within the
constraints imposed by mcst installation environments.,

Data_structures.

A brief discussion of the contents of the MCCS data
structures is given here -- a more detailed description is
given in the discussion of the routines which modify thenm.

WAIT_LIST is a linked list describing all the processes
which have issued a SEND or RECV request which has
not been processed. (The reasons for not having
processed the requests is given in the description
of the Process-Dispatcher that follows.)

RECV_LIST is a linked list of all messages from another
FCCS which have not yet been "received" (the
process to which they were sent has not yet called
RECV to accept the message).

SEND_IIST is a linked list of messages which have been
created by processes issuing a call to SEND and
have not yet been transmitted to the proper MNCCS
via one of the TP lines. '

The Line Control Blocks describe the TP lines which
provide the link between the MNCCS on one computer
and the MCCSs on other computers for which there

is a communications path availatle. One
line~-control block exists for each TF line. They
contain: 1) the two character identifier (ID)

used to identify the computer to which this line
is connected, 2) a buffer used to hold the
ressage currently active omn the 1line, 3) line

-—7-

MCCS -- A Multi-Computer Communications Systen

Sequentially Interrupt
Executed Data Driven
Rcutines Structures Routines

] L] i	L}				
{					
Initialization		WAIT	{mmm——] SEND		
	—1 LIST	<=1	+		
l					'
L - d I L »	I L _: J				
.					
.					
v		-			
~ 1	~—)	r 1			
	<—4		et	.	
1 Prccess-	———=2] RECY		RECVY		
Dispatcher	——	LIST	<—+		
		l I			
B 3 l L J l L Jd					
. A i					
. .	i				
v .	l.				
1 I L) 1 I L)					
	L—>		t—-		
1 Message-	€t—m——m=	SEND	Kmeme——	Message-	
Sender	<—1	LIST	r—>1 Receiver l		
I -				I	
L J l L J I)				
l L B 1 l					
b	Line	—4			
Control					
Block					
'					
L N |
Figure 2: MCCS Control and Data Flow

MCCS -- A Hulti-Compufer Communications Systenm

status information, and 4) any device dependent
information needed to maintain the TP line.

i

The Ipitialization routine is the first MCCS routine to gain
control. It performs any control block formatting or
initialization that is necessary. (It will probably access
all MCCS data structures although this is not shown in
Pigure 2.) Thée 1Initialization routine also performs any
comnunication with the operating system that is necessary to
gain control of the TF lines, set up interrupt handlers,
etc., as well as enabling the lines for communication,

Another important function performed tky the Initialization
routine is check~-point recovery. It is highly desirable for
MCCS not to lose any messages should a system failure occur,
whether the failure is in MCCS, the operating system, or the
hardware. This is necessary because a sending process
shouldn't have to be suspended wuntil it has been verified
that the receiving process has accepted the wmessage. This
activity could very well take a considerable amount of time,
time that the sending process could use to perform other
functions. Assuming the sending process now does not know
when its message has teen successfully delivered, it
therefore cannot be expected to maintain a copy of the
message it last sent. The burden of maintaining the copy of
the message is therefore shifted to MCCs. If MCCS goes
down, it must be able to recover all control bleccks on
WAIT LIST, SEND_LIST, and RECV_LIST when re-starting. Since
these lists will normally ke kept in memory for efficiency,
a Lackup copy that represents the current contents of each
list is maintained on secondary storage. It may then be
recovered after a system failure and subsequent restart. A
check-point should be taken each time a list is changed and
the previous check-point destroyed so that the current copy
is always available for re-starting if needed.

The Initialization routine determines if any check-point
data exist, and if so, use it to set the initial contents of
WAIT_LIST, SEND_LIST, and RECV_LIST to what they were
immediately before the system failure.

After all initialization has kteen performed, the
Initialization routine enters a loop which repeatedly calls
the Erocess-Dispatcher and the Message-Sender. Although
this could be a continous loop -~ a "busy wait" loop -- it
is nmore desirable to have the loop terminate after each
iteration, proceeding only when there is more work for the
Process-Dispatcher and Message-Sender to perforan. The

-

necCcs == A Nulti-Computer Communicatlons Systen

interrupt driven routines (SEND, RECV, and the
Message-Receiver) can then inform the Initialization routine
that they have modified one of the data structures and that
there is more work to be performed and thus the loop needs
to be activated.

The [Frocess-Dispatcher examines WAIT_LIST for Process
Request Blocks (PRQBLOKs, see Figure 3). PROBLOKs are
allocated and added to the end of WAIT_LIST by SEND or RECV
when called by a process. PRQBLOKs contain all the
parameters specifed on the SEND or RECV call and sufficient
information about the state of the process so that it can be
suspended and restarted at some later time, (%)

If the Frocess-Dispatcher encounters a PECBLCK for a process
vishing to send a message, the TO_ID is examined. The first
two characters are matched against the IDs in all the Line
Contrcl Blocks to make sure there is a link to the computer
the IT specifies., If a match is not found, the process's
FRCM_ID parameter is set to blanks to indicate it wvas
invalid and the process is restarted. i

When the TO_ID is valid an attempt is made to allocate a
buffer to hold the message and the associated information
(called a MSGBLCK, see Figure 4). If there is no buffer
space, the PRQBLOK is skipped and the next one examined,
effectively leaving the process suspended until buffer space
is made available. Assuming the buffer is allocated, #the
MSGBICK is constructed using the TO_ID, MESSAGE, and USER_ID
parameters from the call to SEND. The FROM_ID for the
message is set to the ID of the process. ({This is cbtained
by ccncatenating the two character ID of the computer on
which MCCS is running with a one to four character
identifier which uniquely defines the process which sent the
message.) The message is assigned a unique number and it is
placed in the MSGBLOK and the process's MSG_ID paraaeter.
The MSGBLGK is then added to the end of SEND_LIST and the

____________________ i

S A process is suspended after SEND or RECV builds the
PROBLOK from the process's parameters. The process can
ke suspended in one of several ways. One way might be,
assuming the operating system MCCS 1is running . under
supports the equivalent of the "P" and “V" primatives
¢r 0S/360 POST and WAIT macros, is to make SEND and
FECY reentrant. They may then, after building the
PROBLOK, add to it the semaphoresECB address and then
perform a P or WAIT. The Process-Dispatcher need only
perform a V or POST using the semaphore/ECE address
from the PRCBLOK to cause the SEND or RECV routine to
resume, set the return parameters, and return control
to the process. :

s

MCCS -- A Multi-Computer Communications Systenm

WAIT_LIST Linkage

L] L}
| |
| T |
| TO_ID | FROM_ID i
I + |
| MSG_ID | USER_ID |
| - |
| message |
| text |
| | ’
| process | 2
| state | EF
| information |
L 4 é
t
Figure 3: PRQBLOK format [
(not to scale) (
i
A
r . = 1 b
| SEND_LIST/RECV_LIST Linkage | £
| T | 4
| TO_ID | FRCM_IL i 8
| + . | g
| HSG_ID | USER_ID |
fimin - | .
| flags | :
| | ;
| message | ook
i text | 5 .
i] L . ;
f H
§ t
Figure 4: MSGBLOK format i

(not to scale) = @

process allowed to resume.

Then the PROBLOK is removed from WAIT _LIST and freed and the
next EEBLOK examined.

A very useful extension to MCCS is easily realized at this

point.¢6) By allowing the TO_ID to begin with the same two
characters as the ID of the computer frcm which the message

. ——— ——————— — ——— ———

6 This extension has been implemented in the version of MCCS
written to run on the IBM 370 (described in Part III).

-11-

MCCS -- A uulti-Computér Compunications Systen

is sent, a process may send a message to a process on the
same computer., This is implemented by checking for this
condition and placing the MSGBLOK on the end of RECV_LIST
instead of SEND_LIST.

If a ERCELOK indicates the process wishes to receive a
message, the MSGBLOKs on RECV_LIST are examined. (They. are
placed there by the Message-Receiver or by the extension
noted above,) The process's ID is concatenated to the ID of
the computer on vwhich it is running and compared with the
TO_ID in the RECV_LIST MSGBLOKs, If a match is found, the
process!s FROM_ID and USER_ID parameters are compared with
those in the MSGBLOK. As described earlier, if the
process's FROM_IP is non-blank, it must match the FROM_ID in
the MSGBLOK. The process's USER_ID, if non-zero, nmust also
match the USER_ID in MSGBLOK in order for the message to
returned to the process. If it is to be returned, the
process's FROM_IL, MESSAGE, MSG_ID, and USER_ID are set .from
the MSGBLOK. The process is then restarted, the MSGBLOK
removed from RECV_LIST and the buffer released, the PRQBLOK
repoved from WAIT_LIST and freed, and the next PRQBLOK
examined. '

If all MSGBLOKs are examined and none is eligible to Dbe
retrieved, the process's STATUS parameter is checked. If it
is zero, the process wishes to ke suspended until it
receives the message., This is done by simply leaving the
PRCBICK on WAIT_LIST and examining the next PROBLOK. If the
process doesn't wish ¢to wait (STATUS is non-zero), its
FRCM_ID parameter is set to blanks to indicate the message
was nct found, the prccess restarted, the PRQBLOK removed
from WAIT_LIST and freed, and the next PROBLOK examined.

After the Process-Dispatcher has interrogated all " the
PRCBICKs on WAIT_LIST,¢7? control returns to the
Initialization routine which then invokes the
Message-Sender. The Message-Sender examines the MSGBLOKs on
SEND_LIST. The TO_ID of the MSGBLCK is compared to the ID
in each of the Line Control Blocks to find the TP line to de
used to send the message to the proper computer, If the
flags in the line block indicate the 1link is currently
complete (the line has "signed on") and no messages are
currently active on the line, the TO_ID, FROM_ID, MSG_ID,
USER_ID, and message are taken from the MSGBLOK and placed
in the line Control Block output buffer in the proper format

———— i —— — — - —

7 This may require two passes over WAIT_LIST if a process
sends a message to a process on the same computer.
This is because a new MSGBLOK will have been added to
RECV_LIST. This MSGBLOK will contain a message that a
previously examined PRQBLOK is waiting to retrieve.

-12-

MCCS -- A Multi-Computer Communications Systen

for transmitting(®) and then sent (Ly making a request to a
TP Mcnitor, for example). The MSGEBLCK is not deleted from
SEND_IIST at this time; instead a pointer to it is placed in
the line klock indicating it is the message currently active
on the line. This is necessary because the MSGBLOK can't be
deleted just yet since an acknowledgement has not been
received from the MCCS receiving the message indicating it
was ccrrectly received. When a positive acknowledgement is
eventually received, the Message~Receiver may then safely
delete the MSGBLOK from SEND_LIST using the pointer obtained
from the line block.

The remaining MSGBLOKs on SEND_LIST are examined in a
sipmilar manner with as many being sent as possible. When
they bave all been processed, control returns to the
Initialization routine and it then waits for the SENL, RECY,
or Message-Receiver routines to add something to WAIT_LIST,
SEND_LIST, or RECV_LIST. When this happens, the
Process-Dispatcher and Message-Sender are called again as
descriked above.

The SEND and RECV routines and Message-Reviever are called
“interrupt driven" routines in that they are activated at
arbitrary times rather than sequentially like the
Process-Dispatcher and Message-Sender.

The SEND and RECV routines are activated any time a process
wishes to send or receive a message. 2As mentioned above,
they allocate a buffer in which a PRQELOK is built.(9) The
PRQBLCOK is then added to the end of WAIT_LIST so that it can
be examined by the Process-Dispatcher. SEND and RECV then
somehcw suspend the process, either by suspending themselves
(provided they are reentrant of course) or by placing the
process's state in the PRQBLOK, marking the ©process
non-dispatchable, and exiting to the operating system's
dispatcher to allow another system task to run. Another
function of SEND and RECV is to notify the Initialization
routine that it is time to make another iteration through
the 1loop which calls the Process-Dispatcher and the
Message-Sender.

The Message~-Receiver is entered when a message is received
on the TP line (usually by accepting an interrupt). If the

8 The format depends on whether the asynchronous or binary
synchronous protocol is being used on the line. These
formats will be precisely defined later.

9 If there is no buffer space to ke allocated, they
ipmmediately suspend themselves and, consequently, the
process that called then, unt11 such time that buffer
space becomes available.

-13-

MCCS -- A Multi-Computer Communications Systen

message that is received serves to acknowledge the last
message sent on that line,€(10) the MSGBLOK for that message
(pointed to by the Line Control Block) is removed from
SEND_LIST and the buffer freed.

Negative acknowledgements (or an undecodakle message if
there is an unacknowledged message active on the line) mean
the active message must be resent. The Message-Receiver
sipply informs the Initialization routine to make another
pass through its loop and the Message-Sender will resend the
message since it was never removed from SEND_LIST.

A message that is received from a process on another
copputer is placed in a MSGBLOK and added to RECV_LIST if
buffer space is availatle for creating the MSGBLOK.(11)

A postive acknowledgement is then constructed for the
message just received. It may then ke immedately sent back
or added to the front of SEND_LIST so that it will be the

next message sent on that line by the Message-Sender.

When there is no buffer space availakle to allocate a buffer
for the MSGBLOK or an undecodable message is received and no
message is active (sent but not acknowledged), a negative
acknowledgement message 1is constructed and handled as the
positive acknowledgement described akove. .

|}
Again an extension is easily added to McCS at this
point,.(12> A 1limited "store and forward" function may. be
provided by adding the MSGBLOK to SEND_LIST if it is not for
a process on this computer but is for one on a computer
which NMCCS has a link to. (This is determined by ccmparing
TO_ID with the IDs in all the line blocks.) If routing
tables are also added, messages may Le sent to computers to

. —— —— ———— -

10 The format of the acknowledgement message is defined in
the section on aysnchronous and binary synchronous line
protocols.

11 A special case must be checked for and handled if
detected at this point. If a message is received and a
fositive acknowledgement returned but this
acknowledgement is 1lost or garkled, the sending MCCS
will resend the last message. Therefore the FROM_ID
and the MSG_ID of the last message received on each
line must be maintained in the 1ILine Control Block.
Cuplicates can then be detected and simply
ackncwledged, but not added to KECV_LIST since there is
already one copy there.

12 This extension has been implemented in the version of
PCCS written to run on the IBM 370 (described in Part
I111).

-14-

MCCS -- A Multi-Computer Communications Systen

vhich there is no direct 1link. This is accomplished by
sending it to a computer to which there is a direct link,
and it has, or can achieve through additional routing, a
link to the desired coamputer.

lgorithmic_Description.

The fcllowing PL/I type algorithm will serve to illustrate
at a high level of atstraction the functions and data
structure manipulation performed by MCCS. Several liberties
have teen taken to simplify the algorithm. For example, it
is assumed that there are two primitives, add and remove,
that perfcrm additions and deletions to linked lists. Also,
the assumption is made that the WE® and "V" primitives as
described by Dijkstra [DIJ65] are availaktle. An additional
primitive, "CP", is used and is an extension to “B" that
causes a conditional F to be performed. That is, if the
sepmaphcre used with CP is positive, a normal F is performed
and a return code set to 2zero. If the semaphore is not
positive, the CP only sets the return code to 1.

Initialization:procedure; _

g;; 1 MSGELOK based MSGPTR, /*control blocks contained*/
NEXT ptr. /*on SEND_LIST and RECV_LIST*/

TO_ILC char,

FRCM_ID chac,

MSG_ID integer,

MESSAGE char;

MMM

5
fi

ERCBELOK based PRCPTR, /*control blocks contained*/
NEXT ptr, /%*on WAIT_LIST*/

TO_ID char,

FRCM_ID char,

USER_ID integer,

MESSAGE char,

STATUS char,

OP char,

NONNNMNNNNODMN -2

— e e e ol e e

&
=

LNEBELOK based LNEPTR, /*Line Control Blocks*/
NEXT ptr,

ID char,

STATE flag,

MSGETR ptr,

LAST_FROM_ID char,

——— i r——

DEVICE numker;

[SW SN SN SN SN .S R

-15-

MCCS -- A Multi-Computer Communications Systenm

/*pointers to head of WAIT/SEND/RECV_LIST*/
dcl WAIT_LIST, SEND_LIST, RECV_LIST ptr;

/*semaphcres to gain exclusive access to above lists*/
dcl WAIT_LOCK, SEND_LOCK, RECV_LOCK semaphore;
/¥senmaphore to cause Process-Dispatcher and Message-%*/
/*Sender to be invoked again by Initialization routine*/
dcl WCRK_TO_DO semaphore;

/*semaphore to "allocate" and "free" Luffers*/
dcl BUFF_SEM semaphore;

/¥counter to generate uniqgue MSG_IDs*/
dcl ¥SG_CCUNTER ipteger;
.del ACK, NAK char;

-

WAIT_LIST <- pnul
SEND_IIST <- pul
RECV_IIST <~ nul
MSG_CCUNTER <- 0
WAIT_LOCK <- 1;
SEND_ICCK <- 1;
RECV_LOCK <- 1;
WORK_TIC_DO <~ 0;
BUFF_SEM <- "pumber of available buffers";
ACEK <~ "positive acknowledgement®;

NAK <- "negative acknowledgement®;

—

[
]
-
L
e
L]

we |t li=

other initialization such as checkpoint recovery.

do ferever;
P (WCRK_TO_DO); /*wait until something to do*/
call Process-Dispatcher;
call Message-Sender;

-16-

MCCS -- A Multi-Computer Communications Systen

Process-Dispatcher:procedure;
P(WAIT_LCCK);
PRQPTIR <- WAIT_LIST;

do while ERQPTR ~= pull;
if PROBLOK.OP = 'SEND' then
do;
£find LNEPTR suchthat LNEBLOK.ID = PRQBLOK.TO_ID;
if LNEPTR = pnull then ,*invalid TO_ID*/
do;
PRQBLOK.FROM_ID <- blanks;
V(PROBLOK.SEN) ;
goto next; /*done with this PRQBLOK#*/
end;
else;

if return_code = zero
do;

MSG_COUNTER <- MSG_COUNTEE+1;

PRQBLOK.MS5G_ID <- MSG_COUNTER;

if PROBLOK.USERID = zero then

~ PROBLOK.USERID <~ MSG_COUNTER;

MSGPTR <- addr buffer;

MSGBLOK <~ PROBLOK, by nanme;

P (SEND_LOCK) ;

add MSGBLOK to SEND_LIST;

V(SEND_LOCK) ;

V (PRQBLOK .SEM) ;

then

L]
/*leave process suspended#*/

-17-

MCCS -- A Multi-Computer Communications Systen

e do; /*must be request to RECV*/
find LNEPTR suchthat LNEBLOK.ID = MSGBLOK.FROM_ID;
if LNEPTR = null then *invalid FBOM_ID*/
goto resume; /¥go restart process*/
P(RECV_LOCK) ;
MSGETR <- RECV_LIST;
do while MSGPTR" == null;
if PROBLOK.TO_ iDp = uSGBLOK.TG_ID then
if PROBLOK.FROM_ID = MSGBLCK.FROM_ID or
blanks then
if PROBLOK.USER_ID = MSGBLOK.USER_ID
zZero then

——

else 4
n

[[e]
g

do;

PRQELOK <- MSGBLOK, by nanme;
remove MSGBLOK from RECV_LIST;
V (BUFF_SEN) ;

V(RECV_LOCK) ;

V (PRQBLOK.SEHM) ;

goto next;

]
else; /*wrong message¥*/
else; /*vwrong message¥/
else; /*wrong Frocess*/
MSGPTR <- MSGBLOK.NEXT;

end; /*search all MSGBLOKs¥/
V (RECV_LOCK) ;
if PBQBLOK STATUS -= zero then /*won't wait#*/
do
resune: PRQBLOK.FRCM_ID <- blanks;
V (PRCBLOK.SEN) ;
end;
else; /*leave process suspended*/
end;
next:;
PRCETR <- PROELOK.NEXT;
end;
V(WAIT_LOCK):
end Process-Dispatcher;

= f

MCCS -- A Multi-Computer Communications System

P(SENL_LOCK) ;
MSGPTF <- SEND_LIST;
do while MSGPTR ~= null;

find LNEPTR suchthat LNEBLOK.ID = MSGBLOK.TO_ID
if INEELOK.STATE = available then
dg;

write formatted MSGBLOK to LNEBLOK.DEVICE;

NL_LCCK);

en
v
end Message-Sender;

2 v icu

(
en

P(EUFF_SEN); /*suspend ourself if no Luffers¥*/
PRQPTR <- addr buffer; ,*get address of available buffer¥*/
PRQBLCK.TO_ID <- TO_ID; ,*build PRQELCK from parms¥*/
PRCBLCK.FRCHM_ID <- ™ID of calling process";

PROQBLOK .MESSAGE <- MESSAGE;

PRCBICK.USER_ID <- USER_ID;

PROBLGK.OP <- Y'SEND?';

PRCBICK.SEM <- 0;

P(WAIT_LOCK) ;

add FFCBLCK to WAIT_LIST;

V(WAIT_LOCCK);

V(WORK_TO_DO) ;

P(ERCELOK.SEM); /*wait until PRQBLOK acted upon¥*/
P(WAIT_LOCK);

remove FRCELOK from WAIT_LIST;

V(WHAIT_LCCK);

V(BUFF_SEMN) ;

end SEND;

-19-

MCCS -- A Multi-Computer Communications Systea

RECV:procedure (FROM_ID,MESSAGE,MSG_ID,USER_ID,STATUS)
: Ieentrant;

P(BUFF_SEM); /*reserve buffer for MSGBLOK*/

PRCPTF <- addr buffer; /*get address of available buffer*/

PRCBLCK.TC_ID <- "ID of calling process"%;

PROBLOK.FROM_ID <- FROM_ID;

PRCBLCK.USER_ID <- USER_ID;

PROBLOK.STATUS <- STATUS;

PRCBICK.CE <~ 'RECV?';

PRQOBLOK.SEM <- 0;

P(WAIT_LCCK);

add PRQBLOK to WAIT_LIST;

V(WAIT_LOCK) ;

V(WORK_TO_DO) ;

P(PRQELOK.SEM); ,*wait until PRQBLOK acted upon¥*/

P(WAIT_LOCK);

repove PRQBLOK from WAIT_LIST;

V(WAIT_LOCK);

V(BUFF.SEMN) ;

end RECV;

LR]

Message~Receiver:procedure;
£ind INEFTR for “interrupting TP line";
if "I/C error reading message" or
“block check sum incorrect"™ then
do; .
if LNEBLOK.STATUS=awaiting_response then
do; '

LNEBLOK.MSGETR <~ null; /*so message resentx/
V (FORK_TO_LO); /*when the Message-*/
return; /#*Sender is called again¥*/

end;
g£lse do;
write NAK to LNEBLOK.DEVICE;
return;
end;
end;

-20-

MCCS ~- A Multi-Computer Communications Systen

else dc;
if "ipput buffer® = NAK or ACK then
do;
if LNEBLOK.STATUS -~= awaiting response then return;
if "ipput buffer" = NAK then /*resendx*/
) do;
LNEELOK.STATUS <- available; s*free line%/
LNEBLOK.MSGPTR <- pnull; /*for use by the*/
V(HORK_TO_DO); /*Message-Sender*/
return; /*so message can be resent*/
end;
else do; /*message was accepted so release it#*/
MSGPTR <- LNEBLOK.MWSGPTR; /*address of MSGBLOK*/
P (SEND_LOCK) ;
remove MSGBLOK from SEND_LIST;
V(SEND_LOCK) ;
V(BUFF_SEM); /*make buffer available again*/
LNEBLOK.STATUS <- availakle; /*release linex*/
LNEBLOK,MSGPTIR <- null;
V(WORK_TO_DO); /*may be more messages to send*/
return;
€nd;
end;
else dc; /*%ve have received a message¥/
CE(EUFF_SEM); /¥is there a buffer to have*/
if return_code = zero then
do;
MSGPTR <- addr buffer;
MSGBLOK <- "reconstructed input buffer®;
P (RECV_LOCR) ; '
add MSGBLOK to RECV_LIST;
V(RECV_LOCK) ;
write ACK to LNEBLOK.DEVICE;
V (NORK_TO_LO); /*may be a PRQBLOK waiting*/
Ieturn;
end;
else do; *don't have buffer for the message*®/
wIite NAK to LNEBLOK.DEVICE; /*ask to resend*/
return; /*maybe we will have buffers then*/
end; -
end;
end;
end Message-Receiver;

-21-

MCCS -- A Multi-Computer Communications Systesn

Message_Format.

