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Abstract

In the classical Tobit regression model, the regression error term is often assumed to

have a zero mean normal distribution with unknown variance, and the regression function

is assumed to be linear. If the normality assumption is violated, then the commonly used

maximum likelihood estimate becomes inconsistent. Moreover, the likelihood function will

be very complicated if the regression function is nonlinear even the error density is normal,

which makes the maximum likelihood estimation procedure hard to implement. In the full

nonparametric setup when both the regression function and the distribution of the error

term ε are unknown, some nonparametric estimators for the regression function has been

proposed. Although the assumption of knowing the distribution is strict, it is a widely

adopted assumption in Tobit regression literature, and is also confirmed by many empirical

studies conducted in the econometric research. In fact, a majority of the relevant research

assumes that ε possesses a normal distribution with mean 0 and unknown standard devia-

tion. In this report, we will try to develop a semi-parametric estimation procedure for the

regression function by assuming that the error term follows a distribution from a class of

0-mean symmetric location and scale family. A minimum distance estimation procedure

for estimating the parameters in the regression function when it has a specified parametric

form is also constructed. Compare with the existing semiparametric and nonparametric

methods in the literature, our method would be more efficient in that more information, in

particular the knowledge of the distribution of ε, is used. Moreover, the computation is rel-

ative inexpensive. Given lots of application does assume that ε has normal or other known

distribution, the current work no doubt provides some more practical tools for statistical

inference in Tobit regression model.
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Chapter 1

Introduction

1.1 Tobit Regression Model

Censored and truncated data are very common data types studied in the areas such as

econometrics, biometrics, agricultural study, engineering and family study. Variety statisti-

cal models have been constructed to fit these data and to make further statistical inferences.

Among all the statistical models developed so far, Tobit regression models no doubt are the

most frequently used modeling procedures.

When studying the relationship between household expenditures on durable goods and

household incomes, Tobin (1958) noted that although a large portion of the data follows

a linear pattern, yet an important feature of the data is that there are few observations

flatted at zero. Therefore, imposing the linearity assumption on the whole data set is

clearly inappropriate. To find a proper statistical model to fit his data, Tobin (1958) first

developed a utility model to explain the phenomenon discovered in the study, and eventually

formulated the so called Tobit regression model

Y ∗ = m(X) + ε, Y = max{Y ∗, y0}, (1.1)

where X is the explanatory vector of dimension p and its value can be observed directly, Y ∗

is the response variable and can only be observed if Y ∗ ≥ y0 for some pre-specified threshold

y0, m(x) denotes the regression function E(Y ∗|X). ε denotes the random errors and may

be interpreted as the collection of all the unobservable variables which affect the response
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variable. The name, Tobit model, was coined by Goldberger(1964) inspired by its similarity

to Probit model. See Maddala (1983) and Amemiya (1984) for a comprehensive discussion on

Tobit models and its variants, together with some important estimation procedures. Recent

application of Tobit regression modeling includes McConnel and Zetzman (1993)’s study

on the differences between urban and rural elderly persons in the use of hospital, nursing

home, and physician services, McConnel and Zetzman (1997)’s study on the relationship

between land use and NO3-N concentrations in drinking water wells. Although it is the 90’s

that witnessed the wide application of Tobit regression model, its appeal doesn’t fade with

the elapse of time. On the contrary, Tobit regression model has its unique advantage in

dealing with biased and inconsistent parameter estimates caused by the inappropriate use

of standard ordinary least squares, and is being paid with more and more attention.

In its the early development, the regression function m(x) was assumed to be linear

m(x) = x′β and the random error ε to be normally distributed with mean 0 and a possibly

unknown variance σ2, where β is unkown regression coefficients. The existing work on this

standard Tobit regression model mainly focuses on the estimation of θ = (β ′, σ2)′. Under

the normality assumption of the error term ε, Amemiya (1973) and Heckman (1976,1979)

proposed consistent estimators for θ, but these estimators lose their consistency if the nor-

mality assumption is violated. A robust estimator of θ was proposed by Powell (1984) based

on the least absolute deviations and was shown to be consistent and asymptotically normal

without assuming the normality.

Generally speaking, assuming that m(x) has a linear or other parametric form is ei-

ther based on some empirical evidence or simply for the sake of mathematical convenience.

Misidentification of the regression function often results in misleading conclusions. For ex-

ample, it is well known that violation of the linearity assumption can produce inconsistent

estimators of the parameters and biased prediction of the survival time in censored regres-

sion models. See Horowitz and Neumann (1989) for a detailed discussion on this issue.

Therefore, from both theoretical and practical points of view, it is necessary to develop cer-
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tain semiparametric or nonparametric estimation procedures in the Tobit regression models,

without assuming a rigid parametric form for the regression functions.

Because of its flexibility in exploring the data structures, nonparametric modeling has

enjoyed a long lasting popularity among researchers and practitioners, and extensive research

has been done in the literature. Complete nonparametric estimation procedures were already

been tried for Tobit regression models by Lewbel and Linton (2002), and Zhou (2007)

without even assuming the knowledge of the distribution of ε.

1.2 The Research Objective and Literature Review

Abundant research in the literature was conducted on how to estimate the regression co-

efficients β and σ2 when the regression function in model (1.1) is linear, and the error

term ε has a normal distribution. Amemiya (1984)’s survey paper provided a panoramic

view on the early development of various estimation methods. The probit MLE can only

consistently estimate the ratio of the slop and the standard deviation of the error term.

This loss of efficiency is not beyond our expectation since the estimation procedure only

used the truncation information from the data, and totally ignored its numerical value even

when it is observed. The probit MLE is often served as the initial values in the iteration

algorithms of other estimation procedures. The nonlinear least square and weighted least

square estimation, Heckman’s two step estimation were all based on the following two key

observations:

E(Y |Y > 0, X) = X ′β +
σφ(X ′β/σ)

Φ(X ′β/σ)
, E(Y |X) = X ′βΦ(X ′β/σ) + σφ(X ′β/σ). (1.2)

The above expressions provide two heteroscedastic regression models,

Y = X ′β +
σφ(X ′β/σ)

Φ(X ′β/σ)
+ ξ, for Y > 0; Y = X ′βΦ(X ′β/σ) + σφ(X ′β/σ) + η. (1.3)

The nonlinear least square estimators and the weighted nonlinear least square estimators are

shown to be asymptotically normal. Intuitively, one may think that the weighted nonlinear
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least square estimator would perform better than the nonlinear least square estimator, but

a definite comparison between these procedures is not possible due to the fact that the

asymptotic covariance matrices from both procedures are hard to compare. A simulation

study by Wales and Woodland (1980) based on only one replication with sample sizes of 1000

and 5000 showed that the nonlinear least square procedures are distinctly inferior to the

MLE procedures. This is also confirmed by our simulation studies conducted in Antoneitte

(2012). A computationally efficient estimation procedure is provided by Heckman (1979),

known as Heckman’s two-step estimator. In the first step, an initial value for β/σ is obtained

from Probit MLE procedure, then in the second step, this initial value is inserted into

equation (2.2), then a linear regression of Y against ether (X, φ(X ′β/α)/Φ(X ′β/σ)), or

