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Abstract 

The zebra mussel is an invasive bivalve that was first confirmed in Kansas in 

2003, and has decreased zooplankton abundance and altered the aquatic community in 

other areas where it has invaded.  However, little is known about its effects on the aquatic 

communities of warm-water Great Plains reservoirs.  We analyzed zooplankton, benthic 

macroinvertebrate, and juvenile and small-bodied fish abundance in the littoral zone of an 

Eastern Kansas reservoir with an established zebra mussel population (El Dorado 

Reservoir) and a control reservoir without zebra mussels (Melvern Reservoir) for two 

years pre-zebra mussel invasion (2001-2002) and two years post-invasion (2008-2009).  

We found no difference in littoral zooplankton abundance between reservoirs across time, 

but abundance of some macroinvertebrate taxa increased, and abundance of juvenile 

Lepomis spp. and red shiners decreased in the littoral zone of El Dorado Reservoir in 

August of the post-zebra mussel invasion period in comparison to the control reservoir.  

We also analyzed abundance and condition of six adult reservoir fishes in El Dorado 

Reservoir and three control reservoirs in Eastern Kansas for ten years pre-zebra mussel 

invasion (1993-2002) and five years post-invasion (2004-2008).  Adult white crappie 

abundance remained constant in El Dorado Reservoir but decreased in the control 

reservoirs during the post-zebra mussel invasion period, and condition of adult bluegill, 

white bass, and white crappie decreased in El Dorado Reservoir in the post-zebra mussel 

invasion period compared to the control reservoirs.  Our findings suggest that zebra 

mussel invasion in El Dorado Reservoir may have affected some benthic 

macroinvertebrates, juvenile and small-bodied fishes, and adult fishes.  We did not find 

evidence that zebra mussels have had substantial effects on the zooplankton community 

 



 

of El Dorado Reservoir.  However, July-August zebra mussel veliger densities in El 

Dorado Reservoir averaged less than 12 veligers/L in four of the six post-zebra mussel 

invasion years.  Additional research and long-term monitoring of zooplankton, 

macroinvertebrates, and fishes will be necessary to determine the full effects of zebra 

mussels on the aquatic communities of warm-water reservoirs throughout North America. 
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CHAPTER 1 - Effects of zebra mussel invasion on the littoral 

community of El Dorado Reservoir 

Introduction 
The effects of biological invasions can be both ecologically and economically 

costly (Lockwood et al. 2007).  There are an estimated 50,000 invasive species in the 

United States, including thousands of plants, arthropods, and microbes, and hundreds of 

birds, fish, mollusks, reptiles, amphibians, and mammals (Pimentel et al. 2005).  The 

combined economic impacts of these species are estimated at over $100 billion each year, 

including agricultural, commercial, and recreational losses, infrastructure damage, and 

the costs of controlling invasive species to prevent additional damage (Pimentel et al. 

2005).  In addition, invasive species have been implicated in the decline of nearly half of 

the species currently listed as federally threatened or endangered (Pimentel et al. 2005).   

The zebra mussel (Dreissena polymorpha) is an invasive species that was first 

confirmed in North America in the 1980s, and was predicted to cause billions of dollars 

of economic losses in the Great Lakes, as well as ecological effects ranging from the 

disruption of walleye spawning from substrate alteration to the collapse of aquatic food 

webs and native mussel populations (Roberts 1990; Strayer 2009).  The zebra mussel 

exhibits several traits of a successful invader:  prolific reproduction, an easily-transported 

planktonic (veliger) life stage, byssal threads that allow the mussel to attach to a variety 

of solid substrates, a relative absence of natural predators outside Eurasia, and a broad 

environmental tolerance (Ludyanskiy et al. 1993; Ram and McMahon 1996).  Zebra 

mussels have spread throughout much of the Midwestern United States, including the 
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Great Lakes and the mainstem and tributaries of the Mississippi River (US Geological 

Survey 2010).  Although zebra mussels have invaded North American aquatic 

ecosystems for over twenty years, numerous questions remain regarding the ecological 

effects of their invasion.   

Zebra mussels may have substantial effects on the lower trophic levels of invaded 

systems.  Zebra mussels are filter-feeding bivalves that consume primarily 

phytoplankton, but are also known to consume rotifers and other microzooplankton 

(Horgan and Mills 1997; Wong et al. 2003).  Phytoplankton is also a primary diet 

component for many grazing zooplankton taxa, and a reduction in phytoplankton 

abundance may impact these taxa (Strayer et al. 1999; Raikow 2004).  Several studies 

have documented a decrease in phytoplankton biomass in the presence of zebra mussels 

(Caraco et al. 1997; Richardson and Bartsch 1997; Idrisi et al. 2001; Barbiero et al. 2006; 

Miller and Watzin 2007).  However, findings related to zooplankton abundance are less 

consistent.  In Oneida Lake, New York, there was no change in biomass of total 

zooplankton or macrozooplankton following zebra mussel invasion (Mayer et al. 2000; 

Idrisi et al. 2001).  In contrast, total zooplankton abundance, biomass, and 

microzooplankton abundance declined in western Lake Erie and the Hudson River 

following zebra mussel establishment, but the response of cladocerans and copepods 

(macrozooplankton taxa) was highly variable (MacIsaac et al. 1995; Pace et al. 1998).  

Mesocosm and in situ enclosure experiments have also demonstrated a decrease in the 

abundance of zooplankton taxa in the presence of zebra mussels (Richardson and Bartsch 

1997; Jack and Thorp 2000; Raikow 2004; Miller and Watzin 2007).   
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Zebra mussels may also affect macroinvertebrate abundance in invaded systems.  

Zebra mussels release excess or undesirable filtered particles as pseudofecal pellets, in 

addition to fecal material that is deposited into the sediment.  This material may provide 

additional shelter and food for benthos (MacIsaac 1996; Stewart et al. 1998).  In addition, 

zebra mussels attached to substrate may increase benthic habitat surface area and 

heterogeneity (Stewart et al. 1998; Horvath et al. 1999).  Zebra mussel presence may lead 

to increased macroinvertebrate abundance, including increased amphipods, chironomids, 

oligochaetes, and other macroinvertebrate taxa (Karatayev et al. 1997; Ricciardi et al. 

1997; Stewart et al. 1998; Beekey et al. 2004).  Other taxa have exhibited less consistent 

responses, but may increase, decrease, or have no change in abundance following zebra 

mussel invasion (Ricciardi et al. 1997; Stewart et al. 1998; Horvath et al. 1999; Beekey et 

al. 2004).  Increased abundance of macroinvertebrates including amphipods, 

chironomids, and oligochaetes may lead to altered macroinvertebrate community 

composition, including altered taxonomic richness (Ricciardi et al. 1997; Horvath et al. 

1999; Beekey et al. 2004).  

Reductions in zooplankton abundance by zebra mussels, either directly by 

predation or indirectly by competition, may impact fish species that are planktivorous as 

adults, or that utilize zooplankton as a primary food source in their larval stages 

(MacIsaac 1996; Trometer and Busch 1999; Raikow 2004; Pothoven and Madenjian 

2008).  Decreased food availability may lead to reductions in growth and abundance of 

fishes, and may decrease age-0 fish survival (Trometer and Busch 1999; Raikow 2004).  

However, the effects of zebra mussel invasion on growth and abundance of fishes have 

been mixed.  Age-0 yellow perch (Perca flavescens), walleye (Sander vitreus), 
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freshwater drum (Aplodinotus grunniens), gizzard shad (Dorosoma cepedianum), and 

white bass (Morone chrysops) exhibited no difference in growth before and after zebra 

mussel invasion in the Western Basin of Lake Erie (Trometer and Busch 1999).  

Similarly, growth of age-0 bluegill (Lepomis macrochirus) did not differ between 

mesocosms with and without zebra mussels (Richardson and Bartsch 1997), and yellow 

perch growth in Oneida Lake, New York (Mayer et al. 2000; Idrisi et al. 2001) did not 

differ before and after zebra mussel invasion.  In contrast, white perch (Morone 

americana), American shad (Alosa sapidissima), alewife (Alosa pseudoharengus), striped 

bass (Morone saxatilis), and blueback herring (Alosa aestivalis) in the Hudson River 

estuary exhibited decreases in apparent growth or abundance following zebra mussel 

invasion (Strayer et al. 2004), but yellow perch abundance increased after zebra mussel 

invasion in Western Lake Erie (Trometer and Busch 1997).   

Most studies examining the ecological effects of zebra mussel have focused on 

the cool- to cold-water environments of the Great Lakes region, and may have limited 

applicability to the turbid, warm-water systems typical of the Great Plains and the 

Southern United States, where summer water temperatures and turbidity may exceed the 

optimal ranges of the zebra mussel (17-23° C, 40-200 cm Secchi disc; Ludyanskiy et al. 

1993).  Our objectives were to determine if littoral zone zooplankton, benthic 

macroinvertebrate, and fish populations in a Great Plains reservoir changed following 

zebra mussel invasion.  We tested the hypothesis that littoral zone microzooplankton, 

macrozooplankton, and total zooplankton abundance would decline following zebra 

mussel invasion, and that these declines would impact zooplankton community 

composition.  We also tested the hypothesis that benthic macroinvertebrates, especially 
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Amphipoda, Chironomidae, and Oligochaeta, would increase in abundance in the littoral 

zone following invasion and consequently alter community composition (Karatayev et al. 

1997; Ricciardi et al. 1997; Stewart et al. 1998).  Finally, we tested the hypothesis that 

the abundance of juvenile and adult small-bodied fish, as well as the growth of age-0 

largemouth bass (Micropterus salmoides), would decline in the littoral zone following 

zebra mussel invasion.  

Site Description 
El Dorado and Melvern reservoirs are large federal reservoirs designed for flood 

control and water resource development in eastern Kansas.  Both reservoirs are located in 

watersheds composed primarily of prairie and cropland.  El Dorado Reservoir has a 

surface area of 3,237 ha and a mean depth of 3.3 m; Melvern Reservoir has a surface area 

of 2,833 ha and a mean depth of 6.1 m.  Mean summer water temperature in both 

reservoirs ranged between 27-32° C, mean summer dissolved oxygen ranged between 4-8 

mg/L, and mean turbidity ranged between 6-206 NTU.  In addition, vegetation cover in 

the littoral zone of both reservoirs ranged from 0-50 stems/m2 during the study period 

(See Appendix A.1).  Both reservoirs host sportfish communities including Micropterus 

spp., Lepomis spp., Morone spp., walleye, white crappie (Pomoxis annularis), and 

ictalurids.  Gizzard shad are a primary forage fish, but cyprinids and Percina spp. were 

also found in the reservoirs (Tripe 2000; Schultz et al. 2002; Kansas Department of 

Wildlife and Parks 2010a, 2010b).  Zebra mussels were confirmed in Kansas in El 

Dorado Reservoir in 2003, with average July-August zebra mussel veliger densities of 

less than 12 veligers/L for four out of the six post-invasion years (2004-2009) and 

densities of less than 2 veligers/L in 2008-2009, while Melvern Reservoir has remained 
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free of zebra mussels (J. Goeckler, Kansas Department of Wildlife and Parks, 

unpublished data). 