The format of the messages that are transmitted between
conputers by MCCS is shown in Figure 5. Although certain
contrcl characters must be added and reformatting done based
on the line protocol reing used (discussed in the next two
secticns), this format serves as the basis for all MCCS
message communication, In the following defipnition of the
fields in MCCS messages, "sending process" means the process
that called SEND to send a message, M“receiving process" is
the prccess that the message was sent to, and "sending MCCS®
is the MCCS that handles the reguest to send the message and
suksequently transmits the message to the ‘"“"receiving MCCS"
which accepts the message and makes it availatle for
retrieval by the receiving process. The parameters and
their functions are as follows:

TO_IC and FROM_ID are the six character (in ASCII code)
identifiers that specify the computer and process
the message was sent to and from, respectively.
The last four characters of the TO_ID and FROM_ID
(the process-id) - must contain at least one
non-blank character when sending messages between
processes., This 1is necessary because a TO_ID or
FEOM_ID ending in four blanks is used when MCCS on
cne computer needs to send a message to MCCS on
another computer. : ‘

MSG_ILC is a 16 bit integer that uniquely identifies the
message within one MNCCS. (The messages are
sequentially numbered with the prolklem associated
with MSG_ID overflowing and no longer being unique
ignored since it happens only once every 2*%*16 - 1
Tessages.)

USER_ID is a 16 kit field assigned Ly the process which
sent the message by using the USER_ID parameter in
the call to SEND.

FLAG1 is a 8 bit field for internmal use by the MCCS
sending the nmessage. It is 1ignored by the MCCS
that receives the message. ’

FLAG2 is a 8 bit field used for communications between
the sending and receiving MCCSs. Figure 6 gives a
further breakdown of this field. F, when #niu,
indicates this is a "fake" message and is used
wvhen one of the other FLAG2 bits must bLe set and
nc "real" message is available to send. W is used
with BSC protocol and, when "1", peans that the
MCCS sending this message cannot accept another
message for a while (no buffer space for example).

- P

MCCS -- A Multi-Computer Communications Systenm

byte
offset 0 2 4 5
r]
0 | TO_ID |
I . |
6 | FRON_ID |
| . T T T i
12 | MSG_ID | USER_ID |[FLAG1|FLAG2|
I 1 L 4 I
18 | |
| message text |
/ 4
/ /
| (128 bytes) |
i ' |
[r 4
U2 | |

Figure 5: Message Format

r-r e T rTTT T T T
IFIW[D|U| seg# |
el b i1 _A4_Lt 1 _J

Piqure 6: PFLAG2 Bit Definitions

When the receiving MCCS gets a message with the W
tit on, then it =should not send a message in
response. D, when set to "1iv, indicates that the
sending MCCS wishes to break the communications
connection (disconnect). The receiving MCCS will
csend back a positive acknowledgement and disable
the TP 1line on its end. When the sending MCCS
receives the positive acknowledgement it disables
the TEF line on its end and the disconnect sequence
is complete, U is currently unassigned. The four
kits that make up "seq#" are currently not used
kut should be reserved for BSC sequence numbers
pessages if full duplex transmissicn is supported
in the future,

The message text is 128 bytes long and its format and
content are not examined by MCCS, i.e., it is

-23-

MCCS -- A Multi-Computer Communications Systen

treated as rkinary data. No translations from one
character code to another (ASCII to EBCDIC for
example) are performed when transmitting the
tessage from one computer to another. This is
necessary because MCCS does not kncw which parts
cf the message are "characters" (they can be
translated) and which parts are binary data (they
cannot). If any translation needs to be
performed, it must be done by the sending or
‘receiving process with prior agreement with the
other process. Processes wishing to sent
information in lengths of other than 128 bytes
should reformat the information into 128 byte
“Elocks" and include sufficient control
information with the message text to allow it to
te reconstructed by the recipient process.

Asynchronous Line Proteccol.

This section defines the protocol 'used bty MCCS when using
asynchroncus (ASC) TP lines. MCCS ASC protocol uses THX
line code and lies within the [protocol defined for
copmunication with Common Carrier TWX Terminals Model 33/35
(see section entitled "Telegraph Terminal Control Type II®
in [IEMO4] for technical specifications). This allows
existing hardware and software that support teletype-like
devices to be used in the implementation of MCCS,

Since several characters(13) have special 1line control
fiunctions, all occurrences of these characters pust be
renoved from the message (Figure 5) before it is sent. This
is referred to as making the message transparent. It is
done Lty replacing each occurrence of one of these characters
by the DLE (X'10') character and ismediately followed by an
encoded ncn-control version of the character, (Note that
this now makes ©CLE a control character.) Taktle 1 gives the
replacement characters for each control character. MCCS
also computes a very simplified version of a Block Check Sum
(BCC) and appends it to the end of the message (the ECC must
also be made transparent). The BCC 1is computed as the
algetraic sum of all the individual characters im the
message (after the replacements noted atove have been made)
and stored as a 16 bit integer following the last byte of
the message. Finally, a carriage return (X'0D' or X'8D') is
added after the BCC, The message that is sent, therefore,

—— - — — - an -

13 Phese characters are: X'04°¢, X'OS'} X'gD', XY7F', X'84",
X*'g5, X'8p*, X'DE', and X'FF'.

~20-

MCCS -- A Multi-Computer Communications System

L L Ll
CHAR |REPLACEMENT| CHAR |REPLACEMENT
1 1 4

i
X840 Xv'1015¢
X'85'] X'1016"
X'8D'f Xv1017¢
X'DF'| X'1018"
X'FF'| X'1019¢

Rl
XeOo4vyp Xv10171°
X'05'| XxX*1012¢
X'opry X'1013
X*10'y X*1010°
X*7FY| Xv1014°

o S S G — — p—)
o s ey —
——_-—‘—J

L

Table 1: Control Character Replacement

may ke from 147 to 293 bytes 1long.¢14) The transparent
message is then converted to TWX 1line ccde (the bits within
each tyte are reversed: B*'10101010* becomes B'01010101*,
etc.) and transmitted on the TP line. The receiving MCCS
then gces through a similar process, only in reverse order,
to convert the message that was received back to the form
shown in Figure 5. A new BCC is computed when the message
is being reconstructed and compared with the BCC that wvas
received to determine if any line errors occurred.

The ncrmal state for MCCS in relation to an ASC 1line is
"ready to receive", This means MCCS is ready to accept a
message from the MCCS on the computer connected to the other
end c¢f the TP line, When a message is received, it is
re-formatted as noted alkove. Several checks are then made
to verify the message was received correctly: the BCC is
reconmputed and verified, and the TO_ID and FROM_ID fields
are checked (refer to the previous discussion of the
Message-Sender). Either of these conditions will cause a
negative acknowledgement to be returned, indicating the
ressage should be resent.

An acknowledgement message is then constructed so that it
may be returned to the sending MCCS to indicate the message
was received correctly or should be resent, An
acknowledgement message is Jjust a special case of the
general message shown in Figure 5, The TC_ID is set to the
two character 1D (and padded with four klanks) of the

A -

14 The message takes 144 bytes, the BCC two bytes, and the
carriage return one byte. In the worst case {(when all
the characters in the message and BCC are control
characters) the message takes 288 Lkytes, the BCC four
tytes (if both bytes of the BCC form control
characters), and one byte for the carriage return.

- -25-

MCCS -- 1A Hulti-Conpufer Communications Systen

computer which sent the message and the FRCM_ID is set to
the two character ID (again padded with blanks) of the
computer which received the message. The MSG_ID is set as
with any other message and the USER_ID is set to zero. The
first kit of the message text 1is used to indicate whether
this acknowledgement indicates the message was received
correctly or should be resent., If this bit is set to "0W,
the message was received correctly, if it is "i®, the
message should be resent. :)

When FCCS has a message to send, the message is formatted as
descrited above and transmitted on the appropriate TP line.
If any 1,0 errors are detected when transmitting the
message, up to 16 attempts are made to re-transmit. 16
consecutive I/0 errors are considered to indicate some type
of permanent error condition and the line is disabled and
the ccmmunication link broken with that computer.

Once the message has been sent, MCCS prepares to receive the
acknowledgement for the message. It 1is possiltle under some
unusual circumstances for the message to appear to have been
transritted correctly, mostly due to abnormal conditions on
the TF lines, yet it is never received by the receiving
MCCS. Therefore it is necessary to have some paximum time
that MCCS will wait to receive the acknowledgement message.
This time is somewhat arbitrary and should normally be in
the range of five to 30 seconds, depending on the expected
response time for the computers and TP 1lines involved. If
no acknowledgement is received in this time, the message is
resent up to 16 times Lefore the condition 1is considered
unreccverable, .
r

When the acknowledgement is received, the first bit of the
message text is checked to see if the message was received
correctly or should ke resent. If the bit is "in, the
message 1is resent (again, 16 retries are made before
considering the error permanent). Ctherwise the message was
received correctly so it may be removed from SEND_LIST and
another message formatted for transmission (if one exists).

It is possible that a message will ke received while waiting
for an acknowledgement. If this happens, the message is
accepted and acknowledged as normal and the message that was
originally sent is then resent.

D

MCCS -- A Multi-Computer Communications Systenm

inary

— -

Synchronous_Line Protocol.

MCCS ESC protocol provides for a very efficient form of
copnunication which utilizes high-speed BSC TP lines with a
high 1level of transmission error detection and recovery,
(The reader unfamiliar with general BSC terminology and
protcccl is referred to [IBMO1]) as this topic will not te
discussed here.)

MCCS BSC protocol is based on that wused by IBM's HASP
MULTI-LEAVING.[JEM06) Unlike the ASC protocol described
above which wuses a contention(15) system, MCCSs using BSC
protocol alternate sending a message (or an acknowledgement
message if there is no message availakle) and awaiting the
respcose, HASP calls this "handshaking" since the two
computers are always kept in synchronization, both knowing
which has the line for transmitting and which for receiving.

There are three basic data formats that are transmitted with
MCCS BSC protocol.(16) The first of these formats is used to
transmit the message shown in Pigure 5. Since there ‘may be
some characters within the message that have BSC dontrol
functions, BSC transparent-text mode is used in transmitting
all MCCS messages., The format of the message, when
transmitted on BSC lines, is then: :

DLE,STX,message,DLE,ETY,block-check-sum

with all cccurrences of DLE (X'10'} within "message'™ being
replaced by DLE,DLE and with synchronization characters
(DLE,SYN) added as as needed (described in [IEM01]) to
establish and maintain bit and character phase. Compression
of the message is not currently defined for MCCS. '

The second format is the positive acknowledgement sequence,
ACKO (SYN,SYN,DLE,X'70' including sync and pad characters).
ACKO is used to acknowledge the correct receipt of the last

S —— - — -

15 Contention means that either computer may arbitrarily try
tc transmit a nmessage, with the possibility that both
may reguest the line at the sapme time. Presumably the
simultaneous reguest can be resolved by repeated
retries of transmitting the message.

16 The control characters, synchronization and pad

' characters, and block check sums used Ly MCCS conform
to those defined in [IBM01] and for the "Synchronous
Lata Adapter - Type II* in [IBMO3)] for EBCDIC
transmission code. Since these control sequences are
required for all BSC transamission, they will not be
shown in the description of MCCS ESC protocol.

-G P

MCCS -- A Multi-Computer Communications Systenm

message sent when there is no message available to transmit
back to serve this purgpose.

The third and £fipal format is that of the negative
acknowledgement, NAK (SYN,SYN,NAK,X'FO' including sync and
pad characters). NAK is used to indicate the message just
received was not received correctly due to I/0 errors
reading the message or an incorrect tlock check sum and that
"it consequently should be retransmitted. NAK is also sent
if no message is received within a predefined timeout period
(usually 30 seconds to one minute). The timeout avoids the
deadlock situation where one MCCS sends a message which is
completly lost during transmission and both HMCCSs are
relegated to waiting for a message and resgonse that will
never appear. i

Once the communications link has Lteen established between
two MCCSs, they simply take turns sending messages, .if any
are available, transmitting ACKOs otherwise, and waiting for
the respense, Before this handshaking can commence,
however, one MCCS must send the first message and the other
MCCS wait until this message 1is received before .-actual
message transmission can begin. For this purpose, ofie HCCS
is designated as a "hcst" and the other a "remote",: (With
dial-up communication 1lines, the MCCS on the end that
actually "dials" is considered to be the remote, This
causes the host to wait until such time that the MCCS
dialing in 4indicates it is ready for transmission. When
leased communications 1lines are used, the host-renote
desigpation is somewhat arbitrary. In any case, an
implementation of MCCS should support BSC links in both host
and remote mode, preferably being changeable by operator
command.) The remote MCCS then sends the first message when
it is ready to begin conmunication. Likewise, the host
waits until this first message is received (timeouts are not
aprlicable here) before sending any messages destipmed for
the remote MCCS. Other than in determining which MCCS sends
the first message, a host and a remote MCCS are identical.

As mentioned above, two MCCSs carry on a "conversation”
which consists of sending a message and awaiting a respanse.
To avoid unnecessary line turn-arounds and delays, a message
destined for the MCCS which sent the message just received
may Lte returned as a postive acknowledgement for that
message. If each MCCS has messages for the other, no
"ypnnecessary" data therefore need be transmitted. If a MCCS
does not have a message to return, then the ACKO must be
transritted to serve as the acknowledgement. (A NAK will of
course be returned if the message should ke resent.) 1If
neither MCCS has messages to send, they simply exchange
ACKOS to maintain proper synchronization. This can easily
consure a considerable amount of both CEU and I/0 resource
if an ACKO is immediatly returned in respcnse ta a ACKO.

-28-

MCCS -- A uulti-Conpuier Communications Systea

Therefore, if a MCCS receives a ACKO and has nothing to
return but ACKO, it will wait for 2 seccnds. At the end of
2 seconds, a message 1is transmitted if one has Dbecome
available, otherwise the ACKO is sent. This allows for the
two MCCSs to maintain synchronization yet greatly reduces
the overhead involved.

The section entitled "Message Format" described a bit within
the FIAG2 field of the message which has special meaning in
BSC transmission. This is the "W§" bit., When it is one, the
MCCS which sent the message is not capable of accepting a
message in response (unless it 1is a "fake" mnmessage). The
MCCS which receives a message with this bit on should then
wvait z seconds and respond with an ACKG (or "fake" message).
If the next message received has this kit on again, MCCS
again waits two seconds and responds with a ACKO. This
process is repeated until a message with the kit off, ACKO,
or NAK 1is received at which time normal communication may
resune.

Several useful extensions were mentioned in the preceding
definition of MCCS. Two of them, allowing processes to send
and receive messages from a process on the same computer and
one level of indirection in message routing should be
included in all but the most basic MCCS implementations.
Two others, multiple 1levels of indirection in message
routinrg and message compression in BSC transmission are not
so trivial.

Multirle level message routing requires that a MCCS know
which computer to relay a message to when it does not have a
direct link to the ccomputer which contains the recipient
process. It therefore must know the computer it relays the
message to has such a direct 1link or knows of yet another
computer which does, and so on, until the message finally
arrives at its destination. This may okviously be done by
each MCCS having a set of "routing" tables which indicate
wvhich computer to relay a message to when there is no direct
link available, The problem arises in building and
maintaining this table. If the network of MCCSs is static,
the tables may be established once and left unchanged. This
is generally unacceptatle however, since the network will be
dynamically changing or one of the computers may ke
inoperative and an alternate path needed to Ekypass it. This
means that the MCCSs must be capable of altering the routing
table dynamically by communicating changes in the network
configuration, There is currently no facility for this
(except that ‘“inter-MCCS" messages are supported by having

-29-

MCCS -- A Multi-Computer Communications System

the last four characters of the TO0_ID and FROM_IC fields
being blank), although its merits are worthy of additional
evalvation to determine if it should be added at some later
tipme.

A seccnd difficult extension, compression of BSC messages,
causes the transmission time required to send a message to
be reduced by cutting down on the numker of characters that
are actually sent. There are several algorithms [IBM06] for
doing this, although the tasic idea is to replace multiple
consecutive occurrences of a particular character with a
single occurrence of that character and a count of the
number o¢f times it occurred in the original message.
Control information is then placed at the Leginning of the
message to 1indicate where these character-count fields are
located. If a majority of the messages being transmitted
contain repetitive character sequences, compression may save
a considerable amount of transmission time. Again, there is
currently no facility in MCCS to do this, however it is
worth further investigation.

There are obviously many more extensions that can be made to
MCCS. Supporting £full BSC transmission, adding additional
line rrotccols, allowing varing 1length messages, and more
sophisticated user-level primitives are all possibilities.
But one must not lose sight of the original MCCS okjective
stated in the Introduction: That H¥CCS should remain sinmple
enough that it may be implemented on nearly any computer,
If tco many extensions are added, the system becomes so
complex that this objective is no longer obtainable. <

Ty

L

-30-

MCCS -- A Multi-Computer Communications System

III MCCS

g
L
~
1w
~J

MCCS/370 is the name given to the set of routines, written
in 370 assembler language, which comprise an implementation
of MCCS on an IBM Systems/370 Model 158 running VM/370 with
CMS.€17) This part then describes that implementation.

Since it takes a great deal of effort and space to descrite
all the IBM hardware and software components utilized by
MCCS/370 (evidenced by the enormous number of IBM manuals
that do this), no attempt is made to duplicate this
information here.(18) References to specific IBM manuals
will te given when appropriate, however a general knowledge
of IBM terminology, the 370 instruction set and I/0, and the
CP and CMS command language is almost a prerequisite for
readipg this section., The reader that is unfamiliar with
the 370,158, the 3705 conmunications controller, 1052
conscles, or CP and CMS is therefore advised to at least
review the appropriate introductory IBM manual listed in the
Bitlicgracghy.

Operating Environment.

MCCS/270 is designed to run stand-alone in a virtual machine
sipulated by CP. This machine must have at least 36K(19) of
memory, a virtual console, a virtual printer, a virtual card
reader at device address X'00C', and a virtual card punch at
X100Dp', Additionally, virtual asynchronous TP lines will ke
defined by HMCCS as needed. "Real" BSC TP 1lines pust be
attached to the MCCS virtual machine by the VM systenm
operator since they are not simulated Ly CP.

Because MCCS/370 runs stand-alone in its own virtual
machine, not under the control of another operating systen,
the processes sending and receiving messages must execute in
another virtual machine. Part of the MCCS/370
implerentation therefore includes the routines to provide a
means of communication between the MCCS virtual machine and
the virtual nmachines executing these processes, This

- ——— — —— -

17 The implementation and testing of MCCS/370 was done under
Felease 2 PLC 13 of both CP and CHMS.

18 Not tc mention the problems associatated with keeping
duplicate documentation appearing in many places
updated concurrently.