(XΦ(X ′β/σ), φ(X ′β/α)) will provide the estimates for β and σ. Again, one may think

the estimators obtained based on the second model in (2.2) would perform better than the

ones obtained from the first model in (2.2), but the actual performance of these estimators

depends on the true parameter values, and the direct comparison is not possible. The most

efficient estimation procedure in this parametric setup is of course the MLE. The usual MLE

procedure by equating the derivative of the log-likelihood function with respect to β, σ is

not applicable, since the Tobit likelihood function is not globally concave with respect to

the original parameters β and σ, as showed in Amemiya (1973). However, Olsen (1978)

proved that the log-likelihood function is globally concave in the transformed parameters

α = β/σ and h = 1/σ, so a standard iterative method such as Newton-Raphson or Fisher

Scoring method will always provide estimators converging to the global maximum of the log-

likelihood function. Empirical studies showed that a good initial value for the iterations in

MLE procedure can greatly speed up the convergence. The EM algorithm for searching the

MLE was proposed by Amemiya (1984). Under some regularity conditions, Amemiya (1984)

proved the convergence of the EM algorithm. The regularity conditions do not generally

hold for the Tobit model, however, if the sample size is sufficiently large then they do hold,

and if the iteration of the EM algorithm is started from a good initial value, then a rapid
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convergence can be achieved.

The above mentioned procedures are developed under the normality assumption of the

error term ε. If this assumption is violated, then generally these estimators become incon-

sistent. Some robust estimation procedures are proposed to accommodate the non-normal

ε. For example, Powell (1984) proposed an estimator which is a generalization of least ab-

solute deviations estimation for the standard linear model, and, unlike estimation methods

based on the assumption of normally distributed error terms, the estimator is consistent

and asymptotically normal for a wide class of error distributions, and is also robust to

heteroscedasticity under some regularity conditions. The most recent work on this area is

Guardiola (2012)’s work on the robust tobit regression when errors are from the so called

epsilon skew exponential power distribution.

Most development on the parametric and semi-parametric estimators on Tobit regression

model or other more general censored regression model includes Buckley and James (1979),

Koul, Suslara, and Van Ryzin (1981), Powell (1986a, 1986b), Powell, Stock and Stoker

(1989), Honore and Powell (1994), Zhou (2007) and the references therein. A review on the

recent developments on this area can be found in Yvette et al. (2011).

In the full nonparametric setup when both the regression function and the distribution

of the error term ε are unknown, Lewbel and Linton (2002) provides consistent estimators of

m(x) and its derivatives. They showed that the convergence rate is the same as for an uncen-

sored nonparametric regression and its derivatives. A
√
n-consistent estimates of weighted

average derivatives of m(x) is also derived, which enables us to estimate the coefficients in

linear or partly linear specification for m(x) with parametric convergence rate. Their work

also allows an extension to the heteroscedasticity case. Based on a location relationship

about the conditional survival function of the censored dependent variable, Zhou (2007)

constructs a nonparametric estimator for the regression function, which is the minimizer of

an integrated least-squares type sample objective function in which the conditional survival

function is estimated by kernel method. Under some regularity conditions, the nonpara-
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metric estimator is shown to be consistent and asymptotically normal. Although simulation

studies show that Zhou (2007)’s estimator sometimes performs better than Lewbel and

Linton (2002)’s estimator, but the superiority is not obvious.

Although the assumption of knowing the distribution is strict, it is a widely adopted

assumption in Tobit regression literature, and is also confirmed by many empirical studies

conducted in the econometric research. In fact, a majority of the relevant research assumes

that ε possesses a normal distribution with mean 0 and unknown standard deviation. In

this report, we will try to develop a semi-parametric estimation procedure for the regression

function by assuming that the error term follows a distribution from a class of 0-mean sym-

metric location and scale family. A minimum distance estimation procedure for estimating

the parameters in the regression function when it has a specified parametric form is also

constructed. Compare with the existing semiparametric and nonparametric methods in the

literature, our method would be more efficient in that more information, in particular the

knowledge of the distribution of ε, is used. Given lots of application does assume that ε

has normal or other known distribution, the current work no doubt provides some more

practical tools for statistical inference in Tobit regression model.
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Chapter 2

Semi-Parametric Regression

Procedure

In this chapter we will develop an estimation procedure for the regression function under

the assumption that the error term has a known distribution. To be specific, consider the

following semi-parametric Tobit regression model:

Y ∗ = m(X) + ε; Y = max{Y ∗, y0}, (2.1)

where y0 is a known threshold. It is often assumed to be 0, simply because an unknown y0

ban be absorbed into m(x). In current report, we will keep y0 as it is, and the algorithm

we developed surely can be applied to y0 = 0 case. The following regularity condition on ε

will be adopted in the report.

(C). The density function of ε is symmetric around 0 and is a member of a scale family

{f(·/σ)/σ : σ > 0}; The CDF of f is strictly increasing.

(C) is not a strict condition, since commonly used distribution in the literature, such as

Normal, Laplace, t distributions all satisfy this condition. The following three questions

will be addressed in the current report.

(1). How to estimate m(x) nonparametrically?

(2). How to estimate σ2?

(3). How to estimate the regression parameters in m(x) if m(x) has a parametric form?
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By assumption (C), denote the density function of ε as f(·/σ)/σ, where f is symmetric

around 0. For convenience, denote Qj(x) =
∫

∞

x
ujf(u)du, j = 0, 1, therefore,

∫
∞

x

uj

σ
f
(u
σ

)
du = σj

∫
∞

x/σ

ujf(u)du = σjQj(x/σ), j = 0, 1.

Let g1(x) = E[I(Y = y0)|X = x], g2(x) = E(Y |X = x), then

g1(x) = 1−Q0

(
y0 −m(x)

σ

)
, (2.2)

g2(x) = y0 − σ

[(
y0 −m(x)

σ

)
Q0

(
y0 −m(x)

σ

)
−Q1

(
y0 −m(x)

σ

)]
. (2.3)

By assumption (C), one can show that, for any fixed y0 and σ, 1−Q0(x) and y0−σ(xQ0(x)−

Q1(x)), as functions of x, is strictly monotone. In fact, note that

∂Q0(x)

∂x
= −f(x),

∂Q1(x)

∂x
= −xf(x),

Hence

∂[1 −Q0(x)]

∂x
= f(x) > 0,

∂[y0 − σ(xQ0(x)−Q1(x))]

∂x
= −σQ0(x) < 0,

for any x in the support of ε. This implies, as functions of (y0 −m(x))/σ, g1(x) and g2(x)

are strictly monotone. On the other hand, since we have full observations on (X, Y ), so

nonparametric estimators for g1(x) and g2(x) can be easily constructed. These important

observations motivate us to develop a three-step procedure to estimate m and σ2 which is

described below.

Algorithm 1:

Step 1: Estimate g1(x) nonparametrically, denote it as ĝ1(x); then for each Xi in the

sample, estimate (y0 −m(Xi))/σ by F−1(ĝ1(Xi)) based on (2.2) and calculate

Zi = −F−1(ĝ1(Xi)) ·Q0

(
F−1(ĝ1(Xi))

)
+Q1

(
F−1(ĝ1(Xi))

)
.
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Step 2: Estimate g2(x) nonparametrically, denote it as ĝ2(x). For each Xi in the sample,

calculate ĝ2(Xi); Conduct a regression analysis without intercept of {ĝ2(Xi)− y0}ni=1

against {Zi}ni=1
from Step 1, then estimate σ by the slope of this regression. Denote

the estimator as σ̂. This step is based on (2.3).