Methods 

Fieldwork and Laboratory Methods 

Sampling of fish, zooplankton, and macroinvertebrates was conducted in July and 

August at El Dorado and Melvern reservoirs for two years prior to confirmed zebra 

mussel establishment (2001-2002) and two years following zebra mussel establishment 

(2008-2009).  Sampling was conducted within six randomly selected coves per reservoir 

per month (Strakosh et al. 2009).  Two 24.5-m by 6.1-m transects parallel to the shoreline 

in each cove were randomly selected for sampling each month.  Each transect was 

sampled a maximum of once per sampling year.  Transects sampled in 2001-2002 were 

enclosed before sampling using a 3.2-mm bar-mesh block net 2.0-m high by 30.6-m long.  

The block net was omitted from sampling in 2008 and 2009 because Schoenebeck et al. 

(2005) indicated no difference in fish sampling efficiency between enclosed and 

unenclosed areas.   

Zooplankton were sampled 3.1-m and 6.1-m from shore using a 63-μm mesh tow 

net (20-cm diameter) pulled parallel to the shoreline for the length of each transect (24.5 

m).  Samples were preserved with 10% buffered neutral formalin.  In the laboratory, each 

sample was randomly subsampled three times; zooplankton in each subsample were 

identified to family and enumerated.  Number of zooplankton per liter (n/L) was 

calculated for each sample by taxonomic group.  Macroinvertebrates were sampled at six 

locations within the transect (8.2 and 16.2 m from the left side of the enclosure, and 

sampling at 2, 4, and 6 m from shoreline) using a 500-μm D-frame net (30-cm by 25-cm) 
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with an attached dolphin bucket.  The net was swiped along substrate and vegetation for 

0.25-m; collected invertebrates and debris were preserved in 10% formalin with rose 

bengal dye (100 mg/L; Toczydlowski 1984).  Macroinvertebrates were sorted in the 

laboratory, identified to family, and enumerated; number of invertebrates per enclosure 

(n/E) was calculated for each taxonomic group by summing total invertebrates from all 

six samples per enclosure.  

Each transect was electrofished with a Smith-Root LR-24 backpack electrofishing 

unit (2008-2009), or a Smith-Root 15-C backpack electrofishing unit (2001-2002) using 

200-300 volts pulsed DC at 30-60 Hz and 12-48% duty cycle.  The transect was sampled 

in a zigzag pattern by two individuals, one shocking and netting and the other netting 

(Strakosh et al. 2009).  Species that were easily identified in the field other than Lepomis 

or Micropterus spp., as well as any fish greater than 200 mm (Lepomis and Micropterus 

spp. included), were measured (total length), enumerated, and released.  All other fish 

were frozen and returned to the laboratory to be identified to species, enumerated, and 

measured.  Sagittal otoliths were removed from age-0 largemouth bass, mounted on glass 

slides, polished, and examined for daily growth rings.  Two individuals examined and 

recorded daily rings independently of each other; the two daily growth ring counts were 

averaged together and five days were added to the average value to account for age at 

swim-up (Strakosh et al. 2009).  Otoliths with count discrepancies of more than seven 

days were recounted independently a second time by the same observers.  If a 

discrepancy remained, the otolith was omitted from sample.  Growth was calculated as 

mm/day (Tripe 2000; Strakosh et al. 2009).     
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Statistical Methods 

A nested analysis of variance (ANOVA; coves nested within reservoirs) with 

interactions was used to determine whether mean zooplankton abundance (n/L) or mean 

macroinvertebrate abundance (n/E) differed following zebra mussel invasion. Linear 

orthogonal contrasts were used to test the null hypothesis that there was no difference 

between reservoirs (invaded and control) or time periods (pre- and post-zebra mussel 

invasion) for each month (July and August).  We analyzed zooplankton abundance by 

three groups:  mean total zooplankton, mean microzooplankton (nauplii and rotifers), and 

mean macrozooplankton (cladocerans Bosmina, Chydorus, Daphnia, Holopedium, 

Leptodora, and Sida; calanoid, cyclopoid, harpacticoid, and poecilostomatoid copepods; 

ostracods) (Pace 1986; Strayer et al. 1999; Raikow 2004; Miller and Watzin 2007).  We 

analyzed macroinvertebrate abundance by four groups:  mean total benthic 

macroinvertebrates, mean Amphipoda, mean Chironomidae, and mean Oligochaeta 

(Karatayev et al. 1997; Ricciardi et al. 1997; Stewart et al. 1998; Beekey et al. 2004).       

Mean zooplankton and macroinvertebrate taxonomic richness, Simpson’s 

diversity index, and evenness based on Simpson’s diversity index were also analyzed by 

month using a nested ANOVA with contrasts and interactions to determine whether there 

was a shift in the zooplankton or macroinvertebrate community in response to zebra 

mussel invasion.  Samples with evenness values greater than one (28 total zooplankton 

samples) were excluded from statistical analyses of evenness; these values appeared to be 

an artifact of rounding error and low taxonomic richness.  Simpson’s diversity index 

values range from zero to one; the closer the index value was to one, the greater the 

probability that two randomly sampled organisms from a location were different taxa 

(Kwak and Peterson 2007).  Simpson’s diversity index (1 – D) and evenness based on 
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Simpson’s diversity index were both calculated according to Kwak and Peterson (2007).  

We also used a discriminant analysis to further examine effects of zebra mussel invasion 

on the zooplankton and macroinvertebrate community.  All abundance data for the 

discriminant analyses were log-transformed to better meet the assumptions of normality.  

We tested whether the zooplankton or macroinvertebrate community differed among four 

groups: El Dorado Reservoir pre-invasion, Melvern Reservoir pre-invasion, Melvern 

Reservoir post-invasion, and El Dorado Reservoir post-invasion separately for both July 

and August. 

Nested ANOVAs with contrasts and interactions were also used to test if juvenile 

and adult small-bodied fish abundance declined in the littoral zone following zebra 

mussel invasion.  Mean catch per unit effort (CPUE; fish per minute) was used as an 

index of fish abundance.  Only abundance of fish taxa representing at least five percent of 

the total catch were analyzed, with the exception of largemouth bass and gizzard shad.  

Largemouth bass are an economically important sport fish and gizzard shad are an 

important forage fish, and therefore were retained for analysis.  Lepomis spp. (bluegill, 

green sunfish Lepomis cyanellus, longear sunfish Lepomis megalotis, hybrid sunfish, and 

unidentifiable age-0 Lepomis spp.) were grouped together for analysis, as were darters 

(johnny darter Etheostoma nigrum, orangethroat darter Etheostoma spectabile, logperch 

Percina caprodes, and slenderhead darter Percina phoxocephala).  A discriminant 

analysis was also used to examine the effects of zebra mussel invasion on the littoral fish 

community.  All abundance data for the discriminant analysis were log-transformed to 

better meet normality assumptions.  We tested whether the fish community differed 
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among El Dorado Reservoir pre-invasion, El Dorado Reservoir post-invasion, Melvern 

Reservoir pre-invasion, and Melvern Reservoir post-invasion.     

We used a nested analysis of covariance (ANCOVA; month as covariate) with 

interactions and orthogonal contrasts to test whether growth of age-0 largemouth bass 

(mm/day) declined following zebra mussel invasion.  All nested ANOVAs and 

ANCOVAs followed a before-after control-impact (BACI) design, with time period (pre- 

and post-invasion) and reservoir (invaded and control) as effects.  A contrast P-value less 

than 0.05 was considered significant for all analyses, indicating that trends in abundance, 

growth, or community indices differed between the two reservoirs over time; all analyses 

were completed with SAS 9.1.3 (SAS Institute Inc., Cary, North Carolina).   

Results 

Zooplankton 

Zooplankton samples were collected from twelve coves in El Dorado and 

Melvern reservoirs from 2001 to 2009 (90 samples in July, 83 samples in August; 77 

samples pre-invasion, 96 samples post-invasion).  Mean total zooplankton (n/L) ranged 

from 5.24 (SE = 1.07; Melvern; August 2001) to 38.52 (SE =15.04; El Dorado; July 

2001), and was similar between reservoirs across time for both July (P = 0.460) and 

August (P = 0.845; Figure 1.1).  Mean microzooplankton abundance ranged from 2.55 

(SE = 0.18; El Dorado; July 2008) to 24.20 (SE =14.20; El Dorado; July 2001), and was 

consistent between reservoirs across time for July (P = 0.336) and August (P = 0.638; 

Figure 1.1).  Mean macrozooplankton abundance ranged from 1.23 (SE = 0.14; Melvern; 

August 2009) to 19.25 (SE =5.05; Melvern; July 2001) and was similar between 

reservoirs across time for July (P = 0.591) and August (P = 0.567; Figure 1.1).  Thus, 
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mean zooplankton abundance trends were similar between El Dorado and Melvern 

reservoirs between the pre- and post-zebra mussel invasion time periods. 

Mean zooplankton taxonomic richness (total number of taxa per sample) ranged 

from 4.13 (SE = 0.14; Melvern; August 2009) to 6.46 (SE = 0.30; El Dorado; July 2008), 

and did not differ between the reservoirs across time in July (P = 0.174).  A marginally 

significant P-value in August (P = 0.056; Figure 1.2) was due to a steady decline in 

zooplankton taxonomic richness in Melvern Reservoir, but high among-year variability in 

El Dorado Reservoir.  Mean Simpson’s diversity index ranged from 0.50 (SE = 0.02; El 

Dorado; July 2009) to 0.73 (SE = 0.01; El Dorado; July 2008, August 2009), and did not 

differ between reservoirs across time for either July (P = 0.869) or August (P = 0.714; 

Figure 1.2).  Mean taxonomic evenness ranged from 0.65 (SE = 0.03; El Dorado; July 

2009) to 0.87 (SE = 0.01; El Dorado; July 2008, August 2008), and did not differ 

between reservoirs over time in July (P = 0.668) or August (P = 0.849; Figure 1.2).  

Thus, mean taxonomic richness, mean Simpson’s diversity index, and mean taxonomic 

evenness was relatively similar between El Dorado and Melvern reservoirs pre- and post-

zebra mussel invasion.   

The discriminant function analyses of zooplankton abundance revealed substantial 

overlap in communities before and after zebra mussel invasion for both July and August.  

The zooplankton community in El Dorado Reservoir in July following zebra mussel 

invasion tended to have more Leptodora than in the pre-invasion period, while pre-

invasion samples had greater abundance of calanoid and cyclopoid copepods, nauplii, and 

Chydorus.  In addition, pre-invasion samples of Melvern Reservoir zooplankton tended to 

have higher abundance of Bosmina, Cyclopoid copepods, nauplii, and Chydorus (Wilks’ 
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Lambda = 0.217; P < 0.001).  However, 38% of July samples were misclassified, 

indicating substantial overlap in zooplankton communities (Figure 1.3).  In August, both 

reservoirs had more similar zooplankton communities post-invasion than pre-invasion.  

