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CHAPTER 1

INTRODUCTION

This report deals with the application of the maximum principle to the
optimal temperature control of life support systems. A life support system
is a system for creating, maintaining, and controlling an enviromment so
as to permit personnel to function efficiently. The control of temperature
is probably the most important role of the life support system.

The need for providing an automatic control system to an air-condi-
tioning system has long been recognized [24, 42]. It is also a well-known
fact that use of automatic control is necessary for the life support system
of a space cabin or submarine or underground shelter [43, 44]. It appears
that analysis and synthesis of the control systems for the air-conditicning
and life support systems have so far been carried out by the classical
approach [1,6,7,13,22,24,26,42,43,44,45] which is essentially a trial-and-
error procedure or a disturbance-response (or input—output) approach in
which extensive use is made of the transform methods such as the Laplace
transform (s-domain), Fourier transform (w-domain), and z-transform (dis-
crete time-domain). Inspite of the extensive use of mathematics, the
classical approach is essentially an empirical one [41].

An approach known as the modern (optimal) control theory, distinctly
different from the classical'oné, to the analysis and synthesis of a con-
trol system has recently been developed [3,14,32,34,35,36,41]. It is
based on the state-space characterization of a system. The state-space

is the abstract space whose coordinates are the state properties of the system




or the variables which define the characteristics of the system [41]. This
approach involves mainly maximization or minimization of an objective function
(functional) which is a function of state and control variables which are in
turn functions of time and/or distance coordinate. The objective function

is specified, constraints are imposed on the state and decision variables,

and an optimal control policy is determined by extremizing the objective
function by means of mathematical techniques such as the calculus of vari-
ations, maximum principle, and dynamic programming [2,3,41]. This modern
approach is entirely theoretical in the sense that no trial-and-error is in-
volved in‘adjusting the controller'.

A series of five papers containing the results of an original investi-
gation of the temperature control of confined spaces such as those in any
building and life support systems by means of the modern optimal control
theory have recently been published in Building Science [17,18,19,20,21].
All these five papers are concerned only with open-loop control. Also,
these papers deal only with problems of controlling systems subjected to an

impulse heat disturbance with the minimization of the objective function,

T
S = [ dt. The first of this series of articles, contains the derivation
0

of the mathematical models of several different systems and the simulations
of their behaviour and characteristics. In the second of the series, the
most basic form of Pontryag1n s maximum principle, which together with
dynamic programming constitutes the bulk of the modern control theory, is
outlined and its use is demonstrated by some numerical examples. The optimal
control of a system with equality state variable constraints imposed at the

end of the control action is considered in the third part. The fourth part




deals with some realistic problems of controlling systems with inequality
constraints imposed on the state variable, namely the temperature of the
cabin. In the final part of the series, some aspects of sensitivity ana-
lysis are presented and discussed by fully exploiting the results obtained
in the four preceding parts.

Bhandiwad [5] has dealt with open-loop control of systems subjected
to both impulse and step heat disturbances. 1In problems dealing with

an impulse heat disturbance he considers minimization of the cbjective

T

function, § = f (a + bﬁz)dt. He limits himself to problems having specified
0

final control time and free right end in the case of systems subjected to

a step heat disturbance with the minimization of the objective function,
T

_ 2 2
S = g [be™ + c(xl—xld) ]dt.

The aim of this study is two-fold (i) to deal with some of the un-
explored problems of controlling systems subjected to a step heat distur-
bance in the case of open-loop control and thus acting as a complement to
the two earlier works; (ii) to make an original investigation of the closed-
loop temperature control of systems subjected to both an impulse and a
step heat disturbances separately and to compare the results with those
of open-loop control.

The open-loop system considered in this report consists of a confined
space (1 CST model) subjecteé‘téla heat disturbance and a heat exchanger
(of negligible time constant) while the closed-loop system considered here
has an additional element - the feedback element - namely the thermostat.

In Chapter 3, the performance equations which represent the dynamic
characteristics of the system for a step heat disturbance as well as an impulse

heat disturbance are considered [17]. 1In Chapter 4, the basic form of




Pontryagin's maximum principle is stated and it is then applied to obtain the
open-loop optimal control policy for a simple system with a linear performance
equation and a quadratic objective function. In Chapter 5, the basic form of
the linear regulator problem (the first.solution of which was due to Kalman)
is outlined and it is then used to obtain the closed-loop optimal control

law for the same simple example of Chapter 4, thereby showing that the
open-loop control policy and the closed-loop control law are one and the

same for a system with linear performance equation and quadratic objective
function. Chapter 6 deals with the open-loop control of a heating system,
subjected to a step heat disturbance, having the initial and final values

of the state variable - namely, the temperature - fixed but the final time

T to be determined and with the following objective functions to be mini-

mized:
T
@ s=/f at
0
¥ 2
(ii) S =f (a+b“)dt
0
(iii) § = jT [be2 + c(x,-x )z]dt
2k "4 1" %14
4 2 2
(iv) S = i: [a + be” + c(x -x ) ]dt

Chapter 7 contains the open-loop as well as the closed-loop control of two

examples - one dealing with a cooling system subjected to an impulse heat




input and the other dealing with a heating system subjected to a step

heat input. In each of these examples the performance equation is of linear
form and the objective function is of quadratic form. Also, each example
has the right-end free and deals with both the cases of specified and un-
specified final time. It is found, in each example, that the open-loop
control policy and the closed-loop control law are exactly the same whether
optimal T is specified or not, as long as the linear system has a quadratic

functional.




CHAPTER 2

AUTOMATIC CONTROL SYSTEMS

2.1 The Control Systems

Nowadays automatic control systems play an important role in the de-
velopment of both civilization and technology. Domestically, automatic
thermostats in furnaces and air conditioners regulate the temperature and
humidity of modern houses for comfortable living. Industrially, automatic
control systems are employed to improve both the quantity and the quality
of manufactured products. In modern weapons systems, the applications of
control systems have become overwhelmingly important.

The basic control system may be described by the simple block diagram
shown in Fig. 2.1. The output variable ¢ is controlled by the input vari-
able r through the elements of the control system. For instance, the angu-
lar position of the steering wheel of an automobile controls the direction
of the front wheels. In this case, the position of the steering wheel is
the input, and the direction of the front wheels is the oputput; the control
system elements are composed of the steering mechanisms [33].

Now there are two main classifications of the control systems, namely
open—-loop and closed-loop (feedback).

An open-loop system is a system in which the output has no effect upon
the input signal while a closed-loop control system is a system in which the
output has an effect upon the input quantity in such a manner as to maintain
the desired output value [12].

It was as long ago as 1788 that James Watt decided that a man controlling
the opening and closing of steam valves was not the best way of keeping the
speed of his steam engines constant. So the Watt governor, which used the

'1ift' of rotating balls as a speed monitor, automatically shutting off the




steam as the speed tended to increase and vice versa, was the first feedback
control system brought to prominence, although undouttedly not the first to

be applied [27].

2.2 Definition of Feedback Control System

American Institute of Electrical Fngineers (A.I.E.E.) defines a feed-
back control system as follows [37]: "A feedback control system is a control
system which tends to maintain a prescribed relationship of one system variable
to another by comparing functions of these variables and using the difference
as means of control”,

According to the Institution of Radio Engineers (T.R.Ek.)} [39], "A feed-
back control system is a control system comprising one or more feedback con-
trol loops, which combines functions of the contrclled signals with functions
of the commands to tend to maintain prescribed relationships between the
commands and the controlled signals.

According to Hammond [25], "A feedback system comprises ome or more dis-
tinguishable elements which react on each other in a predetermined manner and
are arranged so that a closed ring or loop of dependencies is formed,

Kuo's definition of feedback control systems runs as [33] "systems com-
prising one or more feedback loops which compare the controlled sifnal ¢
with the command signal r; the difference (e = r - ¢) is used to drive ¢

into correspondence with r.

2.3 The Principle of Closed-loop Control [27]

A closed-loop system is actuated by a signal dependent upon the difference
between the output and the input, commonly termed 'error actuation'. The
output is monitored, the signal from the monitor being in the same form as
the input signal so that the monitored output can be subtracted from the in-

put; the resulting 'actuating signal' (loosely called the 'error signal')




only exists when the monitored output differs from the input. This signal is
used to control the power supplied to the output in such a sense that when the
output is not aligned to the input, the resulting actuating signal drives the
output so as to reduce this signal to zero (negative feedback) in which state
no further power is fed to the output and it is correctly aligned and maintained.

Any changes in the input will cause the output to follow.

Figure 2.2 shows a simple schematic diagram of an open-loop and a closed-

loop system.

2.4 (Closed-loop Versus Open-loop System [27]

The two important features of the closed loop as compared to the open
loop system are:

(i) Since the output power is only controlled by, and not supplied by,
the actuating signal, high power outputs can be accurately controlled from
low power inputs.

(ii) Closed-loon systems have a self-regulating property. If distur-
bances on the output tend to change the output from its controlled value
then, since the input is unaltered, an actuating signal will develop which nro-

duces a reaction to the disturbances, tending to maintain the output.

2.5 Elements of a Closed-loop Control System [8]

The elements in the control system may be classified into the following
three categories:

(i) The controlled system, which may also be called the plant, the
process or the fixed component.

(ii) The sensors or measuring devices.

(iii) The system controller.




2.6 Types of Feedback Control Systems [12, 33]

The feedback action which is the fundamental difference between the
open-and closed-loop systems may be continuous or discontinuous. The dis-
continuous control may be 'a relay type or a sampling type [see Fig. 2.3].

Continuous control implies that the output is continuously being fed
back, in time, and compared with the reference output. The continuous data
may either be modulated, in which case the system is referred to as an a-c
carrier servo system, or ummodulated, when the system is called a d-c system.
For instance, a closed-loop system used for positioning a load is a typical
continuous data d-c¢ system.

The relay-type discontinuous control system is one in which the actuating
signal must reach a prescribed value before the dynamic unit will react to it;
that is,the control action is discontinuous in amplitude rather than in time.
For example, in the thermostatic control of a furnace, the furnace is turned
either 'on' or 'off', depending upon whether the room temperature is below
or ahove the preset reference.

In the sampling-data discontinuous control system, the input and output
quantities are periodically sampled and compared; that is,the control action
is discontinuous in time. A radar tracking system is an example of a sampled
data system.

Closed-loop control systems can be categorized [27] as electrical, kinetic
or process controls as shown in Fig. 2.4.

Some examples of the application of closed-loop control are [27]:

1. Aircraft flight control.

2. Automatic landing of aircraft.

3. Missile control.

4. Radar and gun control.




10.

11.

12.

Ship steering and roll stabilization.
Machine-tool control.

Remote position control.

Nuclear power control.

Speed control.

High-speed mechanical systems.
Voltage and current stabilizers.

Process controls.
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Fig. 2.1 The basic control system [33]
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Fig. 2.3 Types of feedback control system
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Fig. 2.4 Classgification of feedback control systems [27]
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CHAPTER 3

ENVIRONMENTAL SYSTEM OF CONFINED SPACES

A control system usually consists of three elements: the feedback
element, the control element, and the system proper [11]. The feedback
element in a life support system or an envirommental control system may
be composed of a thermostat, humidistat and pressure regulator, or any
combination of these depending on the purpose of control. The control
element may include a heat exchanger, humidifier, dehumidifier, blower,
portable air-conditioner, or any combination of these, depending on the
objective of control. For instance, both the thermostat and heat exchanger
are often used to control the air temperature inside a building. The
system proper may be a confined space, e.g., an underground shelter, a
space vehicle, a space suit, a submarine or a building.

The system considered here is shown schematically in Fig. 3.1. The
confined space may be a typical office located in a multi-story building
or the cabin of a spaceship. Air or oxygen or a mixture of oxygen and
nitrogen is circulated through the room or confined space via an air duct hy
mechanical means, e.g., a blower or a fan. Control of air temperature in
the system is accomplished with a duct system. The thermostat in the system
adjusts the position of the control valve of the heat exchanger in order to
provide the desired temperatute [17].

The performance equations of the system, which represent the dynamic
characteristics of the system and system components (see Fig. 3.2 and Fig.

3.3) are derived in [5, 17].

3.1 The System Proper

The following three main assumptions are made concerning the system proper:




(i) Room or cabin air is well mixed, i.e., air temperature
the system proper is uniform throughout at any instant
(ii) The thermal capacitance of room walls, floors, ceiling
windows is neglected, as well as that of any furniture

the system proper.

(iii) Heat loss through the walls and windows is negligihle.
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Using the continuity law or heat balance, the performance equation of

the system proper subjected to a step heat input is derived in dimensionless

form as
dxl
= K +
Tt X STy Xy, Ty K+ oog UO(t)
X; = o, at t =20
where
t = dimensionless time.
X, = dimensionless room temperature.
X, = dimensionless temperature of the circulation air.
2, = dimensionless disturbance temperature.
Uo(t] = step heat disturbance function.
"
r,f = system constants.
K

3.2 The Control Element

The heat exchanger which is the control clement of the system

(1)

under

consideration, can perform its control function in various ways, for




example, by changing the temperature or flow rate of the heat transfer
medium, or changing both.
Again using the continuity law or heat balance, the performance

equation of the control element of the system is derived in dimensionless

form as
IE_ ff2_+ X, = x, - (K8 + K) (2)
i3 dt 2 1 B Y
where
8 = control variable constrained between -1 corresponding to maximum
heating and +1 corresponding to maximum coocling.
T T time constant of the system proper.
T, = time constant of the heat exchanger.
KB
= system constants.
K
¥

3.3 The Feedback Element - Thermostat

llere it is assumed that the sensing element measures the room temper-
ature instantaneously and that there is no accumulation of heat in the
element, or for simplicity, it will be assumed that the sensing element

is the zero order element with its time constant, equal to zero. A

Tq»
detailed discussion of the response of the thermostat can be found in [11].
For simplicity, in this report a life support system consisting of an

air-conditioned room or cabin and a heat exchanger of negligibly small time

constant (1, = 0) subjected to a step heat disturbance is considered.

17




The performance equation of such a system is obtained by combining

equations (1) and (2) and setting T, = 0 as
dxl
TP + rle = rZKU. - rlKBB - rIKT + os (3)
X, =@, at t=20

Now the performance equations of the system subjected to an impulse
heat disturbance are also derived in [5].

The performance equation of the system proper subjected to an im-
pulse heat disturbance which is taken into account in the initial condition

immediately after the onset of the process, is derived in dimensionless

form as
dxl N r1K1x2 .k
dt 1 K4 271
(4)
x, =1 at t = o
1
where
3
K1
= system constants.
K
4
The performance equation of the control element of the system is
also derived in dimensionless form as
dx,,
Tyt % T Xy - KRR - KKy (5)

where

18
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K,
Ky

= system constants.