σ̂ =

∑n
i=1

(Wi −W )(Zi − Z)∑n
i=1

(Zi − Z)2
(2.4)

Step 3: Estimate m(x) either by

m̂(x) = y0 − σ̂F−1(ĝ1(x)) (2.5)

based on inverting (2.2), or

m̂(x) = y0 − σ̂H−1(ĝ2(x)) (2.6)

based on inverting (2.3), where H(x) = xQ0(x)−Q1(x).

There are many nonparametric smoothing procedures to estimate a regression function.

Among which, the most popular one is the Nadaraya-Watson kernel estimate due to its

simplicity; then it comes to the local linear estimator. The superiority of the latter to the

former lies in the fact that the local linear does not suffer from the boundary effect. In our

simulation study, we will use both to evaluate the finite sample performance of the proposed

estimation procedure.

Sometimes, m(x) is assumed to have a parametric form m(x; θ). In addition to many

methods developed in the literature for this scenario, we provide another alternative method

based the nonparametric estimator obtained from the above algorithm.

Algorithm 2:

Step 1: Estimate m(x) using Algorithm 1.

Step 2: Estimate θ by minimizing some proper distance between the nonparametric esti-

mator m̂(x) and the parametric regression function m(x; θ).

9



For example, in standard Tobit regression model, m(x) = α+βx. We can estimate α and

β by the intercept and slope, respectively, from the simple linear regression of {m̂(Xi)}ni=1

against {Xi}ni=1
. If m(x, θ) has a complicated nonlinear form, then one can estimate θ by

the following minimum distance or empirical minimum distance procedures:

θ̂n = argminθ

∫
[m̂(x)−m(x, θ)]dW (x), θ̂n = argminθ

n∑

i=1

[m̂(Xi)−m(Xi, θ)]
2.

The weight function W (x) can be chosen to minimize the asymptotic variance of estimator

θ̂n. However, to do this, we need to develop some asymptotic theories of θ̂, which is beyond

the scope the current report. So, for the sake of convenience, we will use the empirical

minimum distance procedure to estimate the unknown parameter θ.

It is well known that the MLEs are generally most efficient among all the estimation

procedures. Given the parametric form of the density function of ε and the regression

function m(x, θ), the MLE should be available. The main advantage for Algorithm 2 really

comes from its relatively simple computation. To obtain the MLE, we have to resort to

some iteration algorithms, such as New-Raphson, EM etc. One also has to select initial

values to start the iteration. But in our proposed method, after getting the nonparametric

estimates of g1, g2, we only have to invert these estimates using F−1, the inverse function

of the CDF of ε, then applying a empirical linear or nonlinear LSE procedure.

In fact, the above idea can also be extended to the case in which the threshold value

is unknown and thus needs to be estimated. Consider the following semi-parametric Tobit

regression model:

Y ∗ = m(X) + ε; Y = Y ∗I(Y ∗ ≥ γ) + y0I(Y
∗ < γ). (2.7)

Except for assuming γ is known, other conditions stay the same as in model (2.1). Define

g1 and g2 as before, we can obtain and g1(x) = E[I(Y = y0)|X = x], g2(x) = E(Y I(Y 6=

10



y0)|X = x), then

g1(x) = 1−Q0

(
γ −m(x)

σ

)
, (2.8)

g2(x) = y0 − (y0 −m(x))Q0

(
γ −m(x)

σ

)
+ σQ1

(
γ −m(x)

σ

)
.

Rewrite the second equation as

g2(x) = y0 − σ

[
(y0 − γ) + (γ −m(x))

σ
Q0

(
γ −m(x)

σ

)
−Q1

(
γ −m(x)

σ

)]
. (2.9)

By assumption (C), one can show that, for any fixed y0, σ and γ, 1−Q0(x) and y0−σ((c+

x)Q0(x)−Q1(x)), as functions of x, is strictly monotone if y0 ≤ γ, where c = (y0−γ)/σ < 0

(which is intuitively reasonable, one should not assign a bigger value to y if it is a smaller

value). In fact, note that

∂Q0(x)

∂x
= −f(x),

∂Q1(x)

∂x
= −xf(x),

Hence

∂[1 −Q0(x)]

∂x
= f(x) > 0,

∂[y0 − σ((c+ x)Q0(x)−Q1(x))]

∂x
= −σ[Q0(x)− cf(x)] < 0.

This implies, as functions of (y0 − m(x))/σ, g1(x) and g2(x) are strictly monotone. This

important observation motivate us to develop a three-step procedure to estimate m, y0 and

σ2. In fact, the following algorithm does not need the strict monotonicity of g2(x).

Algorithm 3:

Step 1: Estimate g1(x) nonparametrically, denote it as ĝ1(x); then for each Xi in the

sample, estimate (γ −m(Xi))/σ by F−1(ĝ1(Xi)) based on (2.8) and calculate

Z1i = Q0(F
−1(ĝ1(Xi))),

Z2i = −F−1(ĝ1(Xi)) ·Q0

(
F−1(ĝ1(Xi))

)
+Q1

(
F−1(ĝ1(Xi))

)
.

11



Step 2: Estimate g2(x) nonparametrically, denote it as ĝ2(x). For eachXi in the sample, cal-

culate ĝ2(Xi); Conduct a regression analysis without intercept of {ĝ2(Xi)−y0ĝ1(Xi)}ni=1

against {Z1i}ni=1
and {Z2i}ni=1

from Step 1, then estimate γ by the slope of Z1 and σ

by the slope of Z2 in this regression. Denote the estimators as γ̂ and σ̂. This step is

based on (2.9).

Step 3: Estimate m(x) by m̂(x) = γ̂ − σ̂F−1(ĝ1(x)).

We can use Carson and Sun’s (2007) estimator γ̂ = min{Yi : Yi 6= y0} to estimate

γ, which has a faster convergence rate than the above estimator. Just modify the above

algorithm appropriately to estimate σ. After obtaining the nonparametric estimate for

m(x), then we can estimate the parameters in a projected parametric regression function

m(x, θ) using the similar methods as in the known y0 case:

Algorithm 4:

Step 1: Estimate m(x) by Algorithm 1.

Step 2: Estimate θ by conducting a regression analysis in which {Xi, m̂(Xi)}ni=1
are obser-

vations, and {m(x, θ)} is the regression function.

Similar evaluation criteria can be used for checking the finite sample performance of the

proposed estimates.

When the error term ε has a normal distribution and the regression function is linear,

some existing procedures and programs can be used to implement the maximum likelihood

estimation. The significance of the proposed methods in this report lies in the fact that

when ε possesses other than normal distributions, and the regression function is nonlinear,

then the proposed algorithm would provide a computationally effective way to obtain the

estimation.
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Chapter 3

Simulation Studies

Numerical Simulation studies will be conducted in this section to evaluate the finite sample

performance of the proposed estimation procedure. The following setup will be used in the

simulation. The data from the following two regression functions

m(x) = α + βx, m(x) = α + βx+ γx2, (3.1)

where the true values of α, β and γ are chosen to be 1. Two threshold values are selected to

be y0 = 0.5 and y0 = 1. The random error ε follows N(0, 1) or t-distribution with degrees

of freedom 3, and the design variables X is chosen to have a normal N(0, 1) and uniform

distribution. That is, we have 16 scenarios in total. Based on the true distributions of X ,

ε and the threshold value y0, we can figure out the true truncation rate in each case. The

following table presents the truncation rates for each scenario via simulation.