El Dorado Reservoir had higher Daphnia abundance pre-invasion, and Melvern 

Reservoir had higher Bosmina and Chydorus abundance pre-invasion (Wilks’ Lambda = 

0.062; P < 0.001).  However, 28% of August samples were misclassified, suggesting no 

distinct pattern in zooplankton community shifts between the two lakes from the pre- to 

the post-zebra mussel invasion period (Figure 1.3).  

Macroinvertebrates 

Benthic macroinvertebrate samples were collected from 12 coves in El Dorado 

and Melvern reservoirs, with 95 samples collected pre-invasion (2001-2002; 47 in July 

and 48 in August) and 95 samples collected post-invasion (2008-2009; 48 in July and 47 

in August).  A total of fifty different taxa were sampled across the entire study period.  

Mean total benthic macroinvertebrates (n/E) ranged from 0.32 (SE = 0.08; El Dorado; 

July 2008) to 54.3 (SE = 11.28; Melvern; July 2001), and trends were similar between 

reservoirs across time in July (P = 0.929; Figure 1.4).  However, mean total 

macroinvertebrate abundance in El Dorado Reservoir in August increased from 9.17 (SE 

= 1.25) pre-invasion to 10.15 (SE = 1.72) post-invasion (11% increase), while abundance 

in Melvern Reservoir declined from 14.25 (SE = 7.42) to 6.05 (SE = 1.59) during the 

same time period, but was heavily influenced by high macroinvertebrate abundance in 

2001 (58% decline; P = 0.013; Figure 1.4).  Mean Amphipoda abundance ranged from 

0.00 (El Dorado, August 2001-2002; Melvern, August 2008) to 3.26 (SE = 0.98; El 

Dorado; August 2009).  A marginally significant P-value in July was due to an increase 
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in mean amphipod abundance in El Dorado from 0.17 (SE = 0.08) pre-invasion to 0.60 

(SE = 0.58) post-invasion (253% increase), while mean July amphipod abundance in 

Melvern decreased from 0.74 (SE = 0.66) pre-invasion to 0.12 (SE = 0.08) post-invasion 

(84% decline; P = 0.053; Figure 1.5).  In addition, mean August amphipod abundance in 

El Dorado Reservoir increased from 0.00 in the pre-invasion period to 1.64 (SE = 1.61) in 

the post-invasion period, while August amphipod abundance in Melvern Reservoir 

increased from 0.25 (SE = 0.17) pre-invasion to 0.47 (SE = 0.47) in the post-invasion 

period (P = 0.015; Figure 1.5).  Mean Chironomidae abundance ranged from 0.00 (El 

Dorado, July 2008) to 40.10 (SE = 9.09; Melvern; July 2001), and trends were similar 

between reservoirs across time in July (P = 0.842; Figure 1.5).  However, mean August 

chironomid abundance in El Dorado Reservoir declined from 3.46 (SE = 0.88) pre-

invasion to 3.33 (SE = 0.97) post-invasion (4% decline), while abundance in Melvern 

Reservoir declined from 6.88 (SE = 2.38) to 1.97 (SE = 0.22; 71% decline) in the same 

time period (P = 0.007; Figure 1.5).  Mean Oligochaeta abundance ranged from 0.01 (SE 

= 0.01; El Dorado; July 2008) to 3.79 (SE = 0.58; El Dorado; August 2008), and trends 

were consistent between reservoirs across time in July (P = 0.342; Figure 1.5).  However, 

mean August oligochaete abundance in El Dorado Reservoir increased from 0.42 (SE = 

0.25) in the pre-invasion period to 2.40 (SE = 1.40) in the post-invasion period (471% 

increase), while oligochaete abundance in Melvern Reservoir declined from 0.88 (SE = 

0.46) to 0.83 (SE = 0.13) over the same time period (6% decrease; P = 0.025; Figure 1.5).    

Mean macroinvertebrate taxonomic richness ranged from 0.25 (SE = 0.06; El 

Dorado; July 2008) to 6.80 (SE = 0.66; Melvern; July 2001), and trends were consistent 

between reservoirs across time in both July (P = 0.983) and August (P = 0.143; Figure 
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1.6).  Mean Simpson’s diversity index for macroinvertebrate communities ranged from 

0.06 (SE = 0.04; El Dorado; July 2008) to 0.59 (SE = 0.02; Melvern; July 2009).  Mean 

July Simpson’s diversity index declined from 0.55 (SE = 0.02) pre-invasion to 0.26 (SE = 

0.20) post-invasion in El Dorado Reservoir (53% decline), while Simpson’s diversity 

declined from 0.46 (SE = 0.02) to 0.43 (SE = 0.15) during the same time period in 

Melvern Reservoir (7% decline; P = 0.001; Figure 1.6).  However, trends in mean 

Simpson’s diversity did not differ between reservoirs across time in August (P = 0.717; 

Figure 1.6).  Mean taxonomic evenness ranged from 0.52 (SE = 0.07; Melvern; July2001) 

to 0.97 (SE = 0.01; Melvern; July 2008), and trends were similar between reservoirs 

across time in July (P = 0.126; Figure 1.6).  However, mean August taxonomic evenness 

declined from 0.88 (SE = 0.06) pre-invasion to 0.81 (SE = 0.01) post-invasion in El 

Dorado Reservoir (8% decline), while mean evenness increased from 0.77 (SE = 0.01) to 

0.85 (SE = 0.02) during the same time period in Melvern Reservoir (10% increase; P = 

0.019; Figure 1.6).   

The discriminant function analyses of benthic macroinvertebrate abundance 

revealed considerable overlap in communities before and after zebra mussel invasion for 

both July and August.  The macroinvertebrate communities in El Dorado and Melvern 

Reservoirs in July both tended to have greater abundances of hydrozoans in the post-

zebra mussel invasion period than in the pre-invasion period, while pre-invasion samples 

had greater chironomid abundance.  In addition, pre-invasion macroinvertebrate samples 

from El Dorado Reservoir tended to have higher abundance of Heptageniidae and 

Ephemeridae mayflies (Wilks’ Lambda = 0.034; P < 0.001).  However, the 57% of 

samples were misclassified, indicating substantial overlap in the macroinvertebrate 
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communities of El Dorado and Melvern Reservoirs across time (Figure 1.7).  August 

macroinvertebrate samples from the pre- and post-invasion time periods in Melvern 

Reservoir were relatively similar.  In contrast, pre-invasion samples from El Dorado 

Reservoir in August contained fewer oligochaetes and more Heptageniidae mayflies than 

samples from the post-zebra mussel invasion period (Wilks’ Lambda = 0.033; P < 0.001).  

However, 43% of samples were misclassified, suggesting no distinct pattern in benthic 

macroinvertebrate community shifts between the two lakes from the pre- to the post-

invasion period (Figure 1.7).  

Fish Abundance 

A total of 6,707 fish were collected in 190 fish samples from 12 coves in El 

Dorado and Melvern reservoirs, with 95 samples collected in the pre-invasion period 

(2001-2002; 48 in July and 47 in August) and 95 samples collected in the post-invasion 

period (2008-2009; 48 in July and 47 in August).  Samples contained a total of thirty 

species but only four species—bluntnose minnow (Pimephales notatus), green sunfish, 

red shiner (Cyprinella lutrensis), and western mosquitofish (Gambusia affinis)—

composed more than five percent of the total abundance (Table 1.1).  Western 

mosquitofish were only sampled in Melvern in 2002, so no further analysis of this species 

was conducted.   

Mean catch per unit effort (CPUE; fish per electrofishing minute) of all fish 

species combined ranged from 1.06 (SE = 0.24; Melvern; July 2001) to 11.76 (SE = 2.94; 

El Dorado; August 2002), and was similar between reservoirs in July (P = 0.382; Figure 

1.8).  However, mean total CPUE in August declined from 9.44 (SE = 1.68) pre-zebra 

mussel invasion to 3.26 (SE = 0.46) post-zebra mussel invasion in El Dorado Reservoir 
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(65% decline), while mean total CPUE declined from 3.08 (SE = 0.49) pre-invasion to 

2.70 (SE = 0.38) post-invasion in Melvern Reservoir (12% decline; P = 0.007; Figure 

1.8). 

Mean bluntnose minnow CPUE ranged from 0.04 (SE = 0.04; El Dorado; August 

2009) to 1.45 (SE = 0.52; Melvern; July 2002), and trends in bluntnose minnow 

abundance were similar between reservoirs across years in July (P = 0.594) and August 

(P = 0.542; Figure 1.9).  Mean darter CPUE ranged from 0.05 (SE = 0.02; Melvern; July 

2001) to 1.02 (SE = 0.44; El Dorado; August 2002), and trends in darter abundance were 

similar between reservoirs across time for both July (P = 0.692) and August (P = 0.198; 

Figure 1.9).  Mean gizzard shad CPUE ranged from 0.00 (El Dorado July-August 2008, 

July 2009; Melvern July-August 2008) to 0.54 (SE = 0.37; El Dorado; July 2002), and 

trends in gizzard shad abundance were consistent between reservoirs across time for both 

July (P = 0.265) and August (P = 0.726; Figure 1.9).  Mean Lepomis spp. CPUE ranged 

from 0.17 (SE = 0.04; Melvern; July 2001) to 5.13 (SE = 1.32; El Dorado; August 2002), 

and trends in Lepomis spp. abundance were consistent between reservoirs across years in 

July (P = 0.266; Figure 1.10).  However, mean August CPUE of Lepomis spp. declined 

from 4.29 (SE = 0.85) pre-zebra mussel invasion to 1.65 (SE = 0.33) post-zebra mussel 

invasion in El Dorado Reservoir (62% decline), while mean CPUE of Lepomis spp. in 

Melvern Reservoir declined from 1.12 (SE = 0.21) to 1.07 (SE = 0.24) during the same 

time period (4% decline; P = 0.004; Figure 1.10).  Mean CPUE of largemouth bass (all 

bass were <120 mm) ranged from 0.00 (El Dorado August 2001, August 2009) to 0.29 

(SE = 0.16; Melvern; July 2008), and trends in largemouth bass abundance were similar 

between reservoirs across time for both July (P = 0.379) and August (P = 0.488; Figure 
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1.10).  Mean red shiner CPUE ranged from 0.09 (SE = 0.09; Melvern; July 2008) to 1.63 

(SE = 0.63; El Dorado; August 2002), and trends in red shiner abundance were similar 

between reservoirs across years in July (P = 0.377; Figure 1.10).  However, mean August 

red shiner CPUE in El Dorado declined from 1.41 (SE = 0.40) pre-zebra mussel invasion 

to 0.16 (SE = 0.10) post-zebra mussel invasion (88% decline), while Melvern CPUE 

declined from 0.21 (SE = 0.07) to 0.19 (SE = 0.07) over the same time period (9% 

decline; P = 0.039; Figure 1.10).  