Again for simplicity, in this report a life support system consisting of
an air-conditioned room or cabin and a heat exchanger of negligibly small time
constant (12 = 0) subjected to an impulse heat disturbance is considered.

The performance equation of such a system is obtained by combining
equations (4) and (5) and setting T, = 0 as

I + rle = rzKl - rlleze - r1K1K3

(6)
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Fig. 3.1 The system, an air-conditioned room
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CHAPTER 4
OPEN-LOOP CONTROL VIA THE MAXTMUM PRINCIPLE

4.1 Statement of the Algorithm

The basic notion of the original version of Pontryagin's maximum prin-
ciple [15, 36] is introduced. It can be used to treat a wide variety of
optimization problems asscciated with simple continuous processes.

Consider that the dynamic behaviour of a controlled system can be

represented by a set of differential equations

dx,
T = £ [x(0), %,(8)5eune,x (£)5 600D, B,(E),sueees,B (B)],

- H= T . ——Y t <t=<T (i)
or in vector form

L - £x(r), 8(B)], L <t<T (ia)

where x(t) is an s-dimensional vector function representing the state of
the process at time t and 6(t) is an r-dimensional vector function repre-
senting the decision at time t [15, 36]. The functions fi, Ll P S — -
are single valued, bounded, differentiable with respect to the x's with
bounded first partial derivatives, and are continuous in the 6's on a pro-
duct region x6, where x and 8 are closed regions in the s-dimensional
x-space and r—-dimensional 6-space respectively [9]. Note that we are
dealing with the autonomous systems in which the right-hand side of the
performance equation, equation (i), depends implicitly on time t. The
non-autonomous systems are those in which the right-hand side of the
performance cquation, equation (i), depends explicitly on time L.

A typical optimization problem associated with such a process is to

find a piecewise continuous decision vector functiomn, 0(t), subject to the
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p-dimensional constraints

{1 =1, 250nesia . (ii)
hi[e(t)] < 0, y 4 sP
such that the performance index
s =
S = Z e X, €Ll ¢. = constant (1ii)
isp * 1 .

is minimum (or maximum) when the initial conditions
xi(to) = xiol i = 1’ 2,-.0--,5 (iv)

are given, The duration of control, T, is specified and the final condi-
tions of state variables are unfixed, This type of problem is often called
the free right-end problem (with fixed T), The decision vector (or a
collection of control variables) so chosen is called an optimal decision
vector (or optimal control variables) and is denoted by 8 (t).

The procedure for solving the problem is to introduce an s-dimensional

adjoint vector z(t) and a Hamiltonian function H which satisfy the following

relations

5

HIX(1),0(8),2(6)] = § 2. (t) £,[x(1),0(1)] e
i=1

dz. s of .

1. aH o i=2 1, 250000e,S
T " T, WL, ’ (ot
i j=1 i
z,(T) = ¢, i=1, 2,00000,s (vii)

The set of equations, equations (i), (iv), (vi) and (vii), constitutes
a two-point split boundary value problem, whose solution depends on 6(t),
The optimal decision vector 8(t) which makes S an extremum also makes the

llamiltonian an extremum for all t, i.e., t <t <T [15, 16, 23, 36, 40].
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A necessary condition for S to be an extremum with respect to 0(t) is

EEL.= 0, i=1, 2,00uu.,T (viii)

if the optimal decision vector is interior to the set of admissible
decisions 6(t) [the set given by equation (ii)]. If 6(t) is constrained,
the optimal decision vector 8(t)} is determined either by solving equation
(viii) or by searching the boundary of the set. More specifically, the
extremum value of Hamiltonian is maximum (or minimum) when the control
variables are on the constraint boundary, Furthermore, the extremum value
of the Hamiltonian is constant at every point of the time under the optimal
condition. It is worth noting that the final conditions of the adjoint
variables, zi(T], are often given as -, instead of ci as shown in equation
(vii), in employing the maximum principle of Pontryagin. The use of such
final conditions of zi(t) gives rise to the condition that the llamiltonian
is maximum when the objective function is minimized, and minimum when the
objective function is maximized as stated in the original version of the
maximum principle of Pontryagin [15, 36, 38].

If both the initial and final conditions of state variables are given,
the problem is said to be a boundary value problem. The basic algorithm
presented except the condition given by equation (yii) is still applicable.

If optimization {usually minimization) of time t is involved in the
objective function in a problem with an unfixed duration of control, T,
the problem is then called a time optimal problem. In this case, the
basic algorithm presented is still applicable with an additional condition
that the extremal value of the Hamiltonian is not only a constant hut also

identical to zero, The simplest example of the time optimal controcl prohlem




is one in which the performance index is of the form

T
s=][dt
0

Such a problem is often called a minimum time problem.
1
4.2 An Example ' E 5
The use of the maximum principle to obtain open-loop control is dem-

onstrated here by considering é'sfmple example in detail, Tet the perfor-

mance equation of a simple process be

[=%
o

X

|

5 F xl + 0 (1)

o

with the initial condition
xl(O) = ]

The objective function to be minimized is the sum of the integrated
control effort to maintain the state of the system in the desired state
and the integrated deviation from the desired state over a specified
control time and is given by

T

S = lAf (82 + xz)dt (2)
2 1

0

This problem as stated has a fixed time interval with free right-end.

Introducing another state variable xz(t) such that

t . .
1 2 2
:2.] (67 + xj)dt

x,(t)
2 0

it follows that

]
P =
D

to

+
o) -

=

Ll 2%

26
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The problem is thus transformed into that of minimizing xz(T).

According to Pontryagin's maximum principle the llamiltonian is

1

2
H = zl(e + xl) +3 zz(e + xi) (4)

The adjoint variables are defined by

dz
1 3H
& T T, - T AT By kLY = @ (5)
1
dz
2 aH »
F—-E—O, ZZ(T)—I (ﬁ)
Solving equation (6) for z, gives
zztt) =1, 0<t<T 7)
Hence the Hamiltonian can be rewritten as
& 1 a2, 2 8
H zl(e + xl) + 7 (8™ + xl) (8)
According to the maximum principle, !l must be a minimum in 6 with the
values of x and z considered as fixed, Putting
oH
39 = ©
we have
oH
— = g
T zl+8 (1] (9)
or

8(t) = - z,(t) (10)




Substitution of equations (7) and (10) into equations (1) and (5)

respectively, gives

“ay

T "M T4
and

dat =~ 1 T A

The system of differential equations, equations (11) and (12), is solved

simultaneously, From equation (11) we have

e’

S TS B ta

1
Differentiation of equation (13) with respect to t yeilds

2
dzl dxl d xl

dt dt dtz
By substituting equations (13) and (14) into equation (12) we obtain

dzx

The solution of equation (15) is

At =it
e

X [8) = By 2

where
A= V2

By differentiating equation (16) with respect to t and substituting the
result together with equation (16) into equation (13), we obtain

z,(t) = -Al(x-l)c*t o . (Asl)e T

28

(1

(12)

(13)

(14)

(15)

(16)

(17)
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Application of the boundary conditions

n
[

xl(O)

and

1]
o

z, (M)

to equations (16) and (17), respectively, gives

xl(o) & Al + A2 = 1 (18)
2, (M) = A (- + A, 000 = 0 (19)
The solution of equations (18) and (19) for AI and Az is
=AT
Ay = (i;l)e T (20)
-De” " + (A+1)e
+\T
_ (A-1e
AZ = T . (2D

Gle & (ilje >

The optimal control 6(t), which may be obtained by the substitution of

equations (10), (20), and (21) and the relation Az = 2 into equation (17), is

oM (T=t)_ A(T-t)

8(t) = :
01T + (el)e N (22)

The objective function S = xz(T) becones
T

; 1 2 2
§ = x,(T) =3 g (6% + x])dt
T
1 At =it 2 At Aty 2
= EE‘; {[(A—I)Ale —(;\+1)A23 ] + [Ale + Aze ] }dt

Lo @@ T-n-2ow @) (23)
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Further simplification of equation (23) gives

1
S1A,041) - A O-1)]

x,(T)

NT AT
= .!'. (e M. ) (24]
2 D1 # D)

If the final time T is left unspecified, the additional condition

that the minimum of the Hamiltonian is zero can be employed as

follows.
. 2 L. .3 B
Min H=0= -8" - Bx1 + E-B + E_xl
2
= 8" + 28x1 - X (25)
Application of the boundary condition at t = 0, namely, xl(n) =1, to
equation (25) gives
2
[6(0)]" + 28(0) -1 =0 (26)

The roots of this quadratic equation are 8(0) = -1 -v2 and 8(0) = -1 + v2,
For
8(0) = -1 - V2

combination of equations (10) and (17) yields

8(0) = -2,(0) = A (3-1) - A,(A+1) = -1 - V2 (27)
The solution of equations (18) and (27) for A1 and Az is
A= 2 _
Al = B =0 (28)
A, = 2202 L (29)
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By substituting equations (28) and (29) into equation (19), the final time

T is obtained as

Instead using 6(0) = -1 + Y2 in the above procedure produces T = -« which

is not physically feasible.

The objective function 5 becomes

T 2 3
S=x(T) =1/2 f (8™ + xl) dt
= 0
¢ At -t 2 Mt -At,2
=1/2 ([(x-1)Ae (+1)Ae” 717+ [Ae™ + Ae 7] } ae
0
- 1/2[Af(k-l)(e2AT-l) . A%(A*l)(e-ZAT—l)] (31)
Further simplification of equation (31) gives
x,(T) = 1 *2J5 @ - g2 T (32)

The results of this simple example of open-loop control via the max-

imum principle for both the T-specified and the T-not specified cases are

shown in Figs. 4.1 and 4.2.

These results are later compared with those of the simple example of

closed-loop control via the maximum principle (Chapter 5).
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x,(t) -

g(t) -

0.4

E >

Fig. 4.1 Optimal trajectory and optimal control policy of the simple
example (T - specified) T = 1.0
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xl(t) >

10

Fig. 4.2 Optimal trajectory and optimal control policy of the simple
example (T - not specified).
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CHAPTER 5

CLOSED-LOOP CONTROL VIA THE MAXIMUM PRINCIPLE
5.1 Introduction

For the continuous-time system described by a set of ordinary or partial
differential equations, the problem of optimal control is that of determining
the "control function" 8(t) from among the admissible set which brings the
state of the system from an initial condition x(0) to a final condition x(T)
such that a suitable functional, objective function or performance index is
minimized.

Now there are problems of engineering interest, for example, regulator
problems, for which the possible range of initial conditions is very large.
To provide optimal system response over the set of initial conditions that
might be encountered using the control function solution would require de-
termining 6(t) for each possible initial condition. This obviously can be
impractical. By contrast, if the "control law'" 8(x, t) is known, the optimal
control is determined at any time by knowledge of the current state x(t).
When the optimal control function is obtained, the system is said to be oper-
ating in an "open-loop'" manner; that is, 8(t) is a function of time. In the
same sense, determining an optimal control law implies operating the system
in a "closed-loop'" manner; that is, 6(x, t) is a function of both the state
and time.

At the other extreme there is a problem in which only one initial state
is to be expected. HHere the control function solution 6(t) would appear to
have more meaning. However, even in this case feedback information is re-
quired to overcome the effects of errors and disturbances which change the

system response from the nominal trajectory. If 8(t) is followed without
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correction in the presence of these disturbances, the resulting trajectory
cannot be expected to be either optimal or to satisfy terminal conditions.
Again, if the control law 6(x, t) is known, this difficulty would not occur.
Knowledge of the current state x(t) and the time t would suffice to determine
the optimal control without reference to whether the state x(t) resulted

from a disturbance from the open-loop optimal trajectory [10].

It has often been said that the optimal control policy as obtained by
the maximum principle is open-loop. This is not always true as will be
shown here in obtaining the feedback control law for the linear regulator
problem, the first solution of which was due to Kalman [28, 29, 30, 31].

5.2 Statement of the Methodology

Let a linear differential system be described by
X = Ax + BY (1)
with the inital condition as
x(0) = x,

where

x = a vector of s-dimensional state variables

8 = a vector of r-dimensional control variables
A = s x s matrix

B=s x r matrix

It is required to find the optimal control @ which minimizes the functional

(for T fixed)
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T
_T(T]N§(T] + %-f [ETLg # ngg]dt (ii)
0

[y

S =

"

where the matrices L{s x s}, M(r x r) and N(s x s) are assumed to be symmetric
with no loss of generality. Considering x as the deviation of the system

state from the desired state, minimization of equation (ii) can be interpreted
as minimizing the deviation at the final time T and also minimizing the
deviation and control effort during the transient from 0 to T.

The Hamiltonian is

T

Lx + T T T

M + zAX + z BO (1i1)

-
-
Y

where

a vector of s-dimensional adjoint variables

e
1]

The adjoint variables are defined by
= -z =Lx+Az (%)
with the end condition

z(T) = Nx(T) (v)

The optimal control is obtained from the following necessary condition for

optimality.

g_“=o=m+g'fz (vi)

B =-M Bz (vii)

Now we inquire whether this can be converted to a closed-loop control

by assuming that the solution for z is similar to equation (v}, i.c.,
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z(t) = P(t)x(t) (vii)

where

]

P(t) = s x s matrix of functions of time

Employing equation (viii) into equations (i) and (vii) yields

% = Ax - M lpTex (ix)

Also from equations (iv) and (viii), we require

Z=Px+PX=-Lx - ATP§ (x)

Combining equations (ix) and (x) gives
[P+PA+ATP - PBM 'BTP 4 L]x = 0 (xi)

Since equation (xi) must hold for all nonzero x, the term premultiplying x
must be zero. Thus the s x s symmetric matrix P having n(n + 1)/2 different

terms, must satisfy the matrix Riccati equation
P=-PA-AP+pPRMIETP - (xii)
with an end condition given by equations (v) and (viii)

P(T) = N (xiii)

Thus we solve equation (xii) backward in time from T to 0, store the matrix

k() = - M 18Tp (xiv)
and then obtain the closed-loop control from
8(x, t) = K(t)x(t) (xv)

A block diagram for accomplishing this solution is shown in Figure 5.1.
From the consideration of second variation it has been shown that [38]

L, M and N must be at least positive semidefinite in order to establish the
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sufficient condition for a minimum. In addition, from equation (vii) M must
have an inverse; therefore, it is sufficient that M be positive definite.
In problems where the final time T is not specified, the additional

condition that the minimum Hamiltonian is zero is used. Combining equations

(iii), (vii) and (viii) gives

Min H = 2¢ Lx + 2x PBM BTPx + xPAx - xPeM !8Trx
= 2xTx - 2xTPBi 1Tex +5xTPax + LxATex (xvi)
(using the identity PA = %PA . %ATP)
Using Min H = 0, equation (16) becomes
PA+ AP + L - PeM BTP = o (xvii)

which is the right hand side of equation (xii) with sign changed. Equation
(xvii) is a set of n(n + 1)/2 algebraic equations whose solution yields a
constant matrix P. Thus in case of problems with final time unspecified,
the solution of the n(n + 1)/2 nonlinear equations is far simpler, since

these are algebraic rather than differential equations.