We shall use both Nadaraya-Watson kernel estimator and local linear estimator to es-

timate the regression function g1(x) and g2(x), the ksmooth and locpoly functions in R-

package KernSmooth are used to implement the nonparametric estimation, with bandwidth

m(x) = 1 + x m(x) = 1 + x+ x2

X ∼ N(0, 1) X ∼ U [−1, 1] X ∼ N(0, 1) X ∼ U [−1, 1]

ε ∼ N(0, 1)
y0 = 0.5 36.18% 33.37% 19.56% 24.74%
y0 = 1 50.00% 50.00% 32.38% 40.22%

ε ∼ t(3)
y0 = 0.5 37.58% 35.20% 22.02% 27.19%
y0 = 1 50.00% 50.00% 33.75% 41.36%
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chosen by default for Nadaraya-Watson estimator and the direct plugin one for local lin-

ear. The kernel function is chosen to be uniform. We also tried the normal kernel, and

the simulation results are similar. So for the sake of brevity, we only report the simulation

results from uniform kernel. The sample sizes are chosen to be n = 100, 200 and 500, and

each simulation is replicated 200 times. For the nonparametric estimation for the regression

function m(x), we will illustrated the performance of the proposed estimation procedure

by some fitting plots and the MSE calculated at observed X-values. As for the regression

parameters, we will report the biases and MSEs of the minimum distance estimates (MDE).

3.1 Semi-Parametric Estimation of m(x)

For the sake of brevity, we only report the simulation results when m(x) = 1 + x+ x2, and

x ∼ U(−1, 1), ε ∼ N(0, 1). In addition to the empirical MSE calculated with

MSE1 =
1

n

n∑

i=1

[m̂(Xi)−m(Xi)]
2,

we also report the the empirical MSE obtained from

MSE2 =
1

n

n∑

i=1

[α̂− 1 + (β̂ − 1)Xi − (γ̂ − 1)X2

i ]
2.

Table 3.1 reports the simulation results when using kernel smoothing to estimate the

function g1 and g2, and the bandwidth is selected by the dpill function from R-package

KernSmooth. As we expected, when sample sizes increase, the MSEs are generally de-

creasing; the estimation based on (2.6) is better than the one based on (2.5). It might be

interesting to notice that when truncation rate gets bigger, the performance of both esti-

mators for all scenarios gets better! This seemingly confusing phenomenon indeed can be

explained by the following observation: one has to rely on both (2.2) and (2.3) to obtain the

final estimation, but estimating (y0 −m(x))/σ from (2.2) one need to calculate F−1(ĝ1(x)),

but we conjecture that the asymptotic variance of this estimator will become very large

if the truncation rate is too small or too large. Of course, the exact dependence of the

asymptotic variance on the truncation rate should be investigated.
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(2.5) (2.6)
Sample Size y0 MSE1 MSE2 MSE1 MSE2

n = 100
0.5 0.1742 0.0892 0.1249 0.0718
1 0.0842 0.0531 0.0607 0.0300

n = 200
0.5 0.1674 0.0457 0.0490 0.0353
1 0.1081 0.0123 0.1014 0.0880

n = 500
0.5 0.1355 0.0080 0.0570 0.0312
1 0.0513 0.0193 0.0417 0.0075

Table 3.1: Kernel, dpill bandwidth

Table 3.2 reports the simulation results when using local linear smoothing to estimate

the function g1 and g2, and the bandwidth is selected by the dpill function from R-package

KernSmooth. We can the similar patterns as the one shown in Table 3.2, but the simulation

results show that using local linear smoothing is generally much better than using kernel

smoothing, which is very well within our expectation due to the superiority of local smooth-

ing to the kernel smoothing. Also, we see that using the fitted parametric form α̂+ β̂x+ γ̂x2

is much better than using the direct nonparametric fit. To check the effect of bandwidth on

(2.5) (2.6)
Sample Size y0 MSE1 MSE2 MSE1 MSE2

n = 100
0.5 0.1184 0.0807 0.0518 0.0264
1 0.0479 0.0471 0.0377 0.0364

n = 200
0.5 0.0514 0.0137 0.0074 0.0033
1 0.0178 0.0071 0.0258 0.0153

n = 500
0.5 0.0170 0.0117 0.0120 0.0084
1 0.0269 0.0215 0.0164 0.0088

Table 3.2: Local Linear, dpill bandwidth

the performance of the estimation procedure, we also conduced some simulation studies by

choosing different bandwidth when applying kernel smoothing. Table 3.3 uses h = 0.5n−1/5,

where n−1/5 is the optimal order for Nadaraya-Watson estimator under the MSE sense, and

the choice 0.5 is somehow arbitrary and no particular theoretical or practical reason. Table

3.4 uses the default bandwidth value in function ksmooth. It is easy to see that the band-

width section does have some effect on the estimation, but similar patterns as in Table 3.1

15



and 3.2 are kept.

(2.5) (2.6)
Sample Size y0 MSE1 MSE2 MSE1 MSE2

n = 100
0.5 0.1978 0.0791 0.1218 0.0682
1 0.1413 0.0667 0.0671 0.0398

n = 200
0.5 0.1756 0.0456 0.0519 0.0350
1 0.1090 0.0122 0.0120 0.1050

n = 500
0.5 0.1475 0.0070 0.0610 0.0347
1 0.0544 0.0205 0.0428 0.0076

Table 3.3: Kernel, h = 0.5n−1/5

(2.5) (2.6)
Sample Size y0 MSE1 MSE2 MSE1 MSE2

n = 100
0.5 0.1805 0.1118 0.0542 0.0496
1 0.0528 0.0428 0.0427 0.0330

n = 200
0.5 0.1532 0.0359 0.0363 0.0319
1 0.0149 0.0029 0.0201 0.0124

n = 500
0.5 0.0219 0.0165 0.0163 0.0123
1 0.0320 0.0267 0.0159 0.0114

Table 3.4: Kernel, default bandwidth

For the sake of completeness, we also plots the fitted curves against the true quadratic

curves using both kernel and local linear smoothing, and direct plug-in bandwidth. In the

plots, the red curve is the true quadratic regression function; the black curve denotes the

fitted curve using (2.2) and m̂(x); the cyan curve denotes the fitted curve using (2.2) and

α̂+ β̂x+ γ̂x2; the green curve denotes the fitted curve using (2.3) and m̂(x); the blue curve

denotes the fitted curve using (2.3) and α̂+β̂x+ γ̂x2. From the left to the right, the plots are

corresponding to sample sizes n = 100, 200 and 500. From the plots, we can see that local

linear fitting provides us smoother estimates and smaller variability using the direct plug in

bandwidth than the kernel fitting procedure. The effect of bandwidth on the performance

of estimates is significant when the sample size is small, while improved performance can

be seen for larger sample sizes.
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Figure 3.1: Kernel Smoothing, y0 = 0.5
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Figure 3.2: Kernel Smoothing, y0 = 1

3.2 Biases and MSEs of the MDEs

This section reports the simulation results for the parameter estimations when the regres-

sion function is taking linear and quadratic forms. Of course, as we indicated earlier, the

minimum distance estimating procedure also applies to other nonlinear function, while the

computation will becomes complicated, since one has to solve a nonlinear minimization

problem.

