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Abstract 

Two experiments using a total of 646 nursery pigs were used to determine the effects of 

increasing phytase on nursery pig growth performance and bone ash characteristics. Two 

experiments using a total of 821 sows were used to determine the impact of increasing 

standardized ileal digestible (SID) lysine (Lys) in lactating sows. Experiment 1 determined the 

available phosphorus (aP) release of Natuphos E 5,000 G phytase in nursery pigs. Increasing 

phytase from 0 to 1,000 FTU/kg in phosphorus deficient diets improved nursery pig performance 

and bone ash characteristics. Using percentage bone ash and formulated phytase concentrations, 

an equation was developed to predict aP release up to 1,000 FTU/kg of Natuphos E phytase. 

Experiment 2 was conducted to determine the effect of Superdosing Natuphos E 5,000 G phytase 

on nursery pig performance and bone ash characteristics. Increasing phytase in diets marginal in 

P improved pig performance and bone ash values. Increasing phytase in P sufficient diets 

improved bone ash percent and tended to improve feed efficiency. Experiments 3 and 4 

determined the impacts of increasing SID Lys in primiparous and multiparous lactating sows and 

their litters. In Exp. 3, increasing SID Lys above 0.80% in primiparous sows decreased backfat 

loss, but had no effect on sow BW loss, ADFI or litter gain. Conception rate at d 30 and 

percentage born alive tended to improve at 0.95% SID Lys. In Exp. 4 with mixed parity sows, 

increasing SID Lys to 1.05% increased sow weaning BW, litter gain, and reduced weight loss in 

lactation. Sow backfat loss increased as SID Lys increased from 0.75 to 1.20%, however loin eye 

depth loss was reduced as SID Lys increased. Percentage of females bred by d 7 after weaning 

was improved in primiparous females with increasing SID Lys, however no difference was 

observed in multiparous sows. 
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Chapter 1 - Determining the available phosphorus release of 

Natuphos E 5,000 G for nursery pigs 

 Abstract 

A total of 286 pigs (PIC 327 × 1050; initially 11.1  0.1 kg, and d 40 of age) were used in 

a 21-d growth trial to determine the available P (aP) release curve for a novel source of 6-phytase 

(Natuphos E 5,000 G; BASF Corporation, Florham Park, NJ). Natuphos E is a bacterial derived 

6-phytase of which the phytase gene is assembled from a hybrid of phytase-producing bacteria 

and produced through the fermentation of A. niger.  Pigs were randomly allotted to pens at 

weaning.  From d 15 to18 post-weaning, a common corn-soybean meal diet containing 0.12% aP 

was fed to all pigs to acclimate them to a P-deficient diet. On d 0 of the experiment (d 19 after 

weaning), pens were allotted in a randomized complete block design to 1 of 8 treatments. There 

were 4 pigs per pen and 9 pens per dietary treatment. Pigs were fed a corn-soybean meal-based 

diet formulated to 1.25% standardized ileal digestible Lys. Experimental diets were formulated 

to contain 0.73% Ca and increasing aP supplied by either monocalcium P (0.12, 0.18 and 0.24% 

aP) or from increasing phytase (150, 250, 500, 750 and 1,000 FTU/kg) added to the 0.12% aP 

diet. Analyzed phytase concentrations were 263, 397, 618, 1,100 and 1,350 FTU/kg, 

respectively. On d 21 of the study, 1 pig per pen was euthanized and the right fibula was 

collected for bone ash and percentage bone ash calculations. From d 0 to 21, increasing P from 

monocalcium P or phytase improved (linear, P < 0.01) ADG and G:F. Bone ash weight and 

percentage bone ash increased (linear, P < 0.01) with increasing monocalcium P or phytase. 

When formulated phytase values and percentage bone ash are used as the response variables, aP 

release for up to 1,000 FTU/kg of Natuphos E 5,000 G phytase can be predicted by the equation: 

aP release = 0.000212 × FTU/kg phytase. 
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 Introduction 

Phosphorus is an important macro mineral in swine nutrition. Along with Ca and vitamin 

D, it contributes to bone development and is a component of other physiological functions. Most 

swine diets are formulated with cereal grains and oilseed meals, which contain 60 to 82% of total 

P in the form of phytate (Ravindran et al., 1994). Monogastrics do not produce enough enzyme 

endogenously to cleave the phosphates from the phytate for absorption and consequently much 

of the phytate-bound P is unavailable to the pig. The ability for a phytase enzyme to improve the 

available P in swine diets has been well documented (Cromwell et al., 1993; Augspurger et al. 

2003; Selle and Ravindran, 2008). As a result, a phytase enzyme is commonly added to diets to 

make P more available for swine and other animals. This allows for a reduced dietary inclusion 

of P from inorganic P sources in swine diets and results in reduced P excretion (Simons et al., 

1990; Jongbloed et al., 1997). 

There are many manufacturers of phytase, and the site in which phosphorus is cleaved 

from phytate and origin can vary between phytase sources. Although many existing phytase 

products have already undergone evaluation to determine their unique release curve (Kerr et al., 

2010; Jones et al., 2010), new generation phytases are being developed and have not been 

thoroughly tested to determine their efficacy. 

Therefore, the objective for this trial was to evaluate the effects of a novel 6-phytase 

(Natuphos E 5,000 G; BASF Corporation, Florham Park, NJ) on nursery pig growth performance 

and bone ash to develop an available phosphorous (aP) release curve. 
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 Materials and Methods 

The Kansas State Institutional Animal Care and Use Committee approved the protocol 

for this study. Ingredients containing Ca or P were analyzed in duplicate prior to manufacturing 

the diets in order to determine nutrient loading values used for formulation (Table 1-1). Dietary 

treatments were corn-soybean meal-based and were formulated to meet or exceed NRC (2012) 

nutrient requirement estimates with the exception of P and were manufactured at the Kansas 

State University O.H. Kruse Feed Technology Innovation Center in Manhattan, KS. All diets 

were formulated to contain the same amount of Ca regardless of increasing aP.  Available P 

coefficients were derived from the 10th edition NRC (1998). 

Diet manufacturing started with the production of 10 identical 907 kg batches of basal 

diet that were packaged in 22.3 kg bags and stored to maintain batch identity (Table 1-2). For 

each experimental diet, a subset of bags from each basal diet batch was added to the mixer along 

with treatment-specific ingredients to achieve the final dietary treatments (Table 1-3). During 

bagging of experimental diets, feed samples were collected from the 5th, 10th, 15th, 20th, 25th, 

30th, and 35th bags, and these samples were pooled and used for phytase and nutrient analysis.  

The study was conducted at the Kansas State University Swine Teaching and Research 

Center in Manhattan, KS. The nursery barn was environmentally controlled and each pen 

contained a 4-hole dry self-feeder and a nipple waterer for ad libitum access to feed and water. 

A total of 286 nursery pigs (PIC 327 × 1050; initially 11.1  0.1 kg and d 40 of age) were 

used in a 21-d growth trial. Pigs were initially weaned and randomly allotted to pens and fed 

common starter diets. On d 15 post-weaning, pens of pigs were blocked by BW and randomly 

allotted to 1 of 8 dietary treatments with 4 pigs per pen (2 barrows and 2 gilts) and 9 replications 

(pens) per treatment.  From d 15 to 18 post-weaning, a common corn-soybean meal diet 
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containing 0.12% aP was fed to all pigs to acclimate them to a P-deficient diet.  Starting on d 19 

post-weaning and continuing for 21 d, pens were fed their respective treatment diets which 

consisted of 3 diets containing increasing (0.12, 0.18, or 0.24%) levels of aP from inorganic P, 

provided by monocalcium P, or the 0.12% aP inorganic P diet with 1 of 5 concentrations of 

added phytase (150, 250, 500, 750, or 1,000 FTU/kg; Natuphos E 5,000 G; BASF Corporation, 

Florham Park, NJ). The analyzed phytase activity (5,320,000 FTU/kg) was used for determining 

the amount of phytase to include in each diet.   

During the experiment, pigs and feeders were weighed every 7 d to determine ADG, 

ADFI, and G:F. On d 21 of the study, the median weight gilt in each pen was euthanized via 

captive bolt. The right fibula was removed from euthanized pigs to determine percentage bone 

ash criteria. Once collected, all fibulas were stored at -20C. For processing of fibulas for bone 

ash, cartilage caps were removed, and bones were boiled for 60 min. Adhering tissue was 

removed and bones were dried at 105C for 7 d. Then dried fibulas were ashed in a muffle 

furnace at 600C for 24 h to determine total ash weight and calculate percentage bone ash (Flohr 

et al., 2016).  

 Chemical analysis 

One sample per dietary treatment from the pooled feed samples was sent to a commercial 

laboratory (Ward Laboratories, Kearney, NE) for CP (AOAC 990.03, 2006), Ca (AOAC 

965.14/985.01, 2006), and P (AOAC 965.17/985.01, 2006) analysis. In addition, ingredients 

containing Ca and P were analyzed (Ward Laboratories, Kearney, NE) in duplicate prior to 

manufacturing diets to determine nutrient loading values (Table 1-1). One sample was sent to 

another commercial laboratory (Eurofins Scientific Inc., Des Moines, IA) and analyzed in 

duplicate for complete dietary phytase (AOAC 2000.12, 2006). 
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 Statistical analysis 

Studentized residuals were evaluated for pen means or individual bone ash measurements 

to ensure data met the assumption of normal distribution. One pig had a bone ash weight and 

percentage bone ash 7 SD from the mean and was removed from bone ash analysis, but the pen 

data were retained for the evaluation of growth data.  

Data were analyzed as a randomized complete block design with pen as the experimental 

unit.  An initial base model was evaluated using the GLIMMIX procedure of SAS (SAS Institute 

Inc., Cary, NC). Treatment was considered the fixed effect and linear and quadratic contrasts 

were evaluated within increasing inorganic P or phytase concentrations. Contrast coefficients for 

phytase concentrations were adjusted to account for the unequal treatment spacing on phytase 

inclusion. 

For pens fed inorganic phosphorus diets, the marginal intake of aP per day was calculated 

for each pen. The calculation was: dietary aP% minus 0.12% (the aP in the basal diet) multiplied 

by ADFI. Subsequently, a standard curve was developed for each response criteria using 

marginal aP release as the predictor variable. The equation for the standard curve was then used 

to calculate aP release for each pen fed the different phytase treatments based on the observed 

value for each response criteria. This value was then converted to a marginal aP% using the pen 

ADFI. Available P release curves were developed for bone ash weight and percentage bone ash. 

Mixed model ANOVA with weight block as a random effect was then performed to 

evaluate aP release as a function of the phytase concentration using linear and quadratic 

contrasts. Next, mixed model regression was performed to predict aP release as a function of 

phytase concentration assuming no aP release for the diet containing 0.12% aP and no phytase. 
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Results were considered to be significant with P-values ≤ 0.05 and were considered 

marginally significant with P-values ≤ 0.10. 

 Results 

 Chemical analysis 

Analyzed CP and P of the experimental diets were similar to those expected from diet 

formulation. There was some variation in Ca analysis, which increased the Ca:P ratios; however 

this was unexpected due to the analysis of all major Ca containing ingredients prior to diet 

formulation. The level of phytase analyzed slightly greater than expected across all diets (Table 

1-3). This was unexpected due to the use of the analyzed phytase level for dietary formulation 

and careful sequencing of diets. Nevertheless, the phytase levels increased in a stepwise fashion 

with increasing phytase. 

 Growth performance 

From d 0 to 21, pigs fed increasing aP from inorganic P had improved (linear, P < 0.001, 

Table 1-4) ADG, ending BW, ADFI, and G:F. In addition, pigs fed increasing phytase had 

improved (linear, P < 0.001) ADG, ending BW, ADFI, and G:F.  

For bone composition, bone ash weights were increased for pigs fed either increasing 

inorganic P (linear, P = 0.003) or phytase (linear, P < 0.001). As a result, percentage bone ash 

values increased for pigs fed inorganic P (linear, P = 0.005) or phytase (linear, P < 0.001).  

Percentage aP released from this phytase source varied depending on the response criteria 

(Table 1-5). As phytase concentrations increased, calculated aP increased linearly (P < 0.001) to 

the highest phytase concentration for all response criteria. However, the rate of increase from the 

prediction equation varied by response variable with a release of 0.159% aP for bone ash weight 

and 0.227% aP for percentage bone ash at 1,000 FTU/kg.  Based on the linear response for aP 
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release associated with percentage bone ash, a prediction equation (aP release = 0.000212 × 

FTU/kg) was developed that predicts the aP release at different dietary phytase concentrations.  

 Discussion 

Phosphorous is a key mineral in animal diets for bone development and other 

physiological functions.  However, the majority of P in cereal grains and oilseeds commonly fed 

to swine is bound in the form of phytate and not available for absorption (Ravindran et al., 1994). 

Swine are unable to cleave P from phytate because they produce insufficient amounts of 

endogenous phytase in their small intestine (Jongbloed et al., 1992; Humer et al., 2015). While 

mircoflora activity in the large intestine produces larger amounts of endogenous phytase, 

absorption of P takes place in the small intestine, thus P released in the large intestine will be 

excreted (Smith et al., 1955; Bohlke et al., 2005, Rutherfurd et al., 2014).  

Commercially produced microbially-derived phytase is one of the most significant 

enzyme discoveries used in swine diets (Cromwell, 2009). The phytase enzyme (myo-inositol 

hexaphosphate phosphohydrolase) catalyzes the hydrolysis of phytate to inorganic phosphate 

(PO4) and myo-inositol (Humer et al., 2015). While intermediate products are synthesized in the 

stepwise dephosphorylation reaction, only o-phosphate ions (PO4) can pass through the 

gastrointestinal wall and be utilized by the animal (Jongbloed et al., 1992). Phytase inclusion in 

swine diets allows more dietary P to be absorbed in the proximal end of the small intestine and 

results in less excretion of P from the pigs (Gonzalez-Vega and Stein, 2014).  