5.3 An Example

The use of the maximum principle to obtain closed-loop control is
illustrated here by considering the same simple example of chapter 4. Let

the performance equation of a simple process be

X, = x, +8 (1)
with the initial condition

x1[0) =1

The objective function to be minimized is the sum of the integrated control

effort to maintain the state of the system in the desired state and the
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integrated deviation from the desired state over a specified control time and

is given by
T
S = %-f 02 + xf)dt 2)
0
This problem as stated has a fixed time interval with free right-end.
The Hamiltonian is

2 G lXZ
271

ooy
n
N(LH

*zy(x * 6) (3)
The adjoint variable is defined by

oH

x

= -z, = X, + z, (4)
1

with the end condition
zl(T) =0 (5)

The optimal control is obtained from the following necessary condition

for optimality

oH _ . _

5'8——0—54-21 (6)
which gives

8 = - z, (7)

Now we inquire whether this can be converted to a closed-loop control by

assuming the solution for z, as
& YRS (8)
Employing equation (8) into equations (1) and (7) yields

(9)

e b Tl |




Also from equations (4) and (8) we require
g " Bpy% R Pyt ey < Pg%y 116)
Combining equations (9) and (10) gives
(bey + 2Py, - P2, + 1)x, = 0 (11)
n 11 - Pnn 1

Since equation (11) must hold for all nonzero Xy the term premultiplying

x1 must be zero. Thus we have

e 2
Pyy = = 2P * Py -t (12

with an end condition given by equations (5) and (8)

P, (M =0 (13)

From equation (9) we have

|
pll = X (14)
1
Differentiation of equation (14) with respect to t yields
. y 2
- X, X, + X
"V 171 1
Pn= " 2 (1)
1
By substituting equations (14) and (15) into equation (12) we obtain
X) - 2x1 =0 (16)
The solution of equation. (16) is
At -At
xl(t) = Ale + Aze (17)

where

Ae V2

40




By differentiating equation (17) with respect to t and substituting the

result together with equation (17) into equation (14), we obtain

. Altx-l)e*t & Az(x+1)e'At
At

At -
Ale + Aze

Application of the boundary conditions
x1[0) = 1

and
P (T) = 0

to equations (17) and (18), respectively, gives
11(0] = Al + Az =1

_ AT AT _
pll(T] = - AI(A-I)e + A2(1+1)e =

The solution of equations (19) and (20) for Al and A, is

B [2\+1]e-)tT
L ane!™ s pene™”
and
i = (A—l)eAT
2 T

{k-l)ekT + [J\frl)e'}t

The feedback gain kll(t) is obtained as

1

A (A—l)eht - A2(1+1)e—lt

kjp(8) = - pyy(2) = Nt ot

Ale + Aze

(18)

(19)

(20)

(21)

(22)

(23)

41




Then the optimal control policy 6(t) may be obtained as

) AI(A-I)elt - A, 017"
a(t) = kjp (8)x, () = T "t x, (t)
Ale + Aze

= A 0-1)er- A2(1+1)e'*t (24)

Using equations (21) and (22) and the relation kz = 2 into equation (24)

yields
) e-k(T-t) _‘ellT—t)

B(t) = . (25)
(-1)e' & (e1)e T
The objective function S becomes
T
_ _1 2 .
S =x,(T) =3 g (67 + x])de
T
1 ) At -At, 2 At -At, 2
o J {[(A I)Ale - (A+1)A2e 17+ {Ale + Ae ] }dt
0
Y2 22T -2X
= 33 0-0 1) - Aoen) (2T (26)
Further simplification of equation (26) gives
_ 1
S = 51A,(0+1) - A;(A-1)]
AT =AT
o S B ) - 27)

T o
2 p-13e* + is)e™

In the above simple example if the final time T is left unspecified (which
is the same as saying that the process is to be operated for a semi-infinite

period of time), equation (12) becomes

42




2 -
Pyy = @y =1 =0

(28)

The solution of equation (28) gives a positive constant value for Py; 23S

P11=1+/—2-
The constant feedback gain.k11 is obtained as
kyjp= =Py = - @+ Y 2)

Now the solution of equation (9) can be obtained as

(1-py. )t
xl(t) =Ae 1l

Application of the boundary condition
XI(U) = 1
to equation (31) gives
A=1
Then the optimal control policy 8(t) may be obtained as

6(t) = kllxl(t)

(I-Pll)t

-1 +v2)e

The objective function S becomes

T
[ 6%+ xf)dt
0

w
]
(ST

T
1[ [ 2 2t 201000y
2 | P11° =

0
)T

2
1 + p11 2(1-p11 1]

" 4(1 = pll) [e

(29)

(30)

(31)

(32)

(33)

(34)

43
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Further simplification of equation (34) gives

& o ; /—5'(1 ) e-2¥§'T

) (35)
5.4 Conclusion

The results of this simple example of closed-loop control via the
maximum principle for both the T-specified and the T-not specified cases are
shown in Figuwes 5.2 and 5.3.

The optimal trajectory and the optimal control policy are exactly the
same as those of the simple example of open-loop control via maximum principle
(Chapter 4). Thus both the open-loop as well as the closed-loop control via
the maximum principle give the same results for a system with linear perfor-

mance equation and quadratic objective function.




Cx(t) x(t)
-

e
5

K(t)

Fig. 5.1 Block diagram for the optimum linear closed-loop regulator.
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1.25 e

1.15

1.05

0.95

0.85

-1.8 | o I — FEPRTae T =
0 0.2 0.4 0.6 0.8 1.0

t >

Fig. 5.2 Optimal trajectory and optimal control policy of the simple
example (T - specified) T = 1.0
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x, (1) -

1.0 ¢
0.8 %
0.6 F
0.4 L
0.2 ¥
et L—--_ J
I 1 3 2 L o
4] 2 4 6 ] 10
t -~
0.0 & !
-0.5 #
-1.0 ¥
+
iy
T -1.5 F
-2.0 -
-2. L@?-_ o y .n;-;mqnj
5 W\’ % i

example (T - not specified).

Fig. 5.3 - Optimal trajectory and optimal control policy of the simple
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CHAPTER 6

OPEN-LOOP CONTROL OF LIFE SUPPORT SYSTEMS SUBJECTED TO A STEP HEAT DISTURBANCE

6.1 Introduction

This chapter deals with the open-loop control of a heating system con-
sisting of an air-conditioned room or cabin and a heat exchanger of negli-
gibly small time constant (12 = () subjected to a step heat disturbance,
having the initial and final values of the state variable-namely, the temper-
ature fixed but the final time T to be determined.

Pontryagin's maximum principle is used in determining the optimal
control policies for each of the following examples with the corresponding

objective functions to be minimized:

T
Example 1: § = f dt
0
T
Example 2: S = f (a + bez) dt
0
2 2
Example 3: S = [be? + c(x1 - %4071 dt
0
T
Example 4: 8 = [ [a+bo? + c(x - x5)%] dt
0

where a, b and c are weighting factors and Xj,4 is the desired state of

the system.
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It is worth noting here that the objective functions of the first
three examples are particular cases of the objective function of the fourth

example.
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6.2 Example 1: Minimal Time Control

Let a life support system consisting of an air-conditioned room or
cabin and a heat exchanger of negligibly small time constant (12 = 0) be
subjected to a step heat disturbance.

The performance equation of such a system is written as

dx X

= a s 1.1)
Jg -t Ty%) = K, - T Ke rlkY + 0 (

The initial condition is

xl(O) = 0,

It is required to find an optimal tontrol that will bring the system to the
desired condition in an unspecified time interval T. That is, the final

(desired) condition is

xl(T] =1, T - not specified.

(]
At the same time it is also required to minimize the functional (objective

function)
s=[ dt (1.2)
0
The objective function consists of' the minimal time control function alone.
The control variable is constrained as
~J 2 H4 1

This problem as stated has the initial and final values of the state vector

function xl{O} and xI{T) fixed but the final time T to be determined.




Introducing another state variable xz(t] such that

t
X, (t) = f dt
0
it follows that
dxz
e L, xz(O) =0

The problem is thus transformed into that of minimizing xz(T).

According to Pontryagin's maximum principle, the Hamiltonian is

H = zl(-rzx1 2

+r2KG-r1KBB-rlKY+aS) + Z

The adjoint variables are defined by

9w,
dt x, 271
dz
2 _ aH
dt T ax, * B 2,{T) =1

Solutions of equations (1.5) and (1.6) are

/]
™
o

zl[t) =

z,(t) =

|
&
(=]
| A
e
| A
._]

where A is the integration constant to be determined later.

(1.

(1

(1

(1.

(1

(1

3)

.4)

5)

6)

7

.8)
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Using equation (1.8) into equation (1.4) yields

_ _ _ _ i1 .9
H= zl( r2x1+r2!(u r1KBB r1K7+as) + 1
The switching function H*, the portion of H which depends on 6, is
H* = - 1,K,2,0 (1107

Inspection of H* shows the basic structure of the time optimal control policy
is of the bang-bang type. The conditions for which the Hamiltonian be min-

imum are

6 = amin = -1 if -rll(Bz1 >0
(1.11)

g = emax =+ 1 if -rlKle <0

provided that the controller shifts from emin to emax instantaneously and
inertialessly, or vice versa.
Now, the maximum principle requires that the system equations (1.1) and

(1.3) and the adjoint equation (1.5) be integrated simultaneously in such a way

that the two-point boundary conditions

x,(0) = ag, x, (T) =1
x2(0] =0, xz(T) = undetermined
Z; {0) = undetemined; l 2, {(T) = undetermined

be satisfied. Meanwhile the Hamiltonian must remain at zero at every point
of its response under the optimal condition.
In order to bring the initial deviated state [xl(DJ - u0] to the final

desired state [xl(T) = 1], we intuitively reject the control 6 = emax =+ 1
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(which corresponds to the minimum heating action).

Equation (1) can be integrated with the conditions

8 =6 , = - ] {1.12)
min
and
= 1.13
x,(0) = ag (1.13)
as
-r2t -rzt
xl(t] = K'(1-e ) + age (1.14)
where

] = -
K (rzKu+r1KB rlliyms)/r2

The integration constant A in equation (1.7) can be determined by using the
condition that minimum H is zero for all the process time in time optimal

control. At t = 0, we have from equations (1.7), (1.9), (1.12) and (1.13)

1

A=z (0) = T, (K -a)

and

z, (t) = P N erzt (1.15)
rz(K -ao)

Equation (1.15) implies that z,(t) will not change sign since z,(t) + 0

only when t approaches negative infinity, or in other words, control will

not shift from emin to emax (or from Bmax to amin)' Therefore, this

problem is a particular case of bang-bang control which has the bang part only.
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The final control time can be obtained from equations (1.9) and (1.12)
together with the final condition
xl(T) =1

as follows

H = zl(T)[-rle(T)+K'r2] +1=0

or solving for zl(T)
2, (T) = -1 (1.16)
1 rz(K'-l)

Also we have from equation (1.15) at t =T

5 -1 2 (1.17)

Solving for T from equations (1.16) and (1.17), we have

K'-a
1 0
T = ;_-; lIn {E'_:T—} (1.18)

This solution may be verified by inserting it into equation (1.14) as

-r2T -rzT
. ' -
xl(T) = K'(l-e ) + ay e
-rzT
= (a. - K') e “+ K
K'-a
0]
-ln{K,_1 }
= (mo = KY)e + K

n
~
2
o
]
~
~
———
-
b
] -
el
-
—
+
-~
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This indicates that the Hamiltonian is kept at zero at everv point of its
response in this minimum time prohlem.

The objective function hecomes

T
x,(T) = [ dt
0

42 ]
(]

=T {1 18)

The following two cases are considered in this exammle:

Case Value of the dimensionless
number disturbance temperature
(cs)
1 0.75
2 1.20

The values of the various constants used are:

r. = 0.8 K = 1.5

T, = 0.2 KB = KY = 0.625

The results of this example are shown in Tahle 6.1.1 and Figs. 6.1.1
and 6.1.2.

Since this is a heating system, the greater the value of L the
lesser is the control time required to reach the final desired state.

The state variable X4 approaches asymptotically the final state,
the control variahle 6 remains at its minimum namely -1 until the final

state is reached, and the adjoint vector increases asymptotically.




Case
Number

Table 6.1.1

Optimal So

lutions of Example 1:

Value of

o
S

0.75

1.20

Final Time
T

1.0565

0.7155
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Fig. 6.1.1 Optimal control policy
(Us = 0.75).

and system response of Example 1
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1.0 =
0.8
0.6 i

0.4

xl(t) =+

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

(L) ~

=

0.4 |

z, (t) ~

-0.6 §-

-1.0 L—- _—

Fig. 6.1.2 Optimal control policy and system response of Example 2
(c =1.2).
s
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6.3 Example 2: Minimal Time and Integrated Effort Control

Let a life support system consisting of an air-conditioned room or
cabin and a heat exchanger of negligibly small time constant [12 = 0) be
subjected to a step heat disturbance.

The performance equation of such a system is written as

==+ T,X, =T

2*1 2Ka -r.K8 -r KY + g (2.1)

18 1 s

The initial condition is

xl(O) = o,

It is required to find an optimal control that will bring the system to the
desired condition in an unspecified time interval T. That is, the final

(desired) condition is,
xl(T) =1 , T not specified.

At the same time it is also required to minimize the functional (objective

function)
T 2
S = [ (a*b8®)dt (2.27
0
where a and b are weighting factors.
The objective function is obtained by combining the unspecified control
time and the integrated control effort to bring the state of the system to

the desired state over the unspecified control time.

The control variable is constrained as
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This problem as stated has the initial and final values of the state vector

function xl(ﬂ) and xl(T) fixed but the final time T to be determined.

Introducing another state variable xz(t) such that

t

x,(t) = [ (a+be?)de
0
it follows that
dx
2 _ 2 _
a-‘E_- a + be 3 XZ(O) o= 0 (2'

The problem is thus transformed into that of minimizing xz(T).