Table 3.5 and 3.6 reports the MSE and bias (the number in the parentheses) when the

regression function is assumed to be linear m(x) = α + βx in which true values of α and β

are all chosen to be 1, and Nadaraya-Watson kernel estimates are used for estimating g1 and

g2. For all setups, the MLE performs best, as we expected. The simulation study does not

show very much difference in general using either (2.5) or (2.6) to estimate the regression

function. Similar pattern appears in other setup.

Table 3.7 and 3.8 reports the MSE and bias (the number in the parentheses) when the
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Figure 3.3: Local Linear Smoothing, y0 = 0.5
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Figure 3.4: Local Linear Smoothing, y0 = 1

n = 100 n = 200 n = 300
0.0144(-0.0293) 0.0061(-0.0162) 0.0023(-0.0074)

α
(2.5)

0.0254( 0.0576) 0.0277(-0.0825) 0.0028( 0.0009)
MLE 0.0131( 0.0126) 0.0055(-0.0015) 0.0021(-0.0041)

(2.4)

0.0501(-0.1106) 0.0092( 0.0202) 0.0100(-0.0448)
β

(2.5)
0.0566(-0.0803) 0.0267(-0.0732) 0.0097(-0.0452)

MLE 0.0460( 0.0083) 0.0185(-0.0117) 0.0066( 0.0021)
σ 0.0756(-0.1354) 0.0228(-0.0543) 0.0037(-0.0113)

MLE 0.0086(-0.0134) 0.0045(-0.0059) 0.0015(-0.0078)

Table 3.5: Kernel, Linear, y0 = 0.5

regression function is assumed to be quadratic m(x) = α + βx + γx2 in which true values

of α, β and γ are all chosen to be 1, and Nadaraya-Watson kernel estimates are used for

estimating g1 and g2.

Table 3.9 and 3.10 reports the MSE and bias (the number in the parentheses) when the

regression function is assumed to be quadratic m(x) = α + βx in which true values of α, β

and γ are all chosen to be 1, and local linear estimates are used for estimating g1 and g2.

18

Hao
打字机文本
(2.6)

Hao
打字机文本
(2.6)



n = 100 n = 200 n = 300
0.0143(0.0173) 0.0093(0.0013) 0.0036(-0.0069)

α
(2.5)

0.0343(0.0540) 0.0139(0.0167) 0.0051(-0.0039)
MLE 0.0141(0.0195) 0.0086(0.0031) 0.0033(-0.0042)

(2.4)

0.0541(-0.0951) 0.0226(-0.0347) 0.0137(-0.0531)
β

(2.5)
0.0588(-0.0672) 0.0301(-0.0309) 0.0139(-0.0451)

MLE 0.0372(-0.0036) 0.0224(0.0198) 0.0099(-0.0090)
σ 0.0472(-0.0893) 0.0130(-0.0222) 0.0041(-0.0015)

MLE 0.0119(-0.0207) 0.0059(-0.0016) 0.0023(-0.0052)

Table 3.6: Kernel, Linear, y0 = 1

n = 100 n = 200 n = 300
0.0792(-0.1671) 0.0581(-0.1113) 0.0200(-0.0269)

α
(2.5)

0.0514(0.1658) 0.0285(0.1120) 0.0133(0.0700)
MLE 0.0258(0.0175) 0.0121(-0.0057) 0.0045(-0.0061)

0.0425(-0.0606) 0.0250(-0.0677) 0.0128(-0.0630)
β

(2.5)
0.0504(-0.1189) 0.0255(-0.0836) 0.0114(-0.0579)

MLE 0.0405(0.0062) 0.0149(0.0099) 0.0057(0.0016)

(2.4)

0.2312(0.0829) 0.1597(-0.0021) 0.0692(-0.0914)
γ

(2.5)
0.1276(-0.2293) 0.0854(-0.2182) 0.0501(-0.1784)

MLE 0.1240(-0.0199) 0.0550(-0.0087) 0.0217(0.0072)
σ 0.1447(-0.3094) 0.0873(-0.1900) 0.0268(-0.0732)

MLE 0.0071(-0.0168) 0.0041(-0.0071) 0.0014(-0.0094)

Table 3.7: Kernel, Quadratic, y0 = 0.5

n = 100 n = 200 n = 300
0.0263(0.0029) 0.0191(0.0472) 0.0085(0.0405)

α
(2.5)

0.0741(0.1510) 0.0393(0.0847) 0.0125(0.0454)
MLE 0.0228(0.0072) 0.0148(0.0141) 0.0059(0.0049)

0.0554(-0.1326) 0.0302(-0.0857) 0.0127(-0.0637)
β

(2.5)
0.0589(-0.0796) 0.0252(-0.0405) 0.0110(-0.0345)

MLE 0.0373(0.0171) 0.0162(0.0091) 0.0079(-0.0094)

(2.4)

0.1502(-0.1242) 0.1132(-0.1843) 0.0618(-0.1777)
γ

(2.5)
0.1253(-0.2207) 0.0991(-0.1837) 0.0601(-0.1909)

MLE 0.1046(0.0020) 0.0731(-0.0013) 0.0254(-0.0203)
σ 0.1139(-0.1849) 0.0434(-0.0490) 0.0085(0.0090)

MLE 0.0099(-0.0153) 0.0061(-0.0062) 0.0021(-0.0079)

Table 3.8: Kernel, Quadratic, y0 = 1
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n = 100 n = 200 n = 300
0.0136(-0.0423) 0.0066(-0.0301) 0.0030(-0.0111)

α
(2.5)

0.0304(0.0862) 0.0135(0.0404) 0.0048(0.0206)
MLE 0.0128(0.0182) 0.0055(-0.0005) 0.0026(0.0013)

(2.4)

0.0536(-0.1004) 0.0245(-0.0544) 0.0086(-0.0182)
β

(2.5)
0.0557(-0.0788) 0.0300(-0.0519) 0.0087(-0.0220)

MLE 0.0444(-0.0069) 0.0209(-0.0160) 0.0067(-0.0043)
σ 0.0936(-0.1841) 0.0427(-0.0977) 0.0107(-0.0393)

MLE 0.0090(-0.0140) 0.0039(-0.0041) 0.0018(-0.0065)

Table 3.9: Local Linear, Linear, y0 = 0.5

n = 100 n = 200 n = 300
0.0143(0.0284) 0.0089(0.0134) 0.0033(0.0031)

α
(2.5)

0.0512(0.1081) 0.0291(0.0610) 0.0067(0.0124)
MLE 0.0148(0.0221) 0.0077(0.0094) 0.0030(0.0036)

(2.4)