Phytase activity is measured in the form of phytase units (FTU). One FTU is defined as 

the quantity of phytase enzyme required to liberate 1 micromol of inorganic P per minute, at pH 

5.5, from an excess of 15 micromol per L of sodium phytate at 37C (AOAC, 2006). A common 

method to evaluate the efficacy of a phytase source is to determine the phytase activity needed to 
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reach a specific aP release value in the diet (Goncalves et al., 2016). Several microbial phytase 

sources are available for swine producers, yet each source can have a different aP release value 

(Jones et al., 2010).  Consequently, it is important to determine aP release for each specific 

phytase source and compare to other sources on an equal FTU inclusion basis. 

The previous Natuphos product (Natuphos) was a 3-phytase and was derived from 

fermentation of A. niger. The new generation, Natuphos E, is a bacterial derived 6-phytase of 

which the phytase gene is assembled from a hybrid of phytase-producing bacteria and produced 

through the fermentation of A. niger. Currently, literature is limited regarding the use of 

Natuphos E in swine diets. Torrallardona and Ader (2016) conducted a 42-d study to determine 

growth performance, bone ash values, and ATTD for P in nursery pigs fed 125 to 1,000 FTU/kg 

Natuphos E in P-deficient diets. Over the entire 42-d study, increasing Natuphos E improved 

(linear, P < 0.03) ADG, ADFI, G:F and bone characteristics compared to pigs receiving a P-

deficient diet with no phytase. These findings are in agreement with the current study, where 

ADG, ADFI and bone ash values increased linearly in P-deficient diets when phytase inclusion 

increased from 150 to 1,000 FTU/kg. Torallardona and Ader (2016) further observed that 

increasing phytase improved (linear and quadratic, P ≤ 0.026) ATTD for P, Ca and ash with the 

greatest improvement occurring up to 250 FTU/kg.  

Linear improvements in growth performance and bone characteristics were observed 

when P-deficient diets (0.12% aP) were supplemented with increasing aP provided by 

monocalcium phosphate. Previous research has shown P-deficient diets reduced feed efficiency 

and bone ash values in weanling pigs (Mahan, 1982).  Furthermore, Augspurger et al. (2003) 

demonstrated that feed efficiency and bone ash linearly improved as inorganic P (KH2PO4) was 

added to a basal diet formulated to be low in aP (0.075% aP), which supports our findings of 
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increased feed efficiency and percentage bone ash with increasing monocalcium phosphate in a 

P-deficient diet.  

Kornegay and Qian (1996) evaluated the addition of phytase to P-deficient diets to 

determine the aP release value of a phytase product. They determined that ADG, apparent P 

digestibility, and ash content of bone were the more sensitive indicators to develop aP release 

values.  In the current study, aP release values for performance criteria (ADG and G:F) were 

lower than the release values for percentage bone ash, which might be a result of the elevated 

analyzed Ca concentrations. The NRC (2012) cites the total Ca requirement estimate for an 11 to 

25 kg growing pig to be 0.70%, and our diets were formulated to contain 0.73% total Ca and 

analyzed to approximately 0.75 to 0.89% Ca.  A recent study by Gonzalez-Vega et al. (2016) 

demonstrated that as STTD Ca was increased from 0.32 to 0.72% in nursery pig diets, growth 

criteria (ADG and G:F) worsened (linear, P < 0.05). Conversely, percentage bone ash increased 

(quadratic, P < 0.05) as dietary Ca increased in the diet. This is in agreement with the growth 

performance from the current study, where aP release values were lower for ADG and G:F. 

However, bone ash weight and percentage bone ash did not seem to be effected by the total Ca 

values as Gonzalez-Vega et al. (2016) would suggest. As a result, bone ash weight and 

percentage bone ash were used to predict aP release values.  

In the present study, when using percentage bone ash to predict an aP release curve, the 

aP release per FTU/kg in the diet is less than suggested by the manufacturer. This could be due 

to differences in type of bone (fibula vs. metatarsals) used for bone analysis in which an aP 

release curve was developed from. Fibulas are easier to remove intact and are easier to clean 

consistently compared to metatarsals, which allows for greater bone ash values (Biehl and Baker, 

1996).  Another consideration is type of feedstuffs included in the diet in which the aP release 
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curve was developed. Depending on the type of cereal grain used in formulation and the amount 

of phytate bound P or phytase already in the grain, the phosphorus release could vary. It is 

suggested that the magnitude of response to phytase is correlated with the level of dietary phytate 

(Selle and Ravindran, 2008).  

In summary, this study has provided an aP release curve that can be used for Natuphos E 

5,000 phytase as a source of aP in nursery diets when included at concentrations between 150 

and 1,000 FTU/kg. Using percentage bone ash as the response criteria, aP release for up to 1,000 

FTU/kg of Natuphos E 5,000 can be predicted by the equation: aP release = 0.000212 × FTU/kg 

phytase. Further research needs to be conducted to determine aP release of Natuphos E when 

included in grower and finisher diets and in diets containing levels of phytase above 1,000 

FTU/kg. 
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Table 1-1 Analyzed ingredient composition (as-fed basis)1 

Ingredient Ca, % P, % 

Corn 0.04 0.37 

Soybean meal 0.41 0.82 

Limestone 36.79 0.01 

Monocalcium P 16.85 22.22 

Vitamin premix 17.51 0.02 

Trace mineral premix 18.43 0.06 
1Two samples of each ingredient were pooled and analysis 

was performed by two commercial laboratories in duplicate 

(Ward Laboratories, Kearney, NE and Cumberland Valley 

Analytical Services, Hagerstown, MD). 
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Table 1-2 Composition of basal batch (as-fed basis)1,2 

Ingredient % 

  Corn 63.67 

  Soybean meal, 48% CP 33.85 

  Monocalcium P, 22% P 0.20 

  Limestone 1.04 

  Sodium chloride 0.35 

  L-Lys-HCl 0.30 

  DL-Met 0.12 

  L-Thr 0.12 

  Trace mineral premix3 0.15 

  Vitamin premix4 0.25 

 100 

  

Calculated analysis  

Standardized ileal digestibility (SID) amino acids, % 

  Lys 1.25 

  Ile:Lys 63 

  Leu:Lys 129 

  Met:Lys 33 

  Met & Cys:Lys 57 

  Thr:Lys 63 

  Trp:Lys 18.7 

  Val:Lys 69 

Total Lys, % 1.40 

CP, % 21.8 

ME, kcal/g 3,353 

NE, kcal/g 2,464 

SID Lys:ME, g/Mcal 3.78 

Ca, % 0.64 

P, % 0.54 

Available P5, % 0.12 

STTD P, % 0.24 
1The basal batch was used as the major ingredient within each 

experimental diet.  
2Analyzed Ca and P values were used in formulation. 
3Provided per kilogram of premix: 26.5 g Mn from manganese 

oxide, 110 g Fe from iron sulfate, 110 g Zn from zinc sulphate, 11 

g Cu from copper sulfate, 198 mg I from calcium iodate, and 198 

mg Se from sodium selenite. 
4Provided per kg premix: 4,409,171 IU vitamin A; 551,150 IU 

vitamin D3; 17,637 IU vitamin E; 15 mg vitamin B12; 1,764 mg 

menadione; 3,307 mg riboflavin; 11,023 mg pantothenic acid, 

19,841 mg niacin. 

5Coefficients for formulation were derived from NRC (1998). 
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Table 1-3 Ingredient composition of experimental diets (as-fed basis) 

 Experimental diet 

 Inorganic P  Phytase1 

Ingredient, % 0.12% 0.18% 0.24%  150 250 500 750 1,000 

  Basal batch 99.01 99.01 99.01  99.01 99.01 99.01 99.01 99.01 

  Limestone 0.25 0.13 ---  0.25 0.25 0.25 0.25 0.25 

  Monocalcium P --- 0.27 0.54  --- --- --- --- --- 

  Titanium dioxide 0.40 0.40 0.40  0.40 0.40 0.40 0.40 0.40 

  Sand2 0.34 0.20 0.05  0.34 0.34 0.33 0.33 0.32 

  Phytase --- --- ---  0.003 0.005 0.009 0.014 0.019 

 100 100 100  100 100 100 100 100 

          

Calculated analysis          

  CP, % 21.7 21.7 21.7  21.7 21.7 21.7 21.7 21.7 

  Ca, % 0.73 0.73 0.73  0.73 0.73 0.73 0.73 0.73 

  P, % 0.54 0.60 0.66  0.54 0.54 0.54 0.54 0.54 

  Phytase, FTU/kg --- --- ---  150 250 500 750 1,000 

  Ca:P ratio 1.35 1.22 1.11  1.35 1.35 1.35 1.35 1.35 

Analyzed composition3          

  CP, % 21.5 19.8 22.0  21.4 22.2 22.9 22.1 23.1 

  Ca, % 0.75 0.79 0.87  0.77 0.82 0.89 0.80 0.86 

  P, % 0.50 0.57 0.64  0.49 0.50 0.48 0.50 0.51 

  Phytase, FTU/kg 95 < 60 < 60  263 397 618 1,100 1,350 

  Ca:P ratio 1.50 1.39 1.35  1.57 1.64 1.85 1.60 1.68 
1Natuphos E 5,000 G (BASF Corporation, Florham Park, NJ) was analyzed for phytase level, and it 

contained 5,320,000 phytase units (FTU)/kg. 
2Sand was used to equalize inclusion rate of the basal batch with experimental ingredients. 
3Seven samples per dietary treatment were pooled and used to create a composite sample. One 

composite sample was sent to a commercial laboratory (Ward Laboratories, Kearney, NE) for CP, Ca 

and P analysis. Another composite sample was sent to a commercial laboratory (Eurofins Scientific 

Inc., Des Moines, IA) and analyzed in duplicate for complete dietary phytase. 
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Table 1-4 Effects of increasing aP from inorganic P or Natuphos E 5,000 G on nursery pig growth performance and bone ash values1 

 Inorganic P, aP %2  Phytase, FTU/kg3  Inorganic P  Phytase 

Item 0.12 0.18 0.24 150 250 500 750 1,000 SEM Linear Quadratic Linear Quadratic 

BW, kg              

  d 0 11.1 11.2 11.2 10.9 10.9 11.0 11.1 11.2 0.19 0.724 0.975 0.126 0.133 

  d 21 20.3 22.2 23.4 21.3 21.6 21.6 22.5 23.3 0.38 <0.001 0.478 <0.001 0.906 

              

d 0 to 21              

  ADG, g 434 535 584 488 495 501 541 575 13.7 <0.001 0.111 <0.001 0.666 

  ADFI, g 858 936 981 916 901 896 966 970 21.0 <0.001 0.517 <0.001 0.959 

  G:F, g/kg 505 572 596 532 555 561 561 590 10.1 <0.001 0.084 <0.001 0.204 

              

Bone ash weight, g4 0.678 0.850 0.856 0.713 0.666 0.769 0.819 0.936 0.041 0.003 0.103 <0.001 0.194 

Bone ash, %4 38.1 41.2 42.1 38.7 39.7 41.4 43.2 45.6 1.01 0.005 0.332 <0.001 0.614 
1A total of 286 nursery pigs (PIC 327 × 1050; initially 11.1 kg and d 40 of age) were used in a 21-d growth study evaluating the effects of 

increasing available P from inorganic P or from a novel phytase source.  
2Inorganic P was added to the diet by increasing monocalcium P.  
3Natuphos E 5,000 G (BASF Corporation, Florham Park, NJ). 
4One pig per pen was euthanized and fibulas were used to determine bone ash weight and percentage bone ash. 
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Table 1-5 Calculated aP release values based on different response criteria 

 Phytase, FTU/kg1  Probability, P < 

Item 150 250 500 750 1,000 SEM Linear Quadratic 

ADG 0.036 0.042 0.050 0.079 0.103 0.009 0.001 0.325 

G:F 0.025 0.046 0.072 0.064 0.109 0.014 0.001 0.226 

Bone ash weight -0.003 -0.036 0.042 0.073 0.159 0.008 0.001 0.206 

Percent bone ash 0.000 0.034 0.093 0.144 0.227 0.032 0.001 0.737 
1Natuphos E 5,000 G FTU/kg (BASF Corporation, Florham Park, NJ). 
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Table 1-6 Available P release equations for Natuphos E 5,000 phytase based on various 

response criteria 

Response  aP release equation 

Bone ash weight aP release = 0.000116 × FTU/kg 

Percentage bone ash aP release = 0.000212 × FTU/kg 
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Chapter 2 - Effects of high doses of Natuphos E 5,000 G phytase on 

growth performance of nursery pigs 

 Abstract 

A total of 360 pigs (DNA 200 × 400, initially 5.9 ± 0.1 kg) were used in a 42-d trial to 

determine the effect of high doses of a novel phytase source (Natuphos E 5000 G, BASF 

Corporation, Florham Park, NJ) on nursery pig growth and bone ash. Pigs were randomly 

allotted to pens at weaning and pens were allotted to 1 of 8 dietary treatments in a randomized 

complete block design. There were 5 pigs per pen and 9 pens per treatment. Diets were fed in 3 

phases (d 0 to 7, 7 to 21, and 21 to 42) with formulated total Ca:P of 1.07, 1.05, and 0.93, 

respectively. Treatments included a negative control (NC) with 0.40, 0.30, or 0.25% aP from 

monocalcium P for Phases 1, 2, and 3 respectively; and NC with either 500, 1,000, 2,000, 3,000, 

or 4,000 FTU/kg phytase. The last two treatments were a positive control (PC) with 0.55, 0.45, 

or 0.40% aP from monocalcium P for Phases 1, 2, and 3, respectively, or PC with 2,000 FTU/kg 

phytase. The NC diet with 500 FTU/kg and PC without added phytase were formulated to be 

equivalent in available Ca and P.  On d 42, one pig per pen was euthanized and the right fibula 

was removed for bone ash analysis. From d 0 to 42, pigs fed increasing phytase in the NC tended 

to have increased (quadratic, P = 0.064) ADG and (linear, P = 0.082) ending BW and had 

improved (quadratic, P = 0.008) G:F. Adding 2,000 FTU/kg phytase to the PC did not influence 

ADG or ADFI, but tended to improve (P = 0.060) G:F compared with the PC.  In addition, 

percentage bone ash increased as phytase increased in the NC (linear, P < 0.001) or when 2,000 

FTU/kg was added to the PC diets (P < 0.001).  Pigs fed the PC had increased (P = 0.007) ADFI 

and tended to have greater (P = 0.099) percentage bone ash than pigs fed NC+500 FTU/kg 

phytase, but the pigs fed NC+500 FTU/kg phytase had improved (P = 0.032) G:F compared to 
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pigs fed the PC. In summary, increasing concentrations of dietary phytase in a P deficient diet 

improved growth and bone ash measurements and was optimized at 1,000 FTU/kg. There were 

varied improvements when 2,000 FTU/kg was added in P adequate diets.  