According to Pontryagin's maximum principle, the Hamiltonian is

172 18 "1

. 2
H= z) (-1 X #1K -1 K 6-1 hy+05) + z,(a+h8”) (2.

The adjoint variables are defined by

dz
—.—1.=_.§-}i=rz (2.
dt Bx1 271
dz
e i s s = 2.
& -, "9 258} = 1 (
2
Solutions of equations (2.5) and (2.6) are
r, t
2, (1) = he ° (3
zz(t) =1, 0<t<T (2.
where A is the integration constant to be determined later.
Using equation (2.8) into equation (2.4) yields
2 (2

H = zl(-rle-rzKu-rIKBe-rIKY+o§) + a + be

The variable portion of H that depends on 6, H*, is

3)

4)

5)

6)

7)

8)

+9)
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* 2
= = 9 +

Inspection of H* shows that the optimal control is of continuous type and

is obtained from the following necessary condition for optimality.

PH” oo 2.10
sg— = 0 = rlkszl + 2b8 ( )
which gives
r.K z
o) Bl (2.11
B )

The integration constant A in equation (2.7) can be determined using the
condition that minimum H is zero at all the process time. At t = 0, from

equations (2.7), (2.9), (2.11) and the initial condition

xl(D) = oy
we have
(rl) 2
-5 — A" + (rzaD—rzK Ty K —05) -a=20 (2.12)

The solution of equation (2.12) gives

A= 2b{ (r2a0 2K +T K -0 ) - //—E;7a0'r2K +r1K -0 ) (rlKﬁ]z} / (rlkﬁf

Using equations (2.7) and (2.11), equation (2.1) can be integrated as

‘ 2
i = K
o 56 Bk Tt ) rzka rIKy+GS ) (rl S) Aerzt
1 - T, 4br2

(2.13)

The constant of integration Al can be determined using the initial conditiun

that xl(o) = a, as
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1 (rle)z
Al = By = ;;(rzKu-r1K7+cs) + —EE;;—_-A

The final time T is found by employing the final condition that xl(T) =1
in equation (2.13) as

2
-r, T (rlKB) T

2 1 2
A.e + }—(TZKQ—TIKY'FCS) - -m‘z— Ae =1

2

which gives

=/ 1 Y +5 -1 -
T = {r } In [(Zbrz){rz(rzKG-rlKY o r2)

2
—l(rK-rK+o -7 )2+E.L|(_B.)__AA / (rK)ZA (2.14)
r2 la 1y s 2 br2 1 18
2

The optimal control policy can now be determined from equations (2.7) and

(2.11) as

r K r.t
B(t) = —%BE-AB : (2.15)

The objective function becomes

T , (rleA)2 2r,T
S=x_(T) = f (a+b6”)dt = aT +——-B-E;—-[e

-1 (2.16)
2 0

2

In cases where the weighting factor.a,is appreciably larger compared to the
weighting factor b, the optimal ‘control given by equation (2.15) will violate

the constraint |6| < 1. Therefore the condition

at
S

does not yield the admissible control action.
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In order to bring the initial deviated state [xl(O) = ao] to the final
desired state [xl(T) = 1], we intuitively reject the control 6 = +1 (which
corresponds to minimum heating action). With & = -1, equation (1)} can be

integrated as

-1‘21:

xl(t) = Ble + K! (2.17)

where

- rzl(Cl + rlKB - rlKY ¥ O

Ty

The constant of integration, Bl’ can be determined by employing the initial

condition in equation (2.17) which yields

- - Kt
B1 =g K

The solution of equation (5) is

r2t

zltt) = A'e (2.18)

The integration constant A' in equation (2.18) is determined by using the
condition that minimum H is zero for all the process time.

Now the minimum value of H is

H

zl(—r2x1+r2Ka+rlKB-rlKY+as) +a+h=0 |, 0<t«<T

or

H

- ' = s
zl{ r2x1+K rz) +a+b=0 |, 0<t<T (2.19)

Application of the boundary condition at t = 0, that is, xl(O) = o, to equution

(2.19) gives
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2;(0) = - (a+b) (2.20)
]:‘2(1(' - C!.O)

Also from equation (2.18) at time t = 0, we have
z;(0) = Al (2.21)

Combining equations (2.20) and (2.21) yields

A' = - (a + b)
ro(K' - ao)

Now equation (2.18) implies that zl(t) will not change sign since zl(t) -+ 0
only when t approaches negative infinity.
The final control time can be obtained from the minimum H equation,

namely equation (2.19) together with the condition
as follows

H = zl(T)[- rle(T) + K'rz] +a+b=20

or solving for zl(T)

2 (T) = - @&+ b) (2.22)

Also we have from equation (2.18) at t =T
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rzT
zl(T) = A'e (2.23)

Solving for T from equations (2.22) and (2.23), we have

K' - a
2

This solution may be verified by inserting it into equation (2.17) as

-rzT
- ]
xl(T) = Ble + K
-rzT
= (uO-K')e + K'
' -
ln{i- io}
= (aO—K')e ) + k!

This indicates that the Hamiltonian is kept at zero at every point of its
response.

Then the optimal policy and response are summarited as follows:

6 =-1 , 0<t<T (2.25a)

| A

(2.25b)

b
]
=]
(]
+
w

-
<o
| A
+
'A
-]

Now the objective function becomes

Y
S = x,(T§ = [ (a+b6?)dt
0

= (a+bh)T (2.26)
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The following four cases are considered in this example:

case 1: a=1 |, b = 0.1
case 2: a=1 , b=1

case 3: a=1 , b =10
case 4: a=1 |, b = 100

The values of the various constants used are:

r, = 0.8 K = 1.5

1 a
r2 = 0.2 KB = KY = 0,625
ao =0

The results of this example for g, = 0.75 and o, = 1.2 are shown in

Table 6.2.1 and Figures 6.2.1 and 6.2.2.

The control time, required to reach the final desired state, increases
with increase in the weighting factor b on the control effort. Also since
this is a heating system, the greater the value of ag » the lesser is the
control time required to reach the final desired state.

The value of the obhjective function is minimum for the maximum value

of o. and the minimum value of the weighting factor b on the control effort.

s
In case 1, where more weight is given to the control time than to the
control effort, the optimal control is of bang-bang type which has the bang

part alone. In case 4, where more weight is given to the control effort,

the optimal control has a very small negative value. Cases 2 and 3 are

intermediate between the two extreme cases 1 and 4.




Table 6.2.1

Optimal Solutions of Example 2:
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Values of
g Case Weighting Final the Objective
Number Factors Time T Function

0.75 1 a=1,b=0.1 1.05654 1.16220

2 a=1,>5 1 1.48840 1.79244

3 a=1,b=10 2.12263 2.18899

4 a=1,b 100 2.24484 2.25233
1.20 1 a=1,b 0.1 0.71550 0.78705

2 a=1,b=1 0.97325 1.03955

3 a=1,b=10 1.09850 1.10701

4 a=1,05 100 1.11339 1.11426
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6.4 EXAMPLE 3: Minimal Integrated Effort and Integrated Error Control

Let a life support system consisting of an air-conditioned room or cabin
and a heat exchanger of negligibly small time constant (12 = 0) be subjected
to a step heat disturbance.

The performance equation of such a system is written as

EE—-+ rle = rZKu —rlKBB - rlKY + g (3.1)

The initial condition is
XI(O) = a,

It is required to find an optimal control that will bring the system to the
desired condition in an unspecified time interval T. That is, the final

(desired) condition is

xl(T) =1, T - not specified.

At the same time it is also required to minimize the functional (objective

function)
LI 2
S = £ [be” + c(x; - x,,)7]dt (3.2)
where b and ¢ are weighting factors. The desired state, X147 is equal to one.
The objective function is obtained by combining the integrated control
effort to bring the state of the'system to the desired state and the integrated

deviation from the desired state over an unspecified control time.

The control variable is constrained as
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This problem as stated has the initial and final values of the state vector
function xl(o) and xl(T) fixed but the final time T to be determined.

Introducing another state variable xz(t) such that

LI 2
x,(t) = [ [b8” + c(x; - 1)7]dt
0

it follows that

[=9
N~

X
t

= bo% + elx; - 1)2 5 x,(0) = 0 (3.3)

j=¥

The problem is thus transformed into that of minimizing xz(T).

According to Pontryagin's maximum principle, the Hamiltonian is

- . 2 - 1% (3.4
H = zl(-rzx1 + 1K - rlKBB rlKY +a) + zz[be + c(x1 1)°] (3.4)

The adjoint variables are defined by

dz

1 _ 3H  _ R _ 3 B
at - " T2h Zageity * 1) P
dz

2 _ _3H _ » 3.6
e 3%, 8 » 2,(T) = 1 (3.6)

From equation (3.6), the solution of Z, is obtained as

zz(t) =1, 0<t«<T (3.7)

Hence the Hamiltonian can now be written as

2 2 (3.8
* TR = 7 K0 -~ x KY +#0.) +b8" 4 c(xy - 1) (3.8)

H=z (-ryx +1, 18 1

The variable portion of H that depends on &, H*, is

" 2
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Inspection of H* shows that the optimal control is of continuous type and is

obtained from the following necessary condition for optimality.

M 0= - 1Kz + 2b8 (3.9)
28 1871
which gives
r. K
- 18 3.10
B e By S

Using this relationship in equation (3.1) and eliminating X from equations

(3.1) and (3.5) yields

2
d“zy 2

c 2 _
= - Dy g inRgltlz, = 2elny -wky * kK - 0g)

The solution of this equation is

LAt -at 3.11

z) = A+ Aje + K ( )
where

2 ¢ 2
A= /rz + E{rlke)
‘- 2c(r2Ku - rIKY o r2)
2 c 2
PRELYY

and Al and A2 are constants of integration.

The solution of x, can be obtained from equations (3.5) and (3.11) as

1 At -At (3.12)
xl(t) = 2c[(r2 - A)Ale + (r2 - A)Aze = rZK] + 1

Now employing the initial condition, xl(OJ = a, and the final condition,

xl(T) = 1 in equation (3.12) gives




73

(rz - A]Al + (r2 + A)Az + rzK = 2c(u0 -1) (3.13)

and
AT -AT

(r2 - A]Ale + (r2 + A)Aze + r2K =0 (3.14)

respectively.
Now the minimum value of H is,
2be
H =-—-——( “ToX, * rzK -r, K6 -rK +0 ) + be + c(x - l) 5
T B 18
0<t<T

That 1is,

H= —b82 —=(-r +r. K -1 K +0 ) + c(x, - 1)2

K | 2 ly (3 1

1%
0<t=<T (3.15)

Application of the boundary condition at t = 0, that is, xl(O) =, to

equation (3.15) gives

8(0) = [" {r KB} (r + rZKa - rlKY + cs] +

ab> 2 -
J// 2K2 (- Tyen * T, K - rlKY + 05} + 4bc(a0 N7/ (-2b) (3.1
gy

Using equatiom (3.11) in equation (3.10) for time t = 0, yields

K
1 B (A

8(0) = A, + K) (3.17)

Combining equations (3.16) and (3.17) gives
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v - - _-__.Zb -
Al +;A2 + K= [ {rIKB} ( r2u0+r21(u rlKY+os) +
—ﬁEE-C-r a. +r,K -rK +¢ ]2 + dbc(a. - 1)2 /(-r,K_)
22 2% T T2 T Ty T s %0 18
1¢ (3.18)
The constants A, and A, can be determined from equations (3-13) and (3.18) as

_ 1
Al = {ET} rzK - 2c(a0 -1) - K(rz + 1) +

2b
(r2 + A}[ - [;I?EJ(mrzuo +* rzKu - rlKY + US) +

_EEE (-r.0, +1r.K -1k +0 ]2 + 4bec(a, - 1)2 F=2.K.)
2.2 270 2a ly s 0 18
rlKB

1

A, = {5?} -r,K + 2c(agy ~ 1) + K(r, - }) -

2b
(x5 - l){ } [rlKBJ('rzao kRl = B H ey #

_ﬁ (-r + 1.k -1k +0 ]2 + 4dbc(a, - 1]2 /(-r.K )
2.2 2% T 2% T 1ty % €% 1°8
T Xg

The optimal control policy can now be determined from equations (3.10) and

(3.11) as
ke At it
O M i 3.19
8(t) o5 (Mg + Ae + K) ( )

The final time is found from equation (3.14) as
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T 77
‘T K + /r(rzK) -4(22HA,

(3.20)
Z(rz—A)Al

The objective function becomes

X 2 2
= x,(T) = [ [b8" + c(x; - 1)7]dt
0

wn
|

T 2
. K
- ’ 18 At -t
= ﬁ [ b {—EB—-(Ale + Aze * K)}

0

2
1 At -it
+c {EE{(rZ - A)Ale + (rz + A)Aze * rzK]} )dt

2,2 AZ AZ
18 2AT 2 =2AT 2
T o (e -1) ke 2—)\" (e = 1] + KT

2KA 2KA
2, =AT 1, AT
+ 2A1A2T = = {e -1) + Y (e -1)

2.2
(£,#0)°A; ot

4.2
(r,-2)“A
e oy - e -

1 ‘L 2T
Y Ic 3} (e

2.2 2 2
+ KT + Z(r2 - A )AIAZT

2(r,-A)r KA, 2(r,-A)r KA
2 - 2 2{ AT 1) + 2 S 2 l(elT - 1) (3.20a)

In cases where the weighting factor c is appreciably larger compared to the
weighting factor b, the optimal control given by equation (3.19) will violate

the constraint |8] < 1, Therefore the condition

3H* _
5 =0
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does not yield the admissible control action. The optimal control for 0 < t iy
is

6 = -1
where tg is the time when the saturation period ends, which is to be determined.

With 8 = - 1, equation (3.1) can be integrated as

-r2t
x,(t) = Bje + K', DEY R, (3.21)
where
s rqu”+ YIKB - rle + O
Ty

The constant of integration, Bl’ can be determined by employing the initial

condition in equation (3.21) which yields

With the solution of xl(t) given by equation (3.21), equation (3.5) can be inte-

grated as

Tat € SRR apfpuad

zl(t) = Bze + — e + G4 %<t (3.22)

s

where B2 is the integration constant to be determined later.