0.0628(-0.1340) 0.0358(-0.0678) 0.0102(-0.0064)
β

(2.5)
0.0680(-0.1094) 0.0392(-0.0470) 0.0117(0.0083)

MLE 0.0389(-0.0297) 0.0212(-0.0112) 0.0090(0.0040)
σ 0.0818(-0.1509) 0.0428(-0.0886) 0.0081(-0.0118)

MLE 0.0113(-0.0175) 0.0065(-0.0132) 0.0026(-0.0044)

Table 3.10: Local Linear, Linear, y0 = 1

n = 100 n = 200 n = 300
0.0762(-0.1821) 0.0659(-0.1616) 0.0346(-0.0937)

α
(2.5)

0.0490(0.1596) 0.0256(0.1068) 0.0142(0.0771)
MLE 0.0258(0.0220) 0.0121(-0.0063) 0.0054(0.0000)

0.0497(-0.0216) 0.0294(-0.0305) 0.0124(-0.0322)
β

(2.5)
0.0458(-0.0591) 0.0199(-0.0444) 0.0092(-0.0401)

MLE 0.0405(0.0108) 0.0147(0.0104) 0.0065(-0.0052)

(2.4)

0.2616(0.2446) 0.2018(0.1902) 0.1034(0.1120)
γ

(2.5)
0.1293(-0.1308) 0.0644(-0.0931) 0.0282(-0.0606)

MLE 0.1236(-0.0203) 0.0555(-0.0072) 0.0256(-0.0025)
σ 0.1071(-0.2757) 0.0768(-0.2111) 0.0388(-0.1239)

MLE 0.0068(-0.0156) 0.0041(-0.0068) 0.0015(-0.0060)

Table 3.11: Local Linear, Quadratic, y0 = 0.5

Table 3.11 and 3.12 reports the MSE and bias (the number in the parentheses) when the

regression function is assumed to be quadratic m(x) = α + βx + γx2 in which true values

of α, β and γ are all chosen to be 1, and local linear estimates are used for estimating
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g1 and g2. It is interesting to notice that for estimating the parameters in the regression

function, local linear estimate does not show overall superiority over the Nadaraya-Watson

kernel estimate.

Based on the simulation studies, we can see that if the error term ε has a normal

distribution, then the MLE procedure is the most efficient one. The merit of the proposed

methodology is its computational effectiveness when the ε has distributions other than

normal or the regression function is nonlinear, since in such cases, the likelihood function

would be very complicated.

n = 100 n = 200 n = 300
0.0256(-0.0321) 0.0172(-0.0084) 0.0089(-0.0135)

α
(2.5)

0.0902(0.2132) 0.0554(0.1575) 0.0294(0.1007)
MLE 0.0235(0.0076) 0.0144(0.0108) 0.0062(-0.0017)

0.0540(-0.1343) 0.0312(-0.0979) 0.0152(-0.0684)
β

(2.5)
0.0545(-0.0880) 0.0267(-0.0542) 0.0147(-0.0389)

MLE 0.0339(0.0104) 0.0166(0.0132) 0.0067(0.0021)

(2.4)

0.1449(0.0320) 0.0929(-0.0037) 0.0410(0.0096)
γ

(2.5)
0.1295(-0.1419) 0.0847(-0.1072) 0.0363(-0.0690)

MLE 0.0958(0.0100) 0.0730(-0.0033) 0.0300(0.0059)
σ 0.1405(-0.2808) 0.0807(-0.1813) 0.0444(-0.1112)

MLE 0.0103(-0.0174) 0.0059(-0.0067) 0.0019(-0.0042)

Table 3.12: Local Linear, Quadratic, y0 = 1

21

Hao
打字机文本
(2.6)

Hao
打字机文本
(2.6)

Hao
打字机文本
(2.6)



Bibliography

[1] Amemiya, T. (1973). Regression analysis when the dependent variable is truncated

normal. Econometrica 41 997-1016.

[2] Amemiya, T. (1984). Tobit models: a survey. J. of Econometrics 24(1-2) 3-61.

[3] Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrics, 66,

429-436.

[4] Carson, R. T. and Sun, Y. (2007). The Tobit model with a non-sero threshold. Econo-

metrics Journal 10, 488-502

[5] Goldberger, A. S.(1964), Econometric theory, PP. 251-255.

[6] Guardiola(2012), A Robust Tobit Regression Model When Errors Are from the Epsilon

Skew Exponential Power Family.

[7] Heckman, J. (1976). The common structure of statistical models of truncation, sample

selection, and limited dependent variables and a simple estimator for such models. Ann.

Econom. Social Meas. 5 475-492.

[8] Heckman, J. (1979). Sample bias as a specification error. Econometrica 47 153-162.

[9] Honore, B. E. and Powell, J.L. (1994). Pairwise Difference Estimators for Censored and

Truncated Regression Models. Semiparametric Censored Regression Models. Journal of

Econometrics. 64(1-2), 24178.

[10] Horowitz, J.L., Neumann, G.R. (1989). Specification testing in censored regression

models: parametric and semi-parametric methods. J. Appl. Econometrics 4 61-86.

22



[11] Koul, H., Susarla, V. and Ryzin, J.V. (1981). Regression Analysis with Randomly

Right-Censored Data. Ann. Statist. 9(6), 1276-1288.

[12] Lewbel, A., & Linton, O. B. (2002). Nonparametric censored and truncated regression.

Econometrica, 70, 765-779.

[13] Maddala, G. S. (1983). Limited-dependent and qualitative variables in econometrics.

Cambridge University Press.

[14] McConnel, C. E., Zetzman, M. R. (1993). Urban/rural differences in health service

utilization by elderly persons in the United States. J. Rural Health, 9(4), 270-280

[15] Olsen, R.J. (1978). note on the uniqueness of maximum likelihood estimation for the

tobit model . Econometrica 46, 1211-1215

[16] Powell, J.L. (1984). Least absolute deviations estimation for the censored regression

model. J. Econometrics 25 303-325.

[17] Powell, J.L. (1986a). Censored Regression Quantiles. Journal of Econometrics. 32(1),

14355.

[18] Powell, J.L. (1986b). Symmetrically Trimmed Least Squares Estimation for Tobit Mod-

els. Econometrica, 54, 1435-1460.

[19] Powell, J.L., J.H. Stock and T.M. Stoker (1989). Semiparametric estimation of weighted

average derivatives. Econometrica 57, 1403-1430.

[20] Tobin, J. (1958). Estimation of relationships for limited dependent variables. Econo-

metrica, 26(1), 24-36.

[21] Wales, T.J. and Woodland, A.D. (1980). Sample selectivity and the esitmation of labor

supply functions. International Economic Review. 21, 437-468.

[22] Wand, M.P., & Jones M.C. (1995). Kernel Smoothing Chapman Hall

23



[23] Yvette Y. Z., Li, Q. and Li, D. (2011). Recent Developments in Semi-/Non-Parametric

Estimation of Censoring, Sample Selection, Missing Data, and Measurement Error in

Panel Data. http://agecon2.tamu.edu/people/faculty/zhang-yvette/AIE0510.pdf.

[24] Zhou, X. B. (2007). Semi-parametric and Nonparametric Estimation of Toibt Models.

PhD thesis, Department of Economics, Hong Kong University of Science and Technol-

ogy.