Key words: bone ash, calcium, growth, nursery pig, phosphorus, phytase 

 Introduction 

Phytase enzymes have been commercially available for use in monogastric diets since the 

early 1990’s (Adeola and Cowieson, 2011). Cereal grains and oilseeds can contain 60 to 82% of 

total phosphorous in the form of phytate-bound P (Ravindran et al., 1994).  Because the pig 

cannot produce enough endogenous phytase for P absorption, a phytase enzyme is commonly 

added to cleave the phosphate from the phytate for complete absorption. Phosphorus, along with 

Ca, is an important macro mineral that contributes to bone development and other physiological 

functions. The ability for a phytase enzyme to improve the available P in swine diets has been 

well documented (Cromwell et al., 1993; Augspurger et al., 2003; Selle and Ravindran, 2008). 

The addition of phytase also allows for reduced inclusion of inorganic P, and consequently 

reduces P excretion from the pig (Simons et al., 1990; Jongbloed et al., 1997). 

Previous studies have shown improved growth performance in nursery pigs fed high 

concentrations of phytase at or above 10,000 FTU/kg (Kies et al., 2006; Nyannor et al., 2007; 

Zeng et al., 2014).  The suggested mode of action for high concentrations of phytase comes in 

the form of non-P related benefits from improved digestibility of energy, AA, and other minerals 

(Kies et al., 2001).   However, it is noted that greater growth performance improvement is seen 

when digestible P, AA, and other nutrients are at marginal concentrations relative to the dietary 

predicted requirements (Goncalves et al., 2016).  
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Natuphos E 5,000 G (BASF Corporation, Florham Park, NJ) is a relatively new source of 

phytase available to the U.S. swine industry. In a previous study (Gourley et al., 2016), Natuphos 

E 5,000 G improved (linear, P < 0.01) ADG, ADFI, G:F, and percentage bone ash as phytase 

increased from 0 to 1,000 FTU/kg. However, current literature is not available to determine the 

impact of feeding concentrations above 1,000 FTU/kg of this new phytase source. Therefore, the 

objective of this study was to evaluate the effect of high doses of Natuphos E 5,000 G on the 

growth performance and percentage bone ash in nursery pigs.  

 Materials and Methods 

The Kansas State University Institutional Animal Care and Use Committee approved the 

protocol for this study. The study was conducted at the Kansas State University Segregated Early 

Wean Facility in Manhattan, KS. Two identical barns were environmentally controlled and each 

pen contained a 4-hole dry self-feeder and a nipple waterer for ad libitum access to feed and 

water. 

Ingredients containing Ca or P were analyzed in duplicate prior to manufacturing the 

diets in order to determine nutrient loading values used for formulation (Table 2-1). Dietary 

treatments were corn-soybean meal-based and were formulated to meet or exceed NRC (2012) 

nutrient requirements with the exception of P and were manufactured at the Kansas State 

University O.H. Kruse Feed Technology Innovation Center in Manhattan, KS. The analyzed 

phytase activity (5,111,000 FTU/kg) was used for determining the amount of Natuphos E 5,000 

G to include in each diet.  

Dietary treatments included a negative control with 0.40, 0.30, or 0.25% aP (0.44, 0.36, 

0.32 % standardized total tract digestible [STTD] P) from inorganic P, provided by monocalcium 

P, for Phases 1, 2, and 3, respectively. Additional dietary treatments included the negative 
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control plus increasing phytase at 500, 1,000, 2,000, 3,000, or 4,000 FTU/kg (Natuphos E 5,000 

G, BASF Corporation, Florham Park, NJ) in each phase; a positive control with 0.55, 0.45, or 

0.40% aP (0.57, 0.49, 0.46 % STTD P) from inorganic P for Phases 1, 2, and 3, respectively, or 

the positive control with 2,000 FTU/kg of phytase in each phase. The positive control was 

formulated with Ca and P similar to current industry levels, which resulted in Ca being close to 

NRC (2012) requirement estimate, but P was formulated above the NRC (2012) estimated 

requirement for the weight range corresponding to each phase.  The NC was formulated to be the 

PC minus 0.15% P and 0.14% Ca, which was the amount the manufacturer suggested would be 

released by 500 FTU/kg Natuphos E 5,000 G.  Available P coefficients were derived from the 

10th edition NRC (1998).  Using STTD P values, the NC was also below the NRC (2012) 

requirement estimates, while the PC was formulated well above the STTD P estimates.  

All dietary treatments within phase were derived from a basal batch of ingredients (Table 

2-2). After manufacturing the basal batch, they were bagged off into 8 identical sets (89 kg of 

Phase 1, 357 kg of Phase 2, and 893 kg of Phase 3 per treatment). For each experimental diet, a 

subset of bags from the basal batch was added to the mixer along with treatment-specific 

ingredients to achieve the final dietary treatments (Table 2-3). During bagging of experimental 

diets, feed samples were collected from the 5th, 10th, 15th, 20th, 25th, and 35th bags, pooled, 

and used for phytase and nutrient analysis. 

A total of 360 barrows (DNA 200 × 400; initially 5.9 ± 0.1 kg and 21 d of age) were used 

in a 42-d growth trial. Pigs were randomly allotted to pens and then pens of pigs were blocked by 

weight and randomly allotted to 1 of 8 dietary treatments. There were 5 pigs per pen and 9 

replications (pens) per treatment. Diets were fed in 3 phases from d 0 to 7, 7 to 21, and 21 to 42. 

During the experiment, pigs and feeders were weighed every 7 d to determine ADG, ADFI, and 
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G:F. On d 42 of the study, the median weight pig in each pen was euthanized via captive bolt and 

fibulas were collected to determine bone ash values. Once collected, all fibulas were stored at -

20C. To determine bone ash concentrations, bones were autoclaved for 60 min. Adhering tissue 

and cartilage caps were removed and bones were dried at 105C for 7 d. Then dried fibulas were 

ashed in a muffle furnace at 600C for 24 h to determine total ash weight and percentage bone 

ash.  

 Chemical analysis 

One sample per dietary treatment from the pooled feed samples was sent to a commercial 

laboratory (Ward Laboratories, Kearney, NE) for CP (AOAC 990.03, 2006), Ca (AOAC 

965.14/985.01, 2006), and P (AOAC 965.17/985.01, 2006) analysis (Table 2-4).  In addition, 

ingredients containing Ca or P were analyzed (Ward Laboratories, Kearney, NE) in duplicate 

prior to manufacturing diets to determine nutrient loading values.  One sample per treatment was 

sent to another commercial feed laboratory (Eurofins Scientific Inc., Des Moines, IA) for 

complete diet phytase analysis (AOAC 2000.12, 2006).  

 Data analysis 

All data (pen means or bone values) 3 SD outside the mean of each response criteria were 

evaluated as outliers. A subsequent investigation showed that the outliers in this study were due 

to a greater number of pigs removed in a few pens, thus they were removed from analysis. In 

Phase 1, there were 4 pen outliers for G:F, 1 G:F outlier for Phase 2, and 1 G:F outlier for Phase 

3. However, the pen data were retained for the evaluation of bone analysis data.  

Data were analyzed as a randomized complete block design with pen as the experimental 

unit. Barn was treated as a random effect. Contrast coefficients for phytase concentrations were 

adjusted to account for the unequal treatment spacing on phytase inclusion.  Pre-planned contrast 
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statements were used to determine the linear and quadratic responses to phytase. A pairwise 

comparison was used to compare the PC and PC + 2,000 FTU phytase treatments to test for an 

extra phosphoric effect. Another pairwise comparison was used to compare the NC + 500 

FTU/kg and the PC control to confirm the estimated release of Natuphos E 5,000 G. A third 

pairwise comparison was used to compare the NC and the PC. Analysis of variance was 

performed using the GLIMMIX procedure of SAS (SAS Institute Inc., Cary, NC). Results were 

significant with P-values ≤ 0.05 and were considered marginally significant with P-values > 0.05 

and ≤ 0.10.  

 Results 

 Chemical analysis 

Analysis of CP and P of the experimental diets were similar to those expected from diet 

formulation, however Ca in the final diets analyzed greater than expected. This was not 

anticipated since all ingredients containing Ca were analyzed and those values were used in diet 

formulation. Analyzed phytase increased as phytase addition increased as anticipated, but was 

greater than expected across all diets (Table 2-4).  

 Growth performance 

From d 0 to 7 and 7 to 21, there were no differences observed for growth performance 

among pigs fed any of the dietary treatments (Table 2-5). From d 21 to 42, increasing phytase 

tended to increase (quadratic, P = 0.078) ADG and (linear, P = 0.095) ADFI. In addition, G:F 

improved (quadratic, P = 0.001) with increasing phytase. When comparing the NC diet with 500 

FTU/kg phytase and the PC diet formulated to have the same aP, pigs fed the PC diet had 

increased (P < 0.05) ADG and ADFI; however, pigs fed the NC with 500 FTU/kg of phytase had 

improved (P = 0.047) G:F. Among pigs fed the 2 positive control diets, including phytase at 
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2,000 FTU improved (P = 0.047) G:F.  Pigs fed the PC had increased (P = 0.038) ADG and (P = 

0.049) ADFI compared to those fed the NC. 

From d 0 to 42, pigs fed increasing phytase tended to have increased (quadratic, P = 

0.064) ADG resulting in heavier (linear, P = 0.082) ending BW and improved (quadratic, P = 

0.008) G:F.  Pigs fed the NC diet with 500 FTU/kg phytase and PC diets were formulated to be 

equivalent in available Ca and P. When comparing these diets, pigs fed the positive control diet 

had increased (linear, P = 0.007) ADFI; however, pigs fed the NC with 500 FTU/kg phytase diet 

had improved (linear, P = 0.032) G:F. Adding 2,000 FTU/kg phytase to the positive control diet 

did not influence ADG or ADFI, but tended to improve (P = 0.060) G:F.  Pigs fed the NC had 

poorer (P ≤ 0.030) ADG and ADFI compared to the PC diet, but no difference in G:F was 

observed. 

Pigs fed increasing phytase had increased bone ash weights (quadratic, P < 0.001). In 

addition, percentage bone ash values increased (linear, P < 0.001) as phytase increased. There 

was a tendency for pigs fed the PC diet to have greater (P = 0.099) percentage bone ash when 

compared to the NC diet containing 500 FTU/kg of phytase. Pigs fed the PC diet with phytase 

had increased (P = 0.001) percentage bone ash compared to when pigs were fed the PC diet 

without phytase.  Finally, pigs fed the PC diet had greater (P < 0.010) bone ash weight and 

percentage compared to pigs fed the NC diet. 

 Discussion 

Commercially produced microbially-derived phytase is one of the most significant 

enzyme discoveries used in swine diets (Cromwell, 2009). Since the early 1990’s, it has been 

used to efficiently make P, that is bound in the form of phytate, available to monogastrics. Many 

commercial phytases are available for use in swine diets; however, phytase enzymes differ based 
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on the origin, specificity and configuration (Rodehutscord and Rosenfelder, 2016). Thus, each 

product should have its own unique available P release curve to be used in formulation.  Many 

products have already undergone studies to determine specific phytase release curves (Kornegay 

and Qian, 1996; Kerr et al., 2010; Jones et al., 2010). Recently, Gourley et al. (2016) determined 

the available P release curve for Natuphos E 5,000 G. When using concentrations between 150 

and 1,000 FTU/kg and utilizing percentage bone ash as the response criteria, aP release for up to 

1,000 FTU/kg of Natuphos E 5,000 was predicted by the equation: aP release = 0.000212 × 

FTU/kg phytase. 