The discriminant function analyses of fish abundance in El Dorado and Melvern 

reservoirs revealed considerable overlap in communities before and after zebra mussel 

invasion for both July and August.  The fish community during the post-zebra mussel 

invasion period in both El Dorado and Melvern reservoirs in July tended to have fewer 

red shiners, gizzard shad, and bluntnose minnows than the pre-zebra mussel invasion 

period.  In addition, the fish community in Melvern Reservoir in the post-zebra mussel 

invasion time period tended to have fewer longnose gar and green sunfish than the pre-

zebra mussel invasion period (Wilks’ Lambda = 0.029; P < 0.001).  However, 30% of 

samples were misclassified, indicating considerable overlap in the fish communities of El 

Dorado and Melvern Reservoirs across time (Figure 1.11).  The fish communities of El 

Dorado and Melvern Reservoirs in August tended to have more bluegill in the post-

invasion period than in the pre-invasion period.  In addition, the fish community in 

Melvern Reservoir during the post-zebra mussel invasion period tended to have fewer 

bluntnose minnows, largemouth bass, and orangethroat darters than the pre-invasion 

period.  The fish community in El Dorado Reservoir in the post-zebra mussel invasion 

period contained fewer red shiners, channel catfish, and western mosquitofish than the 
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pre-invasion period (Wilks’ Lambda = 0.047; P < 0.001).  However, 36% of samples 

were misclassified, suggesting no distinct pattern in fish community shifts between the 

two lakes from the pre-zebra mussel invasion period to the post-zebra mussel invasion 

period (Figure 1.11). 

Largemouth Bass Growth 

A total of 285 age-0 largemouth bass were collected from El Dorado and Melvern 

reservoirs between July 2001 and August 2009 (164 in July, 121 in August; 211 pre-

invasion, 74 post-invasion).  No age-0 largemouth bass were collected in El Dorado 

Reservoir in August 2001 and 2009.  Largemouth bass ranged from 28 to 116 mm total 

length, and mean growth (mm/day) ranged from 0.56 (SE = 0.02; El Dorado 2001) to 

0.91 (SE = 0.04; El Dorado 2008).  Trends in growth were not consistent between 

reservoirs across time (P < 0.001; Figure 1.12).  Mean growth (mm/day) in El Dorado 

Reservoir increased from 0.74 (SE = 0.01) pre-invasion to 0.88 (SE = 0.03) post-invasion 

(19% increase), while mean growth in Melvern Reservoir increased from 0.73 (SE = 

0.01) pre-invasion to 0.83 (SE = 0.02) post-invasion (14% increase).  Thus, mean growth 

in both reservoirs increased in the post-invasion period, but the magnitude of the increase 

was greater in El Dorado Reservoir.   

Discussion 
Our results indicated no changes in zooplankton abundance, zooplankton 

community composition, or fish community composition following zebra mussel 

invasion, but did indicate changes in the abundance of some benthic macroinvertebrates, 

abundance of some fishes, and the growth of age-0 largemouth bass in El Dorado 

Reservoir.  The lack of response of zooplankton in El Dorado Reservoir is likely due to 
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low zebra mussel densities throughout the post-invasion study period in the reservoir.  

Zebra mussel densities peaked in El Dorado Reservoir in 2006, when the mean July-

August veliger density was 148.22/L.  In contrast, during July and August of the post-

invasion study period (2008-2009) in El Dorado Reservoir, the mean veliger density 

ranged from 0.26 to 1.02/L (J. Goeckler, KDWP, unpublished data).  These densities 

were the lowest since July-August 2004, the first year of veliger sampling, when mean 

lake-wide veliger density was 0.83/L.  Although veliger counts may not be correlated 

with the number of zebra mussels that recruit to adults, invaded systems without visible 

adult populations of zebra mussels have been found to have veliger concentrations of less 

than 0.01 veligers/L (Johnson 1995; Nalepa et al. 1995).  The zebra mussel population 

fluctuations recorded for El Dorado Reservoir were similar to population trends observed 

in other invaded systems.  Zebra mussel population numbers in other systems, including 

Saginaw Bay in Lake Huron, have exhibited patterns of rapid population growth followed 

by a strong decline in successive years (Nalepa et al. 1995).  Future monitoring will 

determine if the peak and subsequent drop in zebra mussel abundance in El Dorado 

Reservoir is part of a cyclical pattern of abundance as observed in the Hudson River 

(Strayer and Malcom 2006). 

Zebra mussels may have affected certain macroinvertebrate taxa despite the 

decline in zebra mussel population density during 2008-2009.  In July of the post-

invasion period, amphipod abundance increased in El Dorado Reservoir, possibly 

contributing to a decline in Simpson’s diversity.  In addition, amphipod and oligochaete 

abundance increased in August of the post-invasion period in El Dorado Reservoir, while 

chironomid abundance in El Dorado Reservoir remained consistent compared to a 
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decrease in Melvern Reservoir, and likely contributed to a decrease in taxonomic 

evenness in El Dorado Reservoir.  Although there was no change in taxonomic richness 

in either month, the effects on Simpson’s diversity and taxonomic evenness are likely due 

to higher abundances of amphipods, oligochaetes, and chironomids in El Dorado 

Reservoir than in Melvern Reservoir following zebra mussel invasion.  Although 

amphipods, chironomids, and oligochaetes may benefit from zebra mussel invasion, a 

number of other invertebrate taxa have shown no response to zebra mussel invasion 

(Stewart et al. 1998; Beekey et al. 2004).  The effect on amphipods, chironomids, and 

oligochaetes is possibly related to the increased habitat surface area, habitat 

heterogeneity, and available benthic organic matter provided by zebra mussel 

colonization (Stewart et al. 1998).  The shells of dead zebra mussels often remain 

attached to substrate and continue to be used by macroinvertebrate fauna (Stewart et al. 

1998).  Interstitial spaces between zebra mussel shells may provide amphipods, 

chironomids, and oligochaetes with shelter from predators and wave action, and may trap 

organic material and provide additional food resources for chironomids and oligochaetes 

(Ricciardi et al. 1997; Stewart et al. 1998; Gonzalez and Downing 1999).  In addition, 

predaceous macroinvertebrates, including some chironomid taxa, may be attracted to 

zebra mussel beds by the abundance of macroinvertebrate prey (Stewart et al. 1998).  

Horvath et al. (1999) found that benthic organic matter may not accumulate at low zebra 

mussel densities, indicating that increases in habitat area and heterogeneity from living 

and dead mussels may contribute more directly to increased macroinvertebrate abundance 

than the increase in benthic organic matter.  Due to the low numbers of live zebra 

mussels present in El Dorado Reservoir during the study period (live zebra mussels were 
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observed at less than 10% of sampling sites in El Dorado Reservoir, and observed live 

zebra mussel densities did not exceed 100/m2) in comparison to abundances in 2005-2006 

(up to 65,000 zebra mussels/m2, J. Goeckler, Kansas Department of Wildlife and Parks, 

personal communication), the increase in mean total macroinvertebrates, amphipods, 

oligochaetes, and the maintenance of a consistent level of chironomids in comparison to 

Melvern Reservoir may be the result of habitat enhancement provided by mussel shells 

that remain from previous population peaks.  The cause for an increase in 

macroinvertebrate taxa in August but not July may be related to predator avoidance.  

Gonzalez and Downing (1999) previously found that amphipods in Lake Erie preferred 

habitat with zebra mussels in August, when predation risk from fishes including bluegill 

increased in comparison to June and July.  Thus, zebra mussel invasion in El Dorado 

Reservoir may have benefitted some macroinvertebrates by providing increased habitat 

surface area and heterogeneity that is suitable for amphipods, chironomids, and 

oligochaetes.  

Our results indicated a decline in littoral fish abundance in El Dorado Reservoir 

during the summer months following zebra mussel establishment.  The decline in August 

may be the result of the reduced abundance of Lepomis spp. and red shiner, which 

composed over 53% of the total catch.  Lepomis spp. and red shiners feed extensively on 

macroinvertebrates during the summer months, although bluegill may also consume large 

amounts of zooplankton depending on their size class (Greger and Deacon 1988; Olson 

and Nickol 1996; Gonzalez and Downing 1999; Harris et al. 1999).  The increased habitat 

heterogeneity provided by zebra mussel shell beds may increase the ability of amphipods, 

chironomids, and oligochaetes to seek shelter in zebra mussel beds, reducing prey 
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availability for Lepomis spp. and red shiners.  It may also be possible that bluegill were 

switching to pelagic habitat upon encountering reduced benthic prey, thus reducing their 

abundance in the littoral zone (Werner and Hall 1979; Werner and Hall 1988; Harris et al. 

1999).   

Largemouth bass growth had a greater increase in El Dorado Reservoir than 

Melvern Reservoir during the summer months following zebra mussel invasion, but the 

differences in these growth rates (about 5%) may not be biologically meaningful.  The 

change in growth rate and lack of decline in zooplankton abundance does not support our 

hypothesis that zebra mussel presence would reduce zooplankton abundance, which in 

turn would decrease largemouth bass growth rates in El Dorado Reservoir.  Total 

zooplankton abundance remained relatively constant between reservoirs throughout the 

study.  However, this small difference in growth between the two reservoirs may be due 

to the increased macroinvertebrate abundance in El Dorado Reservoir.  Strakosh (2006) 

found that amphipods were present in 0-6.4% of age-0 largemouth bass diets, and 

chironomids were present in 0-13.8% of age-0 largemouth bass diets in El Dorado and 

Melvern reservoirs prior to zebra mussel invasion.  In addition, largemouth bass growth 

may also be affected by a variety of abiotic factors, including water temperature, 

turbidity, and water levels (Parkos and Wahl 2002).  Further diet and foraging analysis 

and inclusion of abiotic variables may be needed to better determine zebra mussel effects 

on age-0 largemouth bass growth.  

Additional monitoring of zebra mussel population dynamics in El Dorado 

Reservoir, including continued sampling of zooplankton, macroinvertebrates, and fish, 

would be beneficial to determine the long-term effects of zebra mussel invasion in Great 
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Plains reservoirs.  Sampling of biota during times of high zebra mussel abundance may 

reveal whether zebra mussels were able to reduce zooplankton abundance in turbid, 

warm-water reservoirs which frequently exceed the preferred thermal range of zebra 

mussels (17-23° C; Ludyanskiy et al. 1993) in the summer, and whether this impacts 

zooplanktivorous fishes.  In addition, continued monitoring of zebra mussel beds, both 

with live and dead mussels, would provide additional insight into how zebra mussel beds 

affect macroinvertebrate abundance in reservoir systems, including whether the observed 

increase in some macroinvertebrate taxa was only a seasonal phenomenon, or whether 

this becomes a more consistent trend over time.  