19 This memory is used to hold the MCCS code, any additional
gemory is used to provide buffer space for messages.

- -31-

MCCS -- A Multi-Computer Communications Systen

conmupication is accomplished hj using virtual Channel To
Channel Adapters (CTCAs) to move data ketween the virtual
machines,

Routines to implement the SEND and RECV primitives have been
written tc allow processes running under CMS to send and
receive messages using MCCS. These routines dynamically
define a CTCA, couple it to MCCS/370s CTCA, and transfer the
approgpriate information to cause the send or receive request
to be performed. The CTCA is then detached and the process
continues execution.

MCCS/370 is designed so that it may run disconnected, that
is, with no real operator's console and, therefore, no
operator intervention. Any unexpected program interrupts or
unreccverable error conditions during MCCS execution are
detected, a dump of the virtual machines' storage taken (for
later problem analysis), and MCCS is restarted.

Checkpointing is accomplished by writing the information
contained in WAITLIST, SENDLIST, and RECVLIST (the MCCS/370
nases for the WAIT_LIST, SEND_LIST, and RECV_LIST of Part
II) to the virtual card punch (which is SPOOLed to '"*") each
time they change. Part of MCCS initialization therefore
involves examining the spool files in the virtual reader for
checkpoint data, and recovering it if it exists.

HCCS/270 is started from CMS by using the VN/370 procedures
for generating a CP or CMS system. [IBM12] [IBM10] The
VMFLCAL routine is wused to punch the 1IFL-able loader,
DMELLOOE, and the TEXT decks which make up MCCS/370. The
virtual card reader is then IPLed <causing DMKLDOOE to be
loaded which in turn loads MCCS and passes control to the
MCCS virtual machine initialization routine. .
When ¥CCS/370 must restart itself after a program failure,
an IPL command is executed which causes CMS to be loaded and
then VMFLOAD invoked to start the MCCS loading procedure as

descrited above.
o

Flow _cf Control.

The flow of <control in MCCS/370 followes very closely that
given in Part 1II for the general MCCS. Figure 7 shows the
MCCS,s370 routine names and execution flow. The data
strutures in MCCS/370 also parallel those given in Part II.
PRQBLOKs are contained on WAITLIST, MSGBLOKsS on SENDLIST and
RECV1IST, and LNEBLOKs (the MCCS/370 name for Line Control
Blocks) describe the TP lines.€20) A very brief description
of the function of each NCCS routine will be given at this

-32-

MCCS -- A Multi-Computer Communications Systenm

CMKLDOOE
|
{
v (entered from PSW swap
s T 4 on interrupt)
i | 7/
| MCCINI| /
r >1 | <—+ T |
b e d			
-			
l			
v v v	v 3		
3 T T			
MCCCON		MCCSCH	
1N e IS S SN B I S			
AA AA	A		
I ‘ i1		5	
r 4	gt	te——1	*
I	l	I {	
v v	v 'R b		
—]		:	i
KCCLSP		MCCSHD	
l			(I
L -	ISE——	l	SO
A l .			
I	P		
by			
v v			
MCCTLC		MCCFLC	

Figure 7: MCCS/370 Module Diagram€21)

—— —— - —— ——— D — - -

20 These control blocks are listed in Appendix E (Page 81).

21 MCCCKP, the checkpoint routine, is not shown in order to
simplify the diagram., It is called by MCCBSC, MCCCAI,
PCCDSE, and MCCSND when they mcdify any of the data
structures.

=43

MCCS -- A Multi-Computer Communications System

time. A pore detailed discussion of the routines operation
and interaction with other routines is given later.
Appendix A (Page 57) contains a more technical synopsis of
each routine (entry points, entry conditions, external
references, register usage, etc.).

MCCBSC is the BSC line driver, It handles all interrupts
for BSC lines, placing incoming messages on SENDLIST
or RECVLIST, selecting messages from SENDLIST to be
transmitted, and handling BSC I/0 errors.

MCCCAI is the Channel to Channel Adapter interrupt handler.
Attention interrupts on the channel indicate <that a
prccess in another virtual machine as issued a SEND
or RECV request and the request description should be
read from the channel. MCCCAI then reads this
description and adds it to WAITLIST.

MCCCKE is the <checkpcint routine. It is called when
WAITLIST, SENDLIST, or RECVLIST has teen changed and
therefore needs to be re-checkpointed. The

information is written to the virtual card punch by
MCCCKP so that it may be recovered after a systenm
failure,

MCCCCN is the virtual machine's console handler. All
console interrupts cause this routine to be invoked.
The operator command is read, scanned, and processed
as described in the section entitled “Cperator
Commands"™,

MCCCWR executes in the virtual machine with the process that
wishes to use MCCS/370. It performs all the Channel
to Channel Adapter I/0 needed to communicate the SEND
or RECV request to the MCCS virtual machine.

MCCDSE is the Process-Dispatcher of Fart II. It examines
the PRQBLOKs on WAITLIST taking messages to be sent
and placing the mnmessage on SENDLIST and notifing
MCCCWR (via Channel to Channel Adapter I/0) that the
prccess may continue. Requests to receive a message
are handled in a similar manner by searching RECVLIST
for the requested message and returning it (through
MCCCWR) to the fprocess if found.

MCCPLC is called to convert a message that has just been
received on an asynchronous TP 1line back to the
standard message format. This includes converting
frcm TWX line code, removing transparent character
sequences, and validating the Eklock check sun.

-34=-

MCCGSI

MCCENLC

MCCINI

MCCRUM

MCCSCH

MCCSNL

MCCSUE

MCCTId

MCCS -- A Hulti-Conpuier Communications Systenm

is called to obtain the spool file id number of the
spool file currently active on the virtual punch.
This spool id is used by MCCCKF to purge an existing
version of checkpoint data when a updated copy is
created.

is a routine that serves as an indication of the
highest memory address occupied by MCCS routines., It
contains no executakle code. Because it is the last
routine that 1is loaded during MCCS initialization,
its address may ke used to mark the first location
available for buffer allocation.

is the first MCCS routine to gain control after
Initial Progran Load (IPL). It perfornms the
initialization necessary to make the virtual machine
suitable for ezxecuting other MCCS routines. This
includes such things as setting up the PSWs in the
nucleus so that interrupts may ke handled properly.

executes in the virtual machine with a process
utilizing MCCS. It is invoked when a process
executes a RECV request, It takes the process's
parameters and places them in a PRQBLOK and calls
MCCCWR to communicate the request to the MCCS virtual
machine.

performs the MCCs related initialization. Any
existing checkpoint data is used to build the initial
contents' of WAITLIST, SENDLIST, or RECVLIST. The
logic to handle unrecoveratle error situvations
(including MCCS restart) is contained in MCCSCH. The
loop that repeatedly calls the Process-Dispatcher
(MCCDSP) and the Message-Sender (MCCSND) when their
services are required is also part of MCCSCH's
function.

is responsible for performing the duties assigned to
the Message-Sender of Part II for messages that are
transmitted on the asynchronous IP lines. Messages
contained in the MSGBLOKs on SENLCLIST are written to
the appropriate TP 1line when it is available for
transmission.

executes in the virtual wmachine with the process
which wutilizes MCCS/370. It is invoked when the
process issues a request to SEND a message. MCCSUM
operation parallels that of MCCBUM described above.

handles timer (Fkoth interval and time of day)
interrupts for the MCCS virtual machine. MCCTIN also
provides the capability for another MCCS routine to
request that control be passed to a certain location

-35-

MCCS -- A Multi-Computer Communications Systen

after a srecified interval of time has elapsed.

MCCTLC is the <counterpart of MCCFLC. It is called to
prepare a message for transmission on an asynchronous
TP line., The control characters in the message are
replaced by the proper transparent sequence, the
block check sum calculated, and the message converted
to TWX line code.

MCCTPI is the interrugt handler and Message-Reciever for
asynchronous TP 1lines. Incoming messages are added
to RECVLIST (or SENDLIST if not for a process on the
370) and the proper response constructed and added to
SENDLIST so that it will Fe returned by way of
MCCSND.

MCCINI receives control from DMKLDOOE after all the MCCS
routines have been 1loaded into memory. This routine is
responsible for all the initializaticn of the MNCCS virtual
machine plus performing the first 1level of interrupt
handling.

MCCINI begins by setting the program new ESW to cause a
disabled wait PSW to be loaded if a program check occurs
during initialization (the right half of the PSW will
contain ' EGH'). Virtual console spooling is then started
so that a log may be kept of all MCCS activity. The virtual
console address is then obtained from CP using DIAGNOSE
X'0024"' apd stored in MCCSECT.¢(22) The MCCS identification
message is then written to the console along with the
currernt date and tinme.) '

The program new ESW is then temporarily replaced so that the
MCCS virtual machine storage size may be obtained. This is
done ty entering a loop which does am ISK instruction for
each UK page until an addressing interrupt occurs or all 16M
of mencry has been examined. The calculated memory size is
then stored at location FREEHI in the nucleus for use by the
storage management routines and the program new PSW is
restored. The address of routine MCCEND, a dummy routine
which is the last routine loaded by DMKLDOOE, is rounded up
to the next highest page boundary and stored at location
FREEHWM to indicate the start of free storage.

The restart, external, SVC, and I/0 new PSWs are then set to

S ————— ——— ———— -

22 MCCSECT is a DSECT (CSECT 4in MCCINI) which contains
information that is shared by all MCCS routines. This
includes things like the pointers to WAITLIST,
SENDLIST, and RECVLIST and all the LNEBLOKs. All
routines keep the address of MCCSECT in register 9.

-36-

MCCS -- A Multi-Computer Communications Systen

cause control to be passed to the afppropriate 1location
within MCCINI when one of these interrupts occurs, The
machine-check new PSW is set to cause a disakled wait PSH to
be loaded (the right half of which contains ' MCK') since a
machine check should never occur in a virtual machine. The
address of MCCSCH 1is then obtained and control transferred
to it so the MCCS related initialization may be performed.

When a program restart PSW swap occurs, control passes to
label BESTART in MCCINI. A SVC 255 is then issued with a
ABENL code of “"RESTRTY" (see the definition of SVC 255 in
MCCSCH) which causes a dump to be taken and HCCS to be
restarted.

An external interrupt PSW swap causes control to be passed
to latel EXTERNAL in MCCINI. If the interrupt code in the
external old PSW is X'0004' (caused by issuing the CP
EXTERNAL command), the wait bit in the external old PSW is
turned off (if on). This will cause MCCSCH to call MCCDSP
(the EFrocess-Dispatcher) and MCCSND (the Message-Sender)
Jjust as if one of the interrupt routines had "POSTED" MCCSCH
(this is further explained in the description of MCCSCH
which follows). An external interrupt code of X'0080' (the
interval timer) or X'1004' (the time of day clock
comparatecr) cause MCCTIM to be called to process it. all
other external interrupts are ignored.

The ESW swap that happens when an SVC instruction is.
executed causes control to be passed to label SVC in MCCINI.
If the SVC code in the SVC old PSW is 255, control is passed
to entry-roint SVC255 in MCCSCH. SVC 0 and SVC 1 are used
to allocate and free storage, respectively, and are
described below. Any other SVC code is considered invalid
and, if detected, causes control to be passed to entry-point
SVCXXX in MCCSCB for processing.

A11 requests to allocate and free storage manipulate fixed
size tlocks. This is possible because storage is allocated
only to hold a MSGBLOK or PRQBLOK which are very close to
the same size. A linked list is maintained of all the free
blccks of storage so that a block may be removed from the
list, its address returned in register 1, and the condition
code set to zero when an SVC 0 is executed. If no buffer is
on the free list a check is made to see 1if the highest
address allocated so far (contained at location FREEHWHM) is
less than the virtual machine size. 1f it is, free storage
is extended by one block and FREEHWH incremented
accordingly. (This technique eliminates the requirement
that all of the blocks in free storaygye be 1linked together
during the virtual machine initialization.,) If free storage
cannot be expanded, control returns with the condition code
set tc 3. To free a block of allocated storage an SVC 1
instructicn is executed with register 1 containing the block

-37-

MCCS -- A Hulti-Coapufer Communications Systen

address. The block is then 1inkéd to the front of the free
list =sc it is available for later reallocation.

An I/C interrupt PSW swap causes control to be passed to
laktel IO in MCCINI. The CSW is 1loaded in regesters 2 and 3
and the device address in register 4. If the interrupting
device is a CTCA, MCCCAI is called. Interrupts from a TP
lines cause MCCTPI to Le called. Console interrupts are
handled by calling MCCCON. Interrupts from any other device
are ignored.

MCCSCH receives control from MCCINI after the virtual
machine intitialization has been completed. MCCSCH is
respersikle for MCCS initialization (including checkpoint
recovery), dumping virtual storage and restarting MCCS when
an unrecoverable error 1is detected, and calling MCCDSP and
MCCSNL tc process PRQBLOKs on WAITLIST and MSGBLOKs on
SEKDIIST and RECVLIST.

MCCS ipitialization begins with the program new PSW being
set to cause MCCSCH to ke entered at lakel PROGINTR when a
prograc interrugt occurs. Then several CP commands are
issued which set the interval timer to reflect real time and
to define the wvirtual CTCAs used for communication with
other virtual machines. B <check is then made to see if
there is a real console associated with the virtual console
(using DIAGNOSE X'0024' [IBM12]). 1If there is, a message is
printed informing the operator that MCCS commands may ,naw be
entered. An enabled wait PSW is then loaded to allow the
operator a chance to enter commands before initialization
continues,(23) T M
Ls

After the operator has entered the desired commands€24) Yor
if there was nc real console) the pointers to WAITLIST,
SENDLIST, and RECVLIST in MCCSECT are zeroed to indicate the
lists are empty. If checkpointing was not disabled by the
operator, the SFBLOKs [IEM08] of the spool files in the
virtual reader are examined by using CIAGNOSE
X'0014°'.[IEN12] If any spool file containing checkpoint
data is found, it is read and used to build the initial
contents of WAITLIST, SENDLIST, and RECVLIST, as
approgriate.

The LMEBLCKS are then processed ome Ly one with each line
that is not drained (set by the MCCS DEAIN command) being
enabled. If the LNEBLOK indicates the line is asynchronous,

——— ——— ————— — A — - -

23 MCCSCH does not resume until a MCCS BEGIN command is
executed to turn off the wait bit in the I/O0 old PSW.

24 These commands are described in the section entitled
wQperator Commands" that follows.,

-38-

MCCS =-- A Multi-Computer Communications Systen

a CFE DEFINE coammand is issued to to define a virtual
teletype line at the appropriate address.(25) A SIO is then
issued to cause the 1line to be disakled and enabled (to
reset it). If the enable is not successful an SVC 255 is
executed with an ABEND code of ®"SCHQO1". BSC lines are
enabled ty a DISABLE, SETMODE, ENABLE channel program to
reset the line and insure it is in ITB mode.[IBMO03] If the
BSC enable fails, a message is logged on the console (the
BSC wmight not have Leen attached yet). The remaining
LNEBLCKs are processed in a similar manner.

MCCSCH then enters a non-terminating loop which repeatedly
calls MCCDSP and MCCSND. First an enabled wait PSW is
loaded at label WAITLOOP. When one of the interrupt driven
routines (MCCBSC, MCCCAI, or MCCTPI) adds a control block to
WAIT1IST, SENDLIST, or RECVLIST that needs to be processed
by MCCDSP or MCCSND, they turn off the wait bit in the I/0
old ESW and place a ®1" at location POSTFLG in MCCSECT.
(The wait bit is also turned off by entering the MCCS BEGIN
command or by a X'0040' external interrupt.) When the I/0
old PSW is subsegently locaded when the routine has finished
its processing, MCCSCH then begins execution at label RETIRY.
POSTFLG is reset to zero and MCCDSE and MCCSND are called.
Interrupts are then disabled (to prevent multiple access)
and FOSTFLG is examined. If it 1is still zero, control
passes to label WAITLOOP to await more work. If it is not
zero, it was posted while MCCDSP and MCCSNL were executing
so they must be called again. Interrupts are enabled again
and a tranch is made to label RETRY.

when a program interrupt occurs during MCCS execution, the
program new PSW causes MCCSCH to be entered at 1label
PRCGINTR. The registers at the time of the interrupt are
stored at locaticn GPRLOG in the nucleus and an ABEND code
of "PRGxxx" is constructed. (xxx is replaced by the program
interrupt code.) Control then passes to label DUMPHCC.

MCCINI's SVC handler, upon encountering an SVC code of 255,
enters MCCSCH at entry-point SVC255. By convention, SVC255
is used as a "die" SVC. When a MCCS/370 routine encounters
an unrecoverable error situation it executes an SVC 255.
The <=ix bytes immediately following the SVC instruction
contain a code identifing the error. (This code is usually
the fcurth through sixth characters of the routine's name
follcwed by a three digit number. See Appendix B on Page
74.) Control then passes to label DUMPHCC.

. —— . ——— . — - — -

25 The device address of the TP 1lines are specifed by two
constants in MCCSECT, LOLINE and HILINE. The
difference in these two constants plus 1 therefore
determines the number of LNEBLCKs in MCCSECT.

-39-

MCCS -- A Multi-Computer Communications Systenm

MCCSCH is entered at entry-point SVCXXX by MCCINI's SVC
handler when an invalid SVC code is encountered., An ABEND
code c¢f the form "SVCxxx" is constructed (xxx is the invalid
SVC ccde) and control passes to label DUMEBHNCC.

When control reaches 1label DUMPMCC, the address of the
instruction at which the error occurred is determined and
it, along with the ABEND code are 1logged on the console.
They are also placed in the title of a CP DUMP command used
to dupp virtual memory to the printer.

The following CP command is then executed to cause NCCS/370
to be restarted:

JEL CMS PARM EX MCCRSC26)

The EIEC named MCCRS then invokes VMFLOAD [IBM10] with a
loadlist EXEC named MCCLOAD and a CNTRL file named MCCR10.
A CP IPL 00C command is then executed to cause the systenm
load deck created by VMFLOAD to be IFLed so that DMKLDOOE
may lcad the MCCS modules.[IBM10]

MCCDSF receives control fronm MCCSCH and examipes the
PRCBLCKS on WAITLIST. It functions in a manner identical to
the Frocess-Dispatcher described in Part II except in how
processes are suspended and restarted. A discussion of the
MCCS/370 routines MCCSUM, MCCRUM, and MCCCWR will be
necessary at this point to expain how process suspension
works. .

When a process (executing under CMS in another virtual
‘machine) wishes to send a message, it issues a call to SEND
(an alternate entry-point of MCCSUM which has been linked in
with the process). The process's parameters are placed in a
PRCBICK with the FROM_ID being set to the USERID of the
virtual machine MCCSUM is running in. The PRQBLOK address
is then passed to routine MCCCHR via call. MCCCWR then
defines a CTCA and couples it to MCCS's(27) CTCA at device
address X'100' and writes the PRQBLOK to the CICA.

The ERQOBLOK contains the USBRID of the virtual machine

- ——— - ——

26 The "“EX MCCRS"™ parm requires a KSU Computing Center

' godification to CMS which causes the EXEC named MCCRS
to be invoked after CMS has been IPLed.

27 The CP COUPLE command that MCCCWE uses must contain the
USERID of the virtual machine to couple to. This
USERID is currently "VMJHB" and wmust be changed if a
different virtual machine is used to run MCCS/370.

-40-

MCCS -- A uulti-cqmpuier Communications System

MCCSUM is executing in as well as the address of the CTCA
that MCCCWR defined so that MCCDSP can later return a
respcnse to MCCCWR. MCCCHR then waits for this response,
therelky suspending the process.

The CICA interrupt handler in MCCS/370 (MCCCAI) reads the
PRCBLCK from the CTCA and places it on WAITLIST, sets
POSTFIG to 1, and turns the wait bit off in the I/O old PSW
(causing MCCSCH to call MCCDSP and MCCSND). Calls to RECV
functicn in a similar manner except MCCRUM is initally
called and MCCCWBR couples to MCCS's CTCA at device address
X* 110",

When MCCDSP needs to restart a process after its PRQBLOK has
been acted upon, it couples the CTCA at address X'120' for
respcrnses to SEND or X'130' for RECV requests, to the USERID
and CTCA address specified in the PRQBLOK. The updated
PROBLOK is then written to the CTCA which causes MCCCWR to
receive a interrupt and read the PRQBLOK. It then returns
contrcl to MCCSUM or MCCRUM which modify the appropriate
parameters and return to the process.

MCCSNLC is <called by MCCSCH to process the MSGBLOKs on
SENDLIST. It functions identically to the Message-Sender
descrited in Part I1 for messages transmitted on
asynchronous TP lines, The MSGBLOK is pade transparent and
the rlock check sum computed by calling routine MCCTLC.
When the MSGBLOK has been formatted, MCCSND writes the
message to the TP 1line using SIO and places the MSGBLCK
address in the appropriate LNEBLOK. The line is flagged as
being active and, if the message 3just sent was actually a
message (as oprosed to a acknowledgement message), as
awaiting a response,. The next MSGBLOK on SENDLIST is then
examined. Lt

When FCCSND encounters a MSGBLOK that is to ke sent on a BSC
line, it 1loads the address of the appropriate LNEBLOK in
register 1 and calls entry-point MCCTIMI in - module MCCTIM.
This is necessary because MCCBSC, which sends and receives
all messages on BSC lines, may have called MCCTIMS to stack
a TRCELCK to wait two seconds before the next data is
written due to no messages being available for sending (see
the description of MCCESC that follows). After control
returns from MCCTINI, MCCSND examines the next MSELOK on
SENDLIST. After all MSCQBLOKs have Leen processed, control
returrs to MCCSCH. '

MCCTIC and MCCFLC are routines which prepare a MSGELOK for
sending or reconstruct it after receiving, respectively,
vhen using asynchronous 1lines. They provide for proper
encoding and decoding of control characters and computation
of the block check sum.