 Based on the linear response to increasing Natuphos E up to 1,000 FTU/kg (Gourley et 

al., 2016), the current study aimed to evaluate growth performance and bone ash when adding 

phytase above 1,000 FTU. The current study revealed a quadratic increase for growth 

performance (ADG and G:F)  up to 1,000 FTU/kg of phytase in the NC, with no further 

improvement when included up to 4,000 FTU/kg phytase. Few studies are available on the 

effects of Natuphos E, and to our knowledge this is the first study to demonstrate high 

concentration release values of Natuphos E. Kornegay and Qian (1996) observed that with an 

older generation of Natuphos, breakpoints for growth performance were between 750 and 1,050 

FTU/kg.  The total P levels in the current experiment NC diets were slightly below the NRC 

(2012) requirement estimate for each nursery phase. In a recent study Vier et al. (2016) 

formulated diets from 80 to 160% of the NRC (2012) STTD P requirement estimate and 

determined that growth was linear up to 160% for a 15 to 25 kg pig, which would suggest that 

pigs were still below the P requirement needed to maximize growth performance. The quadratic 

response to phytase in the current study could be explained in part by releasing maximum P at 
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1,000 FTU/kg to optimize growth performance, with no additional benefit in growth 

performance when more phytate-bound P was released. 

The current study showed a linear increase in bone ash weight and percentage bone ash 

as phytase increased from 0 to 4,000 FTU/kg. Our study would suggest that the requirement to 

improve percentage bone ash is greater than what is needed to maximize growth performance in 

the pig. This is like other studies (Kornegay and Thomas, 1981; Mahan, 1982) that observed the 

P and Ca requirement to maximize bone development is greater than the requirement for growth 

performance. However, there was no indication that the amount needed for maximum bone 

development influences structural soundness. 

Kies et al. (2006) observed an improvement in growth performance and digestibility of 

minerals when phytase (Natuphos) was included up to 15,000 FTU/kg in P-deficient diets. 

Similarly, Zeng et al. (2014) also observed improved growth performance, mineral digestibility 

and bone ash weight as phytase (Phyzyme XP) increased up to 20,000 FTU/kg in P-deficient 

diets. Because the P requirement would be met at a low addition of phytase, it is suggested that 

the additional benefit in performance is not coming from P, but rather a release of AA, energy, 

and other minerals (Selle and Ravindran, 2008). Beers and Jongbloed (1992) were the first to 

observe an improvement in growth performance when phytase was included in P-sufficient diets, 

again suggesting the improvement in growth was due to increased digestibility of other nutrients 

rather than of P. The current study would disagree with these results, where phytase added at 

2,000 FTU/kg in a P-sufficient diet did not provide a benefit in ADG or ADFI; however, there 

was a tendency observed for an improvement in G:F.  

A review by Adeola and Cowieson (2011) suggests that when phytate is present in the 

gut, AA, vitamins and minerals, energy viability and absorption are reduced.  Phytate:protein 
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complexes can form due to an electrostatic attraction between molecules, which can reduce the 

amount of AA available for absorption. In addition, intact phytate that reaches the duodenum 

will seek out divalent cations, such as Ca, and create insoluble precipitates where its absorption 

is reduced (Cowieson et al., 2009). The reduction of Ca from these precipitates further reduces 

the ability for endogenous processes to proceed and can negatively impact pig performance.  

Therefore, it is thought that phytase could help to release nutrients other than P that are 

unavailable to the pig due to high concentrations of phytate.  

   Providing high concentrations of phytase is also suggested to influence myo-inositol 

availability for the pig. The phytase enzyme works to catalyze the hydrolysis of phytate to 

inorganic phosphate (PO4) and myo-inositol (Humer et al., 2015). While there is no requirement 

for myo-inositol, metabolically it is converted to glucose, and is a structural component of 

phosphoinositides, which regulate amylase secretion, insulin release, smooth muscle contraction, 

and liver glycogenolysis (McDowell, 2000). While feeding P above the pig’s requirement may 

not improve growth performance, perhaps the additional myo-inositol release could help increase 

metabolic functions within the pig. However, because the pig can synthesize myo-inositol 

endogenously, it becomes difficult to determine whether it’s release from phytate has a 

beneficiary role (McDowell, 2000).  The current study observed a tendency for an extra 

phosphoric effect when phytase was added to the positive control (formulated to meet the Ca and 

P requirements), with a tendency to improve G:F. Further research is needed to fully determine if 

Natuphos E does induce ‘extra-phosphoric’ effects and to confirm the benefit of additional myo-

inositol release due to high concentrations of phytase, and its impact within the pig.  

Overall, our study found growth performance improved as added dietary phytase 

increased up to 1,000 FTU/kg. Because pigs fed the NC + 500 FTU phytase and the PC did not 
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have similar growth performance or bone ash, we can conclude that the release value of 500 

FTU/kg Natuphos E used in formulation overestimated the P release. A tendency for improved 

G:F was observed as phytase was added to the positive control diet when P and Ca were 

formulated at commercial industry levels. Lastly, the addition of phytase continued to increase 

percentage bone ash in the NC and when added to the PC, although there was little improvement 

in growth performance.  
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Table 2-1 Analyzed ingredient composition (as-fed basis)1 

 Analyzed value, % 

Ingredient P Ca 

Corn 0.31 0.03 

Soybean meal 0.72 0.43 

Limestone 0.23 37.73 

Monocalcium P 20.54 16.38 

Fish meal 3.07 5.59 

Dried whey 0.80 0.58 

Blood plasma 1.00 0.19 

HP 3002 0.74 0.38 

Corn DDGS, > 6 and < 9% oil 0.98 0.06 

Trace mineral premix 0.03 18.28 

Vitamin premix 0.04 18.17 
1Duplicate ingredient samples were pooled and analysis was performed 

at a commercial laboratory (Ward Laboratory; Kearney, NE). 
2Hamlet Protein Inc. (Findlay, OH). 
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 Table 2-2 Composition of basal batch (as-fed basis)1 

Ingredient, % Phase 1 Phase 2 Phase 3 

  Corn 36.80 52.09 62.98 

  Soybean meal, 48% CP 20.80 27.46 32.93 

  Dairylac 802 15.14 5.05 --- 

  Dried whey 8.08 5.05 --- 

  HP 3003 5.05 5.05 --- 

  Corn DDGS 5.05 --- --- 

  Blood plasma 4.04 --- --- 

  Fish meal  1.26 1.26 --- 

  Choice white grease 1.01 1.01 1.01 

  Monocalcium P 0.28 0.56 0.86 

  Limestone 1.19 0.98 0.83 

  Sodium chloride 0.30 0.30 0.35 

  L-Lys-HCl 0.30 0.38 0.35 

  DL-Met 0.17 0.20 0.14 

  L-Thr 0.12 0.16 0.13 

  L-Val --- 0.05  

  Trace mineral premix4 0.15 0.15 0.15 

  Vitamin premix5 0.25 0.25 0.25 

  Choline chloride 60% 0.04 --- --- 

 100 100 100 

Calculated analysis    

Standardized ileal digestibility (SID) AA, % 

  Lys 1.40 1.35 1.25 

  Ile:Lys 58 60 61 

  Leu:Lys 122 118 125 

  Met:Lys 33 37 34 

  Met & Cys:Lys 57 58 56 

  Thr:Lys 63 63 62 

  Trp:Lys 19.3 17.8 18.0 

  Val:Lys 68 69 66 

Total Lys, % 1.58 1.50 1.39 

CP, % 22.7 22.2 21.8 

ME, kcal/kg 3,452 3,400 3,347 

NE, kcal/kg 2,556 2,516 2,475 

SID Lys:ME, g/Mcal 4.12 4.03 3.79 

Ca, % 0.71 0.66 0.56 

P, % 0.66 0.62 0.60 

Available P6, % 0.40 0.30 0.25 

STTD P, % 0.44 0.36 0.32 
1The basal batch was used as the major ingredient within each experimental diet. 

Treatment specific ingredients were added to the basal batch to achieve final 

dietary treatments. 
2International Ingredient Corporation (St. Louis, MO). 
3Hamlet Protein Inc. (Findlay, OH). 
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4Provided per kilogram of premix: 26.5 g Mn from manganese oxide, 110 g Fe 

from iron sulfate, 110 g Zn from zinc sulphate, 11 g Cu from copper sulfate, 198 

mg I from calcium iodate, and 198 mg Se from sodium selenite. 

5Provided per kg premix: 4,409,171 IU vitamin A; 551,150 IU vitamin D3; 

17,637 IU vitamin E; 15 mg vitamin B12; 1,764 mg menadione; 3,307 mg 

riboflavin; 11,023 mg pantothenic acid, 19,841 mg niacin. 

6Coefficients for formulation were derived from NRC (1998). 
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Table 2-3 Ingredient composition of experimental diets (as-fed basis)1 

  

 Phase 1  Phase 2  Phase 3 

 

Ingredient, % 

Negative  

control 

Positive 

control 

 Negative 

control 

Positive 

control 

 Negative 

control 

Positive 

control 

  Basal mix 96.52 96.52  98.43 98.43  98.75 98.75 

  Corn 3.35 2.52  1.46 0.63  1.10 0.25 

  Soybean meal 0.02 0.03  0.01 0.07  --- 0.05 

  Limestone --- 0.73  --- 0.08  --- 0.08 

  Monocalcium P --- 0.05  --- 0.70  --- 0.75 

  Sand1 0.10 0.15  0.10 0.10  0.15 0.13 

  Phytase2 --- ---  --- ---  --- --- 

         

Calculated analysis         

  CP, % 22.8 22.8  22.2 22.2  21.2 21.3 

  Ca, % 0.71 0.85  0.66 0.80  0.56 0.70 

  P, % 0.66 0.81  0.63 0.77  0.61 0.76 

  Ca:P ratio 1.07 1.05  1.05 1.04  0.93 0.92 
1Sand was used to displace phytase in the diet as inclusion rate varied; as a result, the same 

amount of basal mix in each phase was added to each of the treatment diets. 
2Natuphos E 5,000 G (BASF Corporation, Florham Park, NJ) was added to the negative control 

to achieve experimental diets with 0, 500, 1,000, 2,000, 3,000, or 4,000 FTU/kg or was added to 

positive control diet to achieve experimental diets with 0 or 2,000 FTU/kg. Phytase inclusion 

was determined using the analyzed concentration, and the phytase contained 5,111,000 FTU/kg. 
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Table 2-4 Analyzed composition of experimental diets (as-fed basis)1 

 Analyzed composition 

Diets CP, % Ca, % P, % Ca:P Phytase, FTU/kg 

Phase 1      

  NC2 21.8 0.88 0.61 1.44 < 60 

  NC + 500 FTU 22.3 0.87 0.64 1.36 612 

  NC + 1,000 FTU 22.1 0.89 0.63 1.41 1,100 

  NC + 2,000 FTU 22.1 0.90 0.64 1.40 2,060 

  NC + 3,000 FTU 22.4 0.93 0.64 1.45 3,880 

  NC + 4,000 FTU 22.2 0.85 0.60 1.42 5,270 

  PC3 21.8 1.10 0.76 1.45 < 60 

  PC + 2,000 FTU 22.4 1.07 0.80 1.34 2,580 

Phase 2      

  NC 21.8 0.75 0.59 1.27 < 60 

  NC + 500 FTU 21.6 0.78 0.58 1.34 650 

  NC + 1,000 FTU 21.3 0.83 0.61 1.36 1,350 

  NC + 2,000 FTU 21.9 0.84 0.63 1.33 2,590 

  NC + 3,000 FTU 22.6 0.75 0.56 1.33 3,630 

  NC + 4,000 FTU 22.6 0.89 0.67 1.33 5,200 

  PC 21.6 1.01 0.74 1.36 < 60 

  PC + 2,000 FTU 22.2 0.94 0.75 1.25 2,560 

Phase 3      

  NC 20.8 0.75 0.63 1.19 < 60 

  NC + 500 FTU 22.0 0.75 0.61 1.23 536 

  NC + 1,000 FTU 21.6 0.73 0.60 1.22 1,190 

  NC + 2,000 FTU 21.5 0.78 0.61 1.28 2,280 

  NC + 3,000 FTU 21.9 0.70 0.60 1.17 3,710 

  NC + 4,000 FTU 21.8 0.70 0.63 1.11 4,660 

  PC 21.9 0.87 0.77 1.13 62 

  PC + 2,000 FTU 22.2 0.87 0.77 1.13 2,110 
1Seven subsamples were pooled and proximate analysis was performed in triplicate by a 

commercial laboratory (Ward Laboratories, Kearney, NE). In addition, phytase analysis was 

conducted in duplicate to determine complete diet phytase concentrations at another commercial 

laboratory (Eurofins Scientific Inc., Des Moines, IA). 
2Negative Control. 
3Positive Control. 
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Table 2-5 Effect of high doses of Natuphos E 5,000 G on nursery pig growth performance and bone ash values1 

    P < 

 Negative  Control2 Positive Control3  Negative Control NC  

vs. PC 

NC + 500 

vs. PC4 

PC vs.  