In conclusion, our results indicate that the low-density zebra mussel population 

observed in El Dorado Reservoir, Kansas, in 2008-2009 has had minimal impact on 

zooplankton abundance and community structure.  However, remnant zebra mussel beds 

from abundance peaks in 2005-2006 appear to benefit some macroinvertebrate taxa, but 

may disadvantage some invertivorous fishes including Lepomis spp. and red shiners.  It is 

important to note that the effects hypothesized for zooplankton in El Dorado Reservoir 

depended upon a large living population of zebra mussels in El Dorado Reservoir, which 

was not observed during the post-invasion fieldwork, and was not reflected in the 

reported veliger densities.  In contrast, zebra mussel shell beds and shell litter remained at 

most sampling sites during the post-invasion sampling period, which may be enough to 

affect the macroinvertebrate community of El Dorado Reservoir.  These effects on 

macroinvertebrates may in turn continue to affect the fish community of El Dorado 

Reservoir even after a zebra mussel population decline.  However, our results are based 

on only two years of pre- and two years of post-zebra mussel invasion data.  Other 
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research has suggested that considerable short-term variability may exist in zebra mussel 

population dynamics and ecological responses to zebra mussel invasion, and longer-term 

studies may provide different results (Nalepa et al. 2003; Barbiero et al. 2006; Caraco et 

al. 2006; Strayer and Malcom 2006; Fernald et al. 2007).  In addition, Mayer et al. (2000) 

and Strayer et al. (2004) recommended use of long-term datasets to better understand 

effects of zebra mussel invasion, and Mayer et al. (2000) suggested that datasets with less 

than five years of post-invasion fish data may be insufficient because of reduced 

statistical power.  Nonetheless, our research provides some evidence of the effects of 

zebra mussels on littoral zone aquatic biota in reservoirs, and could provide the basis for 

future studies and hypotheses on the long-term effects of zebra mussels in these systems. 
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Table 1.1  Percent total catch of all fish species caught in littoral zone electrofishing 
sampling at El Dorado and Melvern reservoirs for two years pre-zebra mussel invasion 
(2001-2002) and two years post-zebra mussel invasion (2008-2009).   

 
Scientific Name Common Name Percent Total Catch 

(N = 6,707) 
Aplodinotus grunniens Freshwater drum 0.25 
Campostoma anomalum Central stoneroller 0.43 
Cyprinella lutrensis Red shiner 13.28 
Cyprinus carpio Common carp 0.06 
Dorosoma cepedianum Gizzard shad 3.53 
Etheostoma nigrum Johnny darter 0.16 
Etheostoma spectabile Orangethroat darter 2.27 
Fundulus notatus Blackstripe topminnow 1.36 
Gambusia affinis Western mosquitofish 5.65 
Ictalurus punctatus Channel catfish 1.61 
Ictiobus spp. Age-0 buffalo (bigmouth/smallmouth) 0.03 
Lepisosteus osseus Longnose gar 0.21 
Lepomis cyanellus Green sunfish 6.23 
Lepomis humilis Orangespotted sunfish 3.13 
Lepomis macrochirus Bluegill 2.59 
Lepomis megalotis Longear sunfish 0.24 
Lepomis spp. Age-0 and hybrid sunfish 27.98 
Micropterus dolomieu Smallmouth bass 0.03 
Micropterus punctulatus Spotted bass 0.03 
Micropterus salmoides Largemouth bass 2.30 
Morone chrysops White bass 0.12 
Notropis stramineus Sand shiner 0.75 
Noturus exilis Slender madtom 0.16 
Percina caprodes Logperch 3.82 
Percina phoxocephala Slenderhead darter 3.09 
Phenacobius mirabilis Suckermouth minnow 0.78 
Pimephales notatus Bluntnose minnow 14.79 
Pimephales promelas Fathead minnow 0.12 
Pimephales vigilax Bullhead minnow 1.04 
Pomoxis annularis White crappie 0.16 
Pylodictis olivaris Flathead catfish 0.12 
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Figure 1.1  Mean total zooplankton abundance, microzooplankton abundance, and 
macrozooplankton abundance for July and August in El Dorado and Melvern reservoirs.  
Vertical bar indicates year of zebra mussel invasion (2003); error bars represent one 
standard error.  P-values test if trends in zooplankton abundance were consistent between 
reservoirs in the pre- and post-zebra mussel invasion periods. 
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Figure 1.2  Mean taxonomic richness, Simpson’s diversity index, and taxonomic 
evenness for zooplankton communities of El Dorado and Melvern reservoirs in July and 
August.  Vertical bar indicates year of zebra mussel invasion (2003); error bars represent 
one standard error.  P-values test if trends in zooplankton community indices were 
consistent between reservoirs in the pre- and post-zebra mussel invasion periods. 
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Figure 1.3  Discriminant analyses of zooplankton taxa abundance in El Dorado and 
Melvern reservoirs in July (top) and August (bottom) prior to zebra mussel invasion 
(2001-2002) and after zebra mussel invasion (2008-2009). 
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Figure 1.4  Mean total benthic macroinvertebrate abundance in the littoral zone of El 
Dorado and Melvern reservoirs in July and August of 2001-2002 and 2008-2009. Vertical 
bar indicates year of zebra mussel invasion (2003); error bars represent one standard 
error.  P-values test if trends in mean total benthic macroinvertebrate abundance were 
consistent between reservoirs in the pre- and post-zebra mussel invasion periods.  
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Figure 1.5  Mean Amphipoda, Chironomidae, and Oligochaeta abundance for July and 
August in El Dorado and Melvern reservoirs.  Vertical bar indicates year of zebra mussel 
invasion (2003); error bars represent one standard error.  P-values test if trends in 
macroinvertebrate abundance were consistent between reservoirs in the pre- and post-
zebra mussel invasion periods.  
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Figure 1.6  Mean taxonomic richness, Simpson’s diversity index, and taxonomic 
evenness for macroinvertebrate communities of El Dorado and Melvern reservoirs in July 
and August.  Vertical bar indicates year of zebra mussel invasion (2003); error bars 
represent one standard error.  P-values test if trends in macroinvertebrate community 
indices were consistent between reservoirs in the pre- and post-zebra mussel invasion 
periods. 
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Figure 1.7  Discriminant analyses of benthic macroinvertebrate taxa abundance in El 
Dorado and Melvern reservoirs in July (top) and August (bottom) prior to zebra mussel 
invasion (2001-2002) and after zebra mussel invasion (2008-2009). 
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Figure 1.8  Mean total catch per unit effort (fish per electrofishing minute) of juvenile 
and small-bodied fishes in the littoral zone of El Dorado and Melvern reservoirs in July 
and August of 2001, 2002, 2008, and 2009.  Vertical bar indicates year of zebra mussel 
invasion (2003); error bars represent one standard error.  P-value tests if trends in mean 
CPUE were consistent between reservoirs in the pre- and post-zebra mussel invasion 
periods. 
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Figure 1.9  Mean catch per unit effort of bluntnose minnow, darters (Johnny darter, 
logperch, orangethroat darter, and slenderhead darter), and gizzard shad in the littoral 
zone of El Dorado and Melvern reservoirs in July and August of 2001, 2002, 2008, and 
2009.  Vertical bar indicates year of zebra mussel invasion (2003); error bars represent 
one standard error.  P-value tests if trends in mean CPUE were consistent between 
reservoirs in the pre- and post-zebra mussel invasion periods.   
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Figure 1.10  Mean catch per unit effort (fish per electrofishing minute) of Lepomis spp. 
(bluegill, green sunfish, longear sunfish, hybrid sunfish, and unidentifiable age-0 Lepomis 
spp.), largemouth bass, and red shiners in the littoral zone of El Dorado and Melvern 
reservoirs in July and August of 2001, 2002, 2008, and 2009.  Vertical bar indicates year 
of zebra mussel invasion (2003); error bars represent one standard error.  P-value tests if 
trends in mean CPUE were consistent between reservoirs in the pre- and post-zebra 
mussel invasion periods.   
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Figure 1.11  Discriminant analyses of fish taxa abundance in El Dorado and Melvern 
reservoirs in July (top) and August (bottom) prior to zebra mussel invasion (2001-2002) 
and after zebra mussel invasion (2008-2009). 
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Figure 1.12  Mean growth (mm/day) of age-0 largemouth bass in El Dorado and Melvern 
reservoirs in July and August (both months combined) of 2001, 2002, 2008, and 2009.  
Vertical bar indicates year of zebra mussel invasion (2003); error bars represent one 
standard error.  P-value tests if trends in growth were consistent between reservoirs in the 
pre- and post-zebra mussel invasion periods. 
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CHAPTER 2 - Effects of zebra mussel invasion on adult fishes 

of El Dorado Reservoir 

Introduction 
One of the primary concerns in ecology is the effect of biological invasions.  If 

non-native species become successfully established, they may continue to broaden their 

range and affect native species and habitats.  Some of these impacts can be economically 

and environmentally costly (Lockwood et al. 2007).  However, some of these invasions, 

including zebra mussel (Dreissena polymorpha) invasion in North America, have impacts 

that may not yet be fully realized.  

The zebra mussel is a bivalve native to the Caspian, Black, and Azov Seas of 

Eurasia, but was introduced to the North American Great Lakes in the mid-1980s via 

bilge water, and has been classified as an invasive species (Karatayev et al. 1997; 

Lockwood et al. 2007).  Zebra mussels have spread throughout much of the Eastern US 

and the Great Plains (Lockwood et al. 2007).  Although research has been conducted on 

the impacts of zebra mussels on aquatic food webs in the Great Lakes region (cool- to 

cold-water natural lakes), little attention has been given to possible effects of zebra 

mussels in the turbid, warm-water reservoirs of the Great Plains.  

Zebra mussels may exert a bottom-up influence on aquatic food webs and 

ultimately impact fish.  Phytoplankton is the primary food source for zebra mussels and 

grazing zooplankton, and reduction of phytoplankton abundance by zebra mussels may 

create food limitations for zooplankton (Strayer et al. 1999; Trometer and Busch 1999; 

Raikow 2004).  In addition, zebra mussel consumption of microzooplankton (rotifers, 

nauplii) may directly reduce microzooplankton abundance, resulting in food limitations 
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for zooplanktivorous fish, which may lead to decreased growth and/or abundance of 

planktivorous fishes (MacIsaac 1996; Strayer et al. 1999).  The larval stages of fish 

(including piscivores) are frequently zooplanktivorous, and a lack of food in the larval 

stage could lead to stunted growth, decreasing the probability of overwinter survival 

(Garvey and Stein 1998; Raikow 2004).   

Zooplanktivorous fish often form the basis of piscivorous fish diets.  Age-0 

bluegill (Lepomis macrochirus) and gizzard shad (Dorosoma cepedianum) are key 

components of largemouth bass (Micropterus salmoides) and walleye (Sander vitreus) 

diets in lakes and reservoirs (Olson 1996; Garvey and Stein 1998; Kolar et al. 2003; Quist 

et al. 2004).  Age-0 gizzard shad are the primary prey for age 1+ white bass (Morone 

chrysops) in many Great Plains reservoirs, and age-0 gizzard shad abundance during the 

summer and fall is a key determinant of white bass condition throughout the year (Guy et 

al. 2002).  Growth of piscivorous fishes is closely linked to the abundance of their 

preferred zooplanktivorous prey species (Kolar et al. 2003; Garvey and Stein 1998).  

Therefore, decline in abundance of zooplanktivorous fish species associated with zebra 

mussel presence may result in negative effects for piscivorous predators. 