After time ts the control action willino longer be saturated and thus the
condition
aH*
Er
can be used to determine the optimal condition. Thus the optimal control,
optimal state, and adjoint variable given by equations (3.19), (3.12) and (3.11)

can be used for ts <t <T. The constants A, and Az in equations (3.11) and

1
(3.12) can be determined by using the fact that x, and z, are continuous with

respect to t. Hence at t = ts.
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Ats -t
zltts) = Ale + Aze + K
r,t cB. -r, t i
- Bze 2's 2 1 g 2°s & 2c(K'-1) (3.23)
T T
2 2
At =it
s

=L s
xl(ts) = 2c[(r2 - A)Ale - (r2 + A)Aze + rZK] + 1

-rzt
=Be “%.ax (3.24)
Also at t = t_, 8 = - 1. Hence from equation (3.19), we have
rlKB Ats -Ats
5 (Ale + Ae + K) = -1 (3.25)

Application of the boundary condition at t = T, that is xl(T) = 1 to the minimum

H equation, namely equation (3.15) gives

a(T) =

[{
(==}

or

8 (T)

2
{;IEE} (--r2 + rZKa - rlKY + US) (3.26)

Using equation (3.11) in equation (3.12) for time t = T yields

r. K
X .
8(T) = —é—b— (Ae ¥ A,e T (3.27)

Combining equations (3.26) and (3.27) gives

AT -AT _ 4b
Abe + Ae + K= 5 (-r2 + rzka - rIKY + os) (3.28)

1 2
(rIKB)
There are five unknowns Al, Az, Bz, ts, and T in equations (3.14), (3.23), (3.24),

(3.25), and (3.28). These equations can be solved simultaneously using a search

technique to determine these constants.




Then the optimal policy and response are summarized

bl
I

1"

s 1, L
-rzt

B,e + K', <t
5

158 At At

5 (Ale + Aze + K), <t
1 At -t

52 {(r2 - MAeTT + (r2 + A)Aze + rzK}

Now the objective function becomes

W
L]

+

+

L 2
X, (T) = [ [be” + c(x; - 1)7] dt
0

ts =TT

[ {b+c[Be .
0

+ (K' - 1}}2} dt

T r. K

18 At
f [b{T (Ale ¥ Aze

-At " K]}2

At t

1 -2
c {EE [(rz-l)Ale + (r2+A)Aze

2

< t

as follows:

<t

| A
~+

| A
-

+
—
-

| A
=]

% rZK]}z] dt

78

(3.29a)

(3.29b)

(3.29¢)

(3.29d)

B -2r2t5 2B1 —rzts 5
bt + c{z=— (l-e ) + (K'-1)(1-e ) + (K'-137t_}
S 2r r s
2 2
33 2 _ 2
rlKB {fl (ele i eths) i fg (e-ZAT e-2lt » KZ(T_t :
4b 2 2) s
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2A2K =it
-AT s
+ 2A1A2[T-t5) = (e - e )
2A.K At
" 1 ( AT " s)}
Y
2.2 2,2
. l_.{(rz-l) Al 2T eZAt ; - (r2+x) A2 T e-ths)
c 2 2X
2.2 .
+ r2K (T-ts] + Z(rz—l )AIAZ(T-ts)
2(r,+X)r KA _ -t
el A2 2 (M TSy
2(r.-A)r KA AT
s =221 . e %y (3.30)

The following four cases are considered in this numerical example:

case 1: b=1, ¢ = 0.1
case 2: b=1, c=1

case 3: b=1, ¢ =10
case 4: b =1, ¢ = 100

The values of the various constants used are:

r1 = 0.8 Ku = ;.5
T, = 0.2 KB = KY = 0.625
oy = ¢

The results of this example for g = 0.75 and b, = 1.2 are shown in

Table 6.3.1 and Figs. 6.3.1, 6.3.2.
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The contral time, required to reach the final desired state, decreases with
increase in the weighting factor ¢ on the deviation. Also when the weighting
factor c takes the values as 10 and 100 which are appreciably larger compared
to the weighting factor b, there results a switching time t_ upto which
point the heat exchanger operates at its limiting capacity (here 8 = -1).
Since this is a heating system, the greater the value of Gs’ the lesser is the
control time required to reach the final desired state.

The value of the objective function is minimum for the lowest value of
the weighting factor c on the deviation and the highest value o; e

In case 1, where more weight is given to the control effort, 8, the
optimal control policy has a very small negative value. In cases 3 and 4,
where more weight is given to the deviation of xl from the desired value, the
optimal control & has an approximately constant value that is required to

maintain the system in the desired state, i.e., X, = 1. Case 2 is an inter-

mediate one.




Optimal Solutions of Example 3:

Table 6.3.1

. Case Weighting Svitching

Number Factors Time ts
n.75 1 b=1, ¢ =0.1 -
2 b=1,¢c=1 -

3 b=1,¢c =10 0.26897

4 b=1, ¢ =100 0.34994
1.20 1 b=1, ¢=0.1 -
2 b=1,c =1 2

3 b=1, c=10 0.21812

4 b=1,c 100 0.28000

Final
Time T

2.22645
2.00340
1.23861

0.65998

1.11085
1.07151
0.89242

0.50000

81

Value of
the Objective
Function

0.06620

0.,59922

3.13482

24 53221

0.03501

0.33871

2.80417

18.67151
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Fig. 6.3.1 Optional control policy and system response of Example 3

(cs = 0.75)
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6.5 Example 4: Minimal Time, Integrated Effort and Integrated Error Control

Let a life support system consisting of an air-conditioned room or
cabin and a heat exchanger of negligibly small time constant (12 = 0) be
subjected to a step heat disturbance.

The performance equation of such a system is written as

dx

1
pe + r2x1 = rZKa ~ rIKBe - rll(Y + cs (4.1)

The initial condition is

xl[G) = a,

It is required to find an optimal control that will bring the system to the
desired condition in an unspecified time interval T. That is, the final

(desired) condition is
xl(T) =1 , T - not specified.

At the same time it is also required to minimize the functional (objective
function)
T

S = ! [a + b82 + c(xl-xld)z]dt (4.2)
0

where a, b, and c are weighting factors. The desired state, X147 is equal
to one.

The objective function is obtained by combining the unspecified control
time, the integrated control effort to bring the state of the system to the
desired state and the integrated deviation from the desired state over the

unspecified control time.
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The control variable is constrained as

This problem as stated has the initial and final values of the state
vector function xl(O) and xl(T) fixed but the final time T to be determined.

Introducing another state variable xz(t) such that

t
xz(t) = g [a + be2 + c(xl-l)z]dt

it follows that

dx2

- @ + b8" + c(xl—l) 5 xz(O) =0 (4.3)

The problem is thus transformed into that of minimizing xz(T).

According to Pontryagin's maximum principle, the Hamiltonian is
H=z (-r,x +r K -r K.6-r. K +0 ) + z_[a + bB2 + c(x —1)2] 4.4
1 T K, T Kb -T K ra 2 1 (4.4)

The adjoint variables are defined by

dz

1_ _3H .

= - %, = 1,2, - 2:2c(x1 1) (4.5)
dz

3 BH )

.&___-E_o , 2,(T) = 1 (4.5)

From equation (4.6), the solution of z_ is ohtained as

2

zz(t] =1 , 0<t<T (4.7)




B6

llence the Hamiltonian can now be written as

_ 2 2
H = zl(-r2x1+r K,~T.K e-rle+os) + a+ bo” + c(xl-l) (4.8)

2 18

The variable portion of H that depends on 6, H*, is

2
* = -
H K zle + bé

B

Inspection of H* shows that the optimal control is of continuous type and

is obtained from the following necessary condition for optimality.

3 = 0= -rlKle + 2b8 (4.9)
which gives
r. K
8 = 1 z

Using this relationship in equation (4.1) and eliminating x, from equations

1
(4.1) and .(4.5) yields

4 %1 2 c 2
;;5—-- [r2 + E{rlKB) ]zl = 2c(r2-rzxa+r1KY-05)

The solution of this equation is

At =it
z, = Ale + AZe + K (4.11)

where

2. ¢ 2
A= / r, * b_(TIKB)

2c(rzxa—r1xY+as—r2]

K =
2 c .2
Ty * Ky
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and Al and A2 are constants of integration.

The solution of x, can be obtained from equations (4.5) and (4.11) as

1

At

_1 At
xl(t) = 2C[(rz—l)Ale + (r2+A]A2e + rzK] + 1 (4.12)

Now employing the initial condition, xl(O) = a. and the final condition,

0
xl(T) = 1 in equation (4.12) gives

2

(ry-M)A; + (x,#)A" + 1K = 2¢(ay-1) (4.13)

and
AT -AT

(rz-l)Ale + (r2+l)A2e + r2K =0 (4.14)

respectively.
Now the minimum value of H is,
H = —EEE{—r X, +r. K -vr K B-r K +0 ) + a + he2 + c(x -1)2 =0
rlKB 271 722 "1B 1y s 1 !
0<t<T

That is,

= 2, 2b . r 112 .
H= -bo" + rlKa( r2x1+r2|(u r1K7+os)8 + c(x1 N"+a=0 ,

0<t<T (4.15)

Application of the boundary condition at t = 0, that is, xl(O) = o, to

equation (4.15) gives
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2b
8(0) = [ - {rlkg}( rzao 1'21( -T K +ag ) +

4p° 2
5 2( o, ZK r1K *o_ ) * 4b{c(a0-1) + a} (-2b) (4.

T1Kg

Using equation (4.11) in equation (4.10) for time t = 0.yields

r K
8(0) = —2ro(A +A,*K) 4.

Combining equations (4.16) and (4.17) gives

_ 2b
Al + Az + k= [ - {rlKB}( .o +r2K -r K +0 ) +

—ihi( -T K +o ) + 4b[c( -1)2 + a) (- rK ) (4.
2,20 T2%0" T clag
rKe

The constants Al and A2 can be determined from equations (4.13) and (4.18) as

Al = {5%} r2K - 2c(a0-1) - K(r2+l) +

(r2+k)[ {rzi }( Tyt K T K b0 ) ¢

ab* 2 ’
J// > 2( r2u0+r2K rlK#+c ) + 4b[c{a0-1) + al { rlx)
o B
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1
AZ = {51} T,k + 2c(a0-1) + K(rz—l) -

2b
(rz-l)[ = {;;g;}(-r2a0+r2Ku—r1KY+cs) +

2
4b 2 2
//(—EEE{-r2u0+r2Ku—r1KY+cs) + 4b{c(°0‘1) + a] (-rIKB)
1™

The optimal control policy can now be determined from equations (4.10) and

(4.11) as

r. K
1 B{

At -at
T A.e “+A_e +

1 2 K) (4.19)

8(t) =

The final time is found from equation (4.14) as

2 2 gl
-rzK + //(rzx) - 4(r2-1 )AIA2
2(r2-A)A1

T = %-ln (4.20)

The objective function becomes

¢ 2 2
X, (T) = [ [a + b8° + c(x,-1)“]dt
0

(V)]
[}

Tf r K 2
_ 1°8 At -At
= £ la + b{—is—{Ale +A,e +K)}

2
+ C{E%{(rz-l)Alelt + (r2+l)A2e'1t + rzK]} ]dt
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2 2(,2 2

r K, A A
) 1¥8)%1 .zt 2 . ~AET 2
= aT + 2@ 1) - sa(e™ M)+ T

2KA 2KA
)iz I 1, AT
+ 20AT - (e " -1) + 5—(e -1)
2,2 2,2
M L e 1 P e dle P
ac 2X B o= "

2 2 .2
+r212T + Z(rz-k ]AlAZT

2(r2-1)r2KA2

i : o1
2(r,-2)T KA
2 271, AT
+ Y {s=1) (4.20a)

In cases where the weighting factor c is appreciably larger compared to the
weighting factor b, the optimal control given by eqution (4.19) will violate

the constraint [8| < 1. Therefore the condition

does not yield the admissible control action. The optimal control for

0 <t <t is

6 = -1

where t is the time when the saturation period ends, which is to be deter-

mined. With 8 = -1, equation (4.1) can be integrated as
-I‘2t
x, (t) = Bje +K' o, 0<t its (4.21)
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where

- rzka + TIKB - rIKr + as

5

The constant of integration, Bl’ can be determined by employing the initial

condition in equation (4.21) which yields
B, =a, - XK'

With the solution of xl(t] given by equation (4.21), equation (4.5) can be inte-

grated as

A T . 2e(K'-1

I
(=]
i ]
+

-

z,(t) = B, 0<t<t, (4.22)

where 82 is the integration constant to be determined later.

After time tg the control action will no longer be saturated and thus

the condition

aH*
s =0

can be used to determine the optimal condition. Thus the optimal control,
optimal state, and adjoint variable given by equations (4.19), (4.12), and (4.11)

can be used for tS <t < T. The constants A1 and A2 in equations (4.11) and

(4.12) can be determined by using the fact that Xy and z, are continuous with

respect to t. Hence at t = t
5

Ats -Ats
zlfts) = Ale + Aze + K
.t cB, -r. t
2 2 2c(x'-1
= Be 5 —;1e S 4 2 (4.23)
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1 Ats -Ats
xl(t;) = EE{[IZ—A)Ale + (r2+l)A2e + rZK] + 1

= Be s, g (4.24)
Also at t = ts, 8 = -1. Hence from equation (4.19), we have
3
TIKB At =it
—_F s -
TS R S Ul (4.25)

Application of the boundary condition at t = T, that is, xl(T) = 1 to the

minimum H equation, namely equation (4.15) gives

2b
8(T) = [-{rlKB }(-r2+r2Ka—r1KY+os) +

r i

4b2

2
T - - 4,26
jf 55 ( r2+r2Ka rlKY+US) + 4ba / (-2b) { )
rlKS

Using equation (4.11) in equation (4.12) for time t = T yields

rll(B
2b

a2t & A 2 1B (4.27)

8Lt = 1 2

Comhining equations (4.26) and (4.27) gives

AT -\T 2b
Ale + Aze + K = [-.{r1Ka} (-r2+r2Ka-r1Ky+cs) +

—EEE-(— +r K -r K +o )2 + 4ba | / (-r,k) (4.28)
2.2 Ut LR s 1°8 :
T1kg
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There are five unknowns Al’ Az, B2, t , and T in equations (4.14), (4.23), (4.24)
s

(4.25), and (4.28). These equations can he solved simultaneously using a search

technique to determine these constants.