PC + 2,000 Item 0 500 1,000 2,000 3,000 4,000 0 2,000 SEM Linear Quadratic 

BW, kg               

  d 0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 0.01 0.250 0.818 0.687 0.230 0.421 

  d 42 21.5 21.4 22.6 22.2 22.5 22.2 22.7 22.6 0.38 0.082 0.128 0.035 0.021 0.921 

d 0 to 7               

  ADG, g 64 74 84 72 77 83 83 75 9.6 0.293 0.785 0.145 0.475 0.512 

  ADFI, g 112 114 124 108 118 129 123 115 6.9 0.165 0.347 0.248 0.332 0.403 

  G:F, g/kg 562 645 675 666 636 640 665 616 57.1 0.558 0.228 0.157 0.785 0.499 

d 7 to 21               

  ADG, g 276 271 297 277 295 291 295 285 14.9 0.274 0.763 0.333 0.215 0.630 

  ADFI, g 349 345 363 352 361 362 369 349 13.9 0.343 0.851 0.250 0.173 0.241 

  G:F, g/kg 791 782 816 786 814 802 795 818 18.1 0.456 0.774 0.866 0.595 0.352 

d 21 to 42               

  ADG, g 541 541 569 569 568 557 577 581 13.5 0.192 0.078 0.038 0.048 0.847 

  ADFI, g 820 790 844 837 838 847 871 849 19.6 0.095 0.644 0.049 0.003 0.398 

  G:F, g/kg 659 685 674 680 678 658 663 685 7.8 0.493 0.001 0.696 0.047 0.047 

d 0 to 42               

  ADG, g 369 377 396 387 395 381 400 398 10.2 0.314 0.064 0.027 0.107 0.864 

  ADFI, g 540 529 562 551 559 555 580 561 13.5 0.188 0.427 0.029 0.007 0.289 

  G:F, g/kg 684 713 705 702 707 686 689 709 7.8 0.616 0.008 0.571 0.032 0.060 

               

Bone ash, g5 1.94 2.30 2.35 2.56 2.53 2.25 2.42 2.51 0.093 0.012 0.001 0.001 0.374 0.465 

Bone ash, % 44.2 45.2 47.1 48.0 48.4 49.1 47.0 51.3 0.007 0.001 0.078 0.010 0.099 0.001 
1A total of 360 barrows (DNA 200 × 400, initially 5.9 ± 0.1 kg) were used in a 42-d growth study with 5 pigs per pen and 9 pens per 

treatment (Natuphos E 5,000 G, BASF Corporation, Florham Park, NJ). 

2Negative control diets were formulated with 0.40, 0.30, or 0.25% aP from inorganic P for Phases 1, 2 and 3 respectively. Phytase was 

added at 0, 500, 1,000, 2,000, 3,000, 4,000 FTU/kg to the negative control diet to achieve final experimental diets. 
3Positive control diets were formulated with 0.55, 0.45, or 0.40% aP from inorganic P for Phases 1, 2 and 3 respectively. Phytase was added 

at either 0 or 2,000 FTU/kg to the positive control diet to achieve final experimental diets. 
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4NC diets were formulated to be the PC minus 0.15% P and 0.14% Ca released by 500 FTU/kg Natuphos E suggested by the manufacturer. 

The NC + 500 FTU and PC treatments were compared to confirm the estimated release value. 
5One pig per pen was euthanized and fibulas were used to determine bone ash weight and percentage bone ash. 
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Chapter 3 - Determining the impact of increasing standardized ileal 

digestible lysine for primiparous and multiparous sows in lactation 

 Abstract 

Two experiments were conducted to evaluate the effects of increasing dietary SID Lys in 

lactation on sow and litter performance. In Exp. 1, 111 primiparous sows (Line 241; DNA, 

Columbus, NE) were allotted to 1 of 4 dietary treatments on d 110 of gestation. Dietary 

treatments included increasing dietary standardized ileal digestible (SID) Lys (0.80, 0.95, 1.10, 

and 1.25%). During lactation, there were no differences in ADFI or sow BW at weaning (d 21), 

resulting in no differences in BW loss. However, backfat loss during lactation decreased (linear, 

P = 0.046) as SID Lys increased.  There were no differences in litter weaning weight, litter gain 

from d 2 to weaning, percentage of females bred by d 7 after weaning, d 30 conception rate, 

farrowing rate or subsequent litter characteristics. In Exp. 2, 710 mixed parity sows (Line 241; 

DNA, Columbus, NE) were allotted to 1 of 4 dietary treatments at d 112 of gestation.  Dietary 

treatments included increasing SID Lys (0.75, 0.90, 1.05, and 1.20%).  Sow BW at weaning 

increased (quadratic, P = 0.046), and sow BW loss from post-farrow to weaning or d 112 to 

weaning decreased (quadratic, P ≤ 0.01) as SID Lys increased. Sow backfat loss increased 

(linear, P = 0.028) as SID Lys increased. Conversely, longissimus muscle depth loss decreased 

(linear, P = 0.002) as SID Lys increased. Percentage of females bred by d 7 after weaning 

increased (linear, P = 0.047) as SID Lys increased in parity 1 sows, with no difference in parity 2 

or 3+ sows. Litter weight at d 17 and litter gain from d 2 to 17 increased (quadratic, P = 0.01) up 

to 1.05% SID Lys with no improvement thereafter. For subsequent litter characteristics, there 

were no differences in total born, percentage born alive, stillborn or mummies. In conclusion, our 

results suggest that increasing dietary SID Lys can reduce sow protein loss in lactation. The 
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optimal level of dietary SID Lys required by the sow may vary based on response criteria and 

parity.  

Key words: Gilt, lactation, lysine, reproduction, sow 

 Introduction 

Over the past two decades, genetic improvements have increased the efficiency and 

productivity of the sow herd. As genetics continue to evolve, requirement estimates need to be 

reevaluated to ensure all nutrients are met for optimum performance. In lactation, nutrients need 

to be supplied to support both sow maintenance and litter growth (Dourmad et al., 2008). With 

milk production representing about 75% of total nutrient requirements in lactation (Noblet et al., 

1990), it becomes increasingly more difficult to meet the sow’s requirements as litter size 

increases without also changing diet formulation.  

 Inadequate nutrient intake during lactation can cause the sow to become catabolic and 

increase sow body protein mobilization (Yang et al., 2000). Increases in body weight loss from 

reduced or restricted nutrient intake, and resulting body protein mobilization during lactation can 

decrease the subsequent litter size due to reduced follicular development (Clowes et al., 2003) or 

embryonic survival (Vinsky et al., 2006).  However, recent research has demonstrated that 

commercial primiparous sows may be more resistant to negative effects of lactational catabolism 

from reduced feed intake (Patterson et al., 2011).  

Lysine is the first limiting amino acid in corn and soybean meal-based swine diets. 

Because primiparous sows consume less feed than multiparous sows (Koketsu et al., 1996), 

maternal growth accounts for a larger percentage of daily nutrient intake. Early literature has 

shown decreased BW loss but no difference in litter performance when Lys increased from 0.67 

to 1.0% in the diet of lactating gilts (Boomgaardt et al., 1972; Dourmad et al., 1998), with 

varying results in sows depending on response criteria (Boyd et al. 2000). However, with modern 
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genetics and greater productivity levels, requirements to reduce mobilization of body protein 

reserves, maximize litter growth, and maintain reproductive function in high producing 

multiparous sows needs to be re-evaluated. Therefore, the objective of these experiments was to 

determine the effect of increasing standardized ileal digestible (SID) Lys on the performance of 

1) lactating primiparous sows and their litters, and 2) mixed parity sows and their litters under 

commercial conditions. 

 Materials and Methods 

The Kansas State University Institutional Animal Care and Use Committee approved the 

protocols used in these experiments. 

 Experiment 1 

A total of 111 primiparous sows (Line 241, DNA, Columbus, NE) were used over 4 

consecutive farrowing groups. The trial was conducted at the Kansas State University Teaching 

and Research Center in Manhattan, KS from January to April, 2016.  At d 110 of gestation, sows 

were weighed and moved to the farrowing house. Females were blocked by weight and expected 

farrowing date and randomly allotted to 1 of 4 treatments within those blocks. Dietary treatments 

were corn-soybean meal-based and consisted of increasing SID Lys (0.80, 0.95, 1.10, or 1.25%). 

Treatments were formed by increasing both crystalline Lys and soybean meal such that there was 

an increase in L-Lys HCl of 0.12% between each treatment with soybean meal increasing to 

meet the remainder of the SID Lys target for each treatment.  Other feed-grade AA were added 

as needed to maintain a similar minimum ratio to Lys. All other nutrients met or exceeded the 

NRC (2012) requirement estimates (Table 3-1).  

From d 110 to 113 of gestation, sows were fed 2.7 kg/d of the gestation diet (14.1 % CP, 

0.56% SID Lys, 1,472 ME/kg). Starting on d 113, sows received 2.7 kg/d of dietary treatment 

until farrowing. Postpartum, sows were allowed ad libitum access to feed, recorded by weighing 
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the amount placed in a feed hopper and the amount remaining at weaning (d 21 ± 3). Sow BW 

and back fat depth (measured 10 cm from the midline of the last rib) were measured on d 0, d 10 

post-farrowing, and at weaning. Cross fostering occurred irrespective of dietary treatment until 

48 h postpartum in an attempt to equalize litter size (minimum of 10 pigs per litter for group 1 

and 12 pigs per litter for groups 2 to 4). Litters were weighed on d 2 and 10 post-farrowing and 

at weaning.  

At weaning (average of 18.7 d post farrowing and range of 15 to 23), sows were moved 

to a breeding barn, housed individually, and checked daily for signs of estrus using a boar. The 

wean-to-estrus interval (WEI) was determined as the number of days between weaning and when 

sows were first observed to show a positive response to the back-pressure test. Conception rate 

was determined based on confirmation of pregnancy by ultrasound test at approximately d 30 

post breeding.  

After weaning, no dietary treatments were applied, and females were fed a common 

gestation diet with 0.56% SID Lys according to their body condition. Thin, ideal, and fat sows 

were fed 2.1, 2.0, or 1.9 kg/d, respectively. Subsequent performance (total born, number born 

alive, stillborn and mummies) was collected from sows on the subsequent farrowing. Diets were 

manufactured at the Kansas State University O.H. Kruse Feed Mill in Manhattan, KS. A new 

batch of each treatment diet was manufactured for each farrowing group and packaged in 22 kg 

bags. During bagging, feed samples were collected from the 5th, 10th, 15th, 20th, 25th, 30th, and 

35th bag, and these samples were pooled and used for AA and nutrient analysis.  

 Chemical analysis 

Four samples (one per batch) per dietary treatment from the pooled samples were sent to 

a commercial laboratory (Ward Laboratories, Kearney, NE) for CP (AOAC 900.03, 2006), Ca 

(AOAC 965.14/985.01, 2006), and P analysis (AOAC 965.17/985.01,2006). In addition, 4 
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samples (one per batch) per dietary treatment were sent to another commercial laboratory 

(Ajinomoto Heartland Inc., Eddyville, IA) for complete diet amino acid analysis (AOAC 994.12, 

Table 3-3). 

 Data analysis 

Data were analyzed using generalized linear mixed models where dietary treatment was a 

fixed effect, with random effects of group and block. Statistical models were fitted using the 

GLIMMIX procedure of SAS (Version 9.3, SAS Institute Inc., Cary, NC). 

Sow ADFI, BW, BW change, backfat change, litter weight, litter gain, lactation length, 

and SID Lys consumed were fitted assuming a normal distribution of the response variable. 

Litter weight and litter count on d 2 were used as covariates for d 10 litter weight, weaning litter 

weight and litter weight gain. In these cases, residual assumptions were checked using 

Studentized residuals and were found to be reasonably met.  

Wean-to-estrus interval, litter size and subsequent total born were fitted assuming 

negative binomial distribution. Females bred until d 7 after weaning, d 30 conception rate and 

farrowing rate were fitted using a binary distribution. Subsequent litter performance variables, 

born alive, percentage stillborns and mummies, were all fitted using a binomial distribution. All 

results were considered significant at P ≤ 0.05 and marginally significant at 0.05 < P ≤ 0.10. 

 Experiment 2 

 The experiment was conducted on a commercial sow farm in central Nebraska from mid-

June until mid-August, 2016. Females were individually housed from d 0 to d 113 of gestation 

and were fed a common diet with 0.70% standardized ileal digestible (SID) Lys according to 

body condition (thin, ideal, and fat females were offered 2.5, 1.8 and 1.3 kg, respectively). All 

females had ad libitum access to water.  
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A total of 710 primiparous and multiparous females (Line 241, DNA Genetics, 

Columbus, NE) were used. At d 112 of gestation, females were weighed, and on a subsample of 

females (n = 369), back fat and longissimus muscle depth were collected via ultrasound (Aloka 

SSD 500V, Hitachi Aloka Medical Ltd., Wallingford, CT; between 10th and 11th ribs, 2.5 cm 

from the midline). Females were blocked by BW within expected farrowing date and parity (1 to 

7) and were then randomly assigned to 1 of 4 dietary treatments within blocks. Dietary 

treatments were corn-soybean meal-based and consisted of increasing SID Lys (0.75, 0.90, 1.05 

and 1.20%). Treatments were formulated like in Exp. 1 by increasing both crystalline Lys and 

soybean meal to maintain a similar soybean meal to crystalline Lys ratio. Other feed-grade AA 

were added as needed to maintain a similar minimum ratio to Lys across treatments.  All other 

nutrients met or exceeded the NRC (2012) requirement estimates. Energy (ME, kcal/kg) was the 

same across all dietary treatments (Table 3-2). 

On d 113 of gestation, females were moved to the farrowing house and fed treatment 

diets. Sows received 2.5 kg/d of feed until farrowing. Cross fostering occurred irrespective of 

dietary treatment until 48 h postpartum in an attempt to equalize litter size (minimum of 10 pigs 

per litter). Litters were weighed on d 2 (after equalization) and d 17 post-farrowing.  

At weaning (average of 21.3 d post farrowing and range of 19 to 24) sows were returned 

to the gestation barn where sow body weight was determined and back fat and longissimus 

muscle depth were again measured via ultrasound.  Each sow was housed individually and 

checked daily for signs of estrus using a boar. The WEI was determined as the number of days 

between weaning and when sows were first observed to show a positive response to the back-

pressure test. Conception rate was determined based on pregnancy confirmation using ultrasound 

at approximately d 30 after first insemination.   
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Due to the magnitude of this study and the commercial setting, sow BW 24 h after 

farrowing was not able to be measured. A post-farrowing weight was calculated for each sow by 

subtracting the weight of conceptus from each sow’s d 112 body weight. Final weight of 

conceptus was calculated using the original equation listed in the NRC (2012) generated from 

Dourmad et al. (1998), and corrected by Thomas et al. (2016) using the variables of parity, 

length of gestation and total born.  