-41-

MCCS -- A Multi-Computer Communications Systenm

MCCCKE is the MCCS/370 checkpoint routine. It is :called
with 'WAIT', *SEND', or 'RECV' in register 1 when that list
has been modified. If checkpointing has been turned off by
operator command, MCCCKP simply returns. Otherwise the
contents of specified list are written to the virtual punch.
This is done by placing the address of the first control
block on the list in the CAW and issuing a SIO0O to device
X'00D', The first eight bytes of each EKCBLCK or MSGBLOK is
a WRITE CCW which has a data address and length which cause
~the information in the block to be written. The CCWs in all
but the last control block specify command chaining and are
follcwed ty a TIC CCW which contains the address of the next
control block (which also serves as the general linkage of
PRQBLOKs and MSGBLOKs). Routine MCCGSI(28) is called to
return the spool file id number of the spool file currently
active on the punch and this id is stored in MCCSECT. The
punch is then closed which causes the checkpoint spcol file
to be placed in the reader since the punched was spooled to
nxd by MCCSCH during initializatien. The previous
checkpoint file for the list is obtained from MCCSECT and
purged (if it exists) so only one <copy of the checkpoint
data is present. Control then returns to the caller,

MCCTEFI is called by the I/0 interrupt handler in MCCINI when
an interrupt occurs on a TP 1line. The LNEBLOK for the line
vhich genrerated the interrupt is 1located. If it defines a
BSC line, MCCBSC is called to process the interrupt. .Upon
return, MCCTPI returns to MCCINI. ' 1
For asynchronous 1lines, MCCTPI functicns much 1like the
Message-Reciever described in Part II. (Acknowledgements
are placed on the front of SENDLIST so that they will be the
next ressage sent on that line by MCCSNC rather than being
directly written to the line by MCCTPI. All conversion from
the transparent message to MSGBLOK format is done by a call
to routine MCCFLC.) : :

MCCBSC is responsible for all I/0 activity on BSC lines. It
gets control from MCCTEI when an interrupt is determined to

be frcm a ESC line. oy
LR |

The CSW (in registers 2 and 3) is examined to see if any I,0
errors occurred. If a tad channel status is present, the
error is 1logged on the console and the failing operation
retired. If the CSW indicates device errors, a SENSE CCW is

D D S - -

28 This routine was supplied by the KSU Ccmputing Center
(vhere it was called FMGETSPL). There exists no source
(with MCCS/370) for this routine. Any questions
concerning it should be directed to the Systems
Frogramming staff at the Computing Center. '

-42-

MCCS -- A Multi-Computer Communications System

executed on the line and control returns back to MCCTPI.
When the interrupt indicating the SENSE has completed is
received, one of the following actions is taken:(29)

1) Unit Exception: If the last operation was not a WRITE,
a NAK 1is sent in response. If it was, a "fake" READ
(the SKIP bit set in the CCW) is issued to clear the
line of the incoming data which caused the bad status
and control returns to MCCTPI. When the interrupt for
the READ completes, the WRITE is reissued.

2) Unit Check: If the unit check was caused by a READ
timeout (three seconds without receiving any data), a
timecut counter in the LNEBLOK is incremented by 1. If
sixteen consecutive timeouts have occurred, a message
is lcgged on the «console and a NAK resonse written.
The timeout counter is zeroed and control passes to 4.

3) 211l other error conditions cause the CSW, SENSE data,
and last CCW to be 1logged. Control then falls through
to 4. ' ' ’

4) The last I/C operation is now determined. If the CSH
last CCW address is zero, channel control check set, or
the last CCW specifies a WRITE operation was being
attempted, the current output buffer (in the LNEBLOK)
is written to the line. READs causing a timeout are
reissued (except for 16 consecutive timeouts as noted
above). Any other error condition cause a NAK to be
returned. '

Rhen the CSW indicates normal completion of the 1last I/0
operation, a check is made to see if the completed operation
was an ENABLE CCW. If it was, the LNEBLOK is initialized
and a message displayed on the consocle indicating the line
has signed on. A buffer is allocated (if available) to hold
the first message that is received and its address placed in
the IKEBLCK. If the line is acting in REMOTE mode a ACKO
(or fake message with the "W" bit on if no buffer was
allocated above) 1is written to indicate to the host that
MCCS/370 is ready for communication. For both HBCST and
REMOTE lines, a READ is issued to accept the first response.

Since anytime a message, ACKO, or NAK is written to the
line, the WRITE CCW is chained to a READ CCW, normal status

. ———— — —— - - — -

29 Sce the section entitled "Synchronous Data Adapter - Type
II* in [IBMO3] for the exact causes for each type of
device error.

-43-

MCCS -- A Multi-Computer Communications Systes

indicated by the CSW indicates a READ has completed (éxcept
for an ENABLE as noted above),

The ccntents of the input buffer (in the LNEBLOK) are then
examined to find out what has been read. If the first
character of the buffer is a NAK the contents of the output
buffer are rewritten. If the buffer begins with DLE,STX a
message has been received and is processed as described
below. If the buffer contains ACKO (CLE,X'70') control is
passed to label BSCDEC. Any other kuffer contents cause a
NAK tc be returned.

When the input buffer contains a message the FLAG2 field
(Figure 5) is copied to the LNEBLOK field LNESTAT. If the
nfake" bit is not on and the message is not a duplicate of
the last message received, the address of the previously
acquired ruffer is obtained from the LNEELOK and the MSGBLOK
built from the input buffer contents and placed on SENDLIST
or RECVLIST as appropriate. POSTFLG is set to 1 and the
wait kit in the 1,0 old ESW is turned off in case MCCSCH is
vaiting fcr something to do. Control then drops through to
label ESCLCEQ.

When ccntrol reaches label BSCDEQ, an ACKO or message has
just Dbeen received, either of which is a postive
ackncwledgement for the last thing sent. Therefore, if the
output buffer contains a message (instead of ACKQ), the
message has been correctly received Ly another #CCS so it
can te removed from SENDLIST using the MSGBLOK address
contained in the LNEBLOK. An ACKO is then placed in the
output buffer in case Do more messages are available for
transcission.

Next, MCCBSC must determine what to respond with. If the
uym hit (Figure 6) in LNESTAT is on, control transfers to
latel BSCHAIT to initiate a two second timeout. The same is
true if the line is held (set by the MCCS HOLD command).
Otherwise SENDLIST is searched for MSBLOKs containing
messages to be transmitted on this line. If one is found,
it is written (the WRITE chained to a READ) and control
returns to MCCTPI.

when a two second timeout is to Lke ipnitiated (at 1label
BSCWAIT), a call is made to entry-point MCCTIMS in routine
MCCTI¥. MCCTIMS tuilds a Timer Request Block (TRQBLOK) fronm
the parameters crassed in by MCCBSC. These parameters are
the time interval (two seconds), a four byte "parameter”
(the LNEBLOK address), and the address to which control is
to be passed when the interval has expired (label MCCSBCW).
This TROBLOK is then sorted with existed BRCBLOKS according
to the interval specified., The interval timer is set to the
smallest interval so an external interrupt will occur in
that amount of time causing MCCTIM to Le entered by MCCINI's

-4l4-

MCCS -- A Multi-Ccmputer Communications System

external interrupt handler. MCCTIMS then returns toc MCCBSC

and it returns to MNCCTPI. When the external interrupt
occurs, MCCTIM will call the routine specified in the
TROBLCK with the "parameter" in register one. (In order to
force a premature termination of the interval, the
entry-point MCCTIMI in MCCTIM may Lke called. The value
passed in through register 1 is compared with the
“parageter" field of all the TRQBLOKs. If a match is found,
that TRQBLOK is processed just as if its time interval had
expired. This feature is used by MCCSND to inform MCCBSC
that a MSGBLOK is available on SENLCLIST for transmission
with FCCBESC is waiting on the two second timeout.)

When MCCBSC is entered at MCCBSCW from MCCTIM, the LNEBLOK
(address in register 1 from MCCTIM) is checked. TIf LNESTAT
indicates the the "§" bit is off and that the line is not
held, SENDLIST is again searched for a message to send. 1If
one is found, it replaces the ACKO in the output buffer,
preceded ty DLE,STX and followed by DLE,ETX(wvith a command
chained WRITE, see [IBM03)).

If nc buffer to hold the next message is allocated, an
attenpt is made to allocate one at this time. If it can't
be allccated, the "W" bit in the FLAG2 field of the message
is set. (A "fake" messsage may need to be created to set
this kit if the output buffer contains ACKO). This bit
indicates to another MCCS that MCCS/370 cannot accept a
message in return. '

Then the ccntents of the output buffer are written (either
ACKO, a message, or a "fake" message) with the WRITE CCHW
chained to a READ CCW to accept the response. Control then
returns to MCCTPI.

MCCCAI is entered from the I/0 interrupt handler in MCCINI
when an interrupt occurs on one of the CTCAs. If the CSW
indicates ATTN status, a READ is issued to accept the data
written to the CTICA by MCCCWR (executing in another virtual
machine) when it coupled to MCCS/370s CICA to pass along a
SEND cr RECV request for processing. MCCCAI then returns
control to MCCINI. '

When device end status is returned from the READ, an attempt
is made to allocate a buffer to hold the PRCBLOK which was
just read. If no buffers are availakle, MCCTIHNS is called
(as described for MCCBSC above) to request that HNCCCAI be
reentered (at label CAIRETRY) after two seconds so another
attempt can be made to allocate the buffer. If the buffer
is not available after the timeocut, another timeout is
requested, This continues until such time that a buffer is
made available. Since the CTCA has not yet been decoupled
from the virtual machine issuing the SEND or RECV, no other

virtual machine can couple to MCCS's CICA so MCCCAI need not

-45~

MCCS -- A Multi-Computer Communications Systenm

vorry about being entered to process a different request on
this CTCA. (Two other CTCAs exist for use by MCCDSP to
indicate to a process that its request has be acted upon,
however.)

After a buffer is allocated, the CTCA is decoupled so
another virtual machine may utilize it. The PRQBLOK that
was just read from the CTCA is placed in the buffer and
chained to the end of WAITLIST. POSTFLG is set to "1" and
the wait bit in the I/0 old PSW turned off so that MCCSCH
will call MCCDSP and MCCSND to process the newly acquired
PRCBLCK. Control then returns to MCCINI.

MCCCON is entered from MCCINI's I/C interrupt handler on an
interrupt from the virtual console. If the CSW indicates
ATIN status, a READ is issued to allow the operator to enter
a command. If the interrupt was caused Ly device end status
being presented, the command buffer is scanned (for the
command just read if a REAL just completed or for additional
coemands, seperated by the newline character, if a write has
just completed.) If the buffer is empty, control returns to
MCCINI., Otherwise the command is processed and then control
returns to MCCINI. Refer to the following section for a
descripticn of the commands accepted by MCCCCN.

Operatcr_Compmands.

Several commands are available to control the execution of
MCCS/270. These commands are entered by striking the ATTN
key (or its equivalent) on the operator's console. A
timestamp will be displayed and the keyboard unlocked (on
2741 terminals) so the command may ke entered. Commands are
free-fcrmat and operands are separated by one or more
blanks. Multiple commands may be entered on the sane
physical 1line by wusing the current CE LINEND character
[IBMO7] This section describes the commands that are
accepted and acted upon by routine MCCCON, the console
handler. The minimum acceptable truncaticn for command
names and operands is shown in upper case. All references
to "line-id" specify the two character identifier of the
line (and consequently the computer the line provides a link
to) that the command is to effect.

Begin

This command causes the wait bit in the I/0 o0ld PSW to be
turned off (if on)., BEGIN is used to resume execution of
MCCSCH when it is performing MCCS/370 initialization and has

-4 6-

MCCS -- A uulti—Conpuéer Communications System

halted to allow operator commands to be executed. It may
also Le used to cause MCCSCH to call MCCDSP and MCCSND if it
is currently in a wait state.

CE command-line

The CP ccomand specifed by "command-line" is passed to CP
for execution using DIAGNOSE X'0008*'. [IBM12] If the return
code from CP is non-zero it will be displayed, otherwise the
only response is that is that directly caused by execution
of the command by CP.

Cisplay Line line-id

This conmand causes information about the line specified by
“line-id" to be displayed at the console. The line-id and
device address, whether it is asynchronous or kisynchronous,
and a descriptive term for most of the flags contained in
the LNEBLCK are shown.

Lisplay LINES
This ccmmand causes the line-id and device address for all
the lines specified in the LNEBLOKs to be displayed.

Detailed information about each individual 1line can be
obtained by using the "DISPLAY LINE line-id" conmmand.

Lisplay Checkpt
The current setting of the checkpoint £flag in MCCSECT
(either "ON" or "OFF") when this command is issued.

Lisplay Mccsid
This command causes the current two-character identifier for
the cceputer MCCSs370 1is running in to be displayed at the
console.
Display Adcons

This command is used to display the names and entry-point
address of all the MCCS modules.

-47-

MCCS -- A Multi-Computer Communications Systenm

CRain line-id

This command sets the drain flag in the LNEBLOK for the
specified 1line to cause the disconnect sequence to
begin.(30)

ENAble line-id

The command causes a DISABLE, SETMODE (BSC only), and :ENABLE
channnel fprogram to be initiated to the line provided it is
not already enakled. The ENABLE comrand is useful for
restarting a line that has been DRAINed or HALTed or a BSC
line that has just been attached to the MCCS virtual
machine.

i
BALT line-id 7 i
L.
This commands causes the specified 1line to be imnmediately
disatled, whether it is active or not.

BHold line-id

This command prevents any further messages from: being
transritted on the sgpecifed line, Incomning messaggs are
still accepted however. For BSC lines that are held, ACKO
and NAK will be the only data written on the line,

ICCate line-~id

This command causes the memory address of the LNEELOK.for
the 1line specified by 1line-id to te displayed. The CP
DISPLAY command may then be issued, using the displayed
address, to further interrogate the LNEBLGK contents.

FElLease line-id

This cocmand is used to counteract the effects of a prewvious
HOLD command issued for the line. Any messages to be sent
on the line are now eligible for processing by MCCSND and
MCCBSC. (The MCCS BEGIN command should ke issued fcllowing
the RELEASE command to insure that MCCDSE and MCCSND will be

——— - —— ——— i — -

30 MCCS/370 currently does not support the disconnect
sequence, The DRAIN command is accepted but it is not
acted upon by MCCSND, MCCTPI, or MCCBSC other than no
messages will be sent on a line that is drained.

-48-

MCCS == A Multi-Computer Communications Systen

pronptly called by MCCSCH.)

SET Checkpt {ON|OFF}

This coammand is used to control whether MCCCKP actually
writes out the checkpoint data when it is called or just
returns, Setting checkpoint OFF will result in a
consideratle performance improvement in MCCS, however a
system failure will cause the contents of WAITLIST,
SENDLIST, and RECVLIST to be lost, Checkpointing, by
default, is ON.

€ET Id line-id-1 line-id-2

This command 1is used to change the current 1line-id
("line-id-1%") to another ¢two character id ("line-id-2%).
The line pust not be active when this command is issued.

SET {Host|Remote} line-id

This ccmmand may be used to change the mode that a disabled
BSC line is to operate in when it is subsegquently enabled.
(See the discussion of HOST and REMOTE BSC lines in Part II
for pcre information.)

SET Mcesid new-id

This command is used to change the two character id of the
computer (in relation to MCCS) that MCCS is running in.
There must be no PROBLOKs on WAITLIST or MSGBLOKs on
SENDIIST and RECVLIST when this command is issued. (This is
because the MCCSID is used to determine whether the TO_ID of
a message indicates it is for a process on this computer or
not, and therefore, whether the resultant MSGBLOK is placed
on SENLCLIST or RECVLIST.)

esting_Aids.

A rcutine named MCCMSG has been written to aid in the
testing and debugging of MCCS/370. This routine executes in
a CMS virtual nrachine and utilizes MCCSUM, MCCRUM, and
MCCCHR to communicate with the MCCS virtual machine, MCCMSG
is an interactive program which allows a "message"(¢31) or a
file to be sent or received using MCCS/370.

MCCMSG will prompt the user to enter the information needed

-49-

MCCS -- A uulti-Compuier Communications Systenm

to control its execution ("END"™ or "CUIT" cause MCCMSG to
terminate and - return to CMS.) so little additional
information is needed here, A discussion of the format of
the msg and file that MCCMSG sends and expects to receive is
aprrcrriate at this time however. If a new version of MCCS
is implemented and the equivalent of MCCMSG is also written,
then an easy means of testing the new system is avaliable by
utilizing the "MCCMSG" in an existing MCCS implementation.

The fcrmat of the nessage buffer specified in the call to
SEND for a msg is shown in Figure 8. The first 6 charcters
identify the message as being a msg. Starting with the 7th
character are 80 bytes (padded with klanks if necessary) of
text, When a RECV is issued and this first six bytes of the
returned MESSAGE parameter contain ':MSG ', the msg is
simply displayed.

Sending and receiving files is consideratly more complex.
The first message that is sent contains a file header and is
shown in Figure 9. The FILENAME and FILETYPE serve to
identify the file being transmitted. They may need to be
reformatted to conform to the file naming conventions of the
receiving computer., (MCCMSG will prompt the user to enter a
new file name if the one received is invalid or is identical
to an existing CHS file.) Files of fixed or variable format
are distinguished by a "“E" or "V¥ in the F field of the
header. The RLEN field is a four byte integer that
specifies the length of the longest record in the file (in
case a buffer needs to be allocated to hold the record as-it
is being reconstructed, etc.).

The file is then sent ¢cn the message(s) that follow " the
header, It is sent a continuous stream of charactzrs,
breaking the stream up into 128 bytes blocks so they may ke
placed in the MESSAGE parameter in the call to SEND. Each
logical record in the file is preceded by a four byte count
field that specifies the length of the record that follows
{excluding the count field length). The last record of the
file is followed by a count field contain 2zero to indicate
end-cf-file has be enccuntered. .
. 5 5.
MCCS/270 may be started in mnultiple virtual machines ' if
desired, This feature is useful, for example, in testing
changes using the modified version of MCCs/370 to
commupicate with an existing version running in another
virtual machine which is known to work correctly. Using the
MCCS SER command, the MCCSID and line-ids may be dynamically
modified to "simulate" MCCS/370 communicating with a MCCS

. - ————— - - — -

3t P¢c avoid confusion between a MCCMSG ‘“message" and a MCCS
"pessage", the former will be spelled "msg".

-50-

MCCS =~ A Multi-Computer Communications Systen

o+
) N -

0 6 6

— T - / /
| s ¥SGERI 80 bytes of text | ignored
Lo A

Figure 8: MCCMSG File Header Format

' 1

1 2 2 3 2

0 6 5 4 6 0 7
r T ™7 T=T-T"T T /7 1
|:FILER |FILENAME |P|FILETYPE|B|F[F{RLEN] ignored |
L A 11 ioa_1.1 I /7 / J

Pigure 9: MCCHMSG "msg" Header Format

that would normally execute in another computer.¢32) If one
dial-up BSC line and another dial-up or leased line are
available, one may be attached to each MCCS virtual machine
and the dial-up used to call the other line so that the BSC
line protocol may be tested using only the 370.

Systen_Correctness, Status,_and_Extepsions.

The initial versions of MCCS5/370 were tested by
copnupication with an implementation of MCCS running on a
Data General Nova mini-computer. This testing involved the
use cf asynchronous lines only.

Since this testing was done, support for BSC lines has been
added and the message text size was expanded to 128 bytes.
These modifications have not been tested using the NCVAR MCCS
at the time of this writing.

The original implementation of - MCCS asynchronous protocol
required an "available tuffer count®(33) be returned as the

32 MCCCWR must be modified to couple its CTCA to the correct
virtual machine since the USERID in the COUPLE command
assembled in MCCCRR normally specifies U“VMJH8Y,

-51-

MCCS ~- A Multi-Computer Communications Systen

17th through the 32nd bits of the message text portion of
the acknowledgement message. The 16th bit was then used as
the flag designating this as a postive or negative
ackncwledgement. This bit has since been moved to the 1st
bit of the message text and the buffer count done away with.
{The code to support the buffer count still exists in
MCCS/370 but the <check to make sure it was positive before
sendirg a message has been disabled. Now, when a message is
received and no buffer space is available, a negative
ackncwledgement message is returned.)

The MCCS/370 BSC support has been tested by btringing up two
MCCS virtual wmachines and having them communicate via to
2400 baud BSC 1lines, one line dialed into the ' other.
Although this may not seen to ke a ideal testing
envircnment, since MNCCS/370 was not aware that it was
"talking to itself", it really should be sufficient to test
the lcgic of the BSC rcutines, The only area of difficulty
using +this testing technique is that, even though the
protocol implesented seens symmetrical, the protocol
implemented indeed matches that descriked in Part II.