Objectives 
Our objective was to determine whether the abundance and condition of adult 

fishes declined with zebra mussel presence in a warm-water reservoir.  We hypothesized 

that zebra mussel invasion would lead to reduced abundance and condition of adult fishes 

via two pathways: 1) a reduction in zooplankton due to zebra mussels would reduce 

growth and survival of age-0 reservoir fishes, leading to reduced abundance and 

condition of these fishes beyond age-0; 2) reduced growth and survival of age-0 fishes 
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would reduce the amount of forage available to piscivorous adult fishes, leading to a 

decline in abundance and condition of these adult fishes.  We focused on bluegill, gizzard 

shad, largemouth bass, walleye, white bass, and white crappie (Pomoxis annularis) for 

this study because they are common reservoir fishes in the Great Plains region.   

We used a before-after control-impact (BACI) study design to determine if mean 

relative abundance and condition of the six fish species differed between one impacted 

reservoir (El Dorado Reservoir) and three control reservoirs (Clinton, Marion, and 

Milford reservoirs) before and after zebra mussel invasion.  Three control systems with 

similar hydrologic and habitat characteristics were used to provide replication 

(Underwood 1994).  In the BACI design, overall effect of impact is determined by the 

mean difference in a particular metric (abundance, condition) between the control and 

impacted systems before and after the impact occurred (Smith 2002).  

Study Sites 
Four large (>2800 ha) federal reservoirs in Eastern Kansas—Clinton, El Dorado, 

Marion, and Milford—were chosen as the study sites based on input from Kansas 

Department of Wildlife and Parks (KDWP) biologists.  These reservoirs had relatively 

similar watersheds and hydrologic characteristics (Table 2.1).  Mean summer water 

temperature in Eastern Kansas reservoirs generally ranged between 28-30° C, mean 

dissolved oxygen ranged between 6-7 mg/L, and mean turbidity ranged between 21-33 

NTU (Quist et al. 2004; Strakosh et al. 2009).  Largemouth bass and walleye are 

regularly stocked in all study reservoirs.  Zebra mussels were confirmed in El Dorado 

Reservoir in 2003.  Sampling was conducted for ten years pre-zebra mussel invasion 

(1993-2002) and five years post-invasion (2004-2008).  Mean summer veliger densities 
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(June-August) in El Dorado Reservoir ranged from 4.24/L (2004) to 116.78/L (2006) 

throughout the post-invasion period, with densities exceeding 100 veligers/L only in 2006 

(J. Goeckler, KDWP, unpublished data).  Clinton and Milford Reservoirs remained free 

of zebra mussels throughout the entire study period.  Zebra mussel presence was 

confirmed in the final year of the study (summer 2008) in Marion Reservoir.  

Methods 

Field Methods 

We analyzed data collected by KDWP biologists as part of a long-term 

standardized reservoir sampling protocol for ten years pre-zebra mussel invasion (1993-

2002) and five years post-invasion (2004-2008).  Gizzard shad, walleye, and white bass 

were sampled via annual fall gillnetting.  Individual monofilament gill nets (30.5 m x 2.4 

m) of each of three bar mesh sizes (2.5, 3.8, 6.4 cm) were set together as complements.  

Five net complements per year (15 individual nets) was the minimum sampling 

requirement for Clinton, El Dorado, and Marion reservoirs; minimum effort for Milford 

Reservoir was six net complements (18 individual nets) per year.  Each individual gill net 

represented one unit of effort.  Bluegill and white crappie were sampled with a minimum 

of sixteen 1.3-cm or 2.5-cm trap nets (1.2 m x 1.5 m) set over night during the fall.  Each 

individual trap net was considered one unit of effort.  Both net types (gill net and trap net) 

were set at fixed sites before sunset and retrieved after sunrise the following day.  

Largemouth bass were sampled using boat electrofishing during spring (220-250 V 

pulsed DC, 5-10 A) in ten minute increments at a minimum of ten locations per reservoir.  

Length and weight data was collected in the field for all captured fish (Marteney and 

Mosher 2004).  Catch per unit effort (CPUE; fish per trap net/gill net or electrofishing 
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hour) and relative weight (Wr) were calculated for stock-to-quality length fish and used as 

indices of abundance and condition, respectively.  Stock-to-quality length fish are 

generally age 1-4 in the Great Plains ecoregion (Brouder et al. 2009).  Length classes and 

relative weights for all species were determined according to Anderson and Neumann 

(1996).  Weight data from 2006 was omitted due to mechanical problems with the scales 

used at El Dorado Reservoir (C. Johnson, Kansas Department of Wildlife and Parks, 

personal communication).  

Experimental Design and Statistical Analysis 

A 2-way analysis of covariance (ANCOVA) with interactions was used with 

linear orthogonal contrasts to determine if mean CPUE for each species differed by time 

period (before/after) or impact (control/zebra mussel).  Because water level fluctuation 

can influence reservoir fishes (Martin et al. 1981; Parkos and Wahl 2002), we included 

mean seasonal water level fluctuation (difference from conservation pool elevation) for 

spring (March-May), summer (June-August), fall (September-November), and winter 

(December-February) as covariates.  A 2-way ANCOVA (mean seasonal water level 

fluctuation as covariate) with interactions and linear orthogonal contrasts was also used to 

determine whether mean Wr for each species differed by time period (before/after) or 

impact (control/zebra mussel). Largemouth bass abundance and condition data was only 

analyzed from El Dorado and Clinton reservoirs due to no largemouth bass data for at 

least 40% of years in Marion and Milford reservoirs.  All analyses were completed with 

SAS 9.1.3 (SAS Institute Inc., Cary, North Carolina).  A significant contrast (P < 0.05) 

indicated divergent trends in abundance or condition (i.e. trends in abundance or 
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condition were not consistent among the impacted and control reservoirs between the pre- 

and post-invasion time periods).  

Results 

Abundance 

No stock-to-quality length bluegill were caught in El Dorado Reservoir in 1995-

1996 and 1998, and in Marion Reservoir in 1999, 2002, and 2005; sampling was not 

conducted at Marion Reservoir in 1994 and 1997.  Mean bluegill CPUE ranged from 0.06 

(SE = 0.06; Milford 1995) to 67.81 (SE = 52.43; Milford 2000), but trends in abundance 

did not diverge between El Dorado Reservoir and the control reservoirs across time 

periods (Ps > 0.528; Figure 2.1; Tables 2.2, 2.4, 2.5; See Appendix B.1).  No gizzard 

shad were caught in El Dorado Reservoir in 1993, 1996-1998, and 2001, in Marion 

Reservoir in 1993, and in Milford Reservoir in 1993-1996 and 2005.  Mean gizzard shad 

CPUE ranged from 0.06 (SE = 0.06; Marion 2008) to 39.38 (SE = 26.87; Marion 1996), 

and trends in abundance remained consistent among reservoirs across time (Ps > 0.158; 

Figure 2.1; Tables 2.2, 2.4, 2.5).  No largemouth bass were caught in El Dorado 

Reservoir in 2008; sampling was not conducted at El Dorado Reservoir in 1995 or at 

Clinton Reservoir in 1993, 1995, and 2007-2008.  Mean largemouth bass CPUE ranged 

from 0.69 (SE = 0.38; Clinton 2004) to 6.65 (SE = 1.33; El Dorado 2004), and was 

consistent between reservoirs across time (Ps > 0.154; Figure 2.1; Tables 2.2, 2.4, 2.5).  

Mean walleye CPUE ranged from 0.08 (SE = 0.08; Clinton 2007) to 5.29 (SE = 1.55; 

Marion 1993), and was similar among reservoirs across time (Ps > 0.258; Figure 2.1; 

Tables 2.2, 2.4, 2.5).  No white bass were caught in El Dorado Reservoir in 1996.  Mean 

white bass abundance (fish per gill net) ranged from 0.13 (SE = 0.13; El Dorado 2008) to 
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45.42 (SE = 18.29; Marion 2001), and was similar among all reservoirs across time (Ps > 

0.415; Figure 2.1; Tables 2.2, 2.4, 2.5).  No white crappie were caught in El Dorado 

Reservoir in 1997; sampling was not conducted at Marion Reservoir in 1994 and 1997.  

Mean white crappie abundance (fish per trap net) ranged from 0.08 (SE = 0.06; Clinton 

2008) to 44.54 (SE = 5.94; Clinton 1997).  However, mean white crappie CPUE in El 

Dorado Reservoir declined from 2.68 fish per trap net (SE = 0.41) in the pre-invasion 

period to 2.07 fish per trap net (SE = 0.46) in the post-invasion period (23% decline), 

whereas mean white crappie CPUE in the control reservoirs declined by an average of 

71% from the pre-invasion to the post-invasion period (Ps < 0.028; Figure 2.1; Tables 

2.2, 2.4, 2.5).  Thus, white crappie abundance declined in all systems in the post-invasion 

time period, but the magnitude of the decline was greater in the control reservoirs than in 

El Dorado Reservoir. 

Condition 

No bluegill length-weight data were collected in Clinton Reservoir in 1993, 1995-

1997, 2000, 2004, and 2007, in El Dorado Reservoir in 1995-1996, 1998, 2004, and 

2008, in Marion Reservoir in 1994, 1997, 1999, 2002, and 2005, and in Milford 

Reservoir in 1998 and 2002.  Mean bluegill relative weight ranged from 75.01 (SE = 

5.96; El Dorado 2002) to 128.44 (Milford 1995).  However, mean relative weight of 

bluegill in El Dorado Reservoir declined from 104.09 (SE = 1.99) in the pre-invasion 

period to 95.63 (SE = 1.29) in the post-invasion period (8% decline), while mean relative 

weight increased by an average of 4% in the control systems over the same time period 

(Ps < 0.002; Figure 2.2; Tables 2.3, 2.4, 2.5; See Appendix B.2). Gizzard shad relative 

weight data were not analyzed because stock-to-quality gizzard shad length-weight data 
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was collected from El Dorado Reservoir only one year pre-invasion (1995).  No 

largemouth bass length-weight data were collected at Clinton Reservoir in 1993, 1995, 

and 2007-2008, and at El Dorado Reservoir in 1995 and 2008.  Mean relative weight of 

largemouth bass ranged from 78.19 (SE = 7.02; Clinton 1999) to 101.50 (SE = 3.40; El 

Dorado 2002), and did not differ between reservoirs across time (Ps > 0.363; Figure 2.2; 

Tables 2.3, 2.4, 2.5).  No walleye length-weight data were collected from El Dorado 

Reservoir in 1995-1996.  Mean relative weight of walleye ranged from 80.44 (SE = 1.56; 

Milford 2000) to 132.53 (SE = 12.35; Marion 1995), but did not differ between El 

Dorado Reservoir and the control reservoirs across time (Ps > 0.408; Figure 2.2; Tables 

2.3, 2.4, 2.5).  No length-weight data were collected for white bass in El Dorado 

Reservoir in 1996.  Mean relative weight of white bass ranged from 65.78 (SE = 7.12; 

Milford 1997) to 107.00 (SE = 1.79; Marion 2008).  However, mean relative weight of 

white bass in El Dorado Reservoir declined from 98.59 (SE = 0.81) during the pre-

invasion period to 88.42 (SE = 0.87) during the post-invasion period (10% decline), 

while mean relative weight of white bass declined by an average of 1% in control 

systems (Ps < 0.001; Figure 2.2; Tables 2.3, 2.4, 2.5).  No white crappie length-weight 

data were collected from Clinton Reservoir in 2004, El Dorado Reservoir in 1997 and 

2008, and Marion Reservoir in 1994 and 1997.  Mean relative weight of white crappie 

ranged from 70.69 (SE = 3.31; Milford 1996) to 132.40 (SE = 40.76; Marion 1995).  