Then the optimal policy and response are summarized as follows:

8 =-1 , 0<tc<t (4.29%a)
~EEE ;
-T,t
X, = Ble + K' , 0 <t j_ts (4.29b)
r. K
_ 18 At -At
= o5 By HR TR toStsT (4.29¢)
" At )t ;
xl % 5e {(rz-A)Ale + (r2+A)Aze + rzk } +1 ,
t <t=<T (4.29d)

Now the objective function becomes

» 2 2
= x,(T) = [ [a+ be“ + c(x,-1)"]dt
0

wn
|

t

s
f {a + b + c[Ble
0

~r-t

" (K'-1)]2} dt

T r K 2
+ f [a + h{—%gg-(AleAt + Azeﬁxt + K)}
t
s

2
f Lep, At -t
+C 12c[(rz A)Ale + (r2+A)A2e + rzK] dt
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2

B] -2r,t 28, =8t 5
= (a+b)t + c{-z————(l -e $) - —{(K'-1){1-e “35) + (K'-1)°t }
s rz rz 3
22 2 2
22t A
]. B ZXT s _21'1' -2t
- T-t + — s
a(T-t ) + - ( ) - l(t‘r )
2A_K -At
2 e s
*KOT-t ) + 20, (T-t ) - —5—(e - )
2A K At
+ i (eAT—e s)}
2,2 2.2
RN AR (BT s () Ay oyy e
dc 23} e 7 & e )
2.2 2 .2
+ rzk [T-ts) + 2(r2—A )AIAE(T—ts)
2(r +l]r =it
- 2 -e s)
A
2(r,-A)r. KA At
AT
s —2 2 1M 5)} (4.29€)

In cases where the weighting factor a is appreciably larger compared to the
weighting factor b, the optimal control given by equation (4.19) will violate

the constraint |8| < 1. Therefore the condition

does not yield the admissible control action. The optimal contro' for

0 <t<Tis
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where T is the final time to be determined. With 6 = -1, equation (4.1) can

be integrated as

-rzt
Xl(t) = Ble + K' , D<t<T (4.30)
where
rZK + 1 K - rK +g
K' = a 18 ly S
T

2

The constant of integration, Bl, can be determined by employing the initial

condition in equation (4.30) which yields

With the solution of x,(t) given by equation (4.30), equation (4.5) can be

integrated as,

.t cB -r.t
2 1 2 2¢c(K'-1
Zl(t) = B2e +——r;e "’Tl ’ Of_tiT (4.31)

The integration constant B2 in equation (4.31) is determined bv using the
condition that minimum H is zero for all the process time.

Now the minimum value of H is,

ju vl
1}

2
zl(-r1x1+r2KG+r1KB-r1KYﬂ2) +a+b+ c(xl—l) =0 , 0<txT

That is

H

]

2
zl(—r2x1+K'r2) +a+h+ c(xl—l) =0 , 0<t<T (4.32)

Application of the boundary condition at t = 0 , that is, xl(O) = a, to

equation (4.32) gives
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[2+D + c(uo-l)z]

z.(0) = - v (4.33)
1 rz(K uo)
Also from equation {4.31) at #%ime t = 0, we have
cB .
g P % B, %~ 2GR =1] (4.34)
1 2 T, T,

Combining equations (4.33) and (4.34) yields

fa+b+ cla -1)2] cB
B, = - 0 -

1 _ 2e(K'-1)
Y
2 rz[K ao) T

2 T3

The final control time can be obtained from the minimum H equation, namely

equation (4.32) together with the condition
xl(T) =1
as follows:
2
s i t - =
H= zl(T) [ rle(T) + K r2] +a+b+ c[xl(T) 1] 0

or solving for zl(T)

Zl(T) = - ;—z-m (4.35)
Also we have from equation (4.31) at t =T

2 1 T2 2c(k'-1
M =Be” + 56 ° o -fﬂﬁi;—)- (4.36)

Solving for T from equations (4.35) and (4.36), we have
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f2e®'-1)% + 2+ b) /[2::(1('-1)2 v g% bl TeByB,
r, (K'-1) J r, (K'-1) h r
=2 2 : £ _bota3
2 2B
Then the optimal policy and response are summarized as follows
= -1 , 0<t<T (4.38a)
-T,t
= By TR Baugpt (4.38h)
Now the objective function becomes
& 2 2
= XZ(T) = f [a + BB® + c(x,-1)"]dt
0 1
T -r2t 2
= fla+b+ C(Ble +K'-1)7]dt
0
2
B1 -2r2T ZB1 ~r2T 2
= (a*b)T + c{~2—(1-e ) + —(K'-1)(1-e ~ ) + (K'-1) T} (4.39)
. )

The following twelve cases are considered in this example:

Case
Number

1

2

Weighting factors

a b c

0.1 1 1

1 1 1

10 1 1
100 1 1.

1 0.1 1

Case
Number

7

8

9

10

11

12

Weighting factors

a b c
1 10 1
1 100 1
b 1 0.
1 1 1
1 1 10
1 1 100

1
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Cases 2, 6 and 10 are one and the same; however they are repeated for
convenience in the comparison of results.

The values of the various constnats used are:

T, = 0.8 Ka = 1.5
r2 = 0.2 KB = KY = 0.625
aﬂ =0
The results of this example for Og = 0.75 and g, * 1.2 are shown in Tahle

6.4.1 and Figures 6.4.1, 6.4.2, 6.4.3, 6.4.4, 6.4.5, 6.4.6.

The control time, required to reach the final desired state, decreases with

increase in the weighting factor a on the control time while b and c are kept

constant; increases with increase in the weighting factor b on the control effort

while a and c are kept constant; and decreases with increase in the weighting
factor ¢ on the state deviation while a and b are kept constant. Also when
the weighting factor c¢ takes the values as 10 and 100 which are appreciably
larger compared to the weighting factor b, there results a switching time

tg until when the heat exchanger operates at its limiting capacity (here

8 = - 1). Again the greater the value of S the lesser is the control time
required to reach the final desired state, this being the heating system.

The value of the objective function increases with the increase in the
magnitude of the weighting factor under cénsideration while all other
weighting factors are kept constant. With the highest value of o and the
lowest magnitude of the weighting factor a on the control time (b and ¢ being

kept constant), the objective function attains its minimum value.
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In cases 3, 4 and 5, where more weight is given to the control time
than to the control effort, the optimal control is of bang-bang type having
only the bangpart. In case 8 where more weight is given to the control effort,
8, than to the state deviation, the optimal control has a very small negative
value. In cases 11 and 12, where more weight is given to the deviation of
X from the desired value, the optimal control & has an approximately

constant value that is required to maintain the system in the desired state,

1eBas X; = 1. All other cases are intermediate ones.




Case

Table 6.4.1

Optimal Souutions of Example 4:

Switching

Final

100

Value of the

< Number :eighting FaCtorz Time t Time T Objec?ive
S Function

0.75 1 0.1 1 1 1.89786 0.79412
2 1 1 1,38925 2.23503

3 10 1 1 1.05653 11.95565

4 100 1 1 1,05653 107.04370

5 1 0.1 1 1.05633 1,79584

6 1 i 1.38925 2.23503

7 1 10 1 2.09380 2.81999

8 1 100 1 2.24150 2.91905

) 1 1 1,47677 1.83927

10 1 1 1 1.38925 2.23503

11 1 1 10 0.51316 1.08976 5.08517

12 1 1 100 0.37997 0.55558 26.21930

1.20 1 .1 1 1 1.05604 0.44508
2 1 1 1 0.94215 1.34126

5 10 1 1 0.71551 8.10081

4 100 1 1 0.71551 72.49586

5 1 0.1 1 0.71545 1.01710

6 1 1 0.94215 1.34126

7 1 10 1 1.09388 1.45237

8 1 100 1 1.11344 1.46562

9 1 1 0. 0.96989 1.07054

10 1 1 1 0.94215 1.34126

11 1 1 10 0.25078 0,79997 3.51820

12 1 1 100 0.29996 0.46450 19.67662
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Fig.

6.4.1 Optimal control policy and system response of Example 4
(as = 0.75)
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x, () -~

e(t) -

Fig. 6.4.2 Optimal control policy and system response of Example 4
(c_=0.79)
s
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xl(t) -
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Fig. 6.4.3 Optimal control policy and system response of Examplz 4
(o = 0.75)
s
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xl(t) 3

o(t) -
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Fig. 6.4.4 Optimal control policy and system response of Exampie 4
=1.2)

(crs =
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Fig.

6.4.5 Optimal control policy and system response of Example 4
(o =1.2)
s
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CHAPTER 7

COMPARISON OF CLOSED-LOOP AND OPEN-LOOP CONTROL OF LIFE SUPPORT SYSTEMS WITH

LINEAR PERFORMANCE EQUATION AND QUADRATIC OBJECTIVE FUNCTION

7.1 Introduction

This chapter deals with the closed-loop as well as the open-loop control
of two examples-one dealing with a cooling system subjected to an impulse
heat input and the other dealing with a heating system subjected to a step
heat input. In each of these examples the performance equation is of linear
form and the objective function is of quadratic form. Also each example has
the right end free and deals with both the cases of specified and unspecified
final time.

Kalman's linear regulator methodology is used in determining the optimal
control law for the first example subjected to an impulse heat disturbance.
However, since the performance equation of the second example subjected to
a step heat disturbance depends explicitly on disturbance, a slightly modified
version of the linear regulator methodology is used in this case.

It is found, in each example, that the open-loop control policy and
the closed-loop control law are exactly same whether optimal T is specified

or not, as long as the linear system has a quadratic functional.
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7.2 EXAMPLE 1: Impulse Heat Disturbance

Let a life support system consisting of an air-conditioned room or
cabin and a heat exchanger of negligibly small time constant (12 = 0)
be subjected to an impulse heat disturbance.

The performance equation of such a system is written as

dxl
dp = " T%y 2Tk - K0 - Bk K, (1)

The initial condition is
+
xl(O Y =1

It is required to find an optimal control that will bring the system to
the desired condition in a time interval T, which may or may not be specified.

The objective function to be minimized is the sum of the integrated
control effort to maintain the state of the system in the desired state and
the integrated deviation from the desired state over a specified/unspecified
control period and is given by

g = fT (o + extyar (ii)
0

where b and ¢ are weighting factors.

It is required to compare the open-loop as well as the closed-loop
solutions of the above problem for both the specified and unspecified control

periods.
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Since the closed-loop algorithm cannot handle constraints, it is as-
sumed that the control variable is unconstrained, that is, two or more heat

exchangers are operated in series if required.

a. Closed-loop control:
First considering the closed-loop case with a specified control period,
the problem as stated has a fixed time interval with free right-end.
Introducing a new control variable ¢, which is a function of 6 alone

(so that minimization of & is equivalent to that of 08), as

¢ =r K - r.KK.56 - rIKIK

2711 17172 3

in order to put the above problem in the standard form suitable for the ap-
plication of the linear regulator algorithm, the original problem is re-
written as follows:

Performance equation:

% (1.1)
Fraahali o Tk '

Initial condition:
+
xl(O ) =1

Objective function:

Minimize

T 3 2
S=[ (r¢" + qx)dt (1.2)
0

where r and q are new weighting factors.




The Hamiltonian is

2 2
H=m1$" + gXy - Z;T,X; + zl¢ (1.
The adjoint variable is defined by
aH *
—EI-— -2 = 2qx1 - 4T, (1.
with the end condition
zl(T] =0 (1.

The optimal control is obtained from the following necessary condition

for optimality

aH
'3?—0—21'¢ "‘Zl (1.
which gives
z
1
$=-7 s

Now we inquire whether this can be converted to a closed-loop control by

assuming the solution for zy as

110

3)

4)

5)

6)

7)

1 * M ™ L18
Employing equation (1.8) into equations (1.1) and (1.7) yields
P, X
. 111
Xy = - Xy - > (1.9)

Also from equations (1.4) and (1.8) we require
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2 =Py * B¥y ¢ - A0 * Pe%R, WL+ 203
combining equations (1.9) and (1.10) gives

2
(by; - 20y,%, - 2L+ 2)%, = 0 (15
Pyy = <Pri®g ~ "3 T X ™ s

Since equation (1.11) must hold for all nonzero X;s the term premultiplying

x1 must be zero. Thus we have

2
P

. 11
Pyp * 21Tt 3y - A (1.12)

with an end condition given by equations (1.5).and (1.8)

pn(T) =0 (1.13)

From equation (1.9) we have

Pyg

r X, + X
§ . i { 271 l} (1.14)
o |

Differentiation of equation (1.14) with respect to t yields

]’111 ——-———} | (1.15)

By substituting equations (1.14) and ¢1.15) into. equatiom (1.12) we obtain

- 2 q.
x) - (r2 + r)xl =0 (1.16)




The solution of equation (1.16)

At % K e-kt

xl(t) = AIe 2

where

112

(1.17)

By differentiating equation (1.17) with respect to t and substituting the re-

sult together with equation (1.17) intc equation (1.14), we obtain

At -
AI(A+r2)e - Azil-rz]e

2r

t

Py, (t) =
11 Alext . Aze-xt

Application of the boundary conditions

n
—

x1(0+)

and

to equations (1.17) and (1.18), respectively, gives

n
g
+
P
n
[

x1(0+)

AT -
plICT) = -Al(l+r2)e + AZ(A—rz]e

The solution of equations (1.19) and (1.2Q) for A, and 4, is

=AT
(A-rz)e

Al =

AT -
(A+r2)e + (A-rz)e

0

(1.18)

(1.19)

(1.20)

(1.21)
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and

AT
- (l+r2)e (1.22)

2 (A+r2)eAT + (A—rz)e-AT

The feedback gain k(t) is obtained as

At At

e & o {t A Qerge - L0-x,le (1.23)
7T At =Y

Ale + Aze

Then the optimal control policy ¢(t) may be obtained as

o(t) = k(t) x,(t)
A, (A+r )eAt - A (A-r )r.a-)‘t
1 2 2 2
= Y x, (t)
A et 4 Ao Mt 1
1 2
At -\t
= AI(A+r2)e - Az(l—rz)e (1.24)

2 2 _q. .
Using equatigns (1.21) and (1.22) and the relation A o= 1'2 = ’E‘ into equatlon

(1.24) yields

{%4[3—1(T-t) ) eA(T-t)]

o(t) =
(1+r2)exT + (l-rz)e-l

(1.25)

T

The objective function S becomes
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B, 3
%0 = [ e )

2]
n

T 2 2
” At ~kt At -At
= g [r{(x+r,)A ™" - (A-r,)A e } o+ qtaet + Ae™ ) Tat
= 5% [Ai(eZAT-I){q+r(A+r2)2}- Ag(e-ZAT—l){q+r(x-r2)2}] (1.26)

Next considering the same closed-loop case but with unspecified control

period, equation (1.12) becomes

+ 4rr - 4qr = 0 (1.27)

2
P11 2P11

The solution of equation (1.27) gives a positive constant value for pyp as

- . I |
P~ 2r{rz J 271 } (L5}

The constant feedback gain k is obtained as

P
et s m wlye 4 B
k = 5 = T2 r, * - (1.29)
Now the sclution for equation (1.9) can be obtained as
P
-y ¥ it
xl(t) = Ae (1.30)

Application of the boundary condition

xl(o*) .1
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to equation (1.30) gives

A=1 (1.31)
Then the optimal control policy &(t) may be obtained as

¢(t) = kx;

P11

-{r.,~—=)t
= {rz -‘ rg + % }e 2 2r) (1.32)

The objective function S becomes

T
S = f (r¢2 + qxf)dt
0
P 2 p 2
= f [r{(x, - | 5 + Ye + gle dt
2 2 T
0
2 P11
P,, *+ 4qr -{2r,+—)T
= 11 e 2 T = 9 (1_33)
P11

-4r(2r2 + ";Tﬁ

b. Open-loop control:

Now the same problem is cons;[dered for open-loop control. Although
Pontryagin's maximum principle can handle constraints, it is assumed that the
control variable is unconstrained for the purpose of comparison of the re-

sults of the open-loop control with those of the feed-back control.
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First considering the open-loop case with a specified control period, we
proceed as follows:

Introducing another state variable xz(t) such that

- 2
X, (t) = [ (6 « gx])dt
0

it follows that

dx2

2 2
T = 1.34
o ¢ + ax;,  x,(0) = 0 { )

The problem is thus transformed into that of minimizing xz(T).