24



Appendix A

R-Programs

This section includes the R programs used in the simulation studies.

Table 3.5, 3.6,3.7, 3.8 verbatim

# Nadaraya-Watson Estimate

library("KernSmooth")

library("censReg")

set.seed(987654)

result=array(0,dim=c(6,8,2));

total=200;

kk=1;

for(y0 in c(0.5,1))

{

jj=1;

for(n in c(100,200,500))

{

sig.est=aid.est=bid.est=ay.est=by.est=amle=bmle=smle=rep(0,total)

for(i in seq(total))

{
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repeat

{

x=runif(n,-1,1); # Uniform Design

#x=rnorm(n,0,1); # Normal Design

ystar=1+x+rnorm(n); # Linear Regression

ystar=1+x+x^2+rnorm(n,0,1); # Quadratic Regression

y=pmax(ystar,y0)

yid=(y==y0);

# First Step: Estimate [y0-m(x)]/sig

kest.id=ksmooth(x,yid,kernel="box",x.points=x);

kest.yid=kest.id$y;

temp=kest.yid+10^(-6);

temp1=qnorm(temp); # for uniform design

# Second Step: Estimate sigma

xtemp=-(1-kest.yid)*temp1+dnorm(temp1)

kest=ksmooth(x,y,kernel="box",x.points=x);

kest.y=kest$y;

kest.y0=kest.y-y0;

regid=lm(kest.y0~xtemp-1)

sig.est[i]=coef(regid)[1];

# Third Step: Estimate m(x), using E[I(Y=y0)|X], equation 2.1

mx=y0-sig.est[i]*temp1;

# Fourth Step: Estimate a, b using L2 minimum distance

regab=lm(mx~sort(x))

aid.est[i]=coef(regab)[1]

bid.est[i]=coef(regab)[2]

# Third Step: Estimate m(x), using E(Y|X), equation 2.2
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resy=(y0-kest.y)/sig.est[i]

lv=-5+5*pnorm(-5)-dnorm(-5)-resy

rv=5-5*pnorm(5)-dnorm(5)-resy

if(all(lv*rv<0)) break;

}

mest=rep(0,length(x));

for(k in seq(n))

{

g=function(z){z-z*pnorm(z)-dnorm(z)-resy[k]}

mest[k]=uniroot(g,c(-5,5))$root

}

mx=y0-sig.est[i]*mest;

# Fourth Step: Estimate a, b

regab=lm(mx~sort(x))

ay.est[i]=coef(regab)[1]

by.est[i]=coef(regab)[2]

# Maximum Likelihood Estimate Based on Normal Error

myreg=censReg(y~x,left=y0, right=Inf)

amle[i]=coef(myreg)[1]

bmle[i]=coef(myreg)[2]

smle[i]=exp(coef(myreg)[3])

}

Mu=c(mean(aid.est-1), mean(bid.est-1),mean(ay.est-1),

mean(by.est-1),mean(sig.est-1),

mean(amle-1),mean(bmle-1),mean(smle-1))

Ms=c(mean((aid.est-1)^2),mean((bid.est-1)^2),mean((ay.est-1)^2),

mean((by.est-1)^2), mean((sig.est-1)^2),mean((amle-1)^2),
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mean((bmle-1)^2),mean((smle-1)^2))

result[c((jj-1)*2+1,jj*2),1:8,kk]=rbind(Mu,Ms)

jj=jj+1;

}

kk=kk+1

}

dimnames(result)=list(c("n=100, bias","n=100, mse","n=200, bias",

"n=200, mse","n=500, bias","n=500, mse"),

c("alpha, id","beta, id","alpha, py","beta, py",

"sig","alpha, MLE","beta, MLE","sig, MLE"),c("y0=0.5","y0=1"))

result

Table 3.9, 3.10, 3.11 and 3.12

library("KernSmooth")

library("censReg") set.seed(987654)

result=array(0,dim=c(6,8,2));

total=200;

kk=1;

for(y0 in c(0.5,1))

{

jj=1;

for(n in c(100,200,500))

{

sig.est=aid.est=bid.est=ay.est=by.est=amle=bmle=smle=rep(0,total)

for(i in seq(total))

{

repeat{
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x=runif(n,-1,1);

ystar=1+x+rnorm(n,0,1); # Linear Regression

#ystar=1+x++x^2+rnorm(n,0,1); # Quadratic Regression

y=pmax(ystar,y0)

yid=(y==y0); # Indicator of y=y0;

# First Step: Estimate [y0-m(x)]/sig

h=dpill(x, y)

lest=locpoly(x,yid,bandwidth=h,gridsize=n)

fitfn=approxfun(lest$x, lest$y)

lest.yid=fitfn(x)

# Estimate of [y0-m(x)]/sig temp=lest.yid+10^(-6);

temp[temp<0]=10^(-6);

temp1=qnorm((1-10^(-6))*(temp>=1)+temp*(temp<1)); # for normal design

#temp1=qnorm(temp); # for uniform design

#if(any(is.nan(temp1))){break}

# Second Step: Estimate y0 and sig xtemp=-(1-lest.yid)*temp1+dnorm(temp1)

lest=locpoly(x,y,bandwidth=h,gridsize=n)

fitfn=approxfun(lest$x, lest$y)

lest.y=fitfn(x) lest.y0=lest.y-y0;

regid=lm(lest.y0~xtemp-1)

sig.est[i]=coef(regid)[1];

# Third Step: Estimate m(x), using E[I(Y=y0)|X]

mx=y0-sig.est[i]*temp1;

# Fourth Step: Estimate a, b

regab=lm(mx~x)

aid.est[i]=coef(regab)[1]

bid.est[i]=coef(regab)[2]
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## Third Step: Estimate m(x), using E(Y|X)

resy=(y0-lest.y)/sig.est[i]

lv=-5+5*pnorm(-5)-dnorm(-5)-resy

rv=5-5*pnorm(5)-dnorm(5)-resy

if(all(lv*rv<0)) break;

}

mest=rep(0,length(x)); for(k in seq(n))

{

g=function(z){z-z*pnorm(z)-dnorm(z)-resy[k]}

mest[k]=uniroot(g,c(-5,5))$root

k=k+1

}

mx=y0-sig.est[i]*mest;

# Fourth Step: Estimate a, b

regab=lm(mx~x)

ay.est[i]=coef(regab)[1]

by.est[i]=coef(regab)[2]

# Maximum Likelihood Estimate Based on Normal Error

myreg=censReg(y~x,left=y0, right=Inf)

amle[i]=coef(myreg)[1]

bmle[i]=coef(myreg)[2]

smle[i]=exp(coef(myreg)[3])

}

Mu=c(mean(aid.est-1), mean(bid.est-1),mean(ay.est-1),mean(by.est-1),

mean(sig.est-1),mean(amle-1),mean(bmle-1),mean(smle-1))

Ms=c(mean((aid.est-1)^2),mean((bid.est-1)^2),mean((ay.est-1)^2),

mean((by.est-1)^2),mean((sig.est-1)^2),mean((amle-1)^2),
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mean((bmle-1)^2),mean((smle-1)^2))

result[c((jj-1)*2+1,jj*2),1:8,kk]=rbind(Mu,Ms)

jj=jj+1;