However, mean relative weight of white crappie in El Dorado Reservoir declined from 

91.05 (SE = 1.17) during the pre-invasion period to 86.66 (SE = 1.66) during the post-

invasion period (5% decline), while mean relative weight of white crappie increased by 

an average of 11% in control systems (Ps < 0.081; Figure 2.2; Tables 2.3, 2.4, 2.5).  
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Therefore, condition of bluegill, white bass, and white crappie in El Dorado Reservoir all 

declined more than control reservoirs after zebra mussel invasion.       

Discussion 
Our results generally did not support our hypothesis that adult fish abundance 

would decline following zebra mussel invasion.  However, our results indicated that 

condition of bluegill, white bass, and white crappie in El Dorado Reservoir declined 

following zebra mussel invasion, in comparison to similar control reservoirs over the 

same time period.  These results indicate the possibility that zebra mussel presence may 

affect the condition of some reservoir fish species in the Great Plains.     

Bluegill, gizzard shad, largemouth bass, walleye, and white bass exhibited no 

change in abundance following zebra mussel invasion in El Dorado Reservoir, and white 

crappie abundance remained relatively consistent in El Dorado Reservoir following zebra 

mussel invasion in comparison to declines in the control reservoirs.  These findings may 

be attributable to other factors affecting fish abundance, such as reservoir hydrology and 

stocking (Slipke et al. 1998; Schultz et al. 2002; Quist et al. 2004; Colvin et al. 2008).  

Bluegill mean CPUE was less than 6 fish per trap net in 86% of yearly samples, but was 

affected by outliers (Milford and Marion each had two years with mean CPUE >12, with 

one year as high as 67.81) and high variability among reservoirs, which contributed to the 

lack of statistical significance of our results.  The lack of response from gizzard shad was 

likely due to extensive year-to-year variability in abundance, as well as an opportunistic 

diet that is composed primarily of zooplankton during larval stages and detritus and 

phytoplankton during their adult lives (Stein et al. 1995; Schultz et al. 2002).  Larval 

gizzard shad can transition to phytoplankton and detritus if their preferred zooplankton 

 53



prey becomes limited (Dettmers and Stein 1996; Miranda and Gu 1998).  Thus, if zebra 

mussel invasion in El Dorado Reservoir was associated with declines in zooplankton 

abundance, gizzard shad may have shifted their diets in response, mitigating impacts on 

abundance or growth.  Many reservoir fish species including largemouth bass, walleye, 

white bass, and white crappie often exhibit considerable population variability related to 

the population characteristics of forage fish (age-0 bluegill and gizzard shad), reservoir 

water levels, water temperature, and a variety of other factors (Stein et al. 1995; Slipke et 

al. 1998; Parkos and Wahl 2002; Willis et al. 2002; Quist et al. 2004).  Although our 

analysis accounted for variable reservoir water levels, continued analysis of long-term 

data may provide additional insights on the effects of zebra mussels on reservoir fish 

abundance. 

The reduced condition of bluegill, white bass, and white crappie in El Dorado 

Reservoir following zebra mussel invasion supported our hypothesis that condition of 

reservoir fishes may decline following zebra mussel invasion.  This response may be 

related to food shortages early in life that continue to influence fish older than age-0.  

Larval bluegill, gizzard shad, largemouth bass, walleye, white bass, and white crappie all 

depend on zooplankton as a primary food source (Stein et al. 1995; Dettmers and Stein 

1996; Miranda and Gu 1998; Bremigan and Stein 2001; Willis et al. 2002; Quist et al. 

2004; Strakosh et al. 2009).  Thus, if zebra mussel invasion led to a reduction in 

zooplankton in El Dorado Reservoir, these six species may have experienced food 

shortages at age-0, leading to reduced condition.  In addition, if age-0 fishes decline in 

abundance due to food shortages, this would lead to food shortages for adult piscivores, 

resulting in a possible decline in abundance or condition of these adult fishes.  
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Richardson and Bartsch (1997) found no effect on the growth of age-0 bluegill (34-mm 

mean total length) contained in mesocosms with zebra mussels in comparison to age-0 

bluegill kept in control mesocosms, and hypothesized this was due to bluegill switching 

from zooplankton to macroinvertebrate food sources to supplement their diets when 

zooplankton was limited.  However, Harris et al. (1999) found that up to 92% of adult 

bluegill (>79-mm total length) diets in a South Dakota impoundment were composed of 

zooplankton at various times during the year, suggesting that low zooplankton abundance 

may continue to affect adult bluegill condition.  In addition, age-0 white crappie may 

transition to macroinvertebrates and fish as prey later in the fall than other piscivores, 

leaving them vulnerable to zooplankton shortages for a longer period of time (Miranda 

and Gu 1998).  Age-0 white bass also depend heavily upon zooplankton (Schultz et al. 

2002).  Preigel (1970) found that zooplankton was the primary dietary component of age-

0 white bass in Lake Winnebago, Wisconsin, from June-October of their first year of life, 

and piscivory was not an important component of white bass diets until fish reached at 

least 188 mm.  Therefore, reduced condition of these reservoir fishes may be linked to 

limited food availability due to zebra mussel invasion.     

Fish stocking may be a possible explanation for the lack of response in abundance 

and condition of largemouth bass and walleye.  Because both species depend on 

zooplankton in larval stages (Mathias and Li 1982; Olson 1996), a response in condition 

similar to that observed for bluegill, white bass, and white crappie was expected.  

However, largemouth bass and walleye are both popular sportfish with reservoir 

populations that are regularly supplemented with stocking by Kansas Department of 

Wildlife and Parks.  El Dorado Reservoir was stocked with an average of over 2,000,000 
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largemouth bass and over 28,000,000 walleye per year between 2004-2006 (J. Goeckler, 

KDWP, unpublished data).  This stocking may mask a response to zebra mussel invasion.  

Additional research into the effects of zebra mussels on fish populations in warm-

water reservoirs is needed to determine the mechanisms of the effects of zebra mussels on 

reservoir fishes.  Our correlative results suggest that declines in reservoir fish condition 

were associated with the presence of zebra mussels in El Dorado Reservoir.  However, 

our study did not identify the mechanism for these declines, and it is important to note 

that zebra mussel abundance has varied substantially in El Dorado Reservoir during the 

five post-zebra mussel invasion years of our study.  Mean summer (June-August) zebra 

mussel veliger densities, which KDWP uses as an index of zebra mussel abundance, were 

less than 5 veligers/L in 2004 and 2008, and peaked at over 115 veligers/L in 2006 (See 

Appendix B.3; J. Goeckler, KDWP, unpublished data).  In addition, summer water 

temperatures and turbidity in El Dorado Reservoir frequently exceed the thermal and 

turbidity optima of zebra mussels (17-23° C, 40-200 cm Secchi disc; Ludyanskiy et al. 

1993), and the combination of high temperature and turbidity exerts considerable stress 

upon zebra mussels, though zebra mussels in chronically warm and turbid systems may 

be able to acclimate over time (Alexander et al. 1994).  Continued monitoring of trends in 

zebra mussel abundance and fish abundance and condition in El Dorado Reservoir and 

the control reservoirs may be necessary to more fully understand the effects of zebra 

mussel invasion.  In addition to predicted effects upon zooplankton, zebra mussel 

invasion may also affect macroinvertebrate communities (Ricciardi et al. 1997; Stewart et 

al. 1998), and macroinvertebrates are a common transition prey item for piscivores 

undergoing ontogenetic niche shifts from zooplanktivory to piscivory (Mathias and Li 
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1982; Olson 1996; Willis et al. 2002).  Thus, changes in macroinvertebrate communities 

may be another mechanism by which zebra mussels could influence fish abundance and 

condition.  Diet analysis of young-of-the-year piscivores in warm-water systems invaded 

by zebra mussels and zebra mussel-free systems, including analysis of zooplankton, 

macroinvertebrate, and fish abundance in diets, may provide a better understanding of the 

mechanism of zebra mussel effects on fishes.  Continued research and monitoring will be 

necessary to understand the responses of reservoir fish communities to zebra mussel 

invasion in warm-water systems like those in the Great Plains and the Southwest, and to 

provide reservoir managers with the information necessary to manage fish communities 

in zebra mussel-infested reservoirs.   
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Table 2.1  Hydrologic characteristics of El Dorado Reservoir (zebra mussel system) and 
Clinton, Marion, and Milford reservoirs (control systems).  Data obtained from Kansas 
Biological Survey (2010).     

 
 

 
El Dorado 
Reservoir 

Clinton 
Reservoir 

Marion 
Reservoir 

Milford 
Reservoir 

River Basin 
 
 

Walnut Kansas-Lower 
Republican 

Neosho Kansas-Lower 
Republican 

Watershed Drainage 
Area (km2) 

 

606 951 518 9832 

Completion Date 
 

1981 1977 1968 1967 

Conservation Pool 
Top Elevation (m) 

 

408.1 266.9 411.0 348.8 

Zebra Mussel 
Establishment 

 

2003 NA Summer 
2008 

NA 

Surface Area (ha) 
 

3237 2833 2943 6483 

Mean Depth (m) 
 

3.3 5.2 4.0 7.4 

Maximum Depth (m) 
 

18.3 16.8 9.3 19.8 

Residence Time 
(years) 

1.0 0.8 2.0 1.0 

 

 63



Table 2.2  Mean catch per unit effort of six species of stock-to-quality length fish in El 
Dorado Reservoir (zebra mussel invaded reservoir) and Clinton, Marion, and Milford 
reservoirs (control reservoirs) from 1993-2002 (pre-invasion period) and 2004-2008 
(post-invasion period).  Largemouth bass sampling occurred in El Dorado and Clinton 
reservoirs only.  P-values test if trends in mean CPUE were consistent between El 
Dorado Reservoir and the control reservoirs in the pre- and post-zebra mussel invasion 
periods.  P-values were plural because four tests were conducted for each species with 
seasonal water levels as covariates (see Table 2.5); SE=standard error. 