According to Pontryagin's maximum principle the Hamiltonian is

2 2
= o 1.35
H zlr2x1 + zl¢ + zzr¢ + zqul ( )

The adjoint variables are defined by

9% 3H

T " T Bx T HTy - 2gamps 23(T) = 0 Cladfl
1

dz

- st =0, 2,(T) = 1 (1.37)
2

Solving equation (1.37) for z, gives

zz(t) =1, 0<t<T (1.38)
Hence the Hamiltonian can be rewritten as

2 2
H =-2,7,% + zl¢ + ¢ + qx; (1.39)




117

According to the maximum principle, H must be a minimum in ¢ with the values

of x; and z considered as fixed. Putting

36 = 0
we have
%% =z +2r4 = 0 (1.40)
or
2
¢ = - 3 (1.41)

Substitution of equations (1.38) and (1.41) into equations (1.1) and (1.36) re-

spectively, gives

dx z

i ‘P .3

it - 21 T Ip (1.42)
and

dzl

el LL-45)

The system of differential equations, equations (1.42) and (1.43), is solved

simultaneously. From equation (1.42) we have

dxl
zZ, = -2r (rle + —EEQ (1.44)

Differentiation of equation (1.44) with respect to t yields
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2
e O . W ol (1.45)
dt 2 dt dt2

By substituting equations (1.44) and (1.45) into equation (1.43) we obtain

2
d xl

2

2 .q, _ (1.46)
- X, (r, +2) =0
dt 12 T

The solution of equation (1.46) is,

_ At -\t (1.47)
xl(t) = Ale + A2e

where

and Al and A2 are constants of integration. By differentiating equation (1.47)
with respect to t and substituting the result together with equation (1.47) and

equation (1.44), we obtain

A it

zl(t) = 2r[-A1(A+r2)e ¥ Az(x-rz)e- ] (1.48)

Application of the boundary conditions
xl(o*) =1

and

z)(T) = 0

to equations (1.47) and (1.48), respectively, gives




119

+
x (07) = A, + A, =1 (1.49)
AT -AT
= - - = 1;50
z, (T) 2r[ Ay (Asr,)e” + Az(x rZJe ]=0 ( )
The solution of equations (1.49) and (1.50) for Al and A2 is
(A-rz)e-lT
= — 1.51
“ (her)e T & =)o 2% ( )
2 2
(A+r2]ekT
AZ = T T (1.52)
(her,)e” + (A-rz)e-

The optimal control é(t), which may be obtained by the substitution of

equations (1.41), (1.51),°(1.52), and the relation Az - r2

(1.48) is

G20 | ATt

E=q)
I

(A+r2)eAT + (A-rZJe_lT

The objective function S = xZ(T) becomes

ik

S=xy(T) =/ (re® + qxf)dt
0

T

0

1 2. 2T

[ trioer)a et - oera,e™

t.2

}

L (R EPTnaerovr)?) - e P Tn g or )

2 -% into equation

i l=53)

+ q{AleAt+A

-At,2
2€ } ]de

(1.54)
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Next considering the same open-loop case but with unspecified control

period, we equate the minimum value of Hamiltonian to zero.

Min H

0= -1, (-26)x; + axL + (-2r6)¢ +16°

n

2 2
- TH + 2rr,X 6 ¢ qx, (1.55)

Application of the boundary condition at t = 0, namely, x1(0+) =1 to

equation (1.55) gives

-r[6(0)]% + 2rr,9(0) + q = 0 (1.56)

The roots of this quadratic equation are

2,49
®(0) =1, + |1, + =

For ¢(0)

]

g ]

]

H

+
Mo

combination of equations (1.41) and (1.48) yields

z;(0)

@(0) - '—"—2"'1-"— = Al(k*l‘z) = Az(h-rz)

L}
H
'

2 q 57
2 2% L5

and A, is

The solution of equations (1.49) and (1.57) for Al 9

A, =0 (1.58)

A =1 (1.59)
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The final time T is found from equation (1.50) as follows

2AT
-Al(l+r2)e

+ Az(k-rz) =0

or

A 0-Ty)

e Rl e —
A Owr,)

This gives

T:—lgn{f.z_(i-_rgl}
5] A ()

Further simplification of equation (1.60) gives

2
2

Instead using #0) = T, +|rT
~

which is not physically feasible.

The objective function S becomes

T 4 2
x,(T) = J; (r¢” + qx)) dt

N
n

T

2. 2AT

At -it,2 At
é [x{(+r,)A ™" - (A-T,)Ae "7} + qlae™ + A

(1.60)

(1.61)

+ i:: in the above procedure produces T = - =

-At,2
2 }71de

= 3 WD 0er)?) - APy [qerer ] (1.62)
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Further simplification of equation (1.62) gives

[q + r(l-rz)zl

2

S = x,(T) = a - &7 (1.63)

The following four combinations of weighting factors are considered in

this example.

Case 1: r =1, q= 0.1
Case 2: r =1, q=1

Case 3: 1 =1, q =10
Case 4: r=1, q = 100

The values of the various constants used are:

rl = 0.8 r2 = 0.2
Kl = 0.5 KZ = 1.5
KS = 1.5 g =2

The results of this example for both the open-loop as well as the
closed-loop cases, which are exactly same (because of linear performance
equation and quadratic objective function) are shown in Table 1.1 and Figs.
1.1, 1.2 and 1.3.

The value of the objective function increases with increase in the weighting
factor q on the deviation. Also the longer the control period T, the greater
is the value of the objective function. However when the weighting factor q
takes appreciably larger values such as 100 compared to the weighting factor
r (which is 1), the objective function is affected in the least by the length

of the control period T.
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In case 1, where more weight is given to the control effort, ¢, the op-
timal control policy has a very small negative value. Since the control effort
¢ is unconstrained it takes high negative values for larger values of q
(cases 2, 3 and 4) and thus requiring twoc or more heat exchangers to be
operated in series. However, the control ¢ reaches zero in all the cases at
the end of the control periocd (T=1 or 5). Also in the case of unspecified

control period, the control ¢ attains zero in all the cases at T » =.




Values of the Objective Function of Example

Specified
Time

1.0

5.0

Case
Number

1

2

Table 1.1

Weighting

Factors
r=1, q=
r=1, gq-=
r=1, q =
r=1, q =
r=1, q-=
r=1, q =
r=1, q-=
r =1, q-=

0.1

1

10

100

0.1

10

100

Value of

the
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Objective Function

0.

0.

2

08024

65583

.95872

.80200

.16882

.81975

. 96859

.80200
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d(r) -+

Fig. 7.11 Optimal control policy and system response of Example 1

(T - specified) T = 1.0

1.0

125




xl(t) >

d(t) -

=10.

Fig.

.1.2 Optimal control policy and system response of Example 1

(T - specified) T

t -

5.0

1

]

1l

0.1

= 10
= 100
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7.3 EXAMPIE 2: Step Heat Disturbance

Let a life support system consisting of an air-conditioned room or
cabin and a heat exchanger of negligibly small time constant (12 = 0) be
subjected to a step heat disturbance.

The performance equation of such a system is written as

dx1
T + T,X, = r2KOI - rIKBe - rle + Gs (i)

The initial condition is
xl(O) =0

It is required to find an optimal control that will bring the system to the
desired condition in a time interval T which may or may not be specified.
The objective function to be minimized is the sum of the integrated
control effort to maintain the state of the system in the desired state
and the integrated deviation from the desired state over a specified/un-
specified control period and is given by
T

5=/ [be” + ¢ (x - x )7t (ii)
0

where b and ¢ are weighting factors. The desired state x,, is equal to one.

1d
It is required to compare the open-loop as well as the closed-loop
solutions of the above problem for both the specified and unspecified control
periods.
Since the closed-loop algorithm cannot handle constraints, it is assumed

that the control variable is unconstrained, that is, two or more heat exchangers

are operated in series if required.
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a. Closed-loop control:

First considering the closed-loop case with a specified control period,
the problem as stated has a fixed time interval with free right-end.

Since the performance equation of this problem depends explicitly
on disturbance, a slightly modified version of the linear regulator
methodology is used here.

Introducing a new state variable Yq» to represent the deviation of

the system state from the desired state, as

i =y =1
and a2 new control variable ¢, which is a function of 8 alone (so that

minimization of ¢ is equivalent to that of 6), as

® = —r2 + rzKOl - rIKBB - rlxy

in order to put the above problem in the standard form suitable for the
application of the algorithm, the original problem is rewritten as follows:

Performance equation:

(=
p—

Yy
t - T

+ ¢ + 0 (2.1)
5

(=¥

Initial condition:

Yl(o) = -1
Nhjective function:

Minimize
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» 2 2
S=[ (re° + qyl) dt (2.2)
0

where r and q are new weighting factors.

The Hamiltonian is

H = r¢2 + qyg - 2Tyt Zyb * zp0, (2.3)
The adjoint variable is defined by

oH .

T 2qy, - 7T, (2.4)
with the end condition

z,(T) =0 (2.5)

The optimal control is obtained from the following necessary condition

for optimality

dH

E= 0= 2T¢ * zl (2.6)
which gives

..a

R {273
Now we inquire whether this can be converted to a closed-loop control
by assuming the solution for z, as

By = <2y ¢ Byg) (2.8)

Employing equation (2.8) into equations (2.1) and (2.7) ylelds
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Yp = - T¥y *PyYy t gyt (2.9)
Also from equations (2.4) and (2.8) we require
2= - 20 gy * Py Y ) = -2y - 2T, ey v onyy) (210
Combining equations (2.9) and (2.10) gives
(Pys - ToDyqy * 2 5 « n,, + o_+n
Y1'P1; - 2P T P/ T Pui™n T Pui% T M
= ¥y (rgpyy) + Tonyy (2.11)

Equating coefficients of Y1 in equation (2.11), we obtain an equation for

Py (V)

2

- 2r,py; * Py

) g
P11 z =0 (2.12)

and therefore nll(t) must satisfy

My * NPy - Ty) * Py 95 =0 (2.13)

To establish boundary conditions for equations (2.12) and (2.13), it is as-
sumed that at some time t < T the disturbance vanishes and remains identi-
cally zero. Equation (2.12) is the usual Riccati ordinary differential

equation with the end condition

P (M) =0 (2.14)

Hence it follows from equations (2.5) and (2.8), that the suitable boundary

condition for equation (2.13) is




= 2.15
n,{M =0 ( )
Thus the procedure is to

(a) solve equation (2.12) for pll(t) as

C + po(t*A) (B-C)

Py (6] = 1+ o (E*AI(B0) L1t

where B and C are the roots of the quadratic algebraic equation

2

pl1 - 2r

.
P9

that is,

v =)

1]

2]
(5]

+

=}
[ 8 ]
A:—]
Ho

and

and

1 C
ﬁ-lﬂ{- ‘g} - T

=
|

(b) solve for nll(t) from equation (2.13), which is a linear nonhomogeneous

differential equation, backward in time from T to 0.

(¢c) solve equation (2.9) for Yi» forward in time from 0 to T.

(d) obtain the closed-loop control from

¢(y;.t) = Py (8) vy (t) + 0y (1) (2.17)
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Next considering the same closed-loop case but with unspecified control

period, that is, T + =, the solution of the Riccati equation (2.12) is

- - 2.9
Pjp =T " T2 %t

and equation (2.13) is

- _ 2 q e 2 q. =) =
L M lrz ety *.Irz - R n,= =0

which has the solution

= - 2,49
By Led = = { T2 T2t { s SF
that is
r
i 2
nll(t) 2 ——-1tr 0

s
[5+¢

Hence the solution of equation (2.9) for Y1 yields

-(r, - pyyJt mny, *o
yy=pe 2 M. S
2 " Py

where

n + 0
S

and Py and n,, are given by equations (2.18) and (2.21).

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
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Then the optimal closed-loop control becomes

e(y;»t) = pyy ¥, (8) + 0y (2.23)

where P1y and n,, are constants.

(b) Open-loop control:

Now the same above problem is considered for open-loop control.
Although Pontryagin's maximum principle can handle constraints, it is
assumed that the control variable is unconstrained for the purpose of
comparison of the results of the open-loop control with those of the
feed-back control.

First considering the open-loop case with a specified control period,
we proceed as follows:

Introducing another state variable yz(t) such that

L I
y,(t) = [ (r¢” + qypdt
0

it follows that

dy

2 2 2

R = 2.24
TS e~ + qyys yz(O) 0 ( )

The problem is thus transformed into that of minimizing yz(T).