No dietary treatments were applied after weaning and all females were fed a blend of 1.8 

kg of a 0.70% SID Lys gestation diet and 1.3 kg of a 1.05% SID Lys lactation diet until 

breeding. After breeding, each sow was fed the gestation diet according to their body condition 

for the remainder of gestation (thin, ideal, and fat females were fed 2.5, 1.8 and 1.3 kg 

respectively). Subsequent performance (total born, number born alive, mummies and stillborn) 

were collected from sows remaining in the herd on their subsequent parity. 

Experimental diets were manufactured at the Pillen Family Farms Feed Mill (Albion, 

NE). Feed was continuously delivered in bulk throughout the study period, and feed delivery 

amounts by treatment were recorded to determine total feed consumed in lactation. Average 

daily feed intake by treatment was calculated by total feed delivered during the trial period 

divided by number of sows on each treatment diet for each day of the trial period. 

 Chemical analysis 

Samples of the diet were taken at the feeder, three times per week. Samples were pooled 

by week to make a composite sample. Six samples per dietary treatment were sent to a 

commercial laboratory (Ward Laboratories, Kearney, NE) for CP (AOAC 900.03, 2006), Ca 

(AOAC 965.14/985.01, 2006), and P (AOAC 965.17/985.01,2006). Additionally, 6 samples (one 

per week) per dietary treatment were sent to another commercial laboratory (University of 
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Missouri Experimental Station Chemical Laboratories, Columbia, MO) for complete diet amino 

acid analysis (AOAC 975.44 and 982.30, Table 3-4).  

 Data analysis 

Data were analyzed using generalized linear mixed models where dietary treatment and 

parity category (P1, P2, and P3+) and dietary treatment within parity category were evaluated as 

fixed effects, with random effect of block. The response variables of sow BW (d112, post 

farrow, and weaning), BW loss, backfat change, longissimus muscle depth change, litter weight 

(d 2 and d 17), litter gain and lactation length were fitted assuming a normal distribution. Total 

born was used as a covariate for post farrow sow BW. Longissimus muscle depth on d 112 was 

used as a covariate for its depth at weaning and change over lactation. Litter weight on d 2 was 

used as a covariate to improve the fit of the model for d 17 litter weight, and litter gain response 

variables. Litter weight on d 2 and lactation length were used as covariates for sow weaning BW, 

sow BW change from d 112 to weaning, and sow BW change from post farrow to weaning.  

Day 2 litter size, d 17 litter size and subsequent total born were fitted using a negative 

binomial distribution.  Females bred by d 7, d 30 conception rate and farrowing rate were fitted 

using a binary distribution. Subsequent born alive, stillborn, and mummies were modeled using a 

binomial distribution.   

Results were considered significant at P ≤ 0.05. Use of covariates were included in the 

model if they improved the Bayesian information criterion (BIC) by greater than 2 units. For 

normally distributed data the residual assumptions were found to be reasonably met using 

evaluation of the Studentized residuals. Statistical models were fit using PROC GLIMMIX of 

SAS (Version 9.4, SAS Institute Inc., Cary, NC). 
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 Results and Discussion 

 Chemical analysis 

In Exp. 1, chemical analysis of DM, CP, Ca, P, and AA were similar to the formulated 

values (Table 3-3). The analyzed total Lys concentration in the 0.80% SID Lys diet was slightly 

higher than formulated. In Exp. 2, chemical analysis of DM, CP, Ca, P, and AA were similar to 

the formulated values (Table 3-4).  

 Sow BW, backfat and loin eye depth change in lactation 

There were no differences among treatments in initial BW or backfat depth in Exp. 1 

(Table 3-5) and Exp. 2 (Table 3-7) which validated treatment randomization.  In Exp. 2, 

increasing SID Lys to 1.20% reduced BW loss within parity 2 (linear, P = 0.028) and parity 3 + 

(quadratic, P < 0.007) sow categories (Figure 3-1).  Sow BW loss in lactation is inevitable due to 

higher nutrient demands than voluntary feed intake can support. Previous studies (Dourmad et 

al.,1998; Xue et al., 2012; Huang et al., 2013) found a decrease in BW loss as Lys increased in 

the diet. The results of multiparous sows do not agree with the results of primiparous sows where 

no differences in BW loss regardless of dietary Lys concentration in Exp. 1 (P = 0.235) and Exp. 

2 (P = 0.361) were found. In support of these findings, Yang et al. (2000) and Xue et al. (2012) 

did not observe any differences in BW loss as Lys increased in first parity sows. However, Shi et 

al. (2015) observed that primiparous sow BW loss decreased with increasing SID Lys and 

estimated the optimal dietary SID Lys for minimal BW loss at 0.85%. The summary of research 

and present data would suggest that BW loss can be reduced when increasing SID Lys in 

multiparous sows, with minor or no benefit in primiparous sows. 

 Previous literature observed no differences in backfat loss during lactation regardless of 

dietary SID Lys concentration (Touchette et al., 1998; Yang et al., 2000; Shi et al., 2015). In 

Exp. 1 increasing dietary SID Lys decreased (linear, P = 0.046) backfat loss in first parity sows. 
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Conversely, in Exp. 2 backfat loss increased (linear, P = 0.028) with increasing SID Lys. One 

explanation for this may be that the increase in litter growth rate as SID Lys increased would 

require more energy and if feed intake did not differ, mobilization of lipid stores to satisfy milk 

production would be required (Dourmad et al., 2008). However, sows fed 1.20% SID Lys had 

decreased litter growth, which may have been due to a reduction in ADFI and thus energy intake. 

The decrease in energy intake could have contributed to additional back fat loss on the 1.20% 

SID Lys treatment.  

In Exp. 2, as SID Lys increased in the diet we observed a reduction in loin eye depth loss 

during lactation (linear, P = 0.002) from -1.9 to 0.5 mm, which resulted in an increase (linear, P 

= 0.002) in actual loin eye depth at weaning. In support of these findings, Shi et al. (2015) 

observed a quadratic decrease in loin eye area loss during lactation with increasing SID Lys, with 

the greatest reduction occurring at 1.02% SID Lys (54 g/d total Lys) in primiparous sows. In 

addition, Touchette et al. (1998) determined that minimum loin eye area loss occurred at 48 g/d 

SID Lys, and Dourmad et al. (1998) observed losses in lean tissue were greater in sows fed 

0.67% total Lys compared to 0.77 to 0.87% total Lys. It is likely that body protein mobilization 

occurs when the sow is deficient in AA intake, but is not necessarily independent from an energy 

deficiency (Dourmad et al., 2008).  When energy intake is insufficient, a sow may mobilize body 

protein to support the energy deficiency (Pomar et al., 1991). When evaluating restricted total 

dietary Lys intake, Clowes et al. (2003) looked at the amount of protein loss that could be 

sustained by a lactating sow without impacting performance.  Their study demonstrated that 

there were no differences in body protein loss up to d 20 of lactation; however, from d 20 to 

weaning on d 23, there was significant body weight loss, which followed an increase in body 

protein loss. This suggests that until d 20 of lactation, a minimal amount of body reserves have 

been mobilized even when severely deficient in total dietary Lys, but after d 20 as milking 
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pressure and litter growth increases, larger amounts of body protein mobilization occur, and 

dietary Lys is needed to reduce negative impacts from excessive protein mobilization. 

 Sow ADFI 

In Exp. 1, no difference (P = 0.821) was observed in ADFI as dietary SID Lys increased 

from 0.80 to 1.25%. Multiple studies (Huang et al., 2013; Huber et al., 2015; Shi et al., 2015) 

have shown no differences in ADFI with increasing SID Lys from 0.76 to 1.14%. One study 

observed a decrease in ADFI as total Lys increased from 0.60 to 1.60% (Yang et al., 2000), and 

hypothesized the decrease in intake was due to elevated serum urea nitrogen levels and varying 

branch chain AA ratios across their experimental diets. Because our SID Lys range falls within 

the range of Yang et al. (2000), it is not clear whether SID Lys levels above 1.25% deter feed 

intake. In Exp. 2, we were unable to capture individual sow ADFI and cannot make a conclusion 

on the effect of dietary SID Lys on individual sow intake in that study. However, ADFI for each 

treatment was calculated using the total amount of feed delivered for each treatment divided by 

total sows consuming each diet. Average daily feed intake increased as SID Lys increased from 

0.75 to 1.05%, but ADFI decreased on the 1.20% SID Lys treatment.   

 Litter performance 

There were no differences in lactation length, litter size on d 2 or litter size at weaning in 

Exp. 1 and Exp. 2. In addition, in Exp. 1 regardless of treatment, there were no differences in 

litter weight at d 2 (Table 3-6).  However, in Exp. 2 litter weight at d 2 increased from 21.2 to 

22.2 kg (quadratic, P = 0.016) as SID Lys level increased up to 1.05% SID Lys, this was 

unexpected due to cross fostering to equalize litter size.  

An early study by Johnston et al. (1993) suggests a linear correlation exists between Lys 

intake in lactation and litter weight gain. More recently, Xue et al. (2012) observed a linear 

increase in litter weight gain as SID Lys increased from 45.0 to 68.5 g/d in mixed parity sows. 
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Yang et al. (2000) observed a quadratic response in litter gain with optimal litter growth rates 

occurring at 44, 55 and 56 g/d total Lys for parities 1, 2, and 3 respectively. These two studies 

are in agreement with Exp. 2 where litter gain increased (quadratic, P = 0.001) with increasing 

SID Lys and was maximized at 1.05% SID Lys for mixed parity sows. There was a decrease 

observed for litter growth in sows fed 1.20% SID Lys, however there was also a decrease in 

ADFI on this treatment. Tokach et al. (1992) observed that energy had to be increased along with 

Lys in order to obtain benefits in milk output, which would suggest why we saw a decrease in 

litter growth on the highest Lys treatment with reduced feed intake.   

In contrast, no differences in litter growth were observed by Dourmad et al. (1998), Shi et 

al. (2015) and Huber et al. (2015) when fed increasing dietary levels of 0.66 to 0.87%, 0.76 to 

1.14%, or 0.73 to 0.94% SID Lys, respectively. In Exp. 1, no improvement (P = 0.209) in litter 

gain was observed as SID Lys increased from 39 to 63 g/d for primiparous sows. However, the 

lowest SID Lys fed in Exp. 1 would be near the SID Lys of 44 g/d for optimal litter growth rate 

observed by Yang et al. (2000) in parity 1 sows, which could be why no difference was observed 

in our study.  When calculating the estimated SID Lys (g/d) per kg of litter gain in Exp. 1, the 

0.80 and 0.95% SID Lys treatments were supplying 39.9 and 45.0 g/d of SID Lys, respectively. 

This is less than the predicted requirement of 47.4 to 48.7 g/d SID Lys that the NRC (2012) 

model would estimate for the observed litter growth for all treatments.  However, no differences 

in litter growth were observed. This coupled with greater backfat loss on the low SID Lys 

treatments in Exp. 1 demonstrates that sows will continue to mobilize body reserves to meet the 

demands of milk production and litter growth when diets are low in SID Lys.   When estimating 

the g/d SID Lys recommended per kg of litter growth observed in Exp. 2 (NRC, 2012), our sows 

should require 43 to 47 g SID Lys.  However, our estimated consumption based on ADFI was 48 

to 70 g/d of SID Lys.  This would mean our sows in Exp. 2 were consuming more SID Lys than 
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what was needed for litter growth and may have been depositing excess SID Lys and AA’s as 

body protein, which is supported by increased loin eye depth at weaning with increasing SID 

Lys.  Our study would be in agreement with previous literature (Touchette et al., 1998) that 

suggests the Lys requirement for litter growth is less than that for reducing loin eye depth loss.  

Our study would also demonstrate that 39.9 g/d of SID Lys was sufficient to meet litter demands 

in primiparous sows. It is important to note that the NRC (2012) model for SID Lys requirement 

per kg of litter growth does not incorporate studies with litter growth greater than 2.7 kg per day. 

Thus, with the use of more recent genetic lines in the current study, we observed litter growth 

rates that were above those used to create the model, which may be why the calculated SID Lys 

requirements for litter growth observed in our study were over predicted.   

Unlike multiparous sows who show an increase in milk yield when made anabolic during 

lactation, primiparous sows seem to partition extra energy into body growth rather than milk 

production (Pluske et al. 1998). This could explain why only multiparous sows showed an 

increase (quadratic, P = 0.001) in litter growth when supplied with additional SID Lys in 

lactation. Clowes et al. (2003) suggests that there is no impact in litter growth up to d 20 of 

lactation when total dietary Lys consumption ranged from 24 to 50 g/d, however from d 20 to 

weaning at d 23, there was significant decrease in litter growth and milk protein concentration 

due to large amounts (> 12%) of sow body protein being mobilized on the low total Lys 

treatment. This indicates that until d 20 of lactation, a minimal amount of body reserves has been 

mobilized but as the milking pressure and litter growth increases after that point, increasing 

dietary SID Lys and other AA’s may be needed to maintain productivity. 