Any errors in MCCS/370 that were detected during the initial
implementation and testing phase were corrected. It is
unreasonable, however, to expect that all errors in a systenm
of this size and complexity have been encountered and
rectified. The asynchronous line support is the most likely
candidate for ‘'bugs" even though it has had the ‘most
rigorcus testing. This is because since it was written,
several major design changes have been made to MCCS. These
changes caused consideratle rearangement of code within
MCCSNLC and MCCTPI and could have easily introduced some
currently unencountered problems. (It is very 1likely that
‘there is a problem with changes being made to SENDLIST while
it is being processed Ly MCCSND thereky invalidating the
absolute MSGBLOK pointer that it keeps. This is in th2 area
where MCCSND enables interrupts temporarily between Tthe
processing of each MSGBLOK.) .

MCCS/370 currently does not support the disconnect sequence
for e€ither asynchroncus or binary synchronous 1lines as
descrited in Part II. (A £flag in the 1INEELOK, "LNESTOP",
was specifically defined for this purpose however.) The

- — — T —— —

33 This count gave the numler of buffers that were available
fcr receiving messages when the response message was
constructed. Then, before any message was transmitted,
the buffer count of the MCCS that was to receive the
message was checked. If it was positive, the message
was sent and the count decremented; otherwise the
vessage was held.

-52-

MCCS -- A Hulti—Compﬂter Communications System

line Eay be shut down by disabling the line with the MCCS
HALT command although it would be more desirable to modify
MCCBSC and MCCTPI to profperly support this feature,

No analysis has been made as to the performance of MCCS/370.
Several casual okservations have been made, however, and are
noted in the following paragraphs.

Originally MCCS/370 was written to runm . as a user program in
CMS. Interrupt handling became somewhat of a problem, both
in being able to process the interrupt rapidly and in CHMS's
insistence on enabling interrupts at inopportune times (on
entry to an external interrupt bhandler, for example,
external interrupts are enabled!). A notable performance
improvement (beyond the fact that interrupts could now be
handled ccrrectly) was noted when the switch to stand~alone
operation was made. The areas of improvement were observed
in CPU times, storage requirements, and working set size.

Taking a checkpoint each time a contrel blecck on WAITLIST,
SENDLIST, or RECVLIST is changed causes a noticeable
performance degradation (presumedly due to the I/0 wait
associated with spooling). The question of whether to run
checkpointing or not has to be wmade by comparing the
advantages of increased performance with the disadvantages
of 1lcss of one or messages when a system failure occurs.
(This this can be disastrous when the message lost is in the
middle of a data file that is being transmitted.)

-

-53-

MCCS -- A Multi-Computer Communications System

BIBLIOGRAPHY

-

MCCS -- A Multi-Computer Communications Systenm

e e — -

[ABR75] Abrams, M.D., "Network Hardware Components", IEEE
Computer Networks: Text and References for a
tutorial, Chapter 3, New York, 1975, pp 3.1-3.9

[BAK??] Baker, Allen F., "A Deterministic Finite State
Automaton for Binary Synchronous Communication",
Bowling Green State University, Bowling Green,
Chio.

[BJ070] Ejorner, Dines, wpPinite State Automation -
Definitions of Data Communication Line Control
Erocedures", FJCC, 1970 L2

{ "

(BLA75)] Blanc, R.P., "Network Software Components", -IEEE
Computer Networks: Text and References for a
Tutorial, Chapter 4, New York, 1975, pp 4.1-4.5

[CER74] Cerf, Vinton G., and Robert E. Kahn, A Protocoi for

Facket Network Intercommunication®, IEEE
Transactions on Communications, May 1974, pp
637-6u48

[DEN7C] Dennis, Jack, "M¥odular Asynchronous Control
Structures for a High Performance Processor", ACH
Conference Record, 1970, pp 55-80 ~

[DIJ65] UDijkstra, E. Weo uCooperating Sequential
Processes", Technological University, The
Netherlands, 1965

[ELO74) Elovitz, Honey S., and Constance L Heitmeyer, "What

is a Computer Network?", National
Telecommunications Conference 1974 Record, * pp
1007-1014,

[IEMO1] *®"General Information - Binary Synchronous

Communication", IBM Corporation, Form A27-3004

(IEMOZ] ®IBM System/370 Principles of Operation", IBH
Corporation, Form A22-7000

[IBMO3] “IBM 2701 Component Description", IEM Corporation,
' Form RA22-6864 :

[(IBMO4] ™“IBM 2702 Component Description”, IBM Corporation,
. Form A22-6846

[IEM05] "Introduction to the 3704 and 3705 Communications
Controllers", IBM Corporation, Form A27-3051

-55-

[IEM06)

[IBMOT]

[IBMOE]

[IBMOS]

[IBN10]

{IEM11)

[IBN1Z)

[IBM1Z)

[KSU75]

[MIN73]

[SCHTU4)

[STU7Z)

MCCS -- A Multi-Computer Communications System

MOQS/VS2 HASP 11 Version
Form Y27-7255

4 Logic", IBM Corporation,

HYM/370 Command Language For IBHM

Corporation, Form C20-1804

General Users“,

“VM/370 Control Program

Logic", IEM Corporation,
Form Y20-0880 - '

!

"yMy/370 Introduction", IBM Corporation, ‘ Form
C20-1800 1l
"yM/370 Planning and System Generation", 1BHN

Corporation, Form C20-1801

<
&

WyM/370 RSCS Program Logic", 1IBM Corporaticn, Form

Y20-0883

nyM/370 Systen Programmer's IEM

Guide", -
Corporation, Form C20-1807 '
"yM/370 Terminal Users!
Form C20-1810

Guide%, IEM Corporation,

“"CP/CMS Guide®,
Center, Manhattan Kansas,

Kansas State University Computing
1975 '

s ¥
"Terminal Access to the ARPA

Mimo, N.W., et al,

Network: Experience and Improvements", Compton 73,
Pp 39-43

Schelonka, Edward P., Resource Sharing with
ARPANET", Naticnal Telecommunications Conference
1974 Record, pp 1045-10u48

Stuzman, Byron, "“Data Communications Control
Erocedures%, Computing Surveys, Vol 4, NO 4,
December, 1972

-

MCCS -- A Hulti-Compufer Compunications Systenm

MCCS/370 Module Supparies

This and the following pages of this appendix

description of each routine within MCCS.

Nanme:
ECCBSC

Functicn:

give a brief

5.

To handle all interrupts, reading, and writing for BSC

TP lines.

Called by:
MCCTIM and MCCTPI

Entry points:
MCCBSCHW

Entry conditions:
MCCBSC - R15 address of MCCBSC
R14 return address
R13 save area address
R4 interrupting device address
R2-R3 CSW from interrupt

FCCBSCH- R15 address of MCCBSCHW
R14 return address
R13 save area address
R1 LNEBLOK address

Exit conditions:
Ncne

Calls:
#CCCKP and MCCTIMS

External references:
MCCCTL and MCCPSA

Register usage:
R13 called routine save area address
FE12 base
R11 Lkase
E10 unused
R9 address of MCCSECT
F8 address of MSGBLOK
R7 address of LNEBLOK
F6—-R5 unused
rest work

-57-~

i1

MCCS -- A Multi-Computer Communications Systen

Nape:
MCCCAI

Function:
Bandle interrupts on the CTCAs, read PRQELOKs from the
CTCA, and add PRQELOKs to WAITLIST.

Called by:
FCCINI and MCCTIMS

Entry rpoints:
CAIRETRY (not an external name)

Entry conditions:
FCCCAI - R14 return address
R12 address of MCCCAI
R4 interrupting device address
R2-R3 CSW at time of interrupt

CAIRETRY-R15 address of CAIRETRY
R14 return address
R13 save area address
R1 CTCA device address

Exit conditions:
Nchne

Calls: .
MCCCKP and MCCTIMS

External references:
FCCCTL and MCCPSA

Register usage: _
F13 called routine save area address
E12 Lase
F11 base
RE10 unused
F9 address of MCCSECT
RE8 unused
F7 address of PRCBLOK
rest work

-58-

MCCS -- A Multi-Computer Communications Systen

Nage:
FCCCKE

Function:
To perform the checkpoint of WAITLIST,
RECVLIST by writing their contents to
gunch.

Called by: :
ECCBSC, MCCCAI, MCCLSP, and MCCSRKRD

Entry points:
Kone

Entry Conditions:
K15 address of MCCCKP
R14 return address
513 save area address
‘R1 'HAIT', 'SEND', or 'RECV"

Exit conditions:’
Hecne

Calls:
MCCGSI

External references:
MCCCTL and HCCPSAV

Register usage:
BR13 called routine save area address
F12 base - '
R11 base
F10 unused
B9 MCCSECT
FE8-R4 unused
rest work

=50~

the

SENDLIST, and

virtual

MCCS -- A Multi-Computer Communications System

Name:
MCCCON

Function:
Handle interrupts from the virtual console and process
¥CCS/370 operator commands.

Called by:
FCCINI

Entry points:
None

Entry conditions:
F14 return address
R12 address of MCCCON
F4 virtual console address
RZ-R3 CSW from interrupt

Exit conditions:
Ncne

Calls:
None

External references:
4CCCIL and MCCPSA

Register usage:
R13 called routine save area address
E12 base
R11 kase
F10 unused
R9 HNCCSECT
F8 unused
B7 LNEBLOK
F6 unused
rest work

-60-

MCCS -- A Multi-Computer Communications Systen

Name:
HCCCHWR

Function:
T¢c perform CICA I,/0 and interrupt handling im virtual
machines communicating with MCCS/37C.

Entry points:
None

Entry conditions:
F15 address of MCCCHWR
R14 return address
F13 save area address
E1 address of PRQBLOK to write

Exit conditions:
FRQBLOK has been updated per SENLC/RECV request

Calls:
’ CMSKEY and HNDINT

External references:
NUCON

Register usage:
R13 called routine save area address
F12 base
R11 Lkase
F10-R8 unused
R7 address of PRQBLOK
F6=-R5 unused
rest work

-61-

MCCS -- A Multi-Computer Communications Systen

Name:
FCCLSP

Functicn:
To examine PRQBLOKs, acting upon the SEND or RECV
request, and, if necessary, sending a response to
FCCCWR via the CTCA.

Called by:
¥CCSCH

Entry points:
Yone

Entry cconditions:
F15 address of MCCLSP
R14 return address

Exit conditions:
Ncne

Calls:
HMCCCKP

External references:
MCCCTL and MCCPSA

Register usage:
R13 called routine save area address
E12 base
R11 Ekase
510 unused
R9 MCCSECT
F8 address of MSGBLOK
R7 address of PRQBLOK
F4 unused
rest work

-62~

MCCS -- A Hulti—Compufer Comnmunications Systen

Nage:
MCCEND

Function:
T¢ mark the end of
no executable code.

Called by:
K/A

Entry roints:
K/A

Entry conditions:
N/A

Exit cnditions:
K/A

Calls:
N/A

BExternal references:
N/A

Register usage:
/A

MCCS routines

-63-

in memory.

Contains

MCCS -- A Multi-Computer Communications Systen

Name:
MCCFLC

Function:
Tc ccnvert messages received from asynchronous TP lines
to standard message format.

Called by:
ECCTEI

Entry foints:
hone

Entry conditions:
F15 address of MCCFLC
E14 return address
F13 save area address
R7 address of LNEBLOK
F1 pointer to message buffer
R0 1length of message to convert

Exit conditions:
CC=0 if BCC count correct
CC=-0 otherwise

Calls:
Kone

Exterrnal references:
FCCCTL

Register usage:
E13 called routine save area address
R12 Lkase
E11 base
R10 unused
F9 address of MCCSECT
R8 unused
E5 nunused
rest work

...6]'4_

MCCS -- A Multi-Computer Communications Systen

Name:
MCCGSI

Function:
70 return the spool id of the spool file active on the
unit record output device specified Ly RO.

Called by:
FCCCKP

Entry roints:
None

Entry conditions:
F15 address of MCCGSI
R14 return address
E0 address of unit record output device

Exit conditions:
F1 contains spool file id

Calls:
Kone

BExterral references:
Various CP control tlocks

Register usage:

F12 base
rest work

-65-

MCCS -- A Hulti—Compufer Communications Systenm

Nape:
FCCINI

Functicn:
To perform the MCCS/370 virtual machine initialization.

Called by: |
CMKLLOOE after reader IPL

Entry fpoints:
FCCESA, MCCCTL, and STARTUP

Entry conditions:
Kone

Exit ccnditions:
Kone

Calls:
ECCCAI, MCCCON, MCCSCH, MCCTIM, MCCTPI, SCVXXX, and
EVC255

External references:
Ncne

Register usage:
E15 Lkase
F13 called routine save area address
R12 Lase '
F11-R10 unused
R9 MCCSECT
F8-R5 unused
rest work

-66-

MCCS -- A Multi-Computer Communications Systenm

Name:
¥CCRUM

Functicn:

70 provide support for the MCCS RECV primitive for

Frocesses running in virtual machine executing CMS.

Called by:
user processes

Entry points:
RECV

Entry conditions:
B15 address of MCCRUM (RECV)
E14 return address
R13 save area address
F1 standard 0S/360 parameter list

Exit conditions: i
- PFarameter list updated as reguired.

Calls:
FCCCHWR

External references:
kone

Register usage:
F13 called routine save area address
R12 Lase
E11 base
BE10-R8 unused
E7 address of PRCBLOK
BE6-R3 unused
rest work

-67-

THIS BOOK WAS
BOUND WITHOUT
PAGE 68.

THIS IS AS
RECEIVED FROM
CUSTOMER.

MCCS -- A Multi-Computer Communications Systen

Name:
MCCSND

Function:
To search SENDLIST for messages to be transmitted on
asynchronous TP lines and to notify MCCBSC (through
MCCTIMI) of a message ready to transmit on a BSC TP
line.

Called by:
FCCSCH

Entry points:
None

Entry conditions:
F15 address of MCCSHD
E14 return address
F13 save area address

Bxit ccnditions:
kone

Calls:
FCCCKP, MCCTLC, and MCCTIMI

" Extercal references:
FCCCTL and HCCPSA

Register usage:
F13 called routine save area address
BE12 Lase
E11 base
E10 unused
F9 address of MCCSECT
R8 address of HMSGBLOK
F?7 address of LNEBLOK
RS upused
F3-R2 unused
rest work

-69-

MCCS -- A Multi-Computer Communications Systen

Name 3
MCCSUM

Function:
Tc rrovide support for the MCCS SENC primitive for
Frocesses running in a virtual machine executing CHS.

Called by:
User processes

Entry points:
EEND

Entry conditions:
E15 address of MCCSUM (RECYV)
E14 return addres
F13 save area address
E1 standard 0S/360 parameter list

Exit conditions:
Farameter list updated as required.

Calls:
MCCCHR

External references:
Ncne

Register usage:
E13 called routine save area address
F12 Lase
R11 Lkase
F10-E8 unused
R7 address of PRQBLOK
E6-B3 unused
rest work

-70-

MCCS -- A Multi-Computer Communications Systen

Name:
MCCTIM

Function:
Tc¢ handle timer (interval and <clock comparator)
interrupts and provide delayed reentry to MCCS routines
after specified interval or upon request.

Called by:
MCCBsC, MCCCAI, MCCINI, and MCCSND

Entry points:
BCCTIMI and MCCTIMS

Entry conditions:
MCCTIN - R12 address of MCCTIM
R14 return address

MCCTIMI- R15 address of MCCTIMI
R14 return address
R13 save area address
R1 TROBLOK seach parameter value

FCCTINS- R15 address of MCCTIMS

R14 return addres

R13 save area address .

R2 address to pass control to at end of
interval

R1 TRQBLOK parameter value

RO time interval in hundredths of seccnds

Exit conditions:
Kone

Calls:
Yone

External references:
FCCESA

Register usage:
F13 unused
BR12 Lase
F11 base
E10-R9 unused
F8 address of Timer Request Block (TRQBLOK)
R7-RU unused
rest work

-71-

MCCS == A Hulti—Compufer Communications Systen

Name:
MCCTLC

Function:
To convert messages to the required format
transmission on asynchronous TP lines.

Calleé by:
FCCSND

Entry points:
Kone

Entry conditions:
F15 address of MCCTILC
R14 return address
F13 save area address
R1 rcinter to buffer to convert
FO0 length of data in buffer

Exit ccnditions:
FO contains length of converted message

Calls:
None

Exterral references:
ECCCTL

Register usage:
F13 called routine save area address
B12 Lase
F11 base
R10 unused
F9 address of MCCSECT
rest work

o

for

MCCS -- A Multi-Computer Communications Systen

Name:
MCCTPI

Function:
Tc¢ handle interrurts on asynchronous TP lines including
the reading of incoming messages, adding the MSGBLOK to
SENDLIST or RECVLIST, and placing the proper response
FSGBLOK on SENDLIST.

Called by:
FCCINI

Entry roints:
None

Entry conditions:
F14 return address
R12 address of MCCTPI

Exit conditions:
Ncne

Calls:
MCCFLC

External references:
MCCCTL and MCCPSA

Register usage:
B13 called routine save area address
E12 base
B11 Lase
F10 unused
B9 address of MCCSECT
F8 address of MSGBLOK
B7 address of LNEBLOK
F6-R5 upnused
rest work

-73-

MCCS -- A Multi-Computer Communications Systen

MCCS ABEND CODES

The following list shows all the ABEND codes that can occur
during MCCS/370 execution. When any of these conditions
occur, a dump of virtual storage is taken using the CP DUMP
command and MCCS is restarted. The dump title 1line will
contain the ABEND code and the address at which the error
occurred. By wusing this 1list, the proper routine may be
found and by looking at that routine and the ABEND dump, the
error can be analized. (The registers at the time of the
error can be found at label GPRLOG in MCCPSA.)

Code: ESCO001

Issued by: MCCBSC

Reason: A message was received but the LNEBLOK did not
contain the address of a buffer in which to build the
MSGBICK.

Code: BSC002

Issued by: MCCBSC

Reascn: The output buffer contained a message that was
acknovwledged but the LNEBLOK did not contain a valid MSGBLOK
pointer, '

Code: CAIQ001

Issued by: MCCCAI

Reascn: A non-zero condition code was obtained when the SIO
was issued to read the PRQELOK from the CTCA.

Code: CAIOO2Z2

Issued by: MCCCAI

Reason: An unexpected error status was received from an I/0
operation on the CTCA. '

-

MCCS -- A Multi-Computer Communications Systen

Code: CKPO001
Issued by: MCCCKP
Reason: Register 1 did not contain °'WAIT', 'SEND', or 'RECV!
vhen FECCCKF was called to perform a checkpoint.
Code: CKEQ02
Issued by: MCCCKP

2
Reason: A non-zero condition code was obtained ‘while
atterrting to write the checkpoint data to the virtual
punch.
Code: DSP0O02
Issued by: MCCDSP
Reason: Sixteen attempts were made to write to the- send
respcnse CTCA (X'120') with the SIO indicating the channel
wvas busy.
Code: DSP003
Issued by: MCCDSP

¥
Reason: Not operational status was returned from the .SIO
issued to the send resgponse CTCA (X'120').
Code: DSPO005
Issued by: MCCDSP
Reascn: Sixteen attempts were made to write to the receive
response CTCA (X*130') with the SIO condition code
indicating the channel was busy.
Code: LSECGO6
Issued by: MCCDSE

Reason: Nct operational status was returned from the SIO
issued to the receive response CTCA (X'130').

-75-

MCCS -- A Multi-Computer Communications Systen

Code: SCHOO01

Issued by: MCCSCH

Reason: A non-zero condition code was ottained from the SIO
used tc enable an asynchronous TP line.

Code: PRGxxX

Issued by: MCCSCH

Reascrn: A program check cccurred during MCCS execution. The
interrupt code replaces xxx.

Code: SVCxxx

Issued by: MCCSCH

Reason: A SVC with the invalid code xxx was issued.

Code: SNLCO001

Issued by: MCCSND

Reason: Not operational status was returned from the HIO
issued to a asynchronous line used to terminate the active
INBIEBIT.

Code; sHDOO2

Issued by: MCCSNL

Reascen: A non-zero condition code was received from a. SIO

issued to a asynchronous line to write a message.
LA

Code: SNL100

Issued by:

Reason: No LNEBLOK could be found that provided the link
specified by the T0_ID of a MSGBLOK on SENDLIST.

~76-

MCCS -- A Multi-Computer Communications Systen

Code: TPI001
Issued by: MCCTPI

Reascn: An acknowledgement was received for the last message
transmitted but the LNEBLOK does not contain a valid MSGBLOK
pointer.

-77=

MCCS -- A nulti-Ccmpufer Communications Systen

¥M/370 Dependencie

There are several features of VN/370 that MCCS/370 utilizes
(beyond those provided in the sipulation of a real 370 using
the virtual machine ccncept). Some of these features may
well change with a new Release or PLC of CP or CHS. The
features felt most 1likely to be changed will be noted here
so that they may be incorporated in MCCS/370 concurrently
with the new version of CP or CHS.

MCCSCH used the CP SFELOK DSECT [IBMO8] and the spool file
mapifulation DIAGNOSE X'0014* [IBM12] to find the checkpoint
spool files in the virtual card reader when MCCS is starting
up. The SFBLOK macro in the HMCCS MACLIB pust be updated to
reflect any changes made to the SFBLOK format.

MCCS5/370 uses the VMFLOAL module and the CP IPLable loader.
{IEH10] Both of the routines must be available and function
similar to what they do in Release 2 ELC 13 for MCCS to be
loadeg.