}

kk=kk+1

} dimnames(result)=list(c("n=100, bias","n=100, mse","n=200, bias",

"n=200, mse","n=500, bias","n=500, mse"),

c("alpha, id","beta, id","alpha, py","beta, py",

"sig","alpha, MLE","beta, MLE","sig, MLE"),c("y0=0.5","y0=1"))

round(result,4)

Table 3.1, Table 3.2, Figure 3.1 and Figure 3.2

library("KernSmooth")

set.seed(987654)

# Generate Sample

# Threshold y0=1; # Standard Deviation

sig=1; # Sample Size

n=500; # Sample Gegeration

x=runif(n,-1,1);

# x=rnorm(n);

ystar=1+x+x^2+rnorm(n,0,sig);

y=pmax(ystar,y0)

yid=(y==y0);

# First Step: Estimate [y0-m(x)]/sig

#h=0.5*n^(-1/5)

#h=dpill(x, y)

#kest.yid=ksmooth(x,yid,kernel="box",bandwidth=h,x.points=x)$y;

kest.yid=ksmooth(x,yid,kernel="box",x.points=x)$y;
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# Estimate of [y0-m(x)]/sig temp=kest.yid+10^(-6);

#temp1=qnorm((1-10^(-6))*(temp>=1)+temp*(temp<1)); # for normal design

temp1=qnorm(temp); # for uniform design

# Second Step: Estimate y0 and sig

xtemp=-(1-kest.yid)*temp1+dnorm(temp1)

#kest.y=ksmooth(x,y,kernel="box",bandwidth=h,x.points=x)$y;

kest.y=ksmooth(x,y,kernel="box",x.points=x)$y;

kest.y0=kest.y-y0;

regid=lm(kest.y0~xtemp-1)

sig.est=coef(regid)[1];

# Third Step: Estimate m(x), using E[I(Y=y0)|X]

mx=y0-sig.est*temp1; mxid=mx;

# Fourth Step: Estimate a, b, c x=sort(x);

x2=x^2;

regab=lm(mx~x+x2)

aid=coef(regab)[1]

bid=coef(regab)[2]

cid=coef(regab)[3]

mxidp=predict(regab)

# Third Step: Estimate m(x), using E(Y|X)

resy=(y0-kest.y)/sig.est

mest=rep(0,length(x));

for(k in seq(n))

{

g=function(z){z-z*pnorm(z)-dnorm(z)-resy[k]}

mest[k]=uniroot(g,c(-5,5))$root

}
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mx=y0-sig.est*mest;

mxy=mx

# Fourth Step: Estimate a, b

regab=lm(mx~x+x2)

ay=coef(regab)[1]

by=coef(regab)[2]

cy=coef(regab)[3]

mxyp=predict(regab)

fv=1+x+x^2; # Ture regression function

lend=min(cbind(mxid,mxidp,mxy,mxyp,fv))-0.05

rend=max(cbind(mxid,mxidp,mxy,mxyp,fv))+0.05

plot(x,mxid,type="l",lwd=2,ylim=c(lend,rend),xlab="",

ylab="Estimates of the regression function")

# Estimate of m(x) from (eq2)

lines(x,mxidp,col="cyan",lwd=2)

# Estimate of m(x) by linear regression with (eq2) as response

lines(x,mxy,col="green",lwd=2)

# Estimate of m(x) from (eq3)

lines(x,mxyp,col="blue",lwd=2)

# Estimate of m(x) by linear regression with (eq3) as response

lines(x,fv,col="red",lwd=2) # True regression

ms.mxid=mean((mxid-fv)^2)

ms.mxidp=mean((mxidp-fv)^2)

ms.mxy=mean((mxy-fv)^2)

ms.mxyp=mean((mxyp-fv)^2)

cbind(ms.mxid,ms.mxidp,ms.mxy,ms.mxyp)

Table 3.3, Table 3.4, Figure 3.3 and Figure 3.4
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set.seed(987654)

# Generate Sample

repeat{

repeat{

# Threshold

y0=1;

# Standard Deviation

sig=1;

# Sample Size

n=5000;

# Sample Gegeration

x=runif(n,-1,1);

ystar=1+x+x^2+rnorm(n,0,sig);

y=pmax(ystar,y0)

yid=(y==y0); # Indicator of y=y0;

# First Step: Estimate [y0-m(x)]/sig

# Local Linear Smoothing of Indicator versus X

h=dpill(x, y)

lest.xid=locpoly(x,yid,bandwidth=h,gridsize=n)$x

lest.yid=locpoly(x,yid,bandwidth=h,gridsize=n)$y

# Estimate of [y0-m(x)]/sig

temp1=qnorm(lest.yid)

if(all(temp1!="NaN")) break;

}

# Second Step: Estimate y0 and sig

xtemp=-(1-lest.yid)*temp1+dnorm(temp1)

lest.x=locpoly(x,y,bandwidth=h,gridsize=n)$x
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lest.y=locpoly(x,y,bandwidth=h,gridsize=n)$y

lest.y0=lest.y-y0;

regid=lm(lest.y0~xtemp-1)

sig=coef(regid)[1];

# Third Step: Estimate m(x), using E[I(Y=y0)|X]

mx=y0-sig*temp1;

mxid=mx;

# Fourth Step: Estimate a, b

lest.xid2=lest.xid^2;

regab=lm(mx~lest.xid+lest.xid2)

mxidp=predict(regab);

# Third Step: Estimate m(x), using E(Y|X)

resy=(y0-lest.y)/sig

lv=-5+5*pnorm(-5)-dnorm(-5)-resy

rv=5-5*pnorm(5)-dnorm(5)-resy

if(all(lv*rv<0)) break;

}

mest=rep(0,length(x));

for(k in seq(n))

{

g=function(z){z-z*pnorm(z)-dnorm(z)-resy[k]}

mest[k]=uniroot(g,c(-5,5))$root

k=k+1

}

mx=y0-sig*mest;

mxy=mx;

# Fourth Step: Estimate a, b
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lest.x2=lest.x^2

regab=lm(mx~lest.x+lest.x2)

mxyp=predict(regab)

# Ture regression function

fv=1+lest.x+lest.x^2

lend=min(cbind(mxid,mxidp,mxy,mxyp,fv))-0.05

rend=max(cbind(mxid,mxidp,mxy,mxyp,fv))+0.05

plot(lest.x, mxid,type="l",lwd=2,ylim=c(lend,rend),xlab=""

,ylab="Estimates of the regression function")

# Estimate of m(x) from (eq2)

lines(lest.x, mxidp,col="cyan",lwd=2)

# Estimate of m(x) by linear regression with (eq2) as response

lines(lest.x, mxy,col="green",lwd=2)

# Estimate of m(x) from (eq3)

lines(lest.x,mxyp,col="blue",lwd=2)

# Estimate of m(x) by linear regression with (eq3) as response

lines(lest.x,fv,col="red",lwd=2) # True regression

ms.mxid=mean((mxid-fv)^2)

ms.mxidp=mean((mxidp-fv)^2)

ms.mxy=mean((mxy-fv)^2)

ms.mxyp=mean((mxyp-fv)^2)

cbind(ms.mxid,ms.mxidp,ms.mxy,ms.mxyp)
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