According to Pontryagin's maximum principle the Hamiltonian is

. 2 2 (2.25)
H=z,(-Ty, + ¢ +0) +z,(qy) + 167)

The adjoint variables are defined by
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iy 3H
at - Cay - L2 " Bythd = 0 (2:26)
dz
2 _ 3H _ _
-k ayz =0, ZZ(T) =1 (2.27)
Solving equation (2.27) for z, gives
zztt) =1, 0<t=<T (2.28)
Hence the Hamiltonian can be rewritten as
H=z (~r.y. +¢ + g ) + qyz + r¢2 (2.29)
1 7271 s 1 .
“According to Pontryagin's maximum principle, H must be a minimum in ¢
with the values of Yy and Zy considered as fixed. Putting
dH
3% - 0
we have
aH
Z_ = = .3
TS I 2r¢ = O (2.30)
or
z
2 B
b = - 7 (2.31)
Substitution of equations (2.28) and (2.31) into equations (2.1) and (2.26)
respectively, gives
j‘.ir_1.= -7 - i];-f a (2 32
dt 271 T s 92)
and
dz
L. 2
T5 = To%p - 24y (2.33)
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The system of differential equations, equations (2.32) and (2.33), is solved

simultaneously. From equation (2.32) we have

dy

= it !
[ ® Yy g ) (3.34)

Differentiation of equation (2.34) with respect to t yields

2

dzl dyl d Yy
_—= 27 rz-ﬁ + tz (2.35]

By substituting equations (2.34) and (2.35) into equation (2.33) we ohtain

2
d yl

2,9 -

s yl(r2 # 2 ) + ro =0 (2.36)
dt

The solution of equation (2.36) is,

y, = Alelt + A?_e“t + K (2.37)

where

H
Q

+

S I o8

T

g
T

and Al and A2 are constants of integration.

By differentiating equation (2.37) with respect to t and substituting

the result together with equation (2.37) into equation (2.34), we obtain

t

2, (1) = ~2r[A (r,0)e T+ A (r,-A)e M (rK-0,)] (2.38)

ALP)




Application of the boundary conditions
Yl (0) = '1
and
ZI(T) =0

to equations (37) and (38), respectively, gives

yl(U) A1 + Az +K = -1

T

AT =A
zl(T) -2r[A1(r2+A)e + Az(rz-k)e

The solution of equations (2.39) and (2.40) for Al and A2 is

-(r —A)(K+1)e—AT + 1. K -0
& = 2 2 5
1 -AT AT
(rz-k)e - (r2+l)e
(r +1)(K+1)eAT -r.K+o0o
AL = 2 2 s
i (rZ-A)e_XT - (r2+A)eAT

+ rzK -os] =0
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(2.39)

(2.40)

(2.41)

(2.42)

The optimal control $(t), which may be obtained by the substitution of

equation (2.31) into equation (2.38) is

=iy - AT AT
p(t) = Al(r2+l)e + Az(rz e + r K - a,

2

n

The objective function S ;Z(T) becomes

T
x,(T) = [ (x$% + ayl)dt
0

wn
]

T
t

0

+ q[AleAt + Aze'lt + K]z}dt

At -A 2
I {r[Al(r2+A)e + Az(rz-k)e + rZK - as]

(2.43)




o

2
= o+ [r, 07 + qie?T-1)

A2
T CI YRRy [ Ol §

2A
1 AT
—i—{r(r2+AIr2K-cs) + gqKl (e "-1)

2A
- —IZ-[r(rz-A](rzK-cs] + qK](e_AT-l)
+ T{ZAlAz[r(rg-lzj + q] + r(rzl(—crs)2 + qKZ} (2.44)

Next considering the same open-loop case but with unspecified control

period, we equate the minimum value of Hamiltonian to zero.

: e 2 2
Min H= 0 = (-2r¢)( Ty, + ¢ + cs] *qy, + ré
= -1+ 2we(r,y, - 0) * ays (2.45)
271 s 1
Application of the boundary condition at t = 0, namely, yl(O) = -1 to

equation (2,45) gives
re(0))° + 2r(r, + 0.)¢(0) - q =10 (2.46)

The roots of this quadratic equation are

6(0) = -(ry+0) x / &, v 0%+

5 _ 2 . q i g :
For ¢(0) = -[r2 + qs) + // (r2 + os) + = combination of equations (2,31)

and (2.38) yields

138
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¢(0) = Al(rz 4 A) ¥ Az(rz - ;\) + rzK = Us

~(ry, + o)+ ,/Qré + os)z + 4 (2.47)

T

The solution of equations (2.39) and (2.47) for A, and A, is

/e o+ & aceen

= 2.4
A1 2A (248)

i -//_(Tz + 05]2 + %~- AK + 1)

Az o (2.49)
The final time T is found from equation (2.40) as follows
2AT AT
Al(r2 + Ale + (rzK - cs)e + Az(r2 -k} =0
or
2 2 2
elT i —(rzK - cs) + //7(r2K - os) - 4A1A2(r2 - A7)
2A1(r2 + )
This gives
2 2 2
e o . —(rzK - US) :_J/i(rzK ~cs) - 4A1A2(r2 - A7)
T A 2R (x, + ) (2.50)

Instead using ¢(0) = -(r2 + osj —J/irz + 05)2 + %- in the above procedure
produces negative final time which is not physically feasible.

Here, when the final time T is not specified, the open-loop solution
gives a finite value for optimal final time, that is, T # =. However

the closed-loop solution is obtained for T + =, when the final time is not
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specified. Hence for the purpose of comparison of the open-loop control
policy when the unspecified final time has a finite value T, the closed-
loop control law is also obtained for that optimal finite final T (as
if the final time T is specified).

The following four combinations of weighting factors are considered

in this example.

case 1: r=1, q=0.1
case 2: r=1, q=1

case 3: r=1, q =10
case 4: r=1, q = 100

The values of the various constants used are:

r., = 0.8 0.2

F‘
1]

-~
]
Pt
(5]
-~
1l

K = 0.625
Y

The results of this example for o, = 0.75 and L 1.2 are shown in Table
1.1 and Figures 2.1 through 2.8.
The results of open-loop and closed-loop control are exactly same for both
the final time specified as well as the final time (optimal) not specified cases.
When the value of the final time T is specified, the objective
function increases with increase in the weighting factor q on the deviation.
Also the longer the control Period T, the greater is the value of the
objective function, for the same value of the step heat disturbance.
In case 1, where more weight is given to the control effort, ¢,
the optimal control policy has a very small negative value. Since the

control effort ¢ is unconstrained it takes high positive values for
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larger values of q (cases 2, 3, and 4) and thus requiring two or more

heat exchangers to be operated in series. However, the control effort

¢ reaches zero in all the cases at the end of the control period (T = 1 or
2}

When the (optimal) value of the final time T is not specified, the
objective function increases with increase in the weighting factor q on
the deviation. Since this is a heating system, the greater the value of
Gs’ the lesser is the value of the objective function, for the same values
of the weighting factors.

Also in the case of unspecified (optimal) control period, the control
¢ attains zero at the end of the optimal period, in all the four different
combinations of weighting factors.

Again in the case of unspecified control period with T » « (for
closed-loop control alone), as the weighting factor q on the deviation
increases, the control effort ¢ takes higher positive values (since ¢ is
unconstrained) and thus requiring two or more heat exchangers to be oper-
ated in series. However, the control effort ¢ as well as the deviation
Yy attain their respective steady-state values at different times in all
the four different combinations of weighting factors - with the case 4
[r =1 and q = 100] reaching the steady state at the earliest and the

case 1 [r = 1 and q = 0.1] attaining the steady state at the latest.




Table 2.1

Values of the Objective Function of
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Example 2: (Final time T specified).

a Specified Case Weighting Value of
Time Number Factors the Objective

Function

0.75 1.0 1 r=1,q=0.1 0.03640

2 r=1,q-=1 0.32335

3 r=1,q=10 2.04640

4 r=1,q =100 8.83707

2.0 1 r=1,q-=0.1 0.04566

2 r=1,q=1 0.41521

3 r=1,q =10 2.50150

4 r=1,q =100 9,39923

1.20 1.0 1 r=1,q=20.1 0.02512

2 r=1,q=1 0.23981

3 r=1, q = 10 1.85926

4 r=1, q =100 8.74289

3.0 1 r=1, q=0.1 0.09365

2 r=1,q-=1 0.68598

3 r=1,q=10 3.11722

4 r =1, g =100 10.18210
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Table 2.2

Values of the Objective Function of

Example 2: (Final time T not specified).

oy Case Weighting Optimal Value of the
Number Factors Time Objective Function
0.75 1 r=1,q=0.1 1.15992 0.03648
2 r=1,q=1 1.02294 0.32335
3 r=1, q=10 0.66307 2.01150
4 r=1, q = 100 0.32660 8.54257
1.20 1 r=1,q=0.1 (1.76410 0.02452
2 r=1,q=1 0.71489 0.23042
3 r=1, qg=10 0.52356 1.66323

4 r=1,q= 100 0.27991 7.92176
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Fig. 7.2.8 Optimal control policy and system response of Example 2
(T - not specified) T » = crs = 1.2
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CHAPTER 8

CONCLUSION

The modern optimal control theory can be employed for models of systems
in which mass and momentum transfer take place in addition to heat transfer.
It can also be applied to establish optimal control policy for systems for
control of humidity, purity and noise.

The maximum principle has a certain advantage over other modern optimal
control techniques in that it can be applied not only to the system with
linear performance equations but also to those with non-linear performance
equations. The maximum principle can handle constraints on state variables.
Thus, any environmental control problem in which the temperature of the
confined space has to be higher than a certain temperature - for example, a
biomedical process - can be solved by means of the maximum principle [18].
The maximum principle can also be used to evaluate the number of switching
points of the bang-bang control policy via the switching function and ad-
joint vectors. Bellman [4] has proven theoretically the number of switching
peints is one less than the dimension of the problem for linear systems.

But this theory cannot be applied to non-linear systems.

It has often been said that the optimal control policy as obtained by
the maximum principle is open-loop. This is not always true as shown through
the discussion of the linear regulator problem in chapter 5 and through its
application to real-life problems in chapter 7.

In summary, this report is a complement to the earlier work [17, 18, 19,
20, 21]. The models considered throughout this report can be made more real-

»stic, though not perfect, by considering multiple CST's-in-series (instead
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of only one CST model). 1In this case, the time constants of the sensing
element and the heat exchanger are no longer negligible. Computation of the
optimal trajectory will be very difficult, if not impossible. Also, solution
of the performance equations which consists of combination of the ordinary
differential equation representing the dynamic behaviour of the system element,
and the partial differential equation representing the dynamic behaviour

of the heat exchanger will be mére realistic, though the proceudre of solving

this problem is quite sophisticated.
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NOMENCLATURE

T K4/K1

T K2 K4 (Impulse heat disturbance)

T KB (Step heat disturbance)

Ky X4

T K3 K4 (Impulse heat disturbance)
T KY (Step heat disturbance)

K3 K4

Specific heat of air in Kcal/Kg e

Specific heat of coolant in Kcal/Kg o

%

TcD

ETC [Tr max L min]

r max T min
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i0
Step
Heat
Heat
Heat
Heat
Heat
Heat
Heat
Heat
Heat

Rate

Q +
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heat disturbance in Kcal/sec

flow into the system proper by circulation air in Kcal/sec
flow into the system proper by fresh air in Kcal/sec

flow into the heat exchanger by circulation air in Kcal/sec
flow into the heat exchanger by cooling water in Kcal/sec
flow out of the heat exchanger by circulation air in Kcal/sec
flow out of the heat exchanger by cooling water in Kcal/sec
stored in the heat exchanger in Kcal/sec

flow out of the system proper by circulation air in Kcal/sec
flow out of the system proper by fresh air in Kcal/sec

of heat accumulation in the system proper

Q,, flow rate of air in the system proper in m3/sec
2

Air flow rate by circulation air in msfsec

Flow

Flow

T

¥

3

%

Q *

rate of fresh air in msfsec

rate of coolant in mslsec

the ratio of time constant of system proper to that of
heat exchanger

, the fraction of circulation air

Q,




rf

T
I max

Q
———41——, the fraction of fresh air

+
Q +Q
ok dimensionless time
1
Reference temperature in %
.0
Room temperature in C
Disturbance temperature in %
Temperature of incoming circulation air in i
Initial time
Switching time
.
Inlet temperature of coolant in C

Outlet temperature of coolant in e

g , ._ 0
Qutside air temperature in C
Final time, dimensionless

. O
(tc - ta), room temperature in C

0

+
Room temperature at a = 0 in C

{td - ta), disturbance temperature in OC

(ti -t), temperatureoof the circulation air into the system
proper, in C

Temperature of the circulation air into the system proper
at « = 0° in °C
Qw P cpw(Twh i} T;c)

lecp

» hypothetical temperature

Final steady state value of 'I‘r

= Upper bound of T} in °
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T . = Lower bound of T_ in °C
T min T
T = Value of T_ at a = 0
r0 T
T =t -t_in°
we we c
_ _ .. O
Twh = twh ta in °C
T2 = (tz - ta), outside air temperature
UO(t) = Step heat disturbance function
. 3
Vl = Volume of room in m
V2 = Volume of heat exchanger in m3
Tc
X (t) =5 dimensionless room temperature
cO
X4 = Desired value of xj
Ty
X, (t) =T dimensionless temperature of the circulation air

i0
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GREEK LETTERS

a = Time in sec.
Ge = Final time in sec.
§(a) = Impulse heat disturbance function, sec-l
p = Air density in Kg/m3
Py = Density of coolant in Kg/m3
Ty
o =T dimensionless disturbance temperature (Impulse)
2
i
g =5 dimensionless disturbance temperature (Step)
c0
V1
T = ——— time constant of the system proper in sec.
A Q+q
VZ
T, = T time constant of heat exchanger in sec.
1
T -1/2 (T + T i)
r T max r min ;
0 = = , control variable
Tr max 1/2 (Tr max o Tr min]
+ 1 at T =T
T r max
-1 at T_=T ;
T r min
B(t) = Optimum value of 6(t)
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ABSTRACT

The temperature control of an envirommental control system is studied.
The system consists of a confined space or cabin subjected to a heat dis-
turbance, a heat exchanger of negligible time constant and a feedback
element such as a thermostat. Both a step heat disturbance and an im-
pulse heat disturbance are considered. ¢

The basic forms of Pontryagin's maximum principle for open-loop con-
trol and Kalman's linear regulator problem for closed-loop control are
outlined and their application is illustrated through a simple example
with a linear performance equation and a quadratic objective function.

The environmental control system considered in this report also has a
linear system equation and a quadratic objective function.

The optimal open-loop control policies of a heating system - subjected
to a step heat disturbance, having the initial and final values of the
state variable, namely the temperature, fixed but the final time T to be
determined - are established for the minimization of the following objective

functions.
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The optimal open-loop control policies and the optimal closed-loop
control laws are determined for two examples - one dealing with a cooling
system subjected to an impulse heat input and the other dealing with a
heating system subjected to a step heat input. 1In each of these examples
the performance equation is of linear form and the objective function
is of quadratic form., Also, each example has the right-end free and
deals with both the cases of specified and unspecified final time. It
is found in each example that the results obtained by both the open-loop
control policy and the closed-loop control law are exactly same whether
optimal T is specified or not, as long as the linear system has a quad-

ratic functiomal.