 Reproductive performance 

 In Exp. 1, there was no difference (P = 0.975) in percentage of females bred by d 7 after 

weaning. This is in agreement with Yang et al. (2000) and Shi et al. (2015) where no differences 
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were found in WEI or percentage mated post weaning in primiparous sows. However, in the 

commercial setting of Exp. 2, there was a difference in percentage of females bred by 7 d in 

parity 1 sows, where increasing SID Lys from 0.75 to 1.20% increased (linear, P = 0.047) the 

percentage of females mated (Figure 3-2). Similarly, Xue et al. (2012) observed a decrease in 

WEI as SID Lys increased. These conflicting results could be due to the research setting 

(commercial vs. university) and make it difficult to determine the optimal SID Lys level in first 

parity sows needed to minimize WEI and improve the percentage of females bred by d 7 after 

weaning.  

In Exp. 2, no difference was observed in percentage of parity 2 or parity 3+ sows bred by 

d 7 after weaning which is in agreement with results of Yang et al. (2000). However, as SID Lys 

increased in parity 1 sows, protein loss was reduced and there was an increase in percentage bred 

by d 7 after weaning. This would suggest that increased body protein mobilization in parity 1 

sows decreases signs of estrus by d 7 after weaning. Similarly, King (1987) observed a shorter 

wean to estrus interval when body protein loss was minimized in parity 1 sows. Furthermore, 

because expression of estrus by d 7 increased in parity 1 sows as SID Lys increased to 1.20%, 

and litter growth was maximized at 1.05% SID Lys, it can be hypothesized that the SID Lys 

requirement for reproduction is greater than that for litter growth.  

There were no differences observed in d 30 conception rate in Exp. 1 or Exp. 2. Few 

studies report a value for conception rate; however, Shi et al. (2015) observed no differences in 

conception rate as SID Lys increased from 0.76 to 1.14%. No difference in farrowing rate was 

observed in either of our studies, which is in agreement with the current body of literature 

(Touchette et al., 1998; Yang et al., 2000). 
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 Subsequent litter characteristics 

A study conducted by Yang et al. (2000) observed a decrease in total born and born alive 

and increased stillborns for the subsequent litter as SID Lys level in the previous lactation 

increased.  However, they explained that litter size (total born and born alive) did not differ in 

sows fed 0.60 to 1.10% SID Lys and was only reduced in sows fed 1.35 and 1.60%. They 

hypothesized this decrease at the highest SID Lys concentrations was due to elevated serum urea 

nitrogen levels or low lactation feed intake. Touchette et al. (1998) also saw decreased total born 

and born alive with increasing dietary SID Lys in lactation, but only when ratios of other amino 

acids to SID Lys were held constant, thus increasing as SID Lys increased. They suggest that 

litter size may be affected by different amino acid ratios in the diet.  Clowes et al. (2003) 

demonstrated that protein restriction during lactation can negatively affect follicle size and, 

consequently, ovulation rate, which may reduce subsequent total born.  

In contrast, both of our studies demonstrated that there were no differences in subsequent 

total born, born alive, stillborn or mummies as SID Lys level increased in the previous lactation. 

More recently, Shi et al. (2015) observed no difference in subsequent total born, born alive, or 

stillborn when SID Lys was increased from 0.76 to 1.14%. Schenkel et al. (2010) conclude that 

subsequent litter size is affected by absolute body reserves at weaning and the amount of tissue 

mobilization during lactation. Their study does not mention any data on percentage of piglets 

born alive, stillborn or mummies. In addition, tissue mobilization in the current studies did not 

occur at the same level as described by Schenkel et al. (2010), and may suggest that we 

minimized any reduction in subsequent total born with the levels of SID Lys fed. 

In conclusion, our results demonstrate that the sow will mobilize body fat reserves to 

satisfy litter growth requirements if nutrients are not met by dietary intake.  However, increasing 

the levels of AA’s can support the reduction of protein loss in lactation. While the optimal level 
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of dietary SID Lys required by the sow may vary based on response criteria and parity, it is 

evident that reducing protein mobilization is beneficial to reproductive performance. 
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Table 3-1 Diet composition (as-fed basis), Exp. 11 

 

 Standardized ileal digestible Lys, % 

Ingredient, % 0.80 0.95 1.10 1.25 

  Corn 68.17 65.64 63.00 60.38 

  Soybean meal, 46.5% CP 25.58 27.89 30.21 32.49 

  Choice white grease 2.00 2.00 2.00 2.00 

  Limestone 1.30 1.28 1.28 1.25 

  Monocalcium P, 21% P 1.80 1.78 1.75 1.75 

  Salt 0.50 0.50 0.50 0.50 

  L-Lys-HCl --- 0.12 0.24 0.36 

  DL-Met --- 0.01 0.07 0.14 

  L-Thr --- 0.06 0.13 0.20 

  L-Trp --- --- --- 0.02 

  L-Val --- 0.09 0.18 0.28 

  Trace mineral premix2 0.15 0.15 0.15 0.15 

  Sow vitamin premix3 0.25 0.25 0.25 0.25 

  Vitamin premix4 0.25 0.25 0.25 0.25 

Total 100 100 100 100 

     

Calculated analysis     

Standardized ileal digestible (SID) AA, %     

  Lys 0.80 0.95 1.10 1.25 

  Ile:Lys 80 72 65 61 

  Leu:Lys 173 151 135 123 

  Met:Lys 32 29 31 34 

  Met & Cys:Lys 63 56 56 56 

  Thr:Lys 69 67 67 67 

  Trp:Lys 23 21 19 19 

  Val:Lys 89 87 87 87 

Total Lys, % 0.93 1.08 1.24 1.40 

ME, kcal/kg 3,313 3,315 3,318 3,322 

CP, % 17.8 18.9 20.1 21.3 

Ca, % 0.90 0.90 0.90 0.90 

P, % 0.75 0.75 0.75 0.75 

Available P, % 0.45 0.45 0.45 0.45 
1Diets were fed from d113 of gestation to weaning.  
2Provided per kilogram of premix: 26.5 g Mn from manganese oxide, 110 g Fe from iron 

sulfate, 110 g Zn from zinc sulfate, 11 g Cu from copper sulfate, 198 mg I from calcium 

iodate, and 198 mg Se from sodium selenite. 
3Provided per kg premix: 4,409 IU vitamin A; 44 mg biotin; 992 mg vitamin B6; 331 mg 

folic acid; 110,229 mg choline; 9,921 mg L-carnitine. 
4Provided per kg premix: 4,409,171 IU vitamin A; 551,150 IU vitamin D3; 17,637 IU 

vitamin E; 15 mg vitamin B12; 1,764 mg menadione; 3,307 mg riboflavin; 11,023 mg 

pantothenic acid, 19,841 mg niacin. 
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Table 3-2 Diet composition (as-fed basis), Exp. 21 

 Standardized ileal digestible Lys, % 

Ingredient 0.75 0.90 1.05 1.20 

Corn 73.40 68.36 63.28 58.51 

Soybean meal, 46.5% CP 19.28 24.23 29.18 33.96 

Corn oil  3.00 3.00 3.00 3.00 

Limestone 1.41 1.39 1.36 1.34 

Monocalcium P, 21% 1.33 1.30 1.27 1.24 

Salt 0.50 0.50 0.50 0.50 

L-Lys-HCL 0.15 0.19 0.23 0.28 

L-Thr 0.04 0.07 0.11 0.15 

L-Trp 0.01 0.01 0.02 0.02 

DL-Met --- 0.003 0.05 0.09 

L-Val 0.06 0.12 0.18 0.24 

Sal Curb2 0.33 0.33 0.33 0.33 

Sow vitamin/mineral premix3 0.20 0.20 0.20 0.20 

Choline chloride 0.13 0.13 0.13 0.13 

AxtraPhy 25004 0.02 0.02 0.02 0.02 

Dye5 0.16 0.16 0.16 --- 

Total 100 100 100 100 

     

Calculated analysis     

Standardized ileal digestible (SID) AA, % 

  Lys 0.75 0.90 1.05 1.20 

  IIe:Lys 71 68 66 64 

  Met: Lys 30 30 30 31 

  Met & Cys: Lys 61 56 56 56 

  Thr:Lys 67 67 67 67 

  Trp:Lys 20 20 20 20 

  Val:Lys 90 90 90 90 

Total Lys, % 0.87 1.04 1.20 1.37 

ME, kcal/kg 3,479 3,479 3,479 3,479 

CP, % 15.5 17.5 19.6 21.6 

Ca, % 0.85 0.85 0.85 0.85 

P, % 0.62 0.63 0.65 0.66 

Available P, % 0.45 0.45 0.45 0.45 
1Diets were fed from d 114 of gestation to weaning. 
2Kemin Industries (Des Moines, IA) 
3Provided per kg of premix: 18 mg Cu; 0.8 mg I; 100 mg Fe; 40 mg Mn; 0.15 mg Se; 

125 mg Zn; 11,000 IU vitamin A, 1,980 IU vitamin D; 99 IU vitamin E; 4 mg vitamin 

K; 0.04 mg vitamin B12; 44.2 mg niacin; 27.5 mg pantothenic acid; 8.6 mg riboflavin; 

3.1 mg folic acid; 0.44 mg biotin; 5.1 mg vitamin B6; 2.2 mg thiamin; 0.44 mg 

chromium. 
4Dupont (St. Louis, MO) 
5Different colored dyes were added to distinguish among diets at the farm. 
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Table 3-3 Chemical analysis of diets (as-fed basis), Exp.11 

 Standardized ileal digestible Lys, % 

Item, % 0.80 0.95 1.10 1.25 

  DM 88.32 88.14 88.29 88.37 

  CP 17.99 18.68 20.01 21.40 

  Ca 1.03 1.05 1.08 1.09 

  P 0.77 0.75 0.79 0.79 

Total AA, %     

  Lys 1.01 1.12 1.26 1.43 

  Ile 0.72 0.74 0.78 0.85 

  Leu 1.55 1.48 1.64 1.74 

  Met 0.30 0.31 0.37 0.44 

  Met & Cys 0.63 0.64 0.71 0.81 

  Thr 0.70 0.77 0.86 0.97 

  Trp 0.22 0.22 0.24 0.27 

  Val 0.85 0.92 1.06 1.21 

  His 0.48 0.49 0.50 0.54 

  Phe 0.84 0.93 0.97 1.03 
1Diet samples were collected from each batch of feed at manufacturing from 

every fifth bag. Crude protein and total AA analyses were conducted in 

duplicate on composite samples by Ajinomoto Heartland Inc. (Chicago, IL). 

Dry matter, Ca, and P analyses were conducted on composite samples by 

Ward Laboratories (Kearney, NE). 
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Table 3-4 Chemical analysis of the diets (as-fed basis), Exp. 21 

 Standardized ileal digestible Lys, % 

Item, % 0.75 0.90 1.05 1.20 

  DM 88.02 88.24 88.54 88.88 

  CP 14.78 16.87 18.25 20.08 

  Ca 0.97 0.94 1.04 0.99 

  P 0.62 0.66 0.62 0.63 

Total AA, %     

  Lys 0.89 1.03 1.19 1.31 

  Ile 0.64 0.71 0.82 0.88 

  Leu 1.36 1.48 1.61 1.69 

  Met 0.22 0.24 0.32 0.38 

  Met & Cys 0.46 0.50 0.62 0.68 

  Thr 0.58 0.68 0.79 0.89 

  Trp 0.12 0.15 0.16 0.18 

  Val 0.82 0.94 1.12 1.25 

  His 0.38 0.42 0.48 0.51 

  Phe 0.75 0.84 0.94 1.00 

Free lys 0.12 0.14 0.18 0.21 
1Diets were collected twice per week and pooled to make a composite sample. 

Six composite samples per dietary treatment were sent for analysis. Total AA 

analyses were conducted on composite samples by University of Missouri 

Experimental Station Chemical Laboratories (Columbia, MO).  Dry matter, 

Crude protein, Ca and P analyses were conducted by Ward Laboratories 

(Kearney, NE).  
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Table 3-5 Effects of increasing standardized ileal digestible (SID) lysine in lactation diets on sow performance, Exp. 11 