 
  1993-2002 2004-2008 
Species and Reservoir Mean SE Mean SE 
Bluegill (fish per trap net; Ps > 0.528) 
 El Dorado 1.28 0.32 2.94 0.50 
 Clinton 2.90 0.39 4.28 0.92 
 Marion 3.76 1.32 3.47 1.40 
 Milford 10.04 5.68 4.54 0.83 
Gizzard Shad (fish per gill net; Ps > 0.158) 
 El Dorado 2.32 1.20 1.24 0.31 
 Clinton 9.70 1.79 4.02 1.44 
 Marion 9.89 2.62 3.90 1.25 
 Milford 8.23 1.55 1.77 0.87 
Largemouth Bass (fish per electrofishing hour; Ps > 0.154) 
 El Dorado 3.75 0.44 5.79 1.05 
 Clinton 1.70 0.33 2.80 0.64 
Walleye (fish per gill net; Ps > 0.258) 
 El Dorado 1.96 0.33 2.47 0.43 
 Clinton 1.33 0.20 1.02 0.32 
 Marion 1.94 0.31 1.63 0.38 
 Milford 1.26 0.22 1.90 0.34 
White Bass (fish per gill net; Ps > 0.415) 
 El Dorado 6.61 1.75 1.07 0.33 
 Clinton 8.21 2.29 13.65 3.62 
 Marion 16.08 3.16 5.42 1.45 
 Milford 2.38 0.68 1.57 0.52 
White Crappie (fish per trap net; Ps < 0.028) 
 El Dorado 2.68 0.41 2.07 0.46 
 Clinton 17.09 1.54 6.59 1.39 
 Marion 7.02 2.54 2.10 0.56 
 Milford 4.91 0.95 0.86 0.21 
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Table 2.3  Mean relative weight of five species of stock-to-quality length fish (gizzard 
shad omitted because of insufficient pre-invasion data) in El Dorado Reservoir (zebra 
mussel invaded reservoir) and Clinton, Marion, and Milford reservoirs (control 
reservoirs) from 1993-2002 (pre-invasion period) and 2004-2008 (post-invasion period).  
Largemouth bass sampling occurred in El Dorado and Clinton reservoirs only.  P-values 
test if trends in mean relative weight were consistent between El Dorado Reservoir and 
the control reservoirs in the pre- and post-zebra mussel invasion periods.  P-values were 
plural because four tests were conducted for each species with seasonal water levels as 
covariates (see Table 2.5); SE=standard error. 
 
  1993-2002 2004-2008 
Species and Reservoir Mean SE Mean SE 
Bluegill (Ps < 0.002) 
 El Dorado 104.09 1.99 95.63 1.29 
 Clinton 93.39 1.52 98.99 1.73 
 Marion 94.10 1.18 101.31 9.19 
 Milford 102.83 2.94 101.89 2.62 
Largemouth Bass (Ps > 0.363) 
 El Dorado 92.39 0.62 94.38 1.97 
 Clinton 91.05 1.08 97.54 1.86 
Walleye (Ps > 0.408) 
 El Dorado 90.86 0.60 88.87 0.82 
 Clinton 91.64 0.66 90.59 1.21 
 Marion 94.71 0.78 92.51 1.18 
 Milford 92.60 1.04 93.81 0.92 
White Bass (Ps < 0.001) 
 El Dorado 98.59 0.81 88.42 0.87 
 Clinton 97.40 0.72 93.81 0.59 
 Marion 100.41 0.35 94.43 1.31 
 Milford 87.38 1.06 92.80 0.99 
White Crappie (Ps < 0.081) 
 El Dorado 91.05 1.17 86.66 1.66 
 Clinton 88.21 0.69 87.96 1.88 
 Marion 85.51 1.44 97.54 2.80 
 Milford 92.41 0.97 108.76 3.57 
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Table 2.4  Percent change in mean catch per unit effort (fish per gill net [GN], trap net 
[TN], or electrofishing hour [EF]) and relative weight of six species of stock-to-quality 
length fish (gizzard shad omitted from relative weight calculations because of insufficient 
data) in El Dorado Reservoir (invaded reservoir) and Clinton, Marion, and Milford 
reservoirs (control reservoirs) between the pre-invasion time period (1993-2002) and the 
post-invasion time period (2004-2008).  Largemouth bass sampling occurred in El 
Dorado and Clinton reservoirs only.  *Indicates a significant contrast P-value—trends in 
mean CPUE or relative weight differ between El Dorado Reservoir and the control 
reservoirs in the pre- and post-zebra mussel invasion periods. 

 
   Control Reservoirs 
Species El Dorado Mean Clinton Marion Milford 
CPUE      
 Bluegill [TN] +130% -5% +48% -8% -55% 
 Gizzard Shad [GN] -47% -66% -59% -61% -78% 
 Largemouth Bass [EF] +54%  +65%   
 Walleye [GN] +26% +4% -23% -16% +51% 
 White Bass [GN] -84% -11% +66% -66% -34% 
 White Crappie [TN]* -23% -71% -61% -70% -82% 
Relative Weight      
 Bluegill* -8% +4% +6% +8% -1% 
 Largemouth Bass +2%  +7%   
 Walleye -2% -1% -1% -2% +1% 
 White Bass* -10% -1% -4% -6% +6% 
 White Crappie* -5% +11% 0% +14% +18% 
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Table 2.5  Covariate (Cov P) and contrast (Con P) P-values testing whether trends in 
abundance (top) of six species and relative weight (bottom) of five species (gizzard shad 
omitted due to insufficient data) of stock-to-quality length differ between El Dorado 
Reservoir and the control reservoirs before and after zebra mussel invasion, using mean 
water level deviation from conservation pool for each reservoir in spring (March-May), 
summer (June-August), fall (September-November), and winter (December-February) as 
covariates.  A contrast P-value less than 0.05 (bolded) indicated that trends differed 
between El Dorado Reservoir and the control reservoirs over time.      

 
  Spring Summer Fall Winter 
  Cov P Con P Cov P Con P Cov P Con P Cov P Con P 
Abundance (CPUE) P-values 
 Bluegill 0.028 0.529 0.641 0.559 0.846 0.558 0.237 0.685
 Gizzard 

Shad 0.122 0.223 0.229 0.159 0.825 0.200 0.207 0.163

 Largemouth 
Bass 0.623 0.550 0.003 0.155 0.032 0.238 0.655 0.408

 Walleye 0.983 0.314 0.174 0.259 0.077 0.383 0.397 0.284
 White Bass 0.028 0.416 0.920 0.498 0.228 0.551 <0.001 0.672
 White 

Crappie <0.001 0.023 0.008 0.012 0.173 0.027 <0.001 0.001

Relative Weight (Wr) P-values 
 Bluegill 0.008 0.001 0.009 0.001 <0.001 <0.001 0.024 <0.001
 Largemouth 

Bass 0.286 0.539 0.138 0.364 0.043 0.393 0.001 0.685

 Walleye 0.771 0.524 0.013 0.409 <0.001 0.571 0.483 0.526
 White Bass <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
 White 

Crappie <0.001 0.049 0.007 0.080 0.215 0.041 0.068 0.015
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Bluegill Gizzard Shad 

Largemouth Bass Walleye 

White Bass White Crappie 

 
Figure 2.1  Mean pre-invasion (1993-2002) and post-invasion (2004-2008) catch per unit 
effort (CPUE) of stock-to-quality length bluegill, gizzard shad, largemouth bass, walleye, 
white bass, and white crappie collected during fall standardized sampling using gill nets 
(gizzard shad, walleye, white bass), trap nets (bluegill, white crappie), and electrofishing 
(largemouth bass).  Error bars represent one standard error; contrast P-values test if 
trends in mean CPUE were consistent between El Dorado Reservoir and the control 
reservoirs in the pre- and post-zebra mussel invasion periods.  CL = Clinton Reservoir, 
MA = Marion Reservoir, MI = Milford Reservoir, and ED = El Dorado Reservoir.  
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Figure 2.2  Mean pre-invasion (1993-2002) and post-invasion (2004-2008) relative 
weight of stock-to-quality length bluegill, largemouth bass, walleye, white bass, and 
white crappie collected during fall standardized sampling (gizzard shad omitted because 
of insufficient data).  Error bars represent one standard error; contrast P-values test if 
trends in mean relative weight were consistent between El Dorado Reservoir and the 
control reservoirs in the pre- and post-zebra mussel invasion periods.  CL = Clinton 
Reservoir, MA = Marion Reservoir, MI = Milford Reservoir, ED = El Dorado Reservoir.
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Appendix A - Chapter 1 Supplement 

Appendix A.1  Mean habitat measurements for El Dorado and Melvern reservoirs in the 
pre-zebra mussel invasion period (2001-2002) and the post-zebra mussel invasion period 
(2008-2009).  Water temperature, dissolved oxygen, turbidity, conductivity, and 
vegetation densities were measured in sampling enclosures.  Mean zebra mussel veliger 
densities were calculated from lake-wide data provided by J. Goeckler, Kansas 
Department of Wildlife and Parks.  ED = El Dorado Reservoir (zebra mussels), MV = 
Melvern Reservoir (control). 

 
 Pre-Invasion Post-Invasion 
 2001 2002 2008 2009 
 ED MV ED MV ED MV ED MV 

Mean Water Temperature (°C) 
 

29.6 31.8 26.9 29.9 27.6 30.2 29.1 28.2

Mean Dissolved Oxygen (mg/L) 
 

5.6 4.4 7.5 7.6 6.3 7.9 6.6 7.3 

Mean Turbidity (NTU) 
 

61.9 6.1 42.1 22.6 93.5 206.5 100.3 61.5

Mean Conductivity (µs/cm) 
 

288 339 286  212 307 223 310 

Mean Water Willow Density 
(stems/m2) 
 

2.8 6.1 1.6 0.0 1.0 2.4 0.3 0.0 

Mean Total Vegetation Density 
(stems/m2) 
 

4.1 50.4 1.6 1.9 2.6 4.0 0.3 0.0 

Mean July-August Zebra Mussel 
Veliger Density (number/L) 

    1.0  0.3  
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Appendix B - Chapter 2 Supplement 

Bluegill Gizzard Shad 

Largemouth Bass Walleye 

White Bass White Crappie 

Year 
Appendix B.1  Mean catch per unit effort (CPUE) of stock-to-quality length bluegill, 
gizzard shad, largemouth bass, walleye, white bass, and white crappie collected during 
fall standardized sampling using gill nets (gizzard shad, walleye, white bass), trap nets 
(bluegill, white crappie), and electrofishing (largemouth bass).  Vertical bar indicates 
year of zebra mussel invasion (2003); error bars represent one standard error.  Contrast P-
values test if trends in mean CPUE were consistent between El Dorado Reservoir and the 
control reservoirs in the pre- and post-zebra mussel invasion periods. 
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Appendix B.2  Mean relative weight of stock-to-quality length bluegill, largemouth bass, 
walleye, white bass, and white crappie collected during fall standardized sampling 

est if 
(gizzard shad omitted because of insufficient data).  Vertical bar indicates year of zebra 
mussel invasion (2003); error bars represent one standard error.  Contrast P-values t
trends in mean relative weight were consistent between El Dorado Reservoir and the 
control reservoirs in the pre- and post-zebra mussel invasion periods. 
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Appendix B.3  Mean zebra mussel veliger density (number/L) in El Dorado Reservoir 
from 2004 to 2009.  Data collected from several reservoir locations by J. Goeckler and C. 
Johnson, Kansas Department of Wildlife and Parks. 
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