The VM/370 update procedures (utilizing +the CMS UPDATE
command [IBRMO7] and the VMFASM EXEC [IBM10]) are used for
aprlying updates to the MCCS/370 source., This facility must
continue to be availakle to apply existing and future
updates,

MCCS/370 also uses some modifications that have been made to
CP and CMS by the Kansas State University Computing Center.
One of these modifications, prefixing a CP command with a
pericd tc suppress most of the console output normally
generated by that command, is used throughout MCCS,

KSU also has a wmodification to CP which causes the
distritution code specified on the CF CLOSE command to Le
used (rather than ignored) when the printer or punch has
been spoocled to "¥", This distribution code is used as a
selection criteria by MCCSCH when it is checking for
checkpecint spool files in the wvirtual reader, (The
dependency on this modification may ke removed by deleting
the CLC and BNE statements in MCCSCH at sequence numbers
00890000 and 00900000 as the other <checks that are made are
sufficient to select the proper spool file.)

in order for MCCS/370 to restart, CHS is 1IPLed so that
VMFLOAD may be used to create a new system load deck. A KSU
modification to CMS allows a parameter of the form "MEX
xxxxx" to be specified in the PARM option of the IPL command
and recognized by CMS when it is IPled. CMS will
autopatically invoke the EXEC named "xxxxx" after it has

=TG-

MCCS -- A Multi-Computer Communications Systenm

performed its initialization. (See the description of
MCCSCH in Fart III to see how this feature is used by MCCS.)

As merntioned in the description of the HMCCCKP routine in
Part III, the spool id of the spool file active on the punch
is needed so that it may be purged when it is no longer
needed. A routine named MCCGSI is called to return this
elusive spocol id. This routine was obtained from the KSU
Computing Center (where it was named "FMGETSPL") and
guestions concerning it should be directed to the Systenms
Prcgramming Staff there. (MCCGSI exists in TEXT deck only
in MCCS/370, no source file is present.)

“ -

-79-

MCCS -- A Multi-Computer Communications Systenm

MCCS5/370 is written in IBM System 370 assembler language and
the scurce code exists as CMS files in the KSU File Manager
Systea. The MCCS macro library is also a CMS file (named
"MCCLIB MACLIB"). All the MCCS source and macro library are
kept in COEYFILE [IBM07] “packed" format and therefore must
be unpacked before re-assembly.

All changes made to MCCS should be done using the VM/370
source update procedures. [IBH10] (The MCCS control file is
naged "MCCR10 CNTRL", the AUX files "fn AUXMCC", and the
updates are nunbered sequentially starting with "fa
MCCSCCO1M,)

There are many advantages to using this update technigque
over directly changing the source file by EDITing [TEMO7] so
it shculd be continued if at all possitkle. By using this
prccedure not only is a detailed log of all modifications
automatically available, but wmodifications can easily be
excharnged between different installations which run
MCCS/370.

-80-

MCCS -- A Multi-Computer Communications Systea

MCCS/370 Control Elocks

The fcllowing assembler 1lisings show the names and offsets
of all the globally used control blocks in MCCS/370.

-81-

e e e s ot

o oput 9O)

100 3DV

? oZ:ol
LESLL
8060
[4 bk 44

9L/L0/L0 HOLEDS 1O TTANISSY SN0TdI09
SL/L0701 O06LSHD ZS dY13¢R OHIYRSO
SL/SZ/T0 D6LSHD Z§ AITOVN 4ITSHD
9L/n0/L0 HILEDS 14 AITINE 411208

oLBINY 113l
OUDYNS? SITSHD @I120R SOVH IXal

€520Z SL71C70L - €1 D1 ZA 6D - ALISUIATNO TLIVIS SYSHVY ¥ DLEDDN SNOTEJDM I

o s

e s et o —— gl e . St

- e e ek f s ekl a s e e e

Burg 3 o T2
e nm

0000NS00 YREY 1NODOT BALSIODAN TONINOD QEANILIXG a91 S H0TUOT+ 6N
0000£500 Yaiy INo907T B#aLSIHI¥W F504HNA IVEANAD a9 5§04 DOTHAD+BN
00002500 V34Y LNOSOT WILSIDAN IRTOZ DAILVOTI an SQ 501ddd+Ln
00000500 SOVHOLS JO SILIG 09 1ISL HOJ VANV FAVS [T1%4] £0 JFAVSNOT+Gh
00008000 250 28NIN3 803 GIABISAN an SO SASHONR+EN
0000Ln00 200D T1¥D HOLINDW F | §@ A0Q0JNOH+ZH
00009000 - SSINAQV HIOUODIW IRIAA HVHDOHA Fi §4 Haavudasin
a000sho0 340D BIAWODAM INIAE HVEDOHd - TeN [} §0 2000H3d+0n
00000Nh00 BAUHNR ESVTD TTVD HOLINOH = Lol H S4 SSEVIONOH+6E
0000EROD 45N 3ENINS ¥OJ QIANISIL 4 S0 hASHOON+BE
00002100 480 JENLNJ HOJ4 AAANISIW az SA EASUINN+LE
00001 100 007043 9EO +9¢ 08000
00000000 vauy 10001 ndd> aen S0 DOTINADeGE
00NORCOD ASd maN 0/1 a 5Q MSJNDI+EE
0000Lt 00 #Sd MAN ¥DAHD-THIHOWW 1 S0 RSJIRADHZE
00009500 ASd RI4 MVHOOHA . a S0 MSINWODIsLE .
00005£00 KSd R3R TIVD HOSTIANIANS a §0 ASANIAS+0E
0000hE00 ASd MEN IVRHIIXG a S0 ASANlXa+p?
00002€00 @SN FUNINd W04 QUANISAM ‘3 5§ ZASHINN#+LZ
0000L£00 HERIL TVAHALNI | sa YAUTL+92
00000£00 850 3WNING U0 QIAMIASTE a SQ B ASEDON+SE
00008Z00 QUOA SSTHQAY TINNVHD | sa [1 BT
0000LZ00 QBOM SNIVIS TARNVHD 1 sa RSD+Z2Z
00005700 n&d Q10 0/ a 5@ m53001+02
0000n700 NS4 G710 NOIHRD-FNIHOVM a 50 ASA0AIH+bL
0000€200 MSd Q70 RYHD0HA 1 Sa ASJONOd+RL
00002200 ASd 4710 11¥D JUSTANTANS a Sa MSA0JAS+LL
0000LZ00 ASd 010 TVNRAIXE a Sd AS5d0LX3+9L
00006100 27d¥Y1l S538AQY ¥AISIS 30 Ss53a¥aqv ¥ S0 JAUSASVen]
00008100 480 34nInad HO2 Al AMASAN a S0 O0ASHDONEL
0000LL00 nSd Q10 lHYLSAY MS4 a 50 RASd0LISH+ZL
00009100 HEd MaN IBYLSIN ME4 1 50 RSANISHsLL
00005100 NE414Y DHO 20l 00000
00000100 ZADD DAIAVOT MVHDOHA IVILINI a 54 ZADD14AL+6
0000£1 00 LEDD OSHIAYOT HYHOOMd TIVILINT a §4 1K2DT41I+0
0000Z100 REd SNIAVOT WVHDORA IVILINY a S04 ASATAI+L
00000100 5950 ANIHOVH 114 !
00000000 LJRSA VSdJDH+E
0000£000 ¥E420H 4

94/80/10 Za*n0 SOLO WSY

' aova

94710710

INTINTLYIS JOUN0S 1HlS ZwaaQv paaay 1a0d> 1dared

EX220178 T08INO0D NIILSIE ==SN0TEN O°LA ehn\nuun.

021009
08L000
091000

020000

ov0000
260000
860000
960009
heE0nnd
00000
080000
002000
080000

8L00092
0LOODD
890000
050000
850000

050002
050000
10000

g00000
o0noo00

8£000)
080000
8zZON0OD
0Z0600
810000

710000
010000
800000
000000
810002
010000
BOOGND
000002

000000
2017

£312018

g o ——— — — e e A

—————— i e e = —

=B Y=

o e
L ol L=l]

A — Y L e b

o

.lh-

00008900 292780710 - 0*L ROISEIA SJOM
0000L900

00005900 F1¥2071IV 01 S¥D01IA IOVIOLS 4
00001900 G21YJ011Y SS3NQAY IOVEOLS 1
0000E900 SSANAAY FOVHOIS IVNIHTA &
00002900 ¥DVLS FOVEOLS 23EI RO ¥D0TE 83
00000900 BATANYH ZANHUIINT 01 8Od vad
00006500 ERIGNYHE DJAS ¥O4 VIU

,ooeccnoa BEITANYA J4NUUAINY TVAHILES 8304 VI
00009500
94780710 Tu"nD SOLO WSY

¢ sova . sL/v0/10

11/80/88 SESHUIHH,D 20 QINILSIS+EY TRZANLNAKAYLARDDD
a0 sg +Z9

0 1218 (LT8R] 50 FTISAARA+00 avoooeoon)d

sauoIn . lawadou)a 20 WANZUNA+6S 00000002

SAHOIH (e=0)¥ 00 THATNA+0E £0000003

84 403 {ov 20 ROTTANALS 00000002
¥ 2AVYS 2 491 - AAYSOT+55
v dANS 94 50 BAVSIAS+&S
¥ 3AvS a9l S0 JAVSINZ(S

" gavsn E09W el

ISIURIVIS 3J800S ~ IWIS ZWOOW L WAV 2Q00 huaﬁno

$320146 T00IH0D B3ISKS - SEdTEIIN 044 OLE/SDOW

0azZpoo
0Qzoo0o

202000
822000
%1000
022002

0eZo00
0nzooo
aoZooo

207

$320171

ﬂ-

S AR R

-84-

o o e s b <

AT e e b B

e

e et e b S —— L 2t

0000L0n00
00009000
00005 h00
00009100
0000LH00
0000Z%00

00000000

0000800
0000LE€00

0000S€00
0000®EN0
0000EE00
0000ZE00
0000LC00
00000£00

0000RZ00
0000LZ00

0000SZ00
00000200
0000EZ00

00004200

00006100
00008L00
0000LL00
00009400
00005100
0000hL 00

0000Z100
00004100
00006000
00000000

9L/80/10

¢ v

2O¥ TAILVOEN EO4 VIvVQ
¥DY ZAJ1I1S0d HO4d viva

4008 alI

NI S0LE 13S 10X 1]

IXHL O8@ JO GAX INIYVISNVHL
4X31 J54 40 I¥VIS INAUVASNVEL
OS@ 804 INANIOAATAOKINDY IAILISOd

(QVA’AYN“NAS*HAS) LTIV 40040120 2a
(0¥OV*3TA°RAS NXS) LIV 4000 01X0 2a

(XLF*FTAY LTV 400.27IX0 2a
(X1S°3714) L IV* 4002120 BT
(0NDV*FTA) L TN 2004ZTIXO 2a

SSARAAVY TTOSROD TNNLEIA {e=a)k 54Q

$S2¥0aY IRIT d1 ISAHOIH
SSAEAAQY INTT 41 153001

(1hZ0 X)X 2a
(eDZOWuXI X 2

&0 804 38Y JGTOL SIHI HLTM SHOVSSAN WHAWD 2a

RO ONRIIRIOANDEHD linvaid
GATIVD 3d QTNOMS ASADIDM

Asar) 11v 2a

aRV ARSIOR IIVOIANRI Ol I Ol 13s 9V1d X sa
Y312 ADAW RO AASAN 3IAOD40 MDD ISVN1 2 sa

¥2LD ARES RO AASN IA0I40 AID LSV J 54
(s0ELsX GNY ,0L14X) ¥IID AD2R B0l HILdng 98112 5d
(+0ZLaX ORY 4001 .X) YOLD QN8BS ROd BIJ4NG b 1Y% b sa

2714 Ld¥DAHD ISITADAA 1ISVT 40 01 10046 H sq
2174 1A4D3AHD 1STTGNES 1SYT1 40 A1 100d4S [} sa
2TId 14¥D2HD ISITIIVA IsV1 10 GI 1004dS [} sa
$G7 OSH INOIRN IFIVHIRAD OL Q3ISN WALNNOD Fi sq
LSITAD38 NO XQTO9SH ISVT OL HALNTOd] sa
IS1TAD3% HO Y¥OTdOSH 1SH1d 01 BAINIOd]]
ISITANAS MO NOTADSH ISVT Ol #alnlod [§ 5a
15110835 NO NOTADSH IS¥Yd Ol HALNIOL L sa
ISITIIVA NO ¥0TGDEL ISVI Ol ¥aINIOd] sa
JSTILIVA EO ¥0168D84 1SHIJ .0l HIINIOd]]

¥31D 01 ALIEN OL 8DD
V21D HOdd avVi¥ O 82D

Zu°N0 S0L0 RSV

oL/10/10

0=0’I15%e=¢"JII00 ADD
AdNUSD T’ 118 e-0"aAVIY MDD
124s4a

1235208

IAINRIVLS

AAOHALI+EOL
YIVAAYR+ZOL
NIVAONIV+10}
X13a1a+001L
X1s3a7T0+66
03OV311+86

TTO0SK0D+96

SNI1T1H+nG
AN1T0T+E6

aTenD+ L6 '
DTddN2+06

s+ 68

D7341504+R8
d0JHLSVI+LD
d0OS1sV1+99

44Nnd¥o+ne
ddNAsI+ €8

AD3H1SYIe|B
aNaslsvi+08
LIVALSYI*6L

LANODOSH+LL

QNRADTHIGL
LSITADTH+nL
ANAANIS+EL
LSITUNIS+ZL
ANILIVHeLL
ISTTLIVA+0QL

RDDANVHO+B9
HIDHRVHO+LY

LIFSIIH99

R 1]

59
493§ Zagav Laaav

on
0dagzZeze
oLoLZL?E
E001L
tool
0LOL

"z o)
0z0)

hasi
8

0022020Z00020012
26020202000000Z3

2002 1DIr8Ed

£¥2078 T013MPpD I LISLESE -~ SIDOTEIDE 0°LA OLE/SIDN

H8L000
081003
L1000
Y000
BRLLOOO
941000

hLLo0o

TLL00D
0LL000

491000
aaiLoo00

291000
g91000
¥91L000

420000
ZE0O0OD

0£0000
420000
2Z0000

820000

nZ0000

0Z0000
210000
ALO0DD
10003
010000

8000092
000000
aQ0000

201

£32073

j
%
w

- an

-

9 lvgi™ ¢ e
v

0000HR00
0000£800
00002600
00001800
00000800

000008L00
0000LL00
00009L00
0000SL00
coo0hL N0

goopzLng
00001L00

L]
00006900
00NQBI0D0

00009900
00005900

00001900
00002900
00001900
00000900
00006500
0000RS%00
aonnLsNo
00009500

00n0NS00
0000£500
00002500
00001500
00000500
00006000

9L/e0/40

" R9vq

X sa

X ga

X sa

’ X 5Q

ANIT ONASIA ASOH ¥ BRI BINL (3EORANTeIETTINT) LTV 2a
LT 2a

1hal 2q

. 8d .24

+0008.2TX 24

VAON REE O3 ¥NIT FHL E] nmzﬂ 100D a4q
¥ 1]

] ﬁn

. 05173 S0

00£72 Eq

. q 54

a EQ

NZOKAS,1TIS*0ZONASISHAS HDD
0Z044NM4TTIS°0Z044N24ANEN ADD
VIVANYN,1 D0+ TS VIVANVN'RLIINN ADD
0704307,1°315°0Z0440n0°AV3IN [Il
VIVA0NOV,1°20+115%0Z0v4dna*ALIUN MDD
0203404,1°116 020440a%aval [b
FI3A7T4471°22¢175°%13a7T0°AL1H0 MDD
VIVAOEW+XIEATA, T D+ TTEOZOVALNA ' TLINN MDD

NIT 731 BOJ ASHOASAN QYA 0Z044ND T 16 0Z044na’avan pda
SENTT AT3L 40J ¥I4ANA ALTAA »=¢'TI5'0Z034NB*ATTHA MDD
SEN1T 2T4% N0 I1AIHAT 0ZOAdNA1'I168°0Z044NE°LIGIHRT KDD

. ARYT AN FTAYNT NAAL L°TTE0°ATUVRR MID
R00W AT J89 I35 JOOWAIT.1'2D+I76°RAoWAlI’dOON1ES KID
SATT ARE ATAVRIG L 'DD+INE7D'RIAVSEQ [k])

Eh*e0 SOL0 BEY NANTLINES

w/ro/vo

070R3AS+0ONL
0Z0d0T+HEL
DZOLYLIS+HEL
0ZOZOLTA+LEL
0ZOLODTI+OEY

0Z0221+hEl
OZOINDH+EEL
0Z0QI4AT+ZEL
0ZOaTHT+LEL
0Zoal+0EL

0Z0VOSH+BTL
0ZOoY4AnaeLEZL

QZovadnassSEy
[TAERNEER 149

OZOMID+ZE)
0ZOREDN L 2}

0ZNAASHL AL
1210
OZONHME+ L}
911
QZOVURA+GLS
*hil
L)
OFOWHARBeZL L

pZoavauvsoLL
QZORLTRR+AHOL
DZOGIHNI+HOL
+LODL

+904
OZDEVRR*&0)

BOHNOE ~ INIS TEAIV LHIGY

000)
1002
ohon
o000
9483

§032000ZZIEO00OND
2ZL000JZHDZ0O02D
#0J32000908400012
ACL000076O700070
H02200090ECO001D
AZLO0IIPHOZODOTD
£02200D°VL1I00040
96330909nC L0000

2TL0020780Z00020
0023030ZR2Z000LD
2ZL00DITBIATODONO
1022000Z00000022
L02230309nBLON0EE
+03003290000204Z

- 000002

9000 XOdrED

E¥N32078 T00H IR0 NAZE RS — SHIOTIEIIN D"LA OLE/SIN

TAL000
L3002
03Ln0d
40£000
RQE000

20£000
VGeooo
B3EO0D
90t 000
hacoco

0dinDp0

J0E000

hELono
BOZO0DY

002000
RaLODD

niioon
231 000
021000
ROLOOD
oq1000
B21000
021000
raL000

081000
AVL000
ov¥L0Dn0
861000
061000
ARLOOD
581000

2017

S¥207%

Cn e g - = s

S e s mew gy e ——

——— e

=-RA-

et o m

SO PR A [p——— e R SRS e RS

- 1 - q
¥ , ,
..._ ® |
& ™
®
- .
0000LZLO X Sa LZONESeLLL Thoood
00000Z10 X Sa 1Z04I1+9LL 119002
- 00006110 ‘ X . SQ LZOIVIS+SLL 049000 ®
00008110 X §a LZOZOTdenL) 4€9000
0000LLLO IR1T ORISIQ ISOH ¥ SI SIHL (1SONANT+ISAANT) LIV 30 1ZOLDTdeELL L8 7£9000
®
- 00005110 10.0 20 LZODOIvlLL 000) 269000 *
0000nLLO shal 504 LZOLNDA+OLL L1002 YE900)
- 0000E£L10 .] 20 1200I31+694 . Onoh RE900D L]
‘ 00002110 +0000+27TX 30 LZOGIN1+RIL 0008 9£9000
0000LLLO YIVGEIIAL THL O NALT IRL ST SIHL 1G4 2a LZOAI+L9L ‘ 7262 nE900D t
. ®
* 00006010 v Sd LZOVDSH+GOL 0[9000
0000A0LO | §a LZovdand+n9l 229002 __
®
< 00009010 05412 S LZOVAINE+Z9L 765009 r
00005010 00ET12 §a LZodand+i1 9L 890000 :
. i L
- 0000ENLD 4 SQ LZORIDekSE 09000 |
0000Z0L0) a SO LZOMSIeBSL a5h000 §
- ®
]
00000010 tZONAS.TITS L ZONAS ASNES MDD LZ0AASHE+951 : 1002020ZZn9000H0] 0SHO0D i
- 00006600 17044N08,1°115°12044N0°0¥3H ADD +551 J713020ZRINONOTO #HROO0 *® |
00007600 YIVANYHT OO+ I1S VLVONYN ILTHA ROD LZONNME+nS)L n02203090RL000LY ONNDOOD .
. 0000LK00 1203408, T°111S°LZ03ANA‘AVIN MDD +E61L 3ZL003IZ89R090Z0 REROOD . !
- 00009600 NAONIVT*DD+T1S*LZOVAINA AT TER MDD LTOVEAA+ZSL n0J30209M6S000LD 0ENOOD =~ @
00005600 1704dNd.1°115°LZ0aAN8 OVET ADD *LGL 2ZL00J0ZH9R000Z0 RZTNO0D
00LOn600 X13TTQ¢T 3D+ TIS*XLAATA° LI LBk +051 £0220009YLL000LD 0Zh0O0O _
= 0000E600 VIVADSH+XISATALT 2D+ TTS4TOVIANAALIHA RID (ZOWARA+ENL 96220009%6500043 ALNH000 e 7
0000L 600 MIT 2731 HOd FSKO4SIA aAval LZ04ANGT 1S 1Z04aN0°AVAE ADD LZOAVAHsLHL 2Z1 0000799000020 0LROOO ...
P 00000600 SIN11 9131 WOd YUFJ4Nd FLTHA *-e’I16°1Z0JANAILTAN ADD LZOZLIHA*9NL 0022020ZR90000LD FONOO0D ®
00006800 SINIT 9731 §OJ IIGIHAI 1204and1°I1S°1LZ04dN4°1131NNT MDD LZOBIHRI+SHL JZL00IOZEINOOOND OOROOD .
00006800 ANIT ZFHY 2TAVMT KAWL LITS°0°219VNA AID shnl 1002020Z000000L W4L000 !
- 0000L800 9008 €3I 2Sq 335 FAOURAITLT'OI+11S'AAONAIE'AAONIAS RID afhl . L0320%99n8L000EZ 04E000D o~ r
00009800 ARIT SA3 RTAVSIA L °J001T5°0°ATAVSIA RDD A TOAVNA+ZEL 1 032030900003042 £3C000 i
- 020203000) CLIEO0D o
2 v &
“ 94700710 Tu°w0 GOLO UKW ININAIYLS HDUNO0S INIS ZWAOQV LEQaQy 1002 Idirdo 201 !
i _ ® i
s [9v4 (TRAY T Y] §91207T9 TO8INO0I URISEIE — SUIOTEIIN 0°LA OLE/SDDE SADOTR _
- L2