 Standardized ileal digestible Lys, %  Probability, P < 

Item 0.80 0.95 1.10 1.25 SEM Linear Quadratic 

BW, kg        

  d 110 194.9 196.0 195.2 195.7 2.97 0.929 0.894 

  d 0 184.3 184.0 183.7 185.2 2.50 0.835 0.667 

  d 10 182.3 181.8 182.8 183.9 2.43 0.530 0.716 

  Wean 179.2 178.2 180.6 181.8 2.49 0.335 0.738 

BW loss, kg        

  d 0 to 10 -2.03 -2.23 -1.43 -1.31 0.958 0.439 0.860 

  d 10 to wean -3.08 -2.83 -2.28 -2.08 0.878 0.318 0.971 

  d 0 to wean -5.12 -5.06 -3.76 -3.38 1.377 0.235 0.899 

ADFI, kg        

  d 0 to 10 4.66 4.44 4.50 4.64 0.127 0.952 0.130 

  d 10 to wean 6.36 6.27 6.21 6.31 0.173 0.743 0.573 

  d 0 to wean 4.99 4.74 4.90 4.97 0.136 0.821 0.226 

Total Lys intake2, g/d 50.4 53.5 61.0 71.2 1.61 0.001 0.016 

SID Lys intake3, g/d 39.9 45.0 53.9 62.1 1.35 0.001 0.243 

BF loss, mm        

  d 0 to 10 -0.99 -1.62 -0.95 -1.09 0.249 0.549 0.306 

  d 10 to wean -1.48 -0.94 -1.23 -0.60 0.265 0.087 0.874 

  d 0 to wean -2.51 -2.53 -2.18 -1.65 0.329 0.046 0.410 

Lactation length, d 18.7 18.8 18.6 18.4 0.34 0.946 0.534 

Wean-to-estrus interval, d 5.00 4.91 4.97 4.61 0.45 0.691 0.800 

Females bred by 7 d after weaning, % 89.9 89.9 94.2 100.0 6.05 0.975 0.977 

d 30 conception rate4, % 87.5 96.0 96.3 78.8 8.0 0.537 0.051 

Farrowing rate5, % 79.2 88.0 96.0 74.8 8.03 0.789 0.290 
1A total of 111 primiparous sows (DNA 241, DNA Genetics) across 4 farrowing groups were used in a 21-d trial with 27 to 29 

sows per dietary treatment.  
2Calculated using analyzed Lys values and ADFI. 
3Calculated using formulated SID Lys values and ADFI. 
4Number of sows confirmed pregnant on d 30 post mating divided by number of sows bred. 
5Number of sows farrowed divided by number of sows bred by d 21 after weaning. 
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Table 3-6 Effects of increasing standardized ileal digestible (SID) lysine in lactation diets on litter and subsequent  

performance, Exp. 11 

 SID Lysine, %  Probability, P < 

Item 0.80 0.95 1.10 1.25 SEM Linear Quadratic 

Litter size, n        

   d 2 13.1 13.3 13.0 12.3 0.70 0.983 0.953 

   d 10 13.1 13.3 13.0 12.3 0.70 0.983 0.953 

  Wean 12.9 13.1 12.9 13.2 0.70 0.916 0.988 

Litter weight, kg        

  d 2 19.2 19.4 18.5 18.7 0.49 0.263 0.965 

  d 10 42.0 41.6 41.4 41.5 0.53 0.451 0.528 

  Wean 69.5 69.0 67.4 67.7 1.31 0.120 0.728 

Litter gain, kg        

  d 2 to 10 22.8 22.5 21.9 22.1 0.57 0.267 0.617 

  d 10 to wean 27.6 27.7 25.7 26.1 1.22 0.194 0.899 

  d 2 to wean 50.2 49.9 48.0 48.4 1.36 0.209 0.766 

Litter ADG d 2 to wean, g 2,984 2,959 2,896 2,938 57.3 0.374 0.545 

Subsequent performance2 
       

Total piglets born per sow farrowed, n 14.3 16.4 15.2 15.7 0.95 0.603 0.394 

Born alive, % 94.2 89.8 91.0 93.7 2.05 0.955 0.054 

Stillborn, % 5.0 7.2 7.0 5.0 1.73 0.998 0.193 

Mummy, % 0.6 3.0 1.5 1.0 1.03 0.960 0.090 
1A total of 111 primiparous sows (DNA 241, DNA Genetics) across 4 farrowing groups were used in a 21-d trial 

with 27 to 29 sows per dietary treatment.  
2Number of sows included for subsequent performance were 19, 22, 26, and 20 for dietary treatments of 0.80, 0.95, 

1.10 and 1.25% SID Lys, respectively. 
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Table 3-7 Effects of increasing lysine on sow performance in lactation of high-performing gilts and sows under commercial 

conditions, Exp. 21 

 Standardized ileal digestible Lys, %  Probability, P < 

 0.75 0.90 1.05 1.20 SEM Linear Quadratic 

Count, n 187 185 194 144 --- --- --- 

Parity 3.1 3.2 3.2 3.2 0.15 0.576 0.928 

Sow BW, kg        

  d 1122 209 209 209 208 1.8 0.478 0.932 

  Post-farrow 2,3 195 194 194 193 1.8 0.487 0.958 

  Wean2 173 176 180 177 2.0 0.017 0.046 

Sow BW change, kg        

  Post-farrow3 to wean2 -21.3 -18.2 -14.6 -16.9 1.45 0.001 0.018 

  d 112 to wean2 -35.7 -31.9 -28.5 -31.6 1.50 0.003 0.004 

Sow back fat4, mm        

  d 1122 20.0 21.2 20.3 20.1 0.65 0.676 0.184 

  Wean2 18.6 18.4 17.6 18.0 0.45 0.121 0.395 

  Change (d 112 to wean)2 -1.4 -2.6 -2.8 -2.6 0.44 0.028 0.061 

Loin eye depth, mm        

  d 1122 52.9 52.4 52.3 52.6 0.77 0.722 0.575 

  Wean2 50.2 51.2 52.0 52.6 0.64 0.002 0.784 

 Change (d 112 to wean)2 -1.9 -1.0 -0.1 0.5 0.61 0.002 0.784 

Lactation length, d 21.3 21.4 21.4 21.4 0.11 0.485 0.435 

Females bred by d 7 after weaning2, % 88.9 92.6 94.8 92.4 2.60 0.227 0.199 

d 30 conception rate5, % 94.7 89.7 95.8 90.8 2.86 0.928 0.700 

Farrowing rate6, % 92.3 85.6 93.8 88.6 3.39 0.957 0.951 

ADFI from feed delivery records7, kg 6.45 6.36 6.68 5.90 --- --- --- 

SID Lys intake8, g/d 48.4 57.2 70.2 70.6 --- --- --- 
1A total of 710 sows (DNA 241) and litters were used in a lactation study from d 112 of gestation until weaning. 
2Significant differences of treatment within parity category observed. 
3Post-farrow weight was calculated using d 112 BW and subtracting weight of conceptus (calculated using modified equation by 

Thomas et al., 2016). 
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4A subsample of sows (n = 369) were ultra-sounded on d 112 for backfat and loin eye depth and subsequently used in the backfat 

and loin eye depth change calculation. All 710 sows were measured at weaning for backfat and loin eye depth. 
5Number of sows confirmed pregnant on d 30 post mating divided by number of sows bred. 
6Number of sows farrowed divided by number of sows bred by d 21 after weaning. 
7Calculated using total feed deliveries by treatment and dividing by total number of sows on feedline. 
8Calculated using ADFI multiplied by SID Lys in the experimental diet. 
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Table 3-8 Effects of increasing lysine in lactation on litter performance of high-performing gilts and sows under commercial 

conditions, Exp. 21 

 

 Standardized ileal digestible Lys, %  Probability, P <   

 0.75 0.90 1.05 1.20 SEM Linear Quadratic 

Total born 15.9 15.4 15.4 16.4 0.38 0.497 0.255 

Litter size2, n        

  d 2 13.6 13.7 13.7 13.7 0.07 0.950 0.965 

  d 17 12.6 12.7 12.7 12.7 0.11 0.896 0.945 

Litter weight, kg        

  d 2 21.5 21.8 22.2 21.2 0.34 0.835 0.016 

  d 17 61.3 61.5 64.1 60.2 0.64 0.807 0.001 

Litter gain d 2 to 17, kg 39.7 39.8 42.5 38.6 0.64 0.807 0.001 

Litter ADG d 2 to 17, g 2,695 2,704 2,887 2,619 43.4 0.807 0.001 

Subsequent performance3        

  Total born per sow farrowed, n 15.9 16.0 16.3 15.1 0.41 0.482 0.310 

  Born alive, % 92.0 93.0 92.0 92.4 0.78 0.863 0.666 

  Stillborns, % 4.3 3.3 4.2 5.1 0.63 0.150 0.065 

  Mummies, % 3.5 3.6 3.7 2.4 0.51 0.158 0.110 
1A total of 710 sows (DNA 241) and litters were used in a lactation study from d 112 of gestation until weaning. 
2Litters were cross-fostered to equalize litter size up to 48-h post-farrowing. 
3Number of sows included in subsequent performance are 161, 149, 140, 108 for dietary treatments of 0.75, 0.90, 1.05 and 1.20% 

SID Lys, respectively. 
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Table 3-9 Least square mean estimates of the effects of SID lysine level during lactation of high-performing parity 1, parity 2 and parity 3+ sows under commercial conditions, Exp. 21,2 

Item Parity 1 Parity 2 Parity 3+ 

SID Lys, % 0.75 0.90 1.05 1.20 Linear Quadratic 0.75 0.90 1.05 1.20 Linear Quadratic 0.75 0.90 1.05 1.20 Linear Quadratic 

Count, n 38 39 39 27   44 43 46 33   105 103 109 84   

Sow BW, kg 
    

  
    

  
    

  

  d 112 197 196 194 198 0.911 0.374 205 201 203 200 0.288 0.938 226 228 228 226 0.772 0.133 

    SEM 3.4 3.4 3.4 3.8   3.2 3.2 3.2 3.4   2.0 2.0 2.0 2.1   

  Post-farrow3 183 183 181 185 0.895 0.348 190 186 188 185 0.287 0.937 211 213 213 211 0.766 0.133 

    SEM 3.4 3.4 3.4 3.8   3.2 3.2 3.1 3.4   2.0 2.0 2.0 2.1   

  Wean 159 159 164 162 0.209 0.756 165 170 169 170 0.365 0.457 196 200 206 199 0.014 0.001 

    SEM 3.6 3.6 3.6 4.1   3.3 3.3 3.3 3.7   2.1 2.1 2.1 2.3   

Sow BW change, kg                   

  Post-farrow3 to wean -24.5 -25.8 -18.6 -24.4 0.223 0.237 -23.8 -15.6 -18.8 -14.1 0.022 0.413 -14.8 -13.2 -6.3 -12.3 0.009 0.007 

    SEM 2.54 2.53 2.53 2.96   2.36 2.38 2.32 2.70   1.52 1.54 1.49 1.69   

  d 112 to wean -37.2 -37.3 -29.7 -37.5 0.361 0.107 -37.5 -30.0 -33.8 -29.3 0.035 0.321 -30.9 -28.4 -22.1 -28.2 0.011 0.003 

    SEM 2.6 2.6 2.6 3.1   2.4 2.5 2.4 2.8   1.6 1.6 1.5 1.7   

Backfat d 1124, mm 21.9 23.3 22.2 24.3 0.270 0.756 20.3 21.4 20.2 18.5 0.150 0.162 17.8 18.9 18.5 17.4 0.597 0.142 

    SEM 1.16 1.12 1.15 1.27   1.06 1.10 1.11 1.23   0.75 0.79 0.76 0.84   

Backfat wean4, mm 20.3 19.9 18.9 20.5 0.840 0.189 18.4 17.9 16.9 17.5 0.238 0.442 17.1 17.3 17.0 16.0 0.087 0.208 

    SEM 0.79 0.78 0.77 0.93   0.73 0.74 0.72 0.84   0.47 0.48 0.47 0.53   

Backfat change d 112 to wean4, mm -1.8 -3.6 -3.8 -4.3 0.029 0.363 -1.8 -3.0 -3.2 -1.7 0.978 0.057 -0.5 -1.0 -1.5 -1.7 0.080 0.817 

    SEM 0.77 0.74 0.77 0.85   0.71 0.73 0.74 0.82   0.50 0.53 0.51 0.56   

Loin eye depth d 112, mm 55.7 53.8 56.8 58.5 0.034 0.152 52.7 51.9 49.7 48.2 0.004 0.782 50.3 51.6 50.5 51.0 0.894 0.667 

    SEM 1.36 1.31 1.36 1.50   1.25 1.30 1.21 1.46   0.88 0.94 0.89 0.99   

Loin eye depth wean, mm 48.6 48.1 51.4 51.7 0.009 0.718 49.9 52.4 51.1 51.7 0.471 0.394 52.1 53.0 53.5 54.5 0.029 0.953 

    SEM 1.13 1.08 1.14 1.27   1.03 1.07 1.10 1.21   0.73 0.78 0.74 0.83   

Loin eye depth change d112 to wean, mm -3.5 -4.0 -0.7 -0.4 0.009 0.718 -2.3 0.2 -1.1 -0.4 0.471 0.394 0.1 0.9 1.4 2.4 0.029 0.953 

    SEM 1.13 1.08 1.14 1.27   1.03 1.07 1.10 1.22   0.73 0.78 0.74 0.82   

Litter weight d 2, kg 20.8 21.0 21.7 19.5 0.329 0.041 22.2 23.1 23.8 23.2 0.145 0.188 21.4 21.4 21.2 20.8 0.252 0.572 

    SEM 0.59 0.58 0.58 0.70   0.55 0.56 0.54 0.63   0.36 0.36 0.35 0.40   

Piglet fallout rate, % 1.4 2.6 0.9 3.4 0.568 0.512 3.9 2.2 5.4 2.0 0.683 0.532 2.2 2.8 2.2 2.5 0.933 0.746 

    SEM 0.67 0.98 0.54 1.37   1.07 0.82 1.23 0.88   0.49 0.55 0.47 0.55   

Females bred by d 7 after weaning, % 76.5 84.1 92.3 92.7 0.047 0.831 88.8 95.4 95.6 90.8 0.799 0.183 95.2 95.7 95.9 93.7 0.743 0.559 

    SEM 7.55 6.64 4.43 5.30   5.01 3.29 3.16 5.27   2.18 2.18 2.04 2.85   
1A total of 710 sows (DNA 241) and litters were used in a lactation study from d 112 of gestation until weaning. 
2Only variables that have a significant difference observed within treatment across parity category are shown. 

3Post-farrow weight was calculated using d112 BW and subtracting weight of conceptus (calculated using modified equation by Thomas et al., 2016). 
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Figure 3-1 Estimated mean sow BW loss from d 112 of gestation until weaning within parity category for sows fed increasing SID 

Lys in lactation, Exp. 21  

 

1A total of 710 sows (DNA 241) and litters were used in a lactation study from d 112 of gestation until weaning.  Sows were fed 

experimental diets from d 114 of gestation until weaning (approximately 21 d). 
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Figure 3-2 Estimated percentage females bred by d 7 after weaning within parity category for sows fed increasing SID Lys in 

lactation, Exp. 21 

1A total of 710 sows (DNA 241) and litters were used in a lactation study from d 112 of gestation until weaning.  Sows were fed 

experimental diets from d 114 of gestation until weaning (approximately 21d). 
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