R P S

iR L=ni)

[P —

. e o i - e syt el

il i - —

B s R R P

)

L R

o g

00008510
00004510
00009510
00005510
00000540

00002510
00001510
00000510
00006710
00008nL0

00009810
000064010

0000ENLOD
0000Znl0

00000010
00006510

0000LELD
00009E10
00006(10
0000nLLO
0000€EL0
0000ZEL0
000OLELO
00000€10

00008Z10 RMIT A4l 04 ASKOISIH gvaw

0000LZLO
00009240
00005210
0000hZ1L0
0000EZ10

9L780/10 TN"%0 SOLO NSY

9 s9vd

SANIT 8141 40d ¥addna ILTdm
SINIT 3131 804 JIBIANI TTOJANAWT°1TS°ZZ04aNG’LIAIAN]

“x
t
X

4

ERIT DRASIS ¥ 61 SIR {osaza1) 11V
10,8

alsH

v 82

. «0008B., 21X
QANDIESYAD §I 4AnNIT SINL 2 IXaD
" ¥
¥

0sL1d
00£1D

ZZONAS. T 115 ZZONAS*ISNIS
ZZ0440N,71°118 7204404 avan
YIVONYNT DO+TIS YLVANYN AT THA
TTOAANE T IISZZ0AANAR AV AN
VIVAONIV,T° D0+ 1 TS ZZOVAANA“ALTHN
TT04anda.1°118°22Z044nuavag
X1321347°0D0+116°X1032 T ALINN
VIVAOSH+XISATA41*20+115°CZZ0VAING a1 18N

TZ0dan8.T°IISZZ04ANG"aVan
«=-0’115°2Z0440n8%3T 18R

ANIT THL FTAVNE HEHI L'YI5°0°aTAVNG

8008 §II IS4 13S FAONELIZ.T°22+11S°3AONAII‘EADNIES

ARIT INd FTAVEIA L°2D¢I15°0°7TAVETD

LNINILVLIS EOH00S

aw/10/10

e I el o R

EQ
s4q
54
sq
24

24
240
Ja
24
20

540
sa

sa
sa

R2D
ROD
e
Lo
o]
b le]
b b
e ln]

B fe]
Ll
nJ2
nad
R
B22

TTONIS+hIT
ZTOADT+ELT
TTOLVISHZI T
TTOZD1d+ 1L T
TTOLOTd+ LT

ZZ0D0L+B02
ZLOINDE+LOT
TT00I4T1+902
TZOATHT+G0Z

Zzoal+noz

TTOVOSH+ZOZ
TZOVANE+ 4 0T

ZZOVAANG466L
7Z044n8+06)

TZOMDO+961L
ZTOASD+GHL

TIoaasa+L6l
1764
TTONUAN+ LKL
+0bt
CTovunE+enl
+Hel
+iB)
ITonyna+9g1L

ZTZoavaus+net
ZZosl1nm+cBlL
ZZOBIHNI+ZBL

+lB8L
+081

ZTOAVRI+GLY

INIE TdQaQv L 8Q1Y

o8

0002
1002
onon
o008
L3l

L0220)0ZZVRO0O0N)D
JZLO0IATRIINOOTD
H03I0DI90RLOOO0LD
AZLOODITRIONOOTD
n023030903L000L)
2Z1LAODOTAD9N00OTI
Z02)0339vLi00000
96220209n4L0001)

2Z1L00227RI9N00TD
002302378290004D
JTLOODIZRINOOOND
10320)0Z0002)04L2Z
102J030908L000E2Z
108302290003904Z

0000233003

1300 1D3rgo

£§22078 TONINO0D WIISELS -~ SNTIN 0°1d 0LE/S2DM

ZN8000
LVYeo0d
oveo0o
468000
468000

268000
Y&B00D
PERO0D
968000
268000

068000
JEBODO

widl000
f29000

029000
889000

089000
RY900D
ovenco
REOO000
069000
AEAD0D
0F%000
FL9000

09000
299000
099000
859000
059000
en9000
£h5000

201

532078

88-

[S NI G,

L¥

00005610
00000610
0000C610
0000Z610
00001610

00006810
00008810
0000L81L0
000090810
0000SA1L0

0000€810
00002810

0Qoo08L0
00006LLO

0000LL10
00009L40

0000NLLO
0000ELLO
0anozTLIO
0000LLLIOD
00000410
00006910
00208910
0000L910

00005910
00004510
0000£940
0000T9L0
00004910
00000910

9L/80/710 ZN"H0 SOLO WSV

L J0Vd

sL/10/10

 § sa

§ sa

X sa

 { s4a

28117 24213781 ¥ 1 SIHI (o) L1v 24Q

108 o0

bl 24

v ed Ja

20008,.Z7X 24

)} 28317 24113781 €1 SIfL sblad aa

L 54

1] £d

0sL1d sa

00E1D 1]

] sa

a £a

fZONAS 1 TIS*CZORAS'ASNAS MDD

(204408, T1°115°CZ0d400aNan nad

VIVANVN B DD+ 115 VIVANYN AL TYR [k]
£704308,1°11S°CZ044NA"AVEN ADD

VINAONOV. 120+ T1SE6T0VAANA ILTHN Lk}
£703400,T°115°€Z02ANA°AVAR MDD

X183170,1°00+4118°¥132'10° 321480 (b5

VIVOOSHAXISATA,T D0+ 1T15°CZ0OVAANA ALINA na3

RI7 321321 80d aSNO4AEAM aAvay CZ04dNE» T ITSCZ044NA AVEE KID
SANIT ATAL W04 ¥324nd 3I1TEA e-+"11S°(204408°ALTHR MDD
S3ANIT 3731 WO LIAIHNI CZ0JANA,T°IT1S°CZ0JANQ°IIGIHNTI HDD
- SAIT ZHL 2TAVNT NEHL L°ITS°0°ATAVRE MDD

278YA3 050 BIIA INIANNDITY HOJ 40M L%35+118°0°d08 DD
ENI1 INI STUVSIA 1°D3+1715°0°37UVEIA MDD

INTHELVIE

ETONTS+LST
£Z0407+052Z
EZOLVIS+RNT
LZ0TNIAenNnE
EZOLYTAeLNT

EZ0DD1+502
ETOINDT+HhT
ET0Q1dT+ENT
ETOQINT+ZNE

czZoal+Lnt

ETOVOSHe6ET
€TOVANA+HET

CTOVIANA+9ET
CTO044dNA+SET

CZondD+LL2
EZORSD*ZET

fZoaasde00 2
+h2T
CZONUNEIBET
+LeTT
CZovUnA+9ZT
(3344
*nZZ
CTOMUANBeEZT

[ZoavaB+LZZ
CZORLYYASOZT
E20QINNI+ELE

(11%4
*LLlZ
EZ0AYNT* 91 2

qunos

IRIE THAIY L4732V

00

0002
L1002
anon
o008
1dfi

1003630Z20000000
JTL00ODOZRZI-ONOTO
h033033908L000LD
ATL00IDTAZTENCOZO
n0320209496¥0N0L0
JTLOEIIZRZLINOTD
T0230309YLLODOLD
9632000905V000L0

JZL0020TBZEINOTO
0023033ZHZEG0001L0
321 0000Z0Z6000VD
£022030£000220L2
10302049000000¢)
103303J900009004Z

0000090002

700D 1JArdo

S§320178 T083IA03 NEIEILS — SYDOTADIN 0°LA OLE/SIDM

08000
L0002
003000
4ava00
24000

24Y000
vivood
RAN000
94V000
ndV009d

0avood
JRY000

hSYO00D
826002

0Z6000
916000

0L6000
POE000
00€000
R4A000
04P000
£38000
03E000
8ar0O00

0aF000

FOB000-

036000
GEE000
0aR000
/RYB00D
Eveooo

201

$3D018

B s

[——

-89-

B e e T

. . A ekt = - mn

e e e i R i

1Y

0000ZET0 O » 84
0000LEZ0 X 54
00000€20 § sd
00006220 4 sa
aoooRzZZo IRIT 34119 ¥ ST BIHL (o) iy 2q
00009220 100 2q
00005220 sball 2a
0000hZZ0 v e a0
0000£ZZO . 1 0008,27K a4
0000zZZZOo ¢ ANIT 841131743 SI EIHD 1Y £ 1% aq
00000ZZ0 1] sa
00006120 k] sa
ao0n0LZo o512 sa
00009120 00ETD 54
00000120 a sq
0000€LZ0 a 54
0000L120 NCONAS T TTIS nZONAS ASHES MDD
00000V Z0 nZ044N8:1°115°070a4na’avay A3d
00006070 VIVANYRAT DD+ TISVIVANYR®AITUS MDD
ounosozZo HZ0ddNA41°115°nZ0d4A0a'ANAN []
ooooLozo VINAONDVT DD+ 1 TS HZOVAANA“TLIINN LEE]
00009020 HZ034N0+7°118°0Z04AN ANV 3N Llo]s)
00005020 A19371d.1°D0+715° X120 L1140 ADD
00000070 YIVAHSH+XLSTT10, 17004115 HZOVAINA*TLIAN Lk}

0000Z0Z0 WMIT 3741l ¥od ASKROLSEE qQvan nZ0a4Nng,1°11S*nZ04dna‘avan LIl]

QgooLoZo SANIT 2743 BOJ ¥3AJANQ FLTEA 115°n203400°3LTUN L]
00000020 SANIT 27133 HO0Jd IIAIHAI nZ0JINEB4T°ITIS’nZ044NA'LIATHRY A3
00006610 ANIT THE ATAVAT NAHY 4°I15°0°41dVRE A
00008610 2TEVA] DS8 HITA ININKDITIV 04 JOR 1221780 0K RDD
goooLslo NI IR ITOVSIQ LDD+115°0°318VSIQ R

94780710 Zu*w0 SOLO WSY IRINRIVIS

] sova sL/L0710

hTONIS+RBE
hT0d0T+LBE
hZOLNIS+9RE
nZ0OZOTI+ 68T
NZ0LOTI+NBT

hZ0d01eZOT
hZOLNDB+L AT
hZ0q13T+08T
NZO0ATHT+HLE

nZo4aI+BLE

hZOVDEN+9LYE
hZOvANA*SLZ

WZOVJIINA+ELT
WT04INA+ZLE

nZORDI+OLT
RTOASI+ 692

nZOAASAL9E
4992
hZONMREYSOZ
*nyl
hZOVHMEB+E92
+292
Hoe
hWZO0WHABE+ 09T

WZ0aVIN+RET
WZORALIAN+LGZ
HZ0AIHNI+O9GT

13114
12154
hZOUVRALESE

€9d000
190000
090002
asc000
09 3sago0

0002 250000
L00) ¥5d002
ohgn 850000
0008 954003
Zded nws4000

050000
2haoono

ha2000
8RA00D

0RE000
eLanoo

L03230222Z9000000 0LBOOO
J2L00J0ZARENDO0Z0 R0A000
n0II0D0RORLODOLD ONEDODO
DZLO0IOTBAU000Z0 BCEODD
n02303090320008) 064000
JZL002DZRAN0007D nEODD
202J0009YLL000LD QnACOD
96330009082000L0 B(HOD0

JZL00IDZRRANOOTO QEAOND
0021030ZAKRA000LD RZADOD
JZLODDIZRABNOOVD 0OZEDONO
L032000Z2000200LZ BLEDOD
$0230009000790€0 01LA000
103202090000004Z 808002

0000000002 €0EDOO

IDUN0S IRLS TUOGIV LEQIV #0023 123/ED D207

E¥2017T8 T0RINO0OD WIIELE — SNDIAIM 0°LA OLESSDON SWDOTA

B e

-9(0-

— s gt s

————

I e i - ——— - — o P, £ T e L s . s il RS

00002920
00001 R70
00600RZ0
0000KL70
0000820
0000LL2Z0
00009£Z0
0000SL70
0000nLZ0
0000ELZO
0000ZL20
€0001LZ0
00000470
00n06920
00008920
00004920
00009920
00005920
0000h970
0000£920
0000Z9Z0
00001920
00000920
00006SZ0

0000LSL0
00009570
00005520

.

0000E<Z0
00002520
0000i5Z0
00009520
N0NO6ENZ0
0000RNZO .
00700070
00009020
00006870
00008020

0000Znl0
00001 HZ0
00000nZ0
0CGO00GEZO
0000REZO
0000LEZ0
00009€Z0
0000S£Z0
00008EZ0

94780710 Zu°N0 SOLO MSY

.h\.e\.o

QErNmINoO~OR

-
~
-
-

-

220X

103X

sTEaX

sE0eX

101X

g 20LaX

.,. .—n.n

. sled
; aNsD
sdad

sl0aX
sh0u K
08T
ol 00X
W 20X
ah0a X
«A0aX
sONeX
0Lk
W0ZaX

pE0X
WEZX
o002
sh0eX
200X
20X
V02
Wl
olLZoX

nda
nd3
nda
nds
nd3
ndz
nda
nde
nda
naa
ndz
nds
nds
ndz
nba
nd3
nda
nda
nda
nda
nba
nda
nda

33

ada
nda
nog

nds
nda
nda
nda
nda
nia
nda
ndz
naa
nlg

naw
naa
nas
nda
nye
naa
nda
nda
nd3

SLE+BEL
hLH+LLE
ELU+9CE
TLH+SEE
LLH+h(E
QLE+EEE
6UTLE
QHUeLEE
LE+OEE
" 9Be6IZC
GH+RZE
hi+LZE
TH+9ZE
THeGZE
LU+HZE
oH+ETE
RAS+ZCE
XIS+LZE
avd+0zZ¢€
NVN+BLE
X13+81LE
FJ1a+LL g
0NOV+9L €
LY

ARON+ELE
DReZIE
SARtILE

INOAHTL+6OE
2D0+R0E
NIIVeLOE
N+ 90¢
NeG0E

a4+ 10¢€

D46 0C
2D+20E
dINS+L0E
11S+00¢€

JONHAE
AO0NLASLE6T
JI14962
ASNIAS+SHE
JLTARehbE
avanefo
LIGTHNRT+Z62
ATAVSIGeL AT
ATAVRIG06Z

INARIIVIE ADINOE INIS

$3520176 T081IM0D HAgISKS -~ 42079000 0°4A OLE/SDON 5301

40000
20000
aop0o
30000
20000
voooo
60000
80000
L0000
90000
0000
h0000
E£0000
0000
L0000
00000
zeoo0
0000
04000
acooo
€0000
01000
0,000
L2000

531000
§3000
8d000

L0000
w0000
0RJ00
L0020
T0000
%0000
RFODOO
Oon000
01000
nZooo

£0000
EZ000
60000
h0000
10000
20000
Noooo
42000
Lzooo

%402 123arap 2307

(1]

———

g e ———

- —

- —— o —— e

-9]1-

B e

|
!
|
|

000DESDO
00002500
0000L500
00000500
00006100
00308000
0000L"00
Q0009100

00000000

0000Z%00
00001500
00000100
00006£00
Q0008E0D

00009£00
0000800

0000EE0D
0000ZE£00
0000LE0D
00000£00

00009200
0000LEZ00
00009200
00005200

ooootzaog
0000ZZ00

00000200

00008100
0000LL N0
00009100
00005100
00000100
0000€L00
00002100

00000100
00006000
00008000

00009000
00005000
00007000
0000€£000
00005000

9L/80/40

o agva

200N IS0H BT ST ENIT SIHI 304X Nd3

INOIHIL 0¥DV Rod ONILIVA ANTT Dsd 20X NOF
{ONINIYEQ) aanIvVNg S1 ANIT SIHL sh0sXx nd3

4817 SIAL NO SOHSH (ANAS l.Noa) Q10H 280X nd3
9SH 27321 804 3SNOLSAY DNIIDASNY WOLsX nd2

SETT1 8131 RO FATIOV AlTun/avad 102X 003

RO GaN9IS SYH FINIT SIHIL 10X 003

2NIT 258 ¥ ST SIHL +08.% nba

SNiViS 3RIT Hod Salid HvV1d ¢ sa

HZIRANOD INOAWIL D54 H sa

§J0W EaHI0 HO4 INNOD ¥F34ng A13L H sa

20¥SSAN ISVT JO QINIODSW 40 SHVHD Z 1SHId z12. sg
aIAZTHIE FOVSSAN ISVT 40 QISHOSH [N} sd

IRIT SIHL 20 4T aNI1 21 sa

474408 ¥OTE9SA Osd IXan 20 ssaNaay v [{]

AN3S FOVSSAW IsVT NOZ NOTAHSH JO SE53uqqv J sa
980

§3dane Indino Jse 0511 saq

dindydy 9Ho0

AYR/EDY QTOH 01 ¥3aadnd FT3X (11 % b} sa

. DHO

v3d4na Jndnl OS¢ 0541 sq

4203 S¥o

34404 INALNO/INANI 573X 00£12 sa:

H08E3 WO m2D ISVT H0d YAUVY HAVS s-e’9-0"0-0"a-¢ HID

ANIT SIRL 704 ASD 1S¥i [} sq

IER3S 3731 GKY OS54 ISNIASANTLTIIS*ASNISANT*ISNIS MDD
SNOASAB/USH DSA avay JANGIANTL1°ITS°NOTAINT-ANAIANTAVEE nID
N¥N OSQ ALIAN VINTAYNAT OO+ 1 IS VIVAAYNTIINN n2D
SNOJSIU/OSU IS4 avAY JNATANT.TI1S°N0T6uNT-dnalanT’AvaY R3d
0¥DV 258 FLINA VIVADNDV LT D0+ 1TSS NOTEINT-dNUOIANT AL IHA [b
ENOJSIU/OSH I8 AVIE INAISNT. T 11S°NOTAINT-INUTIANT AVIN MDD
*ASKVAL ISd FAVIT XIFZTAeT’I0¢ITSIITSINU-XII4TA’EIINR HI3
4ITEA D58 VIVADSH+XLSRTIALT?D0¢11S*N0T0ANT-A0B0ANT 2L THA nId
2731 WO0Jd 1noaWIl HIIA avad d4n9.1°118°24nd’avEd MDD

4741 ¥03 FVYSSIN TIIuM *-6°224175°3304°TLINN RDD

2121 90d OVIM INANTI-ON dJ308.T°IT5°3ING°ITATHNT MDD

2731 4RV DS@ HOd ATEVEZ L°IT18°0°ZTAWNE MDD

{SEXIT FI3% 804 JON) FOOWELIL¢1°D0+115°3qONSIT*TQON1aS BDD
SANIT DS9/2793 804 27AVSIO0 L°JD+ITS°0°3T3VEIT A2

10350

ADTIANT

TH"40 SOLO uSY LNANILIVLS

9L/00/00

ISOHBNT+L6E
OlmaANT+06C
RHA3IRT+60E

QI0HINT+BBE

d5ANANT LRE

ALOVANT+9BE

NOANT+SHE
259INT+ hBE

LOTdANT+ZBE

J0LANT+0RE
IHDUANT+BLE
GINJTINT+ALE
GISRTANT+LLE
GIART+9LE

YANEANT+hLE
VOSHANT+ELE

+ILE
dNA0ANT+0LE
+69E
dangidove+nog

+99¢
NAIINT+SIE
LT
L3na+E9€

YSHAIDANT+ L 9E
ASJIART+09C

DHIATANT+BSE

195E
HYNURINTSSSE
+hGE
WOVUMANT+ESE
OSWAUANT+ZSE
*5E
OSHURIRT+0SE

BIJQYAY+ANE
HIDALIVA+LNE
ROOUTIHRI+9nE

shng
SENE
BYRINTeZHE
NOIHANT+L BE
(113

DUnos

10000
0000
h0000
20000
0L 000
0Zono
onooo
08000

ThZoo
Nioo

2¥L00
06000

‘dNLS THGaV pEaav

003)00000000000)

LOJJ0IDZVSZOO0OND

962)010Z0800002)
H02302290%L 00040
?6323)0Z20R80000Z0
®02302)92V1000L2
96133)0Z0%00D00Z0
20330339 WLLIDDOLO
962000092V1000140

JZL00INZORACOONTO
002300090R0300L0
3Z10000Z0R0000Y0

102203020202 00L%
10230009984 000EZ
£03)032900000042

2000 1J3rEd

E¥20789 70810800 HALESLE - SADOTEIIN O°LA OLE/SIDN

952000

hsZ000
€s7000
052000
aniooo
RLI4 T

802000
LAY

ThZooo
2¥iL000
[4. 7441 1]
JNL0DO

qLi000
0R0000D
2YL000
0R0000

BL0000
0L0000

890000

090000
850000
0S0000
LRLT L)
on0000
rLeoDe
010000

fZ0020
oZooro
810000

0i0000
B0000D

000000
000000

207

532014

|
|
M
!

-

s e IR N I T

-

T e e semn o s m———

- e e -

L

rFex |

® @ e

00004900 NOTEANT ¥V 40 32IS
00009900
0000%900 S¥0BNI 0/1 HO3 F1xd ISHIS

0000€900 FATIT SIHI MO GIRBOJUId NOILVUZEO O/I LSV
oocoL9%00 (2912958 NI QaNIdaa s11Q)
00006500 (95d) $50° ¥aRIO W04 FIid ROTIVOINNWHOD
0000500 DSH/¥DY ISUIL WOd ONIIIVA INIT
00005500 oAl 3114 OVId
9L/90/10 TN°N0 SOLO WSV

Lt TOV4 $L/10/10 §100

4074ENT-+ NI HZISANT+SON 09200

Qo sa +hon 092000
X S0 ASKRASIRT+Z0N YSZ000
| 54 dOLSNT+LON 652000

*466E
X Sa IVISANTe¢LGE 862000

108X 033 JEVISANT+SEE 08000
' X §4 TOTAIANT+E6E LSZo00

IRINTLYIS JOUN0S - 1INIS Zuaay Lzagy 200> 103082 D01

T8 TOWNINOD WIIELS - SND0TEIOH O"LA OLE/SIOOM £3207R

"

-93-

-—

o s = i | S . e i el b o e AR Bl et Bt 0 b e

'Y

o

¢ Domgrane o COW

B

00000200
00006400
nonaaLoo
ooooLL00
00709100
00005100
00000100
00N0ELDD
00002100
nonoLL00
00000800
00006000
0000A000
0000L000
00009000

00005000 ¥OTADSH 1XaN Ol (¥ld NIYHD 0S1V) DIL

00000000
0000€000
00009000

9L/80/10 Tu°N0 SOLO WSV

143 0ve

et by

1019950 N1

FOVSSAR WAHIONV

T P R LIl

Vivd 3oVsSsaw

B e e L T L

NJ3078 AVVSSAW 40 HIONAT

40 H1DNE1

dOVSSAN 40 1IXAL
ANTT AHI JDANNOISTA

ONIANES 3noJdad LIva
HOVSSAW ANENG ¥V ST STHL

$J0H ONILVNIDIHO WONA F1id OV1d

YOIAOSM SIHI 3AU4 O JJWILLY l.NOQ
A9¥ESAN SIN1 NOAd .FSNO4AS3AY 1234X3 1.H0C

ALkd HVId

HAaRas 8 ATAVNOISSY WildIanaar

4DVSSAN SINHI H0J HAIJ1IN3GI INJINA

WORd ST ADVSSAW HO0S53D08d 40 aIl
404 SI IOVSSIW ¥OSS3AD0Hd J0 dI

NOTAOSH~-» nngy
QI0LOSH-#» nda

ao sa
azL1d sa
020X nas
LTE] nda
00X nda
I sd
s0haX nd3
208X nda
X sa

] sa

] sa

912 sa
91d sq

{o=o) ETV* (DIT) ATV aa

¥307q 2R 44D OX #J3 VIVASSH’ITS’AI0IDSH’ILIINM 82D

sL/ro/Lo

123584
) J0TEOSH

INTNRIVIS

e e

AZ1SOSH+GZY
VIVAOSH+hZH
120
IXALNSH+ZIN
ASTADSHY TN
L1Va08u+0Zh
RIT LB EY YR]
Z9T405HRL Y
HHAONLSHe LA D
SNVONDSH+9LR
LOT406HeS LR
gISNUSHenL
AISHOSH+ELN
AQI449SH+LL
QI0LDSK+LLY
JILOSH+OLN
AIJ9SH+H0N
A0TADEN*BOD
LO®

FoEnos

ovooo
h6200

02000
onDoo
08000

08000
08000

INIS raaav Leaav

00000082

#622000Z2000301)

7002 1D3rd)d

5320174 7081809 WIIEIXIS - SNI0IAIDN 01 A QLE/EIDN

ovoQoo
410000

aitoo00

210003
Yioood
RLOOODD
Zioo0o
200000

k00000

000000
000000

201

$i1007a

W)

)]

[+

oy Breasa gy
L4

-04-

e

¢ .

— e

000007200
0000EL OO
aoooBLNO
0000(100
aono%i 00
00005100

0000€4 00
DOB0TLO0
00701100
00000100
00006000
0eco0e000
oo0nnLo00
00009000
00005000
00001000
0000£000
0000L000

9L/80/40

El Jova

A At B

¥07a0dRd 40 H1ORAT
VOTAORA NI VIVQ 40 H19NAT

dDVSSAN 40 1LX3L
RASN X0 ATAVNDISSY HAT4LINAQX
FOVESAW SINL uod WATJILNAGI AndINO

49VESTIN TAATOIY O1 LIIVM TTIM 5SAdoHd’"*
aDY¥SEAN ¥ DNIAZDAT ST SSINOHA"""

9VESAN ¥ DNTQNAE ST §53J084°*°**

alkd Y14

HOB4/804 ST IDVSESEW BOSSIDOHA A0 AT

OSH DRIAZITU/DNIONES HOSSHTDO0H4 40 4T
¥J1D S5.+553208d 9NI152nDa¥ 40 HaA¥a
£SED0Hd ONILISINOAE J0 ATUISH

%¥07a08d 1¥AR Ol (834 WIVHD OS1Y¥) 211

(e=s) ETV* (D11) 0¥

43079 INIOANDIHD O MO VIvGDE4‘ITS HESOLMA‘ALTHR

TH*N0 SOLD WSV

9L/10/40

/
d07ad8d~e nba
wasnbud-» nda
ao §a
8zZLT1d £da
R sa
] sa
W 0ZaK nd3
sOMaX nda
200X nd3
X sqQ
912 5Q
913 54
£13 50
8Td £a
aa
Lo b]
10184
1018084
LAGETIVLIE

AZISONAeSnn
YIVOONde tinny

sihn
1¥310RAeZhn
arsndidelhh
qISHONA+OhY

LIVADHdeBER
AIRONIoLEN
ANASOA+ 9L h
LO7A0Ud+SEY
aInAORde iy
aroldAdsLEn
BAAVAOUd+ZEN
HisNQHdslEh
DI100d+0EN
K220 d+62h
yo1adud+aZn
LTh

228008 . IR1S THAOV LHOQY

avo00
26000

0zZQo0
0n000
08000

§3¥20174@ T084K0CD W3ISKE — ST

0000008)

AY0000
RZ000D
sZooo0
hZ0o0o

£Zaooo
aLoo00
L0002
nicoo00
200000

RCO000"

2620020220 000010 000000

100D 1J3rgd

0°LA OLE/SION

000000

201

s33014

m
'
|
:
!
§
|
|
;

Rt

-95-

. it S o s

[l

4 g~ g O

o w

00008000
94/80/10 TN*80 SOLO MSY

sL710/10

any Lhh

LEFNELYLIS 3DoM00S 4818 T84JV LEJavV. 3300 I23Ir€d 201

£§32016 T08 1402 HNIIELS - SNITIN o-_—bnhn\nu.uu

5300178

(5

3

eaWFemsanig
L

-96—

e s a e ——

v i . o bl . e g i A

i T i e e ———

S8 R boeew e T e B T T o B o L T R T R RN

SSEQ0 €SE00 LSEQD OSE00 LWEOD ENEOD
$9Z00 €900 LIZOO 09200 »5Z00 £5Z00 OZZ00 9ZZ0O HZZOD EZZOO LLEDO 9L Z00 L6LOO 68100
98100 00100 6L100 %SLOD ZSLO00 OSLOO0 6MIO0 EHLOO ZHLOO LLLOO SLLOO ELLOO ZLLOO 90LOO

99200 99Z00 H9Z00 ©9Z00 ZT9ZOO0 TIZOO0 ASZOD RSZOO LSTOO 95200

62200 6ZT00 LIZOO LZZTOO STZOD SZZOO LZZOO LETOO 0TIOO0 6LEZ00

T6L00 Z6400 06100 06100 868LO0 €BLOO wBLOO ©BLOD €8L00 7BLOD

SSL0D SSL00 €5L00 ESLO0 LSLOO LSLO0 45400 LDLOO 90L00 SHhLOO

SLL00 GLLOD 91400 94L00 RALOO ©LLOO OLLOO OLLOOD 60100 Mwmﬂw

. 9zZo0

. 68100
ZSL00

. SLL00

R9EOD GREOCD OREDOD LAHEOD 90EQD

ESEOD £9200 9ZZ0O 68LO0 ZSLO00
¥ LOL 00

Zneoo
LALO0
$0L00

95200
61200
ZaLoo0
Shioo
80100
09200
£2200
9RLOD
60100
TLLOD
9hE00

SLLOD
86000
69L00

94780710 Th°n0 SOLO HSY . SEINTURITY

o

1) avd §0K383438-55082

tET0D
96100
65100
zeLoo
80E00

Z0E00
EZT00)
c9Z00
BZZo0
L6l 00
w5100
LLL oo
097092
€200
9810)
6hl 02
TILOD
£9Z00
9Z702
6A100
Tol00
SiL100
TLTOD
SEZ00
Bhl 02
L9100
hZLOO
tLZ00
atZ00
66100
Z9L0o0
SELO0
ENEQD
SLZND
BETOD
LoZoo
LETR]
LzLoo
1920)
aEzon
£6100
95100
61100
L8200
nhZoo
L0Z00
oLL0o
EELOD
LOE00
IR V]
LoLDD
91L00
BYEDO

"1zl

0Z530203 BOODO
02300002 FQOOO
09420003 80000
0000000 AO0D0
h2230000 10000

0nD2032) L0000
81330200 n0000
09300000 ROODO
03520700 BONNO
0¥300002 80000
0hh3032) Q0000
03100000 ROO00
BEIDOIOD BO000
83230002 AC0D0
RL3I00N0D 60000
BLRJ020) ROCGDO
8a100303 ANQOO
05300000 BO0O0O
01320032 BO0NOO
0630030 ROODO
QERIODID HOOOD
03400302 ROOOO
93130333 00C0O
8Z600002 00€N0
§2300003 00E00
69h0020) OCEOD
8070030) 0000
nd30030) 0SLDO
n3¥0330) 0GLOD
n3L00900 0SLD0
8633020 04100
hEEJ0202 05100
08230003 DOEDO
Jr10090) no000
J3¥0023) ho0OO
JA3I023) Hw00LO
32300703 woQOO
32800333 n0000
0L40023) #0000
0L63000) RO0NOD
08300309 ACCOO
0Sn30200 80000
04130300 RODOO
V5300003 Z0r00
V4¥30002 20030
V6320333 Zoooo
¥E900000 Z0ODOO
¥31£00200 20000
08320309 LonoD
nL2330002 %0000
JLL0000) 10000
04090000 L0000
AVL2020) 0SLOD

inva nal

ETONID
CIORDD
LZONID
0zond0

23

k)

Ayl
nZoKgmd
LZ0NKN]
TZONENE
LZOoKENG
oZoke=d
WZowEna
LZoRund
TZOWRMT
(R4 LE]
0ZowNmd
hZOVE"E
fzoveng
ZTOovHe3
Lzovymd
0zZovuna
®Z0ddn3
gzodana
TTodana
LZodana
ozodind
nZovdaang
EZOov4ddna
ZZ0oviana
LZcvddng
ozoviing
din3
nzovdna
ETov4na
Zzovana
Lzovina
ozovana
hZooasia
£Z08358
TTea3sd
LZoe3Ed

0704384 "

nZ01NRD3
£T01N03
ZZOINDT
LZolNna
0ZoINDa
NILV
JAUSKSY
TIVACNDIY
0NV
4NNV

T08RRS

$32018

L E T

k "“.Q":,,

o —

o e

g R S

-97-

T —— " i — - b St B ¢ e s

e e 99

Cm et A e e e e

s O

e
.-

L
i
H
i

° ANEOD' SSZ0D BLZOO LELOO HHLOO

_ 0SE00 09Z00 €TZOO 98L00 &ML 00
VSEQO VSEOO' LIZOO LITOO WTZOO WTTOO £8LO0' LEBLOO 05100 0SLO0 ELLOO

9L/00/10: ZTw*N0 SOLO' NEV

t 1S v

, L0200 00100 66000
P ENCOD' €SZ00 9LZ00 6LLOO Zhy OO

FONINTITU-5500D

ooLoo

L0100

TiLo0
ELLOD

86000
Soro0

£9000'

9E000

saduguasze

BLZ0)
LhZ00
H0Z02
L9100
DEloO
h6000
annoo
09000
Ls000
65000
A%000
L7000
SRZ0D
anzoo
LLZ0D
LYAY
LELoo
hBeZ oo
Lnzo)
oLzo0
€L10D
9eL 00
£5000
91002
62002
BLEOD
€670
9Lz 00
6LLOD
Thioo
C010d
06200
6h000
66000
0pL0D
86000
LLEDO
L&Z00
hOEOD
69200
TET0)
S6L00
85102
LZLo0
Zzooo
€8000
h8000
SLE0D
SE000
96000
06000
49000
L9000
£0to0
0LZo0’

udag

R372000)
n3¥00000
n6330000
nE30000D
h3E0020)
TLLO000D
08120002
22200000
03230002
83100000
h3I0090)
09100002
45120209
43v00000
46300000
48900007
dIE00200
45190000
4I¥00022
46800000
dE300002
IE0000D
03Z00303
8L32000)
85230000
€0210000
80300002
BYRD0000
8h30000)
B3E00000
83100003
LTIIO0N0D
02100303
ALLOODD0D
VLL000D
94100002
01220207
dt220009
h03J000)
824300000
81500000
8330000
BEROCD0D
84100000
0h23020)
££32020)
22233102
13200000
068320302
nLLoeoond
ag9L0000d
80320202
00320000
800230000
08130000

inva

Z0000
£0000
Zooon
Z0000
Z0000
t0000
h 0000
h0000
h0000
h0000
w0000
80000
10000
L0000
10000
L0000
Loono
L0000
tonoo
Loooo
Lonoo
L0000
h0000
80000
80000
L0000
80000
80000
60000
80000
R0000
10000
%0000
Z0000
70000
20000
10000
10000
L0000
80000
BOO OO
AO000
A0000
80000
80000
95100
95100
L0000
RO0OO
T0000
L0000
80000
80000
L0000
80000

nal

hZodl
£2041
Tzedl
1Zoar
0Z011
dNITTA
D0THJD
242154384
ROT3ERd
HRHZIBL
PUFELE|
5014134
nZ0Z014
tZ0Z914
ZZOTOTE
1202974
070T914
nTOL Y14
£Z0LDTd
ZTOLO13
LZ0L914
0¢01914
JANSIX]
ASdOL¥1
ASdANIX1
XL
nZodYNa
LZOAYNE
(44 EA LTS
LZOHYRE
0ZnavVKY
78YNT
907431
T1SA1]
XL1E313
0¥2OVI1]
a11
3174vs13
33
nZONSI
£ZOASD
ZZOASD
LZORSD
0ZOnS)
AS)
danasd
44n|ed
3]
£010dD
ATOSKDD

214430°

RDJRKVHD
RIJBNYRD
a2
hZOADD

T08HIS

530073

s ——
yBreising

———

¥

——

— ———

.

- ——— s e e -

Sy = e

e Mgt g g

i

6ZH00 60500
W0E00 ENE00 ZNEOD L9Z0O
#5200 €5200 0€200 62200
9LZ00 E6L00 Z61L00 L6100
95100 S5400 »S100 ESLOO
81100 L1400 91100 SELOO

94780710 TH %0 SOLO WSY

0z asva

BSE€00 9SE00
99700 59200
8zZz00 LZTZOO
06100 68100
5100 15100
8L 400 €LL00

SSE00
9200
9ZzZo0
88100
05100
TLi 0D

S

"5€£00
€9z00
SZZ00
LyL00
60100
04400

PSP

€SE00
z9Z00
hZZoo
98100
Lhi oo
60400

wront Ve a,

€SE00 LSE00
L9Z00 09Z00
2200 L2200
%8100 £8100
90100 S0i00
80400 LOLOOD

06000

6Zh00 60M00 SSE00
£6C00 LSCO0 0SE00 LHEOO S9Z00 €9Z00 L9Z00 09Z00 LSTOO ©ZZOO 9ZZ0OO HZZOO EZZOO 0ZZ00 L6LOO
68100 LOLOO 98100 EBLO0 %SL00 ZSLOO 05100 6MI00 9ni00 LLLOO SLLOO €LL00 ZLLOO 60100 ©9000

0En00 0L ROD

Z0L00 ZOLOO LOLOO LOLOO

0Sf00
RGZO0
0Zzoo
ZeLoo
"hioo
90iL00

EREDD

FON3E3d38~6800D

AnE00
LST00
61200
L8LO0
€nioo
s0L00

08L00

66000

LnE00 9hEQD
95200 55200
BLZ00 LLZOD
08L00 6LLOD
Inl00 6L 10D
89000 L9000

thi00 90100
L9200 L9200
0£Z00 0£Z00
€6100 €6400

SIONA¥IITN

LLEOD
LSZ0D
0Zzod
EHL 0D
9hi 0
60L00
LhEDO

n6Z00
0LODD
LLOOO
80000
cotoo
[4: 14/ K]
ShZoo
B0Z0)
L2100
LUK
9Z000
60E0D
96Z00
€9000
¢Zioo
w5009
L1000
0£00D
LZeoo
98700
6hZTO0
ZizZoo
SLLO00
BEL 0D

00£00
LOEDD
L6Z00
88700
15200
nzoo

uaaa

83220000
82300000
8233090)
89300000
B0h2030)
BYL0000D
02320200

L00J0302
0i320%00
71230000
10230300
€0230202
35100000
21V00000
26320000
28900302
23t000039
05320000
£2230202
#0300
0azd030)
TEDIDIDD
0hZ00000
02230300
0930000
Z023020)
09300327
0030022
0vV300002
0n900000
0FL0000)

02330237
01230222
£2320202
£910012)
Z030000)
I¥300223

+ ARTIVA

10010
80000
RO000
40000
80000
80000
80000

L0000
hoono
h0000
L0000
10030
70070
20000
20090
Inooo
Zoono
R0000
10000
10000
90020
L0000
hoooo
80000
Foono
L0000
L0000
L0000
10000
10000
L0000

L0000
L0000
Lonoo
L0000
L0000
L0000

Nai

s3I
nZ031Inn
£EZ03lT18n
ZZ03al1%a
LZ031TER
2Z03lIEN
RJDALTEA

ALIAN
1SIT1IvA
aNZITIVN
n

a0
HZ0d01
€To20L
TZod0l
V20321
020221
YIRTL
INOAWIL
o1l
JIRALSAS
KkS
TANSIAS
RSA0DAS
ASANIAS
Tl3
n70lVls
fZ0Iv1S
zZolvis
LTOLIVLS
0Z0lV1lS

118
dI1Ns
40081AS
hZOKRIS
(ZORIS
ZZONTS

T108HiS

sid018

waFreiamyy
[4

semem -

14

- —————— — e S

-99-

Sy s & — n———

romm e

94780700 TH"0d $OLO WEW

™~

S

1"\

[14.] J3ISTHd SAHODIY TVIDL
'] JANIRNG SIT0D3H TviOl
Lo% RUVEATT WALSKS WOEd IVIH SIHODIW TVIOL
e INSN1 WALSAS WO93 IViI¥ SIVODIY IVIDL

n6ZL = IZIS ¥AAANT Z1I4 Naom
) urvdsas
JaE1 “1S3108 “IVEINN3ZL ‘DVERITON “INIS ‘070 “INFNOR "IDAr3d ‘9IENNN ‘DID0THOR
TIEOROR “3$11 * (ss)iunodan1T *{o)ovia "asa “NOoadom “ (QXs)A2Ising *II00TV ‘KOI1W
A134I55Y SIHL MOJd SKOT13D
-] S¥% KI1HZA3IS AS53HOIH
ATANISEY FIRL AT 330014 SIATWILVIS ON

S$TASIIVAS OAY S$O1ISORIVI0 NATARISEY ' ' $310013

'A]

fal

-

vy oioay
v

-y
L4

L

fr"m

¢

L

B R s TR T R o —— -
-

—— o m———

-100-

MCCs

The Design and Implementation
of a Multi-Computer
Communications Systenm

by

SHELDON LEE FOX

B.S., Kansas State University, 1973

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the
requireménts for the degree
MASTER OF SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY

Manhattan, Kansas

1976

ABSTRACT

This paper describes MCCS, a Multi-Computer Comamunications
Systen. MCCS allows processes executing in one or more
computers to communicate, via "messages", with processes
executing in the same or other computers.

MCCS provides two process-level primitives, SEND and RECYV,
to facilitate this inter-process communication. By keeping
the ECCS-process interface simple, this system should be
easily implemented on a varity of computer systems, whether
they be a "mini" or "maxi®.

This paper is divided 4into two parts. The first part
defines the general MCCS specifications. This includes such
things as the exact process parameter definitions,
transmitted message format, and line protocol for both
asynchronous and binary synchronous transmission. To aid in
presenting these specifications, sample data structures and
functional modules are given.

The second part describes an actual implementation of MCCS
on an IBM 370/158 computer. This part serves as complete
documentation of MCCS/370, as it 'is called, and is intended
for someone wishing to use, modify, or enhance it. The
Appendices supplement this part by providing additional
implementation dependent information.

